Dataset Viewer
Search is not available for this dataset
pdf
pdf |
---|
🧠 ReasonBench: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning
image:background
🌐 Overview
ReasonBench is a comprehensive benchmark designed to evaluate Visual Language Models (VLMs) on complex graphical reasoning tasks. It contains 1,613 problems collected from real-world intelligence tests, covering 11 core cognitive dimensions and 29 task types. This benchmark provides a robust framework for assessing VLMs' spatial, relational, and abstract reasoning capabilities.
Dataset Type: Visual Language Reasoning · Graphical Reasoning · Benchmark Evaluation
Paper Link:https://arxiv.org/abs/2508.00323
📊 Dataset Structure
Core Cognitive Dimensions & Task Types
Cognitive Dimension | Task Type | Count |
---|---|---|
Positional Patterns | Translation | 94 |
Rotation | 56 | |
Combination | 30 | |
Stylistic Patterns | Crossing | 54 |
Addition/Subtraction | 67 | |
Black/White Operation | 63 | |
Attribute Patterns | Symmetry | 109 |
Open/Close State | 19 | |
Combination | 6 | |
Quantitative Patterns | Lines | 173 |
Faces | 137 | |
Points | 66 | |
Elements | 94 | |
Combination | 50 | |
Spatial Patterns | Cubes | 109 |
3D | 46 | |
Polyhedrons | 17 | |
Three Views | 40 | |
Cross-Sections | 35 | |
Spatial Quantitative Trans. | 10 | |
Special Patterns | 2D Combination | 31 |
Figure Relations | 40 | |
Alphanumeric | Alphanumeric | 27 |
B&W Blocks | Black & White Blocks | 32 |
Other Patterns | Comprehensive | 34 |
MENSA | Task 1 | 35 |
Task 2 | 39 | |
Raven | Task 1 | 40 |
Task 2 | 60 |
🖼️ Input Formats
Format | Description |
---|---|
Integrated Format | Presents questions and options in a single image for holistic processing |
Separated Format | Splits questions and options into multiple images for step-by-step reasoning |
🔍 Key Features
- Multi-format Evaluation: Supports both integrated and separated input formats
- Full Accessibility: Provides public URLs for all images (questions, options, and combined sets)
- Human Baseline: Includes human performance metrics for comparison
- Diverse Tasks: Covers 29 distinct reasoning task types across 11 cognitive dimensions
🚀 Usage(GPT-4o example)
import base64
import requests
import os
from openai import OpenAI # Requires openai>=1.0.0
# Configuration
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("Missing OPENAI_API_KEY environment variable")
# Initialize client (official SDK approach)
client = OpenAI(api_key=api_key)
def process_image_question(image_path: str, question: str, max_tokens=300):
"""Send image and question to GPT-4o API"""
# Encode image to base64
base64_image = base64.b64encode(open(image_path, "rb").read()).decode("utf-8")
# Construct messages payload
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "auto" # Options: low, high, auto
}
}
]
}
]
# Make API request
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=max_tokens
)
return response.choices[0].message.content
# Example usage
if __name__ == "__main__":
image_path = "path/to/your/image.jpg" # Update with actual path
user_question = "What's in this image?" # Customize your question
try:
answer = process_image_question(image_path, user_question)
print("AI Response:", answer)
except Exception as e:
print(f"Error: {str(e)}")
🧠 ReasonBench:复杂图形推理的视觉语言模型评估基准
🌐 概述
ReasonBench 是一个用于评估视觉语言模型(VLMs)在复杂图形推理任务表现的基准测试。数据集包含从真实智力测试中收集的 1,613个问题,覆盖11个核心认知维度和29种任务类型,为评估VLMs的空间、关系和抽象推理能力提供综合框架。
数据集类型:视觉语言推理 · 图形推理 · 基准评估
论文地址:https://arxiv.org/abs/2508.00323
📊 数据结构
核心认知维度与任务类型
认知维度 | 任务类型 | 数量 |
---|---|---|
位置规律 | 平移 | 94 |
旋转 | 56 | |
组合 | 30 | |
样式规律 | 穿越 | 54 |
加减法 | 67 | |
黑白运算 | 63 | |
属性规律 | 对称 | 109 |
开闭状态 | 19 | |
组合 | 6 | |
数量规律 | 线 | 173 |
面 | 137 | |
点 | 66 | |
元素 | 94 | |
组合 | 50 | |
空间规律 | 立方体 | 109 |
3D | 46 | |
多面体 | 17 | |
三视图 | 40 | |
剖视图 | 35 | |
空间数量变换 | 10 | |
特殊规律 | 2D组合 | 31 |
图形关系 | 40 | |
字母数字 | 字母数字 | 27 |
黑白块 | 黑白块 | 32 |
其他规律 | 综合 | 34 |
门萨 | 任务1 | 35 |
任务2 | 39 | |
瑞文 | 任务1 | 40 |
任务2 | 60 |
🖼️ 输入格式
格式 | 描述 |
---|---|
集成格式 | 问题与选项呈现在单个图形中,便于模型整体处理 |
分离格式 | 将问题与选项拆分为多个图形,测试分步推理能力 |
🔍 核心特性
- 多格式评估:支持整体式和分隔式两种输入格式
- 完全开放:公开所有格式的图片URL(题目、选项、题目+选项)
- 人类基准:提供人类准确率作为参考基准
- 多样化任务:覆盖11个认知维度的29种推理任务
🚀 使用示例(以openai GPT-4o为例)
import base64
import requests
import os
# 配置OpenAI API密钥
api_key = os.getenv("OPENAI_API_KEY") # 建议将密钥存储在环境变量中
if not api_key:
raise ValueError("请设置OPENAI_API_KEY环境变量")
# 图像处理函数
def encode_image(image_path):
"""将本地图像编码为base64字符串"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# 示例图像路径和问题
image_path = "path/to/your/image.jpg" # 替换为你的图像路径
question = "描述这张图片的内容" # 替换为你的问题
# 构建API请求
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4o", # 使用支持图像的模型
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": question
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encode_image(image_path)}"
}
}
]
}
],
"max_tokens": 300 # 控制响应长度
}
# 发送请求
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload
)
# 处理响应
if response.status_code == 200:
result = response.json()
answer = result['choices'][0]['message']['content']
print("AI回答:", answer)
else:
print("请求失败,状态码:", response.status_code)
print("错误信息:", response.text)
如果需要引用,请引用下列内容
{
author = {Jianyi Zhang and Xu Ji and Ziyin Zhou and Yuchen Zhou and Shubo Shi and Haoyu Wu and Zhen Li and Shizhao Liu},
title = {Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning},
howpublished = {arXiv preprint},
archivePrefix = {arXiv},
eprint = {2508.00323},
primaryClass = {cs.AI},
year = {2025},
note = {arXiv:2508.00323v1 [cs.AI]},
url = {https://arxiv.org/abs/2508.00323}
}
- Downloads last month
- 85