doc_content
stringlengths
1
386k
doc_id
stringlengths
5
188
matplotlib.pyplot.get_fignums matplotlib.pyplot.get_fignums()[source] Return a list of existing figure numbers.
matplotlib._as_gen.matplotlib.pyplot.get_fignums
matplotlib.pyplot.get_plot_commands matplotlib.pyplot.get_plot_commands()[source] Get a sorted list of all of the plotting commands.
matplotlib._as_gen.matplotlib.pyplot.get_plot_commands
matplotlib.pyplot.getp matplotlib.pyplot.getp(obj, *args, **kwargs)[source] Return the value of an Artist's property, or print all of them. Parameters objArtist The queried artist; e.g., a Line2D, a Text, or an Axes. propertystr or None, default: None If property is 'somename', this function returns obj.get_somename(). If it's None (or unset), it prints all gettable properties from obj. Many properties have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output, aliases and full property names will be listed as: property or alias = value e.g.: linewidth or lw = 2 See also setp Examples using matplotlib.pyplot.getp Set and get properties Artist tutorial
matplotlib._as_gen.matplotlib.pyplot.getp
matplotlib.pyplot.ginput matplotlib.pyplot.ginput(n=1, timeout=30, show_clicks=True, mouse_add=MouseButton.LEFT, mouse_pop=MouseButton.RIGHT, mouse_stop=MouseButton.MIDDLE)[source] Blocking call to interact with a figure. Wait until the user clicks n times on the figure, and return the coordinates of each click in a list. There are three possible interactions: Add a point. Remove the most recently added point. Stop the interaction and return the points added so far. The actions are assigned to mouse buttons via the arguments mouse_add, mouse_pop and mouse_stop. Parameters nint, default: 1 Number of mouse clicks to accumulate. If negative, accumulate clicks until the input is terminated manually. timeoutfloat, default: 30 seconds Number of seconds to wait before timing out. If zero or negative will never timeout. show_clicksbool, default: True If True, show a red cross at the location of each click. mouse_addMouseButton or None, default: MouseButton.LEFT Mouse button used to add points. mouse_popMouseButton or None, default: MouseButton.RIGHT Mouse button used to remove the most recently added point. mouse_stopMouseButton or None, default: MouseButton.MIDDLE Mouse button used to stop input. Returns list of tuples A list of the clicked (x, y) coordinates. Notes The keyboard can also be used to select points in case your mouse does not have one or more of the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key terminates input and any other key (not already used by the window manager) selects a point. Examples using matplotlib.pyplot.ginput Interactive functions
matplotlib._as_gen.matplotlib.pyplot.ginput
matplotlib.pyplot.gray matplotlib.pyplot.gray()[source] Set the colormap to 'gray'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.gray
matplotlib.pyplot.grid matplotlib.pyplot.grid(visible=None, which='major', axis='both', **kwargs)[source] Configure the grid lines. Parameters visiblebool or None, optional Whether to show the grid lines. If any kwargs are supplied, it is assumed you want the grid on and visible will be set to True. If visible is None and there are no kwargs, this toggles the visibility of the lines. which{'major', 'minor', 'both'}, optional The grid lines to apply the changes on. axis{'both', 'x', 'y'}, optional The axis to apply the changes on. **kwargsLine2D properties Define the line properties of the grid, e.g.: grid(color='r', linestyle='-', linewidth=2) Valid keyword arguments are: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float Notes The axis is drawn as a unit, so the effective zorder for drawing the grid is determined by the zorder of each axis, not by the zorder of the Line2D objects comprising the grid. Therefore, to set grid zorder, use set_axisbelow or, for more control, call the set_zorder method of each axis. Examples using matplotlib.pyplot.grid Step Demo Geographic Projections Pyplot Text Customize Rc Findobj Demo Custom scale SkewT-logP diagram: using transforms and custom projections Pyplot tutorial
matplotlib._as_gen.matplotlib.pyplot.grid
matplotlib.pyplot.hexbin matplotlib.pyplot.hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='face', reduce_C_function=<function mean>, mincnt=None, marginals=False, *, data=None, **kwargs)[source] Make a 2D hexagonal binning plot of points x, y. If C is None, the value of the hexagon is determined by the number of points in the hexagon. Otherwise, C specifies values at the coordinate (x[i], y[i]). For each hexagon, these values are reduced using reduce_C_function. Parameters x, yarray-like The data positions. x and y must be of the same length. Carray-like, optional If given, these values are accumulated in the bins. Otherwise, every point has a value of 1. Must be of the same length as x and y. gridsizeint or (int, int), default: 100 If a single int, the number of hexagons in the x-direction. The number of hexagons in the y-direction is chosen such that the hexagons are approximately regular. Alternatively, if a tuple (nx, ny), the number of hexagons in the x-direction and the y-direction. bins'log' or int or sequence, default: None Discretization of the hexagon values. If None, no binning is applied; the color of each hexagon directly corresponds to its count value. If 'log', use a logarithmic scale for the colormap. Internally, \(log_{10}(i+1)\) is used to determine the hexagon color. This is equivalent to norm=LogNorm(). If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly. If a sequence of values, the values of the lower bound of the bins to be used. xscale{'linear', 'log'}, default: 'linear' Use a linear or log10 scale on the horizontal axis. yscale{'linear', 'log'}, default: 'linear' Use a linear or log10 scale on the vertical axis. mincntint > 0, default: None If not None, only display cells with more than mincnt number of points in the cell. marginalsbool, default: False If marginals is True, plot the marginal density as colormapped rectangles along the bottom of the x-axis and left of the y-axis. extent4-tuple of float, default: None The limits of the bins (xmin, xmax, ymin, ymax). The default assigns the limits based on gridsize, x, y, xscale and yscale. If xscale or yscale is set to 'log', the limits are expected to be the exponent for a power of 10. E.g. for x-limits of 1 and 50 in 'linear' scale and y-limits of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3). Returns PolyCollection A PolyCollection defining the hexagonal bins. PolyCollection.get_offsets contains a Mx2 array containing the x, y positions of the M hexagon centers. PolyCollection.get_array contains the values of the M hexagons. If marginals is True, horizontal bar and vertical bar (both PolyCollections) will be attached to the return collection as attributes hbar and vbar. Other Parameters cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') The Colormap instance or registered colormap name used to map the bin values to colors. normNormalize, optional The Normalize instance scales the bin values to the canonical colormap range [0, 1] for mapping to colors. By default, the data range is mapped to the colorbar range using linear scaling. vmin, vmaxfloat, default: None The colorbar range. If None, suitable min/max values are automatically chosen by the Normalize instance (defaults to the respective min/max values of the bins in case of the default linear scaling). It is an error to use vmin/vmax when norm is given. alphafloat between 0 and 1, optional The alpha blending value, between 0 (transparent) and 1 (opaque). linewidthsfloat, default: None If None, defaults to 1.0. edgecolors{'face', 'none', None} or color, default: 'face' The color of the hexagon edges. Possible values are: 'face': Draw the edges in the same color as the fill color. 'none': No edges are drawn. This can sometimes lead to unsightly unpainted pixels between the hexagons. None: Draw outlines in the default color. An explicit color. reduce_C_functioncallable, default: numpy.mean The function to aggregate C within the bins. It is ignored if C is not given. This must have the signature: def reduce_C_function(C: array) -> float Commonly used functions are: numpy.mean: average of the points numpy.sum: integral of the point values numpy.amax: value taken from the largest point dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, y, C **kwargsPolyCollection properties All other keyword arguments are passed on to PolyCollection: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha array-like or scalar or None animated bool antialiased or aa or antialiaseds bool or list of bools array array-like or None capstyle CapStyle or {'butt', 'projecting', 'round'} clim (vmin: float, vmax: float) clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None cmap Colormap or str or None color color or list of rgba tuples edgecolor or ec or edgecolors color or list of colors or 'face' facecolor or facecolors or fc color or list of colors figure Figure gid str hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} in_layout bool joinstyle JoinStyle or {'miter', 'round', 'bevel'} label object linestyle or dashes or linestyles or ls str or tuple or list thereof linewidth or linewidths or lw float or list of floats norm Normalize or None offset_transform Transform offsets (N, 2) or (2,) array-like path_effects AbstractPathEffect paths list of array-like picker None or bool or float or callable pickradius float rasterized bool sizes ndarray or None sketch_params (scale: float, length: float, randomness: float) snap bool or None transform Transform url str urls list of str or None verts list of array-like verts_and_codes unknown visible bool zorder float See also hist2d 2D histogram rectangular bins
matplotlib._as_gen.matplotlib.pyplot.hexbin
matplotlib.pyplot.hist matplotlib.pyplot.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)[source] Plot a histogram. Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...], bins, [patches0, patches1, ...]) if the input contains multiple data. See the documentation of the weights parameter to draw a histogram of already-binned data. Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, ...]), or as a 2D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative to the list form. Masked arrays are not supported. The bins, range, weights, and density parameters behave as in numpy.histogram. Parameters x(n,) array or sequence of (n,) arrays Input values, this takes either a single array or a sequence of arrays which are not required to be of the same length. binsint or sequence or str, default: rcParams["hist.bins"] (default: 10) If bins is an integer, it defines the number of equal-width bins in the range. If bins is a sequence, it defines the bin edges, including the left edge of the first bin and the right edge of the last bin; in this case, bins may be unequally spaced. All but the last (righthand-most) bin is half-open. In other words, if bins is: [1, 2, 3, 4] then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which includes 4. If bins is a string, it is one of the binning strategies supported by numpy.histogram_bin_edges: 'auto', 'fd', 'doane', 'scott', 'stone', 'rice', 'sturges', or 'sqrt'. rangetuple or None, default: None The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence. If bins is a sequence or range is specified, autoscaling is based on the specified bin range instead of the range of x. densitybool, default: False If True, draw and return a probability density: each bin will display the bin's raw count divided by the total number of counts and the bin width (density = counts / (sum(counts) * np.diff(bins))), so that the area under the histogram integrates to 1 (np.sum(density * np.diff(bins)) == 1). If stacked is also True, the sum of the histograms is normalized to 1. weights(n,) array-like or None, default: None An array of weights, of the same shape as x. Each value in x only contributes its associated weight towards the bin count (instead of 1). If density is True, the weights are normalized, so that the integral of the density over the range remains 1. This parameter can be used to draw a histogram of data that has already been binned, e.g. using numpy.histogram (by treating each bin as a single point with a weight equal to its count) counts, bins = np.histogram(data) plt.hist(bins[:-1], bins, weights=counts) (or you may alternatively use bar()). cumulativebool or -1, default: False If True, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If density is also True then the histogram is normalized such that the last bin equals 1. If cumulative is a number less than 0 (e.g., -1), the direction of accumulation is reversed. In this case, if density is also True, then the histogram is normalized such that the first bin equals 1. bottomarray-like, scalar, or None, default: None Location of the bottom of each bin, ie. bins are drawn from bottom to bottom + hist(x, bins) If a scalar, the bottom of each bin is shifted by the same amount. If an array, each bin is shifted independently and the length of bottom must match the number of bins. If None, defaults to 0. histtype{'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar' The type of histogram to draw. 'bar' is a traditional bar-type histogram. If multiple data are given the bars are arranged side by side. 'barstacked' is a bar-type histogram where multiple data are stacked on top of each other. 'step' generates a lineplot that is by default unfilled. 'stepfilled' generates a lineplot that is by default filled. align{'left', 'mid', 'right'}, default: 'mid' The horizontal alignment of the histogram bars. 'left': bars are centered on the left bin edges. 'mid': bars are centered between the bin edges. 'right': bars are centered on the right bin edges. orientation{'vertical', 'horizontal'}, default: 'vertical' If 'horizontal', barh will be used for bar-type histograms and the bottom kwarg will be the left edges. rwidthfloat or None, default: None The relative width of the bars as a fraction of the bin width. If None, automatically compute the width. Ignored if histtype is 'step' or 'stepfilled'. logbool, default: False If True, the histogram axis will be set to a log scale. colorcolor or array-like of colors or None, default: None Color or sequence of colors, one per dataset. Default (None) uses the standard line color sequence. labelstr or None, default: None String, or sequence of strings to match multiple datasets. Bar charts yield multiple patches per dataset, but only the first gets the label, so that legend will work as expected. stackedbool, default: False If True, multiple data are stacked on top of each other If False multiple data are arranged side by side if histtype is 'bar' or on top of each other if histtype is 'step' Returns narray or list of arrays The values of the histogram bins. See density and weights for a description of the possible semantics. If input x is an array, then this is an array of length nbins. If input is a sequence of arrays [data1, data2, ...], then this is a list of arrays with the values of the histograms for each of the arrays in the same order. The dtype of the array n (or of its element arrays) will always be float even if no weighting or normalization is used. binsarray The edges of the bins. Length nbins + 1 (nbins left edges and right edge of last bin). Always a single array even when multiple data sets are passed in. patchesBarContainer or list of a single Polygon or list of such objects Container of individual artists used to create the histogram or list of such containers if there are multiple input datasets. Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, weights **kwargs Patch properties See also hist2d 2D histogram with rectangular bins hexbin 2D histogram with hexagonal bins Notes For large numbers of bins (>1000), 'step' and 'stepfilled' can be significantly faster than 'bar' and 'barstacked'. Examples using matplotlib.pyplot.hist Pyplot Text Animated histogram SVG Histogram Pyplot tutorial Image tutorial
matplotlib._as_gen.matplotlib.pyplot.hist
matplotlib.pyplot.hist2d matplotlib.pyplot.hist2d(x, y, bins=10, range=None, density=False, weights=None, cmin=None, cmax=None, *, data=None, **kwargs)[source] Make a 2D histogram plot. Parameters x, yarray-like, shape (n, ) Input values binsNone or int or [int, int] or array-like or [array, array] The bin specification: If int, the number of bins for the two dimensions (nx=ny=bins). If [int, int], the number of bins in each dimension (nx, ny = bins). If array-like, the bin edges for the two dimensions (x_edges=y_edges=bins). If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). The default value is 10. rangearray-like shape(2, 2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. densitybool, default: False Normalize histogram. See the documentation for the density parameter of hist for more details. weightsarray-like, shape (n, ), optional An array of values w_i weighing each sample (x_i, y_i). cmin, cmaxfloat, default: None All bins that has count less than cmin or more than cmax will not be displayed (set to NaN before passing to imshow) and these count values in the return value count histogram will also be set to nan upon return. Returns h2D array The bi-dimensional histogram of samples x and y. Values in x are histogrammed along the first dimension and values in y are histogrammed along the second dimension. xedges1D array The bin edges along the x axis. yedges1D array The bin edges along the y axis. imageQuadMesh Other Parameters cmapColormap or str, optional A colors.Colormap instance. If not set, use rc settings. normNormalize, optional A colors.Normalize instance is used to scale luminance data to [0, 1]. If not set, defaults to colors.Normalize(). vmin/vmaxNone or scalar, optional Arguments passed to the Normalize instance. alpha0 <= scalar <= 1 or None, optional The alpha blending value. dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, y, weights **kwargs Additional parameters are passed along to the pcolormesh method and QuadMesh constructor. See also hist 1D histogram plotting hexbin 2D histogram with hexagonal bins Notes Currently hist2d calculates its own axis limits, and any limits previously set are ignored. Rendering the histogram with a logarithmic color scale is accomplished by passing a colors.LogNorm instance to the norm keyword argument. Likewise, power-law normalization (similar in effect to gamma correction) can be accomplished with colors.PowerNorm.
matplotlib._as_gen.matplotlib.pyplot.hist2d
matplotlib.pyplot.hlines matplotlib.pyplot.hlines(y, xmin, xmax, colors=None, linestyles='solid', label='', *, data=None, **kwargs)[source] Plot horizontal lines at each y from xmin to xmax. Parameters yfloat or array-like y-indexes where to plot the lines. xmin, xmaxfloat or array-like Respective beginning and end of each line. If scalars are provided, all lines will have same length. colorslist of colors, default: rcParams["lines.color"] (default: 'C0') linestyles{'solid', 'dashed', 'dashdot', 'dotted'}, optional labelstr, default: '' Returns LineCollection Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): y, xmin, xmax, colors **kwargsLineCollection properties. See also vlines vertical lines axhline horizontal line across the Axes
matplotlib._as_gen.matplotlib.pyplot.hlines
matplotlib.pyplot.hot matplotlib.pyplot.hot()[source] Set the colormap to 'hot'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.hot
matplotlib.pyplot.hsv matplotlib.pyplot.hsv()[source] Set the colormap to 'hsv'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.hsv
matplotlib.pyplot.imread matplotlib.pyplot.imread(fname, format=None)[source] Read an image from a file into an array. Note This function exists for historical reasons. It is recommended to use PIL.Image.open instead for loading images. Parameters fnamestr or file-like The image file to read: a filename, a URL or a file-like object opened in read-binary mode. Passing a URL is deprecated. Please open the URL for reading and pass the result to Pillow, e.g. with np.array(PIL.Image.open(urllib.request.urlopen(url))). formatstr, optional The image file format assumed for reading the data. The image is loaded as a PNG file if format is set to "png", if fname is a path or opened file with a ".png" extension, or if it is an URL. In all other cases, format is ignored and the format is auto-detected by PIL.Image.open. Returns numpy.array The image data. The returned array has shape (M, N) for grayscale images. (M, N, 3) for RGB images. (M, N, 4) for RGBA images. PNG images are returned as float arrays (0-1). All other formats are returned as int arrays, with a bit depth determined by the file's contents. Examples using matplotlib.pyplot.imread Clipping images with patches Image Demo AnnotationBbox demo Using a text as a Path Convert texts to images Ribbon Box
matplotlib._as_gen.matplotlib.pyplot.imread
matplotlib.pyplot.imsave matplotlib.pyplot.imsave(fname, arr, **kwargs)[source] Save an array as an image file. Parameters fnamestr or path-like or file-like A path or a file-like object to store the image in. If format is not set, then the output format is inferred from the extension of fname, if any, and from rcParams["savefig.format"] (default: 'png') otherwise. If format is set, it determines the output format. arrarray-like The image data. The shape can be one of MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA). vmin, vmaxfloat, optional vmin and vmax set the color scaling for the image by fixing the values that map to the colormap color limits. If either vmin or vmax is None, that limit is determined from the arr min/max value. cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') A Colormap instance or registered colormap name. The colormap maps scalar data to colors. It is ignored for RGB(A) data. formatstr, optional The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is unset is documented under fname. origin{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'upper') Indicates whether the (0, 0) index of the array is in the upper left or lower left corner of the axes. dpifloat The DPI to store in the metadata of the file. This does not affect the resolution of the output image. Depending on file format, this may be rounded to the nearest integer. metadatadict, optional Metadata in the image file. The supported keys depend on the output format, see the documentation of the respective backends for more information. pil_kwargsdict, optional Keyword arguments passed to PIL.Image.Image.save. If the 'pnginfo' key is present, it completely overrides metadata, including the default 'Software' key.
matplotlib._as_gen.matplotlib.pyplot.imsave
matplotlib.pyplot.imshow matplotlib.pyplot.imshow(X, cmap=None, norm=None, *, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, interpolation_stage=None, filternorm=True, filterrad=4.0, resample=None, url=None, data=None, **kwargs)[source] Display data as an image, i.e., on a 2D regular raster. The input may either be actual RGB(A) data, or 2D scalar data, which will be rendered as a pseudocolor image. For displaying a grayscale image set up the colormapping using the parameters cmap='gray', vmin=0, vmax=255. The number of pixels used to render an image is set by the Axes size and the dpi of the figure. This can lead to aliasing artifacts when the image is resampled because the displayed image size will usually not match the size of X (see Image antialiasing). The resampling can be controlled via the interpolation parameter and/or rcParams["image.interpolation"] (default: 'antialiased'). Parameters Xarray-like or PIL image The image data. Supported array shapes are: (M, N): an image with scalar data. The values are mapped to colors using normalization and a colormap. See parameters norm, cmap, vmin, vmax. (M, N, 3): an image with RGB values (0-1 float or 0-255 int). (M, N, 4): an image with RGBA values (0-1 float or 0-255 int), i.e. including transparency. The first two dimensions (M, N) define the rows and columns of the image. Out-of-range RGB(A) values are clipped. cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') The Colormap instance or registered colormap name used to map scalar data to colors. This parameter is ignored for RGB(A) data. normNormalize, optional The Normalize instance used to scale scalar data to the [0, 1] range before mapping to colors using cmap. By default, a linear scaling mapping the lowest value to 0 and the highest to 1 is used. This parameter is ignored for RGB(A) data. aspect{'equal', 'auto'} or float, default: rcParams["image.aspect"] (default: 'equal') The aspect ratio of the Axes. This parameter is particularly relevant for images since it determines whether data pixels are square. This parameter is a shortcut for explicitly calling Axes.set_aspect. See there for further details. 'equal': Ensures an aspect ratio of 1. Pixels will be square (unless pixel sizes are explicitly made non-square in data coordinates using extent). 'auto': The Axes is kept fixed and the aspect is adjusted so that the data fit in the Axes. In general, this will result in non-square pixels. interpolationstr, default: rcParams["image.interpolation"] (default: 'antialiased') The interpolation method used. Supported values are 'none', 'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', 'blackman'. If interpolation is 'none', then no interpolation is performed on the Agg, ps, pdf and svg backends. Other backends will fall back to 'nearest'. Note that most SVG renderers perform interpolation at rendering and that the default interpolation method they implement may differ. If interpolation is the default 'antialiased', then 'nearest' interpolation is used if the image is upsampled by more than a factor of three (i.e. the number of display pixels is at least three times the size of the data array). If the upsampling rate is smaller than 3, or the image is downsampled, then 'hanning' interpolation is used to act as an anti-aliasing filter, unless the image happens to be upsampled by exactly a factor of two or one. See Interpolations for imshow for an overview of the supported interpolation methods, and Image antialiasing for a discussion of image antialiasing. Some interpolation methods require an additional radius parameter, which can be set by filterrad. Additionally, the antigrain image resize filter is controlled by the parameter filternorm. interpolation_stage{'data', 'rgba'}, default: 'data' If 'data', interpolation is carried out on the data provided by the user. If 'rgba', the interpolation is carried out after the colormapping has been applied (visual interpolation). alphafloat or array-like, optional The alpha blending value, between 0 (transparent) and 1 (opaque). If alpha is an array, the alpha blending values are applied pixel by pixel, and alpha must have the same shape as X. vmin, vmaxfloat, optional When using scalar data and no explicit norm, vmin and vmax define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. It is an error to use vmin/vmax when norm is given. When using RGB(A) data, parameters vmin/vmax are ignored. origin{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'upper') Place the [0, 0] index of the array in the upper left or lower left corner of the Axes. The convention (the default) 'upper' is typically used for matrices and images. Note that the vertical axis points upward for 'lower' but downward for 'upper'. See the origin and extent in imshow tutorial for examples and a more detailed description. extentfloats (left, right, bottom, top), optional The bounding box in data coordinates that the image will fill. The image is stretched individually along x and y to fill the box. The default extent is determined by the following conditions. Pixels have unit size in data coordinates. Their centers are on integer coordinates, and their center coordinates range from 0 to columns-1 horizontally and from 0 to rows-1 vertically. Note that the direction of the vertical axis and thus the default values for top and bottom depend on origin: For origin == 'upper' the default is (-0.5, numcols-0.5, numrows-0.5, -0.5). For origin == 'lower' the default is (-0.5, numcols-0.5, -0.5, numrows-0.5). See the origin and extent in imshow tutorial for examples and a more detailed description. filternormbool, default: True A parameter for the antigrain image resize filter (see the antigrain documentation). If filternorm is set, the filter normalizes integer values and corrects the rounding errors. It doesn't do anything with the source floating point values, it corrects only integers according to the rule of 1.0 which means that any sum of pixel weights must be equal to 1.0. So, the filter function must produce a graph of the proper shape. filterradfloat > 0, default: 4.0 The filter radius for filters that have a radius parameter, i.e. when interpolation is one of: 'sinc', 'lanczos' or 'blackman'. resamplebool, default: rcParams["image.resample"] (default: True) When True, use a full resampling method. When False, only resample when the output image is larger than the input image. urlstr, optional Set the url of the created AxesImage. See Artist.set_url. Returns AxesImage Other Parameters dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). **kwargsArtist properties These parameters are passed on to the constructor of the AxesImage artist. See also matshow Plot a matrix or an array as an image. Notes Unless extent is used, pixel centers will be located at integer coordinates. In other words: the origin will coincide with the center of pixel (0, 0). There are two common representations for RGB images with an alpha channel: Straight (unassociated) alpha: R, G, and B channels represent the color of the pixel, disregarding its opacity. Premultiplied (associated) alpha: R, G, and B channels represent the color of the pixel, adjusted for its opacity by multiplication. imshow expects RGB images adopting the straight (unassociated) alpha representation. Examples using matplotlib.pyplot.imshow Layer Images Subplots spacings and margins Dolphins Hyperlinks Image tutorial Tight Layout guide
matplotlib._as_gen.matplotlib.pyplot.imshow
matplotlib.pyplot.inferno matplotlib.pyplot.inferno()[source] Set the colormap to 'inferno'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.inferno
matplotlib.pyplot.install_repl_displayhook matplotlib.pyplot.install_repl_displayhook()[source] Install a repl display hook so that any stale figure are automatically redrawn when control is returned to the repl. This works both with IPython and with vanilla python shells.
matplotlib._as_gen.matplotlib.pyplot.install_repl_displayhook
matplotlib.pyplot.ioff matplotlib.pyplot.ioff()[source] Disable interactive mode. See pyplot.isinteractive for more details. See also ion Enable interactive mode. isinteractive Whether interactive mode is enabled. show Show all figures (and maybe block). pause Show all figures, and block for a time. Notes For a temporary change, this can be used as a context manager: # if interactive mode is on # then figures will be shown on creation plt.ion() # This figure will be shown immediately fig = plt.figure() with plt.ioff(): # interactive mode will be off # figures will not automatically be shown fig2 = plt.figure() # ... To enable usage as a context manager, this function returns an _IoffContext object. The return value is not intended to be stored or accessed by the user.
matplotlib._as_gen.matplotlib.pyplot.ioff
matplotlib.pyplot.ion matplotlib.pyplot.ion()[source] Enable interactive mode. See pyplot.isinteractive for more details. See also ioff Disable interactive mode. isinteractive Whether interactive mode is enabled. show Show all figures (and maybe block). pause Show all figures, and block for a time. Notes For a temporary change, this can be used as a context manager: # if interactive mode is off # then figures will not be shown on creation plt.ioff() # This figure will not be shown immediately fig = plt.figure() with plt.ion(): # interactive mode will be on # figures will automatically be shown fig2 = plt.figure() # ... To enable usage as a context manager, this function returns an _IonContext object. The return value is not intended to be stored or accessed by the user.
matplotlib._as_gen.matplotlib.pyplot.ion
matplotlib.pyplot.isinteractive matplotlib.pyplot.isinteractive()[source] Return whether plots are updated after every plotting command. The interactive mode is mainly useful if you build plots from the command line and want to see the effect of each command while you are building the figure. In interactive mode: newly created figures will be shown immediately; figures will automatically redraw on change; pyplot.show will not block by default. In non-interactive mode: newly created figures and changes to figures will not be reflected until explicitly asked to be; pyplot.show will block by default. See also ion Enable interactive mode. ioff Disable interactive mode. show Show all figures (and maybe block). pause Show all figures, and block for a time.
matplotlib._as_gen.matplotlib.pyplot.isinteractive
matplotlib.pyplot.jet matplotlib.pyplot.jet()[source] Set the colormap to 'jet'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.jet
matplotlib.pyplot.legend matplotlib.pyplot.legend(*args, **kwargs)[source] Place a legend on the Axes. Call signatures: legend() legend(handles, labels) legend(handles=handles) legend(labels) The call signatures correspond to the following different ways to use this method: 1. Automatic detection of elements to be shown in the legend The elements to be added to the legend are automatically determined, when you do not pass in any extra arguments. In this case, the labels are taken from the artist. You can specify them either at artist creation or by calling the set_label() method on the artist: ax.plot([1, 2, 3], label='Inline label') ax.legend() or: line, = ax.plot([1, 2, 3]) line.set_label('Label via method') ax.legend() Specific lines can be excluded from the automatic legend element selection by defining a label starting with an underscore. This is default for all artists, so calling Axes.legend without any arguments and without setting the labels manually will result in no legend being drawn. 2. Explicitly listing the artists and labels in the legend For full control of which artists have a legend entry, it is possible to pass an iterable of legend artists followed by an iterable of legend labels respectively: ax.legend([line1, line2, line3], ['label1', 'label2', 'label3']) 3. Explicitly listing the artists in the legend This is similar to 2, but the labels are taken from the artists' label properties. Example: line1, = ax.plot([1, 2, 3], label='label1') line2, = ax.plot([1, 2, 3], label='label2') ax.legend(handles=[line1, line2]) 4. Labeling existing plot elements Discouraged This call signature is discouraged, because the relation between plot elements and labels is only implicit by their order and can easily be mixed up. To make a legend for all artists on an Axes, call this function with an iterable of strings, one for each legend item. For example: ax.plot([1, 2, 3]) ax.plot([5, 6, 7]) ax.legend(['First line', 'Second line']) Parameters handlessequence of Artist, optional A list of Artists (lines, patches) to be added to the legend. Use this together with labels, if you need full control on what is shown in the legend and the automatic mechanism described above is not sufficient. The length of handles and labels should be the same in this case. If they are not, they are truncated to the smaller length. labelslist of str, optional A list of labels to show next to the artists. Use this together with handles, if you need full control on what is shown in the legend and the automatic mechanism described above is not sufficient. Returns Legend Other Parameters locstr or pair of floats, default: rcParams["legend.loc"] (default: 'best') ('best' for axes, 'upper right' for figures) The location of the legend. The strings 'upper left', 'upper right', 'lower left', 'lower right' place the legend at the corresponding corner of the axes/figure. The strings 'upper center', 'lower center', 'center left', 'center right' place the legend at the center of the corresponding edge of the axes/figure. The string 'center' places the legend at the center of the axes/figure. The string 'best' places the legend at the location, among the nine locations defined so far, with the minimum overlap with other drawn artists. This option can be quite slow for plots with large amounts of data; your plotting speed may benefit from providing a specific location. The location can also be a 2-tuple giving the coordinates of the lower-left corner of the legend in axes coordinates (in which case bbox_to_anchor will be ignored). For back-compatibility, 'center right' (but no other location) can also be spelled 'right', and each "string" locations can also be given as a numeric value: Location String Location Code 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 bbox_to_anchorBboxBase, 2-tuple, or 4-tuple of floats Box that is used to position the legend in conjunction with loc. Defaults to axes.bbox (if called as a method to Axes.legend) or figure.bbox (if Figure.legend). This argument allows arbitrary placement of the legend. Bbox coordinates are interpreted in the coordinate system given by bbox_transform, with the default transform Axes or Figure coordinates, depending on which legend is called. If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width, height) that the legend is placed in. To put the legend in the best location in the bottom right quadrant of the axes (or figure): loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5) A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For example, to put the legend's upper right-hand corner in the center of the axes (or figure) the following keywords can be used: loc='upper right', bbox_to_anchor=(0.5, 0.5) ncolint, default: 1 The number of columns that the legend has. propNone or matplotlib.font_manager.FontProperties or dict The font properties of the legend. If None (default), the current matplotlib.rcParams will be used. fontsizeint or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'} The font size of the legend. If the value is numeric the size will be the absolute font size in points. String values are relative to the current default font size. This argument is only used if prop is not specified. labelcolorstr or list, default: rcParams["legend.labelcolor"] (default: 'None') The color of the text in the legend. Either a valid color string (for example, 'red'), or a list of color strings. The labelcolor can also be made to match the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or 'markeredgecolor' (or 'mec'). Labelcolor can be set globally using rcParams["legend.labelcolor"] (default: 'None'). If None, use rcParams["text.color"] (default: 'black'). numpointsint, default: rcParams["legend.numpoints"] (default: 1) The number of marker points in the legend when creating a legend entry for a Line2D (line). scatterpointsint, default: rcParams["legend.scatterpoints"] (default: 1) The number of marker points in the legend when creating a legend entry for a PathCollection (scatter plot). scatteryoffsetsiterable of floats, default: [0.375, 0.5, 0.3125] The vertical offset (relative to the font size) for the markers created for a scatter plot legend entry. 0.0 is at the base the legend text, and 1.0 is at the top. To draw all markers at the same height, set to [0.5]. markerscalefloat, default: rcParams["legend.markerscale"] (default: 1.0) The relative size of legend markers compared with the originally drawn ones. markerfirstbool, default: True If True, legend marker is placed to the left of the legend label. If False, legend marker is placed to the right of the legend label. frameonbool, default: rcParams["legend.frameon"] (default: True) Whether the legend should be drawn on a patch (frame). fancyboxbool, default: rcParams["legend.fancybox"] (default: True) Whether round edges should be enabled around the FancyBboxPatch which makes up the legend's background. shadowbool, default: rcParams["legend.shadow"] (default: False) Whether to draw a shadow behind the legend. framealphafloat, default: rcParams["legend.framealpha"] (default: 0.8) The alpha transparency of the legend's background. If shadow is activated and framealpha is None, the default value is ignored. facecolor"inherit" or color, default: rcParams["legend.facecolor"] (default: 'inherit') The legend's background color. If "inherit", use rcParams["axes.facecolor"] (default: 'white'). edgecolor"inherit" or color, default: rcParams["legend.edgecolor"] (default: '0.8') The legend's background patch edge color. If "inherit", use take rcParams["axes.edgecolor"] (default: 'black'). mode{"expand", None} If mode is set to "expand" the legend will be horizontally expanded to fill the axes area (or bbox_to_anchor if defines the legend's size). bbox_transformNone or matplotlib.transforms.Transform The transform for the bounding box (bbox_to_anchor). For a value of None (default) the Axes' transAxes transform will be used. titlestr or None The legend's title. Default is no title (None). title_fontpropertiesNone or matplotlib.font_manager.FontProperties or dict The font properties of the legend's title. If None (default), the title_fontsize argument will be used if present; if title_fontsize is also None, the current rcParams["legend.title_fontsize"] (default: None) will be used. title_fontsizeint or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default: rcParams["legend.title_fontsize"] (default: None) The font size of the legend's title. Note: This cannot be combined with title_fontproperties. If you want to set the fontsize alongside other font properties, use the size parameter in title_fontproperties. borderpadfloat, default: rcParams["legend.borderpad"] (default: 0.4) The fractional whitespace inside the legend border, in font-size units. labelspacingfloat, default: rcParams["legend.labelspacing"] (default: 0.5) The vertical space between the legend entries, in font-size units. handlelengthfloat, default: rcParams["legend.handlelength"] (default: 2.0) The length of the legend handles, in font-size units. handleheightfloat, default: rcParams["legend.handleheight"] (default: 0.7) The height of the legend handles, in font-size units. handletextpadfloat, default: rcParams["legend.handletextpad"] (default: 0.8) The pad between the legend handle and text, in font-size units. borderaxespadfloat, default: rcParams["legend.borderaxespad"] (default: 0.5) The pad between the axes and legend border, in font-size units. columnspacingfloat, default: rcParams["legend.columnspacing"] (default: 2.0) The spacing between columns, in font-size units. handler_mapdict or None The custom dictionary mapping instances or types to a legend handler. This handler_map updates the default handler map found at matplotlib.legend.Legend.get_legend_handler_map. See also Figure.legend Notes Some artists are not supported by this function. See Legend guide for details. Examples (Source code, png, pdf) Examples using matplotlib.pyplot.legend Errorbar limit selection Plotting masked and NaN values Scatter Symbol Stairs Demo Step Demo Infinite lines Parasite Simple Findobj Demo Zorder Demo The Sankey class SVG Histogram Basic Usage Legend guide
matplotlib._as_gen.matplotlib.pyplot.legend
matplotlib.pyplot.locator_params matplotlib.pyplot.locator_params(axis='both', tight=None, **kwargs)[source] Control behavior of major tick locators. Because the locator is involved in autoscaling, autoscale_view is called automatically after the parameters are changed. Parameters axis{'both', 'x', 'y'}, default: 'both' The axis on which to operate. tightbool or None, optional Parameter passed to autoscale_view. Default is None, for no change. Other Parameters **kwargs Remaining keyword arguments are passed to directly to the set_params() method of the locator. Supported keywords depend on the type of the locator. See for example set_params for the ticker.MaxNLocator used by default for linear axes. Examples When plotting small subplots, one might want to reduce the maximum number of ticks and use tight bounds, for example: ax.locator_params(tight=True, nbins=4)
matplotlib._as_gen.matplotlib.pyplot.locator_params
matplotlib.pyplot.loglog matplotlib.pyplot.loglog(*args, **kwargs)[source] Make a plot with log scaling on both the x and y axis. Call signatures: loglog([x], y, [fmt], data=None, **kwargs) loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) This is just a thin wrapper around plot which additionally changes both the x-axis and the y-axis to log scaling. All of the concepts and parameters of plot can be used here as well. The additional parameters base, subs and nonpositive control the x/y-axis properties. They are just forwarded to Axes.set_xscale and Axes.set_yscale. To use different properties on the x-axis and the y-axis, use e.g. ax.set_xscale("log", base=10); ax.set_yscale("log", base=2). Parameters basefloat, default: 10 Base of the logarithm. subssequence, optional The location of the minor ticks. If None, reasonable locations are automatically chosen depending on the number of decades in the plot. See Axes.set_xscale/Axes.set_yscale for details. nonpositive{'mask', 'clip'}, default: 'mask' Non-positive values can be masked as invalid, or clipped to a very small positive number. **kwargs All parameters supported by plot. Returns list of Line2D Objects representing the plotted data.
matplotlib._as_gen.matplotlib.pyplot.loglog
matplotlib.pyplot.magma matplotlib.pyplot.magma()[source] Set the colormap to 'magma'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.magma
matplotlib.pyplot.magnitude_spectrum matplotlib.pyplot.magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, scale=None, *, data=None, **kwargs)[source] Plot the magnitude spectrum. Compute the magnitude spectrum of x. Data is padded to a length of pad_to and the windowing function window is applied to the signal. Parameters x1-D array or sequence Array or sequence containing the data. Fsfloat, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. windowcallable or ndarray, default: window_hanning A function or a vector of length NFFT. To create window vectors see window_hanning, window_none, numpy.blackman, numpy.hamming, numpy.bartlett, scipy.signal, scipy.signal.get_window, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides{'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided. pad_toint, optional The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the n parameter in the call to fft(). The default is None, which sets pad_to equal to the length of the input signal (i.e. no padding). scale{'default', 'linear', 'dB'} The scaling of the values in the spec. 'linear' is no scaling. 'dB' returns the values in dB scale, i.e., the dB amplitude (20 * log10). 'default' is 'linear'. Fcint, default: 0 The center frequency of x, which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns spectrum1-D array The values for the magnitude spectrum before scaling (real valued). freqs1-D array The frequencies corresponding to the elements in spectrum. lineLine2D The line created by this function. Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x **kwargs Keyword arguments control the Line2D properties: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float See also psd Plots the power spectral density. angle_spectrum Plots the angles of the corresponding frequencies. phase_spectrum Plots the phase (unwrapped angle) of the corresponding frequencies. specgram Can plot the magnitude spectrum of segments within the signal in a colormap.
matplotlib._as_gen.matplotlib.pyplot.magnitude_spectrum
matplotlib.pyplot.margins matplotlib.pyplot.margins(*margins, x=None, y=None, tight=True)[source] Set or retrieve autoscaling margins. The padding added to each limit of the Axes is the margin times the data interval. All input parameters must be floats within the range [0, 1]. Passing both positional and keyword arguments is invalid and will raise a TypeError. If no arguments (positional or otherwise) are provided, the current margins will remain in place and simply be returned. Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then xmargin times the X data interval will be added to each end of that interval before it is used in autoscaling. Parameters *marginsfloat, optional If a single positional argument is provided, it specifies both margins of the x-axis and y-axis limits. If two positional arguments are provided, they will be interpreted as xmargin, ymargin. If setting the margin on a single axis is desired, use the keyword arguments described below. x, yfloat, optional Specific margin values for the x-axis and y-axis, respectively. These cannot be used with positional arguments, but can be used individually to alter on e.g., only the y-axis. tightbool or None, default: True The tight parameter is passed to autoscale_view(), which is executed after a margin is changed; the default here is True, on the assumption that when margins are specified, no additional padding to match tick marks is usually desired. Set tight to None will preserve the previous setting. Returns xmargin, ymarginfloat Notes If a previously used Axes method such as pcolor() has set use_sticky_edges to True, only the limits not set by the "sticky artists" will be modified. To force all of the margins to be set, set use_sticky_edges to False before calling margins(). Examples using matplotlib.pyplot.margins Rotating custom tick labels
matplotlib._as_gen.matplotlib.pyplot.margins
matplotlib.pyplot.matshow matplotlib.pyplot.matshow(A, fignum=None, **kwargs)[source] Display an array as a matrix in a new figure window. The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure. Tick labels for the xaxis are placed on top. Parameters A2D array-like The matrix to be displayed. fignumNone or int or False If None, create a new figure window with automatic numbering. If a nonzero integer, draw into the figure with the given number (create it if it does not exist). If 0, use the current axes (or create one if it does not exist). Note Because of how Axes.matshow tries to set the figure aspect ratio to be the one of the array, strange things may happen if you reuse an existing figure. Returns AxesImage Other Parameters **kwargsimshow arguments Examples using matplotlib.pyplot.matshow Matshow
matplotlib._as_gen.matplotlib.pyplot.matshow
matplotlib.pyplot.minorticks_off matplotlib.pyplot.minorticks_off()[source] Remove minor ticks from the Axes.
matplotlib._as_gen.matplotlib.pyplot.minorticks_off
matplotlib.pyplot.minorticks_on matplotlib.pyplot.minorticks_on()[source] Display minor ticks on the Axes. Displaying minor ticks may reduce performance; you may turn them off using minorticks_off() if drawing speed is a problem.
matplotlib._as_gen.matplotlib.pyplot.minorticks_on
matplotlib.pyplot.new_figure_manager matplotlib.pyplot.new_figure_manager(num, *args, **kwargs)[source] Create a new figure manager instance.
matplotlib._as_gen.matplotlib.pyplot.new_figure_manager
matplotlib.pyplot.nipy_spectral matplotlib.pyplot.nipy_spectral()[source] Set the colormap to 'nipy_spectral'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.nipy_spectral
matplotlib.pyplot.pause matplotlib.pyplot.pause(interval)[source] Run the GUI event loop for interval seconds. If there is an active figure, it will be updated and displayed before the pause, and the GUI event loop (if any) will run during the pause. This can be used for crude animation. For more complex animation use matplotlib.animation. If there is no active figure, sleep for interval seconds instead. See also matplotlib.animation Proper animations show Show all figures and optional block until all figures are closed. Examples using matplotlib.pyplot.pause pyplot animation Rotating a 3D plot Rotating 3D wireframe plot Faster rendering by using blitting
matplotlib._as_gen.matplotlib.pyplot.pause
matplotlib.pyplot.pcolor matplotlib.pyplot.pcolor(*args, shading=None, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, data=None, **kwargs)[source] Create a pseudocolor plot with a non-regular rectangular grid. Call signature: pcolor([X, Y,] C, **kwargs) X and Y can be used to specify the corners of the quadrilaterals. Hint pcolor() can be very slow for large arrays. In most cases you should use the similar but much faster pcolormesh instead. See Differences between pcolor() and pcolormesh() for a discussion of the differences. Parameters C2D array-like The color-mapped values. X, Yarray-like, optional The coordinates of the corners of quadrilaterals of a pcolormesh: (X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1]) +-----+ | | +-----+ (X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1]) Note that the column index corresponds to the x-coordinate, and the row index corresponds to y. For details, see the Notes section below. If shading='flat' the dimensions of X and Y should be one greater than those of C, and the quadrilateral is colored due to the value at C[i, j]. If X, Y and C have equal dimensions, a warning will be raised and the last row and column of C will be ignored. If shading='nearest', the dimensions of X and Y should be the same as those of C (if not, a ValueError will be raised). The color C[i, j] will be centered on (X[i, j], Y[i, j]). If X and/or Y are 1-D arrays or column vectors they will be expanded as needed into the appropriate 2D arrays, making a rectangular grid. shading{'flat', 'nearest', 'auto'}, default: rcParams["pcolor.shading"] (default: 'auto') The fill style for the quadrilateral. Possible values: 'flat': A solid color is used for each quad. The color of the quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by C[i, j]. The dimensions of X and Y should be one greater than those of C; if they are the same as C, then a deprecation warning is raised, and the last row and column of C are dropped. 'nearest': Each grid point will have a color centered on it, extending halfway between the adjacent grid centers. The dimensions of X and Y must be the same as C. 'auto': Choose 'flat' if dimensions of X and Y are one larger than C. Choose 'nearest' if dimensions are the same. See pcolormesh grids and shading for more description. cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') A Colormap instance or registered colormap name. The colormap maps the C values to colors. normNormalize, optional The Normalize instance scales the data values to the canonical colormap range [0, 1] for mapping to colors. By default, the data range is mapped to the colorbar range using linear scaling. vmin, vmaxfloat, default: None The colorbar range. If None, suitable min/max values are automatically chosen by the Normalize instance (defaults to the respective min/max values of C in case of the default linear scaling). It is an error to use vmin/vmax when norm is given. edgecolors{'none', None, 'face', color, color sequence}, optional The color of the edges. Defaults to 'none'. Possible values: 'none' or '': No edge. None: rcParams["patch.edgecolor"] (default: 'black') will be used. Note that currently rcParams["patch.force_edgecolor"] (default: False) has to be True for this to work. 'face': Use the adjacent face color. A color or sequence of colors will set the edge color. The singular form edgecolor works as an alias. alphafloat, default: None The alpha blending value of the face color, between 0 (transparent) and 1 (opaque). Note: The edgecolor is currently not affected by this. snapbool, default: False Whether to snap the mesh to pixel boundaries. Returns matplotlib.collections.Collection Other Parameters antialiasedsbool, default: False The default antialiaseds is False if the default edgecolors="none" is used. This eliminates artificial lines at patch boundaries, and works regardless of the value of alpha. If edgecolors is not "none", then the default antialiaseds is taken from rcParams["patch.antialiased"] (default: True). Stroking the edges may be preferred if alpha is 1, but will cause artifacts otherwise. dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). **kwargs Additionally, the following arguments are allowed. They are passed along to the PolyCollection constructor: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha array-like or scalar or None animated bool antialiased or aa or antialiaseds bool or list of bools array array-like or None capstyle CapStyle or {'butt', 'projecting', 'round'} clim (vmin: float, vmax: float) clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None cmap Colormap or str or None color color or list of rgba tuples edgecolor or ec or edgecolors color or list of colors or 'face' facecolor or facecolors or fc color or list of colors figure Figure gid str hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} in_layout bool joinstyle JoinStyle or {'miter', 'round', 'bevel'} label object linestyle or dashes or linestyles or ls str or tuple or list thereof linewidth or linewidths or lw float or list of floats norm Normalize or None offset_transform Transform offsets (N, 2) or (2,) array-like path_effects AbstractPathEffect paths list of array-like picker None or bool or float or callable pickradius float rasterized bool sizes ndarray or None sketch_params (scale: float, length: float, randomness: float) snap bool or None transform Transform url str urls list of str or None verts list of array-like verts_and_codes unknown visible bool zorder float See also pcolormesh for an explanation of the differences between pcolor and pcolormesh. imshow If X and Y are each equidistant, imshow can be a faster alternative. Notes Masked arrays X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i, j] (X or Y at [i, j], [i+1, j], [i, j+1], [i+1, j+1]) is masked, nothing is plotted. Grid orientation The grid orientation follows the standard matrix convention: An array C with shape (nrows, ncolumns) is plotted with the column number as X and the row number as Y.
matplotlib._as_gen.matplotlib.pyplot.pcolor
matplotlib.pyplot.pcolormesh matplotlib.pyplot.pcolormesh(*args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, shading=None, antialiased=False, data=None, **kwargs)[source] Create a pseudocolor plot with a non-regular rectangular grid. Call signature: pcolormesh([X, Y,] C, **kwargs) X and Y can be used to specify the corners of the quadrilaterals. Hint pcolormesh is similar to pcolor. It is much faster and preferred in most cases. For a detailed discussion on the differences see Differences between pcolor() and pcolormesh(). Parameters C2D array-like The color-mapped values. X, Yarray-like, optional The coordinates of the corners of quadrilaterals of a pcolormesh: (X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1]) +-----+ | | +-----+ (X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1]) Note that the column index corresponds to the x-coordinate, and the row index corresponds to y. For details, see the Notes section below. If shading='flat' the dimensions of X and Y should be one greater than those of C, and the quadrilateral is colored due to the value at C[i, j]. If X, Y and C have equal dimensions, a warning will be raised and the last row and column of C will be ignored. If shading='nearest' or 'gouraud', the dimensions of X and Y should be the same as those of C (if not, a ValueError will be raised). For 'nearest' the color C[i, j] is centered on (X[i, j], Y[i, j]). For 'gouraud', a smooth interpolation is caried out between the quadrilateral corners. If X and/or Y are 1-D arrays or column vectors they will be expanded as needed into the appropriate 2D arrays, making a rectangular grid. cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') A Colormap instance or registered colormap name. The colormap maps the C values to colors. normNormalize, optional The Normalize instance scales the data values to the canonical colormap range [0, 1] for mapping to colors. By default, the data range is mapped to the colorbar range using linear scaling. vmin, vmaxfloat, default: None The colorbar range. If None, suitable min/max values are automatically chosen by the Normalize instance (defaults to the respective min/max values of C in case of the default linear scaling). It is an error to use vmin/vmax when norm is given. edgecolors{'none', None, 'face', color, color sequence}, optional The color of the edges. Defaults to 'none'. Possible values: 'none' or '': No edge. None: rcParams["patch.edgecolor"] (default: 'black') will be used. Note that currently rcParams["patch.force_edgecolor"] (default: False) has to be True for this to work. 'face': Use the adjacent face color. A color or sequence of colors will set the edge color. The singular form edgecolor works as an alias. alphafloat, default: None The alpha blending value, between 0 (transparent) and 1 (opaque). shading{'flat', 'nearest', 'gouraud', 'auto'}, optional The fill style for the quadrilateral; defaults to 'flat' or rcParams["pcolor.shading"] (default: 'auto'). Possible values: 'flat': A solid color is used for each quad. The color of the quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by C[i, j]. The dimensions of X and Y should be one greater than those of C; if they are the same as C, then a deprecation warning is raised, and the last row and column of C are dropped. 'nearest': Each grid point will have a color centered on it, extending halfway between the adjacent grid centers. The dimensions of X and Y must be the same as C. 'gouraud': Each quad will be Gouraud shaded: The color of the corners (i', j') are given by C[i', j']. The color values of the area in between is interpolated from the corner values. The dimensions of X and Y must be the same as C. When Gouraud shading is used, edgecolors is ignored. 'auto': Choose 'flat' if dimensions of X and Y are one larger than C. Choose 'nearest' if dimensions are the same. See pcolormesh grids and shading for more description. snapbool, default: False Whether to snap the mesh to pixel boundaries. rasterizedbool, optional Rasterize the pcolormesh when drawing vector graphics. This can speed up rendering and produce smaller files for large data sets. See also Rasterization for vector graphics. Returns matplotlib.collections.QuadMesh Other Parameters dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). **kwargs Additionally, the following arguments are allowed. They are passed along to the QuadMesh constructor: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha array-like or scalar or None animated bool antialiased or aa or antialiaseds bool or list of bools array (M, N) array-like or M*N array-like capstyle CapStyle or {'butt', 'projecting', 'round'} clim (vmin: float, vmax: float) clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None cmap Colormap or str or None color color or list of rgba tuples edgecolor or ec or edgecolors color or list of colors or 'face' facecolor or facecolors or fc color or list of colors figure Figure gid str hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} in_layout bool joinstyle JoinStyle or {'miter', 'round', 'bevel'} label object linestyle or dashes or linestyles or ls str or tuple or list thereof linewidth or linewidths or lw float or list of floats norm Normalize or None offset_transform Transform offsets (N, 2) or (2,) array-like path_effects AbstractPathEffect picker None or bool or float or callable pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None transform Transform url str urls list of str or None visible bool zorder float See also pcolor An alternative implementation with slightly different features. For a detailed discussion on the differences see Differences between pcolor() and pcolormesh(). imshow If X and Y are each equidistant, imshow can be a faster alternative. Notes Masked arrays C may be a masked array. If C[i, j] is masked, the corresponding quadrilateral will be transparent. Masking of X and Y is not supported. Use pcolor if you need this functionality. Grid orientation The grid orientation follows the standard matrix convention: An array C with shape (nrows, ncolumns) is plotted with the column number as X and the row number as Y. Differences between pcolor() and pcolormesh() Both methods are used to create a pseudocolor plot of a 2D array using quadrilaterals. The main difference lies in the created object and internal data handling: While pcolor returns a PolyCollection, pcolormesh returns a QuadMesh. The latter is more specialized for the given purpose and thus is faster. It should almost always be preferred. There is also a slight difference in the handling of masked arrays. Both pcolor and pcolormesh support masked arrays for C. However, only pcolor supports masked arrays for X and Y. The reason lies in the internal handling of the masked values. pcolor leaves out the respective polygons from the PolyCollection. pcolormesh sets the facecolor of the masked elements to transparent. You can see the difference when using edgecolors. While all edges are drawn irrespective of masking in a QuadMesh, the edge between two adjacent masked quadrilaterals in pcolor is not drawn as the corresponding polygons do not exist in the PolyCollection. Another difference is the support of Gouraud shading in pcolormesh, which is not available with pcolor.
matplotlib._as_gen.matplotlib.pyplot.pcolormesh
matplotlib.pyplot.phase_spectrum matplotlib.pyplot.phase_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *, data=None, **kwargs)[source] Plot the phase spectrum. Compute the phase spectrum (unwrapped angle spectrum) of x. Data is padded to a length of pad_to and the windowing function window is applied to the signal. Parameters x1-D array or sequence Array or sequence containing the data Fsfloat, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. windowcallable or ndarray, default: window_hanning A function or a vector of length NFFT. To create window vectors see window_hanning, window_none, numpy.blackman, numpy.hamming, numpy.bartlett, scipy.signal, scipy.signal.get_window, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides{'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided. pad_toint, optional The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the n parameter in the call to fft(). The default is None, which sets pad_to equal to the length of the input signal (i.e. no padding). Fcint, default: 0 The center frequency of x, which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns spectrum1-D array The values for the phase spectrum in radians (real valued). freqs1-D array The frequencies corresponding to the elements in spectrum. lineLine2D The line created by this function. Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x **kwargs Keyword arguments control the Line2D properties: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float See also magnitude_spectrum Plots the magnitudes of the corresponding frequencies. angle_spectrum Plots the wrapped version of this function. specgram Can plot the phase spectrum of segments within the signal in a colormap.
matplotlib._as_gen.matplotlib.pyplot.phase_spectrum
matplotlib.pyplot.pie matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, *, normalize=True, data=None)[source] Plot a pie chart. Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x) < 1, then the values of x give the fractional area directly and the array will not be normalized. The resulting pie will have an empty wedge of size 1 - sum(x). The wedges are plotted counterclockwise, by default starting from the x-axis. Parameters x1D array-like The wedge sizes. explodearray-like, default: None If not None, is a len(x) array which specifies the fraction of the radius with which to offset each wedge. labelslist, default: None A sequence of strings providing the labels for each wedge colorsarray-like, default: None A sequence of colors through which the pie chart will cycle. If None, will use the colors in the currently active cycle. autopctNone or str or callable, default: None If not None, is a string or function used to label the wedges with their numeric value. The label will be placed inside the wedge. If it is a format string, the label will be fmt % pct. If it is a function, it will be called. pctdistancefloat, default: 0.6 The ratio between the center of each pie slice and the start of the text generated by autopct. Ignored if autopct is None. shadowbool, default: False Draw a shadow beneath the pie. normalizebool, default: True When True, always make a full pie by normalizing x so that sum(x) == 1. False makes a partial pie if sum(x) <= 1 and raises a ValueError for sum(x) > 1. labeldistancefloat or None, default: 1.1 The radial distance at which the pie labels are drawn. If set to None, label are not drawn, but are stored for use in legend() startanglefloat, default: 0 degrees The angle by which the start of the pie is rotated, counterclockwise from the x-axis. radiusfloat, default: 1 The radius of the pie. counterclockbool, default: True Specify fractions direction, clockwise or counterclockwise. wedgepropsdict, default: None Dict of arguments passed to the wedge objects making the pie. For example, you can pass in wedgeprops = {'linewidth': 3} to set the width of the wedge border lines equal to 3. For more details, look at the doc/arguments of the wedge object. By default clip_on=False. textpropsdict, default: None Dict of arguments to pass to the text objects. center(float, float), default: (0, 0) The coordinates of the center of the chart. framebool, default: False Plot Axes frame with the chart if true. rotatelabelsbool, default: False Rotate each label to the angle of the corresponding slice if true. dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, explode, labels, colors Returns patcheslist A sequence of matplotlib.patches.Wedge instances textslist A list of the label Text instances. autotextslist A list of Text instances for the numeric labels. This will only be returned if the parameter autopct is not None. Notes The pie chart will probably look best if the figure and Axes are square, or the Axes aspect is equal. This method sets the aspect ratio of the axis to "equal". The Axes aspect ratio can be controlled with Axes.set_aspect.
matplotlib._as_gen.matplotlib.pyplot.pie
matplotlib.pyplot.pink matplotlib.pyplot.pink()[source] Set the colormap to 'pink'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.pink
matplotlib.pyplot.plasma matplotlib.pyplot.plasma()[source] Set the colormap to 'plasma'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.plasma
matplotlib.pyplot.plot matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)[source] Plot y versus x as lines and/or markers. Call signatures: plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) The coordinates of the points or line nodes are given by x, y. The optional parameter fmt is a convenient way for defining basic formatting like color, marker and linestyle. It's a shortcut string notation described in the Notes section below. >>> plot(x, y) # plot x and y using default line style and color >>> plot(x, y, 'bo') # plot x and y using blue circle markers >>> plot(y) # plot y using x as index array 0..N-1 >>> plot(y, 'r+') # ditto, but with red plusses You can use Line2D properties as keyword arguments for more control on the appearance. Line properties and fmt can be mixed. The following two calls yield identical results: >>> plot(x, y, 'go--', linewidth=2, markersize=12) >>> plot(x, y, color='green', marker='o', linestyle='dashed', ... linewidth=2, markersize=12) When conflicting with fmt, keyword arguments take precedence. Plotting labelled data There's a convenient way for plotting objects with labelled data (i.e. data that can be accessed by index obj['y']). Instead of giving the data in x and y, you can provide the object in the data parameter and just give the labels for x and y: >>> plot('xlabel', 'ylabel', data=obj) All indexable objects are supported. This could e.g. be a dict, a pandas.DataFrame or a structured numpy array. Plotting multiple sets of data There are various ways to plot multiple sets of data. The most straight forward way is just to call plot multiple times. Example: >>> plot(x1, y1, 'bo') >>> plot(x2, y2, 'go') If x and/or y are 2D arrays a separate data set will be drawn for every column. If both x and y are 2D, they must have the same shape. If only one of them is 2D with shape (N, m) the other must have length N and will be used for every data set m. Example: >>> x = [1, 2, 3] >>> y = np.array([[1, 2], [3, 4], [5, 6]]) >>> plot(x, y) is equivalent to: >>> for col in range(y.shape[1]): ... plot(x, y[:, col]) The third way is to specify multiple sets of [x], y, [fmt] groups: >>> plot(x1, y1, 'g^', x2, y2, 'g-') In this case, any additional keyword argument applies to all datasets. Also this syntax cannot be combined with the data parameter. By default, each line is assigned a different style specified by a 'style cycle'. The fmt and line property parameters are only necessary if you want explicit deviations from these defaults. Alternatively, you can also change the style cycle using rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])). Parameters x, yarray-like or scalar The horizontal / vertical coordinates of the data points. x values are optional and default to range(len(y)). Commonly, these parameters are 1D arrays. They can also be scalars, or two-dimensional (in that case, the columns represent separate data sets). These arguments cannot be passed as keywords. fmtstr, optional A format string, e.g. 'ro' for red circles. See the Notes section for a full description of the format strings. Format strings are just an abbreviation for quickly setting basic line properties. All of these and more can also be controlled by keyword arguments. This argument cannot be passed as keyword. dataindexable object, optional An object with labelled data. If given, provide the label names to plot in x and y. Note Technically there's a slight ambiguity in calls where the second label is a valid fmt. plot('n', 'o', data=obj) could be plt(x, y) or plt(y, fmt). In such cases, the former interpretation is chosen, but a warning is issued. You may suppress the warning by adding an empty format string plot('n', 'o', '', data=obj). Returns list of Line2D A list of lines representing the plotted data. Other Parameters scalex, scaleybool, default: True These parameters determine if the view limits are adapted to the data limits. The values are passed on to autoscale_view. **kwargsLine2D properties, optional kwargs are used to specify properties like a line label (for auto legends), linewidth, antialiasing, marker face color. Example: >>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2) >>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2') If you specify multiple lines with one plot call, the kwargs apply to all those lines. In case the label object is iterable, each element is used as labels for each set of data. Here is a list of available Line2D properties: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float See also scatter XY scatter plot with markers of varying size and/or color ( sometimes also called bubble chart). Notes Format Strings A format string consists of a part for color, marker and line: fmt = '[marker][line][color]' Each of them is optional. If not provided, the value from the style cycle is used. Exception: If line is given, but no marker, the data will be a line without markers. Other combinations such as [color][marker][line] are also supported, but note that their parsing may be ambiguous. Markers character description '.' point marker ',' pixel marker 'o' circle marker 'v' triangle_down marker '^' triangle_up marker '<' triangle_left marker '>' triangle_right marker '1' tri_down marker '2' tri_up marker '3' tri_left marker '4' tri_right marker '8' octagon marker 's' square marker 'p' pentagon marker 'P' plus (filled) marker '*' star marker 'h' hexagon1 marker 'H' hexagon2 marker '+' plus marker 'x' x marker 'X' x (filled) marker 'D' diamond marker 'd' thin_diamond marker '|' vline marker '_' hline marker Line Styles character description '-' solid line style '--' dashed line style '-.' dash-dot line style ':' dotted line style Example format strings: 'b' # blue markers with default shape 'or' # red circles '-g' # green solid line '--' # dashed line with default color '^k:' # black triangle_up markers connected by a dotted line Colors The supported color abbreviations are the single letter codes character color 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white and the 'CN' colors that index into the default property cycle. If the color is the only part of the format string, you can additionally use any matplotlib.colors spec, e.g. full names ('green') or hex strings ('#008000'). Examples using matplotlib.pyplot.plot Plotting masked and NaN values Scatter Masked Stairs Demo Step Demo Custom Figure subclasses Managing multiple figures in pyplot Shared Axis Multiple subplots Controlling style of text and labels using a dictionary Title positioning Infinite lines plot() format string Pyplot Mathtext Pyplot Simple Pyplot Three Pyplot Two Subplots Dolphins Solarized Light stylesheet Frame grabbing Coords Report Customize Rc Findobj Demo Multipage PDF Print Stdout Set and get properties transforms.offset_copy Zorder Demo Custom scale Placing date ticks using recurrence rules Rotating custom tick labels Tool Manager Buttons Slider Snapping Sliders to Discrete Values Basic Usage Pyplot tutorial Customizing Matplotlib with style sheets and rcParams Path effects guide
matplotlib._as_gen.matplotlib.pyplot.plot
matplotlib.pyplot.plot_date matplotlib.pyplot.plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, *, data=None, **kwargs)[source] Plot coercing the axis to treat floats as dates. Discouraged This method exists for historic reasons and will be deprecated in the future. datetime-like data should directly be plotted using plot. If you need to plot plain numeric data as Matplotlib date format or need to set a timezone, call ax.xaxis.axis_date / ax.yaxis.axis_date before plot. See Axis.axis_date. Similar to plot, this plots y vs. x as lines or markers. However, the axis labels are formatted as dates depending on xdate and ydate. Note that plot will work with datetime and numpy.datetime64 objects without resorting to this method. Parameters x, yarray-like The coordinates of the data points. If xdate or ydate is True, the respective values x or y are interpreted as Matplotlib dates. fmtstr, optional The plot format string. For details, see the corresponding parameter in plot. tztimezone string or datetime.tzinfo, default: rcParams["timezone"] (default: 'UTC') The time zone to use in labeling dates. xdatebool, default: True If True, the x-axis will be interpreted as Matplotlib dates. ydatebool, default: False If True, the y-axis will be interpreted as Matplotlib dates. Returns list of Line2D Objects representing the plotted data. Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, y **kwargs Keyword arguments control the Line2D properties: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float See also matplotlib.dates Helper functions on dates. matplotlib.dates.date2num Convert dates to num. matplotlib.dates.num2date Convert num to dates. matplotlib.dates.drange Create an equally spaced sequence of dates. Notes If you are using custom date tickers and formatters, it may be necessary to set the formatters/locators after the call to plot_date. plot_date will set the default tick locator to AutoDateLocator (if the tick locator is not already set to a DateLocator instance) and the default tick formatter to AutoDateFormatter (if the tick formatter is not already set to a DateFormatter instance).
matplotlib._as_gen.matplotlib.pyplot.plot_date
matplotlib.pyplot.plotting()[source] Function Description acorr Plot the autocorrelation of x. angle_spectrum Plot the angle spectrum. annotate Annotate the point xy with text text. arrow Add an arrow to the Axes. autoscale Autoscale the axis view to the data (toggle). axes Add an axes to the current figure and make it the current axes. axhline Add a horizontal line across the axis. axhspan Add a horizontal span (rectangle) across the Axes. axis Convenience method to get or set some axis properties. axline Add an infinitely long straight line. axvline Add a vertical line across the Axes. axvspan Add a vertical span (rectangle) across the Axes. bar Make a bar plot. bar_label Label a bar plot. barbs Plot a 2D field of barbs. barh Make a horizontal bar plot. box Turn the axes box on or off on the current axes. boxplot Draw a box and whisker plot. broken_barh Plot a horizontal sequence of rectangles. cla Clear the current axes. clabel Label a contour plot. clf Clear the current figure. clim Set the color limits of the current image. close Close a figure window. cohere Plot the coherence between x and y. colorbar Add a colorbar to a plot. contour Plot contour lines. contourf Plot filled contours. csd Plot the cross-spectral density. delaxes Remove an Axes (defaulting to the current axes) from its figure. draw Redraw the current figure. draw_if_interactive Redraw the current figure if in interactive mode. errorbar Plot y versus x as lines and/or markers with attached errorbars. eventplot Plot identical parallel lines at the given positions. figimage Add a non-resampled image to the figure. figlegend Place a legend on the figure. fignum_exists Return whether the figure with the given id exists. figtext Add text to figure. figure Create a new figure, or activate an existing figure. fill Plot filled polygons. fill_between Fill the area between two horizontal curves. fill_betweenx Fill the area between two vertical curves. findobj Find artist objects. gca Get the current Axes. gcf Get the current figure. gci Get the current colorable artist. get Return the value of an Artist's property, or print all of them. get_figlabels Return a list of existing figure labels. get_fignums Return a list of existing figure numbers. getp Return the value of an Artist's property, or print all of them. grid Configure the grid lines. hexbin Make a 2D hexagonal binning plot of points x, y. hist Plot a histogram. hist2d Make a 2D histogram plot. hlines Plot horizontal lines at each y from xmin to xmax. imread Read an image from a file into an array. imsave Save an array as an image file. imshow Display data as an image, i.e., on a 2D regular raster. install_repl_displayhook Install a repl display hook so that any stale figure are automatically redrawn when control is returned to the repl. ioff Disable interactive mode. ion Enable interactive mode. isinteractive Return whether plots are updated after every plotting command. legend Place a legend on the Axes. locator_params Control behavior of major tick locators. loglog Make a plot with log scaling on both the x and y axis. magnitude_spectrum Plot the magnitude spectrum. margins Set or retrieve autoscaling margins. matshow Display an array as a matrix in a new figure window. minorticks_off Remove minor ticks from the Axes. minorticks_on Display minor ticks on the Axes. new_figure_manager Create a new figure manager instance. pause Run the GUI event loop for interval seconds. pcolor Create a pseudocolor plot with a non-regular rectangular grid. pcolormesh Create a pseudocolor plot with a non-regular rectangular grid. phase_spectrum Plot the phase spectrum. pie Plot a pie chart. plot Plot y versus x as lines and/or markers. plot_date Plot coercing the axis to treat floats as dates. polar Make a polar plot. psd Plot the power spectral density. quiver Plot a 2D field of arrows. quiverkey Add a key to a quiver plot. rc Set the current rcParams. rc_context Return a context manager for temporarily changing rcParams. rcdefaults Restore the rcParams from Matplotlib's internal default style. rgrids Get or set the radial gridlines on the current polar plot. savefig Save the current figure. sca Set the current Axes to ax and the current Figure to the parent of ax. scatter A scatter plot of y vs. sci Set the current image. semilogx Make a plot with log scaling on the x axis. semilogy Make a plot with log scaling on the y axis. set_cmap Set the default colormap, and applies it to the current image if any. set_loglevel Set Matplotlib's root logger and root logger handler level, creating the handler if it does not exist yet. setp Set one or more properties on an Artist, or list allowed values. show Display all open figures. specgram Plot a spectrogram. spy Plot the sparsity pattern of a 2D array. stackplot Draw a stacked area plot. stairs A stepwise constant function as a line with bounding edges or a filled plot. stem Create a stem plot. step Make a step plot. streamplot Draw streamlines of a vector flow. subplot Add an Axes to the current figure or retrieve an existing Axes. subplot2grid Create a subplot at a specific location inside a regular grid. subplot_mosaic Build a layout of Axes based on ASCII art or nested lists. subplot_tool Launch a subplot tool window for a figure. subplots Create a figure and a set of subplots. subplots_adjust Adjust the subplot layout parameters. suptitle Add a centered suptitle to the figure. switch_backend Close all open figures and set the Matplotlib backend. table Add a table to an Axes. text Add text to the Axes. thetagrids Get or set the theta gridlines on the current polar plot. tick_params Change the appearance of ticks, tick labels, and gridlines. ticklabel_format Configure the ScalarFormatter used by default for linear axes. tight_layout Adjust the padding between and around subplots. title Set a title for the Axes. tricontour Draw contour lines on an unstructured triangular grid. tricontourf Draw contour regions on an unstructured triangular grid. tripcolor Create a pseudocolor plot of an unstructured triangular grid. triplot Draw a unstructured triangular grid as lines and/or markers. twinx Make and return a second axes that shares the x-axis. twiny Make and return a second axes that shares the y-axis. uninstall_repl_displayhook Uninstall the Matplotlib display hook. violinplot Make a violin plot. vlines Plot vertical lines at each x from ymin to ymax. xcorr Plot the cross correlation between x and y. xkcd Turn on xkcd sketch-style drawing mode. xlabel Set the label for the x-axis. xlim Get or set the x limits of the current axes. xscale Set the x-axis scale. xticks Get or set the current tick locations and labels of the x-axis. ylabel Set the label for the y-axis. ylim Get or set the y-limits of the current axes. yscale Set the y-axis scale. yticks Get or set the current tick locations and labels of the y-axis.
matplotlib.pyplot_summary#matplotlib.pyplot.plotting
matplotlib.pyplot.polar matplotlib.pyplot.polar(*args, **kwargs)[source] Make a polar plot. call signature: polar(theta, r, **kwargs) Multiple theta, r arguments are supported, with format strings, as in plot. Examples using matplotlib.pyplot.polar transforms.offset_copy
matplotlib._as_gen.matplotlib.pyplot.polar
matplotlib.pyplot.prism matplotlib.pyplot.prism()[source] Set the colormap to 'prism'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.prism
matplotlib.pyplot.psd matplotlib.pyplot.psd(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, return_line=None, *, data=None, **kwargs)[source] Plot the power spectral density. The power spectral density \(P_{xx}\) by Welch's average periodogram method. The vector x is divided into NFFT length segments. Each segment is detrended by function detrend and windowed by function window. noverlap gives the length of the overlap between segments. The \(|\mathrm{fft}(i)|^2\) of each segment \(i\) are averaged to compute \(P_{xx}\), with a scaling to correct for power loss due to windowing. If len(x) < NFFT, it will be zero padded to NFFT. Parameters x1-D array or sequence Array or sequence containing the data Fsfloat, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. windowcallable or ndarray, default: window_hanning A function or a vector of length NFFT. To create window vectors see window_hanning, window_none, numpy.blackman, numpy.hamming, numpy.bartlett, scipy.signal, scipy.signal.get_window, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides{'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided. pad_toint, optional The number of points to which the data segment is padded when performing the FFT. This can be different from NFFT, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the n parameter in the call to fft(). The default is None, which sets pad_to equal to NFFT NFFTint, default: 256 The number of data points used in each block for the FFT. A power 2 is most efficient. This should NOT be used to get zero padding, or the scaling of the result will be incorrect; use pad_to for this instead. detrend{'none', 'mean', 'linear'} or callable, default: 'none' The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the detrend parameter is a vector, in Matplotlib it is a function. The mlab module defines detrend_none, detrend_mean, and detrend_linear, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' calls detrend_none. 'mean' calls detrend_mean. 'linear' calls detrend_linear. scale_by_freqbool, default: True Whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility. noverlapint, default: 0 (no overlap) The number of points of overlap between segments. Fcint, default: 0 The center frequency of x, which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. return_linebool, default: False Whether to include the line object plotted in the returned values. Returns Pxx1-D array The values for the power spectrum \(P_{xx}\) before scaling (real valued). freqs1-D array The frequencies corresponding to the elements in Pxx. lineLine2D The line created by this function. Only returned if return_line is True. Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x **kwargs Keyword arguments control the Line2D properties: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float See also specgram Differs in the default overlap; in not returning the mean of the segment periodograms; in returning the times of the segments; and in plotting a colormap instead of a line. magnitude_spectrum Plots the magnitude spectrum. csd Plots the spectral density between two signals. Notes For plotting, the power is plotted as \(10\log_{10}(P_{xx})\) for decibels, though Pxx itself is returned. References Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986)
matplotlib._as_gen.matplotlib.pyplot.psd
matplotlib.pyplot.quiver matplotlib.pyplot.quiver(*args, data=None, **kwargs)[source] Plot a 2D field of arrows. Call signature: quiver([X, Y], U, V, [C], **kw) X, Y define the arrow locations, U, V define the arrow directions, and C optionally sets the color. Each arrow is internally represented by a filled polygon with a default edge linewidth of 0. As a result, an arrow is rather a filled area, not a line with a head, and PolyCollection properties like linewidth, linestyle, facecolor, etc. act accordingly. Arrow size The default settings auto-scales the length of the arrows to a reasonable size. To change this behavior see the scale and scale_units parameters. Arrow shape The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters. You will probably do best to leave minshaft alone. Arrow outline linewidths and edgecolors can be used to customize the arrow outlines. Parameters X, Y1D or 2D array-like, optional The x and y coordinates of the arrow locations. If not given, they will be generated as a uniform integer meshgrid based on the dimensions of U and V. If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.meshgrid(X, Y). In this case len(X) and len(Y) must match the column and row dimensions of U and V. U, V1D or 2D array-like The x and y direction components of the arrow vectors. They must have the same number of elements, matching the number of arrow locations. U and V may be masked. Only locations unmasked in U, V, and C will be drawn. C1D or 2D array-like, optional Numeric data that defines the arrow colors by colormapping via norm and cmap. This does not support explicit colors. If you want to set colors directly, use color instead. The size of C must match the number of arrow locations. units{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width' The arrow dimensions (except for length) are measured in multiples of this unit. The following values are supported: 'width', 'height': The width or height of the axis. 'dots', 'inches': Pixels or inches based on the figure dpi. 'x', 'y', 'xy': X, Y or \(\sqrt{X^2 + Y^2}\) in data units. The arrows scale differently depending on the units. For 'x' or 'y', the arrows get larger as one zooms in; for other units, the arrow size is independent of the zoom state. For 'width or 'height', the arrow size increases with the width and height of the axes, respectively, when the window is resized; for 'dots' or 'inches', resizing does not change the arrows. angles{'uv', 'xy'} or array-like, default: 'uv' Method for determining the angle of the arrows. 'uv': The arrow axis aspect ratio is 1 so that if U == V the orientation of the arrow on the plot is 45 degrees counter-clockwise from the horizontal axis (positive to the right). Use this if the arrows symbolize a quantity that is not based on X, Y data coordinates. 'xy': Arrows point from (x, y) to (x+u, y+v). Use this for plotting a gradient field, for example. Alternatively, arbitrary angles may be specified explicitly as an array of values in degrees, counter-clockwise from the horizontal axis. In this case U, V is only used to determine the length of the arrows. Note: inverting a data axis will correspondingly invert the arrows only with angles='xy'. scalefloat, optional Number of data units per arrow length unit, e.g., m/s per plot width; a smaller scale parameter makes the arrow longer. Default is None. If None, a simple autoscaling algorithm is used, based on the average vector length and the number of vectors. The arrow length unit is given by the scale_units parameter. scale_units{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional If the scale kwarg is None, the arrow length unit. Default is None. e.g. scale_units is 'inches', scale is 2.0, and (u, v) = (1, 0), then the vector will be 0.5 inches long. If scale_units is 'width' or 'height', then the vector will be half the width/height of the axes. If scale_units is 'x' then the vector will be 0.5 x-axis units. To plot vectors in the x-y plane, with u and v having the same units as x and y, use angles='xy', scale_units='xy', scale=1. widthfloat, optional Shaft width in arrow units; default depends on choice of units, above, and number of vectors; a typical starting value is about 0.005 times the width of the plot. headwidthfloat, default: 3 Head width as multiple of shaft width. headlengthfloat, default: 5 Head length as multiple of shaft width. headaxislengthfloat, default: 4.5 Head length at shaft intersection. minshaftfloat, default: 1 Length below which arrow scales, in units of head length. Do not set this to less than 1, or small arrows will look terrible! minlengthfloat, default: 1 Minimum length as a multiple of shaft width; if an arrow length is less than this, plot a dot (hexagon) of this diameter instead. pivot{'tail', 'mid', 'middle', 'tip'}, default: 'tail' The part of the arrow that is anchored to the X, Y grid. The arrow rotates about this point. 'mid' is a synonym for 'middle'. colorcolor or color sequence, optional Explicit color(s) for the arrows. If C has been set, color has no effect. This is a synonym for the PolyCollection facecolor parameter. Returns Quiver Other Parameters dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). **kwargsPolyCollection properties, optional All other keyword arguments are passed on to PolyCollection: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha array-like or scalar or None animated bool antialiased or aa or antialiaseds bool or list of bools array array-like or None capstyle CapStyle or {'butt', 'projecting', 'round'} clim (vmin: float, vmax: float) clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None cmap Colormap or str or None color color or list of rgba tuples edgecolor or ec or edgecolors color or list of colors or 'face' facecolor or facecolors or fc color or list of colors figure Figure gid str hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} in_layout bool joinstyle JoinStyle or {'miter', 'round', 'bevel'} label object linestyle or dashes or linestyles or ls str or tuple or list thereof linewidth or linewidths or lw float or list of floats norm Normalize or None offset_transform Transform offsets (N, 2) or (2,) array-like path_effects AbstractPathEffect paths list of array-like picker None or bool or float or callable pickradius float rasterized bool sizes ndarray or None sketch_params (scale: float, length: float, randomness: float) snap bool or None transform Transform url str urls list of str or None verts list of array-like verts_and_codes unknown visible bool zorder float See also Axes.quiverkey Add a key to a quiver plot.
matplotlib._as_gen.matplotlib.pyplot.quiver
matplotlib.pyplot.quiverkey matplotlib.pyplot.quiverkey(Q, X, Y, U, label, **kwargs)[source] Add a key to a quiver plot. The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is 'N' or 'S', X, Y give the position of the middle of the key arrow. If labelpos is 'E', X, Y positions the head, and if labelpos is 'W', X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle of the arrow+label key object. Parameters Qmatplotlib.quiver.Quiver A Quiver object as returned by a call to quiver(). X, Yfloat The location of the key. Ufloat The length of the key. labelstr The key label (e.g., length and units of the key). anglefloat, default: 0 The angle of the key arrow, in degrees anti-clockwise from the x-axis. coordinates{'axes', 'figure', 'data', 'inches'}, default: 'axes' Coordinate system and units for X, Y: 'axes' and 'figure' are normalized coordinate systems with (0, 0) in the lower left and (1, 1) in the upper right; 'data' are the axes data coordinates (used for the locations of the vectors in the quiver plot itself); 'inches' is position in the figure in inches, with (0, 0) at the lower left corner. colorcolor Overrides face and edge colors from Q. labelpos{'N', 'S', 'E', 'W'} Position the label above, below, to the right, to the left of the arrow, respectively. labelsepfloat, default: 0.1 Distance in inches between the arrow and the label. labelcolorcolor, default: rcParams["text.color"] (default: 'black') Label color. fontpropertiesdict, optional A dictionary with keyword arguments accepted by the FontProperties initializer: family, style, variant, size, weight. **kwargs Any additional keyword arguments are used to override vector properties taken from Q.
matplotlib._as_gen.matplotlib.pyplot.quiverkey
matplotlib.pyplot.rc matplotlib.pyplot.rc(group, **kwargs)[source] Set the current rcParams. group is the grouping for the rc, e.g., for lines.linewidth the group is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of group names, e.g., (xtick, ytick). kwargs is a dictionary attribute name/value pairs, e.g.,: rc('lines', linewidth=2, color='r') sets the current rcParams and is equivalent to: rcParams['lines.linewidth'] = 2 rcParams['lines.color'] = 'r' The following aliases are available to save typing for interactive users: Alias Property 'lw' 'linewidth' 'ls' 'linestyle' 'c' 'color' 'fc' 'facecolor' 'ec' 'edgecolor' 'mew' 'markeredgewidth' 'aa' 'antialiased' Thus you could abbreviate the above call as: rc('lines', lw=2, c='r') Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g., you can customize the font rc as follows: font = {'family' : 'monospace', 'weight' : 'bold', 'size' : 'larger'} rc('font', **font) # pass in the font dict as kwargs This enables you to easily switch between several configurations. Use matplotlib.style.use('default') or rcdefaults() to restore the default rcParams after changes. Notes Similar functionality is available by using the normal dict interface, i.e. rcParams.update({"lines.linewidth": 2, ...}) (but rcParams.update does not support abbreviations or grouping). Examples using matplotlib.pyplot.rc Styling with cycler
matplotlib._as_gen.matplotlib.pyplot.rc
matplotlib.pyplot.rc_context matplotlib.pyplot.rc_context(rc=None, fname=None)[source] Return a context manager for temporarily changing rcParams. Parameters rcdict The rcParams to temporarily set. fnamestr or path-like A file with Matplotlib rc settings. If both fname and rc are given, settings from rc take precedence. See also The matplotlibrc file Examples Passing explicit values via a dict: with mpl.rc_context({'interactive': False}): fig, ax = plt.subplots() ax.plot(range(3), range(3)) fig.savefig('example.png') plt.close(fig) Loading settings from a file: with mpl.rc_context(fname='print.rc'): plt.plot(x, y) # uses 'print.rc' Examples using matplotlib.pyplot.rc_context Style sheets reference Matplotlib logo
matplotlib._as_gen.matplotlib.pyplot.rc_context
matplotlib.pyplot.rcdefaults matplotlib.pyplot.rcdefaults()[source] Restore the rcParams from Matplotlib's internal default style. Style-blacklisted rcParams (defined in matplotlib.style.core.STYLE_BLACKLIST) are not updated. See also matplotlib.rc_file_defaults Restore the rcParams from the rc file originally loaded by Matplotlib. matplotlib.style.use Use a specific style file. Call style.use('default') to restore the default style. Examples using matplotlib.pyplot.rcdefaults Horizontal bar chart Customize Rc
matplotlib._as_gen.matplotlib.pyplot.rcdefaults
matplotlib.pyplot.rgrids matplotlib.pyplot.rgrids(radii=None, labels=None, angle=None, fmt=None, **kwargs)[source] Get or set the radial gridlines on the current polar plot. Call signatures: lines, labels = rgrids() lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None, **kwargs) When called with no arguments, rgrids simply returns the tuple (lines, labels). When called with arguments, the labels will appear at the specified radial distances and angle. Parameters radiituple with floats The radii for the radial gridlines labelstuple with strings or None The labels to use at each radial gridline. The matplotlib.ticker.ScalarFormatter will be used if None. anglefloat The angular position of the radius labels in degrees. fmtstr or None Format string used in matplotlib.ticker.FormatStrFormatter. For example '%f'. Returns lineslist of lines.Line2D The radial gridlines. labelslist of text.Text The tick labels. Other Parameters **kwargs kwargs are optional Text properties for the labels. See also pyplot.thetagrids projections.polar.PolarAxes.set_rgrids Axis.get_gridlines Axis.get_ticklabels Examples # set the locations of the radial gridlines lines, labels = rgrids( (0.25, 0.5, 1.0) ) # set the locations and labels of the radial gridlines lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ))
matplotlib._as_gen.matplotlib.pyplot.rgrids
matplotlib.pyplot.savefig matplotlib.pyplot.savefig(*args, **kwargs)[source] Save the current figure. Call signature: savefig(fname, *, dpi='figure', format=None, metadata=None, bbox_inches=None, pad_inches=0.1, facecolor='auto', edgecolor='auto', backend=None, **kwargs ) The available output formats depend on the backend being used. Parameters fnamestr or path-like or binary file-like A path, or a Python file-like object, or possibly some backend-dependent object such as matplotlib.backends.backend_pdf.PdfPages. If format is set, it determines the output format, and the file is saved as fname. Note that fname is used verbatim, and there is no attempt to make the extension, if any, of fname match format, and no extension is appended. If format is not set, then the format is inferred from the extension of fname, if there is one. If format is not set and fname has no extension, then the file is saved with rcParams["savefig.format"] (default: 'png') and the appropriate extension is appended to fname. Other Parameters dpifloat or 'figure', default: rcParams["savefig.dpi"] (default: 'figure') The resolution in dots per inch. If 'figure', use the figure's dpi value. formatstr The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is unset is documented under fname. metadatadict, optional Key/value pairs to store in the image metadata. The supported keys and defaults depend on the image format and backend: 'png' with Agg backend: See the parameter metadata of print_png. 'pdf' with pdf backend: See the parameter metadata of PdfPages. 'svg' with svg backend: See the parameter metadata of print_svg. 'eps' and 'ps' with PS backend: Only 'Creator' is supported. bbox_inchesstr or Bbox, default: rcParams["savefig.bbox"] (default: None) Bounding box in inches: only the given portion of the figure is saved. If 'tight', try to figure out the tight bbox of the figure. pad_inchesfloat, default: rcParams["savefig.pad_inches"] (default: 0.1) Amount of padding around the figure when bbox_inches is 'tight'. facecolorcolor or 'auto', default: rcParams["savefig.facecolor"] (default: 'auto') The facecolor of the figure. If 'auto', use the current figure facecolor. edgecolorcolor or 'auto', default: rcParams["savefig.edgecolor"] (default: 'auto') The edgecolor of the figure. If 'auto', use the current figure edgecolor. backendstr, optional Use a non-default backend to render the file, e.g. to render a png file with the "cairo" backend rather than the default "agg", or a pdf file with the "pgf" backend rather than the default "pdf". Note that the default backend is normally sufficient. See The builtin backends for a list of valid backends for each file format. Custom backends can be referenced as "module://...". orientation{'landscape', 'portrait'} Currently only supported by the postscript backend. papertypestr One of 'letter', 'legal', 'executive', 'ledger', 'a0' through 'a10', 'b0' through 'b10'. Only supported for postscript output. transparentbool If True, the Axes patches will all be transparent; the Figure patch will also be transparent unless facecolor and/or edgecolor are specified via kwargs. If False has no effect and the color of the Axes and Figure patches are unchanged (unless the Figure patch is specified via the facecolor and/or edgecolor keyword arguments in which case those colors are used). The transparency of these patches will be restored to their original values upon exit of this function. This is useful, for example, for displaying a plot on top of a colored background on a web page. bbox_extra_artistslist of Artist, optional A list of extra artists that will be considered when the tight bbox is calculated. pil_kwargsdict, optional Additional keyword arguments that are passed to PIL.Image.Image.save when saving the figure. Examples using matplotlib.pyplot.savefig Print Stdout Rasterization for vector graphics SVG Filter Line SVG Filter Pie SVG Histogram SVG Tooltip
matplotlib._as_gen.matplotlib.pyplot.savefig
matplotlib.pyplot.sca matplotlib.pyplot.sca(ax)[source] Set the current Axes to ax and the current Figure to the parent of ax.
matplotlib._as_gen.matplotlib.pyplot.sca
matplotlib.pyplot.scatter matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)[source] A scatter plot of y vs. x with varying marker size and/or color. Parameters x, yfloat or array-like, shape (n, ) The data positions. sfloat or array-like, shape (n, ), optional The marker size in points**2. Default is rcParams['lines.markersize'] ** 2. carray-like or list of colors or color, optional The marker colors. Possible values: A scalar or sequence of n numbers to be mapped to colors using cmap and norm. A 2D array in which the rows are RGB or RGBA. A sequence of colors of length n. A single color format string. Note that c should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. If you want to specify the same RGB or RGBA value for all points, use a 2D array with a single row. Otherwise, value- matching will have precedence in case of a size matching with x and y. If you wish to specify a single color for all points prefer the color keyword argument. Defaults to None. In that case the marker color is determined by the value of color, facecolor or facecolors. In case those are not specified or None, the marker color is determined by the next color of the Axes' current "shape and fill" color cycle. This cycle defaults to rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])). markerMarkerStyle, default: rcParams["scatter.marker"] (default: 'o') The marker style. marker can be either an instance of the class or the text shorthand for a particular marker. See matplotlib.markers for more information about marker styles. cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') A Colormap instance or registered colormap name. cmap is only used if c is an array of floats. normNormalize, default: None If c is an array of floats, norm is used to scale the color data, c, in the range 0 to 1, in order to map into the colormap cmap. If None, use the default colors.Normalize. vmin, vmaxfloat, default: None vmin and vmax are used in conjunction with the default norm to map the color array c to the colormap cmap. If None, the respective min and max of the color array is used. It is an error to use vmin/vmax when norm is given. alphafloat, default: None The alpha blending value, between 0 (transparent) and 1 (opaque). linewidthsfloat or array-like, default: rcParams["lines.linewidth"] (default: 1.5) The linewidth of the marker edges. Note: The default edgecolors is 'face'. You may want to change this as well. edgecolors{'face', 'none', None} or color or sequence of color, default: rcParams["scatter.edgecolors"] (default: 'face') The edge color of the marker. Possible values: 'face': The edge color will always be the same as the face color. 'none': No patch boundary will be drawn. A color or sequence of colors. For non-filled markers, edgecolors is ignored. Instead, the color is determined like with 'face', i.e. from c, colors, or facecolors. plotnonfinitebool, default: False Whether to plot points with nonfinite c (i.e. inf, -inf or nan). If True the points are drawn with the bad colormap color (see Colormap.set_bad). Returns PathCollection Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, y, s, linewidths, edgecolors, c, facecolor, facecolors, color **kwargsCollection properties See also plot To plot scatter plots when markers are identical in size and color. Notes The plot function will be faster for scatterplots where markers don't vary in size or color. Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted. Fundamentally, scatter works with 1D arrays; x, y, s, and c may be input as N-D arrays, but within scatter they will be flattened. The exception is c, which will be flattened only if its size matches the size of x and y. Examples using matplotlib.pyplot.scatter Scatter Masked Scatter Symbol Scatter plot Hyperlinks Pyplot tutorial
matplotlib._as_gen.matplotlib.pyplot.scatter
matplotlib.pyplot.sci matplotlib.pyplot.sci(im)[source] Set the current image. This image will be the target of colormap functions like viridis, and other functions such as clim. The current image is an attribute of the current Axes. Examples using matplotlib.pyplot.sci Line Collection
matplotlib._as_gen.matplotlib.pyplot.sci
matplotlib.pyplot.semilogx matplotlib.pyplot.semilogx(*args, **kwargs)[source] Make a plot with log scaling on the x axis. Call signatures: semilogx([x], y, [fmt], data=None, **kwargs) semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) This is just a thin wrapper around plot which additionally changes the x-axis to log scaling. All of the concepts and parameters of plot can be used here as well. The additional parameters base, subs, and nonpositive control the x-axis properties. They are just forwarded to Axes.set_xscale. Parameters basefloat, default: 10 Base of the x logarithm. subsarray-like, optional The location of the minor xticks. If None, reasonable locations are automatically chosen depending on the number of decades in the plot. See Axes.set_xscale for details. nonpositive{'mask', 'clip'}, default: 'mask' Non-positive values in x can be masked as invalid, or clipped to a very small positive number. **kwargs All parameters supported by plot. Returns list of Line2D Objects representing the plotted data.
matplotlib._as_gen.matplotlib.pyplot.semilogx
matplotlib.pyplot.semilogy matplotlib.pyplot.semilogy(*args, **kwargs)[source] Make a plot with log scaling on the y axis. Call signatures: semilogy([x], y, [fmt], data=None, **kwargs) semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) This is just a thin wrapper around plot which additionally changes the y-axis to log scaling. All of the concepts and parameters of plot can be used here as well. The additional parameters base, subs, and nonpositive control the y-axis properties. They are just forwarded to Axes.set_yscale. Parameters basefloat, default: 10 Base of the y logarithm. subsarray-like, optional The location of the minor yticks. If None, reasonable locations are automatically chosen depending on the number of decades in the plot. See Axes.set_yscale for details. nonpositive{'mask', 'clip'}, default: 'mask' Non-positive values in y can be masked as invalid, or clipped to a very small positive number. **kwargs All parameters supported by plot. Returns list of Line2D Objects representing the plotted data.
matplotlib._as_gen.matplotlib.pyplot.semilogy
matplotlib.pyplot.set_cmap matplotlib.pyplot.set_cmap(cmap)[source] Set the default colormap, and applies it to the current image if any. Parameters cmapColormap or str A colormap instance or the name of a registered colormap. See also colormaps matplotlib.cm.register_cmap matplotlib.cm.get_cmap
matplotlib._as_gen.matplotlib.pyplot.set_cmap
matplotlib.pyplot.set_loglevel matplotlib.pyplot.set_loglevel(*args, **kwargs)[source] Set Matplotlib's root logger and root logger handler level, creating the handler if it does not exist yet. Typically, one should call set_loglevel("info") or set_loglevel("debug") to get additional debugging information. Parameters level{"notset", "debug", "info", "warning", "error", "critical"} The log level of the handler. Notes The first time this function is called, an additional handler is attached to Matplotlib's root handler; this handler is reused every time and this function simply manipulates the logger and handler's level.
matplotlib._as_gen.matplotlib.pyplot.set_loglevel
matplotlib.pyplot.setp matplotlib.pyplot.setp(obj, *args, **kwargs)[source] Set one or more properties on an Artist, or list allowed values. Parameters objArtist or list of Artist The artist(s) whose properties are being set or queried. When setting properties, all artists are affected; when querying the allowed values, only the first instance in the sequence is queried. For example, two lines can be made thicker and red with a single call: >>> x = arange(0, 1, 0.01) >>> lines = plot(x, sin(2*pi*x), x, sin(4*pi*x)) >>> setp(lines, linewidth=2, color='r') filefile-like, default: sys.stdout Where setp writes its output when asked to list allowed values. >>> with open('output.log') as file: ... setp(line, file=file) The default, None, means sys.stdout. *args, **kwargs The properties to set. The following combinations are supported: Set the linestyle of a line to be dashed: >>> line, = plot([1, 2, 3]) >>> setp(line, linestyle='--') Set multiple properties at once: >>> setp(line, linewidth=2, color='r') List allowed values for a line's linestyle: >>> setp(line, 'linestyle') linestyle: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} List all properties that can be set, and their allowed values: >>> setp(line) agg_filter: a filter function, ... [long output listing omitted] setp also supports MATLAB style string/value pairs. For example, the following are equivalent: >>> setp(lines, 'linewidth', 2, 'color', 'r') # MATLAB style >>> setp(lines, linewidth=2, color='r') # Python style See also getp Examples using matplotlib.pyplot.setp Creating a timeline with lines, dates, and text Contouring the solution space of optimizations Creating annotated heatmaps Boxplots Pie Demo2 Labeling a pie and a donut Patheffect Demo Set and get properties TickedStroke patheffect Topographic hillshading Evans test The Lifecycle of a Plot
matplotlib._as_gen.matplotlib.pyplot.setp
matplotlib.pyplot.show matplotlib.pyplot.show(*, block=None)[source] Display all open figures. Parameters blockbool, optional Whether to wait for all figures to be closed before returning. If True block and run the GUI main loop until all figure windows are closed. If False ensure that all figure windows are displayed and return immediately. In this case, you are responsible for ensuring that the event loop is running to have responsive figures. Defaults to True in non-interactive mode and to False in interactive mode (see pyplot.isinteractive). See also ion Enable interactive mode, which shows / updates the figure after every plotting command, so that calling show() is not necessary. ioff Disable interactive mode. savefig Save the figure to an image file instead of showing it on screen. Notes Saving figures to file and showing a window at the same time If you want an image file as well as a user interface window, use pyplot.savefig before pyplot.show. At the end of (a blocking) show() the figure is closed and thus unregistered from pyplot. Calling pyplot.savefig afterwards would save a new and thus empty figure. This limitation of command order does not apply if the show is non-blocking or if you keep a reference to the figure and use Figure.savefig. Auto-show in jupyter notebooks The jupyter backends (activated via %matplotlib inline, %matplotlib notebook, or %matplotlib widget), call show() at the end of every cell by default. Thus, you usually don't have to call it explicitly there. Examples using matplotlib.pyplot.show Bar Label Demo Stacked bar chart Grouped bar chart with labels Horizontal bar chart Broken Barh CapStyle Plotting categorical variables Plotting the coherence of two signals CSD Demo Curve with error band Errorbar limit selection Errorbar subsampling EventCollection Demo Eventplot Demo Filled polygon Fill Between and Alpha Fill Betweenx Demo Hatch-filled histograms Bar chart with gradients Hat graph Discrete distribution as horizontal bar chart JoinStyle Customizing dashed line styles Lines with a ticked patheffect Linestyles Marker reference Markevery Demo prop_cycle property markevery in rcParams Plotting masked and NaN values Multicolored lines Psd Demo Scatter Custom Symbol Scatter Demo2 Scatter plot with histograms Scatter Masked Scatter plot with pie chart markers Marker examples Scatter Symbol Scatter plots with a legend Simple Plot Using span_where Spectrum Representations Stackplots and streamgraphs Stairs Demo Stem Plot Step Demo Creating a timeline with lines, dates, and text hlines and vlines Cross- and Auto-Correlation Demo Affine transform of an image Wind Barbs Barcode Contour Corner Mask Contour Demo Contour Image Contour Label Demo Contourf Demo Contourf Hatching Contourf and log color scale Contouring the solution space of optimizations BboxImage Demo Figimage Demo Creating annotated heatmaps Image antialiasing Clipping images with patches Image Demo Image Masked Image Nonuniform Blend transparency with color in 2D images Modifying the coordinate formatter Interpolations for imshow Contour plot of irregularly spaced data Layer Images Matshow Multi Image Pcolor Demo pcolormesh grids and shading pcolormesh Streamplot QuadMesh Demo Advanced quiver and quiverkey functions Quiver Simple Demo Shading example Spectrogram Demo Spy Demos Tricontour Demo Tricontour Smooth Delaunay Tricontour Smooth User Trigradient Demo Triinterp Demo Tripcolor Demo Triplot Demo Watermark image Aligning Labels Axes box aspect Axes Demo Controlling view limits using margins and sticky_edges Axes Props Axes Zoom Effect axhspan Demo Equal axis aspect ratio Axis Label Position Broken Axis Placing Colorbars Resizing axes with constrained layout Resizing axes with tight layout Different scales on the same axes Figure size in different units Figure labels: suptitle, supxlabel, supylabel Creating adjacent subplots Geographic Projections Combining two subplots using subplots and GridSpec Using Gridspec to make multi-column/row subplot layouts Nested Gridspecs Invert Axes Managing multiple figures in pyplot Secondary Axis Sharing axis limits and views Shared Axis Figure subfigures Multiple subplots Subplots spacings and margins Creating multiple subplots using plt.subplots Plots with different scales Zoom region inset axes Percentiles as horizontal bar chart Artist customization in box plots Box plots with custom fill colors Boxplots Box plot vs. violin plot comparison Boxplot drawer function Plot a confidence ellipse of a two-dimensional dataset Violin plot customization Errorbar function Different ways of specifying error bars Including upper and lower limits in error bars Creating boxes from error bars using PatchCollection Hexagonal binned plot Histograms Using histograms to plot a cumulative distribution Some features of the histogram (hist) function Demo of the histogram function's different histtype settings The histogram (hist) function with multiple data sets Producing multiple histograms side by side Time Series Histogram Violin plot basics Basic pie chart Pie Demo2 Bar of pie Nested pie charts Labeling a pie and a donut Bar chart on polar axis Polar plot Polar Legend Scatter plot on polar axis Using accented text in matplotlib Scale invariant angle label Annotating Plots Arrow Demo Auto-wrapping text Composing Custom Legends Date tick labels Custom tick formatter for time series AnnotationBbox demo Using a text as a Path Text Rotation Mode The difference between \dfrac and \frac Labeling ticks using engineering notation Annotation arrow style reference Styling text boxes Figure legend demo Configuring the font family Using a ttf font file in Matplotlib Font table Fonts demo (object-oriented style) Fonts demo (keyword arguments) Labelling subplots Legend using pre-defined labels Legend Demo Artist within an artist Convert texts to images Mathtext Mathtext Examples Math fontfamily Multiline Placing text boxes Rainbow text STIX Fonts Rendering math equations using TeX Precise text layout Controlling style of text and labels using a dictionary Default text rotation demonstration Text Rotation Relative To Line Title positioning Unicode minus Usetex Baseline Test Usetex Fonteffects Text watermark Align y-labels Annotate Transform Annotating a plot Annotation Polar Programmatically controlling subplot adjustment Infinite lines Boxplot Demo Dollar Ticks Fig Axes Customize Simple Simple axes labels Adding lines to figures plot() format string Pyplot Mathtext Pyplot Simple Pyplot Text Pyplot Three Pyplot Two Subplots Text Commands Text Layout Color Demo Color by y-value Colors in the default property cycle Colorbar Colormap reference Creating a colormap from a list of colors List of named colors Arrow guide Reference for Matplotlib artists Line, Poly and RegularPoly Collection with autoscaling Compound path Dolphins Mmh Donuts!!! Ellipse Collection Ellipse Demo Drawing fancy boxes Hatch demo Line Collection Circles, Wedges and Polygons PathPatch object Bezier Curve Scatter plot Bayesian Methods for Hackers style sheet Dark background style sheet FiveThirtyEight style sheet ggplot style sheet Grayscale style sheet Solarized Light stylesheet Style sheets reference Anchored Direction Arrow Axes Divider Demo Axes Grid Axes Grid2 HBoxDivider demo Showing RGB channels using RGBAxes Adding a colorbar to inset axes Colorbar with AxesDivider Controlling the position and size of colorbars with Inset Axes Per-row or per-column colorbars Axes with a fixed physical size Setting a fixed aspect on ImageGrid cells Inset Locator Demo Inset Locator Demo2 Make Room For Ylabel Using Axesgrid Parasite Simple Parasite Simple2 Scatter Histogram (Locatable Axes) Simple Anchored Artists Simple Axes Divider 1 Simple Axes Divider 3 Simple ImageGrid Simple ImageGrid 2 Simple Axisline4 Simple Colorbar Axis Direction axis_direction demo Axis line styles Curvilinear grid demo Demo CurveLinear Grid2 mpl_toolkits.axisartist.floating_axes features floating_axis demo Parasite Axes demo Parasite axis demo Ticklabel alignment Ticklabel direction Simple Axis Direction01 Simple Axis Direction03 Simple Axis Pad Custom spines with axisartist Simple Axisline Simple Axisline3 Anatomy of a figure Bachelor's degrees by gender Firefox Integral as the area under a curve Shaded & power normalized rendering XKCD Decay Animated histogram The Bayes update The double pendulum problem Animated image using a precomputed list of images Pausing and Resuming an Animation Rain simulation Animated 3D random walk Animated line plot Oscilloscope MATPLOTLIB UNCHAINED Close Event Mouse move and click events Data Browser Figure/Axes enter and leave events Interactive functions Image Slices Viewer Keypress event Lasso Demo Legend Picking Looking Glass Path Editor Pick Event Demo Pick Event Demo2 Poly Editor Pong Resampling Data Timers Trifinder Event Demo Viewlims Zoom Window Frontpage contour example Anchored Artists Changing colors of lines intersecting a box Manual Contour Coords Report Cross hair cursor Custom projection Customize Rc AGG filter Ribbon Box Fill Spiral Findobj Demo Building histograms using Rectangles and PolyCollections Plotting with keywords Matplotlib logo Multiprocess Packed-bubble chart Patheffect Demo Pythonic Matplotlib Set and get properties Table Demo TickedStroke patheffect transforms.offset_copy Zorder Demo Plot 2D data on 3D plot Demo of 3D bar charts Create 2D bar graphs in different planes 3D box surface plot Demonstrates plotting contour (level) curves in 3D Demonstrates plotting contour (level) curves in 3D using the extend3d option Projecting contour profiles onto a graph Filled contours Projecting filled contour onto a graph Custom hillshading in a 3D surface plot 3D errorbars Create 3D histogram of 2D data Parametric Curve Lorenz Attractor 2D and 3D Axes in same Figure Automatic Text Offsetting Draw flat objects in 3D plot Generate polygons to fill under 3D line graph 3D quiver plot 3D scatterplot 3D stem 3D plots as subplots 3D surface (colormap) 3D surface (solid color) 3D surface (checkerboard) 3D surface with polar coordinates Text annotations in 3D Triangular 3D contour plot Triangular 3D filled contour plot Triangular 3D surfaces More triangular 3D surfaces 3D voxel / volumetric plot 3D voxel plot of the numpy logo 3D voxel / volumetric plot with rgb colors 3D voxel / volumetric plot with cylindrical coordinates 3D wireframe plot 3D wireframe plots in one direction Loglog Aspect Custom scale Log Bar Log Demo Log Axis Logit Demo Exploring normalizations Scales Symlog Demo Hillshading Anscombe's quartet Hinton diagrams Left ventricle bullseye MRI MRI With EEG Radar chart (aka spider or star chart) The Sankey class Long chain of connections using Sankey Rankine power cycle SkewT-logP diagram: using transforms and custom projections Topographic hillshading Centered spines with arrows Multiple Yaxis With Spines Spine Placement Spines Custom spine bounds Dropped spines Automatically setting tick positions Centering labels between ticks Colorbar Tick Labelling Custom Ticker1 Formatting date ticks using ConciseDateFormatter Date Demo Convert Placing date ticks using recurrence rules Date Index Formatter Date Precision and Epochs Major and minor ticks The default tick formatter Tick formatters Tick locators Set default y-axis tick labels on the right Setting tick labels from a list of values Set default x-axis tick labels on the top Rotating custom tick labels Annotation with units Artist tests Bar demo with units Group barchart with units Ellipse With Units Evans test Radian ticks Inches and Centimeters Unit handling pyplot with GTK3 pyplot with GTK4 Tool Manager Anchored Box04 Annotate Explain Annotate Simple01 Annotate Simple02 Annotate Simple03 Annotate Simple04 Annotate Simple Coord01 Annotate Simple Coord02 Annotate Simple Coord03 Annotate Text Arrow Interactive Adjustment of Colormap Range Colormap Normalizations Colormap Normalizations Symlognorm Connect Simple01 Connection styles for annotations Custom box styles subplot2grid demo GridSpec demo Nested GridSpecs Simple Annotate01 Simple Legend01 Simple Legend02 Annotated Cursor Buttons Check Buttons Cursor Lasso Selector Menu Mouse Cursor Multicursor Polygon Selector Radio Buttons Thresholding an Image with RangeSlider Rectangle and ellipse selectors Slider Snapping Sliders to Discrete Values Span Selector Textbox Pyplot tutorial The Lifecycle of a Plot Customizing Matplotlib with style sheets and rcParams Artist tutorial Legend guide Styling with cycler Constrained Layout Guide Tight Layout guide Arranging multiple Axes in a Figure origin and extent in imshow Faster rendering by using blitting Path Tutorial Path effects guide Transformations Tutorial Specifying Colors Customized Colorbars Tutorial Creating Colormaps in Matplotlib Colormap Normalization Choosing Colormaps in Matplotlib Text in Matplotlib Plots Text properties and layout plot(x, y) scatter(x, y) bar(x, height) / barh(y, width) stem(x, y) step(x, y) fill_between(x, y1, y2) imshow(Z) pcolormesh(X, Y, Z) contour(X, Y, Z) contourf(X, Y, Z) barbs(X, Y, U, V) quiver(X, Y, U, V) streamplot(X, Y, U, V) hist(x) boxplot(X) errorbar(x, y, yerr, xerr) violinplot(D) eventplot(D) hist2d(x, y) hexbin(x, y, C) pie(x) tricontour(x, y, z) tricontourf(x, y, z) tripcolor(x, y, z) triplot(x, y)
matplotlib._as_gen.matplotlib.pyplot.show
matplotlib.pyplot.specgram matplotlib.pyplot.specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs)[source] Plot a spectrogram. Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the spectrum of each section is computed. The windowing function window is applied to each segment, and the amount of overlap of each segment is specified with noverlap. The spectrogram is plotted as a colormap (using imshow). Parameters x1-D array or sequence Array or sequence containing the data. Fsfloat, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. windowcallable or ndarray, default: window_hanning A function or a vector of length NFFT. To create window vectors see window_hanning, window_none, numpy.blackman, numpy.hamming, numpy.bartlett, scipy.signal, scipy.signal.get_window, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides{'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided. pad_toint, optional The number of points to which the data segment is padded when performing the FFT. This can be different from NFFT, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the n parameter in the call to fft(). The default is None, which sets pad_to equal to NFFT NFFTint, default: 256 The number of data points used in each block for the FFT. A power 2 is most efficient. This should NOT be used to get zero padding, or the scaling of the result will be incorrect; use pad_to for this instead. detrend{'none', 'mean', 'linear'} or callable, default: 'none' The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the detrend parameter is a vector, in Matplotlib it is a function. The mlab module defines detrend_none, detrend_mean, and detrend_linear, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' calls detrend_none. 'mean' calls detrend_mean. 'linear' calls detrend_linear. scale_by_freqbool, default: True Whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility. mode{'default', 'psd', 'magnitude', 'angle', 'phase'} What sort of spectrum to use. Default is 'psd', which takes the power spectral density. 'magnitude' returns the magnitude spectrum. 'angle' returns the phase spectrum without unwrapping. 'phase' returns the phase spectrum with unwrapping. noverlapint, default: 128 The number of points of overlap between blocks. scale{'default', 'linear', 'dB'} The scaling of the values in the spec. 'linear' is no scaling. 'dB' returns the values in dB scale. When mode is 'psd', this is dB power (10 * log10). Otherwise this is dB amplitude (20 * log10). 'default' is 'dB' if mode is 'psd' or 'magnitude' and 'linear' otherwise. This must be 'linear' if mode is 'angle' or 'phase'. Fcint, default: 0 The center frequency of x, which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. cmapColormap, default: rcParams["image.cmap"] (default: 'viridis') xextentNone or (xmin, xmax) The image extent along the x-axis. The default sets xmin to the left border of the first bin (spectrum column) and xmax to the right border of the last bin. Note that for noverlap>0 the width of the bins is smaller than those of the segments. dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x **kwargs Additional keyword arguments are passed on to imshow which makes the specgram image. The origin keyword argument is not supported. Returns spectrum2D array Columns are the periodograms of successive segments. freqs1-D array The frequencies corresponding to the rows in spectrum. t1-D array The times corresponding to midpoints of segments (i.e., the columns in spectrum). imAxesImage The image created by imshow containing the spectrogram. See also psd Differs in the default overlap; in returning the mean of the segment periodograms; in not returning times; and in generating a line plot instead of colormap. magnitude_spectrum A single spectrum, similar to having a single segment when mode is 'magnitude'. Plots a line instead of a colormap. angle_spectrum A single spectrum, similar to having a single segment when mode is 'angle'. Plots a line instead of a colormap. phase_spectrum A single spectrum, similar to having a single segment when mode is 'phase'. Plots a line instead of a colormap. Notes The parameters detrend and scale_by_freq do only apply when mode is set to 'psd'.
matplotlib._as_gen.matplotlib.pyplot.specgram
matplotlib.pyplot.spring matplotlib.pyplot.spring()[source] Set the colormap to 'spring'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.spring
matplotlib.pyplot.spy matplotlib.pyplot.spy(Z, precision=0, marker=None, markersize=None, aspect='equal', origin='upper', **kwargs)[source] Plot the sparsity pattern of a 2D array. This visualizes the non-zero values of the array. Two plotting styles are available: image and marker. Both are available for full arrays, but only the marker style works for scipy.sparse.spmatrix instances. Image style If marker and markersize are None, imshow is used. Any extra remaining keyword arguments are passed to this method. Marker style If Z is a scipy.sparse.spmatrix or marker or markersize are None, a Line2D object will be returned with the value of marker determining the marker type, and any remaining keyword arguments passed to plot. Parameters Z(M, N) array-like The array to be plotted. precisionfloat or 'present', default: 0 If precision is 0, any non-zero value will be plotted. Otherwise, values of \(|Z| > precision\) will be plotted. For scipy.sparse.spmatrix instances, you can also pass 'present'. In this case any value present in the array will be plotted, even if it is identically zero. aspect{'equal', 'auto', None} or float, default: 'equal' The aspect ratio of the Axes. This parameter is particularly relevant for images since it determines whether data pixels are square. This parameter is a shortcut for explicitly calling Axes.set_aspect. See there for further details. 'equal': Ensures an aspect ratio of 1. Pixels will be square. 'auto': The Axes is kept fixed and the aspect is adjusted so that the data fit in the Axes. In general, this will result in non-square pixels. None: Use rcParams["image.aspect"] (default: 'equal'). origin{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'upper') Place the [0, 0] index of the array in the upper left or lower left corner of the Axes. The convention 'upper' is typically used for matrices and images. Returns AxesImage or Line2D The return type depends on the plotting style (see above). Other Parameters **kwargs The supported additional parameters depend on the plotting style. For the image style, you can pass the following additional parameters of imshow: cmap alpha url any Artist properties (passed on to the AxesImage) For the marker style, you can pass any Line2D property except for linestyle: Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool antialiased or aa bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None color or c color dash_capstyle CapStyle or {'butt', 'projecting', 'round'} dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'} dashes sequence of floats (on/off ink in points) or (None, None) data (2, N) array or two 1D arrays drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure Figure fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'} gid str in_layout bool label object linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw float marker marker style string, Path or MarkerStyle markeredgecolor or mec color markeredgewidth or mew float markerfacecolor or mfc color markerfacecoloralt or mfcalt color markersize or ms float markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool] path_effects AbstractPathEffect picker float or callable[[Artist, Event], tuple[bool, dict]] pickradius float rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None solid_capstyle CapStyle or {'butt', 'projecting', 'round'} solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'} transform unknown url str visible bool xdata 1D array ydata 1D array zorder float
matplotlib._as_gen.matplotlib.pyplot.spy
matplotlib.pyplot.stackplot matplotlib.pyplot.stackplot(x, *args, labels=(), colors=None, baseline='zero', data=None, **kwargs)[source] Draw a stacked area plot. Parameters x(N,) array-like y(M, N) array-like The data is assumed to be unstacked. Each of the following calls is legal: stackplot(x, y) # where y has shape (M, N) stackplot(x, y1, y2, y3) # where y1, y2, y3, y4 have length N baseline{'zero', 'sym', 'wiggle', 'weighted_wiggle'} Method used to calculate the baseline: 'zero': Constant zero baseline, i.e. a simple stacked plot. 'sym': Symmetric around zero and is sometimes called 'ThemeRiver'. 'wiggle': Minimizes the sum of the squared slopes. 'weighted_wiggle': Does the same but weights to account for size of each layer. It is also called 'Streamgraph'-layout. More details can be found at http://leebyron.com/streamgraph/. labelslist of str, optional A sequence of labels to assign to each data series. If unspecified, then no labels will be applied to artists. colorslist of color, optional A sequence of colors to be cycled through and used to color the stacked areas. The sequence need not be exactly the same length as the number of provided y, in which case the colors will repeat from the beginning. If not specified, the colors from the Axes property cycle will be used. dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). **kwargs All other keyword arguments are passed to Axes.fill_between. Returns list of PolyCollection A list of PolyCollection instances, one for each element in the stacked area plot.
matplotlib._as_gen.matplotlib.pyplot.stackplot
matplotlib.pyplot.stairs matplotlib.pyplot.stairs(values, edges=None, *, orientation='vertical', baseline=0, fill=False, data=None, **kwargs)[source] A stepwise constant function as a line with bounding edges or a filled plot. Parameters valuesarray-like The step heights. edgesarray-like The edge positions, with len(edges) == len(vals) + 1, between which the curve takes on vals values. orientation{'vertical', 'horizontal'}, default: 'vertical' The direction of the steps. Vertical means that values are along the y-axis, and edges are along the x-axis. baselinefloat, array-like or None, default: 0 The bottom value of the bounding edges or when fill=True, position of lower edge. If fill is True or an array is passed to baseline, a closed path is drawn. fillbool, default: False Whether the area under the step curve should be filled. Returns StepPatchmatplotlib.patches.StepPatch Other Parameters dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). **kwargs StepPatch properties Examples using matplotlib.pyplot.stairs Stairs Demo
matplotlib._as_gen.matplotlib.pyplot.stairs
matplotlib.pyplot.stem matplotlib.pyplot.stem(*args, linefmt=None, markerfmt=None, basefmt=None, bottom=0, label=None, use_line_collection=True, orientation='vertical', data=None)[source] Create a stem plot. A stem plot draws lines perpendicular to a baseline at each location locs from the baseline to heads, and places a marker there. For vertical stem plots (the default), the locs are x positions, and the heads are y values. For horizontal stem plots, the locs are y positions, and the heads are x values. Call signature: stem([locs,] heads, linefmt=None, markerfmt=None, basefmt=None) The locs-positions are optional. The formats may be provided either as positional or as keyword-arguments. Parameters locsarray-like, default: (0, 1, ..., len(heads) - 1) For vertical stem plots, the x-positions of the stems. For horizontal stem plots, the y-positions of the stems. headsarray-like For vertical stem plots, the y-values of the stem heads. For horizontal stem plots, the x-values of the stem heads. linefmtstr, optional A string defining the color and/or linestyle of the vertical lines: Character Line Style '-' solid line '--' dashed line '-.' dash-dot line ':' dotted line Default: 'C0-', i.e. solid line with the first color of the color cycle. Note: Markers specified through this parameter (e.g. 'x') will be silently ignored (unless using use_line_collection=False). Instead, markers should be specified using markerfmt. markerfmtstr, optional A string defining the color and/or shape of the markers at the stem heads. Default: 'C0o', i.e. filled circles with the first color of the color cycle. basefmtstr, default: 'C3-' ('C2-' in classic mode) A format string defining the properties of the baseline. orientationstr, default: 'vertical' If 'vertical', will produce a plot with stems oriented vertically, otherwise the stems will be oriented horizontally. bottomfloat, default: 0 The y/x-position of the baseline (depending on orientation). labelstr, default: None The label to use for the stems in legends. use_line_collectionbool, default: True If True, store and plot the stem lines as a LineCollection instead of individual lines, which significantly increases performance. If False, defaults to the old behavior of using a list of Line2D objects. This parameter may be deprecated in the future. dataindexable object, optional If given, all parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception). Returns StemContainer The container may be treated like a tuple (markerline, stemlines, baseline) Notes See also The MATLAB function stem which inspired this method. Examples using matplotlib.pyplot.stem Stem Plot
matplotlib._as_gen.matplotlib.pyplot.stem
matplotlib.pyplot.step matplotlib.pyplot.step(x, y, *args, where='pre', data=None, **kwargs)[source] Make a step plot. Call signatures: step(x, y, [fmt], *, data=None, where='pre', **kwargs) step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs) This is just a thin wrapper around plot which changes some formatting options. Most of the concepts and parameters of plot can be used here as well. Note This method uses a standard plot with a step drawstyle: The x values are the reference positions and steps extend left/right/both directions depending on where. For the common case where you know the values and edges of the steps, use stairs instead. Parameters xarray-like 1D sequence of x positions. It is assumed, but not checked, that it is uniformly increasing. yarray-like 1D sequence of y levels. fmtstr, optional A format string, e.g. 'g' for a green line. See plot for a more detailed description. Note: While full format strings are accepted, it is recommended to only specify the color. Line styles are currently ignored (use the keyword argument linestyle instead). Markers are accepted and plotted on the given positions, however, this is a rarely needed feature for step plots. where{'pre', 'post', 'mid'}, default: 'pre' Define where the steps should be placed: 'pre': The y value is continued constantly to the left from every x position, i.e. the interval (x[i-1], x[i]] has the value y[i]. 'post': The y value is continued constantly to the right from every x position, i.e. the interval [x[i], x[i+1]) has the value y[i]. 'mid': Steps occur half-way between the x positions. dataindexable object, optional An object with labelled data. If given, provide the label names to plot in x and y. **kwargs Additional parameters are the same as those for plot. Returns list of Line2D Objects representing the plotted data. Examples using matplotlib.pyplot.step Stairs Demo Step Demo
matplotlib._as_gen.matplotlib.pyplot.step
matplotlib.pyplot.streamplot matplotlib.pyplot.streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None, zorder=None, start_points=None, maxlength=4.0, integration_direction='both', *, data=None)[source] Draw streamlines of a vector flow. Parameters x, y1D/2D arrays Evenly spaced strictly increasing arrays to make a grid. If 2D, all rows of x must be equal and all columns of y must be equal; i.e., they must be as if generated by np.meshgrid(x_1d, y_1d). u, v2D arrays x and y-velocities. The number of rows and columns must match the length of y and x, respectively. densityfloat or (float, float) Controls the closeness of streamlines. When density = 1, the domain is divided into a 30x30 grid. density linearly scales this grid. Each cell in the grid can have, at most, one traversing streamline. For different densities in each direction, use a tuple (density_x, density_y). linewidthfloat or 2D array The width of the stream lines. With a 2D array the line width can be varied across the grid. The array must have the same shape as u and v. colorcolor or 2D array The streamline color. If given an array, its values are converted to colors using cmap and norm. The array must have the same shape as u and v. cmapColormap Colormap used to plot streamlines and arrows. This is only used if color is an array. normNormalize Normalize object used to scale luminance data to 0, 1. If None, stretch (min, max) to (0, 1). This is only used if color is an array. arrowsizefloat Scaling factor for the arrow size. arrowstylestr Arrow style specification. See FancyArrowPatch. minlengthfloat Minimum length of streamline in axes coordinates. start_pointsNx2 array Coordinates of starting points for the streamlines in data coordinates (the same coordinates as the x and y arrays). zorderint The zorder of the stream lines and arrows. Artists with lower zorder values are drawn first. maxlengthfloat Maximum length of streamline in axes coordinates. integration_direction{'forward', 'backward', 'both'}, default: 'both' Integrate the streamline in forward, backward or both directions. dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, y, u, v, start_points Returns StreamplotSet Container object with attributes lines: LineCollection of streamlines arrows: PatchCollection containing FancyArrowPatch objects representing the arrows half-way along stream lines. This container will probably change in the future to allow changes to the colormap, alpha, etc. for both lines and arrows, but these changes should be backward compatible.
matplotlib._as_gen.matplotlib.pyplot.streamplot
matplotlib.pyplot.subplot matplotlib.pyplot.subplot(*args, **kwargs)[source] Add an Axes to the current figure or retrieve an existing Axes. This is a wrapper of Figure.add_subplot which provides additional behavior when working with the implicit API (see the notes section). Call signatures: subplot(nrows, ncols, index, **kwargs) subplot(pos, **kwargs) subplot(**kwargs) subplot(ax) Parameters *argsint, (int, int, index), or SubplotSpec, default: (1, 1, 1) The position of the subplot described by one of Three integers (nrows, ncols, index). The subplot will take the index position on a grid with nrows rows and ncols columns. index starts at 1 in the upper left corner and increases to the right. index can also be a two-tuple specifying the (first, last) indices (1-based, and including last) of the subplot, e.g., fig.add_subplot(3, 1, (1, 2)) makes a subplot that spans the upper 2/3 of the figure. A 3-digit integer. The digits are interpreted as if given separately as three single-digit integers, i.e. fig.add_subplot(235) is the same as fig.add_subplot(2, 3, 5). Note that this can only be used if there are no more than 9 subplots. A SubplotSpec. projection{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, optional The projection type of the subplot (Axes). str is the name of a custom projection, see projections. The default None results in a 'rectilinear' projection. polarbool, default: False If True, equivalent to projection='polar'. sharex, shareyAxes, optional Share the x or y axis with sharex and/or sharey. The axis will have the same limits, ticks, and scale as the axis of the shared axes. labelstr A label for the returned axes. Returns axes.SubplotBase, or another subclass of Axes The axes of the subplot. The returned axes base class depends on the projection used. It is Axes if rectilinear projection is used and projections.polar.PolarAxes if polar projection is used. The returned axes is then a subplot subclass of the base class. Other Parameters **kwargs This method also takes the keyword arguments for the returned axes base class; except for the figure argument. The keyword arguments for the rectilinear base class Axes can be found in the following table but there might also be other keyword arguments if another projection is used. Property Description adjustable {'box', 'datalim'} agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None anchor (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', ...} animated bool aspect {'auto', 'equal'} or float autoscale_on bool autoscalex_on bool autoscaley_on bool axes_locator Callable[[Axes, Renderer], Bbox] axisbelow bool or 'line' box_aspect float or None clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None facecolor or fc color figure Figure frame_on bool gid str in_layout bool label object navigate bool navigate_mode unknown path_effects AbstractPathEffect picker None or bool or float or callable position [left, bottom, width, height] or Bbox prop_cycle unknown rasterization_zorder float or None rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None title str transform Transform url str visible bool xbound unknown xlabel str xlim (bottom: float, top: float) xmargin float greater than -0.5 xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase xticklabels unknown xticks unknown ybound unknown ylabel str ylim (bottom: float, top: float) ymargin float greater than -0.5 yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase yticklabels unknown yticks unknown zorder float See also Figure.add_subplot pyplot.subplots pyplot.axes Figure.subplots Notes Creating a new Axes will delete any pre-existing Axes that overlaps with it beyond sharing a boundary: import matplotlib.pyplot as plt # plot a line, implicitly creating a subplot(111) plt.plot([1, 2, 3]) # now create a subplot which represents the top plot of a grid # with 2 rows and 1 column. Since this subplot will overlap the # first, the plot (and its axes) previously created, will be removed plt.subplot(211) If you do not want this behavior, use the Figure.add_subplot method or the pyplot.axes function instead. If no kwargs are passed and there exists an Axes in the location specified by args then that Axes will be returned rather than a new Axes being created. If kwargs are passed and there exists an Axes in the location specified by args, the projection type is the same, and the kwargs match with the existing Axes, then the existing Axes is returned. Otherwise a new Axes is created with the specified parameters. We save a reference to the kwargs which we use for this comparison. If any of the values in kwargs are mutable we will not detect the case where they are mutated. In these cases we suggest using Figure.add_subplot and the explicit Axes API rather than the implicit pyplot API. Examples plt.subplot(221) # equivalent but more general ax1 = plt.subplot(2, 2, 1) # add a subplot with no frame ax2 = plt.subplot(222, frameon=False) # add a polar subplot plt.subplot(223, projection='polar') # add a red subplot that shares the x-axis with ax1 plt.subplot(224, sharex=ax1, facecolor='red') # delete ax2 from the figure plt.delaxes(ax2) # add ax2 to the figure again plt.subplot(ax2) # make the first axes "current" again plt.subplot(221) Examples using matplotlib.pyplot.subplot Controlling view limits using margins and sticky_edges Resizing axes with tight layout Geographic Projections Managing multiple figures in pyplot Sharing axis limits and views Shared Axis Multiple subplots Subplots spacings and margins Bar chart on polar axis Pyplot Two Subplots Simple Colorbar MATPLOTLIB UNCHAINED Customize Rc transforms.offset_copy Pyplot tutorial Constrained Layout Guide Tight Layout guide
matplotlib._as_gen.matplotlib.pyplot.subplot
matplotlib.pyplot.subplot2grid matplotlib.pyplot.subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs)[source] Create a subplot at a specific location inside a regular grid. Parameters shape(int, int) Number of rows and of columns of the grid in which to place axis. loc(int, int) Row number and column number of the axis location within the grid. rowspanint, default: 1 Number of rows for the axis to span downwards. colspanint, default: 1 Number of columns for the axis to span to the right. figFigure, optional Figure to place the subplot in. Defaults to the current figure. **kwargs Additional keyword arguments are handed to add_subplot. Returns axes.SubplotBase, or another subclass of Axes The axes of the subplot. The returned axes base class depends on the projection used. It is Axes if rectilinear projection is used and projections.polar.PolarAxes if polar projection is used. The returned axes is then a subplot subclass of the base class. Notes The following call ax = subplot2grid((nrows, ncols), (row, col), rowspan, colspan) is identical to fig = gcf() gs = fig.add_gridspec(nrows, ncols) ax = fig.add_subplot(gs[row:row+rowspan, col:col+colspan]) Examples using matplotlib.pyplot.subplot2grid Resizing axes with tight layout subplot2grid demo Constrained Layout Guide Tight Layout guide
matplotlib._as_gen.matplotlib.pyplot.subplot2grid
matplotlib.pyplot.subplot_mosaic matplotlib.pyplot.subplot_mosaic(mosaic, *, sharex=False, sharey=False, subplot_kw=None, gridspec_kw=None, empty_sentinel='.', **fig_kw)[source] Build a layout of Axes based on ASCII art or nested lists. This is a helper function to build complex GridSpec layouts visually. Note This API is provisional and may be revised in the future based on early user feedback. Parameters mosaiclist of list of {hashable or nested} or str A visual layout of how you want your Axes to be arranged labeled as strings. For example x = [['A panel', 'A panel', 'edge'], ['C panel', '.', 'edge']] produces 4 axes: 'A panel' which is 1 row high and spans the first two columns 'edge' which is 2 rows high and is on the right edge 'C panel' which in 1 row and 1 column wide in the bottom left a blank space 1 row and 1 column wide in the bottom center Any of the entries in the layout can be a list of lists of the same form to create nested layouts. If input is a str, then it must be of the form ''' AAE C.E ''' where each character is a column and each line is a row. This only allows only single character Axes labels and does not allow nesting but is very terse. sharex, shareybool, default: False If True, the x-axis (sharex) or y-axis (sharey) will be shared among all subplots. In that case, tick label visibility and axis units behave as for subplots. If False, each subplot's x- or y-axis will be independent. subplot_kwdict, optional Dictionary with keywords passed to the Figure.add_subplot call used to create each subplot. gridspec_kwdict, optional Dictionary with keywords passed to the GridSpec constructor used to create the grid the subplots are placed on. empty_sentinelobject, optional Entry in the layout to mean "leave this space empty". Defaults to '.'. Note, if layout is a string, it is processed via inspect.cleandoc to remove leading white space, which may interfere with using white-space as the empty sentinel. **fig_kw All additional keyword arguments are passed to the pyplot.figure call. Returns figFigure The new figure dict[label, Axes] A dictionary mapping the labels to the Axes objects. The order of the axes is left-to-right and top-to-bottom of their position in the total layout. Examples using matplotlib.pyplot.subplot_mosaic Image Demo Labelling subplots Basic Usage Legend guide Arranging multiple Axes in a Figure
matplotlib._as_gen.matplotlib.pyplot.subplot_mosaic
matplotlib.pyplot.subplot_tool matplotlib.pyplot.subplot_tool(targetfig=None)[source] Launch a subplot tool window for a figure. Returns matplotlib.widgets.SubplotTool
matplotlib._as_gen.matplotlib.pyplot.subplot_tool
matplotlib.pyplot.subplots matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)[source] Create a figure and a set of subplots. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Parameters nrows, ncolsint, default: 1 Number of rows/columns of the subplot grid. sharex, shareybool or {'none', 'all', 'row', 'col'}, default: False Controls sharing of properties among x (sharex) or y (sharey) axes: True or 'all': x- or y-axis will be shared among all subplots. False or 'none': each subplot x- or y-axis will be independent. 'row': each subplot row will share an x- or y-axis. 'col': each subplot column will share an x- or y-axis. When subplots have a shared x-axis along a column, only the x tick labels of the bottom subplot are created. Similarly, when subplots have a shared y-axis along a row, only the y tick labels of the first column subplot are created. To later turn other subplots' ticklabels on, use tick_params. When subplots have a shared axis that has units, calling set_units will update each axis with the new units. squeezebool, default: True If True, extra dimensions are squeezed out from the returned array of Axes: if only one subplot is constructed (nrows=ncols=1), the resulting single Axes object is returned as a scalar. for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of Axes objects. for NxM, subplots with N>1 and M>1 are returned as a 2D array. If False, no squeezing at all is done: the returned Axes object is always a 2D array containing Axes instances, even if it ends up being 1x1. subplot_kwdict, optional Dict with keywords passed to the add_subplot call used to create each subplot. gridspec_kwdict, optional Dict with keywords passed to the GridSpec constructor used to create the grid the subplots are placed on. **fig_kw All additional keyword arguments are passed to the pyplot.figure call. Returns figFigure axaxes.Axes or array of Axes ax can be either a single Axes object or an array of Axes objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. Typical idioms for handling the return value are: # using the variable ax for single a Axes fig, ax = plt.subplots() # using the variable axs for multiple Axes fig, axs = plt.subplots(2, 2) # using tuple unpacking for multiple Axes fig, (ax1, ax2) = plt.subplots(1, 2) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) The names ax and pluralized axs are preferred over axes because for the latter it's not clear if it refers to a single Axes instance or a collection of these. See also pyplot.figure pyplot.subplot pyplot.axes Figure.subplots Figure.add_subplot Examples # First create some toy data: x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Create just a figure and only one subplot fig, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Create two subplots and unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Create four polar axes and access them through the returned array fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar")) axs[0, 0].plot(x, y) axs[1, 1].scatter(x, y) # Share a X axis with each column of subplots plt.subplots(2, 2, sharex='col') # Share a Y axis with each row of subplots plt.subplots(2, 2, sharey='row') # Share both X and Y axes with all subplots plt.subplots(2, 2, sharex='all', sharey='all') # Note that this is the same as plt.subplots(2, 2, sharex=True, sharey=True) # Create figure number 10 with a single subplot # and clears it if it already exists. fig, ax = plt.subplots(num=10, clear=True) Examples using matplotlib.pyplot.subplots Bar Label Demo Stacked bar chart Grouped bar chart with labels Horizontal bar chart Broken Barh Plotting categorical variables Plotting the coherence of two signals CSD Demo Curve with error band Errorbar subsampling Eventplot Demo Filled polygon Fill Between and Alpha Filling the area between lines Fill Betweenx Demo Hatch-filled histograms Bar chart with gradients Hat graph Discrete distribution as horizontal bar chart Customizing dashed line styles Lines with a ticked patheffect Marker reference Multicolored lines Psd Demo Scatter Custom Symbol Scatter Demo2 Scatter plot with pie chart markers Marker examples Scatter plots with a legend Simple Plot Using span_where Spectrum Representations Stackplots and streamgraphs Stairs Demo Creating a timeline with lines, dates, and text hlines and vlines Cross- and Auto-Correlation Demo Affine transform of an image Wind Barbs Contour Corner Mask Contour Demo Contour Image Contour Label Demo Contourf Demo Contourf Hatching Contourf and log color scale Contouring the solution space of optimizations BboxImage Demo Creating annotated heatmaps Image antialiasing Clipping images with patches Image Demo Image Masked Image Nonuniform Blend transparency with color in 2D images Modifying the coordinate formatter Interpolations for imshow Contour plot of irregularly spaced data Multi Image Pcolor Demo pcolormesh grids and shading pcolormesh QuadMesh Demo Advanced quiver and quiverkey functions Quiver Simple Demo Shading example Spectrogram Demo Spy Demos Tricontour Demo Tricontour Smooth Delaunay Tricontour Smooth User Trigradient Demo Triinterp Demo Tripcolor Demo Triplot Demo Watermark image Axes box aspect Axes Demo Controlling view limits using margins and sticky_edges Axes Props axhspan Demo Equal axis aspect ratio Axis Label Position Broken Axis Placing Colorbars Resizing axes with constrained layout Resizing axes with tight layout Different scales on the same axes Figure size in different units Figure labels: suptitle, supxlabel, supylabel Creating adjacent subplots Combining two subplots using subplots and GridSpec Invert Axes Secondary Axis Figure subfigures Multiple subplots Creating multiple subplots using plt.subplots Plots with different scales Zoom region inset axes Percentiles as horizontal bar chart Artist customization in box plots Box plots with custom fill colors Boxplots Box plot vs. violin plot comparison Boxplot drawer function Plot a confidence ellipse of a two-dimensional dataset Violin plot customization Errorbar function Different ways of specifying error bars Including upper and lower limits in error bars Creating boxes from error bars using PatchCollection Hexagonal binned plot Histograms Using histograms to plot a cumulative distribution Some features of the histogram (hist) function Demo of the histogram function's different histtype settings The histogram (hist) function with multiple data sets Producing multiple histograms side by side Time Series Histogram Violin plot basics Basic pie chart Pie Demo2 Bar of pie Nested pie charts Labeling a pie and a donut Polar plot Using accented text in matplotlib Scale invariant angle label Annotating Plots Composing Custom Legends Date tick labels Custom tick formatter for time series AnnotationBbox demo Using a text as a Path Labeling ticks using engineering notation Figure legend demo Configuring the font family Using a ttf font file in Matplotlib Font table Legend using pre-defined labels Legend Demo Artist within an artist Mathtext Math fontfamily Multiline Placing text boxes Rendering math equations using TeX Precise text layout Default text rotation demonstration Text Rotation Relative To Line Title positioning Text watermark Align y-labels Annotate Transform Annotating a plot Programmatically controlling subplot adjustment Boxplot Demo Dollar Ticks Color Demo Color by y-value Colors in the default property cycle Colorbar Colormap reference Creating a colormap from a list of colors List of named colors Arrow guide Reference for Matplotlib artists Line, Poly and RegularPoly Collection with autoscaling Compound path Dolphins Mmh Donuts!!! Ellipse Collection Ellipse Demo Drawing fancy boxes Hatch style reference Line Collection Circles, Wedges and Polygons PathPatch object Bezier Curve Bayesian Methods for Hackers style sheet Dark background style sheet FiveThirtyEight style sheet ggplot style sheet Grayscale style sheet Style sheets reference Anchored Direction Arrow HBoxDivider demo Showing RGB channels using RGBAxes Adding a colorbar to inset axes Colorbar with AxesDivider Controlling the position and size of colorbars with Inset Axes Inset Locator Demo Inset Locator Demo2 Scatter Histogram (Locatable Axes) Simple Anchored Artists Bachelor's degrees by gender Integral as the area under a curve Decay Animated histogram pyplot animation The Bayes update Animated image using a precomputed list of images Pausing and Resuming an Animation Animated line plot Oscilloscope Mouse move and click events Data Browser Figure/Axes enter and leave events Image Slices Viewer Keypress event Legend Picking Looking Glass Path Editor Pick Event Demo Pick Event Demo2 Poly Editor Pong Resampling Data Timers Trifinder Event Demo Viewlims Zoom Window Frontpage 3D example Frontpage contour example Frontpage histogram example Frontpage plot example Anchored Artists Changing colors of lines intersecting a box Manual Contour Coords Report Cross hair cursor Custom projection AGG filter Ribbon Box Findobj Demo Building histograms using Rectangles and PolyCollections Plotting with keywords Multiprocess Packed-bubble chart Patheffect Demo Pythonic Matplotlib Rasterization for vector graphics TickedStroke patheffect Zorder Demo Custom hillshading in a 3D surface plot 3D stem 3D surface (colormap) 3D wireframe plots in one direction Loglog Aspect Log Bar Log Demo Log Axis Logit Demo Exploring normalizations Scales Symlog Demo Hillshading Anscombe's quartet Left ventricle bullseye MRI Radar chart (aka spider or star chart) Topographic hillshading Centered spines with arrows Multiple Yaxis With Spines Spines Custom spine bounds Dropped spines Automatically setting tick positions Centering labels between ticks Colorbar Tick Labelling Custom Ticker1 Formatting date ticks using ConciseDateFormatter Date Demo Convert Placing date ticks using recurrence rules Date Index Formatter Date Precision and Epochs Major and minor ticks The default tick formatter Tick formatters Tick locators Set default y-axis tick labels on the right Setting tick labels from a list of values Set default x-axis tick labels on the top Annotation with units Artist tests Bar demo with units Group barchart with units Evans test Radian ticks Inches and Centimeters Unit handling pyplot with GTK3 pyplot with GTK4 SVG Tooltip Anchored Box04 Annotate Explain Annotate Simple01 Annotate Simple02 Annotate Simple03 Annotate Simple04 Annotate Simple Coord01 Annotate Simple Coord02 Annotate Simple Coord03 Annotate Text Arrow Interactive Adjustment of Colormap Range Colormap Normalizations Colormap Normalizations Symlognorm Connect Simple01 Connection styles for annotations Custom box styles Pgf Fonts Pgf Preamble Pgf Texsystem Simple Annotate01 Simple Legend02 Annotated Cursor Buttons Check Buttons Cursor Lasso Selector Mouse Cursor Multicursor Polygon Selector Radio Buttons Thresholding an Image with RangeSlider Slider Snapping Sliders to Discrete Values Span Selector Textbox Basic Usage The Lifecycle of a Plot Artist tutorial Legend guide Styling with cycler Constrained Layout Guide Tight Layout guide Arranging multiple Axes in a Figure Autoscaling Faster rendering by using blitting Path Tutorial Transformations Tutorial Specifying Colors Customized Colorbars Tutorial Creating Colormaps in Matplotlib Colormap Normalization Choosing Colormaps in Matplotlib Text in Matplotlib Plots Annotations plot(x, y) scatter(x, y) bar(x, height) / barh(y, width) stem(x, y) step(x, y) fill_between(x, y1, y2) imshow(Z) pcolormesh(X, Y, Z) contour(X, Y, Z) contourf(X, Y, Z) barbs(X, Y, U, V) quiver(X, Y, U, V) streamplot(X, Y, U, V) hist(x) boxplot(X) errorbar(x, y, yerr, xerr) violinplot(D) eventplot(D) hist2d(x, y) hexbin(x, y, C) pie(x) tricontour(x, y, z) tricontourf(x, y, z) tripcolor(x, y, z) triplot(x, y)
matplotlib._as_gen.matplotlib.pyplot.subplots
matplotlib.pyplot.subplots_adjust matplotlib.pyplot.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)[source] Adjust the subplot layout parameters. Unset parameters are left unmodified; initial values are given by rcParams["figure.subplot.[name]"]. Parameters leftfloat, optional The position of the left edge of the subplots, as a fraction of the figure width. rightfloat, optional The position of the right edge of the subplots, as a fraction of the figure width. bottomfloat, optional The position of the bottom edge of the subplots, as a fraction of the figure height. topfloat, optional The position of the top edge of the subplots, as a fraction of the figure height. wspacefloat, optional The width of the padding between subplots, as a fraction of the average Axes width. hspacefloat, optional The height of the padding between subplots, as a fraction of the average Axes height. Examples using matplotlib.pyplot.subplots_adjust Contour plot of irregularly spaced data Subplots spacings and margins Violin plot customization Controlling style of text and labels using a dictionary Parasite axis demo Table Demo Rotating custom tick labels Buttons Check Buttons Radio Buttons Thresholding an Image with RangeSlider Slider Snapping Sliders to Discrete Values Pyplot tutorial
matplotlib._as_gen.matplotlib.pyplot.subplots_adjust
matplotlib.pyplot.summer matplotlib.pyplot.summer()[source] Set the colormap to 'summer'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.summer
matplotlib.pyplot.suptitle matplotlib.pyplot.suptitle(t, **kwargs)[source] Add a centered suptitle to the figure. Parameters tstr The suptitle text. xfloat, default: 0.5 The x location of the text in figure coordinates. yfloat, default: 0.98 The y location of the text in figure coordinates. horizontalalignment, ha{'center', 'left', 'right'}, default: center The horizontal alignment of the text relative to (x, y). verticalalignment, va{'top', 'center', 'bottom', 'baseline'}, default: top The vertical alignment of the text relative to (x, y). fontsize, sizedefault: rcParams["figure.titlesize"] (default: 'large') The font size of the text. See Text.set_size for possible values. fontweight, weightdefault: rcParams["figure.titleweight"] (default: 'normal') The font weight of the text. See Text.set_weight for possible values. Returns text The Text instance of the suptitle. Other Parameters fontpropertiesNone or dict, optional A dict of font properties. If fontproperties is given the default values for font size and weight are taken from the FontProperties defaults. rcParams["figure.titlesize"] (default: 'large') and rcParams["figure.titleweight"] (default: 'normal') are ignored in this case. **kwargs Additional kwargs are matplotlib.text.Text properties. Examples using matplotlib.pyplot.suptitle Nested Gridspecs Pyplot tutorial Constrained Layout Guide
matplotlib._as_gen.matplotlib.pyplot.suptitle
matplotlib.pyplot.switch_backend matplotlib.pyplot.switch_backend(newbackend)[source] Close all open figures and set the Matplotlib backend. The argument is case-insensitive. Switching to an interactive backend is possible only if no event loop for another interactive backend has started. Switching to and from non-interactive backends is always possible. Parameters newbackendstr The name of the backend to use.
matplotlib._as_gen.matplotlib.pyplot.switch_backend
matplotlib.pyplot.table matplotlib.pyplot.table(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None, edges='closed', **kwargs)[source] Add a table to an Axes. At least one of cellText or cellColours must be specified. These parameters must be 2D lists, in which the outer lists define the rows and the inner list define the column values per row. Each row must have the same number of elements. The table can optionally have row and column headers, which are configured using rowLabels, rowColours, rowLoc and colLabels, colColours, colLoc respectively. For finer grained control over tables, use the Table class and add it to the axes with Axes.add_table. Parameters cellText2D list of str, optional The texts to place into the table cells. Note: Line breaks in the strings are currently not accounted for and will result in the text exceeding the cell boundaries. cellColours2D list of colors, optional The background colors of the cells. cellLoc{'left', 'center', 'right'}, default: 'right' The alignment of the text within the cells. colWidthslist of float, optional The column widths in units of the axes. If not given, all columns will have a width of 1 / ncols. rowLabelslist of str, optional The text of the row header cells. rowColourslist of colors, optional The colors of the row header cells. rowLoc{'left', 'center', 'right'}, default: 'left' The text alignment of the row header cells. colLabelslist of str, optional The text of the column header cells. colColourslist of colors, optional The colors of the column header cells. colLoc{'left', 'center', 'right'}, default: 'left' The text alignment of the column header cells. locstr, optional The position of the cell with respect to ax. This must be one of the codes. bboxBbox, optional A bounding box to draw the table into. If this is not None, this overrides loc. edgessubstring of 'BRTL' or {'open', 'closed', 'horizontal', 'vertical'} The cell edges to be drawn with a line. See also visible_edges. Returns Table The created table. Other Parameters **kwargs Table properties. Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool clip_box Bbox clip_on bool clip_path Patch or (Path, Transform) or None figure Figure fontsize float gid str in_layout bool label object path_effects AbstractPathEffect picker None or bool or float or callable rasterized bool sketch_params (scale: float, length: float, randomness: float) snap bool or None transform Transform url str visible bool zorder float Examples using matplotlib.pyplot.table Table Demo
matplotlib._as_gen.matplotlib.pyplot.table
matplotlib.pyplot.text matplotlib.pyplot.text(x, y, s, fontdict=None, **kwargs)[source] Add text to the Axes. Add the text s to the Axes at location x, y in data coordinates. Parameters x, yfloat The position to place the text. By default, this is in data coordinates. The coordinate system can be changed using the transform parameter. sstr The text. fontdictdict, default: None A dictionary to override the default text properties. If fontdict is None, the defaults are determined by rcParams. Returns Text The created Text instance. Other Parameters **kwargsText properties. Other miscellaneous text parameters. Property Description agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha scalar or None animated bool backgroundcolor color bbox dict with properties for patches.FancyBboxPatch clip_box unknown clip_on unknown clip_path unknown color or c color figure Figure fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'} fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'} fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'} fontstyle or style {'normal', 'italic', 'oblique'} fontvariant or variant {'normal', 'small-caps'} fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'} gid str horizontalalignment or ha {'center', 'right', 'left'} in_layout bool label object linespacing float (multiple of font size) math_fontfamily str multialignment or ma {'left', 'right', 'center'} parse_math bool path_effects AbstractPathEffect picker None or bool or float or callable position (float, float) rasterized bool rotation float or {'vertical', 'horizontal'} rotation_mode {None, 'default', 'anchor'} sketch_params (scale: float, length: float, randomness: float) snap bool or None text object transform Transform transform_rotates_text bool url str usetex bool or None verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'} visible bool wrap bool x float y float zorder float Examples Individual keyword arguments can be used to override any given parameter: >>> text(x, y, s, fontsize=12) The default transform specifies that text is in data coords, alternatively, you can specify text in axis coords ((0, 0) is lower-left and (1, 1) is upper-right). The example below places text in the center of the Axes: >>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center', ... verticalalignment='center', transform=ax.transAxes) You can put a rectangular box around the text instance (e.g., to set a background color) by using the keyword bbox. bbox is a dictionary of Rectangle properties. For example: >>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5)) Examples using matplotlib.pyplot.text Figure size in different units Auto-wrapping text Styling text boxes Controlling style of text and labels using a dictionary Pyplot Mathtext Pyplot Text Reference for Matplotlib artists Close Event transforms.offset_copy Pyplot tutorial Path effects guide Text properties and layout Annotations
matplotlib._as_gen.matplotlib.pyplot.text
matplotlib.pyplot.thetagrids matplotlib.pyplot.thetagrids(angles=None, labels=None, fmt=None, **kwargs)[source] Get or set the theta gridlines on the current polar plot. Call signatures: lines, labels = thetagrids() lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs) When called with no arguments, thetagrids simply returns the tuple (lines, labels). When called with arguments, the labels will appear at the specified angles. Parameters anglestuple with floats, degrees The angles of the theta gridlines. labelstuple with strings or None The labels to use at each radial gridline. The projections.polar.ThetaFormatter will be used if None. fmtstr or None Format string used in matplotlib.ticker.FormatStrFormatter. For example '%f'. Note that the angle in radians will be used. Returns lineslist of lines.Line2D The theta gridlines. labelslist of text.Text The tick labels. Other Parameters **kwargs kwargs are optional Text properties for the labels. See also pyplot.rgrids projections.polar.PolarAxes.set_thetagrids Axis.get_gridlines Axis.get_ticklabels Examples # set the locations of the angular gridlines lines, labels = thetagrids(range(45, 360, 90)) # set the locations and labels of the angular gridlines lines, labels = thetagrids(range(45, 360, 90), ('NE', 'NW', 'SW', 'SE'))
matplotlib._as_gen.matplotlib.pyplot.thetagrids
matplotlib.pyplot.tick_params matplotlib.pyplot.tick_params(axis='both', **kwargs)[source] Change the appearance of ticks, tick labels, and gridlines. Tick properties that are not explicitly set using the keyword arguments remain unchanged unless reset is True. Parameters axis{'x', 'y', 'both'}, default: 'both' The axis to which the parameters are applied. which{'major', 'minor', 'both'}, default: 'major' The group of ticks to which the parameters are applied. resetbool, default: False Whether to reset the ticks to defaults before updating them. Other Parameters direction{'in', 'out', 'inout'} Puts ticks inside the axes, outside the axes, or both. lengthfloat Tick length in points. widthfloat Tick width in points. colorcolor Tick color. padfloat Distance in points between tick and label. labelsizefloat or str Tick label font size in points or as a string (e.g., 'large'). labelcolorcolor Tick label color. colorscolor Tick color and label color. zorderfloat Tick and label zorder. bottom, top, left, rightbool Whether to draw the respective ticks. labelbottom, labeltop, labelleft, labelrightbool Whether to draw the respective tick labels. labelrotationfloat Tick label rotation grid_colorcolor Gridline color. grid_alphafloat Transparency of gridlines: 0 (transparent) to 1 (opaque). grid_linewidthfloat Width of gridlines in points. grid_linestylestr Any valid Line2D line style spec. Examples ax.tick_params(direction='out', length=6, width=2, colors='r', grid_color='r', grid_alpha=0.5) This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points. Tick labels will also be red. Gridlines will be red and translucent. Examples using matplotlib.pyplot.tick_params Shared Axis
matplotlib._as_gen.matplotlib.pyplot.tick_params
matplotlib.pyplot.ticklabel_format matplotlib.pyplot.ticklabel_format(*, axis='both', style='', scilimits=None, useOffset=None, useLocale=None, useMathText=None)[source] Configure the ScalarFormatter used by default for linear axes. If a parameter is not set, the corresponding property of the formatter is left unchanged. Parameters axis{'x', 'y', 'both'}, default: 'both' The axis to configure. Only major ticks are affected. style{'sci', 'scientific', 'plain'} Whether to use scientific notation. The formatter default is to use scientific notation. scilimitspair of ints (m, n) Scientific notation is used only for numbers outside the range 10m to 10n (and only if the formatter is configured to use scientific notation at all). Use (0, 0) to include all numbers. Use (m, m) where m != 0 to fix the order of magnitude to 10m. The formatter default is rcParams["axes.formatter.limits"] (default: [-5, 6]). useOffsetbool or float If True, the offset is calculated as needed. If False, no offset is used. If a numeric value, it sets the offset. The formatter default is rcParams["axes.formatter.useoffset"] (default: True). useLocalebool Whether to format the number using the current locale or using the C (English) locale. This affects e.g. the decimal separator. The formatter default is rcParams["axes.formatter.use_locale"] (default: False). useMathTextbool Render the offset and scientific notation in mathtext. The formatter default is rcParams["axes.formatter.use_mathtext"] (default: False). Raises AttributeError If the current formatter is not a ScalarFormatter.
matplotlib._as_gen.matplotlib.pyplot.ticklabel_format
matplotlib.pyplot.tight_layout matplotlib.pyplot.tight_layout(*, pad=1.08, h_pad=None, w_pad=None, rect=None)[source] Adjust the padding between and around subplots. To exclude an artist on the Axes from the bounding box calculation that determines the subplot parameters (i.e. legend, or annotation), set a.set_in_layout(False) for that artist. Parameters padfloat, default: 1.08 Padding between the figure edge and the edges of subplots, as a fraction of the font size. h_pad, w_padfloat, default: pad Padding (height/width) between edges of adjacent subplots, as a fraction of the font size. recttuple (left, bottom, right, top), default: (0, 0, 1, 1) A rectangle in normalized figure coordinates into which the whole subplots area (including labels) will fit. See also Figure.set_tight_layout pyplot.tight_layout Examples using matplotlib.pyplot.tight_layout Linestyles Marker examples Creating annotated heatmaps Interpolations for imshow Streamplot Resizing axes with tight layout Labeling ticks using engineering notation Figure legend demo Reference for Matplotlib artists Zorder Demo 3D wireframe plots in one direction MRI With EEG Tick locators Tight Layout guide
matplotlib._as_gen.matplotlib.pyplot.tight_layout
matplotlib.pyplot.title matplotlib.pyplot.title(label, fontdict=None, loc=None, pad=None, *, y=None, **kwargs)[source] Set a title for the Axes. Set one of the three available Axes titles. The available titles are positioned above the Axes in the center, flush with the left edge, and flush with the right edge. Parameters labelstr Text to use for the title fontdictdict A dictionary controlling the appearance of the title text, the default fontdict is: {'fontsize': rcParams['axes.titlesize'], 'fontweight': rcParams['axes.titleweight'], 'color': rcParams['axes.titlecolor'], 'verticalalignment': 'baseline', 'horizontalalignment': loc} loc{'center', 'left', 'right'}, default: rcParams["axes.titlelocation"] (default: 'center') Which title to set. yfloat, default: rcParams["axes.titley"] (default: None) Vertical Axes loation for the title (1.0 is the top). If None (the default), y is determined automatically to avoid decorators on the Axes. padfloat, default: rcParams["axes.titlepad"] (default: 6.0) The offset of the title from the top of the Axes, in points. Returns Text The matplotlib text instance representing the title Other Parameters **kwargsText properties Other keyword arguments are text properties, see Text for a list of valid text properties. Examples using matplotlib.pyplot.title prop_cycle property markevery in rcParams Plotting masked and NaN values Stairs Demo Step Demo Geographic Projections Multiple subplots Controlling style of text and labels using a dictionary Title positioning Pyplot Mathtext Pyplot Text Solarized Light stylesheet Interactive functions Findobj Demo Multipage PDF Set and get properties Table Demo Zorder Demo Custom scale The Sankey class SVG Histogram Basic Usage Pyplot tutorial
matplotlib._as_gen.matplotlib.pyplot.title
matplotlib.pyplot.tricontour matplotlib.pyplot.tricontour(*args, **kwargs)[source] Draw contour lines on an unstructured triangular grid. The triangulation can be specified in one of two ways; either tricontour(triangulation, ...) where triangulation is a Triangulation object, or tricontour(x, y, ...) tricontour(x, y, triangles, ...) tricontour(x, y, triangles=triangles, ...) tricontour(x, y, mask=mask, ...) tricontour(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See that class' docstring for an explanation of these cases. The remaining arguments may be: tricontour(..., Z) where Z is the array of values to contour, one per point in the triangulation. The level values are chosen automatically. tricontour(..., Z, levels) contour up to levels+1 automatically chosen contour levels (levels intervals). tricontour(..., Z, levels) draw contour lines at the values specified in sequence levels, which must be in increasing order. tricontour(Z, **kwargs) Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details. Parameters triangulationTriangulation, optional The unstructured triangular grid. If specified, then x, y, triangles, and mask are not accepted. x, yarray-like, optional The coordinates of the values in Z. triangles(ntri, 3) array-like of int, optional For each triangle, the indices of the three points that make up the triangle, ordered in an anticlockwise manner. If not specified, the Delaunay triangulation is calculated. mask(ntri,) array-like of bool, optional Which triangles are masked out. Z2D array-like The height values over which the contour is drawn. levelsint or array-like, optional Determines the number and positions of the contour lines / regions. If an int n, use MaxNLocator, which tries to automatically choose no more than n+1 "nice" contour levels between vmin and vmax. If array-like, draw contour lines at the specified levels. The values must be in increasing order. Returns TriContourSet Other Parameters colorscolor string or sequence of colors, optional The colors of the levels, i.e., the contour lines. The sequence is cycled for the levels in ascending order. If the sequence is shorter than the number of levels, it's repeated. As a shortcut, single color strings may be used in place of one-element lists, i.e. 'red' instead of ['red'] to color all levels with the same color. This shortcut does only work for color strings, not for other ways of specifying colors. By default (value None), the colormap specified by cmap will be used. alphafloat, default: 1 The alpha blending value, between 0 (transparent) and 1 (opaque). cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') A Colormap instance or registered colormap name. The colormap maps the level values to colors. If both colors and cmap are given, an error is raised. normNormalize, optional If a colormap is used, the Normalize instance scales the level values to the canonical colormap range [0, 1] for mapping to colors. If not given, the default linear scaling is used. vmin, vmaxfloat, optional If not None, either or both of these values will be supplied to the Normalize instance, overriding the default color scaling based on levels. origin{None, 'upper', 'lower', 'image'}, default: None Determines the orientation and exact position of Z by specifying the position of Z[0, 0]. This is only relevant, if X, Y are not given. None: Z[0, 0] is at X=0, Y=0 in the lower left corner. 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner. 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner. 'image': Use the value from rcParams["image.origin"] (default: 'upper'). extent(x0, x1, y0, y1), optional If origin is not None, then extent is interpreted as in imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position of Z[0, 0], and (x1, y1) is the position of Z[-1, -1]. This argument is ignored if X and Y are specified in the call to contour. locatorticker.Locator subclass, optional The locator is used to determine the contour levels if they are not given explicitly via levels. Defaults to MaxNLocator. extend{'neither', 'both', 'min', 'max'}, default: 'neither' Determines the tricontour-coloring of values that are outside the levels range. If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both', color the values below, above or below and above the levels range. Values below min(levels) and above max(levels) are mapped to the under/over values of the Colormap. Note that most colormaps do not have dedicated colors for these by default, so that the over and under values are the edge values of the colormap. You may want to set these values explicitly using Colormap.set_under and Colormap.set_over. Note An existing TriContourSet does not get notified if properties of its colormap are changed. Therefore, an explicit call to ContourSet.changed() is needed after modifying the colormap. The explicit call can be left out, if a colorbar is assigned to the TriContourSet because it internally calls ContourSet.changed(). xunits, yunitsregistered units, optional Override axis units by specifying an instance of a matplotlib.units.ConversionInterface. antialiasedbool, optional Enable antialiasing, overriding the defaults. For filled contours, the default is True. For line contours, it is taken from rcParams["lines.antialiased"] (default: True). linewidthsfloat or array-like, default: rcParams["contour.linewidth"] (default: None) The line width of the contour lines. If a number, all levels will be plotted with this linewidth. If a sequence, the levels in ascending order will be plotted with the linewidths in the order specified. If None, this falls back to rcParams["lines.linewidth"] (default: 1.5). linestyles{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional If linestyles is None, the default is 'solid' unless the lines are monochrome. In that case, negative contours will take their linestyle from rcParams["contour.negative_linestyle"] (default: 'dashed') setting. linestyles can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary.
matplotlib._as_gen.matplotlib.pyplot.tricontour
matplotlib.pyplot.tricontourf matplotlib.pyplot.tricontourf(*args, **kwargs)[source] Draw contour regions on an unstructured triangular grid. The triangulation can be specified in one of two ways; either tricontourf(triangulation, ...) where triangulation is a Triangulation object, or tricontourf(x, y, ...) tricontourf(x, y, triangles, ...) tricontourf(x, y, triangles=triangles, ...) tricontourf(x, y, mask=mask, ...) tricontourf(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See that class' docstring for an explanation of these cases. The remaining arguments may be: tricontourf(..., Z) where Z is the array of values to contour, one per point in the triangulation. The level values are chosen automatically. tricontourf(..., Z, levels) contour up to levels+1 automatically chosen contour levels (levels intervals). tricontourf(..., Z, levels) draw contour regions at the values specified in sequence levels, which must be in increasing order. tricontourf(Z, **kwargs) Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details. Parameters triangulationTriangulation, optional The unstructured triangular grid. If specified, then x, y, triangles, and mask are not accepted. x, yarray-like, optional The coordinates of the values in Z. triangles(ntri, 3) array-like of int, optional For each triangle, the indices of the three points that make up the triangle, ordered in an anticlockwise manner. If not specified, the Delaunay triangulation is calculated. mask(ntri,) array-like of bool, optional Which triangles are masked out. Z2D array-like The height values over which the contour is drawn. levelsint or array-like, optional Determines the number and positions of the contour lines / regions. If an int n, use MaxNLocator, which tries to automatically choose no more than n+1 "nice" contour levels between vmin and vmax. If array-like, draw contour lines at the specified levels. The values must be in increasing order. Returns TriContourSet Other Parameters colorscolor string or sequence of colors, optional The colors of the levels, i.e., the contour regions. The sequence is cycled for the levels in ascending order. If the sequence is shorter than the number of levels, it's repeated. As a shortcut, single color strings may be used in place of one-element lists, i.e. 'red' instead of ['red'] to color all levels with the same color. This shortcut does only work for color strings, not for other ways of specifying colors. By default (value None), the colormap specified by cmap will be used. alphafloat, default: 1 The alpha blending value, between 0 (transparent) and 1 (opaque). cmapstr or Colormap, default: rcParams["image.cmap"] (default: 'viridis') A Colormap instance or registered colormap name. The colormap maps the level values to colors. If both colors and cmap are given, an error is raised. normNormalize, optional If a colormap is used, the Normalize instance scales the level values to the canonical colormap range [0, 1] for mapping to colors. If not given, the default linear scaling is used. vmin, vmaxfloat, optional If not None, either or both of these values will be supplied to the Normalize instance, overriding the default color scaling based on levels. origin{None, 'upper', 'lower', 'image'}, default: None Determines the orientation and exact position of Z by specifying the position of Z[0, 0]. This is only relevant, if X, Y are not given. None: Z[0, 0] is at X=0, Y=0 in the lower left corner. 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner. 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner. 'image': Use the value from rcParams["image.origin"] (default: 'upper'). extent(x0, x1, y0, y1), optional If origin is not None, then extent is interpreted as in imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position of Z[0, 0], and (x1, y1) is the position of Z[-1, -1]. This argument is ignored if X and Y are specified in the call to contour. locatorticker.Locator subclass, optional The locator is used to determine the contour levels if they are not given explicitly via levels. Defaults to MaxNLocator. extend{'neither', 'both', 'min', 'max'}, default: 'neither' Determines the tricontourf-coloring of values that are outside the levels range. If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both', color the values below, above or below and above the levels range. Values below min(levels) and above max(levels) are mapped to the under/over values of the Colormap. Note that most colormaps do not have dedicated colors for these by default, so that the over and under values are the edge values of the colormap. You may want to set these values explicitly using Colormap.set_under and Colormap.set_over. Note An existing TriContourSet does not get notified if properties of its colormap are changed. Therefore, an explicit call to ContourSet.changed() is needed after modifying the colormap. The explicit call can be left out, if a colorbar is assigned to the TriContourSet because it internally calls ContourSet.changed(). xunits, yunitsregistered units, optional Override axis units by specifying an instance of a matplotlib.units.ConversionInterface. antialiasedbool, optional Enable antialiasing, overriding the defaults. For filled contours, the default is True. For line contours, it is taken from rcParams["lines.antialiased"] (default: True). hatcheslist[str], optional A list of cross hatch patterns to use on the filled areas. If None, no hatching will be added to the contour. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Notes tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled region is: z1 < Z <= z2 except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).
matplotlib._as_gen.matplotlib.pyplot.tricontourf
matplotlib.pyplot.tripcolor matplotlib.pyplot.tripcolor(*args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shading='flat', facecolors=None, **kwargs)[source] Create a pseudocolor plot of an unstructured triangular grid. The triangulation can be specified in one of two ways; either: tripcolor(triangulation, ...) where triangulation is a Triangulation object, or tripcolor(x, y, ...) tripcolor(x, y, triangles, ...) tripcolor(x, y, triangles=triangles, ...) tripcolor(x, y, mask=mask, ...) tripcolor(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See Triangulation for a explanation of these possibilities. The next argument must be C, the array of color values, either one per point in the triangulation if color values are defined at points, or one per triangle in the triangulation if color values are defined at triangles. If there are the same number of points and triangles in the triangulation it is assumed that color values are defined at points; to force the use of color values at triangles use the kwarg facecolors=C instead of just C. shading may be 'flat' (the default) or 'gouraud'. If shading is 'flat' and C values are defined at points, the color values used for each triangle are from the mean C of the triangle's three points. If shading is 'gouraud' then color values must be defined at points. The remaining kwargs are the same as for pcolor.
matplotlib._as_gen.matplotlib.pyplot.tripcolor
matplotlib.pyplot.triplot matplotlib.pyplot.triplot(*args, **kwargs)[source] Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either: triplot(triangulation, ...) where triangulation is a Triangulation object, or triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See Triangulation for a explanation of these possibilities. The remaining args and kwargs are the same as for plot. Returns linesLine2D The drawn triangles edges. markersLine2D The drawn marker nodes.
matplotlib._as_gen.matplotlib.pyplot.triplot
matplotlib.pyplot.twinx matplotlib.pyplot.twinx(ax=None)[source] Make and return a second axes that shares the x-axis. The new axes will overlay ax (or the current axes if ax is None), and its ticks will be on the right. Examples Plots with different scales
matplotlib._as_gen.matplotlib.pyplot.twinx
matplotlib.pyplot.twiny matplotlib.pyplot.twiny(ax=None)[source] Make and return a second axes that shares the y-axis. The new axes will overlay ax (or the current axes if ax is None), and its ticks will be on the top. Examples Plots with different scales
matplotlib._as_gen.matplotlib.pyplot.twiny
matplotlib.pyplot.uninstall_repl_displayhook matplotlib.pyplot.uninstall_repl_displayhook()[source] Uninstall the Matplotlib display hook. Warning Need IPython >= 2 for this to work. For IPython < 2 will raise a NotImplementedError Warning If you are using vanilla python and have installed another display hook, this will reset sys.displayhook to what ever function was there when Matplotlib installed its displayhook, possibly discarding your changes.
matplotlib._as_gen.matplotlib.pyplot.uninstall_repl_displayhook
matplotlib.pyplot.violinplot matplotlib.pyplot.violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False, showextrema=True, showmedians=False, quantiles=None, points=100, bw_method=None, *, data=None)[source] Make a violin plot. Make a violin plot for each column of dataset or each vector in sequence dataset. Each filled area extends to represent the entire data range, with optional lines at the mean, the median, the minimum, the maximum, and user-specified quantiles. Parameters datasetArray or a sequence of vectors. The input data. positionsarray-like, default: [1, 2, ..., n] The positions of the violins. The ticks and limits are automatically set to match the positions. vertbool, default: True. If true, creates a vertical violin plot. Otherwise, creates a horizontal violin plot. widthsarray-like, default: 0.5 Either a scalar or a vector that sets the maximal width of each violin. The default is 0.5, which uses about half of the available horizontal space. showmeansbool, default: False If True, will toggle rendering of the means. showextremabool, default: True If True, will toggle rendering of the extrema. showmediansbool, default: False If True, will toggle rendering of the medians. quantilesarray-like, default: None If not None, set a list of floats in interval [0, 1] for each violin, which stands for the quantiles that will be rendered for that violin. pointsint, default: 100 Defines the number of points to evaluate each of the gaussian kernel density estimations at. bw_methodstr, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as kde.factor. If a callable, it should take a GaussianKDE instance as its only parameter and return a scalar. If None (default), 'scott' is used. dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): dataset Returns dict A dictionary mapping each component of the violinplot to a list of the corresponding collection instances created. The dictionary has the following keys: bodies: A list of the PolyCollection instances containing the filled area of each violin. cmeans: A LineCollection instance that marks the mean values of each of the violin's distribution. cmins: A LineCollection instance that marks the bottom of each violin's distribution. cmaxes: A LineCollection instance that marks the top of each violin's distribution. cbars: A LineCollection instance that marks the centers of each violin's distribution. cmedians: A LineCollection instance that marks the median values of each of the violin's distribution. cquantiles: A LineCollection instance created to identify the quantile values of each of the violin's distribution.
matplotlib._as_gen.matplotlib.pyplot.violinplot
matplotlib.pyplot.viridis matplotlib.pyplot.viridis()[source] Set the colormap to 'viridis'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.viridis
matplotlib.pyplot.vlines matplotlib.pyplot.vlines(x, ymin, ymax, colors=None, linestyles='solid', label='', *, data=None, **kwargs)[source] Plot vertical lines at each x from ymin to ymax. Parameters xfloat or array-like x-indexes where to plot the lines. ymin, ymaxfloat or array-like Respective beginning and end of each line. If scalars are provided, all lines will have same length. colorslist of colors, default: rcParams["lines.color"] (default: 'C0') linestyles{'solid', 'dashed', 'dashdot', 'dotted'}, optional labelstr, default: '' Returns LineCollection Other Parameters dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, ymin, ymax, colors **kwargsLineCollection properties. See also hlines horizontal lines axvline vertical line across the Axes
matplotlib._as_gen.matplotlib.pyplot.vlines
matplotlib.pyplot.waitforbuttonpress matplotlib.pyplot.waitforbuttonpress(timeout=- 1)[source] Blocking call to interact with the figure. Wait for user input and return True if a key was pressed, False if a mouse button was pressed and None if no input was given within timeout seconds. Negative values deactivate timeout. Examples using matplotlib.pyplot.waitforbuttonpress Interactive functions
matplotlib._as_gen.matplotlib.pyplot.waitforbuttonpress
matplotlib.pyplot.winter matplotlib.pyplot.winter()[source] Set the colormap to 'winter'. This changes the default colormap as well as the colormap of the current image if there is one. See help(colormaps) for more information.
matplotlib._as_gen.matplotlib.pyplot.winter
matplotlib.pyplot.xcorr matplotlib.pyplot.xcorr(x, y, normed=True, detrend=<function detrend_none>, usevlines=True, maxlags=10, *, data=None, **kwargs)[source] Plot the cross correlation between x and y. The correlation with lag k is defined as \(\sum_n x[n+k] \cdot y^*[n]\), where \(y^*\) is the complex conjugate of \(y\). Parameters x, yarray-like of length n detrendcallable, default: mlab.detrend_none (no detrending) A detrending function applied to x and y. It must have the signature detrend(x: np.ndarray) -> np.ndarray normedbool, default: True If True, input vectors are normalised to unit length. usevlinesbool, default: True Determines the plot style. If True, vertical lines are plotted from 0 to the xcorr value using Axes.vlines. Additionally, a horizontal line is plotted at y=0 using Axes.axhline. If False, markers are plotted at the xcorr values using Axes.plot. maxlagsint, default: 10 Number of lags to show. If None, will return all 2 * len(x) - 1 lags. Returns lagsarray (length 2*maxlags+1) The lag vector. carray (length 2*maxlags+1) The auto correlation vector. lineLineCollection or Line2D Artist added to the Axes of the correlation: LineCollection if usevlines is True. Line2D if usevlines is False. bLine2D or None Horizontal line at 0 if usevlines is True None usevlines is False. Other Parameters linestyleLine2D property, optional The linestyle for plotting the data points. Only used if usevlines is False. markerstr, default: 'o' The marker for plotting the data points. Only used if usevlines is False. dataindexable object, optional If given, the following parameters also accept a string s, which is interpreted as data[s] (unless this raises an exception): x, y **kwargs Additional parameters are passed to Axes.vlines and Axes.axhline if usevlines is True; otherwise they are passed to Axes.plot. Notes The cross correlation is performed with numpy.correlate with mode = "full".
matplotlib._as_gen.matplotlib.pyplot.xcorr
matplotlib.pyplot.xkcd matplotlib.pyplot.xkcd(scale=1, length=100, randomness=2)[source] Turn on xkcd sketch-style drawing mode. This will only have effect on things drawn after this function is called. For best results, the "Humor Sans" font should be installed: it is not included with Matplotlib. Parameters scalefloat, optional The amplitude of the wiggle perpendicular to the source line. lengthfloat, optional The length of the wiggle along the line. randomnessfloat, optional The scale factor by which the length is shrunken or expanded. Notes This function works by a number of rcParams, so it will probably override others you have set before. If you want the effects of this function to be temporary, it can be used as a context manager, for example: with plt.xkcd(): # This figure will be in XKCD-style fig1 = plt.figure() # ... # This figure will be in regular style fig2 = plt.figure() Examples using matplotlib.pyplot.xkcd XKCD
matplotlib._as_gen.matplotlib.pyplot.xkcd
matplotlib.pyplot.xlabel matplotlib.pyplot.xlabel(xlabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)[source] Set the label for the x-axis. Parameters xlabelstr The label text. labelpadfloat, default: rcParams["axes.labelpad"] (default: 4.0) Spacing in points from the Axes bounding box including ticks and tick labels. If None, the previous value is left as is. loc{'left', 'center', 'right'}, default: rcParams["xaxis.labellocation"] (default: 'center') The label position. This is a high-level alternative for passing parameters x and horizontalalignment. Other Parameters **kwargsText properties Text properties control the appearance of the label. See also text Documents the properties supported by Text. Examples using matplotlib.pyplot.xlabel Scatter Symbol Multiple subplots Controlling style of text and labels using a dictionary Infinite lines Pyplot Mathtext Pyplot Text Solarized Light stylesheet Findobj Demo Custom scale Basic Usage Pyplot tutorial
matplotlib._as_gen.matplotlib.pyplot.xlabel