doc_content
stringlengths 1
386k
| doc_id
stringlengths 5
188
|
---|---|
transformed(transform)[source]
Construct a Bbox by statically transforming this one by transform.
|
matplotlib.transformations#matplotlib.transforms.BboxBase.transformed
|
translated(tx, ty)[source]
Construct a Bbox by translating this one by tx and ty.
|
matplotlib.transformations#matplotlib.transforms.BboxBase.translated
|
staticunion(bboxes)[source]
Return a Bbox that contains all of the given bboxes.
|
matplotlib.transformations#matplotlib.transforms.BboxBase.union
|
classmatplotlib.transforms.BboxTransform(boxin, boxout, **kwargs)[source]
Bases: matplotlib.transforms.Affine2DBase BboxTransform linearly transforms points from one Bbox to another. Create a new BboxTransform that linearly transforms points from boxin to boxout. __init__(boxin, boxout, **kwargs)[source]
Create a new BboxTransform that linearly transforms points from boxin to boxout.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
get_matrix()[source]
Get the matrix for the affine part of this transform.
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BboxTransform
|
__init__(boxin, boxout, **kwargs)[source]
Create a new BboxTransform that linearly transforms points from boxin to boxout.
|
matplotlib.transformations#matplotlib.transforms.BboxTransform.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.BboxTransform.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.BboxTransform.__str__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BboxTransform.get_matrix
|
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BboxTransform.is_separable
|
classmatplotlib.transforms.BboxTransformFrom(boxin, **kwargs)[source]
Bases: matplotlib.transforms.Affine2DBase BboxTransformFrom linearly transforms points from a given Bbox to the unit bounding box. Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True. __init__(boxin, **kwargs)[source]
Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
get_matrix()[source]
Get the matrix for the affine part of this transform.
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformFrom
|
__init__(boxin, **kwargs)[source]
Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformFrom.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.BboxTransformFrom.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.BboxTransformFrom.__str__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformFrom.get_matrix
|
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformFrom.is_separable
|
classmatplotlib.transforms.BboxTransformTo(boxout, **kwargs)[source]
Bases: matplotlib.transforms.Affine2DBase BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to a given Bbox. Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout. __init__(boxout, **kwargs)[source]
Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
get_matrix()[source]
Get the matrix for the affine part of this transform.
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformTo
|
__init__(boxout, **kwargs)[source]
Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformTo.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.BboxTransformTo.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.BboxTransformTo.__str__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformTo.get_matrix
|
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformTo.is_separable
|
classmatplotlib.transforms.BboxTransformToMaxOnly(boxout, **kwargs)[source]
Bases: matplotlib.transforms.BboxTransformTo BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to a given Bbox with a fixed upper left of (0, 0). Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout. __module__='matplotlib.transforms'
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformToMaxOnly
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.BboxTransformToMaxOnly.__module__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BboxTransformToMaxOnly.get_matrix
|
matplotlib.transforms.blended_transform_factory(x_transform, y_transform)[source]
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. A faster version of the blended transform is returned for the case where both child transforms are affine.
|
matplotlib.transformations#matplotlib.transforms.blended_transform_factory
|
classmatplotlib.transforms.BlendedAffine2D(x_transform, y_transform, **kwargs)[source]
Bases: matplotlib.transforms._BlendedMixin, matplotlib.transforms.Affine2DBase A "blended" transform uses one transform for the x-direction, and another transform for the y-direction. This version is an optimization for the case where both child transforms are of type Affine2DBase. Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. Both x_transform and y_transform must be 2D affine transforms. You will generally not call this constructor directly but use the blended_transform_factory function instead, which can determine automatically which kind of blended transform to create. __init__(x_transform, y_transform, **kwargs)[source]
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. Both x_transform and y_transform must be 2D affine transforms. You will generally not call this constructor directly but use the blended_transform_factory function instead, which can determine automatically which kind of blended transform to create.
__module__='matplotlib.transforms'
get_matrix()[source]
Get the matrix for the affine part of this transform.
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BlendedAffine2D
|
__init__(x_transform, y_transform, **kwargs)[source]
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. Both x_transform and y_transform must be 2D affine transforms. You will generally not call this constructor directly but use the blended_transform_factory function instead, which can determine automatically which kind of blended transform to create.
|
matplotlib.transformations#matplotlib.transforms.BlendedAffine2D.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.BlendedAffine2D.__module__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BlendedAffine2D.get_matrix
|
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BlendedAffine2D.is_separable
|
classmatplotlib.transforms.BlendedGenericTransform(x_transform, y_transform, **kwargs)[source]
Bases: matplotlib.transforms._BlendedMixin, matplotlib.transforms.Transform A "blended" transform uses one transform for the x-direction, and another transform for the y-direction. This "generic" version can handle any given child transform in the x- and y-directions. Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. You will generally not call this constructor directly but use the blended_transform_factory function instead, which can determine automatically which kind of blended transform to create. __init__(x_transform, y_transform, **kwargs)[source]
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. You will generally not call this constructor directly but use the blended_transform_factory function instead, which can determine automatically which kind of blended transform to create.
__module__='matplotlib.transforms'
contains_branch(other)[source]
Return whether the given transform is a sub-tree of this transform. This routine uses transform equality to identify sub-trees, therefore in many situations it is object id which will be used. For the case where the given transform represents the whole of this transform, returns True.
propertydepth
Return the number of transforms which have been chained together to form this Transform instance. Note For the special case of a Composite transform, the maximum depth of the two is returned.
frozen()[source]
Return a frozen copy of this transform node. The frozen copy will not be updated when its children change. Useful for storing a previously known state of a transform where copy.deepcopy() might normally be used.
get_affine()[source]
Get the affine part of this transform.
propertyhas_inverse
bool(x) -> bool Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
input_dims=2
The number of input dimensions of this transform. Must be overridden (with integers) in the subclass.
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
propertyis_affine
bool(x) -> bool Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
is_separable=True
True if this transform is separable in the x- and y- dimensions.
output_dims=2
The number of output dimensions of this transform. Must be overridden (with integers) in the subclass.
pass_through=True
If pass_through is True, all ancestors will always be invalidated, even if 'self' is already invalid.
transform_non_affine(points)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform
|
__init__(x_transform, y_transform, **kwargs)[source]
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to transform the y-axis. You will generally not call this constructor directly but use the blended_transform_factory function instead, which can determine automatically which kind of blended transform to create.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.__module__
|
contains_branch(other)[source]
Return whether the given transform is a sub-tree of this transform. This routine uses transform equality to identify sub-trees, therefore in many situations it is object id which will be used. For the case where the given transform represents the whole of this transform, returns True.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.contains_branch
|
frozen()[source]
Return a frozen copy of this transform node. The frozen copy will not be updated when its children change. Useful for storing a previously known state of a transform where copy.deepcopy() might normally be used.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.frozen
|
get_affine()[source]
Get the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.get_affine
|
input_dims=2
The number of input dimensions of this transform. Must be overridden (with integers) in the subclass.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.input_dims
|
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.inverted
|
is_separable=True
True if this transform is separable in the x- and y- dimensions.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.is_separable
|
output_dims=2
The number of output dimensions of this transform. Must be overridden (with integers) in the subclass.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.output_dims
|
pass_through=True
If pass_through is True, all ancestors will always be invalidated, even if 'self' is already invalid.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.pass_through
|
transform_non_affine(points)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.BlendedGenericTransform.transform_non_affine
|
matplotlib.transforms.composite_transform_factory(a, b)[source]
Create a new composite transform that is the result of applying transform a then transform b. Shortcut versions of the blended transform are provided for the case where both child transforms are affine, or one or the other is the identity transform. Composite transforms may also be created using the '+' operator, e.g.: c = a + b
|
matplotlib.transformations#matplotlib.transforms.composite_transform_factory
|
classmatplotlib.transforms.CompositeAffine2D(a, b, **kwargs)[source]
Bases: matplotlib.transforms.Affine2DBase A composite transform formed by applying transform a then transform b. This version is an optimization that handles the case where both a and b are 2D affines. Create a new composite transform that is the result of applying Affine2DBase a then Affine2DBase b. You will generally not call this constructor directly but write a +
b instead, which will automatically choose the best kind of composite transform instance to create. __init__(a, b, **kwargs)[source]
Create a new composite transform that is the result of applying Affine2DBase a then Affine2DBase b. You will generally not call this constructor directly but write a +
b instead, which will automatically choose the best kind of composite transform instance to create.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
propertydepth
Return the number of transforms which have been chained together to form this Transform instance. Note For the special case of a Composite transform, the maximum depth of the two is returned.
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.CompositeAffine2D
|
__init__(a, b, **kwargs)[source]
Create a new composite transform that is the result of applying Affine2DBase a then Affine2DBase b. You will generally not call this constructor directly but write a +
b instead, which will automatically choose the best kind of composite transform instance to create.
|
matplotlib.transformations#matplotlib.transforms.CompositeAffine2D.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.CompositeAffine2D.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.CompositeAffine2D.__str__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.CompositeAffine2D.get_matrix
|
classmatplotlib.transforms.CompositeGenericTransform(a, b, **kwargs)[source]
Bases: matplotlib.transforms.Transform A composite transform formed by applying transform a then transform b. This "generic" version can handle any two arbitrary transformations. Create a new composite transform that is the result of applying transform a then transform b. You will generally not call this constructor directly but write a +
b instead, which will automatically choose the best kind of composite transform instance to create. __eq__(other)[source]
Return self==value.
__hash__=None
__init__(a, b, **kwargs)[source]
Create a new composite transform that is the result of applying transform a then transform b. You will generally not call this constructor directly but write a +
b instead, which will automatically choose the best kind of composite transform instance to create.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
propertydepth
Return the number of transforms which have been chained together to form this Transform instance. Note For the special case of a Composite transform, the maximum depth of the two is returned.
frozen()[source]
Return a frozen copy of this transform node. The frozen copy will not be updated when its children change. Useful for storing a previously known state of a transform where copy.deepcopy() might normally be used.
get_affine()[source]
Get the affine part of this transform.
propertyhas_inverse
bool(x) -> bool Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
propertyis_affine
bool(x) -> bool Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
propertyis_separable
bool(x) -> bool Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
pass_through=True
If pass_through is True, all ancestors will always be invalidated, even if 'self' is already invalid.
transform_affine(points)[source]
Apply only the affine part of this transformation on the given array of values. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to transform(values). Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_non_affine(points)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_path_non_affine(path)[source]
Apply the non-affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform
|
__eq__(other)[source]
Return self==value.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.__eq__
|
__hash__=None
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.__hash__
|
__init__(a, b, **kwargs)[source]
Create a new composite transform that is the result of applying transform a then transform b. You will generally not call this constructor directly but write a +
b instead, which will automatically choose the best kind of composite transform instance to create.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.__str__
|
frozen()[source]
Return a frozen copy of this transform node. The frozen copy will not be updated when its children change. Useful for storing a previously known state of a transform where copy.deepcopy() might normally be used.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.frozen
|
get_affine()[source]
Get the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.get_affine
|
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.inverted
|
pass_through=True
If pass_through is True, all ancestors will always be invalidated, even if 'self' is already invalid.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.pass_through
|
transform_affine(points)[source]
Apply only the affine part of this transformation on the given array of values. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to transform(values). Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.transform_affine
|
transform_non_affine(points)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.transform_non_affine
|
transform_path_non_affine(path)[source]
Apply the non-affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
|
matplotlib.transformations#matplotlib.transforms.CompositeGenericTransform.transform_path_non_affine
|
classmatplotlib.transforms.IdentityTransform(*args, **kwargs)[source]
Bases: matplotlib.transforms.Affine2DBase A special class that does one thing, the identity transform, in a fast way. Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True. __module__='matplotlib.transforms'
__str__()[source]
Return str(self).
frozen()[source]
Return a frozen copy of this transform node. The frozen copy will not be updated when its children change. Useful for storing a previously known state of a transform where copy.deepcopy() might normally be used.
get_affine()[source]
Get the affine part of this transform.
get_matrix()[source]
Get the matrix for the affine part of this transform.
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
transform(points)[source]
Apply this transformation on the given array of values. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_affine(points)[source]
Apply only the affine part of this transformation on the given array of values. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to transform(values). Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_non_affine(points)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_path(path)[source]
Apply the transform to Path path, returning a new Path. In some cases, this transform may insert curves into the path that began as line segments.
transform_path_affine(path)[source]
Apply the affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
transform_path_non_affine(path)[source]
Apply the non-affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.__str__
|
frozen()[source]
Return a frozen copy of this transform node. The frozen copy will not be updated when its children change. Useful for storing a previously known state of a transform where copy.deepcopy() might normally be used.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.frozen
|
get_affine()[source]
Get the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.get_affine
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.get_matrix
|
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.inverted
|
transform(points)[source]
Apply this transformation on the given array of values. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.transform
|
transform_affine(points)[source]
Apply only the affine part of this transformation on the given array of values. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to transform(values). Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.transform_affine
|
transform_non_affine(points)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.transform_non_affine
|
transform_path(path)[source]
Apply the transform to Path path, returning a new Path. In some cases, this transform may insert curves into the path that began as line segments.
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.transform_path
|
transform_path_affine(path)[source]
Apply the affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.transform_path_affine
|
transform_path_non_affine(path)[source]
Apply the non-affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
|
matplotlib.transformations#matplotlib.transforms.IdentityTransform.transform_path_non_affine
|
matplotlib.transforms.interval_contains(interval, val)[source]
Check, inclusively, whether an interval includes a given value. Parameters
interval(float, float)
The endpoints of the interval.
valfloat
Value to check is within interval. Returns
bool
Whether val is within the interval.
|
matplotlib.transformations#matplotlib.transforms.interval_contains
|
matplotlib.transforms.interval_contains_open(interval, val)[source]
Check, excluding endpoints, whether an interval includes a given value. Parameters
interval(float, float)
The endpoints of the interval.
valfloat
Value to check is within interval. Returns
bool
Whether val is within the interval.
|
matplotlib.transformations#matplotlib.transforms.interval_contains_open
|
classmatplotlib.transforms.LockableBbox(bbox, x0=None, y0=None, x1=None, y1=None, **kwargs)[source]
Bases: matplotlib.transforms.BboxBase A Bbox where some elements may be locked at certain values. When the child bounding box changes, the bounds of this bbox will update accordingly with the exception of the locked elements. Parameters
bboxBbox
The child bounding box to wrap.
x0float or None
The locked value for x0, or None to leave unlocked.
y0float or None
The locked value for y0, or None to leave unlocked.
x1float or None
The locked value for x1, or None to leave unlocked.
y1float or None
The locked value for y1, or None to leave unlocked. __init__(bbox, x0=None, y0=None, x1=None, y1=None, **kwargs)[source]
Parameters
bboxBbox
The child bounding box to wrap.
x0float or None
The locked value for x0, or None to leave unlocked.
y0float or None
The locked value for y0, or None to leave unlocked.
x1float or None
The locked value for x1, or None to leave unlocked.
y1float or None
The locked value for y1, or None to leave unlocked.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
get_points()[source]
propertylocked_x0
float or None: The value used for the locked x0.
propertylocked_x1
float or None: The value used for the locked x1.
propertylocked_y0
float or None: The value used for the locked y0.
propertylocked_y1
float or None: The value used for the locked y1.
|
matplotlib.transformations#matplotlib.transforms.LockableBbox
|
__init__(bbox, x0=None, y0=None, x1=None, y1=None, **kwargs)[source]
Parameters
bboxBbox
The child bounding box to wrap.
x0float or None
The locked value for x0, or None to leave unlocked.
y0float or None
The locked value for y0, or None to leave unlocked.
x1float or None
The locked value for x1, or None to leave unlocked.
y1float or None
The locked value for y1, or None to leave unlocked.
|
matplotlib.transformations#matplotlib.transforms.LockableBbox.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.LockableBbox.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.LockableBbox.__str__
|
get_points()[source]
|
matplotlib.transformations#matplotlib.transforms.LockableBbox.get_points
|
matplotlib.transforms.nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True)[source]
Modify the endpoints of a range as needed to avoid singularities. Parameters
vmin, vmaxfloat
The initial endpoints.
expanderfloat, default: 0.001
Fractional amount by which vmin and vmax are expanded if the original interval is too small, based on tiny.
tinyfloat, default: 1e-15
Threshold for the ratio of the interval to the maximum absolute value of its endpoints. If the interval is smaller than this, it will be expanded. This value should be around 1e-15 or larger; otherwise the interval will be approaching the double precision resolution limit.
increasingbool, default: True
If True, swap vmin, vmax if vmin > vmax. Returns
vmin, vmaxfloat
Endpoints, expanded and/or swapped if necessary. If either input is inf or NaN, or if both inputs are 0 or very close to zero, it returns -expander, expander.
|
matplotlib.transformations#matplotlib.transforms.nonsingular
|
matplotlib.transforms.offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches')[source]
Return a new transform with an added offset. Parameters
transTransform subclass
Any transform, to which offset will be applied.
figFigure, default: None
Current figure. It can be None if units are 'dots'.
x, yfloat, default: 0.0
The offset to apply.
units{'inches', 'points', 'dots'}, default: 'inches'
Units of the offset. Returns
Transform subclass
Transform with applied offset.
|
matplotlib.transformations#matplotlib.transforms.offset_copy
|
classmatplotlib.transforms.ScaledTranslation(xt, yt, scale_trans, **kwargs)[source]
Bases: matplotlib.transforms.Affine2DBase A transformation that translates by xt and yt, after xt and yt have been transformed by scale_trans. Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True. __init__(xt, yt, scale_trans, **kwargs)[source]
Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True.
__module__='matplotlib.transforms'
__str__()[source]
Return str(self).
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.ScaledTranslation
|
__init__(xt, yt, scale_trans, **kwargs)[source]
Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True.
|
matplotlib.transformations#matplotlib.transforms.ScaledTranslation.__init__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.ScaledTranslation.__module__
|
__str__()[source]
Return str(self).
|
matplotlib.transformations#matplotlib.transforms.ScaledTranslation.__str__
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.ScaledTranslation.get_matrix
|
classmatplotlib.transforms.Transform(shorthand_name=None)[source]
Bases: matplotlib.transforms.TransformNode The base class of all TransformNode instances that actually perform a transformation. All non-affine transformations should be subclasses of this class. New affine transformations should be subclasses of Affine2D. Subclasses of this class should override the following members (at minimum): input_dims output_dims transform()
inverted() (if an inverse exists) The following attributes may be overridden if the default is unsuitable:
is_separable (defaults to True for 1D -> 1D transforms, False otherwise)
has_inverse (defaults to True if inverted() is overridden, False otherwise) If the transform needs to do something non-standard with matplotlib.path.Path objects, such as adding curves where there were once line segments, it should override: transform_path() Parameters
shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of str(transform) when DEBUG=True. __add__(other)[source]
Compose two transforms together so that self is followed by other. A + B returns a transform C so that C.transform(x) == B.transform(A.transform(x)).
__array__(*args, **kwargs)[source]
Array interface to get at this Transform's affine matrix.
classmethod__init_subclass__()[source]
This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses.
__module__='matplotlib.transforms'
__sub__(other)[source]
Compose self with the inverse of other, cancelling identical terms if any: # In general:
A - B == A + B.inverted()
# (but see note regarding frozen transforms below).
# If A "ends with" B (i.e. A == A' + B for some A') we can cancel
# out B:
(A' + B) - B == A'
# Likewise, if B "starts with" A (B = A + B'), we can cancel out A:
A - (A + B') == B'.inverted() == B'^-1
Cancellation (rather than naively returning A + B.inverted()) is important for multiple reasons: It avoids floating-point inaccuracies when computing the inverse of B: B - B is guaranteed to cancel out exactly (resulting in the identity transform), whereas B + B.inverted() may differ by a small epsilon.
B.inverted() always returns a frozen transform: if one computes A + B + B.inverted() and later mutates B, then B.inverted() won't be updated and the last two terms won't cancel out anymore; on the other hand, A + B - B will always be equal to A even if B is mutated.
contains_branch(other)[source]
Return whether the given transform is a sub-tree of this transform. This routine uses transform equality to identify sub-trees, therefore in many situations it is object id which will be used. For the case where the given transform represents the whole of this transform, returns True.
contains_branch_seperately(other_transform)[source]
Return whether the given branch is a sub-tree of this transform on each separate dimension. A common use for this method is to identify if a transform is a blended transform containing an axes' data transform. e.g.: x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)
propertydepth
Return the number of transforms which have been chained together to form this Transform instance. Note For the special case of a Composite transform, the maximum depth of the two is returned.
get_affine()[source]
Get the affine part of this transform.
get_matrix()[source]
Get the matrix for the affine part of this transform.
has_inverse=False
True if this transform has a corresponding inverse transform.
input_dims=None
The number of input dimensions of this transform. Must be overridden (with integers) in the subclass.
inverted()[source]
Return the corresponding inverse transformation. It holds x == self.inverted().transform(self.transform(x)). The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
is_separable=False
True if this transform is separable in the x- and y- dimensions.
output_dims=None
The number of output dimensions of this transform. Must be overridden (with integers) in the subclass.
transform(values)[source]
Apply this transformation on the given array of values. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_affine(values)[source]
Apply only the affine part of this transformation on the given array of values. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to transform(values). Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_angles(angles, pts, radians=False, pushoff=1e-05)[source]
Transform a set of angles anchored at specific locations. Parameters
angles(N,) array-like
The angles to transform.
pts(N, 2) array-like
The points where the angles are anchored.
radiansbool, default: False
Whether angles are radians or degrees.
pushofffloat
For each point in pts and angle in angles, the transformed angle is computed by transforming a segment of length pushoff starting at that point and making that angle relative to the horizontal axis, and measuring the angle between the horizontal axis and the transformed segment. Returns
(N,) array
transform_bbox(bbox)[source]
Transform the given bounding box. For smarter transforms including caching (a common requirement in Matplotlib), see TransformedBbox.
transform_non_affine(values)[source]
Apply only the non-affine part of this transformation. transform(values) is always equivalent to transform_affine(transform_non_affine(values)). In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op. Parameters
valuesarray
The input values as NumPy array of length input_dims or shape (N x input_dims). Returns
array
The output values as NumPy array of length input_dims or shape (N x output_dims), depending on the input.
transform_path(path)[source]
Apply the transform to Path path, returning a new Path. In some cases, this transform may insert curves into the path that began as line segments.
transform_path_affine(path)[source]
Apply the affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
transform_path_non_affine(path)[source]
Apply the non-affine part of this transform to Path path, returning a new Path. transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).
transform_point(point)[source]
Return a transformed point. This function is only kept for backcompatibility; the more general transform method is capable of transforming both a list of points and a single point. The point is given as a sequence of length input_dims. The transformed point is returned as a sequence of length output_dims.
|
matplotlib.transformations#matplotlib.transforms.Transform
|
__add__(other)[source]
Compose two transforms together so that self is followed by other. A + B returns a transform C so that C.transform(x) == B.transform(A.transform(x)).
|
matplotlib.transformations#matplotlib.transforms.Transform.__add__
|
__array__(*args, **kwargs)[source]
Array interface to get at this Transform's affine matrix.
|
matplotlib.transformations#matplotlib.transforms.Transform.__array__
|
classmethod__init_subclass__()[source]
This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses.
|
matplotlib.transformations#matplotlib.transforms.Transform.__init_subclass__
|
__module__='matplotlib.transforms'
|
matplotlib.transformations#matplotlib.transforms.Transform.__module__
|
__sub__(other)[source]
Compose self with the inverse of other, cancelling identical terms if any: # In general:
A - B == A + B.inverted()
# (but see note regarding frozen transforms below).
# If A "ends with" B (i.e. A == A' + B for some A') we can cancel
# out B:
(A' + B) - B == A'
# Likewise, if B "starts with" A (B = A + B'), we can cancel out A:
A - (A + B') == B'.inverted() == B'^-1
Cancellation (rather than naively returning A + B.inverted()) is important for multiple reasons: It avoids floating-point inaccuracies when computing the inverse of B: B - B is guaranteed to cancel out exactly (resulting in the identity transform), whereas B + B.inverted() may differ by a small epsilon.
B.inverted() always returns a frozen transform: if one computes A + B + B.inverted() and later mutates B, then B.inverted() won't be updated and the last two terms won't cancel out anymore; on the other hand, A + B - B will always be equal to A even if B is mutated.
|
matplotlib.transformations#matplotlib.transforms.Transform.__sub__
|
contains_branch(other)[source]
Return whether the given transform is a sub-tree of this transform. This routine uses transform equality to identify sub-trees, therefore in many situations it is object id which will be used. For the case where the given transform represents the whole of this transform, returns True.
|
matplotlib.transformations#matplotlib.transforms.Transform.contains_branch
|
contains_branch_seperately(other_transform)[source]
Return whether the given branch is a sub-tree of this transform on each separate dimension. A common use for this method is to identify if a transform is a blended transform containing an axes' data transform. e.g.: x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)
|
matplotlib.transformations#matplotlib.transforms.Transform.contains_branch_seperately
|
get_affine()[source]
Get the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.Transform.get_affine
|
get_matrix()[source]
Get the matrix for the affine part of this transform.
|
matplotlib.transformations#matplotlib.transforms.Transform.get_matrix
|
has_inverse=False
True if this transform has a corresponding inverse transform.
|
matplotlib.transformations#matplotlib.transforms.Transform.has_inverse
|
input_dims=None
The number of input dimensions of this transform. Must be overridden (with integers) in the subclass.
|
matplotlib.transformations#matplotlib.transforms.Transform.input_dims
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.