Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Arabic
Size:
10K - 100K
Tags:
question-identification
License:
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (de3609910e3ab5ae89dbafb419ba3b4c7f02b454)
- Delete loading script (ddb72186073289e346a7abf15307ac278cd31d6b)
- README.md +10 -4
- journalists_questions.py +0 -76
- plain_text/train-00000-of-00001.parquet +3 -0
README.md
CHANGED
|
@@ -20,6 +20,7 @@ pretty_name: JournalistsQuestions
|
|
| 20 |
tags:
|
| 21 |
- question-identification
|
| 22 |
dataset_info:
|
|
|
|
| 23 |
features:
|
| 24 |
- name: tweet_id
|
| 25 |
dtype: string
|
|
@@ -31,13 +32,18 @@ dataset_info:
|
|
| 31 |
'1': 'yes'
|
| 32 |
- name: label_confidence
|
| 33 |
dtype: float32
|
| 34 |
-
config_name: plain_text
|
| 35 |
splits:
|
| 36 |
- name: train
|
| 37 |
-
num_bytes:
|
| 38 |
num_examples: 10077
|
| 39 |
-
download_size:
|
| 40 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
---
|
| 42 |
|
| 43 |
# Dataset Card for journalists_questions
|
|
|
|
| 20 |
tags:
|
| 21 |
- question-identification
|
| 22 |
dataset_info:
|
| 23 |
+
config_name: plain_text
|
| 24 |
features:
|
| 25 |
- name: tweet_id
|
| 26 |
dtype: string
|
|
|
|
| 32 |
'1': 'yes'
|
| 33 |
- name: label_confidence
|
| 34 |
dtype: float32
|
|
|
|
| 35 |
splits:
|
| 36 |
- name: train
|
| 37 |
+
num_bytes: 342288
|
| 38 |
num_examples: 10077
|
| 39 |
+
download_size: 195694
|
| 40 |
+
dataset_size: 342288
|
| 41 |
+
configs:
|
| 42 |
+
- config_name: plain_text
|
| 43 |
+
data_files:
|
| 44 |
+
- split: train
|
| 45 |
+
path: plain_text/train-*
|
| 46 |
+
default: true
|
| 47 |
---
|
| 48 |
|
| 49 |
# Dataset Card for journalists_questions
|
journalists_questions.py
DELETED
|
@@ -1,76 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import csv
|
| 18 |
-
|
| 19 |
-
import datasets
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
_CITATION = """\
|
| 23 |
-
@inproceedings{hasanain2016questions,
|
| 24 |
-
title={What Questions Do Journalists Ask on Twitter?},
|
| 25 |
-
author={Hasanain, Maram and Bagdouri, Mossaab and Elsayed, Tamer and Oard, Douglas W},
|
| 26 |
-
booktitle={Tenth International AAAI Conference on Web and Social Media},
|
| 27 |
-
year={2016}
|
| 28 |
-
}
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
_DESCRIPTION = """\
|
| 32 |
-
The journalists_questions corpus (version 1.0) is a collection of 10K human-written Arabic
|
| 33 |
-
tweets manually labeled for question identification over Arabic tweets posted by journalists.
|
| 34 |
-
"""
|
| 35 |
-
_DATA_URL = "https://drive.google.com/uc?export=download&id=1CBrh-9OrSpKmPQBxTK_ji6mq6WTN_U9U"
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
class JournalistsQuestions(datasets.GeneratorBasedBuilder):
|
| 39 |
-
BUILDER_CONFIGS = [
|
| 40 |
-
datasets.BuilderConfig(
|
| 41 |
-
name="plain_text",
|
| 42 |
-
version=datasets.Version("1.0.0", ""),
|
| 43 |
-
description="Journalists tweet IDs and annotation by whether the tweet has a question",
|
| 44 |
-
)
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
def _info(self):
|
| 48 |
-
return datasets.DatasetInfo(
|
| 49 |
-
description=_DESCRIPTION,
|
| 50 |
-
features=datasets.Features(
|
| 51 |
-
{
|
| 52 |
-
"tweet_id": datasets.Value("string"),
|
| 53 |
-
"label": datasets.features.ClassLabel(names=["no", "yes"]),
|
| 54 |
-
"label_confidence": datasets.Value("float"),
|
| 55 |
-
}
|
| 56 |
-
),
|
| 57 |
-
homepage="http://qufaculty.qu.edu.qa/telsayed/datasets/",
|
| 58 |
-
citation=_CITATION,
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
def _split_generators(self, dl_manager):
|
| 62 |
-
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
| 63 |
-
return [
|
| 64 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_dir}),
|
| 65 |
-
]
|
| 66 |
-
|
| 67 |
-
def _generate_examples(self, filepath):
|
| 68 |
-
"""This function returns the examples in the raw (text) form."""
|
| 69 |
-
with open(filepath, encoding="utf-8") as f:
|
| 70 |
-
reader = csv.DictReader(f, delimiter="\t", fieldnames=["tweet_id", "label", "label_confidence"])
|
| 71 |
-
for idx, row in enumerate(reader):
|
| 72 |
-
yield idx, {
|
| 73 |
-
"tweet_id": row["tweet_id"],
|
| 74 |
-
"label": row["label"],
|
| 75 |
-
"label_confidence": float(row["label_confidence"]),
|
| 76 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plain_text/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b54a9ab8032c05555c284618b747e01692835b867aa0c717e60d2834847edaf
|
| 3 |
+
size 195694
|