content
stringlengths
7
1.05M
fixed_cases
stringlengths
1
1.28M
class Solution: def hasValidPath(self, grid): def dfs(x, y, d): if x == m or y == n: return True if grid[x][y] == 1: if d == 1: return dfs(x, y + 1, d) elif d == 3: return dfs(x, y - 1, d) elif grid[x][y] == 2: if d == 0: return dfs(x + 1, y, d) elif d == 2: return dfs(x - 1, y, d) elif grid[x][y] == 3: if d == 1: return dfs(x + 1, y, 0) elif d == 2: return dfs(x, y - 1, 3) elif grid[x][y] == 4: if d == 3: return dfs(x + 1, y, 0) elif d == 2: return dfs(x, y + 1, 1) elif grid[x][y] == 5: if d == 1: return dfs(x - 1, y, 2) elif d == 0: return dfs(x, y - 1, 3) elif grid[x][y] == 6: if d == 3: return dfs(x - 1, y, 2) elif d == 0: return dfs(x, y + 1, 1) return False m, n = len(grid), len(grid[0]) if m == 1 and n == 1: return True elif grid[0][0] == 5: return False elif grid[0][0] in [1, 6]: return n >= 2 and dfs(0, 1, 1) elif grid[0][0] in [2, 3]: return m >= 2 and dfs(1, 0, 0) elif grid[0][0] == 4: return n >= 2 and dfs(0, 1, 1) or m >= 1 and dfs(1, 0, 0)
class Solution: def has_valid_path(self, grid): def dfs(x, y, d): if x == m or y == n: return True if grid[x][y] == 1: if d == 1: return dfs(x, y + 1, d) elif d == 3: return dfs(x, y - 1, d) elif grid[x][y] == 2: if d == 0: return dfs(x + 1, y, d) elif d == 2: return dfs(x - 1, y, d) elif grid[x][y] == 3: if d == 1: return dfs(x + 1, y, 0) elif d == 2: return dfs(x, y - 1, 3) elif grid[x][y] == 4: if d == 3: return dfs(x + 1, y, 0) elif d == 2: return dfs(x, y + 1, 1) elif grid[x][y] == 5: if d == 1: return dfs(x - 1, y, 2) elif d == 0: return dfs(x, y - 1, 3) elif grid[x][y] == 6: if d == 3: return dfs(x - 1, y, 2) elif d == 0: return dfs(x, y + 1, 1) return False (m, n) = (len(grid), len(grid[0])) if m == 1 and n == 1: return True elif grid[0][0] == 5: return False elif grid[0][0] in [1, 6]: return n >= 2 and dfs(0, 1, 1) elif grid[0][0] in [2, 3]: return m >= 2 and dfs(1, 0, 0) elif grid[0][0] == 4: return n >= 2 and dfs(0, 1, 1) or (m >= 1 and dfs(1, 0, 0))
class Solution(object): def trap(self, height): """ :type height: List[int] :rtype: int """ sum, max, maxIndex = 0, -1, -1 for i, h in enumerate(height): if max < h: max = h maxIndex = i prev = 0 for i in range(maxIndex): if height[i] > prev: sum += (height[i] - prev) * (maxIndex - i) prev = height[i] sum -= height[i] prev = 0 for i in range(len(height) - 1, maxIndex, -1): if height[i] > prev: sum += (height[i] - prev) * (i - maxIndex) prev = height[i] sum -= height[i] return sum
class Solution(object): def trap(self, height): """ :type height: List[int] :rtype: int """ (sum, max, max_index) = (0, -1, -1) for (i, h) in enumerate(height): if max < h: max = h max_index = i prev = 0 for i in range(maxIndex): if height[i] > prev: sum += (height[i] - prev) * (maxIndex - i) prev = height[i] sum -= height[i] prev = 0 for i in range(len(height) - 1, maxIndex, -1): if height[i] > prev: sum += (height[i] - prev) * (i - maxIndex) prev = height[i] sum -= height[i] return sum
class fabrica: def __init__(self, tiempo, nombre, ruedas): self.tiempo = tiempo self.nombre = nombre self.ruedas = ruedas print("se creo el auto", self.nombre) def __str__(self): return "{}({})".format(self.nombre, self.tiempo) class listado: # autos = []# lista que contiene lso datos def __init__(self,autos=[]): # constructor self.autos = autos def agregar(self, obj): self.autos.append(obj) # agrego obj def mirar(self): for obj in self.autos: print(obj) a = fabrica(20, "automovil",4) # clase listado l = listado([a]) l.mirar() l.agregar(fabrica(123,"segundo",4)) l.mirar()
class Fabrica: def __init__(self, tiempo, nombre, ruedas): self.tiempo = tiempo self.nombre = nombre self.ruedas = ruedas print('se creo el auto', self.nombre) def __str__(self): return '{}({})'.format(self.nombre, self.tiempo) class Listado: autos = [] def __init__(self, autos=[]): self.autos = autos def agregar(self, obj): self.autos.append(obj) def mirar(self): for obj in self.autos: print(obj) a = fabrica(20, 'automovil', 4) l = listado([a]) l.mirar() l.agregar(fabrica(123, 'segundo', 4)) l.mirar()
n1 = int(input('digite um valor: ')) n2 = int(input('digite outro valor: ')) s = n1 + n2 m = n1 * n2 p = n1 ** n2 print(f'a soma vale {s}, a mult vale {m}, e a potencia vale {p}', end=', ') print('testando end')
n1 = int(input('digite um valor: ')) n2 = int(input('digite outro valor: ')) s = n1 + n2 m = n1 * n2 p = n1 ** n2 print(f'a soma vale {s}, a mult vale {m}, e a potencia vale {p}', end=', ') print('testando end')
def make_diamond(letter): """ makes a diamond from the given letter :return: a diamond :rtype: list """ diamond = None # count how far the letter is from A and use that as counter size = ord(letter.upper()) - ord('A') for i in range(size, -1, -1): # gets 1 half of the top of the diamond half_row = ' ' * i + chr(i + ord('A')) + ' ' * (size - i) # gets the bottom half of the diamond row = ''.join(half_row[:0:-1]) + half_row if diamond: diamond = [row] + diamond + [row] else: diamond = [row] return "\n".join(diamond) + "\n"
def make_diamond(letter): """ makes a diamond from the given letter :return: a diamond :rtype: list """ diamond = None size = ord(letter.upper()) - ord('A') for i in range(size, -1, -1): half_row = ' ' * i + chr(i + ord('A')) + ' ' * (size - i) row = ''.join(half_row[:0:-1]) + half_row if diamond: diamond = [row] + diamond + [row] else: diamond = [row] return '\n'.join(diamond) + '\n'
file_name = 'data/PacMan.png' reader = itk.ImageFileReader.New(FileName=file_name) smoother = itk.RecursiveGaussianImageFilter.New(Input=reader.GetOutput()) smoother.SetSigma(5.0) smoother.Update() view(smoother.GetOutput(), ui_collapsed=True)
file_name = 'data/PacMan.png' reader = itk.ImageFileReader.New(FileName=file_name) smoother = itk.RecursiveGaussianImageFilter.New(Input=reader.GetOutput()) smoother.SetSigma(5.0) smoother.Update() view(smoother.GetOutput(), ui_collapsed=True)
# -*- coding: utf-8 -*- __all__ = ['Microblog', 'MICROBLOG_SESSION_PROFILE'] MICROBLOG_SESSION_PROFILE = 'mic_profile_session' class Microblog(object): def __init__(self): self.profile = None
__all__ = ['Microblog', 'MICROBLOG_SESSION_PROFILE'] microblog_session_profile = 'mic_profile_session' class Microblog(object): def __init__(self): self.profile = None
# https://leetcode.com/problems/binary-tree-postorder-traversal/ # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: # DFS def postorderTraversal(self, root: TreeNode) -> List[int]: stack, res = [root], [] while stack: node = stack.pop() if node: res.append(node.val) stack.append(node.left) stack.append(node.right) return res[::-1] class Solution: # Visited flag def postorderTraversal(self, root: TreeNode) -> List[int]: traversal, stack = [], [(root, False)] while stack: node, visited = stack.pop() if node: if visited: traversal.append(node.val) else: stack.append((node, True)) stack.append((node.right, False)) stack.append((node.left, False)) return traversal def postorderTraversal1(self, root): # recursively res = [] self.dfs(root, res) return res def dfs(self, root, res): if root: self.dfs(root.left, res) self.dfs(root.right, res) res.append(root.val)
class Solution: def postorder_traversal(self, root: TreeNode) -> List[int]: (stack, res) = ([root], []) while stack: node = stack.pop() if node: res.append(node.val) stack.append(node.left) stack.append(node.right) return res[::-1] class Solution: def postorder_traversal(self, root: TreeNode) -> List[int]: (traversal, stack) = ([], [(root, False)]) while stack: (node, visited) = stack.pop() if node: if visited: traversal.append(node.val) else: stack.append((node, True)) stack.append((node.right, False)) stack.append((node.left, False)) return traversal def postorder_traversal1(self, root): res = [] self.dfs(root, res) return res def dfs(self, root, res): if root: self.dfs(root.left, res) self.dfs(root.right, res) res.append(root.val)
load("@io_bazel_stardoc//stardoc:stardoc.bzl", "stardoc") def stardoc_for_prov(doc_prov): """Defines a `stardoc` target for a document provider. Args: doc_prov: A `struct` as returned from `providers.create()`. Returns: None. """ stardoc( name = doc_prov.name, out = doc_prov.out_basename, header_template = doc_prov.header_basename, input = doc_prov.stardoc_input, symbol_names = doc_prov.symbols, deps = doc_prov.deps, ) def stardoc_for_provs(doc_provs): """Defines a `stardoc` for each of the provided document providers. Args: doc_provs: A `list` of document provider `struct` values as returned from `providers.create()`. Returns: None. """ [ stardoc_for_prov( doc_prov = doc_prov, ) for doc_prov in doc_provs if doc_prov.is_stardoc ]
load('@io_bazel_stardoc//stardoc:stardoc.bzl', 'stardoc') def stardoc_for_prov(doc_prov): """Defines a `stardoc` target for a document provider. Args: doc_prov: A `struct` as returned from `providers.create()`. Returns: None. """ stardoc(name=doc_prov.name, out=doc_prov.out_basename, header_template=doc_prov.header_basename, input=doc_prov.stardoc_input, symbol_names=doc_prov.symbols, deps=doc_prov.deps) def stardoc_for_provs(doc_provs): """Defines a `stardoc` for each of the provided document providers. Args: doc_provs: A `list` of document provider `struct` values as returned from `providers.create()`. Returns: None. """ [stardoc_for_prov(doc_prov=doc_prov) for doc_prov in doc_provs if doc_prov.is_stardoc]
class Node(object): def __init__(self, data): self.data = data self.next = None def push(head, data): node = Node(data) node.next = head return node def build_one_two_three(): return push(push(Node(3), 2), 1)
class Node(object): def __init__(self, data): self.data = data self.next = None def push(head, data): node = node(data) node.next = head return node def build_one_two_three(): return push(push(node(3), 2), 1)
""" Given two lists, find and print the elements that are present in both lists. For example: if given the list L1 = [a, b, c, d] and L2 = [a, c, e, f] then your program should output: "a c". """ def remove_elements(list1, list2): """ Returns a list with the repeated elements of the two lists """ removed_elements = [] for element in list1: if element in list2: removed_elements.append(element) # UNCOMMENT THE FOLLOWINF TO ALSO REMOVE THE REPEATED ELEMENTS IN THE LIST # list1.remove(element) # list2.remove(element) return removed_elements def main(): L1 = ["a", "b", "c", "d"] L2 = ["a", "c", "e", "f"] removed = remove_elements(L1, L2) for i in removed: print(i) # print(L1) # print(L2) if __name__ == "__main__": main()
""" Given two lists, find and print the elements that are present in both lists. For example: if given the list L1 = [a, b, c, d] and L2 = [a, c, e, f] then your program should output: "a c". """ def remove_elements(list1, list2): """ Returns a list with the repeated elements of the two lists """ removed_elements = [] for element in list1: if element in list2: removed_elements.append(element) return removed_elements def main(): l1 = ['a', 'b', 'c', 'd'] l2 = ['a', 'c', 'e', 'f'] removed = remove_elements(L1, L2) for i in removed: print(i) if __name__ == '__main__': main()
string = "a" * ITERATIONS # --- for char in string: pass
string = 'a' * ITERATIONS for char in string: pass
# Tool Types BRACKEN = 'bracken_abundance_estimation' KRAKEN = 'kraken_taxonomy_profiling' KRAKENHLL = 'krakenhll_taxonomy_profiling' METAPHLAN2 = 'metaphlan2_taxonomy_profiling' HMP_SITES = 'hmp_site_dists' MICROBE_CENSUS = 'microbe_census' AMR_GENES = 'align_to_amr_genes' RESISTOME_AMRS = 'resistome_amrs' READ_CLASS_PROPS = 'read_classification_proportions' READ_STATS = 'read_stats' MICROBE_DIRECTORY = 'microbe_directory_annotate' ALPHA_DIVERSITY = 'alpha_diversity_stats' BETA_DIVERSITY = 'beta_diversity_stats' HUMANN2 = 'humann2_functional_profiling' HUMANN2_NORMALIZED = 'humann2_normalize_genes' METHYLS = 'align_to_methyltransferases' VFDB = 'vfdb_quantify' MACROBES = 'quantify_macrobial' ANCESTRY = 'human_ancestry'
bracken = 'bracken_abundance_estimation' kraken = 'kraken_taxonomy_profiling' krakenhll = 'krakenhll_taxonomy_profiling' metaphlan2 = 'metaphlan2_taxonomy_profiling' hmp_sites = 'hmp_site_dists' microbe_census = 'microbe_census' amr_genes = 'align_to_amr_genes' resistome_amrs = 'resistome_amrs' read_class_props = 'read_classification_proportions' read_stats = 'read_stats' microbe_directory = 'microbe_directory_annotate' alpha_diversity = 'alpha_diversity_stats' beta_diversity = 'beta_diversity_stats' humann2 = 'humann2_functional_profiling' humann2_normalized = 'humann2_normalize_genes' methyls = 'align_to_methyltransferases' vfdb = 'vfdb_quantify' macrobes = 'quantify_macrobial' ancestry = 'human_ancestry'
begin_unit comment|'# Copyright 2010 United States Government as represented by the' nl|'\n' comment|'# Administrator of the National Aeronautics and Space Administration.' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'# Copyright (c) 2010 Citrix Systems, Inc.' nl|'\n' comment|'# Copyright 2011 Ken Pepple' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' string|'"""Built-in instance properties."""' newline|'\n' nl|'\n' name|'import' name|'re' newline|'\n' name|'import' name|'uuid' newline|'\n' nl|'\n' name|'from' name|'oslo_config' name|'import' name|'cfg' newline|'\n' name|'from' name|'oslo_log' name|'import' name|'log' name|'as' name|'logging' newline|'\n' name|'from' name|'oslo_utils' name|'import' name|'strutils' newline|'\n' name|'import' name|'six' newline|'\n' nl|'\n' name|'from' name|'nova' op|'.' name|'api' op|'.' name|'validation' name|'import' name|'parameter_types' newline|'\n' name|'from' name|'nova' name|'import' name|'context' newline|'\n' name|'from' name|'nova' name|'import' name|'db' newline|'\n' name|'from' name|'nova' name|'import' name|'exception' newline|'\n' name|'from' name|'nova' op|'.' name|'i18n' name|'import' name|'_' newline|'\n' name|'from' name|'nova' op|'.' name|'i18n' name|'import' name|'_LE' newline|'\n' name|'from' name|'nova' name|'import' name|'objects' newline|'\n' name|'from' name|'nova' name|'import' name|'utils' newline|'\n' nl|'\n' DECL|variable|flavor_opts name|'flavor_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'default_flavor'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' string|"'m1.small'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Default flavor to use for the EC2 API only. The Nova API '" nl|'\n' string|"'does not support a default flavor.'" op|')' op|',' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|CONF name|'CONF' op|'=' name|'cfg' op|'.' name|'CONF' newline|'\n' name|'CONF' op|'.' name|'register_opts' op|'(' name|'flavor_opts' op|')' newline|'\n' nl|'\n' DECL|variable|LOG name|'LOG' op|'=' name|'logging' op|'.' name|'getLogger' op|'(' name|'__name__' op|')' newline|'\n' nl|'\n' comment|'# NOTE(luisg): Flavor names can include non-ascii characters so that users can' nl|'\n' comment|'# create flavor names in locales that use them, however flavor IDs are limited' nl|'\n' comment|'# to ascii characters.' nl|'\n' DECL|variable|VALID_ID_REGEX name|'VALID_ID_REGEX' op|'=' name|'re' op|'.' name|'compile' op|'(' string|'"^[\\w\\.\\- ]*$"' op|')' newline|'\n' nl|'\n' comment|'# NOTE(dosaboy): This is supposed to represent the maximum value that we can' nl|'\n' comment|'# place into a SQL single precision float so that we can check whether values' nl|'\n' comment|'# are oversize. Postgres and MySQL both define this as their max whereas Sqlite' nl|'\n' comment|'# uses dynamic typing so this would not apply. Different dbs react in different' nl|'\n' comment|'# ways to oversize values e.g. postgres will raise an exception while mysql' nl|'\n' comment|'# will round off the value. Nevertheless we may still want to know prior to' nl|'\n' comment|'# insert whether the value is oversize.' nl|'\n' DECL|variable|SQL_SP_FLOAT_MAX name|'SQL_SP_FLOAT_MAX' op|'=' number|'3.40282e+38' newline|'\n' nl|'\n' comment|'# Validate extra specs key names.' nl|'\n' DECL|variable|VALID_EXTRASPEC_NAME_REGEX name|'VALID_EXTRASPEC_NAME_REGEX' op|'=' name|'re' op|'.' name|'compile' op|'(' string|'r"[\\w\\.\\- :]+$"' op|',' name|'re' op|'.' name|'UNICODE' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|_int_or_none name|'def' name|'_int_or_none' op|'(' name|'val' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'val' name|'is' name|'not' name|'None' op|':' newline|'\n' indent|' ' name|'return' name|'int' op|'(' name|'val' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|variable|system_metadata_flavor_props dedent|'' dedent|'' name|'system_metadata_flavor_props' op|'=' op|'{' nl|'\n' string|"'id'" op|':' name|'int' op|',' nl|'\n' string|"'name'" op|':' name|'str' op|',' nl|'\n' string|"'memory_mb'" op|':' name|'int' op|',' nl|'\n' string|"'vcpus'" op|':' name|'int' op|',' nl|'\n' string|"'root_gb'" op|':' name|'int' op|',' nl|'\n' string|"'ephemeral_gb'" op|':' name|'int' op|',' nl|'\n' string|"'flavorid'" op|':' name|'str' op|',' nl|'\n' string|"'swap'" op|':' name|'int' op|',' nl|'\n' string|"'rxtx_factor'" op|':' name|'float' op|',' nl|'\n' string|"'vcpu_weight'" op|':' name|'_int_or_none' op|',' nl|'\n' op|'}' newline|'\n' nl|'\n' nl|'\n' DECL|variable|system_metadata_flavor_extra_props name|'system_metadata_flavor_extra_props' op|'=' op|'[' nl|'\n' string|"'hw:numa_cpus.'" op|',' string|"'hw:numa_mem.'" op|',' nl|'\n' op|']' newline|'\n' nl|'\n' nl|'\n' DECL|function|create name|'def' name|'create' op|'(' name|'name' op|',' name|'memory' op|',' name|'vcpus' op|',' name|'root_gb' op|',' name|'ephemeral_gb' op|'=' number|'0' op|',' name|'flavorid' op|'=' name|'None' op|',' nl|'\n' name|'swap' op|'=' number|'0' op|',' name|'rxtx_factor' op|'=' number|'1.0' op|',' name|'is_public' op|'=' name|'True' op|')' op|':' newline|'\n' indent|' ' string|'"""Creates flavors."""' newline|'\n' name|'if' name|'not' name|'flavorid' op|':' newline|'\n' indent|' ' name|'flavorid' op|'=' name|'uuid' op|'.' name|'uuid4' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'kwargs' op|'=' op|'{' nl|'\n' string|"'memory_mb'" op|':' name|'memory' op|',' nl|'\n' string|"'vcpus'" op|':' name|'vcpus' op|',' nl|'\n' string|"'root_gb'" op|':' name|'root_gb' op|',' nl|'\n' string|"'ephemeral_gb'" op|':' name|'ephemeral_gb' op|',' nl|'\n' string|"'swap'" op|':' name|'swap' op|',' nl|'\n' string|"'rxtx_factor'" op|':' name|'rxtx_factor' op|',' nl|'\n' op|'}' newline|'\n' nl|'\n' name|'if' name|'isinstance' op|'(' name|'name' op|',' name|'six' op|'.' name|'string_types' op|')' op|':' newline|'\n' indent|' ' name|'name' op|'=' name|'name' op|'.' name|'strip' op|'(' op|')' newline|'\n' comment|'# ensure name do not exceed 255 characters' nl|'\n' dedent|'' name|'utils' op|'.' name|'check_string_length' op|'(' name|'name' op|',' string|"'name'" op|',' name|'min_length' op|'=' number|'1' op|',' name|'max_length' op|'=' number|'255' op|')' newline|'\n' nl|'\n' comment|'# ensure name does not contain any special characters' nl|'\n' name|'valid_name' op|'=' name|'parameter_types' op|'.' name|'valid_name_regex_obj' op|'.' name|'search' op|'(' name|'name' op|')' newline|'\n' name|'if' name|'not' name|'valid_name' op|':' newline|'\n' indent|' ' name|'msg' op|'=' name|'_' op|'(' string|'"Flavor names can only contain printable characters "' nl|'\n' string|'"and horizontal spaces."' op|')' newline|'\n' name|'raise' name|'exception' op|'.' name|'InvalidInput' op|'(' name|'reason' op|'=' name|'msg' op|')' newline|'\n' nl|'\n' comment|'# NOTE(vish): Internally, flavorid is stored as a string but it comes' nl|'\n' comment|'# in through json as an integer, so we convert it here.' nl|'\n' dedent|'' name|'flavorid' op|'=' name|'six' op|'.' name|'text_type' op|'(' name|'flavorid' op|')' newline|'\n' nl|'\n' comment|'# ensure leading/trailing whitespaces not present.' nl|'\n' name|'if' name|'flavorid' op|'.' name|'strip' op|'(' op|')' op|'!=' name|'flavorid' op|':' newline|'\n' indent|' ' name|'msg' op|'=' name|'_' op|'(' string|'"id cannot contain leading and/or trailing whitespace(s)"' op|')' newline|'\n' name|'raise' name|'exception' op|'.' name|'InvalidInput' op|'(' name|'reason' op|'=' name|'msg' op|')' newline|'\n' nl|'\n' comment|'# ensure flavor id does not exceed 255 characters' nl|'\n' dedent|'' name|'utils' op|'.' name|'check_string_length' op|'(' name|'flavorid' op|',' string|"'id'" op|',' name|'min_length' op|'=' number|'1' op|',' nl|'\n' name|'max_length' op|'=' number|'255' op|')' newline|'\n' nl|'\n' comment|'# ensure flavor id does not contain any special characters' nl|'\n' name|'valid_flavor_id' op|'=' name|'VALID_ID_REGEX' op|'.' name|'search' op|'(' name|'flavorid' op|')' newline|'\n' name|'if' name|'not' name|'valid_flavor_id' op|':' newline|'\n' indent|' ' name|'msg' op|'=' name|'_' op|'(' string|'"Flavor id can only contain letters from A-Z (both cases), "' nl|'\n' string|'"periods, dashes, underscores and spaces."' op|')' newline|'\n' name|'raise' name|'exception' op|'.' name|'InvalidInput' op|'(' name|'reason' op|'=' name|'msg' op|')' newline|'\n' nl|'\n' comment|'# NOTE(wangbo): validate attributes of the creating flavor.' nl|'\n' comment|'# ram and vcpus should be positive ( > 0) integers.' nl|'\n' comment|'# disk, ephemeral and swap should be non-negative ( >= 0) integers.' nl|'\n' dedent|'' name|'flavor_attributes' op|'=' op|'{' nl|'\n' string|"'memory_mb'" op|':' op|'(' string|"'ram'" op|',' number|'1' op|')' op|',' nl|'\n' string|"'vcpus'" op|':' op|'(' string|"'vcpus'" op|',' number|'1' op|')' op|',' nl|'\n' string|"'root_gb'" op|':' op|'(' string|"'disk'" op|',' number|'0' op|')' op|',' nl|'\n' string|"'ephemeral_gb'" op|':' op|'(' string|"'ephemeral'" op|',' number|'0' op|')' op|',' nl|'\n' string|"'swap'" op|':' op|'(' string|"'swap'" op|',' number|'0' op|')' nl|'\n' op|'}' newline|'\n' nl|'\n' name|'for' name|'key' op|',' name|'value' name|'in' name|'flavor_attributes' op|'.' name|'items' op|'(' op|')' op|':' newline|'\n' indent|' ' name|'kwargs' op|'[' name|'key' op|']' op|'=' name|'utils' op|'.' name|'validate_integer' op|'(' name|'kwargs' op|'[' name|'key' op|']' op|',' name|'value' op|'[' number|'0' op|']' op|',' name|'value' op|'[' number|'1' op|']' op|',' nl|'\n' name|'db' op|'.' name|'MAX_INT' op|')' newline|'\n' nl|'\n' comment|'# rxtx_factor should be a positive float' nl|'\n' dedent|'' name|'try' op|':' newline|'\n' indent|' ' name|'kwargs' op|'[' string|"'rxtx_factor'" op|']' op|'=' name|'float' op|'(' name|'kwargs' op|'[' string|"'rxtx_factor'" op|']' op|')' newline|'\n' name|'if' op|'(' name|'kwargs' op|'[' string|"'rxtx_factor'" op|']' op|'<=' number|'0' name|'or' nl|'\n' name|'kwargs' op|'[' string|"'rxtx_factor'" op|']' op|'>' name|'SQL_SP_FLOAT_MAX' op|')' op|':' newline|'\n' indent|' ' name|'raise' name|'ValueError' op|'(' op|')' newline|'\n' dedent|'' dedent|'' name|'except' name|'ValueError' op|':' newline|'\n' indent|' ' name|'msg' op|'=' op|'(' name|'_' op|'(' string|'"\'rxtx_factor\' argument must be a float between 0 and %g"' op|')' op|'%' nl|'\n' name|'SQL_SP_FLOAT_MAX' op|')' newline|'\n' name|'raise' name|'exception' op|'.' name|'InvalidInput' op|'(' name|'reason' op|'=' name|'msg' op|')' newline|'\n' nl|'\n' dedent|'' name|'kwargs' op|'[' string|"'name'" op|']' op|'=' name|'name' newline|'\n' name|'kwargs' op|'[' string|"'flavorid'" op|']' op|'=' name|'flavorid' newline|'\n' comment|'# ensure is_public attribute is boolean' nl|'\n' name|'try' op|':' newline|'\n' indent|' ' name|'kwargs' op|'[' string|"'is_public'" op|']' op|'=' name|'strutils' op|'.' name|'bool_from_string' op|'(' nl|'\n' name|'is_public' op|',' name|'strict' op|'=' name|'True' op|')' newline|'\n' dedent|'' name|'except' name|'ValueError' op|':' newline|'\n' indent|' ' name|'raise' name|'exception' op|'.' name|'InvalidInput' op|'(' name|'reason' op|'=' name|'_' op|'(' string|'"is_public must be a boolean"' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'flavor' op|'=' name|'objects' op|'.' name|'Flavor' op|'(' name|'context' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' op|',' op|'**' name|'kwargs' op|')' newline|'\n' name|'flavor' op|'.' name|'create' op|'(' op|')' newline|'\n' name|'return' name|'flavor' newline|'\n' nl|'\n' nl|'\n' DECL|function|destroy dedent|'' name|'def' name|'destroy' op|'(' name|'name' op|')' op|':' newline|'\n' indent|' ' string|'"""Marks flavor as deleted."""' newline|'\n' name|'try' op|':' newline|'\n' indent|' ' name|'if' name|'not' name|'name' op|':' newline|'\n' indent|' ' name|'raise' name|'ValueError' op|'(' op|')' newline|'\n' dedent|'' name|'flavor' op|'=' name|'objects' op|'.' name|'Flavor' op|'(' name|'context' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' op|',' name|'name' op|'=' name|'name' op|')' newline|'\n' name|'flavor' op|'.' name|'destroy' op|'(' op|')' newline|'\n' dedent|'' name|'except' op|'(' name|'ValueError' op|',' name|'exception' op|'.' name|'NotFound' op|')' op|':' newline|'\n' indent|' ' name|'LOG' op|'.' name|'exception' op|'(' name|'_LE' op|'(' string|"'Instance type %s not found for deletion'" op|')' op|',' name|'name' op|')' newline|'\n' name|'raise' name|'exception' op|'.' name|'FlavorNotFoundByName' op|'(' name|'flavor_name' op|'=' name|'name' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|get_all_flavors_sorted_list dedent|'' dedent|'' name|'def' name|'get_all_flavors_sorted_list' op|'(' name|'ctxt' op|'=' name|'None' op|',' name|'filters' op|'=' name|'None' op|',' name|'sort_key' op|'=' string|"'flavorid'" op|',' nl|'\n' name|'sort_dir' op|'=' string|"'asc'" op|',' name|'limit' op|'=' name|'None' op|',' name|'marker' op|'=' name|'None' op|')' op|':' newline|'\n' indent|' ' string|'"""Get all non-deleted flavors as a sorted list.\n """' newline|'\n' name|'if' name|'ctxt' name|'is' name|'None' op|':' newline|'\n' indent|' ' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' name|'objects' op|'.' name|'FlavorList' op|'.' name|'get_all' op|'(' name|'ctxt' op|',' name|'filters' op|'=' name|'filters' op|',' name|'sort_key' op|'=' name|'sort_key' op|',' nl|'\n' name|'sort_dir' op|'=' name|'sort_dir' op|',' name|'limit' op|'=' name|'limit' op|',' nl|'\n' name|'marker' op|'=' name|'marker' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|get_default_flavor dedent|'' name|'def' name|'get_default_flavor' op|'(' op|')' op|':' newline|'\n' indent|' ' string|'"""Get the default flavor."""' newline|'\n' name|'name' op|'=' name|'CONF' op|'.' name|'default_flavor' newline|'\n' name|'return' name|'get_flavor_by_name' op|'(' name|'name' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|get_flavor_by_name dedent|'' name|'def' name|'get_flavor_by_name' op|'(' name|'name' op|',' name|'ctxt' op|'=' name|'None' op|')' op|':' newline|'\n' indent|' ' string|'"""Retrieves single flavor by name."""' newline|'\n' name|'if' name|'name' name|'is' name|'None' op|':' newline|'\n' indent|' ' name|'return' name|'get_default_flavor' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'if' name|'ctxt' name|'is' name|'None' op|':' newline|'\n' indent|' ' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' name|'objects' op|'.' name|'Flavor' op|'.' name|'get_by_name' op|'(' name|'ctxt' op|',' name|'name' op|')' newline|'\n' nl|'\n' nl|'\n' comment|'# TODO(termie): flavor-specific code should probably be in the API that uses' nl|'\n' comment|'# flavors.' nl|'\n' DECL|function|get_flavor_by_flavor_id dedent|'' name|'def' name|'get_flavor_by_flavor_id' op|'(' name|'flavorid' op|',' name|'ctxt' op|'=' name|'None' op|',' name|'read_deleted' op|'=' string|'"yes"' op|')' op|':' newline|'\n' indent|' ' string|'"""Retrieve flavor by flavorid.\n\n :raises: FlavorNotFound\n """' newline|'\n' name|'if' name|'ctxt' name|'is' name|'None' op|':' newline|'\n' indent|' ' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' name|'read_deleted' op|'=' name|'read_deleted' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' name|'objects' op|'.' name|'Flavor' op|'.' name|'get_by_flavor_id' op|'(' name|'ctxt' op|',' name|'flavorid' op|',' name|'read_deleted' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|get_flavor_access_by_flavor_id dedent|'' name|'def' name|'get_flavor_access_by_flavor_id' op|'(' name|'flavorid' op|',' name|'ctxt' op|'=' name|'None' op|')' op|':' newline|'\n' indent|' ' string|'"""Retrieve flavor access list by flavor id."""' newline|'\n' name|'if' name|'ctxt' name|'is' name|'None' op|':' newline|'\n' indent|' ' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'flavor' op|'=' name|'objects' op|'.' name|'Flavor' op|'.' name|'get_by_flavor_id' op|'(' name|'ctxt' op|',' name|'flavorid' op|')' newline|'\n' name|'return' name|'flavor' op|'.' name|'projects' newline|'\n' nl|'\n' nl|'\n' comment|'# NOTE(danms): This method is deprecated, do not use it!' nl|'\n' comment|'# Use instance.{old_,new_,}flavor instead, as instances no longer' nl|'\n' comment|'# have flavor information in system_metadata.' nl|'\n' DECL|function|extract_flavor dedent|'' name|'def' name|'extract_flavor' op|'(' name|'instance' op|',' name|'prefix' op|'=' string|"''" op|')' op|':' newline|'\n' indent|' ' string|'"""Create a Flavor object from instance\'s system_metadata\n information.\n """' newline|'\n' nl|'\n' name|'flavor' op|'=' name|'objects' op|'.' name|'Flavor' op|'(' op|')' newline|'\n' name|'sys_meta' op|'=' name|'utils' op|'.' name|'instance_sys_meta' op|'(' name|'instance' op|')' newline|'\n' nl|'\n' name|'if' name|'not' name|'sys_meta' op|':' newline|'\n' indent|' ' name|'return' name|'None' newline|'\n' nl|'\n' dedent|'' name|'for' name|'key' name|'in' name|'system_metadata_flavor_props' op|'.' name|'keys' op|'(' op|')' op|':' newline|'\n' indent|' ' name|'type_key' op|'=' string|"'%sinstance_type_%s'" op|'%' op|'(' name|'prefix' op|',' name|'key' op|')' newline|'\n' name|'setattr' op|'(' name|'flavor' op|',' name|'key' op|',' name|'sys_meta' op|'[' name|'type_key' op|']' op|')' newline|'\n' nl|'\n' comment|'# NOTE(danms): We do NOT save all of extra_specs, but only the' nl|'\n' comment|'# NUMA-related ones that we need to avoid an uglier alternative. This' nl|'\n' comment|'# should be replaced by a general split-out of flavor information from' nl|'\n' comment|'# system_metadata very soon.' nl|'\n' dedent|'' name|'extra_specs' op|'=' op|'[' op|'(' name|'k' op|',' name|'v' op|')' name|'for' name|'k' op|',' name|'v' name|'in' name|'sys_meta' op|'.' name|'items' op|'(' op|')' nl|'\n' name|'if' name|'k' op|'.' name|'startswith' op|'(' string|"'%sinstance_type_extra_'" op|'%' name|'prefix' op|')' op|']' newline|'\n' name|'if' name|'extra_specs' op|':' newline|'\n' indent|' ' name|'flavor' op|'.' name|'extra_specs' op|'=' op|'{' op|'}' newline|'\n' name|'for' name|'key' op|',' name|'value' name|'in' name|'extra_specs' op|':' newline|'\n' indent|' ' name|'extra_key' op|'=' name|'key' op|'[' name|'len' op|'(' string|"'%sinstance_type_extra_'" op|'%' name|'prefix' op|')' op|':' op|']' newline|'\n' name|'flavor' op|'.' name|'extra_specs' op|'[' name|'extra_key' op|']' op|'=' name|'value' newline|'\n' nl|'\n' dedent|'' dedent|'' name|'return' name|'flavor' newline|'\n' nl|'\n' nl|'\n' comment|'# NOTE(danms): This method is deprecated, do not use it!' nl|'\n' comment|'# Use instance.{old_,new_,}flavor instead, as instances no longer' nl|'\n' comment|'# have flavor information in system_metadata.' nl|'\n' DECL|function|save_flavor_info dedent|'' name|'def' name|'save_flavor_info' op|'(' name|'metadata' op|',' name|'instance_type' op|',' name|'prefix' op|'=' string|"''" op|')' op|':' newline|'\n' indent|' ' string|'"""Save properties from instance_type into instance\'s system_metadata,\n in the format of:\n\n [prefix]instance_type_[key]\n\n This can be used to update system_metadata in place from a type, as well\n as stash information about another instance_type for later use (such as\n during resize).\n """' newline|'\n' nl|'\n' name|'for' name|'key' name|'in' name|'system_metadata_flavor_props' op|'.' name|'keys' op|'(' op|')' op|':' newline|'\n' indent|' ' name|'to_key' op|'=' string|"'%sinstance_type_%s'" op|'%' op|'(' name|'prefix' op|',' name|'key' op|')' newline|'\n' name|'metadata' op|'[' name|'to_key' op|']' op|'=' name|'instance_type' op|'[' name|'key' op|']' newline|'\n' nl|'\n' comment|'# NOTE(danms): We do NOT save all of extra_specs here, but only the' nl|'\n' comment|'# NUMA-related ones that we need to avoid an uglier alternative. This' nl|'\n' comment|'# should be replaced by a general split-out of flavor information from' nl|'\n' comment|'# system_metadata very soon.' nl|'\n' dedent|'' name|'extra_specs' op|'=' name|'instance_type' op|'.' name|'get' op|'(' string|"'extra_specs'" op|',' op|'{' op|'}' op|')' newline|'\n' name|'for' name|'extra_prefix' name|'in' name|'system_metadata_flavor_extra_props' op|':' newline|'\n' indent|' ' name|'for' name|'key' name|'in' name|'extra_specs' op|':' newline|'\n' indent|' ' name|'if' name|'key' op|'.' name|'startswith' op|'(' name|'extra_prefix' op|')' op|':' newline|'\n' indent|' ' name|'to_key' op|'=' string|"'%sinstance_type_extra_%s'" op|'%' op|'(' name|'prefix' op|',' name|'key' op|')' newline|'\n' name|'metadata' op|'[' name|'to_key' op|']' op|'=' name|'extra_specs' op|'[' name|'key' op|']' newline|'\n' nl|'\n' dedent|'' dedent|'' dedent|'' name|'return' name|'metadata' newline|'\n' nl|'\n' nl|'\n' comment|'# NOTE(danms): This method is deprecated, do not use it!' nl|'\n' comment|'# Instances no longer store flavor information in system_metadata' nl|'\n' DECL|function|delete_flavor_info dedent|'' name|'def' name|'delete_flavor_info' op|'(' name|'metadata' op|',' op|'*' name|'prefixes' op|')' op|':' newline|'\n' indent|' ' string|'"""Delete flavor instance_type information from instance\'s system_metadata\n by prefix.\n """' newline|'\n' nl|'\n' name|'for' name|'key' name|'in' name|'system_metadata_flavor_props' op|'.' name|'keys' op|'(' op|')' op|':' newline|'\n' indent|' ' name|'for' name|'prefix' name|'in' name|'prefixes' op|':' newline|'\n' indent|' ' name|'to_key' op|'=' string|"'%sinstance_type_%s'" op|'%' op|'(' name|'prefix' op|',' name|'key' op|')' newline|'\n' name|'del' name|'metadata' op|'[' name|'to_key' op|']' newline|'\n' nl|'\n' comment|'# NOTE(danms): We do NOT save all of extra_specs, but only the' nl|'\n' comment|'# NUMA-related ones that we need to avoid an uglier alternative. This' nl|'\n' comment|'# should be replaced by a general split-out of flavor information from' nl|'\n' comment|'# system_metadata very soon.' nl|'\n' dedent|'' dedent|'' name|'for' name|'key' name|'in' name|'list' op|'(' name|'metadata' op|'.' name|'keys' op|'(' op|')' op|')' op|':' newline|'\n' indent|' ' name|'for' name|'prefix' name|'in' name|'prefixes' op|':' newline|'\n' indent|' ' name|'if' name|'key' op|'.' name|'startswith' op|'(' string|"'%sinstance_type_extra_'" op|'%' name|'prefix' op|')' op|':' newline|'\n' indent|' ' name|'del' name|'metadata' op|'[' name|'key' op|']' newline|'\n' nl|'\n' dedent|'' dedent|'' dedent|'' name|'return' name|'metadata' newline|'\n' nl|'\n' nl|'\n' DECL|function|validate_extra_spec_keys dedent|'' name|'def' name|'validate_extra_spec_keys' op|'(' name|'key_names_list' op|')' op|':' newline|'\n' indent|' ' name|'for' name|'key_name' name|'in' name|'key_names_list' op|':' newline|'\n' indent|' ' name|'if' name|'not' name|'VALID_EXTRASPEC_NAME_REGEX' op|'.' name|'match' op|'(' name|'key_name' op|')' op|':' newline|'\n' indent|' ' name|'expl' op|'=' name|'_' op|'(' string|"'Key Names can only contain alphanumeric characters, '" nl|'\n' string|"'periods, dashes, underscores, colons and spaces.'" op|')' newline|'\n' name|'raise' name|'exception' op|'.' name|'InvalidInput' op|'(' name|'message' op|'=' name|'expl' op|')' newline|'\n' dedent|'' dedent|'' dedent|'' endmarker|'' end_unit
begin_unit comment | '# Copyright 2010 United States Government as represented by the' nl | '\n' comment | '# Administrator of the National Aeronautics and Space Administration.' nl | '\n' comment | '# All Rights Reserved.' nl | '\n' comment | '# Copyright (c) 2010 Citrix Systems, Inc.' nl | '\n' comment | '# Copyright 2011 Ken Pepple' nl | '\n' comment | '#' nl | '\n' comment | '# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl | '\n' comment | '# not use this file except in compliance with the License. You may obtain' nl | '\n' comment | '# a copy of the License at' nl | '\n' comment | '#' nl | '\n' comment | '# http://www.apache.org/licenses/LICENSE-2.0' nl | '\n' comment | '#' nl | '\n' comment | '# Unless required by applicable law or agreed to in writing, software' nl | '\n' comment | '# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl | '\n' comment | '# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl | '\n' comment | '# License for the specific language governing permissions and limitations' nl | '\n' comment | '# under the License.' nl | '\n' nl | '\n' string | '"""Built-in instance properties."""' newline | '\n' nl | '\n' name | 'import' name | 're' newline | '\n' name | 'import' name | 'uuid' newline | '\n' nl | '\n' name | 'from' name | 'oslo_config' name | 'import' name | 'cfg' newline | '\n' name | 'from' name | 'oslo_log' name | 'import' name | 'log' name | 'as' name | 'logging' newline | '\n' name | 'from' name | 'oslo_utils' name | 'import' name | 'strutils' newline | '\n' name | 'import' name | 'six' newline | '\n' nl | '\n' name | 'from' name | 'nova' op | '.' name | 'api' op | '.' name | 'validation' name | 'import' name | 'parameter_types' newline | '\n' name | 'from' name | 'nova' name | 'import' name | 'context' newline | '\n' name | 'from' name | 'nova' name | 'import' name | 'db' newline | '\n' name | 'from' name | 'nova' name | 'import' name | 'exception' newline | '\n' name | 'from' name | 'nova' op | '.' name | 'i18n' name | 'import' name | '_' newline | '\n' name | 'from' name | 'nova' op | '.' name | 'i18n' name | 'import' name | '_LE' newline | '\n' name | 'from' name | 'nova' name | 'import' name | 'objects' newline | '\n' name | 'from' name | 'nova' name | 'import' name | 'utils' newline | '\n' nl | '\n' DECL | variable | flavor_opts name | 'flavor_opts' op | '=' op | '[' nl | '\n' name | 'cfg' op | '.' name | 'StrOpt' op | '(' string | "'default_flavor'" op | ',' nl | '\n' DECL | variable | default name | 'default' op | '=' string | "'m1.small'" op | ',' nl | '\n' DECL | variable | help name | 'help' op | '=' string | "'Default flavor to use for the EC2 API only. The Nova API '" nl | '\n' string | "'does not support a default flavor.'" op | ')' op | ',' nl | '\n' op | ']' newline | '\n' nl | '\n' DECL | variable | CONF name | 'CONF' op | '=' name | 'cfg' op | '.' name | 'CONF' newline | '\n' name | 'CONF' op | '.' name | 'register_opts' op | '(' name | 'flavor_opts' op | ')' newline | '\n' nl | '\n' DECL | variable | LOG name | 'LOG' op | '=' name | 'logging' op | '.' name | 'getLogger' op | '(' name | '__name__' op | ')' newline | '\n' nl | '\n' comment | '# NOTE(luisg): Flavor names can include non-ascii characters so that users can' nl | '\n' comment | '# create flavor names in locales that use them, however flavor IDs are limited' nl | '\n' comment | '# to ascii characters.' nl | '\n' DECL | variable | VALID_ID_REGEX name | 'VALID_ID_REGEX' op | '=' name | 're' op | '.' name | 'compile' op | '(' string | '"^[\\w\\.\\- ]*$"' op | ')' newline | '\n' nl | '\n' comment | '# NOTE(dosaboy): This is supposed to represent the maximum value that we can' nl | '\n' comment | '# place into a SQL single precision float so that we can check whether values' nl | '\n' comment | '# are oversize. Postgres and MySQL both define this as their max whereas Sqlite' nl | '\n' comment | '# uses dynamic typing so this would not apply. Different dbs react in different' nl | '\n' comment | '# ways to oversize values e.g. postgres will raise an exception while mysql' nl | '\n' comment | '# will round off the value. Nevertheless we may still want to know prior to' nl | '\n' comment | '# insert whether the value is oversize.' nl | '\n' DECL | variable | SQL_SP_FLOAT_MAX name | 'SQL_SP_FLOAT_MAX' op | '=' number | '3.40282e+38' newline | '\n' nl | '\n' comment | '# Validate extra specs key names.' nl | '\n' DECL | variable | VALID_EXTRASPEC_NAME_REGEX name | 'VALID_EXTRASPEC_NAME_REGEX' op | '=' name | 're' op | '.' name | 'compile' op | '(' string | 'r"[\\w\\.\\- :]+$"' op | ',' name | 're' op | '.' name | 'UNICODE' op | ')' newline | '\n' nl | '\n' nl | '\n' DECL | function | _int_or_none name | 'def' name | '_int_or_none' op | '(' name | 'val' op | ')' op | ':' newline | '\n' indent | ' ' name | 'if' name | 'val' name | 'is' name | 'not' name | 'None' op | ':' newline | '\n' indent | ' ' name | 'return' name | 'int' op | '(' name | 'val' op | ')' newline | '\n' nl | '\n' nl | '\n' DECL | variable | system_metadata_flavor_props dedent | '' dedent | '' name | 'system_metadata_flavor_props' op | '=' op | '{' nl | '\n' string | "'id'" op | ':' name | 'int' op | ',' nl | '\n' string | "'name'" op | ':' name | 'str' op | ',' nl | '\n' string | "'memory_mb'" op | ':' name | 'int' op | ',' nl | '\n' string | "'vcpus'" op | ':' name | 'int' op | ',' nl | '\n' string | "'root_gb'" op | ':' name | 'int' op | ',' nl | '\n' string | "'ephemeral_gb'" op | ':' name | 'int' op | ',' nl | '\n' string | "'flavorid'" op | ':' name | 'str' op | ',' nl | '\n' string | "'swap'" op | ':' name | 'int' op | ',' nl | '\n' string | "'rxtx_factor'" op | ':' name | 'float' op | ',' nl | '\n' string | "'vcpu_weight'" op | ':' name | '_int_or_none' op | ',' nl | '\n' op | '}' newline | '\n' nl | '\n' nl | '\n' DECL | variable | system_metadata_flavor_extra_props name | 'system_metadata_flavor_extra_props' op | '=' op | '[' nl | '\n' string | "'hw:numa_cpus.'" op | ',' string | "'hw:numa_mem.'" op | ',' nl | '\n' op | ']' newline | '\n' nl | '\n' nl | '\n' DECL | function | create name | 'def' name | 'create' op | '(' name | 'name' op | ',' name | 'memory' op | ',' name | 'vcpus' op | ',' name | 'root_gb' op | ',' name | 'ephemeral_gb' op | '=' number | '0' op | ',' name | 'flavorid' op | '=' name | 'None' op | ',' nl | '\n' name | 'swap' op | '=' number | '0' op | ',' name | 'rxtx_factor' op | '=' number | '1.0' op | ',' name | 'is_public' op | '=' name | 'True' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Creates flavors."""' newline | '\n' name | 'if' name | 'not' name | 'flavorid' op | ':' newline | '\n' indent | ' ' name | 'flavorid' op | '=' name | 'uuid' op | '.' name | 'uuid4' op | '(' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'kwargs' op | '=' op | '{' nl | '\n' string | "'memory_mb'" op | ':' name | 'memory' op | ',' nl | '\n' string | "'vcpus'" op | ':' name | 'vcpus' op | ',' nl | '\n' string | "'root_gb'" op | ':' name | 'root_gb' op | ',' nl | '\n' string | "'ephemeral_gb'" op | ':' name | 'ephemeral_gb' op | ',' nl | '\n' string | "'swap'" op | ':' name | 'swap' op | ',' nl | '\n' string | "'rxtx_factor'" op | ':' name | 'rxtx_factor' op | ',' nl | '\n' op | '}' newline | '\n' nl | '\n' name | 'if' name | 'isinstance' op | '(' name | 'name' op | ',' name | 'six' op | '.' name | 'string_types' op | ')' op | ':' newline | '\n' indent | ' ' name | 'name' op | '=' name | 'name' op | '.' name | 'strip' op | '(' op | ')' newline | '\n' comment | '# ensure name do not exceed 255 characters' nl | '\n' dedent | '' name | 'utils' op | '.' name | 'check_string_length' op | '(' name | 'name' op | ',' string | "'name'" op | ',' name | 'min_length' op | '=' number | '1' op | ',' name | 'max_length' op | '=' number | '255' op | ')' newline | '\n' nl | '\n' comment | '# ensure name does not contain any special characters' nl | '\n' name | 'valid_name' op | '=' name | 'parameter_types' op | '.' name | 'valid_name_regex_obj' op | '.' name | 'search' op | '(' name | 'name' op | ')' newline | '\n' name | 'if' name | 'not' name | 'valid_name' op | ':' newline | '\n' indent | ' ' name | 'msg' op | '=' name | '_' op | '(' string | '"Flavor names can only contain printable characters "' nl | '\n' string | '"and horizontal spaces."' op | ')' newline | '\n' name | 'raise' name | 'exception' op | '.' name | 'InvalidInput' op | '(' name | 'reason' op | '=' name | 'msg' op | ')' newline | '\n' nl | '\n' comment | '# NOTE(vish): Internally, flavorid is stored as a string but it comes' nl | '\n' comment | '# in through json as an integer, so we convert it here.' nl | '\n' dedent | '' name | 'flavorid' op | '=' name | 'six' op | '.' name | 'text_type' op | '(' name | 'flavorid' op | ')' newline | '\n' nl | '\n' comment | '# ensure leading/trailing whitespaces not present.' nl | '\n' name | 'if' name | 'flavorid' op | '.' name | 'strip' op | '(' op | ')' op | '!=' name | 'flavorid' op | ':' newline | '\n' indent | ' ' name | 'msg' op | '=' name | '_' op | '(' string | '"id cannot contain leading and/or trailing whitespace(s)"' op | ')' newline | '\n' name | 'raise' name | 'exception' op | '.' name | 'InvalidInput' op | '(' name | 'reason' op | '=' name | 'msg' op | ')' newline | '\n' nl | '\n' comment | '# ensure flavor id does not exceed 255 characters' nl | '\n' dedent | '' name | 'utils' op | '.' name | 'check_string_length' op | '(' name | 'flavorid' op | ',' string | "'id'" op | ',' name | 'min_length' op | '=' number | '1' op | ',' nl | '\n' name | 'max_length' op | '=' number | '255' op | ')' newline | '\n' nl | '\n' comment | '# ensure flavor id does not contain any special characters' nl | '\n' name | 'valid_flavor_id' op | '=' name | 'VALID_ID_REGEX' op | '.' name | 'search' op | '(' name | 'flavorid' op | ')' newline | '\n' name | 'if' name | 'not' name | 'valid_flavor_id' op | ':' newline | '\n' indent | ' ' name | 'msg' op | '=' name | '_' op | '(' string | '"Flavor id can only contain letters from A-Z (both cases), "' nl | '\n' string | '"periods, dashes, underscores and spaces."' op | ')' newline | '\n' name | 'raise' name | 'exception' op | '.' name | 'InvalidInput' op | '(' name | 'reason' op | '=' name | 'msg' op | ')' newline | '\n' nl | '\n' comment | '# NOTE(wangbo): validate attributes of the creating flavor.' nl | '\n' comment | '# ram and vcpus should be positive ( > 0) integers.' nl | '\n' comment | '# disk, ephemeral and swap should be non-negative ( >= 0) integers.' nl | '\n' dedent | '' name | 'flavor_attributes' op | '=' op | '{' nl | '\n' string | "'memory_mb'" op | ':' op | '(' string | "'ram'" op | ',' number | '1' op | ')' op | ',' nl | '\n' string | "'vcpus'" op | ':' op | '(' string | "'vcpus'" op | ',' number | '1' op | ')' op | ',' nl | '\n' string | "'root_gb'" op | ':' op | '(' string | "'disk'" op | ',' number | '0' op | ')' op | ',' nl | '\n' string | "'ephemeral_gb'" op | ':' op | '(' string | "'ephemeral'" op | ',' number | '0' op | ')' op | ',' nl | '\n' string | "'swap'" op | ':' op | '(' string | "'swap'" op | ',' number | '0' op | ')' nl | '\n' op | '}' newline | '\n' nl | '\n' name | 'for' name | 'key' op | ',' name | 'value' name | 'in' name | 'flavor_attributes' op | '.' name | 'items' op | '(' op | ')' op | ':' newline | '\n' indent | ' ' name | 'kwargs' op | '[' name | 'key' op | ']' op | '=' name | 'utils' op | '.' name | 'validate_integer' op | '(' name | 'kwargs' op | '[' name | 'key' op | ']' op | ',' name | 'value' op | '[' number | '0' op | ']' op | ',' name | 'value' op | '[' number | '1' op | ']' op | ',' nl | '\n' name | 'db' op | '.' name | 'MAX_INT' op | ')' newline | '\n' nl | '\n' comment | '# rxtx_factor should be a positive float' nl | '\n' dedent | '' name | 'try' op | ':' newline | '\n' indent | ' ' name | 'kwargs' op | '[' string | "'rxtx_factor'" op | ']' op | '=' name | 'float' op | '(' name | 'kwargs' op | '[' string | "'rxtx_factor'" op | ']' op | ')' newline | '\n' name | 'if' op | '(' name | 'kwargs' op | '[' string | "'rxtx_factor'" op | ']' op | '<=' number | '0' name | 'or' nl | '\n' name | 'kwargs' op | '[' string | "'rxtx_factor'" op | ']' op | '>' name | 'SQL_SP_FLOAT_MAX' op | ')' op | ':' newline | '\n' indent | ' ' name | 'raise' name | 'ValueError' op | '(' op | ')' newline | '\n' dedent | '' dedent | '' name | 'except' name | 'ValueError' op | ':' newline | '\n' indent | ' ' name | 'msg' op | '=' op | '(' name | '_' op | '(' string | '"\'rxtx_factor\' argument must be a float between 0 and %g"' op | ')' op | '%' nl | '\n' name | 'SQL_SP_FLOAT_MAX' op | ')' newline | '\n' name | 'raise' name | 'exception' op | '.' name | 'InvalidInput' op | '(' name | 'reason' op | '=' name | 'msg' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'kwargs' op | '[' string | "'name'" op | ']' op | '=' name | 'name' newline | '\n' name | 'kwargs' op | '[' string | "'flavorid'" op | ']' op | '=' name | 'flavorid' newline | '\n' comment | '# ensure is_public attribute is boolean' nl | '\n' name | 'try' op | ':' newline | '\n' indent | ' ' name | 'kwargs' op | '[' string | "'is_public'" op | ']' op | '=' name | 'strutils' op | '.' name | 'bool_from_string' op | '(' nl | '\n' name | 'is_public' op | ',' name | 'strict' op | '=' name | 'True' op | ')' newline | '\n' dedent | '' name | 'except' name | 'ValueError' op | ':' newline | '\n' indent | ' ' name | 'raise' name | 'exception' op | '.' name | 'InvalidInput' op | '(' name | 'reason' op | '=' name | '_' op | '(' string | '"is_public must be a boolean"' op | ')' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'flavor' op | '=' name | 'objects' op | '.' name | 'Flavor' op | '(' name | 'context' op | '=' name | 'context' op | '.' name | 'get_admin_context' op | '(' op | ')' op | ',' op | '**' name | 'kwargs' op | ')' newline | '\n' name | 'flavor' op | '.' name | 'create' op | '(' op | ')' newline | '\n' name | 'return' name | 'flavor' newline | '\n' nl | '\n' nl | '\n' DECL | function | destroy dedent | '' name | 'def' name | 'destroy' op | '(' name | 'name' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Marks flavor as deleted."""' newline | '\n' name | 'try' op | ':' newline | '\n' indent | ' ' name | 'if' name | 'not' name | 'name' op | ':' newline | '\n' indent | ' ' name | 'raise' name | 'ValueError' op | '(' op | ')' newline | '\n' dedent | '' name | 'flavor' op | '=' name | 'objects' op | '.' name | 'Flavor' op | '(' name | 'context' op | '=' name | 'context' op | '.' name | 'get_admin_context' op | '(' op | ')' op | ',' name | 'name' op | '=' name | 'name' op | ')' newline | '\n' name | 'flavor' op | '.' name | 'destroy' op | '(' op | ')' newline | '\n' dedent | '' name | 'except' op | '(' name | 'ValueError' op | ',' name | 'exception' op | '.' name | 'NotFound' op | ')' op | ':' newline | '\n' indent | ' ' name | 'LOG' op | '.' name | 'exception' op | '(' name | '_LE' op | '(' string | "'Instance type %s not found for deletion'" op | ')' op | ',' name | 'name' op | ')' newline | '\n' name | 'raise' name | 'exception' op | '.' name | 'FlavorNotFoundByName' op | '(' name | 'flavor_name' op | '=' name | 'name' op | ')' newline | '\n' nl | '\n' nl | '\n' DECL | function | get_all_flavors_sorted_list dedent | '' dedent | '' name | 'def' name | 'get_all_flavors_sorted_list' op | '(' name | 'ctxt' op | '=' name | 'None' op | ',' name | 'filters' op | '=' name | 'None' op | ',' name | 'sort_key' op | '=' string | "'flavorid'" op | ',' nl | '\n' name | 'sort_dir' op | '=' string | "'asc'" op | ',' name | 'limit' op | '=' name | 'None' op | ',' name | 'marker' op | '=' name | 'None' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Get all non-deleted flavors as a sorted list.\n """' newline | '\n' name | 'if' name | 'ctxt' name | 'is' name | 'None' op | ':' newline | '\n' indent | ' ' name | 'ctxt' op | '=' name | 'context' op | '.' name | 'get_admin_context' op | '(' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'return' name | 'objects' op | '.' name | 'FlavorList' op | '.' name | 'get_all' op | '(' name | 'ctxt' op | ',' name | 'filters' op | '=' name | 'filters' op | ',' name | 'sort_key' op | '=' name | 'sort_key' op | ',' nl | '\n' name | 'sort_dir' op | '=' name | 'sort_dir' op | ',' name | 'limit' op | '=' name | 'limit' op | ',' nl | '\n' name | 'marker' op | '=' name | 'marker' op | ')' newline | '\n' nl | '\n' nl | '\n' DECL | function | get_default_flavor dedent | '' name | 'def' name | 'get_default_flavor' op | '(' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Get the default flavor."""' newline | '\n' name | 'name' op | '=' name | 'CONF' op | '.' name | 'default_flavor' newline | '\n' name | 'return' name | 'get_flavor_by_name' op | '(' name | 'name' op | ')' newline | '\n' nl | '\n' nl | '\n' DECL | function | get_flavor_by_name dedent | '' name | 'def' name | 'get_flavor_by_name' op | '(' name | 'name' op | ',' name | 'ctxt' op | '=' name | 'None' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Retrieves single flavor by name."""' newline | '\n' name | 'if' name | 'name' name | 'is' name | 'None' op | ':' newline | '\n' indent | ' ' name | 'return' name | 'get_default_flavor' op | '(' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'if' name | 'ctxt' name | 'is' name | 'None' op | ':' newline | '\n' indent | ' ' name | 'ctxt' op | '=' name | 'context' op | '.' name | 'get_admin_context' op | '(' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'return' name | 'objects' op | '.' name | 'Flavor' op | '.' name | 'get_by_name' op | '(' name | 'ctxt' op | ',' name | 'name' op | ')' newline | '\n' nl | '\n' nl | '\n' comment | '# TODO(termie): flavor-specific code should probably be in the API that uses' nl | '\n' comment | '# flavors.' nl | '\n' DECL | function | get_flavor_by_flavor_id dedent | '' name | 'def' name | 'get_flavor_by_flavor_id' op | '(' name | 'flavorid' op | ',' name | 'ctxt' op | '=' name | 'None' op | ',' name | 'read_deleted' op | '=' string | '"yes"' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Retrieve flavor by flavorid.\n\n :raises: FlavorNotFound\n """' newline | '\n' name | 'if' name | 'ctxt' name | 'is' name | 'None' op | ':' newline | '\n' indent | ' ' name | 'ctxt' op | '=' name | 'context' op | '.' name | 'get_admin_context' op | '(' name | 'read_deleted' op | '=' name | 'read_deleted' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'return' name | 'objects' op | '.' name | 'Flavor' op | '.' name | 'get_by_flavor_id' op | '(' name | 'ctxt' op | ',' name | 'flavorid' op | ',' name | 'read_deleted' op | ')' newline | '\n' nl | '\n' nl | '\n' DECL | function | get_flavor_access_by_flavor_id dedent | '' name | 'def' name | 'get_flavor_access_by_flavor_id' op | '(' name | 'flavorid' op | ',' name | 'ctxt' op | '=' name | 'None' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Retrieve flavor access list by flavor id."""' newline | '\n' name | 'if' name | 'ctxt' name | 'is' name | 'None' op | ':' newline | '\n' indent | ' ' name | 'ctxt' op | '=' name | 'context' op | '.' name | 'get_admin_context' op | '(' op | ')' newline | '\n' nl | '\n' dedent | '' name | 'flavor' op | '=' name | 'objects' op | '.' name | 'Flavor' op | '.' name | 'get_by_flavor_id' op | '(' name | 'ctxt' op | ',' name | 'flavorid' op | ')' newline | '\n' name | 'return' name | 'flavor' op | '.' name | 'projects' newline | '\n' nl | '\n' nl | '\n' comment | '# NOTE(danms): This method is deprecated, do not use it!' nl | '\n' comment | '# Use instance.{old_,new_,}flavor instead, as instances no longer' nl | '\n' comment | '# have flavor information in system_metadata.' nl | '\n' DECL | function | extract_flavor dedent | '' name | 'def' name | 'extract_flavor' op | '(' name | 'instance' op | ',' name | 'prefix' op | '=' string | "''" op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Create a Flavor object from instance\'s system_metadata\n information.\n """' newline | '\n' nl | '\n' name | 'flavor' op | '=' name | 'objects' op | '.' name | 'Flavor' op | '(' op | ')' newline | '\n' name | 'sys_meta' op | '=' name | 'utils' op | '.' name | 'instance_sys_meta' op | '(' name | 'instance' op | ')' newline | '\n' nl | '\n' name | 'if' name | 'not' name | 'sys_meta' op | ':' newline | '\n' indent | ' ' name | 'return' name | 'None' newline | '\n' nl | '\n' dedent | '' name | 'for' name | 'key' name | 'in' name | 'system_metadata_flavor_props' op | '.' name | 'keys' op | '(' op | ')' op | ':' newline | '\n' indent | ' ' name | 'type_key' op | '=' string | "'%sinstance_type_%s'" op | '%' op | '(' name | 'prefix' op | ',' name | 'key' op | ')' newline | '\n' name | 'setattr' op | '(' name | 'flavor' op | ',' name | 'key' op | ',' name | 'sys_meta' op | '[' name | 'type_key' op | ']' op | ')' newline | '\n' nl | '\n' comment | '# NOTE(danms): We do NOT save all of extra_specs, but only the' nl | '\n' comment | '# NUMA-related ones that we need to avoid an uglier alternative. This' nl | '\n' comment | '# should be replaced by a general split-out of flavor information from' nl | '\n' comment | '# system_metadata very soon.' nl | '\n' dedent | '' name | 'extra_specs' op | '=' op | '[' op | '(' name | 'k' op | ',' name | 'v' op | ')' name | 'for' name | 'k' op | ',' name | 'v' name | 'in' name | 'sys_meta' op | '.' name | 'items' op | '(' op | ')' nl | '\n' name | 'if' name | 'k' op | '.' name | 'startswith' op | '(' string | "'%sinstance_type_extra_'" op | '%' name | 'prefix' op | ')' op | ']' newline | '\n' name | 'if' name | 'extra_specs' op | ':' newline | '\n' indent | ' ' name | 'flavor' op | '.' name | 'extra_specs' op | '=' op | '{' op | '}' newline | '\n' name | 'for' name | 'key' op | ',' name | 'value' name | 'in' name | 'extra_specs' op | ':' newline | '\n' indent | ' ' name | 'extra_key' op | '=' name | 'key' op | '[' name | 'len' op | '(' string | "'%sinstance_type_extra_'" op | '%' name | 'prefix' op | ')' op | ':' op | ']' newline | '\n' name | 'flavor' op | '.' name | 'extra_specs' op | '[' name | 'extra_key' op | ']' op | '=' name | 'value' newline | '\n' nl | '\n' dedent | '' dedent | '' name | 'return' name | 'flavor' newline | '\n' nl | '\n' nl | '\n' comment | '# NOTE(danms): This method is deprecated, do not use it!' nl | '\n' comment | '# Use instance.{old_,new_,}flavor instead, as instances no longer' nl | '\n' comment | '# have flavor information in system_metadata.' nl | '\n' DECL | function | save_flavor_info dedent | '' name | 'def' name | 'save_flavor_info' op | '(' name | 'metadata' op | ',' name | 'instance_type' op | ',' name | 'prefix' op | '=' string | "''" op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Save properties from instance_type into instance\'s system_metadata,\n in the format of:\n\n [prefix]instance_type_[key]\n\n This can be used to update system_metadata in place from a type, as well\n as stash information about another instance_type for later use (such as\n during resize).\n """' newline | '\n' nl | '\n' name | 'for' name | 'key' name | 'in' name | 'system_metadata_flavor_props' op | '.' name | 'keys' op | '(' op | ')' op | ':' newline | '\n' indent | ' ' name | 'to_key' op | '=' string | "'%sinstance_type_%s'" op | '%' op | '(' name | 'prefix' op | ',' name | 'key' op | ')' newline | '\n' name | 'metadata' op | '[' name | 'to_key' op | ']' op | '=' name | 'instance_type' op | '[' name | 'key' op | ']' newline | '\n' nl | '\n' comment | '# NOTE(danms): We do NOT save all of extra_specs here, but only the' nl | '\n' comment | '# NUMA-related ones that we need to avoid an uglier alternative. This' nl | '\n' comment | '# should be replaced by a general split-out of flavor information from' nl | '\n' comment | '# system_metadata very soon.' nl | '\n' dedent | '' name | 'extra_specs' op | '=' name | 'instance_type' op | '.' name | 'get' op | '(' string | "'extra_specs'" op | ',' op | '{' op | '}' op | ')' newline | '\n' name | 'for' name | 'extra_prefix' name | 'in' name | 'system_metadata_flavor_extra_props' op | ':' newline | '\n' indent | ' ' name | 'for' name | 'key' name | 'in' name | 'extra_specs' op | ':' newline | '\n' indent | ' ' name | 'if' name | 'key' op | '.' name | 'startswith' op | '(' name | 'extra_prefix' op | ')' op | ':' newline | '\n' indent | ' ' name | 'to_key' op | '=' string | "'%sinstance_type_extra_%s'" op | '%' op | '(' name | 'prefix' op | ',' name | 'key' op | ')' newline | '\n' name | 'metadata' op | '[' name | 'to_key' op | ']' op | '=' name | 'extra_specs' op | '[' name | 'key' op | ']' newline | '\n' nl | '\n' dedent | '' dedent | '' dedent | '' name | 'return' name | 'metadata' newline | '\n' nl | '\n' nl | '\n' comment | '# NOTE(danms): This method is deprecated, do not use it!' nl | '\n' comment | '# Instances no longer store flavor information in system_metadata' nl | '\n' DECL | function | delete_flavor_info dedent | '' name | 'def' name | 'delete_flavor_info' op | '(' name | 'metadata' op | ',' op | '*' name | 'prefixes' op | ')' op | ':' newline | '\n' indent | ' ' string | '"""Delete flavor instance_type information from instance\'s system_metadata\n by prefix.\n """' newline | '\n' nl | '\n' name | 'for' name | 'key' name | 'in' name | 'system_metadata_flavor_props' op | '.' name | 'keys' op | '(' op | ')' op | ':' newline | '\n' indent | ' ' name | 'for' name | 'prefix' name | 'in' name | 'prefixes' op | ':' newline | '\n' indent | ' ' name | 'to_key' op | '=' string | "'%sinstance_type_%s'" op | '%' op | '(' name | 'prefix' op | ',' name | 'key' op | ')' newline | '\n' name | 'del' name | 'metadata' op | '[' name | 'to_key' op | ']' newline | '\n' nl | '\n' comment | '# NOTE(danms): We do NOT save all of extra_specs, but only the' nl | '\n' comment | '# NUMA-related ones that we need to avoid an uglier alternative. This' nl | '\n' comment | '# should be replaced by a general split-out of flavor information from' nl | '\n' comment | '# system_metadata very soon.' nl | '\n' dedent | '' dedent | '' name | 'for' name | 'key' name | 'in' name | 'list' op | '(' name | 'metadata' op | '.' name | 'keys' op | '(' op | ')' op | ')' op | ':' newline | '\n' indent | ' ' name | 'for' name | 'prefix' name | 'in' name | 'prefixes' op | ':' newline | '\n' indent | ' ' name | 'if' name | 'key' op | '.' name | 'startswith' op | '(' string | "'%sinstance_type_extra_'" op | '%' name | 'prefix' op | ')' op | ':' newline | '\n' indent | ' ' name | 'del' name | 'metadata' op | '[' name | 'key' op | ']' newline | '\n' nl | '\n' dedent | '' dedent | '' dedent | '' name | 'return' name | 'metadata' newline | '\n' nl | '\n' nl | '\n' DECL | function | validate_extra_spec_keys dedent | '' name | 'def' name | 'validate_extra_spec_keys' op | '(' name | 'key_names_list' op | ')' op | ':' newline | '\n' indent | ' ' name | 'for' name | 'key_name' name | 'in' name | 'key_names_list' op | ':' newline | '\n' indent | ' ' name | 'if' name | 'not' name | 'VALID_EXTRASPEC_NAME_REGEX' op | '.' name | 'match' op | '(' name | 'key_name' op | ')' op | ':' newline | '\n' indent | ' ' name | 'expl' op | '=' name | '_' op | '(' string | "'Key Names can only contain alphanumeric characters, '" nl | '\n' string | "'periods, dashes, underscores, colons and spaces.'" op | ')' newline | '\n' name | 'raise' name | 'exception' op | '.' name | 'InvalidInput' op | '(' name | 'message' op | '=' name | 'expl' op | ')' newline | '\n' dedent | '' dedent | '' dedent | '' endmarker | '' end_unit
def predict(x_test, model): # predict y_pred = model.predict(x_test) y_pred_scores = model.predict_proba(x_test) return y_pred, y_pred_scores
def predict(x_test, model): y_pred = model.predict(x_test) y_pred_scores = model.predict_proba(x_test) return (y_pred, y_pred_scores)
"""myeloma_snv cli tests.""" ''' from datetime import datetime from os.path import isfile, join from click.testing import CliRunner from myeloma_snv import cli def test_main_snv(tmpdir): """Test for main command.""" outdir = str(tmpdir) params = [] with open("../tests/test_args_snv.txt") as f: params = f.readlines() params = [x.strip() for x in params] params.append(join('--outdir', outdir)) runner = CliRunner() result = runner.invoke(cli.main, params) assert result.exit_code == 0 # Exit code is 2!! date = str(datetime.today()).split()[0].split("-") name = '/ID131074' name = '_'.join([name, '_'.join(date)]) expected_goodcalls_csv = join(outdir, name + '_goodcalls.csv') expected_badcalls_csv = join(outdir, name + '_badcalls.csv') expected_report_txt = join(outdir, name + '_report.txt') assert isfile(expected_goodcalls_csv) assert isfile(expected_badcalls_csv) assert isfile(expected_report_txt) # Something is not working here: # Exit code is not 0 # outdir does not seem to work # # Check if output file exists. Pass the tempdir as outdir to the function. # # Can make environmental variables in pytest.ini folder. # This can include dictionaries with variables to pass. '''
"""myeloma_snv cli tests.""" '\nfrom datetime import datetime\nfrom os.path import isfile, join\nfrom click.testing import CliRunner\n\nfrom myeloma_snv import cli\n\ndef test_main_snv(tmpdir):\n """Test for main command."""\n\n outdir = str(tmpdir)\n\n params = []\n with open("../tests/test_args_snv.txt") as f:\n params = f.readlines()\n params = [x.strip() for x in params]\n\n params.append(join(\'--outdir\', outdir))\n\n runner = CliRunner()\n\n result = runner.invoke(cli.main, params)\n assert result.exit_code == 0 # Exit code is 2!!\n\n date = str(datetime.today()).split()[0].split("-")\n name = \'/ID131074\'\n name = \'_\'.join([name, \'_\'.join(date)])\n expected_goodcalls_csv = join(outdir, name + \'_goodcalls.csv\')\n expected_badcalls_csv = join(outdir, name + \'_badcalls.csv\')\n expected_report_txt = join(outdir, name + \'_report.txt\')\n\n assert isfile(expected_goodcalls_csv)\n assert isfile(expected_badcalls_csv)\n assert isfile(expected_report_txt)\n\n # Something is not working here:\n # Exit code is not 0\n # outdir does not seem to work\n #\n # Check if output file exists. Pass the tempdir as outdir to the function.\n #\n # Can make environmental variables in pytest.ini folder.\n # This can include dictionaries with variables to pass.\n'
r = [int (r) for r in input().split()] renas = ['Rudolph','Dasher','Dancer','Prancer','Vixen','Comet','Cupid','Donner','Blitzen'] b = 0 for s in range(len(r)): b = b + r[s] resto = b%9 for t in range(0,9): if resto == t: print(renas[t])
r = [int(r) for r in input().split()] renas = ['Rudolph', 'Dasher', 'Dancer', 'Prancer', 'Vixen', 'Comet', 'Cupid', 'Donner', 'Blitzen'] b = 0 for s in range(len(r)): b = b + r[s] resto = b % 9 for t in range(0, 9): if resto == t: print(renas[t])
# This exercise should be done in Jupyter and in the interpreter # Print your name print('My name is Anne.')
print('My name is Anne.')
""" PigLatinTranslator.py Simple Programs Copyright (C) 2018 Ethan Dye. All rights reserved. """ print("Hello, World!")
""" PigLatinTranslator.py Simple Programs Copyright (C) 2018 Ethan Dye. All rights reserved. """ print('Hello, World!')
n = input() while len(n) > 1: x = 1 for c in n: if c != '0': x *= int(c) n = str(x) print(n)
n = input() while len(n) > 1: x = 1 for c in n: if c != '0': x *= int(c) n = str(x) print(n)
"""Utility to add editor syntax highlighting to literal code strings. Example: from google.colab import syntax query = syntax.sql(''' SELECT * from tablename ''') """ def html(s): """Noop function to enable HTML highlighting for its argument.""" return s def javascript(s): """Noop function to enable JavaScript highlighting for its argument.""" return s def sql(s): """Noop function to enable SQL highlighting for its argument.""" return s def css(s): """Noop function to enable CSS highlighting for its argument.""" return s
"""Utility to add editor syntax highlighting to literal code strings. Example: from google.colab import syntax query = syntax.sql(''' SELECT * from tablename ''') """ def html(s): """Noop function to enable HTML highlighting for its argument.""" return s def javascript(s): """Noop function to enable JavaScript highlighting for its argument.""" return s def sql(s): """Noop function to enable SQL highlighting for its argument.""" return s def css(s): """Noop function to enable CSS highlighting for its argument.""" return s
# from the paper `using cython to speedup numerical python programs' #pythran export timeloop(float, float, float, float, float, float list list, float list list, float list list) #pythran export timeloop(float, float, float, float, float, int list list, int list list, int list list) #bench A=[list(range(70)) for i in range(100)] ; B=[list(range(70)) for i in range(100)] ; C=[list(range(70)) for i in range(100)] ; timeloop(1.,2.,.01,.1,.18, A,B,C ) #runas A=[list(range(10)) for i in range(5)] ; B=[list(range(10)) for i in range(5)] ; C=[list(range(10)) for i in range(5)] ; timeloop(1.,2.,.1,.1,.2, A,B,C ) def timeloop(t, t_stop, dt, dx, dy, u, um, k): while t <= t_stop: t += dt new_u = calculate_u(dt, dx, dy, u, um, k) um = u u = new_u return u def calculate_u(dt, dx, dy, u, um, k): up = [ [0.]*len(u[0]) for i in range(len(u)) ] "omp parallel for" for i in range(1, len(u)-1): for j in range(1, len(u[0])-1): up[i][j] = 2*u[i][j] - um[i][j] + \ (dt/dx)**2*( (0.5*(k[i+1][j] + k[i][j])*(u[i+1][j] - u[i][j]) - 0.5*(k[i][j] + k[i-1][j])*(u[i][j] - u[i-1][j]))) + \ (dt/dy)**2*( (0.5*(k[i][j+1] + k[i][j])*(u[i][j+1] - u[i][j]) - 0.5*(k[i][j] + k[i][j-1])*(u[i][j] - u[i][j-1]))) return up
def timeloop(t, t_stop, dt, dx, dy, u, um, k): while t <= t_stop: t += dt new_u = calculate_u(dt, dx, dy, u, um, k) um = u u = new_u return u def calculate_u(dt, dx, dy, u, um, k): up = [[0.0] * len(u[0]) for i in range(len(u))] 'omp parallel for' for i in range(1, len(u) - 1): for j in range(1, len(u[0]) - 1): up[i][j] = 2 * u[i][j] - um[i][j] + (dt / dx) ** 2 * (0.5 * (k[i + 1][j] + k[i][j]) * (u[i + 1][j] - u[i][j]) - 0.5 * (k[i][j] + k[i - 1][j]) * (u[i][j] - u[i - 1][j])) + (dt / dy) ** 2 * (0.5 * (k[i][j + 1] + k[i][j]) * (u[i][j + 1] - u[i][j]) - 0.5 * (k[i][j] + k[i][j - 1]) * (u[i][j] - u[i][j - 1])) return up
#Python task list example taskList = [] def commander(): print("\na to add, s to show list, q to quit") commandOrder = input("Command --> ") if commandOrder == "a": addTasks() if commandOrder == "s": printTasklist() if commandOrder == "q": print("Bye Bye Friend....") def addTasks(): print("Please enter a task (Q to stop adding):") while True: newTask = input("Task --> ") if str.lower(newTask) == "q": commander() taskList.append(newTask) def printTasklist(): print("\n\nTasklist:") print("----------------------------") taskCounter = 0 for task in taskList: taskCounter += 1 print(f"#{taskCounter} {task.title()}") commander() #program starts running here print("Python Tasklist v 1.0\n") commander()
task_list = [] def commander(): print('\na to add, s to show list, q to quit') command_order = input('Command --> ') if commandOrder == 'a': add_tasks() if commandOrder == 's': print_tasklist() if commandOrder == 'q': print('Bye Bye Friend....') def add_tasks(): print('Please enter a task (Q to stop adding):') while True: new_task = input('Task --> ') if str.lower(newTask) == 'q': commander() taskList.append(newTask) def print_tasklist(): print('\n\nTasklist:') print('----------------------------') task_counter = 0 for task in taskList: task_counter += 1 print(f'#{taskCounter} {task.title()}') commander() print('Python Tasklist v 1.0\n') commander()
class C: def m1(self): pass # <editor-fold desc="Description"> def m2(self): pass def m3(self): pass # </editor-fold>
class C: def m1(self): pass def m2(self): pass def m3(self): pass
''' Created on Aug 14, 2016 @author: rafacarv '''
""" Created on Aug 14, 2016 @author: rafacarv """
class CBWGroup(object): def __init__(self, id="", name="", created_at="", updated_at=""): self.group_id = id self.name = name self.created_at = created_at self.updated_at = updated_at
class Cbwgroup(object): def __init__(self, id='', name='', created_at='', updated_at=''): self.group_id = id self.name = name self.created_at = created_at self.updated_at = updated_at
def print_board(data, board): snake_index = 0 for snake in board['snakes']: if (snake['id'] == data['you']['id']): break snake_index += 1 print("My snake: " + str(snake_index)) for i in range(board['height'] - 1, -1, -1): for j in range(0, board['width'], 1): found_snake = False for k in range(len(board['snakes'])): #head if ({'x': j, 'y': i} == board['snakes'][k]['body'][0]): print(str(k), end =">") found_snake = True break #tail elif ({'x': j, 'y': i} == board['snakes'][k]['body'][len(board['snakes'][k]['body']) - 1]): print(str(k), end =")") found_snake = True break #body elif ({'x': j, 'y': i} in board['snakes'][k]['body']): print(str(k), end =" ") found_snake = True break if (found_snake): continue if ({'x': j, 'y': i} in board['food']): print("$", end =" ") else: print("-", end =" ") print(" ")
def print_board(data, board): snake_index = 0 for snake in board['snakes']: if snake['id'] == data['you']['id']: break snake_index += 1 print('My snake: ' + str(snake_index)) for i in range(board['height'] - 1, -1, -1): for j in range(0, board['width'], 1): found_snake = False for k in range(len(board['snakes'])): if {'x': j, 'y': i} == board['snakes'][k]['body'][0]: print(str(k), end='>') found_snake = True break elif {'x': j, 'y': i} == board['snakes'][k]['body'][len(board['snakes'][k]['body']) - 1]: print(str(k), end=')') found_snake = True break elif {'x': j, 'y': i} in board['snakes'][k]['body']: print(str(k), end=' ') found_snake = True break if found_snake: continue if {'x': j, 'y': i} in board['food']: print('$', end=' ') else: print('-', end=' ') print(' ')
# automatically generated by the FlatBuffers compiler, do not modify # namespace: class Value(object): NONE = 0 boolean = 1 i8 = 2 u8 = 3 i16 = 4 u16 = 5 i32 = 6 u32 = 7 i64 = 8 u64 = 9 f32 = 10 f64 = 11 str = 12 str_list = 13 int32_list = 14 float_list = 15 bin = 16
class Value(object): none = 0 boolean = 1 i8 = 2 u8 = 3 i16 = 4 u16 = 5 i32 = 6 u32 = 7 i64 = 8 u64 = 9 f32 = 10 f64 = 11 str = 12 str_list = 13 int32_list = 14 float_list = 15 bin = 16
l = [1,2,3] assert 1 in l assert 5 not in l d = {1:2} assert 1 in d assert 2 not in d d[2] = d assert 2 in d print("ok")
l = [1, 2, 3] assert 1 in l assert 5 not in l d = {1: 2} assert 1 in d assert 2 not in d d[2] = d assert 2 in d print('ok')
# -*- coding: utf-8 -*- """DOCSTRING.""" class Settings(object): WIDTH = 800 HEIGHT = 600 SCROLL_SPEED = 30 SAVE_FOLDER = 'saves'
"""DOCSTRING.""" class Settings(object): width = 800 height = 600 scroll_speed = 30 save_folder = 'saves'
def encode(message, rails): period = 2 * rails - 2 rows = [[] for _ in range(rails)] for i, c in enumerate(message): rows[min(i % period, period - i % period)].append(c) return ''.join(''.join(row) for row in rows) def decode(encoded_message, rails): period = 2 * rails - 2 rows_size = [0] * rails rows = [] text = [] for i in range(len(encoded_message)): rows_size[min(i % period, period - i % period)] += 1 encoded_message = iter(encoded_message) for size in rows_size: rows.append([next(encoded_message) for _ in range(size)][::-1]) for i in range(sum(rows_size)): text.append(rows[min(i % period, period - i % period)].pop()) return ''.join(text)
def encode(message, rails): period = 2 * rails - 2 rows = [[] for _ in range(rails)] for (i, c) in enumerate(message): rows[min(i % period, period - i % period)].append(c) return ''.join((''.join(row) for row in rows)) def decode(encoded_message, rails): period = 2 * rails - 2 rows_size = [0] * rails rows = [] text = [] for i in range(len(encoded_message)): rows_size[min(i % period, period - i % period)] += 1 encoded_message = iter(encoded_message) for size in rows_size: rows.append([next(encoded_message) for _ in range(size)][::-1]) for i in range(sum(rows_size)): text.append(rows[min(i % period, period - i % period)].pop()) return ''.join(text)
__author__ = 'Kalyan' notes = ''' 1. Read instructions for each function carefully. 2. Feel free to create new functions if needed. Give good names! 3. Use builtins and datatypes that we have seen so far. 4. If something about the function spec is not clear, use the corresponding test for clarification. 5. Many python builtin functions allow you to pass functions to customize their behavior. This makes it very productive to get things done in python. ''' # Given a list of age, height of various people [(name, years, cms), .... ]. Sort them in decreasing by age and increasing by height. # NOTE: define a function and pass it to the builtin sort function (key) to get this done, don't do your own sort. # Do the sort in-place (ie) don't create new lists. def custom_sort(input): if(input==None): return None if(input==[]): return [] else: input.sort(key=get_data) input.sort(key=get_age,reverse=True) pass def single_custom_sort_test(input, expected): custom_sort(input) # sorts in place assert input == expected def test_custom_sort(): # boundary cases single_custom_sort_test(None, None) single_custom_sort_test([], []) # no collisions single_custom_sort_test( [("Ram", 25, 160), ("Shyam", 30, 162), ("Sita", 15, 130)], [("Shyam", 30, 162), ("Ram", 25, 160), ("Sita", 15, 130)]) # collisions in age single_custom_sort_test( [("Ram", 25, 165), ("Shyam", 30, 162), ("Ravi", 25, 160), ("Gita", 30, 140)], [("Gita", 30, 140), ("Shyam", 30, 162), ("Ravi", 25, 160), ("Ram", 25, 165)]) # collisions in age and height, then initial order is maintained in stable sorts. single_custom_sort_test( [("Ram", 25, 165), ("Shyam", 30, 140), ("Ravi", 25, 165), ("Gita", 30, 140)], [("Shyam", 30, 140), ("Gita", 30, 140), ("Ram", 25, 165), ("Ravi", 25, 165)]) VOWELS = set("aeiou") # returns the word with the maximum number of vowels, in case of tie return # the word which occurs first. Use the builtin max function and pass a key func to get this done. def max_vowels(words): max=0 if (words==[]or words== None): return None else: k=words[0] for i in words: x=set(i)& VOWELS if(len(x)>max): max=len(x) k=i return k pass def test_max_vowels(): assert None == max_vowels(None) assert None == max_vowels([]) assert "hello" == max_vowels(["hello", "pot", "gut", "sit"]) assert "engine" == max_vowels(["engine", "hello", "pot", "gut", "sit"]) assert "automobile" == max_vowels(["engine", "hello", "pot", "gut", "sit", "automobile"]) assert "fly" == max_vowels(["fly", "pry", "ply"]) def get_data(o): return o[2] def get_age(o): return o[1]
__author__ = 'Kalyan' notes = '\n1. Read instructions for each function carefully.\n2. Feel free to create new functions if needed. Give good names!\n3. Use builtins and datatypes that we have seen so far.\n4. If something about the function spec is not clear, use the corresponding test\n for clarification.\n5. Many python builtin functions allow you to pass functions to customize their behavior. This makes it very productive\n to get things done in python.\n' def custom_sort(input): if input == None: return None if input == []: return [] else: input.sort(key=get_data) input.sort(key=get_age, reverse=True) pass def single_custom_sort_test(input, expected): custom_sort(input) assert input == expected def test_custom_sort(): single_custom_sort_test(None, None) single_custom_sort_test([], []) single_custom_sort_test([('Ram', 25, 160), ('Shyam', 30, 162), ('Sita', 15, 130)], [('Shyam', 30, 162), ('Ram', 25, 160), ('Sita', 15, 130)]) single_custom_sort_test([('Ram', 25, 165), ('Shyam', 30, 162), ('Ravi', 25, 160), ('Gita', 30, 140)], [('Gita', 30, 140), ('Shyam', 30, 162), ('Ravi', 25, 160), ('Ram', 25, 165)]) single_custom_sort_test([('Ram', 25, 165), ('Shyam', 30, 140), ('Ravi', 25, 165), ('Gita', 30, 140)], [('Shyam', 30, 140), ('Gita', 30, 140), ('Ram', 25, 165), ('Ravi', 25, 165)]) vowels = set('aeiou') def max_vowels(words): max = 0 if words == [] or words == None: return None else: k = words[0] for i in words: x = set(i) & VOWELS if len(x) > max: max = len(x) k = i return k pass def test_max_vowels(): assert None == max_vowels(None) assert None == max_vowels([]) assert 'hello' == max_vowels(['hello', 'pot', 'gut', 'sit']) assert 'engine' == max_vowels(['engine', 'hello', 'pot', 'gut', 'sit']) assert 'automobile' == max_vowels(['engine', 'hello', 'pot', 'gut', 'sit', 'automobile']) assert 'fly' == max_vowels(['fly', 'pry', 'ply']) def get_data(o): return o[2] def get_age(o): return o[1]
a1 = b'\x02' b1 = 'AB' c1 = 'EF' c2 = None d1 = b'\x03' bb = a1 + bytes(b1.encode()) + bytes(c1.encode()) + d1 bb2 = a1 + bytes(b1.encode()) + bytes(c2.encode()) + d1 print(type(bb), bb)
a1 = b'\x02' b1 = 'AB' c1 = 'EF' c2 = None d1 = b'\x03' bb = a1 + bytes(b1.encode()) + bytes(c1.encode()) + d1 bb2 = a1 + bytes(b1.encode()) + bytes(c2.encode()) + d1 print(type(bb), bb)
class Solution: def reverseBits(self, n: int) -> int: # we can take the last bit of "n" by doing "n % 2" # and shift the "n" to the right # then we paste the last bit to the first bit of "res" # by using `|` operation # Take 0101 as an example: # 0010 (1) => 1 000 # 0001 (0) => 10 00 # 0000 (1) => 101 0 # 0000 (0) => 1010 res = 0 for i in range(32): bit = n % 2 n >>= 1 # res += 2 ** (31-i) if bit else 0 res |= bit << (31-i) return res
class Solution: def reverse_bits(self, n: int) -> int: res = 0 for i in range(32): bit = n % 2 n >>= 1 res |= bit << 31 - i return res
"Create maps with OpenStreetMap layers in a minute and embed them in your site." VERSION = (1, 0, 0) __author__ = 'Yohan Boniface' __contact__ = "[email protected]" __homepage__ = "https://github.com/umap-project/umap" __version__ = ".".join(map(str, VERSION))
"""Create maps with OpenStreetMap layers in a minute and embed them in your site.""" version = (1, 0, 0) __author__ = 'Yohan Boniface' __contact__ = '[email protected]' __homepage__ = 'https://github.com/umap-project/umap' __version__ = '.'.join(map(str, VERSION))
#!/user/bin/env python '''structureToPolymerSequences.py: This mapper maps a structure to it's polypeptides, polynucleotide chain sequences. For a multi-model structure, only the first model is considered. ''' __author__ = "Mars (Shih-Cheng) Huang" __maintainer__ = "Mars (Shih-Cheng) Huang" __email__ = "[email protected]" __version__ = "0.2.0" __status__ = "Done" class StructureToPolymerSequences(object): '''This mapper maps a structure to it's polypeptides, polynucleotide chain sequences. For a multi-model structure, only the first model is considered. ''' def __init__(self, useChainIdInsteadOfChainName=False, excludeDuplicates=False): '''Extracts all polymer chains from a structure. If the argument is set to true, the assigned key is: <PDB ID.Chain ID>, where Chain ID is the unique identifier assigned to each molecular entity in an mmCIF file. This Chain ID corresponds to `_atom_site.label_asym_id <http://mmcif.wwpdb.org/dictionaries/mmcif_mdb.dic/Items/_atom_site.label_asym_id.html>`_ field in an mmCIF file. Parameters ---------- useChainIdInsteadOfChainName : bool if true, use the Chain Id in the key assignments excludeDuplicates : bool if true, return only one chain for each unique sequence= t[1] ''' self.useChainIdInsteadOfChainName = useChainIdInsteadOfChainName self.excludeDuplicates = excludeDuplicates def __call__(self, t): structure = t[1] sequences = list() seqSet = set() chainToEntityIndex = self._get_chain_to_entity_index(structure) for i in range(structure.chains_per_model[0]): polymer = structure.entity_list[chainToEntityIndex[i]]['type'] == 'polymer' if polymer: key = t[0] if '.' in key: key = key.split('.')[0] key += '.' if self.useChainIdInsteadOfChainName: key += structure.chain_id_list[i] else: key += structure.chain_name_list[i] if self.excludeDuplicates: if chainToEntityIndex[i] in seqSet: continue seqSet.add(chainToEntityIndex[i]) sequences.append( (key, structure.entity_list[chainToEntityIndex[i]]['sequence'])) return sequences def _get_chain_to_entity_index(self, structure): entityChainIndex = [0] * structure.num_chains for i in range(len(structure.entity_list)): for j in structure.entity_list[i]['chainIndexList']: entityChainIndex[j] = i return entityChainIndex
"""structureToPolymerSequences.py: This mapper maps a structure to it's polypeptides, polynucleotide chain sequences. For a multi-model structure, only the first model is considered. """ __author__ = 'Mars (Shih-Cheng) Huang' __maintainer__ = 'Mars (Shih-Cheng) Huang' __email__ = '[email protected]' __version__ = '0.2.0' __status__ = 'Done' class Structuretopolymersequences(object): """This mapper maps a structure to it's polypeptides, polynucleotide chain sequences. For a multi-model structure, only the first model is considered. """ def __init__(self, useChainIdInsteadOfChainName=False, excludeDuplicates=False): """Extracts all polymer chains from a structure. If the argument is set to true, the assigned key is: <PDB ID.Chain ID>, where Chain ID is the unique identifier assigned to each molecular entity in an mmCIF file. This Chain ID corresponds to `_atom_site.label_asym_id <http://mmcif.wwpdb.org/dictionaries/mmcif_mdb.dic/Items/_atom_site.label_asym_id.html>`_ field in an mmCIF file. Parameters ---------- useChainIdInsteadOfChainName : bool if true, use the Chain Id in the key assignments excludeDuplicates : bool if true, return only one chain for each unique sequence= t[1] """ self.useChainIdInsteadOfChainName = useChainIdInsteadOfChainName self.excludeDuplicates = excludeDuplicates def __call__(self, t): structure = t[1] sequences = list() seq_set = set() chain_to_entity_index = self._get_chain_to_entity_index(structure) for i in range(structure.chains_per_model[0]): polymer = structure.entity_list[chainToEntityIndex[i]]['type'] == 'polymer' if polymer: key = t[0] if '.' in key: key = key.split('.')[0] key += '.' if self.useChainIdInsteadOfChainName: key += structure.chain_id_list[i] else: key += structure.chain_name_list[i] if self.excludeDuplicates: if chainToEntityIndex[i] in seqSet: continue seqSet.add(chainToEntityIndex[i]) sequences.append((key, structure.entity_list[chainToEntityIndex[i]]['sequence'])) return sequences def _get_chain_to_entity_index(self, structure): entity_chain_index = [0] * structure.num_chains for i in range(len(structure.entity_list)): for j in structure.entity_list[i]['chainIndexList']: entityChainIndex[j] = i return entityChainIndex
class ChooserStatistician: def __init__(self, m_iterations): self.m_iterations = m_iterations @property def m_iterations(self): return self._m_iterations @m_iterations.setter def m_iterations(self, m_iterations): if not m_iterations > 1: raise ValueError("Number of iterations should be > 1") self._m_iterations = m_iterations def get_chooser_p(self, chooser): return sum(chooser.is_win() for _ in range(self.m_iterations)) / self.m_iterations
class Chooserstatistician: def __init__(self, m_iterations): self.m_iterations = m_iterations @property def m_iterations(self): return self._m_iterations @m_iterations.setter def m_iterations(self, m_iterations): if not m_iterations > 1: raise value_error('Number of iterations should be > 1') self._m_iterations = m_iterations def get_chooser_p(self, chooser): return sum((chooser.is_win() for _ in range(self.m_iterations))) / self.m_iterations
# a = '42' # print(type(a)) # a = int(a) # print(type(a)) # b = 'a2' # print(type(b)) # b = int(b) ERROR ->>>> this cause error!!! because of 'a' in 'a2' # c = 3.141592 # print(type(c)) # c = int(c) # print(c, type(c)) d = '3.141592' print(type(d)) d = int(float(d)) print(d, type(d))
d = '3.141592' print(type(d)) d = int(float(d)) print(d, type(d))
""" Visualization module. This module contains visualization functions for functional data. """
""" Visualization module. This module contains visualization functions for functional data. """
class Config(object): """Common configurations""" MINIFY_PAGE = True SSL_DISABLE = False SQLALCHEMY_COMMIT_ON_TEARDOWN = True SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True # MAIL_SERVER = 'smtp.googlemail.com' # MAIL_PORT = 587 # MAIL_USE_TLS = True # MAIL_USERNAME = os.environ.get('MAIL_USERNAME') # MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') class DevelopmentConfig(Config): """Development configurations""" DEBUG = True SQLALCHEMY_ECHO = True TESTING = False class TestingConfig(DevelopmentConfig): TESTING = True SQLALCHEMY_DATABASE_URI = 'mysql://test_user:test_password@localhost/test_database' class ProductionConfig(Config): """Production configurations""" DEBUG = False app_config = { 'development': 'config.DevelopmentConfig', 'production': 'config.ProductionConfig', 'testing': 'config.TestingConfig' }
class Config(object): """Common configurations""" minify_page = True ssl_disable = False sqlalchemy_commit_on_teardown = True sqlalchemy_track_modifications = False sqlalchemy_record_queries = True class Developmentconfig(Config): """Development configurations""" debug = True sqlalchemy_echo = True testing = False class Testingconfig(DevelopmentConfig): testing = True sqlalchemy_database_uri = 'mysql://test_user:test_password@localhost/test_database' class Productionconfig(Config): """Production configurations""" debug = False app_config = {'development': 'config.DevelopmentConfig', 'production': 'config.ProductionConfig', 'testing': 'config.TestingConfig'}
class MultiStack: def __init__(self, stacksize): self.numstacks = 3 self.array = [0] * (stacksize * self.numstacks) self.sizes = [0] * self.numstacks self.stacksize = stacksize def Push(self, item, stacknum): if self.IsFull(stacknum): raise Exception("Stack is full") self.sizes[stacknum] += 1 self.array[self.IndexOfTop(stacknum)] = item def Pop(self, stacknum): if self.IsEmpty(stacknum): raise Exception("Stack is empty") value = self.array[self.IndexOfTop(stacknum)] self.array[self.IndexOfTop(stacknum)] = 0 self.sizes[stacknum] -= 1 return value def Peek(self, stacknum): if self.IsEmpty(stacknum): raise Exception("Stack is empty") return self.array[self.IndexOfTop(stacknum)] def IsEmpty(self, stacknum): return self.sizes[stacknum] == 0 def IsFull(self, stacknum): return self.sizes[stacknum] == self.stacksize def IndexOfTop(self, stacknum): offset = stacknum * self.stacksize return offset + self.sizes[stacknum] - 1 stack = MultiStack(1)
class Multistack: def __init__(self, stacksize): self.numstacks = 3 self.array = [0] * (stacksize * self.numstacks) self.sizes = [0] * self.numstacks self.stacksize = stacksize def push(self, item, stacknum): if self.IsFull(stacknum): raise exception('Stack is full') self.sizes[stacknum] += 1 self.array[self.IndexOfTop(stacknum)] = item def pop(self, stacknum): if self.IsEmpty(stacknum): raise exception('Stack is empty') value = self.array[self.IndexOfTop(stacknum)] self.array[self.IndexOfTop(stacknum)] = 0 self.sizes[stacknum] -= 1 return value def peek(self, stacknum): if self.IsEmpty(stacknum): raise exception('Stack is empty') return self.array[self.IndexOfTop(stacknum)] def is_empty(self, stacknum): return self.sizes[stacknum] == 0 def is_full(self, stacknum): return self.sizes[stacknum] == self.stacksize def index_of_top(self, stacknum): offset = stacknum * self.stacksize return offset + self.sizes[stacknum] - 1 stack = multi_stack(1)
# Confidence Interval using Stats Model Summary thresh = 0.05 intervals = results.conf_int(alpha=thresh) # Renaming column names first_col = str(thresh/2*100)+"%" second_col = str((1-thresh/2)*100)+"%" intervals = intervals.rename(columns={0:first_col,1:second_col}) display(intervals)
thresh = 0.05 intervals = results.conf_int(alpha=thresh) first_col = str(thresh / 2 * 100) + '%' second_col = str((1 - thresh / 2) * 100) + '%' intervals = intervals.rename(columns={0: first_col, 1: second_col}) display(intervals)
def loadfile(name): lines = [] f = open(name, "r") for x in f: if x.endswith('\n'): x = x[:-1] line = [] for character in x: line.append(int(character)) lines.append(line) return lines def add1ToAll(lines): for i in range (0, len(lines)): for j in range(0, len(lines[i])): lines[i][j] = lines[i][j] + 1 return lines neighbours = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [1, 1], [0, 1], [-1, 1]] def flash(i, j): lines[i][j] = 0 count = 1 for coor in neighbours: if i + coor[0] >= 0 and i + coor[0] < len(lines) and j + coor[1] >= 0 and j + coor[1] < len(lines[0]): if lines[i + coor[0]][j + coor[1]] != 0: lines[i + coor[0]][j + coor[1]] += 1 if lines[i + coor[0]][j + coor[1]] > 9: count += flash(i + coor[0], j + coor[1]) return count def makeOctopusFlash(): count = 0 for i in range (0, len(lines)): for j in range(0, len(lines[i])): if lines[i][j] > 9: count += flash(i, j) return count def goThroughSteps (lines, steps): countFlashes = 0 for step in range(1, steps + 1): lines = add1ToAll(lines) count = makeOctopusFlash() print("Step: ", step, " Flashes: ", count) countFlashes += count return countFlashes def findAllFlash(lines): countFlashes = 0 found = False step = 1 while found == False: lines = add1ToAll(lines) count = makeOctopusFlash() print("Step: ", step, " Flashes: ", count) if count == 100: return step countFlashes += count step += 1 return 0 lines = loadfile("data.txt") print(lines) flashes = goThroughSteps(lines, 100) lines = loadfile("data.txt") step = findAllFlash(lines) print("Opdracht 11a: ", flashes) print("Opdracht 11b: ", step)
def loadfile(name): lines = [] f = open(name, 'r') for x in f: if x.endswith('\n'): x = x[:-1] line = [] for character in x: line.append(int(character)) lines.append(line) return lines def add1_to_all(lines): for i in range(0, len(lines)): for j in range(0, len(lines[i])): lines[i][j] = lines[i][j] + 1 return lines neighbours = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [1, 1], [0, 1], [-1, 1]] def flash(i, j): lines[i][j] = 0 count = 1 for coor in neighbours: if i + coor[0] >= 0 and i + coor[0] < len(lines) and (j + coor[1] >= 0) and (j + coor[1] < len(lines[0])): if lines[i + coor[0]][j + coor[1]] != 0: lines[i + coor[0]][j + coor[1]] += 1 if lines[i + coor[0]][j + coor[1]] > 9: count += flash(i + coor[0], j + coor[1]) return count def make_octopus_flash(): count = 0 for i in range(0, len(lines)): for j in range(0, len(lines[i])): if lines[i][j] > 9: count += flash(i, j) return count def go_through_steps(lines, steps): count_flashes = 0 for step in range(1, steps + 1): lines = add1_to_all(lines) count = make_octopus_flash() print('Step: ', step, ' Flashes: ', count) count_flashes += count return countFlashes def find_all_flash(lines): count_flashes = 0 found = False step = 1 while found == False: lines = add1_to_all(lines) count = make_octopus_flash() print('Step: ', step, ' Flashes: ', count) if count == 100: return step count_flashes += count step += 1 return 0 lines = loadfile('data.txt') print(lines) flashes = go_through_steps(lines, 100) lines = loadfile('data.txt') step = find_all_flash(lines) print('Opdracht 11a: ', flashes) print('Opdracht 11b: ', step)
class BuildingSpecification(object): def __init__(self,building_type, display_string, other_buildings_available, codes_available): self.building_type = building_type self.display_string = display_string self.other_buildings_available = other_buildings_available # list of building names self.codes_available = codes_available #list of baseline codes available
class Buildingspecification(object): def __init__(self, building_type, display_string, other_buildings_available, codes_available): self.building_type = building_type self.display_string = display_string self.other_buildings_available = other_buildings_available self.codes_available = codes_available
################################################################################ level_number = 6 dungeon_name = 'Catacombs' wall_style = 'Catacombs' monster_difficulty = 3 goes_down = True entry_position = (0, 0) phase_door = False level_teleport = [ (4, True), (5, True), (6, False), ] stairs_previous = [(13, 11)] stairs_next = [] portal_down = [] portal_up = [] teleports = [ ((0, 21), (10, 7)), ((21, 15), (13, 17)), ((20, 19), (8, 11)), ((16, 21), (14, 21)), ] encounters = [ ((1, 0), (60, 7)), ((3, 9), (51, 36)), ((4, 13), (30, 69)), ((7, 17), (10, 99)), ((8, 5), (10, 99)), ((16, 13), (20, 66)), ((18, 14), (20, 53)), ((21, 0), (60, 8)), ] messages = [ ((20, 16), "A message is scrawled on the wall in blood:\nSeek the Mad One's stoney self in Harkyn's domain."), ] specials = [((19, 20), (22, 255))] smoke_zones = [] darkness = [(3, 17), (3, 18), (4, 17), (4, 18), (5, 17), (5, 18), (6, 17), (6, 18)] antimagic_zones = [(13, 18), (13, 19), (13, 20), (14, 17), (14, 18), (14, 19), (14, 20), (18, 20)] spinners = [(9, 9), (12, 13), (18, 6)] traps = [(3, 19), (4, 19), (4, 20), (7, 14), (9, 2), (10, 15), (11, 4), (11, 12), (12, 16), (15, 6), (16, 3), (17, 6)] hitpoint_damage = [] spellpoint_restore = [] stasis_chambers = [] random_encounter = [(0, 4), (0, 8), (1, 16), (2, 5), (2, 7), (3, 0), (3, 13), (4, 5), (4, 11), (5, 1), (6, 8), (6, 11), (7, 1), (7, 2), (7, 3), (7, 4), (9, 3), (9, 4), (9, 8), (10, 1), (11, 3), (11, 4), (11, 7), (12, 21), (13, 0), (13, 3), (13, 14), (14, 0), (14, 12), (14, 21), (16, 0), (16, 17), (16, 19), (17, 21), (19, 2), (19, 9), (19, 13), (19, 17), (19, 19), (19, 21), (21, 5), (21, 9)] specials_other = [(0, 0), (0, 15), (1, 16), (1, 19), (2, 20), (3, 6), (3, 14), (3, 20), (5, 13), (5, 21), (7, 17), (7, 18), (7, 19), (7, 20), (8, 18), (8, 19), (8, 20), (9, 13), (12, 9), (13, 5), (14, 17), (17, 13), (18, 9), (20, 0), (21, 21)] map = [ '+-++-------++-++---D---++-++----------++----++-++----++----------+', '| DD DD || DD || || || || || |', '+-++-----. |+-++--. .--++-+| .------. || .. || || .. || .------. |', '+--------. |+----+| |+----+| .-----+| || || .. || .. || |+----+| |', '| || || || || || || || || || || || |', '+D---------+| .. || || .. |+-----. || || |+----++D---+| || .. || |', '+D---++----+| .. || || .. |+----+| || .. |+----++D----. || .. || |', '| || || DD DD || || || || || || || |', '| .. || .. |+---D+| |+D---+| .. || |+---D+| .. || .-----++---D+| |', '| .. || .. .----D-. .-D----. .. || .--++D+| .. || |+----++---D+| |', '| DD DD || || || || || || |', '+D---+| .. .----D-. .-D----. .. |+--. |+D++D---+| || .. || .--+| |', '+D---+| .. |+---D+| |+D---+| .. |+-+| |+D++D----. || || || .--+| |', '| || || DD DD || || DD || || || || || || |', '| .. |+----+| .. || || .. |+----++-+| |+D+| .. .. || || |+---D+| |', '| .. |+----+| .. || || .. |+--------. |+D+| .. .. || || |+---D+| |', '| DD || || || || || || || || || || |', '+----+| .. |+----+| |+----+| .----D---++-+| .. .. || || || .. || |', '+-----. .. |+-++--. .--++-+| |+---D++-----. .. .. || || .. .. || |', '| DD || DD || || || || || || |', '| .--------++-++---D---++-+| || .. || .. .. .. .. || |+-------+| |', '| |+-++-++-++-++-++----++--. || .. || .. .. .. .. || .--------+| |', '| || || || || || || || || || || || |', '+D++D++D++D++D++D++--. |+D---++----+| .. .. .. .. |+--------. || |', '+D++D++D++D++D++D++-+| |+D---++-----. .. .. .. .. |+--------. || |', '| DD DD || DD || DD || || || || || |', '+-++D++-++-++D+| |+-+| || .. || .. .. .-D-. .. .. |+----------+| |', '+-++D++-++-++D+| |+-+| || .. || .. .. |+D+| .. .. .------------. |', '| DD DD DD || DD DD || DD || DD DD |', '+D++-++-++D++-++D++-++D++----+| .. .. |+D+| .. .. .. .. .. .-D---+', '+D++-++-++D++-++D++-++D++-----. .. .. .-D-. .. .. .. .. .. |+D---+', '| || || DD DD DD DD || || || |', '+D++D++D++-++-++-++-++D+| .. .. .. .. .. .. .. .. .. .-D---+| .. |', '+D--D--D++-++-++-++-++D+| .. .. .. .. .. .. .. .. .. |+D---+| .. |', '| DD || DD DD || || || || |', '+D----. |+-++-++D++-++-+| .-D-. .. .. .. .. .. .-D---+| .. || .-D+', '+D++-+| |+-++-++D++-----. |+D+| .. .. .. .. .. |+D---+| .. || |+D+', '| || || DD || DD DD DD DD || || || DD |', '+-++D+| |+-++D++-+| .. .. |+D+| .. .. .. .-D---+| .. || .-D+| |+-+', '+-++D+| |+-++D++-+| .. .. .-D-. .. .. .. |+D---+| .. || |+D+| |+-+', '| DD || DD DD || DD || || || DD || DD |', '+-++D++D+| |+-++-+| .. .. .. .. .. .-D---+| .. || .-D+| |+-+| |+-+', '+-++D--D+| |+-----. .. .. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+', '| DD DD || || || || DD || DD || DD |', '+-+| .. |+-+| .. .. .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+', '+-+| .. |+-+| .. .. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+', '| DD DD || || || || DD || DD || DD || DD |', '+-++D---++D+| .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+', '+-++D++---D-. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+', '| DD || || || || DD || DD || DD || DD || DD |', '+-+| || .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+', '+-+| || .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+', '| DD || || || || DD || DD || DD || DD || DD || DD |', '+-++D+| .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '+---D-. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || || DD || DD || DD || DD || DD || DD || DD |', '| .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || || DD || DD || DD || DD || DD || DD || DD || DD |', '+D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || DD || DD || DD || DD || DD || DD || DD || DD || DD |', '| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || DD || DD || DD || DD || DD || DD || DD || DD || DD || DD |', '+----++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-+', ]
level_number = 6 dungeon_name = 'Catacombs' wall_style = 'Catacombs' monster_difficulty = 3 goes_down = True entry_position = (0, 0) phase_door = False level_teleport = [(4, True), (5, True), (6, False)] stairs_previous = [(13, 11)] stairs_next = [] portal_down = [] portal_up = [] teleports = [((0, 21), (10, 7)), ((21, 15), (13, 17)), ((20, 19), (8, 11)), ((16, 21), (14, 21))] encounters = [((1, 0), (60, 7)), ((3, 9), (51, 36)), ((4, 13), (30, 69)), ((7, 17), (10, 99)), ((8, 5), (10, 99)), ((16, 13), (20, 66)), ((18, 14), (20, 53)), ((21, 0), (60, 8))] messages = [((20, 16), "A message is scrawled on the wall in blood:\nSeek the Mad One's stoney self in Harkyn's domain.")] specials = [((19, 20), (22, 255))] smoke_zones = [] darkness = [(3, 17), (3, 18), (4, 17), (4, 18), (5, 17), (5, 18), (6, 17), (6, 18)] antimagic_zones = [(13, 18), (13, 19), (13, 20), (14, 17), (14, 18), (14, 19), (14, 20), (18, 20)] spinners = [(9, 9), (12, 13), (18, 6)] traps = [(3, 19), (4, 19), (4, 20), (7, 14), (9, 2), (10, 15), (11, 4), (11, 12), (12, 16), (15, 6), (16, 3), (17, 6)] hitpoint_damage = [] spellpoint_restore = [] stasis_chambers = [] random_encounter = [(0, 4), (0, 8), (1, 16), (2, 5), (2, 7), (3, 0), (3, 13), (4, 5), (4, 11), (5, 1), (6, 8), (6, 11), (7, 1), (7, 2), (7, 3), (7, 4), (9, 3), (9, 4), (9, 8), (10, 1), (11, 3), (11, 4), (11, 7), (12, 21), (13, 0), (13, 3), (13, 14), (14, 0), (14, 12), (14, 21), (16, 0), (16, 17), (16, 19), (17, 21), (19, 2), (19, 9), (19, 13), (19, 17), (19, 19), (19, 21), (21, 5), (21, 9)] specials_other = [(0, 0), (0, 15), (1, 16), (1, 19), (2, 20), (3, 6), (3, 14), (3, 20), (5, 13), (5, 21), (7, 17), (7, 18), (7, 19), (7, 20), (8, 18), (8, 19), (8, 20), (9, 13), (12, 9), (13, 5), (14, 17), (17, 13), (18, 9), (20, 0), (21, 21)] map = ['+-++-------++-++---D---++-++----------++----++-++----++----------+', '| DD DD || DD || || || || || |', '+-++-----. |+-++--. .--++-+| .------. || .. || || .. || .------. |', '+--------. |+----+| |+----+| .-----+| || || .. || .. || |+----+| |', '| || || || || || || || || || || || |', '+D---------+| .. || || .. |+-----. || || |+----++D---+| || .. || |', '+D---++----+| .. || || .. |+----+| || .. |+----++D----. || .. || |', '| || || DD DD || || || || || || || |', '| .. || .. |+---D+| |+D---+| .. || |+---D+| .. || .-----++---D+| |', '| .. || .. .----D-. .-D----. .. || .--++D+| .. || |+----++---D+| |', '| DD DD || || || || || || |', '+D---+| .. .----D-. .-D----. .. |+--. |+D++D---+| || .. || .--+| |', '+D---+| .. |+---D+| |+D---+| .. |+-+| |+D++D----. || || || .--+| |', '| || || DD DD || || DD || || || || || || |', '| .. |+----+| .. || || .. |+----++-+| |+D+| .. .. || || |+---D+| |', '| .. |+----+| .. || || .. |+--------. |+D+| .. .. || || |+---D+| |', '| DD || || || || || || || || || || |', '+----+| .. |+----+| |+----+| .----D---++-+| .. .. || || || .. || |', '+-----. .. |+-++--. .--++-+| |+---D++-----. .. .. || || .. .. || |', '| DD || DD || || || || || || |', '| .--------++-++---D---++-+| || .. || .. .. .. .. || |+-------+| |', '| |+-++-++-++-++-++----++--. || .. || .. .. .. .. || .--------+| |', '| || || || || || || || || || || || |', '+D++D++D++D++D++D++--. |+D---++----+| .. .. .. .. |+--------. || |', '+D++D++D++D++D++D++-+| |+D---++-----. .. .. .. .. |+--------. || |', '| DD DD || DD || DD || || || || || |', '+-++D++-++-++D+| |+-+| || .. || .. .. .-D-. .. .. |+----------+| |', '+-++D++-++-++D+| |+-+| || .. || .. .. |+D+| .. .. .------------. |', '| DD DD DD || DD DD || DD || DD DD |', '+D++-++-++D++-++D++-++D++----+| .. .. |+D+| .. .. .. .. .. .-D---+', '+D++-++-++D++-++D++-++D++-----. .. .. .-D-. .. .. .. .. .. |+D---+', '| || || DD DD DD DD || || || |', '+D++D++D++-++-++-++-++D+| .. .. .. .. .. .. .. .. .. .-D---+| .. |', '+D--D--D++-++-++-++-++D+| .. .. .. .. .. .. .. .. .. |+D---+| .. |', '| DD || DD DD || || || || |', '+D----. |+-++-++D++-++-+| .-D-. .. .. .. .. .. .-D---+| .. || .-D+', '+D++-+| |+-++-++D++-----. |+D+| .. .. .. .. .. |+D---+| .. || |+D+', '| || || DD || DD DD DD DD || || || DD |', '+-++D+| |+-++D++-+| .. .. |+D+| .. .. .. .-D---+| .. || .-D+| |+-+', '+-++D+| |+-++D++-+| .. .. .-D-. .. .. .. |+D---+| .. || |+D+| |+-+', '| DD || DD DD || DD || || || DD || DD |', '+-++D++D+| |+-++-+| .. .. .. .. .. .-D---+| .. || .-D+| |+-+| |+-+', '+-++D--D+| |+-----. .. .. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+', '| DD DD || || || || DD || DD || DD |', '+-+| .. |+-+| .. .. .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+', '+-+| .. |+-+| .. .. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+', '| DD DD || || || || DD || DD || DD || DD |', '+-++D---++D+| .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+', '+-++D++---D-. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+', '| DD || || || || DD || DD || DD || DD || DD |', '+-+| || .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+', '+-+| || .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+', '| DD || || || || DD || DD || DD || DD || DD || DD |', '+-++D+| .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '+---D-. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || || DD || DD || DD || DD || DD || DD || DD |', '| .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || || DD || DD || DD || DD || DD || DD || DD || DD |', '+D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || DD || DD || DD || DD || DD || DD || DD || DD || DD |', '| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || DD || DD || DD || DD || DD || DD || DD || DD || DD || DD |', '+----++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-+']
class Solution: def deleteAndEarn(self, nums: List[int]) -> int: d = [0] *(max(nums)+1) for i in nums: d[i] += i prev,prever = 0,0 for i in d: cur = max(prev,prever+i) prever = prev prev = cur return max(cur,prever)
class Solution: def delete_and_earn(self, nums: List[int]) -> int: d = [0] * (max(nums) + 1) for i in nums: d[i] += i (prev, prever) = (0, 0) for i in d: cur = max(prev, prever + i) prever = prev prev = cur return max(cur, prever)
"""Helpers for PyTorch-ES examples""" def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: m.weight.data.normal_(0.0, 0.02)
"""Helpers for PyTorch-ES examples""" def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: m.weight.data.normal_(0.0, 0.02)
keywords = ['program', 'label', 'type', 'array', 'of', 'var', 'procedure' ,'function', 'begin', 'end', 'if', 'then', 'else', 'while', 'do' , 'or', 'and', 'div', 'not'] symbols = ['.', ';', ',', '(', ')', ':', '=', '<', '>', '+', '-', '*', '[', ':=', '..'] def get_tokens(code): label = '' tokens = [] for str in code: if str in symbols: if label in keywords: tokens.append('<' + label + '>') tokens.append('<' + str + '>') label = '' else: if label is not '': tokens.append('#' + label + '#') tokens.append('<' + str + '>') label = '' elif str is ' ' or str is'\t' or str is '\n': if label in keywords: if label is not '' : tokens.append('<' + label + '>') label = '' else: if label is not '': tokens.append('#' + label + '#') label = '' else: label += str return tokens
keywords = ['program', 'label', 'type', 'array', 'of', 'var', 'procedure', 'function', 'begin', 'end', 'if', 'then', 'else', 'while', 'do', 'or', 'and', 'div', 'not'] symbols = ['.', ';', ',', '(', ')', ':', '=', '<', '>', '+', '-', '*', '[', ':=', '..'] def get_tokens(code): label = '' tokens = [] for str in code: if str in symbols: if label in keywords: tokens.append('<' + label + '>') tokens.append('<' + str + '>') label = '' else: if label is not '': tokens.append('#' + label + '#') tokens.append('<' + str + '>') label = '' elif str is ' ' or str is '\t' or str is '\n': if label in keywords: if label is not '': tokens.append('<' + label + '>') label = '' else: if label is not '': tokens.append('#' + label + '#') label = '' else: label += str return tokens
""" PASSENGERS """ numPassengers = 19048 passenger_arriving = ( (2, 7, 5, 2, 8, 1, 2, 1, 2, 1, 0, 1, 0, 11, 2, 3, 4, 3, 0, 0, 0, 1, 0, 0, 0, 0), # 0 (10, 5, 4, 4, 7, 4, 2, 0, 1, 3, 0, 0, 0, 6, 8, 4, 3, 2, 3, 5, 3, 1, 1, 0, 0, 0), # 1 (8, 6, 11, 4, 2, 2, 4, 3, 3, 0, 1, 1, 0, 4, 4, 5, 3, 6, 1, 1, 0, 4, 0, 2, 0, 0), # 2 (6, 4, 3, 4, 3, 1, 1, 0, 2, 6, 1, 0, 0, 7, 5, 2, 6, 2, 3, 2, 4, 0, 0, 1, 0, 0), # 3 (5, 10, 2, 8, 0, 2, 6, 1, 1, 2, 0, 0, 0, 3, 5, 4, 2, 6, 2, 0, 0, 4, 4, 0, 1, 0), # 4 (11, 7, 5, 1, 6, 1, 3, 1, 2, 2, 1, 0, 0, 11, 6, 3, 5, 4, 4, 3, 3, 2, 2, 1, 0, 0), # 5 (9, 9, 2, 7, 11, 0, 1, 2, 3, 0, 3, 0, 0, 4, 4, 9, 1, 13, 3, 2, 2, 3, 2, 1, 1, 0), # 6 (7, 5, 5, 6, 8, 2, 4, 3, 2, 0, 0, 0, 0, 7, 5, 7, 3, 6, 5, 1, 2, 4, 3, 1, 0, 0), # 7 (9, 6, 8, 10, 7, 1, 1, 1, 3, 2, 2, 3, 0, 12, 3, 10, 5, 6, 6, 4, 0, 5, 1, 0, 0, 0), # 8 (7, 9, 12, 9, 4, 1, 5, 5, 3, 3, 2, 2, 0, 6, 12, 7, 6, 5, 7, 4, 3, 2, 2, 0, 0, 0), # 9 (9, 9, 10, 14, 6, 5, 6, 2, 2, 2, 0, 2, 0, 8, 6, 10, 5, 4, 2, 4, 1, 1, 4, 1, 1, 0), # 10 (6, 10, 5, 4, 4, 1, 4, 6, 5, 1, 1, 2, 0, 10, 10, 7, 4, 7, 2, 4, 4, 5, 1, 1, 2, 0), # 11 (11, 7, 8, 8, 3, 0, 4, 4, 7, 0, 0, 1, 0, 6, 9, 4, 6, 6, 5, 4, 4, 6, 3, 1, 2, 0), # 12 (7, 9, 5, 13, 7, 7, 2, 4, 1, 1, 2, 1, 0, 11, 6, 8, 5, 8, 3, 3, 6, 3, 1, 3, 1, 0), # 13 (2, 10, 8, 13, 6, 3, 2, 3, 2, 3, 1, 0, 0, 12, 9, 3, 7, 5, 3, 1, 1, 5, 1, 1, 1, 0), # 14 (6, 16, 9, 8, 8, 4, 2, 1, 3, 0, 3, 2, 0, 5, 5, 8, 4, 5, 7, 5, 4, 4, 5, 3, 0, 0), # 15 (10, 12, 6, 9, 8, 4, 6, 4, 2, 1, 1, 2, 0, 8, 13, 6, 6, 5, 5, 4, 4, 4, 3, 0, 0, 0), # 16 (6, 9, 9, 7, 6, 3, 2, 0, 5, 0, 1, 0, 0, 10, 6, 11, 6, 9, 4, 4, 3, 7, 3, 2, 2, 0), # 17 (9, 4, 9, 8, 8, 4, 1, 2, 6, 2, 0, 1, 0, 9, 10, 7, 3, 5, 7, 2, 2, 5, 3, 1, 0, 0), # 18 (8, 13, 15, 10, 8, 3, 3, 2, 0, 1, 1, 2, 0, 7, 13, 9, 3, 8, 4, 5, 0, 3, 1, 4, 2, 0), # 19 (14, 9, 11, 8, 8, 2, 2, 3, 5, 0, 2, 2, 0, 12, 14, 4, 5, 7, 5, 7, 1, 4, 4, 1, 0, 0), # 20 (8, 7, 5, 14, 7, 3, 3, 5, 4, 2, 3, 0, 0, 14, 6, 6, 5, 9, 7, 7, 3, 3, 2, 0, 3, 0), # 21 (16, 11, 12, 15, 4, 6, 2, 3, 5, 0, 3, 1, 0, 11, 14, 5, 7, 6, 9, 6, 1, 2, 4, 0, 0, 0), # 22 (24, 8, 8, 10, 4, 5, 3, 4, 2, 3, 3, 1, 0, 16, 8, 6, 2, 2, 3, 4, 2, 4, 4, 3, 0, 0), # 23 (11, 10, 6, 7, 8, 4, 3, 5, 4, 2, 2, 0, 0, 15, 10, 5, 9, 7, 5, 5, 4, 4, 2, 0, 1, 0), # 24 (9, 8, 8, 5, 8, 3, 3, 5, 3, 1, 2, 1, 0, 7, 9, 12, 5, 2, 1, 3, 4, 3, 2, 1, 0, 0), # 25 (7, 12, 12, 11, 9, 1, 8, 5, 3, 3, 2, 0, 0, 7, 8, 7, 5, 8, 12, 2, 4, 2, 1, 2, 0, 0), # 26 (6, 7, 6, 15, 7, 4, 5, 5, 2, 1, 0, 0, 0, 10, 8, 10, 6, 9, 4, 3, 2, 5, 3, 1, 0, 0), # 27 (11, 11, 11, 7, 7, 4, 2, 9, 5, 1, 1, 0, 0, 10, 11, 4, 5, 15, 8, 2, 1, 1, 1, 1, 1, 0), # 28 (7, 10, 7, 11, 9, 5, 4, 4, 3, 3, 1, 0, 0, 9, 8, 9, 9, 5, 1, 3, 1, 3, 5, 1, 2, 0), # 29 (15, 7, 8, 9, 6, 3, 4, 9, 4, 5, 1, 1, 0, 4, 12, 6, 8, 5, 5, 3, 3, 3, 2, 2, 0, 0), # 30 (9, 12, 12, 7, 9, 5, 2, 4, 3, 3, 3, 0, 0, 10, 5, 8, 5, 6, 7, 7, 2, 4, 4, 1, 0, 0), # 31 (5, 11, 5, 11, 5, 2, 4, 2, 6, 0, 2, 1, 0, 13, 8, 10, 6, 8, 3, 7, 3, 4, 1, 2, 0, 0), # 32 (11, 11, 8, 8, 11, 4, 10, 6, 4, 1, 2, 0, 0, 8, 12, 4, 10, 9, 5, 4, 3, 4, 7, 2, 0, 0), # 33 (6, 10, 9, 10, 5, 2, 4, 3, 6, 3, 0, 2, 0, 10, 10, 6, 6, 11, 5, 6, 6, 6, 3, 0, 2, 0), # 34 (7, 7, 8, 6, 7, 2, 6, 2, 6, 2, 3, 0, 0, 9, 8, 7, 3, 5, 7, 7, 5, 4, 1, 3, 1, 0), # 35 (3, 7, 9, 10, 5, 7, 2, 5, 6, 4, 0, 1, 0, 10, 9, 6, 6, 9, 2, 2, 0, 4, 2, 2, 1, 0), # 36 (10, 7, 8, 20, 3, 4, 2, 7, 3, 1, 2, 1, 0, 10, 6, 5, 4, 9, 5, 2, 6, 5, 3, 2, 1, 0), # 37 (8, 10, 9, 6, 7, 4, 5, 3, 2, 1, 0, 0, 0, 11, 6, 4, 6, 6, 10, 3, 2, 3, 5, 0, 2, 0), # 38 (9, 6, 3, 9, 6, 4, 2, 6, 6, 2, 2, 0, 0, 10, 12, 12, 4, 4, 0, 2, 2, 8, 2, 4, 0, 0), # 39 (11, 8, 7, 8, 5, 1, 3, 5, 7, 1, 0, 0, 0, 9, 6, 11, 8, 11, 2, 4, 4, 1, 2, 0, 1, 0), # 40 (9, 5, 15, 12, 7, 2, 3, 1, 1, 0, 0, 0, 0, 9, 15, 5, 6, 8, 2, 3, 5, 2, 1, 0, 2, 0), # 41 (14, 9, 4, 8, 7, 3, 2, 5, 3, 0, 2, 0, 0, 9, 3, 1, 3, 10, 4, 4, 3, 3, 3, 4, 0, 0), # 42 (10, 3, 6, 14, 10, 3, 2, 5, 4, 1, 2, 1, 0, 14, 7, 9, 8, 7, 8, 3, 5, 5, 2, 2, 0, 0), # 43 (11, 13, 9, 5, 9, 3, 6, 7, 6, 0, 0, 0, 0, 12, 8, 4, 2, 9, 7, 5, 1, 1, 3, 0, 0, 0), # 44 (12, 12, 4, 11, 9, 1, 1, 6, 1, 0, 1, 0, 0, 3, 6, 3, 8, 10, 4, 3, 2, 4, 6, 0, 0, 0), # 45 (6, 12, 5, 6, 5, 6, 3, 4, 3, 2, 1, 1, 0, 8, 5, 4, 3, 8, 4, 3, 1, 3, 7, 1, 1, 0), # 46 (14, 7, 10, 8, 9, 2, 1, 3, 6, 1, 1, 1, 0, 8, 6, 5, 5, 7, 5, 4, 2, 8, 2, 0, 2, 0), # 47 (11, 5, 8, 10, 6, 1, 3, 4, 5, 3, 0, 0, 0, 8, 6, 9, 6, 14, 7, 11, 5, 1, 2, 2, 1, 0), # 48 (9, 3, 9, 9, 6, 2, 5, 7, 5, 2, 1, 0, 0, 7, 8, 5, 6, 10, 4, 5, 4, 5, 2, 3, 6, 0), # 49 (9, 9, 11, 7, 9, 4, 2, 6, 8, 2, 0, 0, 0, 10, 7, 9, 8, 5, 4, 6, 3, 5, 1, 0, 2, 0), # 50 (9, 8, 12, 12, 11, 5, 5, 6, 5, 4, 0, 0, 0, 16, 6, 4, 8, 10, 6, 2, 3, 4, 4, 3, 0, 0), # 51 (4, 6, 9, 9, 7, 2, 3, 4, 3, 4, 3, 1, 0, 9, 10, 6, 2, 4, 8, 2, 0, 2, 4, 1, 0, 0), # 52 (9, 11, 6, 5, 7, 3, 4, 0, 4, 0, 2, 1, 0, 9, 12, 8, 4, 11, 4, 5, 0, 0, 1, 2, 1, 0), # 53 (5, 13, 8, 8, 6, 3, 2, 2, 4, 5, 2, 2, 0, 6, 5, 5, 7, 7, 5, 5, 0, 4, 2, 2, 0, 0), # 54 (16, 7, 8, 10, 7, 5, 1, 6, 6, 4, 2, 2, 0, 7, 11, 4, 5, 7, 4, 2, 1, 5, 4, 2, 0, 0), # 55 (11, 11, 8, 6, 5, 6, 2, 2, 4, 1, 3, 1, 0, 10, 10, 4, 7, 9, 5, 4, 2, 4, 1, 1, 1, 0), # 56 (13, 14, 3, 12, 7, 6, 4, 3, 2, 0, 0, 1, 0, 6, 13, 2, 10, 8, 6, 5, 5, 2, 4, 3, 1, 0), # 57 (3, 6, 6, 8, 12, 5, 3, 3, 5, 1, 1, 1, 0, 10, 2, 9, 5, 11, 6, 1, 1, 3, 2, 1, 1, 0), # 58 (6, 10, 6, 10, 7, 3, 3, 2, 4, 1, 1, 1, 0, 17, 9, 11, 6, 8, 4, 3, 0, 0, 3, 1, 0, 0), # 59 (10, 9, 12, 13, 4, 3, 6, 5, 7, 0, 0, 1, 0, 14, 7, 6, 6, 8, 5, 8, 4, 3, 2, 1, 2, 0), # 60 (13, 10, 5, 6, 6, 2, 1, 4, 4, 4, 2, 2, 0, 8, 4, 11, 5, 11, 3, 2, 1, 4, 2, 4, 0, 0), # 61 (9, 12, 5, 8, 10, 5, 3, 4, 4, 4, 4, 0, 0, 9, 9, 9, 4, 7, 7, 5, 1, 2, 1, 2, 1, 0), # 62 (17, 9, 7, 11, 6, 2, 4, 2, 3, 2, 1, 1, 0, 7, 9, 11, 5, 10, 5, 2, 1, 5, 5, 1, 2, 0), # 63 (8, 7, 7, 9, 9, 7, 6, 8, 3, 3, 3, 1, 0, 8, 6, 4, 4, 13, 9, 3, 1, 3, 5, 1, 0, 0), # 64 (16, 8, 10, 5, 9, 6, 7, 4, 2, 3, 3, 0, 0, 10, 6, 7, 4, 8, 4, 6, 1, 2, 3, 1, 1, 0), # 65 (8, 16, 13, 8, 5, 2, 3, 4, 5, 1, 1, 0, 0, 9, 16, 3, 5, 8, 4, 2, 2, 3, 6, 0, 0, 0), # 66 (7, 9, 9, 6, 7, 3, 2, 3, 4, 1, 2, 2, 0, 13, 9, 7, 6, 7, 0, 3, 2, 3, 4, 2, 1, 0), # 67 (11, 6, 9, 5, 5, 2, 1, 4, 2, 1, 0, 1, 0, 12, 7, 8, 6, 7, 6, 0, 1, 0, 1, 1, 1, 0), # 68 (6, 7, 8, 7, 5, 3, 2, 1, 4, 1, 0, 0, 0, 13, 13, 6, 5, 6, 2, 4, 3, 0, 2, 1, 1, 0), # 69 (9, 9, 8, 3, 9, 5, 0, 0, 2, 2, 1, 1, 0, 10, 7, 5, 4, 5, 3, 4, 2, 3, 1, 1, 0, 0), # 70 (5, 11, 10, 8, 7, 1, 3, 3, 5, 1, 2, 1, 0, 9, 8, 6, 3, 7, 3, 3, 5, 3, 4, 3, 0, 0), # 71 (8, 7, 5, 9, 6, 5, 7, 7, 4, 1, 0, 0, 0, 9, 5, 8, 1, 6, 5, 2, 4, 3, 2, 1, 1, 0), # 72 (11, 3, 8, 6, 13, 7, 7, 3, 2, 1, 2, 1, 0, 17, 12, 9, 1, 11, 7, 4, 2, 3, 1, 2, 0, 0), # 73 (8, 9, 7, 6, 10, 9, 4, 2, 4, 3, 0, 0, 0, 11, 6, 4, 3, 5, 3, 5, 1, 3, 0, 2, 1, 0), # 74 (16, 12, 3, 16, 11, 3, 1, 0, 6, 0, 0, 1, 0, 11, 8, 8, 7, 6, 5, 4, 3, 5, 6, 3, 1, 0), # 75 (14, 4, 9, 4, 5, 2, 7, 4, 4, 1, 1, 0, 0, 8, 9, 2, 3, 10, 6, 5, 0, 4, 2, 2, 1, 0), # 76 (6, 4, 4, 14, 8, 5, 5, 2, 4, 3, 2, 0, 0, 12, 8, 8, 8, 14, 2, 5, 4, 6, 3, 0, 1, 0), # 77 (3, 9, 9, 6, 8, 1, 3, 6, 8, 3, 1, 0, 0, 7, 5, 7, 4, 8, 2, 1, 0, 3, 3, 3, 2, 0), # 78 (5, 6, 11, 13, 4, 4, 1, 4, 5, 4, 3, 0, 0, 12, 6, 5, 8, 9, 10, 5, 5, 6, 2, 2, 3, 0), # 79 (15, 10, 6, 9, 12, 6, 2, 6, 2, 1, 1, 3, 0, 13, 9, 5, 6, 8, 4, 3, 5, 4, 2, 1, 1, 0), # 80 (13, 5, 6, 10, 11, 5, 4, 8, 3, 1, 0, 0, 0, 9, 6, 5, 3, 3, 5, 4, 1, 6, 1, 1, 0, 0), # 81 (14, 6, 6, 6, 9, 4, 5, 4, 3, 1, 0, 1, 0, 11, 9, 5, 6, 7, 4, 4, 2, 2, 2, 1, 0, 0), # 82 (8, 10, 10, 8, 6, 1, 5, 4, 6, 2, 2, 0, 0, 12, 12, 10, 4, 9, 5, 7, 2, 2, 6, 2, 0, 0), # 83 (12, 4, 7, 7, 8, 4, 4, 4, 1, 2, 0, 1, 0, 7, 12, 7, 0, 5, 5, 1, 1, 7, 4, 0, 0, 0), # 84 (10, 10, 2, 8, 6, 1, 2, 3, 2, 1, 4, 2, 0, 13, 8, 7, 4, 11, 8, 4, 3, 3, 1, 0, 0, 0), # 85 (14, 10, 4, 5, 7, 0, 4, 4, 8, 2, 0, 2, 0, 4, 12, 5, 4, 4, 1, 1, 4, 2, 3, 4, 0, 0), # 86 (8, 12, 6, 14, 7, 3, 5, 0, 4, 1, 2, 1, 0, 7, 10, 13, 5, 7, 8, 4, 3, 3, 3, 0, 0, 0), # 87 (13, 12, 10, 10, 6, 5, 3, 0, 5, 4, 0, 2, 0, 10, 6, 9, 2, 6, 4, 3, 4, 6, 2, 3, 1, 0), # 88 (3, 7, 10, 11, 7, 5, 5, 1, 2, 1, 0, 0, 0, 12, 9, 8, 2, 9, 7, 2, 4, 3, 2, 1, 1, 0), # 89 (15, 9, 8, 6, 6, 4, 4, 4, 6, 1, 2, 3, 0, 10, 3, 4, 5, 9, 7, 5, 2, 3, 2, 4, 1, 0), # 90 (9, 11, 8, 15, 9, 2, 3, 3, 4, 7, 1, 2, 0, 9, 16, 7, 9, 7, 3, 3, 6, 3, 2, 2, 0, 0), # 91 (13, 4, 5, 7, 3, 3, 3, 3, 6, 1, 5, 0, 0, 11, 3, 9, 1, 1, 2, 3, 0, 5, 1, 1, 1, 0), # 92 (9, 6, 4, 11, 6, 3, 2, 2, 3, 2, 1, 1, 0, 3, 4, 8, 4, 9, 2, 1, 3, 3, 5, 0, 0, 0), # 93 (15, 6, 8, 10, 7, 4, 2, 3, 5, 1, 0, 1, 0, 5, 5, 4, 5, 11, 5, 3, 2, 2, 1, 1, 0, 0), # 94 (9, 5, 7, 12, 7, 1, 6, 2, 4, 1, 3, 1, 0, 12, 6, 11, 2, 3, 3, 3, 3, 4, 1, 1, 0, 0), # 95 (7, 6, 6, 7, 6, 3, 4, 3, 4, 0, 1, 0, 0, 6, 9, 8, 3, 8, 5, 2, 3, 6, 1, 2, 2, 0), # 96 (9, 7, 10, 8, 13, 4, 3, 3, 5, 0, 4, 1, 0, 8, 10, 6, 5, 5, 8, 4, 3, 6, 4, 0, 1, 0), # 97 (10, 7, 11, 7, 3, 3, 4, 4, 4, 5, 2, 0, 0, 11, 8, 11, 2, 8, 3, 6, 2, 3, 4, 1, 0, 0), # 98 (15, 3, 6, 12, 7, 4, 3, 2, 5, 2, 2, 0, 0, 7, 9, 5, 4, 11, 1, 1, 1, 7, 3, 3, 0, 0), # 99 (8, 6, 7, 7, 9, 5, 4, 3, 2, 3, 1, 0, 0, 12, 7, 6, 6, 6, 3, 1, 2, 2, 1, 0, 0, 0), # 100 (7, 15, 7, 9, 10, 1, 8, 1, 4, 0, 2, 0, 0, 8, 6, 6, 5, 6, 0, 0, 0, 4, 5, 3, 1, 0), # 101 (13, 8, 9, 8, 3, 2, 4, 4, 5, 2, 4, 1, 0, 11, 5, 5, 6, 4, 6, 2, 0, 4, 1, 1, 1, 0), # 102 (11, 5, 9, 7, 4, 9, 6, 2, 1, 3, 1, 0, 0, 10, 5, 7, 3, 7, 6, 3, 1, 3, 4, 2, 0, 0), # 103 (10, 8, 8, 4, 9, 2, 6, 7, 7, 6, 0, 2, 0, 10, 8, 7, 9, 2, 3, 2, 4, 7, 1, 0, 0, 0), # 104 (13, 3, 5, 6, 11, 3, 4, 1, 4, 0, 2, 0, 0, 11, 8, 4, 1, 8, 7, 7, 4, 5, 2, 1, 0, 0), # 105 (9, 7, 9, 11, 5, 1, 5, 4, 3, 0, 0, 1, 0, 10, 10, 6, 5, 11, 1, 4, 3, 5, 0, 0, 2, 0), # 106 (9, 5, 10, 6, 10, 6, 3, 5, 4, 2, 0, 0, 0, 6, 10, 7, 7, 6, 3, 7, 2, 6, 4, 0, 1, 0), # 107 (9, 7, 9, 8, 4, 4, 4, 3, 2, 2, 1, 1, 0, 12, 10, 5, 8, 6, 5, 2, 1, 3, 3, 3, 3, 0), # 108 (7, 10, 7, 5, 13, 2, 7, 1, 4, 2, 2, 1, 0, 6, 9, 7, 2, 8, 2, 5, 2, 4, 5, 2, 1, 0), # 109 (17, 5, 8, 8, 6, 2, 1, 2, 3, 1, 2, 2, 0, 7, 11, 2, 3, 7, 4, 5, 3, 5, 0, 3, 1, 0), # 110 (9, 8, 11, 10, 6, 7, 1, 2, 4, 2, 0, 1, 0, 10, 7, 8, 4, 4, 3, 1, 3, 3, 5, 2, 1, 0), # 111 (10, 3, 9, 8, 7, 3, 0, 2, 4, 2, 0, 3, 0, 8, 8, 7, 5, 7, 6, 3, 0, 3, 3, 2, 0, 0), # 112 (6, 9, 6, 7, 9, 3, 3, 2, 9, 0, 6, 0, 0, 9, 10, 6, 7, 9, 1, 7, 2, 2, 2, 1, 0, 0), # 113 (9, 4, 5, 7, 6, 1, 0, 4, 2, 1, 0, 0, 0, 5, 6, 3, 7, 9, 3, 6, 0, 7, 2, 4, 2, 0), # 114 (10, 8, 6, 4, 2, 3, 5, 2, 3, 2, 2, 1, 0, 12, 10, 5, 2, 6, 1, 5, 3, 0, 2, 1, 1, 0), # 115 (14, 4, 8, 3, 11, 7, 3, 3, 10, 1, 0, 0, 0, 7, 8, 8, 4, 7, 1, 2, 0, 2, 3, 1, 0, 0), # 116 (13, 5, 8, 2, 5, 7, 1, 4, 6, 1, 1, 2, 0, 12, 14, 3, 2, 10, 5, 1, 2, 7, 6, 3, 1, 0), # 117 (7, 6, 4, 14, 4, 1, 6, 3, 2, 1, 0, 2, 0, 11, 6, 6, 5, 9, 4, 3, 3, 4, 1, 0, 0, 0), # 118 (11, 5, 10, 8, 9, 2, 2, 2, 2, 0, 2, 0, 0, 7, 6, 3, 5, 6, 4, 2, 2, 1, 3, 0, 0, 0), # 119 (9, 5, 11, 8, 7, 1, 6, 8, 0, 0, 1, 0, 0, 12, 7, 6, 3, 5, 4, 2, 1, 6, 8, 3, 1, 0), # 120 (5, 10, 8, 7, 8, 6, 5, 3, 4, 0, 0, 0, 0, 18, 7, 5, 3, 4, 4, 5, 4, 1, 3, 1, 0, 0), # 121 (6, 4, 9, 5, 12, 5, 2, 2, 6, 1, 0, 0, 0, 17, 8, 7, 4, 8, 2, 3, 0, 2, 4, 1, 1, 0), # 122 (3, 11, 7, 7, 7, 7, 5, 1, 4, 2, 1, 1, 0, 13, 4, 11, 4, 10, 2, 3, 1, 3, 6, 2, 1, 0), # 123 (17, 6, 8, 13, 6, 5, 3, 3, 1, 0, 1, 0, 0, 5, 12, 7, 3, 12, 3, 4, 6, 5, 5, 1, 2, 0), # 124 (9, 6, 7, 11, 3, 3, 2, 2, 4, 1, 1, 3, 0, 5, 8, 9, 2, 11, 4, 5, 2, 3, 1, 1, 0, 0), # 125 (10, 4, 6, 8, 3, 3, 6, 3, 0, 3, 0, 1, 0, 10, 11, 2, 5, 11, 5, 5, 2, 4, 3, 1, 0, 0), # 126 (9, 9, 13, 7, 3, 1, 1, 3, 3, 1, 1, 3, 0, 10, 5, 9, 5, 12, 2, 0, 1, 3, 0, 1, 0, 0), # 127 (14, 7, 9, 13, 7, 3, 2, 5, 7, 1, 2, 2, 0, 11, 4, 6, 4, 4, 6, 6, 2, 1, 1, 0, 0, 0), # 128 (9, 5, 11, 9, 6, 3, 3, 1, 4, 0, 0, 0, 0, 9, 3, 7, 3, 2, 2, 3, 1, 3, 4, 3, 0, 0), # 129 (8, 2, 6, 8, 6, 1, 5, 1, 4, 0, 1, 1, 0, 7, 7, 3, 6, 10, 3, 4, 5, 2, 1, 1, 1, 0), # 130 (10, 8, 10, 10, 6, 6, 5, 4, 0, 3, 3, 0, 0, 8, 11, 3, 6, 4, 8, 4, 2, 3, 0, 0, 0, 0), # 131 (8, 7, 5, 13, 7, 4, 2, 7, 1, 0, 1, 0, 0, 15, 8, 10, 4, 11, 6, 0, 1, 2, 2, 1, 1, 0), # 132 (16, 7, 4, 13, 4, 2, 0, 1, 2, 1, 1, 0, 0, 10, 4, 4, 6, 6, 5, 4, 2, 4, 2, 2, 1, 0), # 133 (9, 5, 4, 7, 14, 7, 4, 5, 2, 3, 2, 2, 0, 6, 10, 7, 4, 7, 2, 3, 6, 4, 1, 0, 1, 0), # 134 (11, 10, 9, 6, 12, 4, 3, 3, 3, 0, 1, 1, 0, 11, 6, 2, 4, 9, 7, 3, 0, 4, 3, 1, 0, 0), # 135 (6, 4, 9, 9, 7, 4, 4, 3, 3, 0, 2, 1, 0, 14, 10, 5, 3, 10, 3, 4, 2, 4, 1, 3, 1, 0), # 136 (12, 11, 4, 8, 2, 3, 5, 2, 7, 0, 1, 0, 0, 10, 7, 7, 3, 7, 5, 6, 2, 5, 2, 1, 1, 0), # 137 (7, 6, 5, 9, 5, 2, 2, 3, 5, 2, 1, 0, 0, 7, 7, 6, 4, 4, 2, 3, 2, 2, 5, 1, 1, 0), # 138 (7, 4, 11, 10, 9, 3, 1, 4, 1, 2, 0, 1, 0, 7, 5, 9, 4, 5, 4, 7, 6, 2, 4, 2, 2, 0), # 139 (11, 4, 7, 11, 10, 2, 3, 2, 4, 2, 2, 0, 0, 7, 11, 4, 2, 4, 3, 1, 1, 2, 2, 2, 0, 0), # 140 (6, 1, 5, 11, 7, 1, 2, 1, 2, 4, 0, 0, 0, 3, 5, 4, 3, 6, 5, 2, 2, 1, 2, 1, 0, 0), # 141 (4, 3, 4, 3, 8, 2, 2, 4, 3, 0, 1, 1, 0, 10, 11, 4, 9, 7, 1, 1, 3, 2, 2, 2, 2, 0), # 142 (7, 7, 7, 8, 7, 4, 6, 0, 3, 0, 1, 1, 0, 13, 12, 2, 5, 7, 2, 2, 0, 6, 2, 0, 0, 0), # 143 (8, 3, 8, 7, 9, 6, 2, 0, 3, 1, 2, 0, 0, 10, 10, 6, 4, 4, 4, 2, 4, 0, 3, 1, 1, 0), # 144 (15, 6, 3, 8, 7, 4, 2, 4, 6, 3, 2, 0, 0, 8, 5, 7, 1, 11, 2, 3, 1, 3, 3, 2, 0, 0), # 145 (7, 4, 10, 4, 10, 1, 1, 0, 6, 1, 1, 1, 0, 11, 7, 3, 4, 6, 3, 2, 3, 5, 2, 2, 0, 0), # 146 (13, 8, 11, 3, 8, 7, 2, 1, 2, 0, 2, 0, 0, 12, 8, 4, 4, 6, 1, 3, 1, 3, 1, 3, 1, 0), # 147 (7, 5, 10, 3, 7, 2, 3, 6, 2, 1, 1, 1, 0, 9, 8, 5, 4, 7, 3, 1, 0, 5, 2, 2, 0, 0), # 148 (10, 4, 7, 8, 4, 3, 3, 3, 2, 1, 0, 0, 0, 8, 7, 9, 0, 7, 3, 0, 1, 1, 4, 1, 0, 0), # 149 (11, 4, 2, 6, 6, 5, 4, 1, 3, 1, 0, 0, 0, 11, 3, 5, 5, 7, 4, 2, 2, 4, 1, 3, 0, 0), # 150 (11, 12, 7, 9, 5, 4, 1, 6, 4, 0, 1, 1, 0, 6, 7, 6, 4, 8, 4, 3, 4, 3, 4, 1, 0, 0), # 151 (10, 4, 7, 6, 10, 4, 2, 2, 6, 1, 0, 0, 0, 3, 8, 9, 3, 3, 2, 4, 4, 3, 3, 3, 1, 0), # 152 (11, 7, 8, 5, 8, 4, 4, 2, 4, 1, 0, 0, 0, 4, 5, 5, 5, 8, 4, 2, 2, 4, 3, 1, 1, 0), # 153 (12, 5, 7, 7, 5, 5, 0, 2, 2, 2, 0, 0, 0, 7, 8, 4, 4, 6, 2, 1, 5, 5, 2, 1, 3, 0), # 154 (8, 3, 5, 9, 4, 2, 1, 5, 3, 0, 1, 0, 0, 12, 7, 3, 5, 9, 4, 2, 1, 2, 4, 1, 1, 0), # 155 (8, 6, 8, 8, 5, 5, 7, 1, 5, 0, 1, 0, 0, 11, 10, 2, 2, 7, 6, 3, 2, 6, 2, 2, 0, 0), # 156 (6, 7, 5, 6, 6, 2, 2, 1, 3, 1, 0, 0, 0, 7, 7, 2, 4, 8, 2, 3, 3, 4, 3, 3, 0, 0), # 157 (8, 5, 7, 3, 7, 5, 3, 5, 3, 0, 0, 0, 0, 7, 2, 6, 8, 4, 2, 6, 1, 2, 2, 1, 0, 0), # 158 (13, 4, 9, 4, 7, 2, 4, 0, 2, 0, 2, 1, 0, 3, 9, 5, 3, 7, 4, 4, 1, 2, 4, 2, 1, 0), # 159 (8, 4, 2, 6, 5, 6, 1, 5, 2, 1, 2, 0, 0, 6, 7, 4, 3, 8, 2, 4, 1, 3, 3, 2, 0, 0), # 160 (8, 2, 7, 13, 3, 6, 5, 3, 2, 1, 0, 0, 0, 8, 3, 5, 3, 7, 3, 2, 1, 1, 3, 0, 0, 0), # 161 (6, 4, 10, 9, 7, 5, 2, 1, 2, 0, 0, 0, 0, 7, 9, 4, 3, 6, 2, 2, 2, 2, 3, 0, 0, 0), # 162 (2, 8, 2, 3, 12, 3, 5, 5, 0, 1, 1, 0, 0, 14, 3, 4, 2, 9, 4, 6, 2, 1, 1, 2, 0, 0), # 163 (8, 3, 8, 8, 6, 0, 2, 1, 2, 0, 2, 1, 0, 6, 6, 8, 1, 2, 3, 3, 3, 3, 0, 1, 0, 0), # 164 (6, 9, 5, 4, 4, 3, 0, 1, 3, 1, 1, 1, 0, 6, 3, 4, 3, 7, 2, 1, 3, 4, 0, 1, 1, 0), # 165 (6, 2, 5, 7, 8, 2, 0, 0, 3, 1, 3, 2, 0, 10, 8, 7, 2, 2, 8, 2, 1, 3, 3, 0, 0, 0), # 166 (3, 3, 5, 5, 9, 3, 4, 4, 4, 2, 0, 1, 0, 6, 5, 4, 4, 5, 0, 1, 0, 4, 0, 1, 0, 0), # 167 (7, 6, 8, 8, 8, 3, 2, 4, 2, 1, 1, 1, 0, 3, 2, 2, 4, 6, 3, 7, 3, 4, 1, 1, 0, 0), # 168 (12, 3, 7, 7, 3, 2, 0, 4, 2, 2, 2, 0, 0, 5, 5, 2, 5, 6, 0, 3, 2, 3, 1, 1, 0, 0), # 169 (9, 2, 4, 8, 4, 2, 2, 1, 3, 1, 0, 0, 0, 6, 4, 9, 8, 4, 0, 1, 2, 2, 0, 1, 1, 0), # 170 (9, 7, 4, 5, 7, 4, 0, 1, 6, 2, 0, 0, 0, 4, 3, 7, 2, 5, 2, 2, 1, 5, 1, 0, 0, 0), # 171 (3, 1, 7, 9, 4, 1, 0, 1, 4, 1, 1, 1, 0, 8, 5, 2, 0, 4, 1, 5, 2, 3, 3, 1, 0, 0), # 172 (5, 1, 7, 7, 2, 4, 1, 2, 3, 0, 0, 2, 0, 11, 5, 9, 2, 6, 3, 0, 1, 5, 4, 2, 0, 0), # 173 (1, 4, 3, 3, 3, 2, 1, 2, 0, 1, 0, 0, 0, 7, 4, 3, 3, 1, 1, 0, 0, 3, 1, 0, 0, 0), # 174 (6, 2, 4, 6, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 6, 5, 0, 4, 2, 2, 0, 1, 0, 0, 0, 0), # 175 (8, 5, 1, 6, 5, 0, 1, 1, 0, 0, 1, 1, 0, 6, 5, 4, 1, 5, 1, 1, 2, 2, 2, 1, 0, 0), # 176 (1, 2, 2, 8, 1, 1, 2, 1, 1, 1, 0, 0, 0, 6, 4, 1, 2, 1, 1, 1, 3, 0, 0, 0, 0, 0), # 177 (6, 7, 5, 3, 1, 1, 0, 2, 2, 1, 0, 0, 0, 6, 4, 5, 3, 6, 4, 1, 0, 1, 2, 0, 0, 0), # 178 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179 ) station_arriving_intensity = ( (5.020865578371768, 5.525288559693166, 5.211283229612507, 6.214667773863432, 5.554685607609612, 3.1386549320373387, 4.146035615373915, 4.653176172979423, 6.090099062168007, 3.9580150155223697, 4.205265163885603, 4.897915078306173, 5.083880212578363), # 0 (5.354327152019974, 5.890060694144759, 5.555346591330152, 6.625144253276616, 5.922490337474237, 3.3459835840425556, 4.419468941263694, 4.959513722905708, 6.492245326332909, 4.21898069227715, 4.483096135956131, 5.221216660814354, 5.419791647439855), # 1 (5.686723008979731, 6.253385170890979, 5.8980422855474135, 7.033987704664794, 6.288962973749744, 3.5524851145124448, 4.691818507960704, 5.264625247904419, 6.892786806877549, 4.478913775020546, 4.759823148776313, 5.543232652053055, 5.75436482820969), # 2 (6.016757793146562, 6.613820501936447, 6.238010869319854, 7.439576407532074, 6.652661676001902, 3.757340622585113, 4.962003641647955, 5.567301157494507, 7.290135160921093, 4.736782698426181, 5.0343484118273825, 5.862685684930461, 6.086272806254225), # 3 (6.343136148415981, 6.9699251992857745, 6.573892899703036, 7.840288641382569, 7.012144603796492, 3.9597312073986677, 5.2289436685084585, 5.866331861194915, 7.682702045582707, 4.991555897167679, 5.305574134590575, 6.178298392354764, 6.414188632939817), # 4 (6.66456271868351, 7.320257774943588, 6.9043289337525175, 8.234502685720393, 7.36596991669928, 4.158837968091214, 5.491557914725224, 6.160507768524592, 8.068899117981559, 5.242201805918663, 5.572402526547132, 6.488793407234148, 6.736785359632827), # 5 (6.979742147844666, 7.663376740914501, 7.227959528523866, 8.620596820049652, 7.712695774276043, 4.353842003800864, 5.7487657064812625, 6.4486192890024885, 8.447138035236815, 5.487688859352758, 5.833735797178282, 6.792893362476808, 7.052736037699606), # 6 (7.2873790797949685, 7.997840609203132, 7.543425241072635, 8.996949323874462, 8.050880336092554, 4.543924413665721, 5.999486369959585, 6.729456832147552, 8.815830454467644, 5.726985492143586, 6.088476155965268, 7.089320890990929, 7.360713718506519), # 7 (7.586178158429934, 8.322207891814099, 7.849366628454396, 9.361938476698928, 8.379081761714586, 4.7282662968238895, 6.2426392313431975, 7.001810807478725, 9.173388032793206, 5.959060138964774, 6.335525812389321, 7.376798625684702, 7.659391453419917), # 8 (7.874844027645085, 8.635037100752022, 8.144424247724704, 9.713942558027169, 8.69585821070791, 4.906048752413484, 6.47714361681512, 7.264471624514963, 9.518222427332674, 6.182881234489941, 6.573786975931678, 7.654049199466313, 7.947442293806162), # 9 (8.152081331335932, 8.934886748021516, 8.427238655939124, 10.051339847363288, 8.9997678426383, 5.076452879572607, 6.701918852558355, 7.516229692775211, 9.848745295205214, 6.397417213392714, 6.802161856073574, 7.919795245243952, 8.22353929103161), # 10 (8.416594713398005, 9.220315345627206, 8.696450410153215, 10.372508624211397, 9.289368817071534, 5.238659777439368, 6.915884264755916, 7.7558754217784145, 10.163368293529993, 6.601636510346719, 7.019552662296249, 8.17275939592581, 8.486355496462611), # 11 (8.667088817726812, 9.489881405573698, 8.95070006742254, 10.675827168075612, 9.563219293573377, 5.391850545151869, 7.1179591795908115, 7.982199221043521, 10.460503079426179, 6.794507560025572, 7.224861604080934, 8.411664284420068, 8.734563961465534), # 12 (8.902268288217876, 9.74214343986562, 9.188628184802662, 10.959673758460044, 9.819877431709601, 5.5352062818482235, 7.307062923246056, 8.193991500089481, 10.738561310012932, 6.974998797102904, 7.416990890908869, 8.63523254363492, 8.966837737406735), # 13 (9.120837768766716, 9.975659960507588, 9.408875319349146, 11.222426674868792, 10.05790139104599, 5.667908086666534, 7.482114821904661, 8.390042668435246, 10.995954642409421, 7.142078656252334, 7.594842732261284, 8.84218680647856, 9.181849875652563), # 14 (9.321501903268855, 10.188989479504217, 9.610082028117542, 11.462464196805985, 10.275849331148308, 5.789137058744912, 7.642034201749626, 8.569143135599756, 11.23109473373482, 7.29471557214749, 7.757319337619419, 9.031249705859171, 9.37827342756938), # 15 (9.5029653356198, 10.380690508860132, 9.790888868163425, 11.678164603775716, 10.472279411582333, 5.898074297221459, 7.785740388963976, 8.73008331110196, 11.442393241108286, 7.431877979461996, 7.9033229164645125, 9.20114387468494, 9.554781444523545), # 16 (9.663932709715075, 10.549321560579946, 9.949936396542352, 11.867906175282112, 10.645749791913838, 5.993900901234285, 7.9121527097307105, 8.871653604460818, 11.628261821648984, 7.552534312869467, 8.031755678277799, 9.350591945864055, 9.710046977881415), # 17 (9.803108669450204, 10.693441146668274, 10.08586517030988, 12.030067190829278, 10.794818631708589, 6.075797969921503, 8.020190490232851, 8.99264442519526, 11.787112132476096, 7.6556530070435365, 8.141519832540508, 9.478316552304715, 9.842743079009345), # 18 (9.919197858720699, 10.811607779129744, 10.197315746521578, 12.163025929921314, 10.918044090532366, 6.142946602421208, 8.108773056653394, 9.091846182824245, 11.917355830708779, 7.740202496657828, 8.231517588733878, 9.583040326915096, 9.951542799273696), # 19 (10.010904921422082, 10.902379969968962, 10.282928682233003, 12.265160672062354, 11.013984327950944, 6.194527897871518, 8.176819735175362, 9.168049286866717, 12.017404573466198, 7.805151216385958, 8.30065115633915, 9.66348590260339, 10.035119190040824), # 20 (10.076934501449866, 10.964316231190558, 10.341344534499719, 12.334849696756486, 11.081197503530088, 6.229722955410535, 8.223249851981759, 9.220044146841623, 12.085670017867521, 7.849467600901555, 8.34782274483756, 9.718375912277793, 10.092145302677078), # 21 (10.115991242699579, 10.995975074799144, 10.371203860377285, 12.370471283507836, 11.118241776835575, 6.247712874176367, 8.2469827332556, 9.246621172267915, 12.120563821031915, 7.872120084878242, 8.37193456371034, 9.74643298884649, 10.121294188548827), # 22 (10.13039336334264, 10.999723593964335, 10.374923182441702, 12.374930812757203, 11.127732056032597, 6.25, 8.249804002259339, 9.249493827160494, 12.124926234567901, 7.874792272519433, 8.37495803716174, 9.749897576588934, 10.125), # 23 (10.141012413034153, 10.997537037037038, 10.374314814814815, 12.374381944444446, 11.133107613614852, 6.25, 8.248253812636166, 9.2455, 12.124341666666666, 7.87315061728395, 8.37462457912458, 9.749086419753086, 10.125), # 24 (10.15140723021158, 10.993227023319616, 10.373113854595337, 12.373296039094651, 11.138364945594503, 6.25, 8.24519890260631, 9.237654320987655, 12.123186728395062, 7.869918838591678, 8.373963399426362, 9.747485139460448, 10.125), # 25 (10.161577019048034, 10.986859396433472, 10.371336762688616, 12.37168544238683, 11.143503868421105, 6.25, 8.240686718308721, 9.226104938271606, 12.1214762345679, 7.865150708733425, 8.372980483850855, 9.745115683584821, 10.125), # 26 (10.171520983716636, 10.978499999999999, 10.369, 12.369562499999999, 11.148524198544214, 6.25, 8.234764705882354, 9.211, 12.119225, 7.858899999999999, 8.371681818181818, 9.742, 10.125), # 27 (10.181238328390501, 10.968214677640603, 10.366120027434842, 12.366939557613168, 11.153425752413401, 6.25, 8.22748031146615, 9.192487654320988, 12.116447839506172, 7.851220484682213, 8.370073388203018, 9.73816003657979, 10.125), # 28 (10.19072825724275, 10.95606927297668, 10.362713305898492, 12.36382896090535, 11.15820834647822, 6.25, 8.218880981199066, 9.170716049382715, 12.113159567901235, 7.842165935070874, 8.368161179698216, 9.733617741197987, 10.125), # 29 (10.199989974446497, 10.94212962962963, 10.358796296296296, 12.360243055555555, 11.162871797188236, 6.25, 8.209014161220043, 9.145833333333332, 12.109375, 7.83179012345679, 8.365951178451178, 9.728395061728394, 10.125), # 30 (10.209022684174858, 10.926461591220852, 10.354385459533608, 12.356194187242798, 11.167415920993008, 6.25, 8.19792729766804, 9.117987654320988, 12.105108950617284, 7.820146822130773, 8.363449370245666, 9.722513946044812, 10.125), # 31 (10.217825590600954, 10.909131001371742, 10.349497256515773, 12.35169470164609, 11.171840534342095, 6.25, 8.185667836681999, 9.087327160493828, 12.100376234567902, 7.807289803383631, 8.360661740865444, 9.715996342021034, 10.125), # 32 (10.226397897897897, 10.890203703703703, 10.344148148148149, 12.346756944444444, 11.176145453685063, 6.25, 8.172283224400871, 9.054, 12.095191666666667, 7.793272839506173, 8.357594276094275, 9.708864197530863, 10.125), # 33 (10.23473881023881, 10.869745541838133, 10.338354595336076, 12.341393261316872, 11.180330495471466, 6.25, 8.15782090696361, 9.018154320987653, 12.089570061728397, 7.778149702789209, 8.354252961715924, 9.701139460448102, 10.125), # 34 (10.242847531796807, 10.847822359396433, 10.332133058984912, 12.335615997942385, 11.18439547615087, 6.25, 8.142328330509159, 8.979938271604938, 12.083526234567902, 7.761974165523548, 8.350643783514153, 9.692844078646548, 10.125), # 35 (10.250723266745005, 10.824499999999999, 10.3255, 12.3294375, 11.188340212172836, 6.25, 8.12585294117647, 8.9395, 12.077074999999999, 7.7448, 8.346772727272727, 9.684000000000001, 10.125), # 36 (10.258365219256524, 10.799844307270233, 10.318471879286694, 12.322870113168724, 11.192164519986921, 6.25, 8.108442185104494, 8.896987654320988, 12.070231172839506, 7.726680978509374, 8.34264577877541, 9.674629172382259, 10.125), # 37 (10.265772593504476, 10.773921124828533, 10.311065157750342, 12.315926183127573, 11.19586821604269, 6.25, 8.09014350843218, 8.85254938271605, 12.063009567901235, 7.707670873342479, 8.33826892380596, 9.664753543667125, 10.125), # 38 (10.272944593661986, 10.746796296296296, 10.303296296296297, 12.308618055555556, 11.199451116789703, 6.25, 8.071004357298476, 8.806333333333333, 12.055425000000001, 7.687823456790124, 8.333648148148148, 9.654395061728394, 10.125), # 39 (10.279880423902163, 10.718535665294924, 10.295181755829903, 12.300958076131687, 11.202913038677519, 6.25, 8.05107217784233, 8.758487654320989, 12.047492283950618, 7.667192501143119, 8.328789437585733, 9.643575674439873, 10.125), # 40 (10.286579288398128, 10.689205075445816, 10.286737997256516, 12.29295859053498, 11.206253798155702, 6.25, 8.030394416202695, 8.709160493827161, 12.0392262345679, 7.645831778692272, 8.323698777902482, 9.632317329675354, 10.125), # 41 (10.293040391323, 10.658870370370371, 10.277981481481483, 12.284631944444445, 11.209473211673808, 6.25, 8.009018518518518, 8.6585, 12.030641666666668, 7.623795061728395, 8.318382154882155, 9.620641975308642, 10.125), # 42 (10.299262936849892, 10.627597393689987, 10.268928669410151, 12.275990483539095, 11.212571095681403, 6.25, 7.98699193092875, 8.606654320987655, 12.021753395061728, 7.601136122542296, 8.312845554308517, 9.608571559213535, 10.125), # 43 (10.305246129151927, 10.595451989026063, 10.259596021947875, 12.267046553497943, 11.215547266628045, 6.25, 7.964362099572339, 8.553771604938273, 12.0125762345679, 7.577908733424783, 8.307094961965332, 9.596128029263832, 10.125), # 44 (10.310989172402216, 10.5625, 10.25, 12.2578125, 11.218401540963296, 6.25, 7.9411764705882355, 8.5, 12.003124999999999, 7.554166666666667, 8.301136363636363, 9.583333333333332, 10.125), # 45 (10.31649127077388, 10.528807270233196, 10.240157064471878, 12.24830066872428, 11.221133735136716, 6.25, 7.917482490115388, 8.445487654320988, 11.993414506172838, 7.529963694558756, 8.294975745105374, 9.57020941929584, 10.125), # 46 (10.321751628440035, 10.49443964334705, 10.230083676268862, 12.238523405349794, 11.223743665597867, 6.25, 7.893327604292747, 8.390382716049382, 11.983459567901235, 7.505353589391861, 8.288619092156129, 9.55677823502515, 10.125), # 47 (10.326769449573796, 10.459462962962963, 10.219796296296296, 12.228493055555557, 11.22623114879631, 6.25, 7.868759259259259, 8.334833333333334, 11.973275000000001, 7.4803901234567896, 8.28207239057239, 9.543061728395061, 10.125), # 48 (10.331543938348286, 10.42394307270233, 10.209311385459534, 12.218221965020577, 11.228596001181607, 6.25, 7.8438249011538765, 8.278987654320987, 11.96287561728395, 7.455127069044353, 8.275341626137923, 9.529081847279379, 10.125), # 49 (10.336074298936616, 10.387945816186559, 10.198645404663925, 12.207722479423868, 11.230838039203315, 6.25, 7.81857197611555, 8.222993827160494, 11.9522762345679, 7.429618198445358, 8.268432784636488, 9.514860539551899, 10.125), # 50 (10.34035973551191, 10.351537037037037, 10.187814814814814, 12.197006944444444, 11.232957079310998, 6.25, 7.793047930283224, 8.167, 11.941491666666668, 7.403917283950617, 8.261351851851853, 9.50041975308642, 10.125), # 51 (10.344399452247279, 10.314782578875173, 10.176836076817558, 12.186087705761317, 11.234952937954214, 6.25, 7.767300209795852, 8.111154320987653, 11.930536728395062, 7.3780780978509375, 8.254104813567777, 9.485781435756746, 10.125), # 52 (10.348192653315843, 10.27774828532236, 10.165725651577505, 12.174977109053497, 11.23682543158253, 6.25, 7.741376260792383, 8.055604938271605, 11.919426234567903, 7.3521544124371285, 8.246697655568026, 9.470967535436671, 10.125), # 53 (10.351738542890716, 10.2405, 10.154499999999999, 12.1636875, 11.238574376645502, 6.25, 7.715323529411765, 8.000499999999999, 11.908175, 7.3262, 8.239136363636362, 9.456, 10.125), # 54 (10.355036325145022, 10.203103566529492, 10.143175582990398, 12.152231224279834, 11.24019958959269, 6.25, 7.689189461792948, 7.945987654320987, 11.896797839506172, 7.300268632830361, 8.231426923556553, 9.44090077732053, 10.125), # 55 (10.358085204251871, 10.165624828532236, 10.131768861454047, 12.140620627572016, 11.241700886873659, 6.25, 7.663021504074881, 7.892216049382716, 11.885309567901235, 7.274414083219022, 8.223575321112358, 9.425691815272062, 10.125), # 56 (10.360884384384383, 10.12812962962963, 10.120296296296297, 12.128868055555555, 11.243078084937967, 6.25, 7.636867102396514, 7.839333333333334, 11.873725, 7.24869012345679, 8.215587542087542, 9.410395061728394, 10.125), # 57 (10.36343306971568, 10.090683813443073, 10.108774348422497, 12.116985853909464, 11.244331000235174, 6.25, 7.610773702896797, 7.787487654320987, 11.862058950617284, 7.223150525834477, 8.20746957226587, 9.395032464563329, 10.125), # 58 (10.36573046441887, 10.053353223593964, 10.097219478737998, 12.104986368312757, 11.245459449214845, 6.25, 7.584788751714678, 7.736827160493827, 11.850326234567902, 7.197849062642891, 8.1992273974311, 9.379625971650663, 10.125), # 59 (10.367775772667077, 10.016203703703704, 10.085648148148147, 12.092881944444445, 11.246463248326537, 6.25, 7.558959694989106, 7.6875, 11.838541666666668, 7.172839506172839, 8.190867003367003, 9.364197530864198, 10.125), # 60 (10.369568198633415, 9.97930109739369, 10.0740768175583, 12.080684927983539, 11.247342214019811, 6.25, 7.533333978859033, 7.639654320987654, 11.826720061728395, 7.148175628715135, 8.182394375857339, 9.348769090077733, 10.125), # 61 (10.371106946491004, 9.942711248285322, 10.062521947873801, 12.068407664609055, 11.248096162744234, 6.25, 7.507959049463406, 7.5934382716049384, 11.814876234567901, 7.123911202560586, 8.17381550068587, 9.333362597165067, 10.125), # 62 (10.37239122041296, 9.9065, 10.051, 12.056062500000001, 11.248724910949356, 6.25, 7.482882352941176, 7.549, 11.803025, 7.100099999999999, 8.165136363636364, 9.318, 10.125), # 63 (10.373420224572397, 9.870733196159122, 10.039527434842249, 12.043661779835391, 11.249228275084748, 6.25, 7.458151335431292, 7.506487654320988, 11.791181172839506, 7.076795793324188, 8.156362950492579, 9.302703246456334, 10.125), # 64 (10.374193163142438, 9.835476680384087, 10.0281207133059, 12.031217849794238, 11.249606071599967, 6.25, 7.433813443072703, 7.466049382716049, 11.779359567901235, 7.054052354823959, 8.147501247038285, 9.287494284407863, 10.125), # 65 (10.374709240296196, 9.800796296296298, 10.016796296296297, 12.018743055555555, 11.249858116944573, 6.25, 7.409916122004357, 7.427833333333334, 11.767575, 7.031923456790123, 8.138557239057238, 9.272395061728396, 10.125), # 66 (10.374967660206792, 9.766757887517146, 10.005570644718793, 12.006249742798353, 11.24998422756813, 6.25, 7.386506818365206, 7.391987654320989, 11.755842283950617, 7.010462871513489, 8.12953691233321, 9.257427526291723, 10.125), # 67 (10.374791614480825, 9.733248639320323, 9.994405949931412, 11.993641740472357, 11.249877955297345, 6.2498840115836, 7.363515194829646, 7.358343850022862, 11.744087848651121, 6.989620441647166, 8.120285988540376, 9.242530021899743, 10.124875150034294), # 68 (10.373141706924315, 9.699245519713262, 9.982988425925925, 11.980283514492752, 11.248910675381262, 6.248967078189301, 7.340268181346613, 7.325098765432099, 11.731797839506173, 6.968806390704429, 8.10986283891547, 9.227218973359324, 10.12388599537037), # 69 (10.369885787558895, 9.664592459843355, 9.971268432784635, 11.966087124261943, 11.246999314128942, 6.247161255906112, 7.31666013456137, 7.291952446273434, 11.718902892089622, 6.947919524462734, 8.09814888652608, 9.211422761292809, 10.121932334533609), # 70 (10.365069660642929, 9.62931016859153, 9.959250085733881, 11.951073503757382, 11.244168078754136, 6.244495808565767, 7.292701659538988, 7.258915866483768, 11.705422210791038, 6.926960359342639, 8.085187370783862, 9.195152937212715, 10.119039887688615), # 71 (10.358739130434783, 9.593419354838709, 9.946937499999999, 11.935263586956522, 11.240441176470588, 6.2410000000000005, 7.268403361344538, 7.226, 11.691375, 6.905929411764705, 8.07102153110048, 9.17842105263158, 10.115234375), # 72 (10.35094000119282, 9.556940727465816, 9.934334790809327, 11.918678307836823, 11.23584281449205, 6.236703094040542, 7.243775845043092, 7.193215820759031, 11.676780464106082, 6.884827198149493, 8.055694606887588, 9.161238659061919, 10.110541516632374), # 73 (10.341718077175404, 9.519894995353777, 9.921446073388202, 11.901338600375738, 11.230397200032275, 6.231634354519128, 7.218829715699722, 7.160574302697759, 11.661657807498857, 6.863654234917561, 8.039249837556856, 9.143617308016267, 10.104987032750344), # 74 (10.331119162640901, 9.482302867383511, 9.908275462962962, 11.883265398550725, 11.224128540305012, 6.22582304526749, 7.1935755783795, 7.128086419753086, 11.6460262345679, 6.84241103848947, 8.021730462519935, 9.125568551007147, 10.098596643518519), # 75 (10.319189061847677, 9.44418505243595, 9.894827074759945, 11.864479636339238, 11.217061042524005, 6.219298430117361, 7.168024038147495, 7.095763145861912, 11.629904949702789, 6.821098125285779, 8.003179721188491, 9.107103939547082, 10.091396069101508), # 76 (10.305973579054093, 9.40556225939201, 9.881105024005485, 11.845002247718732, 11.209218913903008, 6.212089772900472, 7.142185700068779, 7.063615454961135, 11.613313157293096, 6.7997160117270505, 7.983640852974187, 9.088235025148606, 10.083411029663925), # 77 (10.291518518518519, 9.366455197132618, 9.867113425925925, 11.824854166666666, 11.200626361655774, 6.204226337448559, 7.116071169208425, 7.031654320987655, 11.596270061728394, 6.7782652142338415, 7.9631570972886765, 9.068973359324238, 10.074667245370371), # 78 (10.275869684499314, 9.326884574538697, 9.8528563957476, 11.804056327160493, 11.191307592996047, 6.195737387593354, 7.089691050631501, 6.9998907178783725, 11.578794867398262, 6.756746249226714, 7.941771693543622, 9.049330493586504, 10.065190436385459), # 79 (10.259072881254847, 9.286871100491172, 9.838338048696844, 11.782629663177671, 11.181286815137579, 6.18665218716659, 7.063055949403081, 6.968335619570188, 11.560906778692273, 6.7351596331262265, 7.919527881150688, 9.029317979447935, 10.0550063228738), # 80 (10.241173913043479, 9.246435483870968, 9.8235625, 11.760595108695654, 11.170588235294117, 6.177, 7.036176470588235, 6.937, 11.542625, 6.713505882352941, 7.8964688995215315, 9.008947368421053, 10.044140624999999), # 81 (10.222218584123576, 9.205598433559008, 9.808533864883403, 11.737973597691894, 11.159236060679415, 6.166810089925317, 7.009063219252036, 6.90589483310471, 11.52396873571102, 6.691785513327416, 7.872637988067813, 8.988230212018387, 10.03261906292867), # 82 (10.202252698753504, 9.164380658436214, 9.793256258573388, 11.714786064143853, 11.147254498507221, 6.156111720774272, 6.981726800459553, 6.875031092821216, 11.504957190214906, 6.669999042470211, 7.848078386201194, 8.967178061752461, 10.020467356824417), # 83 (10.181322061191626, 9.122802867383513, 9.777733796296296, 11.691053442028986, 11.134667755991286, 6.144934156378601, 6.954177819275858, 6.844419753086419, 11.485609567901234, 6.648146986201889, 7.822833333333333, 8.945802469135803, 10.007711226851852), # 84 (10.159472475696308, 9.080885769281826, 9.761970593278463, 11.666796665324746, 11.121500040345357, 6.133306660570035, 6.926426880766024, 6.814071787837221, 11.465945073159578, 6.626229860943005, 7.796946068875894, 8.924114985680937, 9.994376393175584), # 85 (10.136749746525913, 9.03865007301208, 9.745970764746229, 11.64203666800859, 11.107775558783183, 6.121258497180309, 6.89848458999512, 6.783998171010516, 11.445982910379517, 6.604248183114124, 7.770459832240534, 8.902127162900394, 9.98048857596022), # 86 (10.113199677938807, 8.996116487455197, 9.729738425925925, 11.61679438405797, 11.09351851851852, 6.108818930041152, 6.870361552028219, 6.75420987654321, 11.425742283950619, 6.582202469135802, 7.743417862838915, 8.879850552306692, 9.96607349537037), # 87 (10.088868074193357, 8.9533057214921, 9.713277692043896, 11.59109074745035, 11.07875312676511, 6.096017222984301, 6.842068371930391, 6.724717878372199, 11.40524239826246, 6.560093235428601, 7.715863400082698, 8.857296705412365, 9.951156871570646), # 88 (10.063800739547922, 8.910238484003717, 9.696592678326475, 11.564946692163177, 11.063503590736707, 6.082882639841488, 6.813615654766708, 6.695533150434385, 11.384502457704619, 6.537920998413083, 7.687839683383544, 8.834477173729935, 9.935764424725651), # 89 (10.03804347826087, 8.866935483870968, 9.6796875, 11.538383152173914, 11.04779411764706, 6.069444444444445, 6.785014005602241, 6.666666666666666, 11.363541666666668, 6.515686274509804, 7.65938995215311, 8.81140350877193, 9.919921875), # 90 (10.011642094590563, 8.823417429974777, 9.662566272290809, 11.511421061460013, 11.031648914709915, 6.055731900624904, 6.756274029502062, 6.638129401005944, 11.342379229538182, 6.4933895801393255, 7.63055744580306, 8.788087262050874, 9.903654942558298), # 91 (9.984642392795372, 8.779705031196071, 9.64523311042524, 11.484081353998926, 11.015092189139029, 6.041774272214601, 6.727406331531242, 6.609932327389118, 11.321034350708734, 6.471031431722209, 7.601385403745053, 8.764539985079297, 9.886989347565157), # 92 (9.957090177133654, 8.735818996415771, 9.62769212962963, 11.456384963768118, 10.998148148148148, 6.027600823045267, 6.69842151675485, 6.582086419753087, 11.299526234567901, 6.448612345679011, 7.57191706539075, 8.74077322936972, 9.869950810185184), # 93 (9.92903125186378, 8.691780034514801, 9.609947445130317, 11.428352824745035, 10.98084099895102, 6.0132408169486355, 6.669330190237961, 6.554602652034752, 11.277874085505259, 6.426132838430297, 7.54219567015181, 8.716798546434674, 9.85256505058299), # 94 (9.90051142124411, 8.647608854374088, 9.592003172153635, 11.400005870907139, 10.963194948761398, 5.9987235177564395, 6.640142957045644, 6.527491998171011, 11.25609710791038, 6.403593426396621, 7.512264457439896, 8.69262748778668, 9.834857788923182), # 95 (9.871576489533012, 8.603326164874554, 9.573863425925927, 11.371365036231884, 10.945234204793028, 5.984078189300411, 6.610870422242971, 6.500765432098766, 11.234214506172838, 6.3809946259985475, 7.482166666666667, 8.668271604938273, 9.816854745370371), # 96 (9.842272260988848, 8.558952674897121, 9.555532321673525, 11.342451254696725, 10.926982974259664, 5.969334095412284, 6.581523190895013, 6.474433927754916, 11.212245484682214, 6.358336953656634, 7.451945537243782, 8.64374244940197, 9.798581640089164), # 97 (9.812644539869984, 8.514509093322713, 9.53701397462277, 11.31328546027912, 10.908465464375052, 5.954520499923793, 6.552111868066842, 6.44850845907636, 11.190209247828074, 6.335620925791441, 7.421644308582906, 8.619051572690298, 9.78006419324417), # 98 (9.782739130434782, 8.470016129032258, 9.5183125, 11.283888586956522, 10.889705882352942, 5.939666666666667, 6.52264705882353, 6.423, 11.168125, 6.312847058823529, 7.391306220095694, 8.59421052631579, 9.761328125), # 99 (9.752601836941611, 8.425494490906676, 9.49943201303155, 11.254281568706388, 10.870728435407084, 5.924801859472641, 6.493139368230145, 6.3979195244627345, 11.146011945587563, 6.290015869173458, 7.36097451119381, 8.569230861790967, 9.742399155521262), # 100 (9.722278463648834, 8.380964887826895, 9.480376628943759, 11.224485339506174, 10.85155733075123, 5.909955342173449, 6.463599401351762, 6.3732780064014625, 11.123889288980338, 6.267127873261788, 7.330692421288912, 8.544124130628353, 9.723303004972564), # 101 (9.691814814814816, 8.336448028673836, 9.461150462962962, 11.194520833333334, 10.832216775599129, 5.895156378600824, 6.43403776325345, 6.349086419753086, 11.1017762345679, 6.244183587509078, 7.300503189792663, 8.518901884340481, 9.704065393518519), # 102 (9.661256694697919, 8.291964622328422, 9.4417576303155, 11.164408984165325, 10.812730977164529, 5.880434232586496, 6.40446505900028, 6.325355738454504, 11.079691986739826, 6.221183528335889, 7.270450056116723, 8.493575674439873, 9.68471204132373), # 103 (9.63064990755651, 8.247535377671579, 9.422202246227709, 11.134170725979603, 10.79312414266118, 5.865818167962201, 6.374891893657326, 6.302096936442616, 11.057655749885688, 6.19812821216278, 7.24057625967275, 8.468157052439054, 9.665268668552812), # 104 (9.600040257648953, 8.203181003584229, 9.402488425925926, 11.103826992753623, 10.773420479302832, 5.851337448559671, 6.345328872289658, 6.279320987654321, 11.035686728395062, 6.175018155410313, 7.210925039872408, 8.442657569850553, 9.64576099537037), # 105 (9.569473549233614, 8.158922208947299, 9.382620284636488, 11.073398718464842, 10.753644194303236, 5.837021338210638, 6.315786599962345, 6.25703886602652, 11.01380412665752, 6.151853874499045, 7.181539636127355, 8.417088778186894, 9.626214741941014), # 106 (9.538995586568856, 8.11477970264171, 9.362601937585735, 11.042906837090714, 10.733819494876139, 5.822899100746838, 6.286275681740461, 6.235261545496114, 10.992027149062643, 6.128635885849539, 7.152463287849252, 8.391462228960604, 9.606655628429355), # 107 (9.508652173913044, 8.070774193548388, 9.3424375, 11.012372282608696, 10.713970588235293, 5.809, 6.256806722689075, 6.214, 10.970375, 6.105364705882353, 7.1237392344497605, 8.365789473684211, 9.587109375), # 108 (9.478489115524543, 8.026926390548255, 9.322131087105625, 10.98181598899624, 10.69412168159445, 5.795353299801859, 6.227390327873262, 6.193265203475081, 10.948866883859168, 6.082040851018047, 7.09541071534054, 8.340082063870238, 9.567601701817559), # 109 (9.448552215661715, 7.983257002522237, 9.301686814128946, 10.951258890230811, 10.674296982167354, 5.7819882639841484, 6.198037102358089, 6.173068129858253, 10.92752200502972, 6.058664837677183, 7.06752096993325, 8.314351551031214, 9.54815832904664), # 110 (9.41888727858293, 7.9397867383512555, 9.281108796296298, 10.920721920289855, 10.654520697167756, 5.768934156378601, 6.168757651208631, 6.153419753086419, 10.906359567901236, 6.035237182280319, 7.040113237639553, 8.288609486679663, 9.528804976851852), # 111 (9.38954010854655, 7.896536306916234, 9.26040114883402, 10.890226013150832, 10.634817033809409, 5.756220240816949, 6.139562579489958, 6.134331047096479, 10.885398776863282, 6.011758401248016, 7.013230757871109, 8.26286742232811, 9.509567365397805), # 112 (9.360504223703044, 7.853598618785952, 9.239617828252069, 10.85983388249204, 10.615175680173705, 5.7438697692145135, 6.1105259636567695, 6.115852568780606, 10.86471281125862, 5.988304736612729, 6.9869239061528665, 8.237192936504428, 9.490443900843221), # 113 (9.331480897900065, 7.811397183525536, 9.219045675021619, 10.829789421277336, 10.595393354566326, 5.731854608529901, 6.082018208410579, 6.09821125950512, 10.84461903571306, 5.965315167912783, 6.961244337113197, 8.211912172112974, 9.471275414160035), # 114 (9.302384903003995, 7.769947198683046, 9.198696932707318, 10.800084505181779, 10.5754076778886, 5.7201435124987645, 6.054059650191562, 6.081402654278709, 10.82512497866879, 5.942825327988077, 6.936154511427094, 8.187037582558851, 9.452006631660376), # 115 (9.273179873237634, 7.729188281291702, 9.178532189983873, 10.770666150266404, 10.555188526383779, 5.708708877287098, 6.026604817527893, 6.065380312898993, 10.80618133922783, 5.920793358449547, 6.911605931271481, 8.162523197487346, 9.43260725975589), # 116 (9.243829442823772, 7.689060048384721, 9.158512035525986, 10.741481372592244, 10.53470577629511, 5.6975230990608905, 5.9996082389477525, 6.050097795163585, 10.787738816492203, 5.899177400908129, 6.887550098823283, 8.13832304654375, 9.413047004858225), # 117 (9.214297245985211, 7.649502116995324, 9.138597058008367, 10.712477188220333, 10.513929303865842, 5.686558573986138, 5.973024442979315, 6.0355086608700965, 10.769748109563935, 5.877935596974759, 6.863938516259424, 8.11439115937335, 9.393295573379024), # 118 (9.184546916944742, 7.610454104156729, 9.118747846105723, 10.683600613211706, 10.492828985339221, 5.675787698228833, 5.946807958150756, 6.021566469816145, 10.752159917545043, 5.857026088260372, 6.840722685756828, 8.090681565621434, 9.373322671729932), # 119 (9.154542089925162, 7.571855626902158, 9.098924988492762, 10.654798663627394, 10.471374696958497, 5.665182867954965, 5.920913312990253, 6.008224781799343, 10.734924939537558, 5.836407016375905, 6.817854109492416, 8.067148294933297, 9.353098006322597), # 120 (9.124246399149268, 7.533646302264829, 9.079089073844187, 10.626018355528434, 10.449536314966918, 5.6547164793305305, 5.89529503602598, 5.995437156617307, 10.717993874643499, 5.816036522932296, 6.795284289643116, 8.043745376954222, 9.33259128356866), # 121 (9.093623478839854, 7.495765747277961, 9.059200690834711, 10.597206704975855, 10.427283715607734, 5.644360928521519, 5.869907655786117, 5.983157154067649, 10.70131742196489, 5.795872749540477, 6.772964728385851, 8.0204268413295, 9.31177220987977), # 122 (9.062636963219719, 7.458153578974774, 9.039220428139036, 10.568310728030694, 10.40458677512419, 5.634088611693925, 5.844705700798839, 5.971338333947983, 10.684846280603754, 5.775873837811387, 6.750846927897544, 7.997146717704421, 9.290610491667572), # 123 (9.031250486511654, 7.420749414388487, 9.01910887443187, 10.539277440753986, 10.381415369759537, 5.623871925013739, 5.819643699592319, 5.959934256055926, 10.668531149662115, 5.755997929355961, 6.728882390355119, 7.973859035724275, 9.269075835343711), # 124 (8.999427682938459, 7.38349287055232, 8.998826618387923, 10.51005385920676, 10.357739375757022, 5.613683264646956, 5.794676180694739, 5.948898480189091, 10.652322728241993, 5.736203165785134, 6.707022617935501, 7.950517825034348, 9.247137947319828), # 125 (8.967132186722928, 7.346323564499494, 8.978334248681898, 10.480586999450054, 10.333528669359893, 5.603495026759568, 5.76975767263427, 5.938184566145092, 10.636171715445418, 5.7164476887098425, 6.685219112815613, 7.927077115279934, 9.224766534007578), # 126 (8.93432763208786, 7.309181113263224, 8.957592353988504, 10.450823877544899, 10.308753126811398, 5.593279607517565, 5.744842703939094, 5.927746073721545, 10.620028810374407, 5.696689639741024, 6.6634233771723785, 7.903490936106316, 9.201931301818599), # 127 (8.900977653256046, 7.272005133876735, 8.93656152298245, 10.420711509552332, 10.28338262435479, 5.583009403086944, 5.719885803137382, 5.917536562716062, 10.603844712130984, 5.6768871604896125, 6.641586913182724, 7.879713317158788, 9.178601957164537), # 128 (8.867045884450281, 7.234735243373241, 8.91520234433844, 10.390196911533382, 10.257387038233311, 5.572656809633695, 5.694841498757313, 5.90750959292626, 10.587570119817174, 5.656998392566545, 6.619661223023571, 7.855698288082636, 9.154748206457038), # 129 (8.832495959893366, 7.197311058785966, 8.893475406731179, 10.359227099549086, 10.230736244690213, 5.562194223323808, 5.669664319327063, 5.89761872414975, 10.571155732535, 5.636981477582757, 6.5975978088718445, 7.831399878523152, 9.130339756107748), # 130 (8.797291513808094, 7.159672197148127, 8.87134129883538, 10.327749089660475, 10.203400119968745, 5.55159404032328, 5.644308793374809, 5.88781751618415, 10.554552249386486, 5.616794557149185, 6.575348172904468, 7.806772118125624, 9.105346312528312), # 131 (8.76139618041726, 7.121758275492944, 8.848760609325746, 10.295709897928587, 10.175348540312154, 5.540828656798102, 5.618729449428725, 5.878059528827073, 10.537710369473654, 5.596395772876765, 6.552863817298364, 7.781769036535342, 9.079737582130376), # 132 (8.724773593943663, 7.083508910853635, 8.825693926876983, 10.263056540414452, 10.146551381963686, 5.529870468914266, 5.592880816016989, 5.868298321876132, 10.520580791898526, 5.575743266376432, 6.53009624423046, 7.756344663397592, 9.053483271325586), # 133 (8.687387388610095, 7.044863720263423, 8.802101840163804, 10.229736033179103, 10.116978521166592, 5.518691872837765, 5.566717421667779, 5.858487455128944, 10.503114215763128, 5.5547951792591235, 6.506996955877678, 7.730453028357666, 9.026553086525583), # 134 (8.649201198639354, 7.005762320755524, 8.777944937860909, 10.195695392283579, 10.08659983416412, 5.507265264734592, 5.540193794909268, 5.84858048838312, 10.48526134016948, 5.533509653135776, 6.483517454416942, 7.704048161060852, 8.99891673414202), # 135 (8.610178658254235, 6.966144329363159, 8.753183808643008, 10.160881633788906, 10.055385197199517, 5.495563040770739, 5.513264464269635, 5.838530981436277, 10.466972864219606, 5.511844829617322, 6.459609242025177, 7.677084091152441, 8.970543920586536), # 136 (8.570283401677534, 6.925949363119547, 8.72777904118481, 10.125241773756125, 10.023304486516034, 5.483557597112198, 5.485883958277055, 5.828292494086029, 10.448199487015533, 5.4897588503147015, 6.435223820879306, 7.649514848277719, 8.941404352270776), # 137 (8.529479063132047, 6.885117039057908, 8.701691224161017, 10.088722828246263, 9.990327578356919, 5.471221329924964, 5.458006805459704, 5.81781858612999, 10.428891907659281, 5.4672098568388465, 6.410312693156252, 7.621294462081978, 8.91146773560639), # 138 (8.487729276840568, 6.843586974211461, 8.67488094624634, 10.051271813320358, 9.956424348965415, 5.458526635375026, 5.429587534345759, 5.807062817365774, 10.409000825252871, 5.444155990800697, 6.38482736103294, 7.592376962210506, 8.880703777005019), # 139 (8.444997677025897, 6.801298785613425, 8.647308796115487, 10.012835745039444, 9.92156467458478, 5.445445909628379, 5.400580673463397, 5.795978747590996, 10.388476938898332, 5.420555393811186, 6.358719326686294, 7.562716378308592, 8.849082182878314), # 140 (8.40124789791083, 6.758192090297021, 8.61893536244316, 9.973361639464553, 9.885718431458253, 5.431951548851015, 5.370940751340795, 5.78451993660327, 10.36727094769768, 5.396366207481251, 6.331940092293238, 7.532266740021525, 8.816572659637913), # 141 (8.356443573718156, 6.714206505295466, 8.58972123390407, 9.93279651265672, 9.848855495829087, 5.418015949208927, 5.340622296506126, 5.772639944200211, 10.345333550752942, 5.371546573421828, 6.304441160030697, 7.500982076994594, 8.783144913695466), # 142 (8.310548338670674, 6.669281647641981, 8.559626999172925, 9.891087380676975, 9.810945743940529, 5.403611506868106, 5.3095798374875685, 5.760292330179432, 10.322615447166147, 5.3460546332438525, 6.276174032075593, 7.4688164188730894, 8.748768651462617), # 143 (8.263525826991184, 6.623357134369786, 8.528613246924428, 9.848181259586356, 9.771959052035829, 5.388710617994547, 5.277767902813299, 5.747430654338549, 10.29906733603931, 5.31984852855826, 6.247090210604851, 7.435723795302299, 8.713413579351014), # 144 (8.215339672902477, 6.576372582512099, 8.496640565833289, 9.804025165445895, 9.731865296358233, 5.3732856787542405, 5.245141021011493, 5.734008476475176, 10.274639916474454, 5.292886400975988, 6.217141197795395, 7.401658235927513, 8.6770494037723), # 145 (8.16595351062735, 6.528267609102142, 8.463669544574216, 9.758566114316626, 9.690634353150992, 5.35730908531318, 5.21165372061033, 5.719979356386927, 10.249283887573606, 5.2651263921079705, 6.186278495824149, 7.3665737703940195, 8.639645831138118), # 146 (8.1153309743886, 6.47898183117313, 8.42966077182191, 9.71175112225958, 9.648236098657351, 5.340753233837358, 5.177260530137981, 5.705296853871415, 10.22294994843879, 5.236526643565146, 6.154453606868036, 7.3304244283471105, 8.601172567860118), # 147 (8.063435698409021, 6.428454865758288, 8.394574836251083, 9.663527205335797, 9.604640409120561, 5.323590520492767, 5.1419159781226265, 5.689914528726257, 10.195588798172029, 5.207045296958447, 6.1216180331039824, 7.29316423943207, 8.561599320349941), # 148 (8.010231316911412, 6.37662632989083, 8.358372326536443, 9.613841379606303, 9.55981716078387, 5.3057933414453995, 5.105574593092441, 5.673785940749067, 10.167151135875338, 5.176640493898813, 6.08772327670891, 7.254747233294191, 8.520895795019237), # 149 (7.955681464118564, 6.323435840603979, 8.321013831352694, 9.562640661132138, 9.513736229890526, 5.287334092861249, 5.0681909035756005, 5.656864649737456, 10.137587660650752, 5.1452703759971765, 6.0527208398597425, 7.215127439578763, 8.479031698279647), # 150 (7.899749774253275, 6.268823014930954, 8.282459939374542, 9.50987206597433, 9.466367492683776, 5.268185170906305, 5.029719438100283, 5.639104215489043, 10.106849071600289, 5.112893084864478, 6.016562224733405, 7.174258887931072, 8.435976736542818), # 151 (7.842399881538343, 6.212727469904973, 8.242671239276701, 9.455482610193918, 9.417680825406869, 5.2483189717465635, 4.9901147251946645, 5.620458197801441, 10.07488606782597, 5.079466762111649, 5.979198933506821, 7.132095607996409, 8.391700616220398), # 152 (7.78359542019656, 6.155088822559256, 8.201608319733868, 9.399419309851933, 9.367646104303056, 5.2277078915480155, 4.949331293386919, 5.600880156472262, 10.041649348429823, 5.044949549349629, 5.940582468356916, 7.088591629420064, 8.346173043724027), # 153 (7.723300024450729, 6.095846689927024, 8.159231769420758, 9.34162918100941, 9.31623320561558, 5.206324326476654, 4.907323671205228, 5.580323651299123, 10.007089612513866, 5.009299588189353, 5.900664331460612, 7.043700981847325, 8.299363725465357), # 154 (7.6614773285236355, 6.034940689041495, 8.115502177012075, 9.282059239727378, 9.263412005587696, 5.184140672698471, 4.864046387177761, 5.558742242079636, 9.971157559180128, 4.972475020241754, 5.859396024994833, 6.997377694923482, 8.251242367856026), # 155 (7.598090966638081, 5.972310436935888, 8.070380131182526, 9.220656502066875, 9.209152380462648, 5.161129326379461, 4.8194539698327, 5.5360894886114185, 9.933803887530626, 4.934433987117773, 5.816729051136504, 6.949575798293822, 8.201778677307685), # 156 (7.533104573016862, 5.907895550643423, 8.023826220606818, 9.157367984088937, 9.153424206483685, 5.137262683685614, 4.773500947698219, 5.512318950692082, 9.894979296667389, 4.895134630428341, 5.772614912062549, 6.900249321603637, 8.150942360231976), # 157 (7.464680946405239, 5.840453120772258, 7.973591953902355, 9.089769581651243, 9.093681105870997, 5.11102447631711, 4.725106720927857, 5.485796952349372, 9.851662091599097, 4.8533659162911436, 5.7255957525389425, 6.847599564194339, 8.096485859415345), # 158 (7.382286766978402, 5.763065319599478, 7.906737818402988, 9.003977158788453, 9.015191309781628, 5.073689648007103, 4.668212763385716, 5.4472135327643825, 9.786427261222144, 4.802280994098745, 5.667416935618994, 6.781362523683108, 8.025427646920194), # 159 (7.284872094904309, 5.675096728540714, 7.821920957955888, 8.89857751040886, 8.916420131346795, 5.024341296047684, 4.602243748383784, 5.3955991895273465, 9.697425227228651, 4.741205651862893, 5.59725950860954, 6.700501948887847, 7.93642060889358), # 160 (7.17322205458596, 5.577120868080469, 7.720046971910309, 8.774572503756728, 8.798393124282113, 4.963577241570314, 4.527681446006876, 5.33160053310978, 9.585829766999018, 4.6706581931709374, 5.515741654599707, 6.605767468907571, 7.830374044819097), # 161 (7.048121770426357, 5.469711258703239, 7.602021459615496, 8.632964006076326, 8.662135842303204, 4.891995305706455, 4.445007626339809, 5.255864173983202, 9.452814657913637, 4.5911569216102315, 5.42348155667862, 6.497908712841293, 7.708197254180333), # 162 (6.9103563668284975, 5.353441420893524, 7.468750020420702, 8.474753884611934, 8.508673839125688, 4.810193309587572, 4.354704059467401, 5.169036722619125, 9.299553677352906, 4.503220140768125, 5.321097397935408, 6.3776753097880325, 7.570799536460879), # 163 (6.760710968195384, 5.228884875135821, 7.321138253675176, 8.300944006607818, 8.339032668465189, 4.718769074345129, 4.257252515474466, 5.071764789489069, 9.127220602697223, 4.407366154231968, 5.209207361459196, 6.245816888846803, 7.419090191144328), # 164 (6.599970698930017, 5.096615141914632, 7.160091758728169, 8.112536239308252, 8.154237884037324, 4.618320421110586, 4.153134764445822, 4.964694985064546, 8.93698921132698, 4.3041132655891134, 5.088429630339111, 6.10308307911662, 7.25397851771427), # 165 (6.428920683435397, 4.957205741714454, 6.9865161349289275, 7.910532449957501, 7.955315039557714, 4.509445171015408, 4.042832576466286, 4.848473919817077, 8.730033280622573, 4.193979778426912, 4.959382387664279, 5.950223509696501, 7.0763738156542955), # 166 (6.248346046114523, 4.811230195019787, 6.801316981626704, 7.695934505799843, 7.74328968874198, 4.392741145191058, 3.9268277216206746, 4.723748204218176, 8.5075265879644, 4.077483996332714, 4.822683816523827, 5.7879878096854585, 6.887185384447996), # 167 (6.059031911370395, 4.659262022315128, 6.605399898170748, 7.469744274079546, 7.519187385305742, 4.268806164768999, 3.805601969993804, 4.5911644487393595, 8.270642910732855, 3.955144222893872, 4.678952100006881, 5.617125608182511, 6.6873225235789615), # 168 (5.861763403606015, 4.501874744084979, 6.399670483910309, 7.232963622040883, 7.28403368296462, 4.138238050880695, 3.6796370916704917, 4.451369263852145, 8.020556026308338, 3.8274787616977366, 4.528805421202568, 5.438386534286672, 6.477694532530785), # 169 (5.657325647224384, 4.339641880813837, 6.185034338194635, 6.98659441692812, 7.038854135434233, 4.001634624657607, 3.549414856735553, 4.305009260028047, 7.7584397120712385, 3.6950059163316578, 4.372861963200016, 5.252520217096959, 6.259210710787055), # 170 (5.4465037666285, 4.173136952986201, 5.962397060372978, 6.731638525985535, 6.784674296430206, 3.8595937072311983, 3.4154170352738054, 4.152731047738583, 7.485467745401956, 3.5582439903829886, 4.211739909088348, 5.060276285712386, 6.032780357831365), # 171 (5.230082886221365, 4.002933481086569, 5.7326642497945866, 6.4690978164573965, 6.5225197196681535, 3.7127131197329337, 3.2781253973700655, 3.9951812374552707, 7.202813903680886, 3.41771128743908, 4.046057441956694, 4.862404369231971, 5.799312773147303), # 172 (5.00884813040598, 3.8296049855994423, 5.4967415058087115, 6.1999741555879755, 6.253415958863702, 3.5615906832942748, 3.1380217131091497, 3.8330064396496235, 6.911651964288422, 3.2739261110872815, 3.8764327448941778, 4.659654096754725, 5.5597172562184625), # 173 (4.783584623585344, 3.653724987009318, 5.2555344277646014, 5.9252694106215404, 5.978388567732466, 3.406824219046685, 2.9955877525758754, 3.6668532647931604, 6.613155704604964, 3.1274067649149466, 3.7034840009899277, 4.452775097379668, 5.314903106528433), # 174 (4.555077490162455, 3.4758670058006946, 5.009948615011508, 5.645985448802367, 5.698463099990069, 3.2490115481216284, 2.851305285855058, 3.497368323357396, 6.308498902010905, 2.9786715525094243, 3.5278293933330693, 4.242517000205814, 5.0657796235608075), # 175 (4.324111854540319, 3.296604562458073, 4.760889666898678, 5.363124137374725, 5.41466510935213, 3.0887504916505666, 2.705656083031515, 3.325198225813849, 5.998855333886642, 2.828238777458067, 3.35008710501273, 4.029629434332179, 4.813256106799174), # 176 (4.0914728411219325, 3.1165111774659513, 4.5092631827753635, 5.077687343582883, 5.128020149534273, 2.9266388707649633, 2.5591219141900625, 3.1509895826340326, 5.68539877761257, 2.6766267433482245, 3.1708753191180357, 3.8148620288577786, 4.5582418557271245), # 177 (3.8579455743102966, 2.9361603713088282, 4.255974761990814, 4.790676934671116, 4.8395537742521135, 2.7632745065962827, 2.4121845494155174, 2.9753890042894655, 5.3693030105690855, 2.52435375376725, 2.9908122187381125, 3.598964412881627, 4.301646169828252), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_arriving_acc = ( (2, 7, 5, 2, 8, 1, 2, 1, 2, 1, 0, 1, 0, 11, 2, 3, 4, 3, 0, 0, 0, 1, 0, 0, 0, 0), # 0 (12, 12, 9, 6, 15, 5, 4, 1, 3, 4, 0, 1, 0, 17, 10, 7, 7, 5, 3, 5, 3, 2, 1, 0, 0, 0), # 1 (20, 18, 20, 10, 17, 7, 8, 4, 6, 4, 1, 2, 0, 21, 14, 12, 10, 11, 4, 6, 3, 6, 1, 2, 0, 0), # 2 (26, 22, 23, 14, 20, 8, 9, 4, 8, 10, 2, 2, 0, 28, 19, 14, 16, 13, 7, 8, 7, 6, 1, 3, 0, 0), # 3 (31, 32, 25, 22, 20, 10, 15, 5, 9, 12, 2, 2, 0, 31, 24, 18, 18, 19, 9, 8, 7, 10, 5, 3, 1, 0), # 4 (42, 39, 30, 23, 26, 11, 18, 6, 11, 14, 3, 2, 0, 42, 30, 21, 23, 23, 13, 11, 10, 12, 7, 4, 1, 0), # 5 (51, 48, 32, 30, 37, 11, 19, 8, 14, 14, 6, 2, 0, 46, 34, 30, 24, 36, 16, 13, 12, 15, 9, 5, 2, 0), # 6 (58, 53, 37, 36, 45, 13, 23, 11, 16, 14, 6, 2, 0, 53, 39, 37, 27, 42, 21, 14, 14, 19, 12, 6, 2, 0), # 7 (67, 59, 45, 46, 52, 14, 24, 12, 19, 16, 8, 5, 0, 65, 42, 47, 32, 48, 27, 18, 14, 24, 13, 6, 2, 0), # 8 (74, 68, 57, 55, 56, 15, 29, 17, 22, 19, 10, 7, 0, 71, 54, 54, 38, 53, 34, 22, 17, 26, 15, 6, 2, 0), # 9 (83, 77, 67, 69, 62, 20, 35, 19, 24, 21, 10, 9, 0, 79, 60, 64, 43, 57, 36, 26, 18, 27, 19, 7, 3, 0), # 10 (89, 87, 72, 73, 66, 21, 39, 25, 29, 22, 11, 11, 0, 89, 70, 71, 47, 64, 38, 30, 22, 32, 20, 8, 5, 0), # 11 (100, 94, 80, 81, 69, 21, 43, 29, 36, 22, 11, 12, 0, 95, 79, 75, 53, 70, 43, 34, 26, 38, 23, 9, 7, 0), # 12 (107, 103, 85, 94, 76, 28, 45, 33, 37, 23, 13, 13, 0, 106, 85, 83, 58, 78, 46, 37, 32, 41, 24, 12, 8, 0), # 13 (109, 113, 93, 107, 82, 31, 47, 36, 39, 26, 14, 13, 0, 118, 94, 86, 65, 83, 49, 38, 33, 46, 25, 13, 9, 0), # 14 (115, 129, 102, 115, 90, 35, 49, 37, 42, 26, 17, 15, 0, 123, 99, 94, 69, 88, 56, 43, 37, 50, 30, 16, 9, 0), # 15 (125, 141, 108, 124, 98, 39, 55, 41, 44, 27, 18, 17, 0, 131, 112, 100, 75, 93, 61, 47, 41, 54, 33, 16, 9, 0), # 16 (131, 150, 117, 131, 104, 42, 57, 41, 49, 27, 19, 17, 0, 141, 118, 111, 81, 102, 65, 51, 44, 61, 36, 18, 11, 0), # 17 (140, 154, 126, 139, 112, 46, 58, 43, 55, 29, 19, 18, 0, 150, 128, 118, 84, 107, 72, 53, 46, 66, 39, 19, 11, 0), # 18 (148, 167, 141, 149, 120, 49, 61, 45, 55, 30, 20, 20, 0, 157, 141, 127, 87, 115, 76, 58, 46, 69, 40, 23, 13, 0), # 19 (162, 176, 152, 157, 128, 51, 63, 48, 60, 30, 22, 22, 0, 169, 155, 131, 92, 122, 81, 65, 47, 73, 44, 24, 13, 0), # 20 (170, 183, 157, 171, 135, 54, 66, 53, 64, 32, 25, 22, 0, 183, 161, 137, 97, 131, 88, 72, 50, 76, 46, 24, 16, 0), # 21 (186, 194, 169, 186, 139, 60, 68, 56, 69, 32, 28, 23, 0, 194, 175, 142, 104, 137, 97, 78, 51, 78, 50, 24, 16, 0), # 22 (210, 202, 177, 196, 143, 65, 71, 60, 71, 35, 31, 24, 0, 210, 183, 148, 106, 139, 100, 82, 53, 82, 54, 27, 16, 0), # 23 (221, 212, 183, 203, 151, 69, 74, 65, 75, 37, 33, 24, 0, 225, 193, 153, 115, 146, 105, 87, 57, 86, 56, 27, 17, 0), # 24 (230, 220, 191, 208, 159, 72, 77, 70, 78, 38, 35, 25, 0, 232, 202, 165, 120, 148, 106, 90, 61, 89, 58, 28, 17, 0), # 25 (237, 232, 203, 219, 168, 73, 85, 75, 81, 41, 37, 25, 0, 239, 210, 172, 125, 156, 118, 92, 65, 91, 59, 30, 17, 0), # 26 (243, 239, 209, 234, 175, 77, 90, 80, 83, 42, 37, 25, 0, 249, 218, 182, 131, 165, 122, 95, 67, 96, 62, 31, 17, 0), # 27 (254, 250, 220, 241, 182, 81, 92, 89, 88, 43, 38, 25, 0, 259, 229, 186, 136, 180, 130, 97, 68, 97, 63, 32, 18, 0), # 28 (261, 260, 227, 252, 191, 86, 96, 93, 91, 46, 39, 25, 0, 268, 237, 195, 145, 185, 131, 100, 69, 100, 68, 33, 20, 0), # 29 (276, 267, 235, 261, 197, 89, 100, 102, 95, 51, 40, 26, 0, 272, 249, 201, 153, 190, 136, 103, 72, 103, 70, 35, 20, 0), # 30 (285, 279, 247, 268, 206, 94, 102, 106, 98, 54, 43, 26, 0, 282, 254, 209, 158, 196, 143, 110, 74, 107, 74, 36, 20, 0), # 31 (290, 290, 252, 279, 211, 96, 106, 108, 104, 54, 45, 27, 0, 295, 262, 219, 164, 204, 146, 117, 77, 111, 75, 38, 20, 0), # 32 (301, 301, 260, 287, 222, 100, 116, 114, 108, 55, 47, 27, 0, 303, 274, 223, 174, 213, 151, 121, 80, 115, 82, 40, 20, 0), # 33 (307, 311, 269, 297, 227, 102, 120, 117, 114, 58, 47, 29, 0, 313, 284, 229, 180, 224, 156, 127, 86, 121, 85, 40, 22, 0), # 34 (314, 318, 277, 303, 234, 104, 126, 119, 120, 60, 50, 29, 0, 322, 292, 236, 183, 229, 163, 134, 91, 125, 86, 43, 23, 0), # 35 (317, 325, 286, 313, 239, 111, 128, 124, 126, 64, 50, 30, 0, 332, 301, 242, 189, 238, 165, 136, 91, 129, 88, 45, 24, 0), # 36 (327, 332, 294, 333, 242, 115, 130, 131, 129, 65, 52, 31, 0, 342, 307, 247, 193, 247, 170, 138, 97, 134, 91, 47, 25, 0), # 37 (335, 342, 303, 339, 249, 119, 135, 134, 131, 66, 52, 31, 0, 353, 313, 251, 199, 253, 180, 141, 99, 137, 96, 47, 27, 0), # 38 (344, 348, 306, 348, 255, 123, 137, 140, 137, 68, 54, 31, 0, 363, 325, 263, 203, 257, 180, 143, 101, 145, 98, 51, 27, 0), # 39 (355, 356, 313, 356, 260, 124, 140, 145, 144, 69, 54, 31, 0, 372, 331, 274, 211, 268, 182, 147, 105, 146, 100, 51, 28, 0), # 40 (364, 361, 328, 368, 267, 126, 143, 146, 145, 69, 54, 31, 0, 381, 346, 279, 217, 276, 184, 150, 110, 148, 101, 51, 30, 0), # 41 (378, 370, 332, 376, 274, 129, 145, 151, 148, 69, 56, 31, 0, 390, 349, 280, 220, 286, 188, 154, 113, 151, 104, 55, 30, 0), # 42 (388, 373, 338, 390, 284, 132, 147, 156, 152, 70, 58, 32, 0, 404, 356, 289, 228, 293, 196, 157, 118, 156, 106, 57, 30, 0), # 43 (399, 386, 347, 395, 293, 135, 153, 163, 158, 70, 58, 32, 0, 416, 364, 293, 230, 302, 203, 162, 119, 157, 109, 57, 30, 0), # 44 (411, 398, 351, 406, 302, 136, 154, 169, 159, 70, 59, 32, 0, 419, 370, 296, 238, 312, 207, 165, 121, 161, 115, 57, 30, 0), # 45 (417, 410, 356, 412, 307, 142, 157, 173, 162, 72, 60, 33, 0, 427, 375, 300, 241, 320, 211, 168, 122, 164, 122, 58, 31, 0), # 46 (431, 417, 366, 420, 316, 144, 158, 176, 168, 73, 61, 34, 0, 435, 381, 305, 246, 327, 216, 172, 124, 172, 124, 58, 33, 0), # 47 (442, 422, 374, 430, 322, 145, 161, 180, 173, 76, 61, 34, 0, 443, 387, 314, 252, 341, 223, 183, 129, 173, 126, 60, 34, 0), # 48 (451, 425, 383, 439, 328, 147, 166, 187, 178, 78, 62, 34, 0, 450, 395, 319, 258, 351, 227, 188, 133, 178, 128, 63, 40, 0), # 49 (460, 434, 394, 446, 337, 151, 168, 193, 186, 80, 62, 34, 0, 460, 402, 328, 266, 356, 231, 194, 136, 183, 129, 63, 42, 0), # 50 (469, 442, 406, 458, 348, 156, 173, 199, 191, 84, 62, 34, 0, 476, 408, 332, 274, 366, 237, 196, 139, 187, 133, 66, 42, 0), # 51 (473, 448, 415, 467, 355, 158, 176, 203, 194, 88, 65, 35, 0, 485, 418, 338, 276, 370, 245, 198, 139, 189, 137, 67, 42, 0), # 52 (482, 459, 421, 472, 362, 161, 180, 203, 198, 88, 67, 36, 0, 494, 430, 346, 280, 381, 249, 203, 139, 189, 138, 69, 43, 0), # 53 (487, 472, 429, 480, 368, 164, 182, 205, 202, 93, 69, 38, 0, 500, 435, 351, 287, 388, 254, 208, 139, 193, 140, 71, 43, 0), # 54 (503, 479, 437, 490, 375, 169, 183, 211, 208, 97, 71, 40, 0, 507, 446, 355, 292, 395, 258, 210, 140, 198, 144, 73, 43, 0), # 55 (514, 490, 445, 496, 380, 175, 185, 213, 212, 98, 74, 41, 0, 517, 456, 359, 299, 404, 263, 214, 142, 202, 145, 74, 44, 0), # 56 (527, 504, 448, 508, 387, 181, 189, 216, 214, 98, 74, 42, 0, 523, 469, 361, 309, 412, 269, 219, 147, 204, 149, 77, 45, 0), # 57 (530, 510, 454, 516, 399, 186, 192, 219, 219, 99, 75, 43, 0, 533, 471, 370, 314, 423, 275, 220, 148, 207, 151, 78, 46, 0), # 58 (536, 520, 460, 526, 406, 189, 195, 221, 223, 100, 76, 44, 0, 550, 480, 381, 320, 431, 279, 223, 148, 207, 154, 79, 46, 0), # 59 (546, 529, 472, 539, 410, 192, 201, 226, 230, 100, 76, 45, 0, 564, 487, 387, 326, 439, 284, 231, 152, 210, 156, 80, 48, 0), # 60 (559, 539, 477, 545, 416, 194, 202, 230, 234, 104, 78, 47, 0, 572, 491, 398, 331, 450, 287, 233, 153, 214, 158, 84, 48, 0), # 61 (568, 551, 482, 553, 426, 199, 205, 234, 238, 108, 82, 47, 0, 581, 500, 407, 335, 457, 294, 238, 154, 216, 159, 86, 49, 0), # 62 (585, 560, 489, 564, 432, 201, 209, 236, 241, 110, 83, 48, 0, 588, 509, 418, 340, 467, 299, 240, 155, 221, 164, 87, 51, 0), # 63 (593, 567, 496, 573, 441, 208, 215, 244, 244, 113, 86, 49, 0, 596, 515, 422, 344, 480, 308, 243, 156, 224, 169, 88, 51, 0), # 64 (609, 575, 506, 578, 450, 214, 222, 248, 246, 116, 89, 49, 0, 606, 521, 429, 348, 488, 312, 249, 157, 226, 172, 89, 52, 0), # 65 (617, 591, 519, 586, 455, 216, 225, 252, 251, 117, 90, 49, 0, 615, 537, 432, 353, 496, 316, 251, 159, 229, 178, 89, 52, 0), # 66 (624, 600, 528, 592, 462, 219, 227, 255, 255, 118, 92, 51, 0, 628, 546, 439, 359, 503, 316, 254, 161, 232, 182, 91, 53, 0), # 67 (635, 606, 537, 597, 467, 221, 228, 259, 257, 119, 92, 52, 0, 640, 553, 447, 365, 510, 322, 254, 162, 232, 183, 92, 54, 0), # 68 (641, 613, 545, 604, 472, 224, 230, 260, 261, 120, 92, 52, 0, 653, 566, 453, 370, 516, 324, 258, 165, 232, 185, 93, 55, 0), # 69 (650, 622, 553, 607, 481, 229, 230, 260, 263, 122, 93, 53, 0, 663, 573, 458, 374, 521, 327, 262, 167, 235, 186, 94, 55, 0), # 70 (655, 633, 563, 615, 488, 230, 233, 263, 268, 123, 95, 54, 0, 672, 581, 464, 377, 528, 330, 265, 172, 238, 190, 97, 55, 0), # 71 (663, 640, 568, 624, 494, 235, 240, 270, 272, 124, 95, 54, 0, 681, 586, 472, 378, 534, 335, 267, 176, 241, 192, 98, 56, 0), # 72 (674, 643, 576, 630, 507, 242, 247, 273, 274, 125, 97, 55, 0, 698, 598, 481, 379, 545, 342, 271, 178, 244, 193, 100, 56, 0), # 73 (682, 652, 583, 636, 517, 251, 251, 275, 278, 128, 97, 55, 0, 709, 604, 485, 382, 550, 345, 276, 179, 247, 193, 102, 57, 0), # 74 (698, 664, 586, 652, 528, 254, 252, 275, 284, 128, 97, 56, 0, 720, 612, 493, 389, 556, 350, 280, 182, 252, 199, 105, 58, 0), # 75 (712, 668, 595, 656, 533, 256, 259, 279, 288, 129, 98, 56, 0, 728, 621, 495, 392, 566, 356, 285, 182, 256, 201, 107, 59, 0), # 76 (718, 672, 599, 670, 541, 261, 264, 281, 292, 132, 100, 56, 0, 740, 629, 503, 400, 580, 358, 290, 186, 262, 204, 107, 60, 0), # 77 (721, 681, 608, 676, 549, 262, 267, 287, 300, 135, 101, 56, 0, 747, 634, 510, 404, 588, 360, 291, 186, 265, 207, 110, 62, 0), # 78 (726, 687, 619, 689, 553, 266, 268, 291, 305, 139, 104, 56, 0, 759, 640, 515, 412, 597, 370, 296, 191, 271, 209, 112, 65, 0), # 79 (741, 697, 625, 698, 565, 272, 270, 297, 307, 140, 105, 59, 0, 772, 649, 520, 418, 605, 374, 299, 196, 275, 211, 113, 66, 0), # 80 (754, 702, 631, 708, 576, 277, 274, 305, 310, 141, 105, 59, 0, 781, 655, 525, 421, 608, 379, 303, 197, 281, 212, 114, 66, 0), # 81 (768, 708, 637, 714, 585, 281, 279, 309, 313, 142, 105, 60, 0, 792, 664, 530, 427, 615, 383, 307, 199, 283, 214, 115, 66, 0), # 82 (776, 718, 647, 722, 591, 282, 284, 313, 319, 144, 107, 60, 0, 804, 676, 540, 431, 624, 388, 314, 201, 285, 220, 117, 66, 0), # 83 (788, 722, 654, 729, 599, 286, 288, 317, 320, 146, 107, 61, 0, 811, 688, 547, 431, 629, 393, 315, 202, 292, 224, 117, 66, 0), # 84 (798, 732, 656, 737, 605, 287, 290, 320, 322, 147, 111, 63, 0, 824, 696, 554, 435, 640, 401, 319, 205, 295, 225, 117, 66, 0), # 85 (812, 742, 660, 742, 612, 287, 294, 324, 330, 149, 111, 65, 0, 828, 708, 559, 439, 644, 402, 320, 209, 297, 228, 121, 66, 0), # 86 (820, 754, 666, 756, 619, 290, 299, 324, 334, 150, 113, 66, 0, 835, 718, 572, 444, 651, 410, 324, 212, 300, 231, 121, 66, 0), # 87 (833, 766, 676, 766, 625, 295, 302, 324, 339, 154, 113, 68, 0, 845, 724, 581, 446, 657, 414, 327, 216, 306, 233, 124, 67, 0), # 88 (836, 773, 686, 777, 632, 300, 307, 325, 341, 155, 113, 68, 0, 857, 733, 589, 448, 666, 421, 329, 220, 309, 235, 125, 68, 0), # 89 (851, 782, 694, 783, 638, 304, 311, 329, 347, 156, 115, 71, 0, 867, 736, 593, 453, 675, 428, 334, 222, 312, 237, 129, 69, 0), # 90 (860, 793, 702, 798, 647, 306, 314, 332, 351, 163, 116, 73, 0, 876, 752, 600, 462, 682, 431, 337, 228, 315, 239, 131, 69, 0), # 91 (873, 797, 707, 805, 650, 309, 317, 335, 357, 164, 121, 73, 0, 887, 755, 609, 463, 683, 433, 340, 228, 320, 240, 132, 70, 0), # 92 (882, 803, 711, 816, 656, 312, 319, 337, 360, 166, 122, 74, 0, 890, 759, 617, 467, 692, 435, 341, 231, 323, 245, 132, 70, 0), # 93 (897, 809, 719, 826, 663, 316, 321, 340, 365, 167, 122, 75, 0, 895, 764, 621, 472, 703, 440, 344, 233, 325, 246, 133, 70, 0), # 94 (906, 814, 726, 838, 670, 317, 327, 342, 369, 168, 125, 76, 0, 907, 770, 632, 474, 706, 443, 347, 236, 329, 247, 134, 70, 0), # 95 (913, 820, 732, 845, 676, 320, 331, 345, 373, 168, 126, 76, 0, 913, 779, 640, 477, 714, 448, 349, 239, 335, 248, 136, 72, 0), # 96 (922, 827, 742, 853, 689, 324, 334, 348, 378, 168, 130, 77, 0, 921, 789, 646, 482, 719, 456, 353, 242, 341, 252, 136, 73, 0), # 97 (932, 834, 753, 860, 692, 327, 338, 352, 382, 173, 132, 77, 0, 932, 797, 657, 484, 727, 459, 359, 244, 344, 256, 137, 73, 0), # 98 (947, 837, 759, 872, 699, 331, 341, 354, 387, 175, 134, 77, 0, 939, 806, 662, 488, 738, 460, 360, 245, 351, 259, 140, 73, 0), # 99 (955, 843, 766, 879, 708, 336, 345, 357, 389, 178, 135, 77, 0, 951, 813, 668, 494, 744, 463, 361, 247, 353, 260, 140, 73, 0), # 100 (962, 858, 773, 888, 718, 337, 353, 358, 393, 178, 137, 77, 0, 959, 819, 674, 499, 750, 463, 361, 247, 357, 265, 143, 74, 0), # 101 (975, 866, 782, 896, 721, 339, 357, 362, 398, 180, 141, 78, 0, 970, 824, 679, 505, 754, 469, 363, 247, 361, 266, 144, 75, 0), # 102 (986, 871, 791, 903, 725, 348, 363, 364, 399, 183, 142, 78, 0, 980, 829, 686, 508, 761, 475, 366, 248, 364, 270, 146, 75, 0), # 103 (996, 879, 799, 907, 734, 350, 369, 371, 406, 189, 142, 80, 0, 990, 837, 693, 517, 763, 478, 368, 252, 371, 271, 146, 75, 0), # 104 (1009, 882, 804, 913, 745, 353, 373, 372, 410, 189, 144, 80, 0, 1001, 845, 697, 518, 771, 485, 375, 256, 376, 273, 147, 75, 0), # 105 (1018, 889, 813, 924, 750, 354, 378, 376, 413, 189, 144, 81, 0, 1011, 855, 703, 523, 782, 486, 379, 259, 381, 273, 147, 77, 0), # 106 (1027, 894, 823, 930, 760, 360, 381, 381, 417, 191, 144, 81, 0, 1017, 865, 710, 530, 788, 489, 386, 261, 387, 277, 147, 78, 0), # 107 (1036, 901, 832, 938, 764, 364, 385, 384, 419, 193, 145, 82, 0, 1029, 875, 715, 538, 794, 494, 388, 262, 390, 280, 150, 81, 0), # 108 (1043, 911, 839, 943, 777, 366, 392, 385, 423, 195, 147, 83, 0, 1035, 884, 722, 540, 802, 496, 393, 264, 394, 285, 152, 82, 0), # 109 (1060, 916, 847, 951, 783, 368, 393, 387, 426, 196, 149, 85, 0, 1042, 895, 724, 543, 809, 500, 398, 267, 399, 285, 155, 83, 0), # 110 (1069, 924, 858, 961, 789, 375, 394, 389, 430, 198, 149, 86, 0, 1052, 902, 732, 547, 813, 503, 399, 270, 402, 290, 157, 84, 0), # 111 (1079, 927, 867, 969, 796, 378, 394, 391, 434, 200, 149, 89, 0, 1060, 910, 739, 552, 820, 509, 402, 270, 405, 293, 159, 84, 0), # 112 (1085, 936, 873, 976, 805, 381, 397, 393, 443, 200, 155, 89, 0, 1069, 920, 745, 559, 829, 510, 409, 272, 407, 295, 160, 84, 0), # 113 (1094, 940, 878, 983, 811, 382, 397, 397, 445, 201, 155, 89, 0, 1074, 926, 748, 566, 838, 513, 415, 272, 414, 297, 164, 86, 0), # 114 (1104, 948, 884, 987, 813, 385, 402, 399, 448, 203, 157, 90, 0, 1086, 936, 753, 568, 844, 514, 420, 275, 414, 299, 165, 87, 0), # 115 (1118, 952, 892, 990, 824, 392, 405, 402, 458, 204, 157, 90, 0, 1093, 944, 761, 572, 851, 515, 422, 275, 416, 302, 166, 87, 0), # 116 (1131, 957, 900, 992, 829, 399, 406, 406, 464, 205, 158, 92, 0, 1105, 958, 764, 574, 861, 520, 423, 277, 423, 308, 169, 88, 0), # 117 (1138, 963, 904, 1006, 833, 400, 412, 409, 466, 206, 158, 94, 0, 1116, 964, 770, 579, 870, 524, 426, 280, 427, 309, 169, 88, 0), # 118 (1149, 968, 914, 1014, 842, 402, 414, 411, 468, 206, 160, 94, 0, 1123, 970, 773, 584, 876, 528, 428, 282, 428, 312, 169, 88, 0), # 119 (1158, 973, 925, 1022, 849, 403, 420, 419, 468, 206, 161, 94, 0, 1135, 977, 779, 587, 881, 532, 430, 283, 434, 320, 172, 89, 0), # 120 (1163, 983, 933, 1029, 857, 409, 425, 422, 472, 206, 161, 94, 0, 1153, 984, 784, 590, 885, 536, 435, 287, 435, 323, 173, 89, 0), # 121 (1169, 987, 942, 1034, 869, 414, 427, 424, 478, 207, 161, 94, 0, 1170, 992, 791, 594, 893, 538, 438, 287, 437, 327, 174, 90, 0), # 122 (1172, 998, 949, 1041, 876, 421, 432, 425, 482, 209, 162, 95, 0, 1183, 996, 802, 598, 903, 540, 441, 288, 440, 333, 176, 91, 0), # 123 (1189, 1004, 957, 1054, 882, 426, 435, 428, 483, 209, 163, 95, 0, 1188, 1008, 809, 601, 915, 543, 445, 294, 445, 338, 177, 93, 0), # 124 (1198, 1010, 964, 1065, 885, 429, 437, 430, 487, 210, 164, 98, 0, 1193, 1016, 818, 603, 926, 547, 450, 296, 448, 339, 178, 93, 0), # 125 (1208, 1014, 970, 1073, 888, 432, 443, 433, 487, 213, 164, 99, 0, 1203, 1027, 820, 608, 937, 552, 455, 298, 452, 342, 179, 93, 0), # 126 (1217, 1023, 983, 1080, 891, 433, 444, 436, 490, 214, 165, 102, 0, 1213, 1032, 829, 613, 949, 554, 455, 299, 455, 342, 180, 93, 0), # 127 (1231, 1030, 992, 1093, 898, 436, 446, 441, 497, 215, 167, 104, 0, 1224, 1036, 835, 617, 953, 560, 461, 301, 456, 343, 180, 93, 0), # 128 (1240, 1035, 1003, 1102, 904, 439, 449, 442, 501, 215, 167, 104, 0, 1233, 1039, 842, 620, 955, 562, 464, 302, 459, 347, 183, 93, 0), # 129 (1248, 1037, 1009, 1110, 910, 440, 454, 443, 505, 215, 168, 105, 0, 1240, 1046, 845, 626, 965, 565, 468, 307, 461, 348, 184, 94, 0), # 130 (1258, 1045, 1019, 1120, 916, 446, 459, 447, 505, 218, 171, 105, 0, 1248, 1057, 848, 632, 969, 573, 472, 309, 464, 348, 184, 94, 0), # 131 (1266, 1052, 1024, 1133, 923, 450, 461, 454, 506, 218, 172, 105, 0, 1263, 1065, 858, 636, 980, 579, 472, 310, 466, 350, 185, 95, 0), # 132 (1282, 1059, 1028, 1146, 927, 452, 461, 455, 508, 219, 173, 105, 0, 1273, 1069, 862, 642, 986, 584, 476, 312, 470, 352, 187, 96, 0), # 133 (1291, 1064, 1032, 1153, 941, 459, 465, 460, 510, 222, 175, 107, 0, 1279, 1079, 869, 646, 993, 586, 479, 318, 474, 353, 187, 97, 0), # 134 (1302, 1074, 1041, 1159, 953, 463, 468, 463, 513, 222, 176, 108, 0, 1290, 1085, 871, 650, 1002, 593, 482, 318, 478, 356, 188, 97, 0), # 135 (1308, 1078, 1050, 1168, 960, 467, 472, 466, 516, 222, 178, 109, 0, 1304, 1095, 876, 653, 1012, 596, 486, 320, 482, 357, 191, 98, 0), # 136 (1320, 1089, 1054, 1176, 962, 470, 477, 468, 523, 222, 179, 109, 0, 1314, 1102, 883, 656, 1019, 601, 492, 322, 487, 359, 192, 99, 0), # 137 (1327, 1095, 1059, 1185, 967, 472, 479, 471, 528, 224, 180, 109, 0, 1321, 1109, 889, 660, 1023, 603, 495, 324, 489, 364, 193, 100, 0), # 138 (1334, 1099, 1070, 1195, 976, 475, 480, 475, 529, 226, 180, 110, 0, 1328, 1114, 898, 664, 1028, 607, 502, 330, 491, 368, 195, 102, 0), # 139 (1345, 1103, 1077, 1206, 986, 477, 483, 477, 533, 228, 182, 110, 0, 1335, 1125, 902, 666, 1032, 610, 503, 331, 493, 370, 197, 102, 0), # 140 (1351, 1104, 1082, 1217, 993, 478, 485, 478, 535, 232, 182, 110, 0, 1338, 1130, 906, 669, 1038, 615, 505, 333, 494, 372, 198, 102, 0), # 141 (1355, 1107, 1086, 1220, 1001, 480, 487, 482, 538, 232, 183, 111, 0, 1348, 1141, 910, 678, 1045, 616, 506, 336, 496, 374, 200, 104, 0), # 142 (1362, 1114, 1093, 1228, 1008, 484, 493, 482, 541, 232, 184, 112, 0, 1361, 1153, 912, 683, 1052, 618, 508, 336, 502, 376, 200, 104, 0), # 143 (1370, 1117, 1101, 1235, 1017, 490, 495, 482, 544, 233, 186, 112, 0, 1371, 1163, 918, 687, 1056, 622, 510, 340, 502, 379, 201, 105, 0), # 144 (1385, 1123, 1104, 1243, 1024, 494, 497, 486, 550, 236, 188, 112, 0, 1379, 1168, 925, 688, 1067, 624, 513, 341, 505, 382, 203, 105, 0), # 145 (1392, 1127, 1114, 1247, 1034, 495, 498, 486, 556, 237, 189, 113, 0, 1390, 1175, 928, 692, 1073, 627, 515, 344, 510, 384, 205, 105, 0), # 146 (1405, 1135, 1125, 1250, 1042, 502, 500, 487, 558, 237, 191, 113, 0, 1402, 1183, 932, 696, 1079, 628, 518, 345, 513, 385, 208, 106, 0), # 147 (1412, 1140, 1135, 1253, 1049, 504, 503, 493, 560, 238, 192, 114, 0, 1411, 1191, 937, 700, 1086, 631, 519, 345, 518, 387, 210, 106, 0), # 148 (1422, 1144, 1142, 1261, 1053, 507, 506, 496, 562, 239, 192, 114, 0, 1419, 1198, 946, 700, 1093, 634, 519, 346, 519, 391, 211, 106, 0), # 149 (1433, 1148, 1144, 1267, 1059, 512, 510, 497, 565, 240, 192, 114, 0, 1430, 1201, 951, 705, 1100, 638, 521, 348, 523, 392, 214, 106, 0), # 150 (1444, 1160, 1151, 1276, 1064, 516, 511, 503, 569, 240, 193, 115, 0, 1436, 1208, 957, 709, 1108, 642, 524, 352, 526, 396, 215, 106, 0), # 151 (1454, 1164, 1158, 1282, 1074, 520, 513, 505, 575, 241, 193, 115, 0, 1439, 1216, 966, 712, 1111, 644, 528, 356, 529, 399, 218, 107, 0), # 152 (1465, 1171, 1166, 1287, 1082, 524, 517, 507, 579, 242, 193, 115, 0, 1443, 1221, 971, 717, 1119, 648, 530, 358, 533, 402, 219, 108, 0), # 153 (1477, 1176, 1173, 1294, 1087, 529, 517, 509, 581, 244, 193, 115, 0, 1450, 1229, 975, 721, 1125, 650, 531, 363, 538, 404, 220, 111, 0), # 154 (1485, 1179, 1178, 1303, 1091, 531, 518, 514, 584, 244, 194, 115, 0, 1462, 1236, 978, 726, 1134, 654, 533, 364, 540, 408, 221, 112, 0), # 155 (1493, 1185, 1186, 1311, 1096, 536, 525, 515, 589, 244, 195, 115, 0, 1473, 1246, 980, 728, 1141, 660, 536, 366, 546, 410, 223, 112, 0), # 156 (1499, 1192, 1191, 1317, 1102, 538, 527, 516, 592, 245, 195, 115, 0, 1480, 1253, 982, 732, 1149, 662, 539, 369, 550, 413, 226, 112, 0), # 157 (1507, 1197, 1198, 1320, 1109, 543, 530, 521, 595, 245, 195, 115, 0, 1487, 1255, 988, 740, 1153, 664, 545, 370, 552, 415, 227, 112, 0), # 158 (1520, 1201, 1207, 1324, 1116, 545, 534, 521, 597, 245, 197, 116, 0, 1490, 1264, 993, 743, 1160, 668, 549, 371, 554, 419, 229, 113, 0), # 159 (1528, 1205, 1209, 1330, 1121, 551, 535, 526, 599, 246, 199, 116, 0, 1496, 1271, 997, 746, 1168, 670, 553, 372, 557, 422, 231, 113, 0), # 160 (1536, 1207, 1216, 1343, 1124, 557, 540, 529, 601, 247, 199, 116, 0, 1504, 1274, 1002, 749, 1175, 673, 555, 373, 558, 425, 231, 113, 0), # 161 (1542, 1211, 1226, 1352, 1131, 562, 542, 530, 603, 247, 199, 116, 0, 1511, 1283, 1006, 752, 1181, 675, 557, 375, 560, 428, 231, 113, 0), # 162 (1544, 1219, 1228, 1355, 1143, 565, 547, 535, 603, 248, 200, 116, 0, 1525, 1286, 1010, 754, 1190, 679, 563, 377, 561, 429, 233, 113, 0), # 163 (1552, 1222, 1236, 1363, 1149, 565, 549, 536, 605, 248, 202, 117, 0, 1531, 1292, 1018, 755, 1192, 682, 566, 380, 564, 429, 234, 113, 0), # 164 (1558, 1231, 1241, 1367, 1153, 568, 549, 537, 608, 249, 203, 118, 0, 1537, 1295, 1022, 758, 1199, 684, 567, 383, 568, 429, 235, 114, 0), # 165 (1564, 1233, 1246, 1374, 1161, 570, 549, 537, 611, 250, 206, 120, 0, 1547, 1303, 1029, 760, 1201, 692, 569, 384, 571, 432, 235, 114, 0), # 166 (1567, 1236, 1251, 1379, 1170, 573, 553, 541, 615, 252, 206, 121, 0, 1553, 1308, 1033, 764, 1206, 692, 570, 384, 575, 432, 236, 114, 0), # 167 (1574, 1242, 1259, 1387, 1178, 576, 555, 545, 617, 253, 207, 122, 0, 1556, 1310, 1035, 768, 1212, 695, 577, 387, 579, 433, 237, 114, 0), # 168 (1586, 1245, 1266, 1394, 1181, 578, 555, 549, 619, 255, 209, 122, 0, 1561, 1315, 1037, 773, 1218, 695, 580, 389, 582, 434, 238, 114, 0), # 169 (1595, 1247, 1270, 1402, 1185, 580, 557, 550, 622, 256, 209, 122, 0, 1567, 1319, 1046, 781, 1222, 695, 581, 391, 584, 434, 239, 115, 0), # 170 (1604, 1254, 1274, 1407, 1192, 584, 557, 551, 628, 258, 209, 122, 0, 1571, 1322, 1053, 783, 1227, 697, 583, 392, 589, 435, 239, 115, 0), # 171 (1607, 1255, 1281, 1416, 1196, 585, 557, 552, 632, 259, 210, 123, 0, 1579, 1327, 1055, 783, 1231, 698, 588, 394, 592, 438, 240, 115, 0), # 172 (1612, 1256, 1288, 1423, 1198, 589, 558, 554, 635, 259, 210, 125, 0, 1590, 1332, 1064, 785, 1237, 701, 588, 395, 597, 442, 242, 115, 0), # 173 (1613, 1260, 1291, 1426, 1201, 591, 559, 556, 635, 260, 210, 125, 0, 1597, 1336, 1067, 788, 1238, 702, 588, 395, 600, 443, 242, 115, 0), # 174 (1619, 1262, 1295, 1432, 1205, 592, 559, 558, 637, 260, 211, 125, 0, 1601, 1342, 1072, 788, 1242, 704, 590, 395, 601, 443, 242, 115, 0), # 175 (1627, 1267, 1296, 1438, 1210, 592, 560, 559, 637, 260, 212, 126, 0, 1607, 1347, 1076, 789, 1247, 705, 591, 397, 603, 445, 243, 115, 0), # 176 (1628, 1269, 1298, 1446, 1211, 593, 562, 560, 638, 261, 212, 126, 0, 1613, 1351, 1077, 791, 1248, 706, 592, 400, 603, 445, 243, 115, 0), # 177 (1634, 1276, 1303, 1449, 1212, 594, 562, 562, 640, 262, 212, 126, 0, 1619, 1355, 1082, 794, 1254, 710, 593, 400, 604, 447, 243, 115, 0), # 178 (1634, 1276, 1303, 1449, 1212, 594, 562, 562, 640, 262, 212, 126, 0, 1619, 1355, 1082, 794, 1254, 710, 593, 400, 604, 447, 243, 115, 0), # 179 ) passenger_arriving_rate = ( (5.020865578371768, 5.064847846385402, 4.342736024677089, 4.661000830397574, 3.7031237384064077, 1.8308820436884476, 2.0730178076869574, 1.938823405408093, 2.030033020722669, 0.9895037538805926, 0.7008775273142672, 0.4081595898588478, 0.0, 5.083880212578363, 4.489755488447325, 3.5043876365713356, 2.968511261641777, 4.060066041445338, 2.7143527675713304, 2.0730178076869574, 1.3077728883488913, 1.8515618692032039, 1.5536669434658585, 0.8685472049354179, 0.4604407133077639, 0.0), # 0 (5.354327152019974, 5.399222302966028, 4.629455492775127, 4.968858189957462, 3.948326891649491, 1.9518237573581576, 2.209734470631847, 2.066464051210712, 2.164081775444303, 1.0547451730692876, 0.7471826893260219, 0.4351013884011963, 0.0, 5.419791647439855, 4.786115272413158, 3.73591344663011, 3.164235519207862, 4.328163550888606, 2.8930496716949965, 2.209734470631847, 1.3941598266843982, 1.9741634458247455, 1.6562860633191545, 0.9258910985550255, 0.49083839117872996, 0.0), # 1 (5.686723008979731, 5.732269739983398, 4.915035237956178, 5.275490778498595, 4.192641982499829, 2.072282983465593, 2.345909253980352, 2.193593853293508, 2.297595602292516, 1.1197284437551367, 0.7933038581293855, 0.46193605433775464, 0.0, 5.75436482820969, 5.0812965977153, 3.9665192906469278, 3.3591853312654094, 4.595191204585032, 3.0710313946109116, 2.345909253980352, 1.480202131046852, 2.0963209912499146, 1.758496926166199, 0.9830070475912357, 0.5211154309075817, 0.0), # 2 (6.016757793146562, 6.062668793441743, 5.198342391099879, 5.579682305649055, 4.435107784001268, 2.191782029841316, 2.4810018208239777, 2.3197088156227115, 2.430045053640364, 1.1841956746065454, 0.8390580686378972, 0.4885571404108718, 0.0, 6.086272806254225, 5.374128544519589, 4.195290343189486, 3.5525870238196355, 4.860090107280728, 3.247592341871796, 2.4810018208239777, 1.5655585927437972, 2.217553892000634, 1.8598941018830188, 1.0396684782199759, 0.551151708494704, 0.0), # 3 (6.343136148415981, 6.389098099345293, 5.478244083085864, 5.880216481036927, 4.674763069197661, 2.3098432043158894, 2.6144718342542292, 2.444304942164548, 2.560900681860902, 1.24788897429192, 0.8842623557650959, 0.514858199362897, 0.0, 6.414188632939817, 5.6634401929918665, 4.42131177882548, 3.743666922875759, 5.121801363721804, 3.422026919030367, 2.6144718342542292, 1.6498880030827783, 2.3373815345988307, 1.9600721603456428, 1.095648816617173, 0.5808270999404813, 0.0), # 4 (6.66456271868351, 6.710236293698289, 5.753607444793765, 6.175877014290295, 4.910646611132853, 2.4259888147198754, 2.745778957362612, 2.566878236885247, 2.689633039327186, 1.310550451479666, 0.9287337544245222, 0.5407327839361791, 0.0, 6.736785359632827, 5.948060623297969, 4.64366877212261, 3.9316513544389973, 5.379266078654372, 3.593629531639346, 2.745778957362612, 1.7328491533713395, 2.4553233055664263, 2.058625671430099, 1.1507214889587531, 0.6100214812452991, 0.0), # 5 (6.979742147844666, 7.024762012504959, 6.023299607103222, 6.465447615037239, 5.141797182850695, 2.5397411688838374, 2.8743828532406313, 2.686924703751037, 2.8157126784122717, 1.3719222148381898, 0.9722892995297139, 0.5660744468730674, 0.0, 7.052736037699606, 6.22681891560374, 4.8614464976485685, 4.115766644514569, 5.631425356824543, 3.761694585251452, 2.8743828532406313, 1.8141008349170267, 2.5708985914253475, 2.1551492050124135, 1.2046599214206444, 0.6386147284095418, 0.0), # 6 (7.2873790797949685, 7.331353891769537, 6.286187700893863, 6.747711992905847, 5.367253557395036, 2.650622574638337, 2.9997431849797924, 2.8039403467281465, 2.9386101514892147, 1.4317463730358968, 1.0147460259942116, 0.5907767409159108, 0.0, 7.360713718506519, 6.498544150075018, 5.073730129971057, 4.2952391191076895, 5.877220302978429, 3.9255164854194056, 2.9997431849797924, 1.8933018390273837, 2.683626778697518, 2.249237330968616, 1.2572375401787725, 0.6664867174335943, 0.0), # 7 (7.586178158429934, 7.628690567496257, 6.54113885704533, 7.021453857524196, 5.586054507809724, 2.7581553398139356, 3.1213196156715988, 2.917421169782802, 3.0577960109310682, 1.4897650347411937, 1.0559209687315536, 0.6147332188070586, 0.0, 7.659391453419917, 6.762065406877643, 5.279604843657768, 4.469295104223581, 6.1155920218621365, 4.084389637695923, 3.1213196156715988, 1.970110957009954, 2.793027253904862, 2.3404846191747324, 1.3082277714090662, 0.6935173243178416, 0.0), # 8 (7.874844027645085, 7.915450675689353, 6.787020206437253, 7.285456918520376, 5.797238807138606, 2.861861772241199, 3.23857180840756, 3.0268631768812346, 3.1727408091108913, 1.5457203086224858, 1.0956311626552797, 0.6378374332888596, 0.0, 7.947442293806162, 7.016211766177453, 5.478155813276398, 4.637160925867456, 6.345481618221783, 4.237608447633728, 3.23857180840756, 2.044186980172285, 2.898619403569303, 2.4284856395067926, 1.3574040412874508, 0.7195864250626686, 0.0), # 9 (8.152081331335932, 8.190312852353056, 7.022698879949271, 7.538504885522466, 5.999845228425533, 2.961264179750688, 3.3509594262791773, 3.1317623719896712, 3.282915098401738, 1.599354303348179, 1.133693642678929, 0.6599829371036627, 0.0, 8.22353929103161, 7.259812308140289, 5.668468213394645, 4.798062910044536, 6.565830196803476, 4.384467320785539, 3.3509594262791773, 2.11518869982192, 2.9999226142127666, 2.5128349618408223, 1.4045397759898541, 0.7445738956684597, 0.0), # 10 (8.416594713398005, 8.451955733491605, 7.247042008461013, 7.779381468158547, 6.192912544714355, 3.055884870172965, 3.457942132377958, 3.2316147590743394, 3.3877894311766643, 1.6504091275866801, 1.1699254437160416, 0.6810632829938176, 0.0, 8.486355496462611, 7.491696112931993, 5.849627218580208, 4.951227382760039, 6.775578862353329, 4.524260662704076, 3.457942132377958, 2.1827749072664036, 3.0964562723571776, 2.5931271560528497, 1.4494084016922026, 0.7683596121356006, 0.0), # 11 (8.667088817726812, 8.699057955109222, 7.458916722852117, 8.006870376056709, 6.375479529048918, 3.1452461513385908, 3.5589795897954057, 3.325916342101467, 3.486834359808726, 1.6986268900063934, 1.2041436006801558, 0.7009720237016724, 0.0, 8.734563961465534, 7.710692260718395, 6.020718003400779, 5.095880670019179, 6.973668719617452, 4.656282878942054, 3.5589795897954057, 2.246604393813279, 3.187739764524459, 2.6689567920189035, 1.4917833445704234, 0.7908234504644749, 0.0), # 12 (8.902268288217876, 8.93029815321015, 7.657190154002218, 8.219755318845033, 6.546584954473067, 3.2288703310781304, 3.653531461623028, 3.414163125037284, 3.579520436670977, 1.7437496992757264, 1.2361651484848115, 0.7196027119695768, 0.0, 8.966837737406735, 7.915629831665344, 6.180825742424058, 5.2312490978271775, 7.159040873341954, 4.7798283750521975, 3.653531461623028, 2.306335950770093, 3.2732924772365335, 2.7399184396150114, 1.5314380308004438, 0.8118452866554684, 0.0), # 13 (9.120837768766716, 9.144354963798623, 7.840729432790956, 8.416820006151594, 6.705267594030659, 3.306279717222145, 3.7410574109523305, 3.4958511118480193, 3.6653182141364735, 1.785519664063084, 1.2658071220435476, 0.7368489005398801, 0.0, 9.181849875652563, 8.10533790593868, 6.329035610217737, 5.3565589921892505, 7.330636428272947, 4.894191556587227, 3.7410574109523305, 2.3616283694443894, 3.3526337970153297, 2.8056066687171985, 1.5681458865581912, 0.8313049967089657, 0.0), # 14 (9.321501903268855, 9.339907022878865, 8.008401690097953, 8.59684814760449, 6.850566220765538, 3.376996617601199, 3.821017100874813, 3.5704763064998986, 3.743698244578273, 1.823678893036873, 1.2928865562699035, 0.752604142154931, 0.0, 9.37827342756938, 8.27864556370424, 6.464432781349516, 5.471036679110618, 7.487396489156546, 4.998666829099858, 3.821017100874813, 2.4121404411437135, 3.425283110382769, 2.865616049201497, 1.6016803380195905, 0.8490824566253515, 0.0), # 15 (9.5029653356198, 9.51563296645512, 8.159074056802854, 8.758623452831788, 6.981519607721555, 3.4405433400458514, 3.892870194481988, 3.6375347129591504, 3.8141310803694286, 1.8579694948654994, 1.3172204860774188, 0.7667619895570784, 0.0, 9.554781444523545, 8.434381885127861, 6.586102430387094, 5.5739084845964975, 7.628262160738857, 5.092548598142811, 3.892870194481988, 2.4575309571756083, 3.4907598038607777, 2.9195411509439295, 1.6318148113605708, 0.8650575424050111, 0.0), # 16 (9.663932709715075, 9.670211430531618, 8.291613663785293, 8.900929631461583, 7.097166527942559, 3.4964421923866666, 3.9560763548653552, 3.6965223351920073, 3.8760872738829946, 1.8881335782173672, 1.3386259463796333, 0.7792159954886714, 0.0, 9.710046977881415, 8.571375950375383, 6.693129731898166, 5.6644007346521, 7.752174547765989, 5.17513126926881, 3.9560763548653552, 2.4974587088476192, 3.5485832639712793, 2.9669765438205284, 1.6583227327570589, 0.8791101300483289, 0.0), # 17 (9.803108669450204, 9.802321051112584, 8.404887641924901, 9.022550393121959, 7.1965457544723925, 3.5442154824542103, 4.010095245116426, 3.746935177164692, 3.929037377492032, 1.9139132517608846, 1.3569199720900849, 0.7898597126920597, 0.0, 9.842743079009345, 8.688456839612655, 6.784599860450424, 5.741739755282652, 7.858074754984064, 5.245709248030569, 4.010095245116426, 2.531582487467293, 3.5982728772361963, 3.0075167977073205, 1.6809775283849802, 0.8911200955556896, 0.0), # 18 (9.919197858720699, 9.910640464202265, 8.497763122101317, 9.122269447440985, 7.2786960603549105, 3.5833855180790386, 4.054386528326697, 3.7882692428434357, 3.9724519435695926, 1.9350506241644574, 1.3719195981223131, 0.7985866939095915, 0.0, 9.951542799273696, 8.784453633005505, 6.859597990611565, 5.80515187249337, 7.944903887139185, 5.30357693998081, 4.054386528326697, 2.55956108434217, 3.6393480301774552, 3.0407564824803295, 1.6995526244202632, 0.9009673149274788, 0.0), # 19 (10.010904921422082, 9.993848305804882, 8.569107235194169, 9.198870504046766, 7.342656218633962, 3.613474607091719, 4.088409867587681, 3.8200205361944657, 4.005801524488732, 1.95128780409649, 1.3834418593898585, 0.805290491883616, 0.0, 10.035119190040824, 8.858195410719775, 6.9172092969492915, 5.853863412289469, 8.011603048977465, 5.348028750672252, 4.088409867587681, 2.5810532907797996, 3.671328109316981, 3.0662901680155894, 1.713821447038834, 0.9085316641640803, 0.0), # 20 (10.076934501449866, 10.050623211924679, 8.6177871120831, 9.251137272567364, 7.387465002353392, 3.6340050573228124, 4.1116249259908795, 3.84168506118401, 4.028556672622507, 1.9623669002253892, 1.39130379080626, 0.8098646593564828, 0.0, 10.092145302677078, 8.90851125292131, 6.9565189540313, 5.887100700676166, 8.057113345245014, 5.378359085657614, 4.1116249259908795, 2.5957178980877234, 3.693732501176696, 3.0837124241891223, 1.72355742241662, 0.91369301926588, 0.0), # 21 (10.115991242699579, 10.079643818565883, 8.642669883647738, 9.277853462630876, 7.41216118455705, 3.644499176602881, 4.1234913666278, 3.852758821778298, 4.040187940343971, 1.968030021219561, 1.3953224272850568, 0.8122027490705409, 0.0, 10.121294188548827, 8.934230239775948, 6.976612136425284, 5.904090063658682, 8.080375880687942, 5.393862350489617, 4.1234913666278, 2.6032136975734863, 3.706080592278525, 3.09261782087696, 1.7285339767295478, 0.9163312562332622, 0.0), # 22 (10.13039336334264, 10.083079961133974, 8.645769318701419, 9.281198109567903, 7.418488037355065, 3.6458333333333335, 4.124902001129669, 3.8539557613168727, 4.0416420781893, 1.9686980681298587, 1.3958263395269568, 0.8124914647157445, 0.0, 10.125, 8.93740611187319, 6.9791316976347835, 5.906094204389575, 8.0832841563786, 5.395538065843622, 4.124902001129669, 2.604166666666667, 3.7092440186775324, 3.0937327031893016, 1.729153863740284, 0.9166436328303613, 0.0), # 23 (10.141012413034153, 10.08107561728395, 8.645262345679013, 9.280786458333335, 7.422071742409901, 3.6458333333333335, 4.124126906318083, 3.852291666666667, 4.041447222222222, 1.968287654320988, 1.39577076318743, 0.8124238683127573, 0.0, 10.125, 8.936662551440328, 6.978853815937151, 5.904862962962962, 8.082894444444443, 5.393208333333334, 4.124126906318083, 2.604166666666667, 3.7110358712049507, 3.0935954861111123, 1.7290524691358027, 0.9164614197530866, 0.0), # 24 (10.15140723021158, 10.077124771376313, 8.644261545496114, 9.279972029320987, 7.4255766303963355, 3.6458333333333335, 4.122599451303155, 3.8490226337448563, 4.041062242798354, 1.96747970964792, 1.3956605665710604, 0.8122904282883707, 0.0, 10.125, 8.935194711172077, 6.978302832855302, 5.902439128943758, 8.082124485596708, 5.388631687242799, 4.122599451303155, 2.604166666666667, 3.7127883151981678, 3.0933240097736636, 1.728852309099223, 0.9161022519433014, 0.0), # 25 (10.161577019048034, 10.071287780064015, 8.642780635573846, 9.278764081790122, 7.429002578947403, 3.6458333333333335, 4.120343359154361, 3.8442103909465026, 4.0404920781893, 1.9662876771833566, 1.3954967473084758, 0.8120929736320684, 0.0, 10.125, 8.933022709952752, 6.977483736542379, 5.898863031550069, 8.0809841563786, 5.381894547325103, 4.120343359154361, 2.604166666666667, 3.7145012894737013, 3.0929213605967085, 1.7285561271147696, 0.915571616369456, 0.0), # 26 (10.171520983716636, 10.063624999999998, 8.640833333333333, 9.277171874999999, 7.432349465696142, 3.6458333333333335, 4.117382352941177, 3.837916666666667, 4.039741666666666, 1.9647250000000003, 1.3952803030303031, 0.8118333333333335, 0.0, 10.125, 8.930166666666667, 6.976401515151515, 5.894175, 8.079483333333332, 5.373083333333334, 4.117382352941177, 2.604166666666667, 3.716174732848071, 3.0923906250000006, 1.7281666666666669, 0.914875, 0.0), # 27 (10.181238328390501, 10.054196787837219, 8.638433356195703, 9.275204668209877, 7.4356171682756, 3.6458333333333335, 4.113740155733075, 3.830203189300412, 4.038815946502057, 1.9628051211705537, 1.3950122313671698, 0.8115133363816492, 0.0, 10.125, 8.926646700198141, 6.9750611568358485, 5.88841536351166, 8.077631893004114, 5.3622844650205765, 4.113740155733075, 2.604166666666667, 3.7178085841378, 3.091734889403293, 1.7276866712391405, 0.9140178898033837, 0.0), # 28 (10.19072825724275, 10.043063500228623, 8.635594421582077, 9.272871720679012, 7.438805564318813, 3.6458333333333335, 4.109440490599533, 3.821131687242798, 4.037719855967078, 1.9605414837677189, 1.3946935299497027, 0.811134811766499, 0.0, 10.125, 8.922482929431489, 6.973467649748514, 5.881624451303155, 8.075439711934155, 5.349584362139917, 4.109440490599533, 2.604166666666667, 3.7194027821594067, 3.0909572402263383, 1.7271188843164156, 0.9130057727480568, 0.0), # 29 (10.199989974446497, 10.03028549382716, 8.63233024691358, 9.270182291666666, 7.441914531458824, 3.6458333333333335, 4.104507080610022, 3.8107638888888884, 4.036458333333333, 1.957947530864198, 1.39432519640853, 0.8106995884773662, 0.0, 10.125, 8.917695473251028, 6.9716259820426485, 5.873842592592593, 8.072916666666666, 5.335069444444444, 4.104507080610022, 2.604166666666667, 3.720957265729412, 3.0900607638888897, 1.7264660493827162, 0.9118441358024693, 0.0), # 30 (10.209022684174858, 10.01592312528578, 8.62865454961134, 9.267145640432098, 7.444943947328672, 3.6458333333333335, 4.09896364883402, 3.799161522633745, 4.035036316872428, 1.9550367055326936, 1.3939082283742779, 0.8102094955037343, 0.0, 10.125, 8.912304450541077, 6.969541141871389, 5.865110116598079, 8.070072633744855, 5.318826131687243, 4.09896364883402, 2.604166666666667, 3.722471973664336, 3.0890485468107003, 1.7257309099222682, 0.910538465935071, 0.0), # 31 (10.217825590600954, 10.00003675125743, 8.624581047096479, 9.263771026234568, 7.447893689561397, 3.6458333333333335, 4.092833918340999, 3.7863863168724285, 4.033458744855967, 1.951822450845908, 1.3934436234775742, 0.8096663618350862, 0.0, 10.125, 8.906329980185948, 6.96721811738787, 5.8554673525377225, 8.066917489711933, 5.3009408436214, 4.092833918340999, 2.604166666666667, 3.7239468447806985, 3.0879236754115236, 1.7249162094192958, 0.909094250114312, 0.0), # 32 (10.226397897897897, 9.98268672839506, 8.620123456790123, 9.260067708333333, 7.450763635790041, 3.6458333333333335, 4.086141612200436, 3.7725000000000004, 4.031730555555555, 1.9483182098765437, 1.392932379349046, 0.8090720164609053, 0.0, 10.125, 8.899792181069957, 6.96466189674523, 5.84495462962963, 8.06346111111111, 5.2815, 4.086141612200436, 2.604166666666667, 3.7253818178950207, 3.086689236111112, 1.724024691358025, 0.9075169753086421, 0.0), # 33 (10.23473881023881, 9.963933413351622, 8.615295496113397, 9.256044945987654, 7.453553663647644, 3.6458333333333335, 4.078910453481805, 3.7575643004115222, 4.029856687242798, 1.9445374256973027, 1.3923754936193207, 0.8084282883706753, 0.0, 10.125, 8.892711172077426, 6.961877468096604, 5.833612277091907, 8.059713374485597, 5.260590020576132, 4.078910453481805, 2.604166666666667, 3.726776831823822, 3.085348315329219, 1.7230590992226795, 0.9058121284865113, 0.0), # 34 (10.242847531796807, 9.943837162780063, 8.610110882487428, 9.25171199845679, 7.456263650767246, 3.6458333333333335, 4.071164165254579, 3.741640946502058, 4.0278420781893, 1.9404935413808875, 1.3917739639190256, 0.807737006553879, 0.0, 10.125, 8.88510707209267, 6.958869819595128, 5.821480624142661, 8.0556841563786, 5.238297325102881, 4.071164165254579, 2.604166666666667, 3.728131825383623, 3.0839039994855972, 1.7220221764974855, 0.9039851966163696, 0.0), # 35 (10.250723266745005, 9.922458333333331, 8.604583333333334, 9.247078125, 7.45889347478189, 3.6458333333333335, 4.062926470588235, 3.724791666666667, 4.025691666666666, 1.9362000000000004, 1.391128787878788, 0.8070000000000002, 0.0, 10.125, 8.877, 6.95564393939394, 5.8086, 8.051383333333332, 5.214708333333334, 4.062926470588235, 2.604166666666667, 3.729446737390945, 3.0823593750000007, 1.7209166666666669, 0.9020416666666666, 0.0), # 36 (10.258365219256524, 9.89985728166438, 8.598726566072246, 9.242152584876543, 7.4614430133246135, 3.6458333333333335, 4.054221092552247, 3.707078189300412, 4.023410390946502, 1.931670244627344, 1.3904409631292352, 0.8062190976985216, 0.0, 10.125, 8.868410074683737, 6.952204815646175, 5.79501073388203, 8.046820781893004, 5.189909465020577, 4.054221092552247, 2.604166666666667, 3.7307215066623067, 3.080717528292182, 1.7197453132144491, 0.8999870256058529, 0.0), # 37 (10.265772593504476, 9.876094364426155, 8.592554298125286, 9.23694463734568, 7.46391214402846, 3.6458333333333335, 4.04507175421609, 3.6885622427983544, 4.021003189300411, 1.92691771833562, 1.3897114873009937, 0.8053961286389272, 0.0, 10.125, 8.859357415028198, 6.948557436504967, 5.780753155006859, 8.042006378600822, 5.163987139917697, 4.04507175421609, 2.604166666666667, 3.73195607201423, 3.078981545781894, 1.7185108596250571, 0.8978267604023779, 0.0), # 38 (10.272944593661986, 9.851229938271604, 8.586080246913582, 9.231463541666667, 7.466300744526468, 3.6458333333333335, 4.035502178649238, 3.6693055555555554, 4.0184750000000005, 1.9219558641975314, 1.3889413580246914, 0.8045329218106996, 0.0, 10.125, 8.849862139917693, 6.944706790123457, 5.765867592592593, 8.036950000000001, 5.137027777777778, 4.035502178649238, 2.604166666666667, 3.733150372263234, 3.07715451388889, 1.7172160493827164, 0.8955663580246914, 0.0), # 39 (10.279880423902163, 9.82532435985368, 8.579318129858253, 9.225718557098766, 7.468608692451679, 3.6458333333333335, 4.025536088921165, 3.649369855967079, 4.015830761316872, 1.9167981252857802, 1.3881315729309558, 0.8036313062033228, 0.0, 10.125, 8.83994436823655, 6.940657864654778, 5.750394375857339, 8.031661522633744, 5.1091177983539104, 4.025536088921165, 2.604166666666667, 3.7343043462258394, 3.0752395190329227, 1.7158636259716507, 0.8932113054412438, 0.0), # 40 (10.286579288398128, 9.79843798582533, 8.57228166438043, 9.219718942901235, 7.4708358654371345, 3.6458333333333335, 4.015197208101347, 3.628816872427984, 4.0130754115226335, 1.9114579446730684, 1.3872831296504138, 0.8026931108062796, 0.0, 10.125, 8.829624218869075, 6.936415648252069, 5.734373834019204, 8.026150823045267, 5.0803436213991775, 4.015197208101347, 2.604166666666667, 3.7354179327185673, 3.073239647633746, 1.7144563328760862, 0.8907670896204848, 0.0), # 41 (10.293040391323, 9.770631172839506, 8.564984567901236, 9.213473958333335, 7.472982141115872, 3.6458333333333335, 4.004509259259259, 3.6077083333333335, 4.010213888888889, 1.9059487654320992, 1.3863970258136926, 0.8017201646090536, 0.0, 10.125, 8.818921810699589, 6.931985129068463, 5.717846296296297, 8.020427777777778, 5.050791666666667, 4.004509259259259, 2.604166666666667, 3.736491070557936, 3.0711579861111122, 1.7129969135802474, 0.8882391975308643, 0.0), # 42 (10.299262936849892, 9.741964277549155, 8.557440557841794, 9.206992862654321, 7.475047397120935, 3.6458333333333335, 3.993495965464375, 3.58610596707819, 4.007251131687243, 1.9002840306355744, 1.3854742590514195, 0.800714296601128, 0.0, 10.125, 8.807857262612407, 6.927371295257098, 5.700852091906722, 8.014502263374485, 5.020548353909466, 3.993495965464375, 2.604166666666667, 3.7375236985604676, 3.0689976208847747, 1.7114881115683587, 0.8856331161408324, 0.0), # 43 (10.305246129151927, 9.712497656607225, 8.549663351623229, 9.200284915123458, 7.477031511085363, 3.6458333333333335, 3.9821810497861696, 3.564071502057614, 4.0041920781893, 1.8944771833561962, 1.3845158269942222, 0.7996773357719861, 0.0, 10.125, 8.796450693491845, 6.92257913497111, 5.683431550068587, 8.0083841563786, 4.98970010288066, 3.9821810497861696, 2.604166666666667, 3.7385157555426813, 3.0667616383744867, 1.709932670324646, 0.8829543324188387, 0.0), # 44 (10.310989172402216, 9.682291666666666, 8.541666666666668, 9.193359375, 7.478934360642197, 3.6458333333333335, 3.9705882352941178, 3.541666666666667, 4.001041666666666, 1.8885416666666672, 1.3835227272727273, 0.798611111111111, 0.0, 10.125, 8.784722222222221, 6.917613636363637, 5.665625, 8.002083333333331, 4.958333333333334, 3.9705882352941178, 2.604166666666667, 3.7394671803210984, 3.064453125000001, 1.7083333333333335, 0.8802083333333335, 0.0), # 45 (10.31649127077388, 9.65140666438043, 8.533464220393233, 9.186225501543209, 7.480755823424477, 3.6458333333333335, 3.958741245057694, 3.518953189300412, 3.997804835390946, 1.8824909236396894, 1.3824959575175624, 0.7975174516079867, 0.0, 10.125, 8.772691967687852, 6.912479787587812, 5.647472770919067, 7.995609670781892, 4.926534465020577, 3.958741245057694, 2.604166666666667, 3.7403779117122387, 3.062075167181071, 1.7066928440786466, 0.8774006058527665, 0.0), # 46 (10.321751628440035, 9.619903006401461, 8.525069730224052, 9.178892554012345, 7.482495777065244, 3.6458333333333335, 3.9466638021463734, 3.4959927983539094, 3.994486522633745, 1.8763383973479657, 1.3814365153593549, 0.7963981862520958, 0.0, 10.125, 8.760380048773053, 6.9071825767967745, 5.629015192043896, 7.98897304526749, 4.894389917695474, 3.9466638021463734, 2.604166666666667, 3.741247888532622, 3.0596308513374493, 1.7050139460448106, 0.8745366369455876, 0.0), # 47 (10.326769449573796, 9.587841049382716, 8.516496913580248, 9.171369791666667, 7.48415409919754, 3.6458333333333335, 3.9343796296296296, 3.4728472222222226, 3.9910916666666667, 1.8700975308641978, 1.3803453984287317, 0.7952551440329219, 0.0, 10.125, 8.74780658436214, 6.901726992143659, 5.610292592592592, 7.982183333333333, 4.861986111111112, 3.9343796296296296, 2.604166666666667, 3.74207704959877, 3.05712326388889, 1.7032993827160496, 0.871621913580247, 0.0), # 48 (10.331543938348286, 9.555281149977136, 8.507759487882945, 9.163666473765433, 7.485730667454405, 3.6458333333333335, 3.9219124505769383, 3.4495781893004116, 3.987625205761317, 1.8637817672610888, 1.3792236043563206, 0.7940901539399483, 0.0, 10.125, 8.73499169333943, 6.896118021781603, 5.5913453017832655, 7.975250411522634, 4.829409465020577, 3.9219124505769383, 2.604166666666667, 3.7428653337272024, 3.054555491255145, 1.7015518975765893, 0.8686619227251944, 0.0), # 49 (10.336074298936616, 9.522283664837678, 8.49887117055327, 9.155791859567902, 7.4872253594688765, 3.6458333333333335, 3.909285988057775, 3.4262474279835393, 3.9840920781893, 1.85740454961134, 1.3780721307727481, 0.7929050449626583, 0.0, 10.125, 8.72195549458924, 6.89036065386374, 5.572213648834019, 7.9681841563786, 4.796746399176955, 3.909285988057775, 2.604166666666667, 3.7436126797344382, 3.051930619855968, 1.6997742341106543, 0.86566215134888, 0.0), # 50 (10.34035973551191, 9.488908950617283, 8.489845679012346, 9.147755208333333, 7.488638052873998, 3.6458333333333335, 3.896523965141612, 3.4029166666666666, 3.9804972222222226, 1.8509793209876546, 1.3768919753086422, 0.7917016460905352, 0.0, 10.125, 8.708718106995885, 6.884459876543211, 5.552937962962963, 7.960994444444445, 4.764083333333334, 3.896523965141612, 2.604166666666667, 3.744319026436999, 3.049251736111112, 1.6979691358024693, 0.8626280864197532, 0.0), # 51 (10.344399452247279, 9.455217363968908, 8.480696730681299, 9.139565779320987, 7.489968625302809, 3.6458333333333335, 3.883650104897926, 3.3796476337448556, 3.976845576131687, 1.8445195244627348, 1.3756841355946297, 0.7904817863130622, 0.0, 10.125, 8.695299649443683, 6.878420677973147, 5.533558573388203, 7.953691152263374, 4.731506687242798, 3.883650104897926, 2.604166666666667, 3.7449843126514044, 3.04652192644033, 1.69613934613626, 0.8595652149062645, 0.0), # 52 (10.348192653315843, 9.421269261545497, 8.471438042981255, 9.131232831790122, 7.491216954388353, 3.6458333333333335, 3.8706881303961915, 3.3565020576131688, 3.9731420781893005, 1.8380386031092826, 1.3744496092613379, 0.7892472946197227, 0.0, 10.125, 8.681720240816947, 6.872248046306688, 5.514115809327846, 7.946284156378601, 4.699102880658437, 3.8706881303961915, 2.604166666666667, 3.7456084771941764, 3.043744277263375, 1.694287608596251, 0.8564790237768635, 0.0), # 53 (10.351738542890716, 9.387125000000001, 8.462083333333332, 9.122765625, 7.492382917763668, 3.6458333333333335, 3.8576617647058824, 3.333541666666666, 3.9693916666666667, 1.8315500000000005, 1.3731893939393938, 0.788, 0.0, 10.125, 8.668, 6.865946969696969, 5.49465, 7.938783333333333, 4.666958333333333, 3.8576617647058824, 2.604166666666667, 3.746191458881834, 3.040921875000001, 1.6924166666666667, 0.8533750000000002, 0.0), # 54 (10.355036325145022, 9.352844935985367, 8.452646319158665, 9.114173418209877, 7.493466393061793, 3.6458333333333335, 3.844594730896474, 3.3108281893004117, 3.9655992798353905, 1.8250671582075908, 1.3719044872594257, 0.7867417314433777, 0.0, 10.125, 8.654159045877153, 6.859522436297127, 5.4752014746227715, 7.931198559670781, 4.6351594650205765, 3.844594730896474, 2.604166666666667, 3.7467331965308963, 3.0380578060699595, 1.6905292638317333, 0.8502586305441244, 0.0), # 55 (10.358085204251871, 9.31848942615455, 8.443140717878373, 9.105465470679011, 7.4944672579157725, 3.6458333333333335, 3.8315107520374405, 3.288423353909465, 3.961769855967078, 1.818603520804756, 1.3705958868520598, 0.7854743179393385, 0.0, 10.125, 8.640217497332722, 6.852979434260299, 5.455810562414267, 7.923539711934156, 4.603792695473251, 3.8315107520374405, 2.604166666666667, 3.7472336289578863, 3.035155156893005, 1.6886281435756747, 0.8471354023776865, 0.0), # 56 (10.360884384384383, 9.284118827160494, 8.433580246913582, 9.096651041666666, 7.495385389958644, 3.6458333333333335, 3.818433551198257, 3.2663888888888892, 3.957908333333333, 1.812172530864198, 1.369264590347924, 0.7841995884773663, 0.0, 10.125, 8.626195473251027, 6.8463229517396185, 5.436517592592593, 7.915816666666666, 4.572944444444445, 3.818433551198257, 2.604166666666667, 3.747692694979322, 3.0322170138888898, 1.6867160493827165, 0.844010802469136, 0.0), # 57 (10.36343306971568, 9.24979349565615, 8.423978623685414, 9.087739390432098, 7.496220666823449, 3.6458333333333335, 3.8053868514483984, 3.2447865226337447, 3.954019650205761, 1.8057876314586196, 1.367911595377645, 0.7829193720469442, 0.0, 10.125, 8.612113092516385, 6.8395579768882255, 5.417362894375858, 7.908039300411522, 4.5427011316872425, 3.8053868514483984, 2.604166666666667, 3.7481103334117245, 3.029246463477367, 1.684795724737083, 0.8408903177869229, 0.0), # 58 (10.36573046441887, 9.215573788294467, 8.414349565614998, 9.078739776234567, 7.49697296614323, 3.6458333333333335, 3.792394375857339, 3.2236779835390945, 3.9501087448559673, 1.799462265660723, 1.3665378995718502, 0.7816354976375554, 0.0, 10.125, 8.597990474013107, 6.83268949785925, 5.398386796982168, 7.900217489711935, 4.513149176954733, 3.792394375857339, 2.604166666666667, 3.748486483071615, 3.02624659207819, 1.6828699131229998, 0.8377794352994972, 0.0), # 59 (10.367775772667077, 9.181520061728396, 8.404706790123456, 9.069661458333334, 7.497642165551024, 3.6458333333333335, 3.779479847494553, 3.203125, 3.946180555555556, 1.7932098765432103, 1.3651445005611673, 0.7803497942386832, 0.0, 10.125, 8.583847736625515, 6.825722502805837, 5.37962962962963, 7.892361111111112, 4.484375, 3.779479847494553, 2.604166666666667, 3.748821082775512, 3.023220486111112, 1.6809413580246915, 0.8346836419753088, 0.0), # 60 (10.369568198633415, 9.147692672610884, 8.395064014631917, 9.060513695987654, 7.498228142679874, 3.6458333333333335, 3.7666669894295164, 3.183189300411523, 3.9422400205761314, 1.7870439071787843, 1.3637323959762233, 0.7790640908398111, 0.0, 10.125, 8.56970499923792, 6.818661979881115, 5.361131721536351, 7.884480041152263, 4.456465020576132, 3.7666669894295164, 2.604166666666667, 3.749114071339937, 3.0201712319958856, 1.6790128029263836, 0.8316084247828076, 0.0), # 61 (10.371106946491004, 9.114151977594878, 8.385434956561502, 9.051305748456791, 7.498730775162823, 3.6458333333333335, 3.753979524731703, 3.1639326131687247, 3.9382920781893, 1.7809778006401469, 1.3623025834476452, 0.7777802164304223, 0.0, 10.125, 8.555582380734645, 6.811512917238226, 5.3429334019204395, 7.8765841563786, 4.429505658436215, 3.753979524731703, 2.604166666666667, 3.7493653875814115, 3.0171019161522645, 1.6770869913123003, 0.8285592706904436, 0.0), # 62 (10.37239122041296, 9.080958333333333, 8.375833333333334, 9.042046875, 7.499149940632904, 3.6458333333333335, 3.741441176470588, 3.1454166666666667, 3.9343416666666666, 1.7750250000000003, 1.360856060606061, 0.7765000000000001, 0.0, 10.125, 8.5415, 6.804280303030303, 5.325075, 7.868683333333333, 4.403583333333334, 3.741441176470588, 2.604166666666667, 3.749574970316452, 3.014015625000001, 1.675166666666667, 0.8255416666666667, 0.0), # 63 (10.373420224572397, 9.048172096479195, 8.366272862368541, 9.032746334876544, 7.4994855167231655, 3.6458333333333335, 3.729075667715646, 3.127703189300412, 3.9303937242798352, 1.7691989483310475, 1.3593938250820965, 0.7752252705380279, 0.0, 10.125, 8.527477975918305, 6.796969125410483, 5.307596844993141, 7.8607874485596705, 4.378784465020577, 3.729075667715646, 2.604166666666667, 3.7497427583615828, 3.0109154449588487, 1.6732545724737085, 0.822561099679927, 0.0), # 64 (10.374193163142438, 9.015853623685413, 8.35676726108825, 9.023413387345679, 7.499737381066645, 3.6458333333333335, 3.7169067215363514, 3.1108539094650207, 3.9264531893004113, 1.7635130887059902, 1.357916874506381, 0.7739578570339887, 0.0, 10.125, 8.513536427373873, 6.7895843725319045, 5.290539266117969, 7.852906378600823, 4.355195473251029, 3.7169067215363514, 2.604166666666667, 3.7498686905333223, 3.0078044624485605, 1.67135345221765, 0.819623056698674, 0.0), # 65 (10.374709240296196, 8.984063271604938, 8.34733024691358, 9.014057291666667, 7.499905411296382, 3.6458333333333335, 3.7049580610021784, 3.094930555555556, 3.9225250000000003, 1.7579808641975312, 1.3564262065095398, 0.7726995884773664, 0.0, 10.125, 8.499695473251029, 6.782131032547699, 5.273942592592592, 7.8450500000000005, 4.332902777777778, 3.7049580610021784, 2.604166666666667, 3.749952705648191, 3.0046857638888897, 1.6694660493827165, 0.8167330246913582, 0.0), # 66 (10.374967660206792, 8.952861396890716, 8.337975537265661, 9.004687307098765, 7.499989485045419, 3.6458333333333335, 3.693253409182603, 3.0799948559670787, 3.9186140946502057, 1.7526157178783728, 1.3549228187222018, 0.7714522938576437, 0.0, 10.125, 8.485975232434079, 6.774614093611008, 5.257847153635117, 7.837228189300411, 4.31199279835391, 3.693253409182603, 2.604166666666667, 3.7499947425227096, 3.001562435699589, 1.6675951074531323, 0.8138964906264289, 0.0), # 67 (10.374791614480825, 8.922144586043629, 8.328671624942844, 8.995231305354269, 7.499918636864896, 3.645765673423767, 3.681757597414823, 3.0659766041761927, 3.9146959495503735, 1.747405110411792, 1.3533809980900628, 0.770210835158312, 0.0, 10.124875150034294, 8.47231918674143, 6.766904990450313, 5.242215331235375, 7.829391899100747, 4.29236724584667, 3.681757597414823, 2.604118338159833, 3.749959318432448, 2.99841043511809, 1.6657343249885688, 0.8111040532766937, 0.0), # 68 (10.373141706924315, 8.890975059737157, 8.319157021604937, 8.985212635869564, 7.499273783587508, 3.6452307956104257, 3.6701340906733066, 3.052124485596708, 3.910599279835391, 1.7422015976761076, 1.3516438064859118, 0.7689349144466104, 0.0, 10.12388599537037, 8.458284058912714, 6.758219032429559, 5.226604793028321, 7.821198559670782, 4.272974279835391, 3.6701340906733066, 2.6037362825788755, 3.749636891793754, 2.9950708786231885, 1.6638314043209876, 0.8082704599761052, 0.0), # 69 (10.369885787558895, 8.859209754856408, 8.309390360653863, 8.974565343196456, 7.497999542752628, 3.6441773992785653, 3.658330067280685, 3.0383135192805977, 3.9063009640298736, 1.736979881115684, 1.3496914810876801, 0.7676185634410675, 0.0, 10.121932334533609, 8.44380419785174, 6.7484574054383994, 5.210939643347051, 7.812601928059747, 4.253638926992837, 3.658330067280685, 2.6029838566275467, 3.748999771376314, 2.991521781065486, 1.6618780721307727, 0.8053827049869463, 0.0), # 70 (10.365069660642929, 8.826867654542236, 8.299375071444901, 8.963305127818035, 7.496112052502757, 3.6426225549966977, 3.646350829769494, 3.0245482777015704, 3.9018074035970125, 1.7317400898356603, 1.347531228463977, 0.7662627447677263, 0.0, 10.119039887688615, 8.428890192444989, 6.737656142319885, 5.195220269506979, 7.803614807194025, 4.234367588782199, 3.646350829769494, 2.6018732535690696, 3.7480560262513785, 2.987768375939346, 1.6598750142889804, 0.8024425140492942, 0.0), # 71 (10.358739130434783, 8.793967741935482, 8.289114583333333, 8.95144769021739, 7.493627450980392, 3.6405833333333337, 3.634201680672269, 3.0108333333333333, 3.897125, 1.7264823529411768, 1.3451702551834133, 0.7648684210526316, 0.0, 10.115234375, 8.413552631578947, 6.7258512759170666, 5.179447058823529, 7.79425, 4.215166666666667, 3.634201680672269, 2.600416666666667, 3.746813725490196, 2.983815896739131, 1.6578229166666667, 0.7994516129032258, 0.0), # 72 (10.35094000119282, 8.760529000176998, 8.27861232567444, 8.939008730877617, 7.490561876328034, 3.638076804856983, 3.621887922521546, 2.9971732586495965, 3.8922601547020275, 1.7212067995373737, 1.3426157678145982, 0.7634365549218266, 0.0, 10.110541516632374, 8.397802104140093, 6.71307883907299, 5.163620398612119, 7.784520309404055, 4.196042562109435, 3.621887922521546, 2.598626289183559, 3.745280938164017, 2.979669576959206, 1.655722465134888, 0.7964117272888181, 0.0), # 73 (10.341718077175404, 8.726570412407629, 8.267871727823502, 8.926003950281803, 7.486931466688183, 3.6351200401361585, 3.609414857849861, 2.9835726261240665, 3.8872192691662857, 1.7159135587293908, 1.3398749729261428, 0.7619681090013557, 0.0, 10.104987032750344, 8.38164919901491, 6.699374864630713, 5.147740676188171, 7.774438538332571, 4.177001676573693, 3.609414857849861, 2.5965143143829703, 3.7434657333440917, 2.975334650093935, 1.6535743455647005, 0.7933245829461482, 0.0), # 74 (10.331119162640901, 8.692110961768218, 8.256896219135802, 8.912449048913043, 7.482752360203341, 3.6317301097393697, 3.59678778918975, 2.9700360082304527, 3.8820087448559666, 1.7106027596223679, 1.336955077086656, 0.7604640459172624, 0.0, 10.098596643518519, 8.365104505089885, 6.684775385433279, 5.131808278867102, 7.764017489711933, 4.158050411522634, 3.59678778918975, 2.594092935528121, 3.7413761801016703, 2.9708163496376816, 1.6513792438271604, 0.7901919056152927, 0.0), # 75 (10.319189061847677, 8.65716963139962, 8.245689228966622, 8.898359727254428, 7.478040695016003, 3.6279240842351275, 3.5840120190737474, 2.956567977442463, 3.876634983234263, 1.7052745313214452, 1.3338632868647486, 0.7589253282955902, 0.0, 10.091396069101508, 8.348178611251491, 6.669316434323743, 5.115823593964334, 7.753269966468526, 4.139195168419449, 3.5840120190737474, 2.5913743458822336, 3.7390203475080015, 2.96611990908481, 1.6491378457933243, 0.7870154210363293, 0.0), # 76 (10.305973579054093, 8.621765404442675, 8.234254186671238, 8.883751685789049, 7.472812609268672, 3.6237190341919425, 3.5710928500343897, 2.9431731062338065, 3.871104385764365, 1.699929002931763, 1.3306068088290313, 0.7573529187623839, 0.0, 10.083411029663925, 8.330882106386222, 6.653034044145156, 5.099787008795288, 7.74220877152873, 4.120442348727329, 3.5710928500343897, 2.58837073870853, 3.736406304634336, 2.9612505619296834, 1.6468508373342476, 0.7837968549493343, 0.0), # 77 (10.291518518518519, 8.585917264038233, 8.222594521604938, 8.868640625, 7.467084241103849, 3.6191320301783265, 3.5580355846042124, 2.9298559670781894, 3.8654233539094642, 1.6945663035584608, 1.327192849548113, 0.7557477799436866, 0.0, 10.074667245370371, 8.313225579380552, 6.635964247740564, 5.083698910675381, 7.7308467078189285, 4.101798353909466, 3.5580355846042124, 2.585094307270233, 3.7335421205519244, 2.956213541666667, 1.6445189043209878, 0.7805379330943849, 0.0), # 78 (10.275869684499314, 8.549644193327138, 8.210713663123, 8.85304224537037, 7.460871728664031, 3.61418014276279, 3.5448455253157505, 2.916621132449322, 3.859598289132754, 1.6891865623066789, 1.3236286155906039, 0.7541108744655421, 0.0, 10.065190436385459, 8.295219619120962, 6.618143077953018, 5.067559686920035, 7.719196578265508, 4.083269585429051, 3.5448455253157505, 2.5815572448305644, 3.7304358643320157, 2.951014081790124, 1.6421427326246, 0.7772403812115581, 0.0), # 79 (10.259072881254847, 8.51296517545024, 8.198615040580703, 8.836972247383253, 7.454191210091719, 3.6088804425138448, 3.5315279747015405, 2.9034731748209115, 3.853635592897424, 1.683789908281557, 1.3199213135251149, 0.7524431649539947, 0.0, 10.0550063228738, 8.27687481449394, 6.599606567625574, 5.05136972484467, 7.707271185794848, 4.064862444749276, 3.5315279747015405, 2.577771744652746, 3.7270956050458595, 2.945657415794418, 1.639723008116141, 0.7739059250409311, 0.0), # 80 (10.241173913043479, 8.475899193548386, 8.186302083333333, 8.82044633152174, 7.447058823529411, 3.60325, 3.5180882352941176, 2.890416666666667, 3.8475416666666664, 1.6783764705882358, 1.3160781499202554, 0.7507456140350878, 0.0, 10.044140624999999, 8.258201754385965, 6.580390749601277, 5.035129411764706, 7.695083333333333, 4.046583333333333, 3.5180882352941176, 2.57375, 3.7235294117647055, 2.940148777173914, 1.6372604166666667, 0.7705362903225808, 0.0), # 81 (10.222218584123576, 8.438465230762423, 8.17377822073617, 8.803480198268922, 7.43949070711961, 3.5973058857897686, 3.504531609626018, 2.8774561804602956, 3.841322911903673, 1.6729463783318543, 1.3121063313446355, 0.7490191843348656, 0.0, 10.03261906292867, 8.23921102768352, 6.560531656723177, 5.018839134995561, 7.682645823807346, 4.0284386526444145, 3.504531609626018, 2.5695042041355487, 3.719745353559805, 2.934493399422974, 1.634755644147234, 0.767133202796584, 0.0), # 82 (10.202252698753504, 8.400682270233196, 8.16104688214449, 8.78608954810789, 7.431502999004814, 3.591065170451659, 3.4908634002297765, 2.8645962886755068, 3.8349857300716352, 1.6674997606175532, 1.3080130643668657, 0.7472648384793719, 0.0, 10.020467356824417, 8.219913223273089, 6.540065321834328, 5.002499281852659, 7.6699714601432705, 4.01043480414571, 3.4908634002297765, 2.5650465503226134, 3.715751499502407, 2.9286965160359637, 1.632209376428898, 0.7636983882030178, 0.0), # 83 (10.181322061191626, 8.362569295101553, 8.14811149691358, 8.768290081521739, 7.423111837327523, 3.584544924554184, 3.477088909637929, 2.851841563786008, 3.8285365226337444, 1.6620367465504726, 1.3038055555555557, 0.7454835390946503, 0.0, 10.007711226851852, 8.200318930041153, 6.519027777777778, 4.986110239651417, 7.657073045267489, 3.9925781893004113, 3.477088909637929, 2.5603892318244172, 3.7115559186637617, 2.922763360507247, 1.629622299382716, 0.7602335722819594, 0.0), # 84 (10.159472475696308, 8.32414528850834, 8.13497549439872, 8.75009749899356, 7.414333360230238, 3.577762218665854, 3.463213440383012, 2.8391965782655086, 3.8219816910531925, 1.6565574652357518, 1.2994910114793157, 0.7436762488067449, 0.0, 9.994376393175584, 8.180438736874192, 6.497455057396579, 4.969672395707254, 7.643963382106385, 3.9748752095717124, 3.463213440383012, 2.5555444419041815, 3.707166680115119, 2.916699166331187, 1.626995098879744, 0.7567404807734855, 0.0), # 85 (10.136749746525913, 8.285429233594407, 8.121642303955191, 8.731527501006443, 7.405183705855455, 3.57073412335518, 3.44924229499756, 2.826665904587715, 3.815327636793172, 1.6510620457785314, 1.2950766387067558, 0.7418439302416996, 0.0, 9.98048857596022, 8.160283232658694, 6.475383193533778, 4.953186137335593, 7.630655273586344, 3.9573322664228017, 3.44924229499756, 2.550524373825129, 3.7025918529277275, 2.910509167002148, 1.6243284607910382, 0.7532208394176735, 0.0), # 86 (10.113199677938807, 8.246440113500597, 8.10811535493827, 8.712595788043478, 7.3956790123456795, 3.563477709190672, 3.4351807760141093, 2.8142541152263374, 3.8085807613168727, 1.645550617283951, 1.290569643806486, 0.7399875460255577, 0.0, 9.96607349537037, 8.139863006281134, 6.452848219032429, 4.936651851851852, 7.6171615226337455, 3.9399557613168725, 3.4351807760141093, 2.54534122085048, 3.6978395061728397, 2.904198596014493, 1.6216230709876542, 0.7496763739545999, 0.0), # 87 (10.088868074193357, 8.207196911367758, 8.094398076703246, 8.693318060587762, 7.385835417843406, 3.5560100467408424, 3.4210341859651954, 2.801965782655083, 3.8017474660874866, 1.6400233088571508, 1.2859772333471164, 0.7381080587843638, 0.0, 9.951156871570646, 8.119188646628, 6.429886166735582, 4.9200699265714505, 7.603494932174973, 3.9227520957171165, 3.4210341859651954, 2.540007176243459, 3.692917708921703, 2.897772686862588, 1.6188796153406495, 0.7461088101243417, 0.0), # 88 (10.063800739547922, 8.16771861033674, 8.080493898605397, 8.673710019122383, 7.375669060491138, 3.5483482065742016, 3.406807827383354, 2.7898054793476605, 3.794834152568206, 1.634480249603271, 1.2813066138972575, 0.7362064311441613, 0.0, 9.935764424725651, 8.098270742585774, 6.4065330694862865, 4.903440748809812, 7.589668305136412, 3.905727671086725, 3.406807827383354, 2.534534433267287, 3.687834530245569, 2.891236673040795, 1.6160987797210793, 0.7425198736669765, 0.0), # 89 (10.03804347826087, 8.128024193548386, 8.06640625, 8.653787364130435, 7.365196078431373, 3.5405092592592595, 3.3925070028011204, 2.7777777777777777, 3.7878472222222226, 1.6289215686274514, 1.2765649920255184, 0.7342836257309943, 0.0, 9.919921875, 8.077119883040936, 6.382824960127592, 4.886764705882353, 7.575694444444445, 3.888888888888889, 3.3925070028011204, 2.5289351851851856, 3.6825980392156863, 2.884595788043479, 1.6132812500000002, 0.7389112903225807, 0.0), # 90 (10.011642094590563, 8.088132644143545, 8.05213856024234, 8.63356579609501, 7.35443260980661, 3.532510275364528, 3.378137014751031, 2.7658872504191434, 3.780793076512727, 1.6233473950348318, 1.2717595743005101, 0.7323406051709063, 0.0, 9.903654942558298, 8.055746656879968, 6.35879787150255, 4.870042185104494, 7.561586153025454, 3.872242150586801, 3.378137014751031, 2.5232216252603767, 3.677216304903305, 2.8778552653650036, 1.6104277120484682, 0.7352847858312315, 0.0), # 91 (9.984642392795372, 8.048062945263066, 8.0376942586877, 8.613061015499195, 7.343394792759352, 3.524368325458518, 3.363703165765621, 2.754138469745466, 3.773678116902911, 1.6177578579305527, 1.2668975672908422, 0.7303783320899415, 0.0, 9.886989347565157, 8.034161652989356, 6.334487836454211, 4.853273573791657, 7.547356233805822, 3.8557938576436523, 3.363703165765621, 2.517405946756084, 3.671697396379676, 2.871020338499732, 1.6075388517375402, 0.7316420859330061, 0.0), # 92 (9.957090177133654, 8.00783408004779, 8.023076774691358, 8.592288722826089, 7.332098765432098, 3.5161004801097393, 3.349210758377425, 2.742536008230453, 3.766508744855967, 1.6121530864197533, 1.261986177565125, 0.7283977691141434, 0.0, 9.869950810185184, 8.012375460255576, 6.309930887825625, 4.836459259259259, 7.533017489711934, 3.839550411522634, 3.349210758377425, 2.5115003429355283, 3.666049382716049, 2.86409624094203, 1.6046153549382718, 0.727984916367981, 0.0), # 93 (9.92903125186378, 7.967465031638567, 8.008289537608597, 8.571264618558777, 7.320560665967347, 3.5077238098867043, 3.3346650951189805, 2.7310844383478132, 3.759291361835086, 1.6065332096075746, 1.2570326116919686, 0.7263998788695563, 0.0, 9.85256505058299, 7.990398667565118, 6.285163058459842, 4.819599628822722, 7.518582723670172, 3.823518213686939, 3.3346650951189805, 2.5055170070619317, 3.6602803329836733, 2.8570882061862592, 1.6016579075217197, 0.7243150028762335, 0.0), # 94 (9.90051142124411, 7.926974783176247, 7.993335976794697, 8.550004403180354, 7.308796632507598, 3.499255385357923, 3.320071478522822, 2.719788332571255, 3.7520323693034596, 1.6008983565991557, 1.2520440762399827, 0.7243856239822234, 0.0, 9.834857788923182, 7.968241863804456, 6.260220381199914, 4.8026950697974655, 7.504064738606919, 3.8077036655997567, 3.320071478522822, 2.4994681323985164, 3.654398316253799, 2.850001467726785, 1.5986671953589393, 0.7206340711978407, 0.0), # 95 (9.871576489533012, 7.886382317801674, 7.978219521604939, 8.528523777173913, 7.296822803195352, 3.4907122770919066, 3.3054352111214853, 2.708652263374486, 3.7447381687242793, 1.5952486564996373, 1.247027777777778, 0.7223559670781895, 0.0, 9.816854745370371, 7.945915637860083, 6.23513888888889, 4.785745969498911, 7.489476337448559, 3.7921131687242804, 3.3054352111214853, 2.4933659122085046, 3.648411401597676, 2.8428412590579715, 1.595643904320988, 0.7169438470728796, 0.0), # 96 (9.842272260988848, 7.845706618655694, 7.962943601394604, 8.506838441022543, 7.284655316173109, 3.482111555657166, 3.2907615954475067, 2.697680803231215, 3.7374151615607376, 1.589584238414159, 1.2419909228739638, 0.7203118707834976, 0.0, 9.798581640089164, 7.923430578618472, 6.209954614369819, 4.768752715242476, 7.474830323121475, 3.7767531245237014, 3.2907615954475067, 2.4872225397551184, 3.6423276580865545, 2.8356128136741816, 1.5925887202789208, 0.7132460562414268, 0.0), # 97 (9.812644539869984, 7.804966668879153, 7.947511645518976, 8.48496409520934, 7.272310309583368, 3.4734702916222124, 3.276055934033421, 2.68687852461515, 3.7300697492760246, 1.5839052314478608, 1.236940718097151, 0.7182542977241916, 0.0, 9.78006419324417, 7.900797274966106, 6.184703590485755, 4.751715694343581, 7.460139498552049, 3.7616299344612103, 3.276055934033421, 2.48105020830158, 3.636155154791684, 2.8283213650697805, 1.589502329103795, 0.7095424244435595, 0.0), # 98 (9.782739130434782, 7.764181451612902, 7.931927083333334, 8.462916440217391, 7.259803921568627, 3.464805555555556, 3.261323529411765, 2.67625, 3.7227083333333333, 1.5782117647058826, 1.2318843700159492, 0.7161842105263159, 0.0, 9.761328125, 7.878026315789473, 6.159421850079745, 4.734635294117647, 7.445416666666667, 3.7467500000000005, 3.261323529411765, 2.474861111111111, 3.6299019607843137, 2.820972146739131, 1.5863854166666669, 0.7058346774193549, 0.0), # 99 (9.752601836941611, 7.723369949997786, 7.916193344192958, 8.44071117652979, 7.247152290271389, 3.4561344180257074, 3.2465696841150726, 2.665799801859473, 3.715337315195854, 1.572503967293365, 1.2268290851989685, 0.714102571815914, 0.0, 9.742399155521262, 7.8551282899750525, 6.134145425994841, 4.717511901880093, 7.430674630391708, 3.732119722603262, 3.2465696841150726, 2.468667441446934, 3.6235761451356945, 2.8135703921765973, 1.5832386688385918, 0.7021245409088898, 0.0), # 100 (9.722278463648834, 7.682551147174654, 7.900313857453133, 8.41836400462963, 7.234371553834153, 3.4474739496011786, 3.231799700675881, 2.6555325026672763, 3.7079630963267793, 1.5667819683154474, 1.2217820702148188, 0.7120103442190294, 0.0, 9.723303004972564, 7.832113786409323, 6.108910351074094, 4.7003459049463405, 7.415926192653559, 3.7177455037341867, 3.231799700675881, 2.4624813925722706, 3.6171857769170765, 2.806121334876544, 1.5800627714906266, 0.6984137406522414, 0.0), # 101 (9.691814814814816, 7.641744026284349, 7.884292052469135, 8.395890625, 7.221477850399419, 3.4388412208504806, 3.217018881626725, 2.645452674897119, 3.7005920781893, 1.56104589687727, 1.2167505316321108, 0.7099084903617069, 0.0, 9.704065393518519, 7.808993393978774, 6.083752658160553, 4.683137690631809, 7.4011841563786, 3.703633744855967, 3.217018881626725, 2.4563151577503435, 3.6107389251997093, 2.798630208333334, 1.5768584104938272, 0.6947040023894864, 0.0), # 102 (9.661256694697919, 7.60096757046772, 7.8681313585962505, 8.373306738123993, 7.208487318109686, 3.430253302342123, 3.20223252950014, 2.63556489102271, 3.6932306622466085, 1.5552958820839726, 1.211741676019454, 0.7077979728699895, 0.0, 9.68471204132373, 7.785777701569883, 6.058708380097269, 4.6658876462519165, 7.386461324493217, 3.689790847431794, 3.20223252950014, 2.4501809302443736, 3.604243659054843, 2.7911022460413317, 1.5736262717192502, 0.6909970518607019, 0.0), # 103 (9.63064990755651, 7.560240762865614, 7.851835205189758, 8.350628044484703, 7.195416095107452, 3.421727264644617, 3.187445946828663, 2.6258737235177567, 3.685885249961896, 1.5495320530406955, 1.2067627099454585, 0.7056797543699213, 0.0, 9.665268668552812, 7.762477298069133, 6.033813549727292, 4.648596159122086, 7.371770499923792, 3.6762232129248593, 3.187445946828663, 2.4440909033175835, 3.597708047553726, 2.783542681494901, 1.5703670410379515, 0.687294614805965, 0.0), # 104 (9.600040257648953, 7.519582586618876, 7.835407021604938, 8.327870244565217, 7.182280319535221, 3.4132801783264752, 3.172664436144829, 2.6163837448559675, 3.6785622427983538, 1.5437545388525786, 1.201820839978735, 0.7035547974875461, 0.0, 9.64576099537037, 7.739102772363006, 6.009104199893674, 4.631263616557734, 7.3571244855967075, 3.662937242798354, 3.172664436144829, 2.4380572702331964, 3.5911401597676105, 2.775956748188406, 1.5670814043209877, 0.6835984169653525, 0.0), # 105 (9.569473549233614, 7.479012024868357, 7.818850237197074, 8.305049038848631, 7.1690961295354905, 3.404929113956206, 3.1578932999811724, 2.6070995275110502, 3.6712680422191735, 1.5379634686247616, 1.1969232726878927, 0.701424064848908, 0.0, 9.626214741941014, 7.715664713337986, 5.9846163634394625, 4.613890405874283, 7.342536084438347, 3.6499393385154706, 3.1578932999811724, 2.4320922242544327, 3.5845480647677452, 2.768349679616211, 1.5637700474394147, 0.6799101840789417, 0.0), # 106 (9.538995586568856, 7.438548060754901, 7.802168281321446, 8.282180127818036, 7.155879663250759, 3.3966911421023225, 3.1431378408702306, 2.5980256439567144, 3.6640090496875475, 1.532158971462385, 1.1920772146415421, 0.6992885190800504, 0.0, 9.606655628429355, 7.692173709880553, 5.96038607320771, 4.596476914387154, 7.328018099375095, 3.6372359015394005, 3.1431378408702306, 2.426207958644516, 3.5779398316253794, 2.760726709272679, 1.5604336562642893, 0.6762316418868093, 0.0), # 107 (9.508652173913044, 7.398209677419356, 7.785364583333334, 8.259279211956523, 7.1426470588235285, 3.3885833333333335, 3.1284033613445374, 2.589166666666667, 3.656791666666667, 1.5263411764705888, 1.1872898724082936, 0.6971491228070177, 0.0, 9.587109375, 7.668640350877193, 5.936449362041468, 4.579023529411765, 7.313583333333334, 3.624833333333334, 3.1284033613445374, 2.4204166666666667, 3.5713235294117642, 2.7530930706521746, 1.557072916666667, 0.6725645161290325, 0.0), # 108 (9.478489115524543, 7.358015858002567, 7.768442572588021, 8.23636199174718, 7.129414454396299, 3.3806227582177515, 3.113695163936631, 2.580527168114617, 3.6496222946197223, 1.5205102127545123, 1.1825684525567568, 0.6950068386558532, 0.0, 9.567601701817559, 7.645075225214384, 5.9128422627837836, 4.561530638263536, 7.299244589239445, 3.612738035360464, 3.113695163936631, 2.4147305415841083, 3.5647072271981495, 2.7454539972490606, 1.5536885145176043, 0.668910532545688, 0.0), # 109 (9.448552215661715, 7.317985585645383, 7.751405678440788, 8.213444167673108, 7.116197988111569, 3.3728264873240867, 3.0990185511790447, 2.5721117207742723, 3.6425073350099066, 1.5146662094192962, 1.177920161655542, 0.6928626292526012, 0.0, 9.54815832904664, 7.621488921778612, 5.8896008082777085, 4.543998628257887, 7.285014670019813, 3.600956409083981, 3.0990185511790447, 2.409161776660062, 3.5580989940557846, 2.737814722557703, 1.5502811356881578, 0.6652714168768531, 0.0), # 110 (9.41888727858293, 7.278137843488651, 7.7342573302469155, 8.190541440217391, 7.103013798111837, 3.365211591220851, 3.0843788256043156, 2.5639248971193416, 3.635453189300412, 1.5088092955700803, 1.173352206273259, 0.6907174572233054, 0.0, 9.528804976851852, 7.597892029456357, 5.866761031366295, 4.526427886710239, 7.270906378600824, 3.5894948559670783, 3.0843788256043156, 2.4037225651577505, 3.5515068990559184, 2.7301804800724643, 1.546851466049383, 0.6616488948626047, 0.0), # 111 (9.38954010854655, 7.238491614673214, 7.717000957361684, 8.167669509863124, 7.089878022539605, 3.357795140476554, 3.069781289744979, 2.5559712696235333, 3.628466258954427, 1.5029396003120044, 1.1688717929785184, 0.6885722851940093, 0.0, 9.509567365397805, 7.574295137134101, 5.844358964892591, 4.5088188009360115, 7.256932517908854, 3.5783597774729463, 3.069781289744979, 2.3984251003403956, 3.5449390112698027, 2.7225565032877084, 1.543400191472337, 0.6580446922430195, 0.0), # 112 (9.360504223703044, 7.1991320672204555, 7.699681523543391, 8.14487541186903, 7.076783786782469, 3.3505906987084666, 3.0552629818283847, 2.548271903658586, 3.6215709370862066, 1.4970761841531826, 1.1644873176921446, 0.6864327447087024, 0.0, 9.490443900843221, 7.550760191795725, 5.8224365884607225, 4.491228552459547, 7.243141874172413, 3.5675806651220205, 3.0552629818283847, 2.3932790705060474, 3.5383918933912346, 2.7149584706230105, 1.5399363047086783, 0.654466551565496, 0.0), # 113 (9.331480897900065, 7.16044741823174, 7.682538062518016, 8.122342065958001, 7.063595569710884, 3.343581854975776, 3.0410091042052896, 2.5409213581271333, 3.6148730119043533, 1.491328791978196, 1.1602073895188663, 0.684326014342748, 0.0, 9.471275414160035, 7.5275861577702265, 5.801036947594331, 4.473986375934587, 7.229746023808707, 3.557289901377987, 3.0410091042052896, 2.3882727535541255, 3.531797784855442, 2.7074473553193346, 1.5365076125036032, 0.6509497652937947, 0.0), # 114 (9.302384903003995, 7.122451598792792, 7.665580777256098, 8.100063378886334, 7.050271785259067, 3.3367503822909463, 3.027029825095781, 2.533917772616129, 3.6083749928895963, 1.4857063319970194, 1.1560257519045158, 0.6822531318799043, 0.0, 9.452006631660376, 7.5047844506789465, 5.7801287595225785, 4.457118995991058, 7.216749985779193, 3.5474848816625806, 3.027029825095781, 2.3833931302078186, 3.5251358926295335, 2.700021126295445, 1.5331161554512198, 0.647495599890254, 0.0), # 115 (9.273179873237634, 7.0850892578507265, 7.648776824986561, 8.077999612699802, 7.036792350922519, 3.330080178417474, 3.0133024087639466, 2.5272417970412473, 3.6020604464092765, 1.480198339612387, 1.1519343218785802, 0.6802102664572789, 0.0, 9.43260725975589, 7.482312931030067, 5.7596716093929015, 4.44059501883716, 7.204120892818553, 3.5381385158577463, 3.0133024087639466, 2.3786286988696244, 3.5183961754612594, 2.6926665375666015, 1.5297553649973124, 0.6440990234409752, 0.0), # 116 (9.243829442823772, 7.04830504435266, 7.632093362938321, 8.056111029444182, 7.02313718419674, 3.323555141118853, 2.9998041194738763, 2.5208740813181603, 3.5959129388307343, 1.4747943502270324, 1.1479250164705472, 0.6781935872119792, 0.0, 9.413047004858225, 7.46012945933177, 5.739625082352736, 4.424383050681096, 7.1918258776614685, 3.5292237138454245, 2.9998041194738763, 2.3739679579420376, 3.51156859209837, 2.6853703431480613, 1.5264186725876645, 0.6407550040320601, 0.0), # 117 (9.214297245985211, 7.0120436072457135, 7.615497548340306, 8.03435789116525, 7.009286202577227, 3.317159168158581, 2.9865122214896576, 2.51479527536254, 3.5899160365213114, 1.46948389924369, 1.143989752709904, 0.6761992632811126, 0.0, 9.393295573379024, 7.438191896092237, 5.71994876354952, 4.40845169773107, 7.179832073042623, 3.5207133855075567, 2.9865122214896576, 2.369399405827558, 3.5046431012886137, 2.678119297055084, 1.5230995096680613, 0.6374585097496104, 0.0), # 118 (9.184546916944742, 6.976249595477001, 7.598956538421437, 8.012700459908778, 6.99521932355948, 3.3108761573001524, 2.973403979075378, 2.5089860290900607, 3.5840533058483475, 1.4642565220650932, 1.1401204476261382, 0.6742234638017862, 0.0, 9.373322671729932, 7.416458101819647, 5.70060223813069, 4.392769566195279, 7.168106611696695, 3.5125804407260848, 2.973403979075378, 2.3649115409286803, 3.49760966177974, 2.670900153302927, 1.5197913076842873, 0.6342045086797276, 0.0), # 119 (9.154542089925162, 6.940867657993644, 7.582437490410635, 7.991098997720545, 6.980916464638998, 3.304690006307063, 2.9604566564951265, 2.5034269924163928, 3.578308313179186, 1.4591017540939766, 1.136309018248736, 0.6722623579111081, 0.0, 9.353098006322597, 7.394885937022188, 5.68154509124368, 4.377305262281929, 7.156616626358372, 3.50479778938295, 2.9604566564951265, 2.360492861647902, 3.490458232319499, 2.663699665906849, 1.516487498082127, 0.6309879689085133, 0.0), # 120 (9.124246399149268, 6.90584244374276, 7.565907561536823, 7.969513766646325, 6.966357543311279, 3.29858461294281, 2.94764751801299, 2.4980988152572112, 3.572664624881166, 1.4540091307330743, 1.1325473816071863, 0.6703121147461852, 0.0, 9.33259128356866, 7.373433262208036, 5.662736908035931, 4.362027392199222, 7.145329249762332, 3.497338341360096, 2.94764751801299, 2.356131866387721, 3.4831787716556395, 2.656504588882109, 1.5131815123073646, 0.6278038585220692, 0.0), # 121 (9.093623478839854, 6.871118601671464, 7.549333909028926, 7.947905028731892, 6.951522477071823, 3.292543874970886, 2.9349538278930587, 2.492982147528187, 3.5671058073216297, 1.4489681873851195, 1.1288274547309753, 0.6683689034441251, 0.0, 9.31177220987977, 7.352057937885375, 5.644137273654876, 4.346904562155357, 7.1342116146432595, 3.490175006539462, 2.9349538278930587, 2.351817053550633, 3.4757612385359113, 2.6493016762439643, 1.5098667818057854, 0.6246471456064968, 0.0), # 122 (9.062636963219719, 6.836640780726876, 7.532683690115864, 7.92623304602302, 6.936391183416127, 3.28655169015479, 2.9223528503994194, 2.4880576391449933, 3.5616154268679177, 1.443968459452847, 1.1251411546495909, 0.6664288931420351, 0.0, 9.290610491667572, 7.330717824562385, 5.625705773247954, 4.33190537835854, 7.123230853735835, 3.4832806948029904, 2.9223528503994194, 2.3475369215391355, 3.4681955917080636, 2.642077682007674, 1.5065367380231727, 0.621512798247898, 0.0), # 123 (9.031250486511654, 6.802353629856113, 7.515924062026559, 7.90445808056549, 6.920943579839691, 3.2805919562580144, 2.9098218497961597, 2.483305940023303, 3.5561770498873715, 1.4389994823389904, 1.1214803983925201, 0.664488252977023, 0.0, 9.269075835343711, 7.309370782747252, 5.6074019919625995, 4.316998447016971, 7.112354099774743, 3.476628316032624, 2.9098218497961597, 2.3432799687557244, 3.4604717899198456, 2.634819360188497, 1.5031848124053118, 0.618395784532374, 0.0), # 124 (8.999427682938459, 6.768201798006293, 7.499022181989936, 7.88254039440507, 6.905159583838015, 3.274648571044058, 2.8973380903473696, 2.478707700078788, 3.5507742427473308, 1.4340507914462837, 1.1178371029892504, 0.6625431520861957, 0.0, 9.247137947319828, 7.2879746729481525, 5.5891855149462515, 4.30215237433885, 7.1015484854946616, 3.470190780110303, 2.8973380903473696, 2.3390346936028985, 3.4525797919190073, 2.6275134648016905, 1.4998044363979874, 0.6152910725460268, 0.0), # 125 (8.967132186722928, 6.734129934124536, 7.481945207234916, 7.8604402495875405, 6.889019112906595, 3.2687054322764144, 2.884878836317135, 2.474243569227122, 3.545390571815139, 1.4291119221774609, 1.1142031854692689, 0.6605897596066612, 0.0, 9.224766534007578, 7.266487355673273, 5.571015927346345, 4.287335766532382, 7.090781143630278, 3.463940996917971, 2.884878836317135, 2.334789594483153, 3.4445095564532977, 2.620146749862514, 1.4963890414469831, 0.6121936303749579, 0.0), # 126 (8.93432763208786, 6.7000826871579555, 7.464660294990421, 7.838117908158674, 6.8725020845409315, 3.26274643771858, 2.872421351969547, 2.469894197383977, 3.5400096034581354, 1.4241724099352562, 1.1105705628620632, 0.6586242446755264, 0.0, 9.201931301818599, 7.244866691430789, 5.552852814310316, 4.272517229805768, 7.080019206916271, 3.457851876337568, 2.872421351969547, 2.3305331697989855, 3.4362510422704657, 2.612705969386225, 1.4929320589980841, 0.6090984261052688, 0.0), # 127 (8.900977653256046, 6.666004706053673, 7.447134602485375, 7.815533632164248, 6.855588416236526, 3.2567554851340508, 2.859942901568691, 2.465640234465026, 3.534614904043661, 1.4192217901224033, 1.1069311521971208, 0.6566427764298991, 0.0, 9.178601957164537, 7.223070540728888, 5.534655760985604, 4.257665370367209, 7.069229808087322, 3.4518963282510366, 2.859942901568691, 2.3262539179528936, 3.427794208118263, 2.6051778773880834, 1.4894269204970751, 0.6060004278230613, 0.0), # 128 (8.867045884450281, 6.631840639758805, 7.4293352869486995, 7.792647683650037, 6.838258025488874, 3.250716472286322, 2.8474207493786565, 2.4614623303859418, 3.529190039939058, 1.4142495981416365, 1.1032768705039286, 0.6546415240068865, 0.0, 9.154748206457038, 7.20105676407575, 5.516384352519642, 4.242748794424909, 7.058380079878116, 3.4460472625403185, 2.8474207493786565, 2.321940337347373, 3.419129012744437, 2.597549227883346, 1.4858670573897401, 0.6028946036144368, 0.0), # 129 (8.832495959893366, 6.5975351372204685, 7.411229505609316, 7.769420324661814, 6.820490829793475, 3.2446132969388883, 2.8348321596635313, 2.457341135062396, 3.5237185775116666, 1.4092453693956895, 1.0995996348119743, 0.6526166565435961, 0.0, 9.130339756107748, 7.178783221979556, 5.4979981740598705, 4.2277361081870675, 7.047437155023333, 3.4402775890873545, 2.8348321596635313, 2.3175809263849203, 3.4102454148967376, 2.589806774887272, 1.4822459011218634, 0.5997759215654973, 0.0), # 130 (8.797291513808094, 6.563032847385783, 7.392784415696151, 7.7458118172453565, 6.802266746645829, 3.238429856855247, 2.8221543966874045, 2.4532572984100627, 3.5181840831288285, 1.4041986392872965, 1.0958913621507447, 0.6505643431771354, 0.0, 9.105346312528312, 7.156207774948489, 5.479456810753724, 4.212595917861889, 7.036368166257657, 3.4345602177740875, 2.8221543966874045, 2.3131641834680337, 3.4011333733229145, 2.5819372724151193, 1.4785568831392302, 0.596639349762344, 0.0), # 131 (8.76139618041726, 6.528278419201865, 7.373967174438122, 7.72178242344644, 6.783565693541435, 3.2321500497988933, 2.8093647247143627, 2.449191470344614, 3.5125701231578845, 1.3990989432191914, 1.0921439695497275, 0.6484807530446118, 0.0, 9.079737582130376, 7.13328828349073, 5.460719847748638, 4.1972968296575734, 7.025140246315769, 3.4288680584824593, 2.8093647247143627, 2.3086786069992096, 3.3917828467707176, 2.573927474482147, 1.4747934348876244, 0.5934798562910787, 0.0), # 132 (8.724773593943663, 6.493216501615832, 7.354744939064153, 7.697292405310838, 6.764367587975791, 3.225757773533322, 2.7964404080084946, 2.445124300781722, 3.5068602639661752, 1.3939358165941083, 1.0883493740384103, 0.6463620552831327, 0.0, 9.053483271325586, 7.10998260811446, 5.44174687019205, 4.181807449782324, 7.0137205279323505, 3.4231740210944106, 2.7964404080084946, 2.3041126953809443, 3.3821837939878954, 2.5657641351036133, 1.4709489878128308, 0.590292409237803, 0.0), # 133 (8.687387388610095, 6.457791743574804, 7.33508486680317, 7.672302024884328, 6.7446523474443945, 3.2192369258220297, 2.7833587108338893, 2.44103643963706, 3.5010380719210428, 1.388698794814781, 1.0844994926462799, 0.6442044190298056, 0.0, 9.026553086525583, 7.0862486093278605, 5.422497463231399, 4.166096384444343, 7.0020761438420855, 3.417451015491884, 2.7833587108338893, 2.2994549470157355, 3.3723261737221972, 2.557434008294776, 1.4670169733606342, 0.5870719766886187, 0.0), # 134 (8.649201198639354, 6.421948794025897, 7.314954114884091, 7.646771544212684, 6.724399889442747, 3.212571404428512, 2.770096897454634, 2.4369085368263, 3.4950871133898262, 1.3833774132839443, 1.0805862424028239, 0.6420040134217377, 0.0, 8.99891673414202, 7.0620441476391145, 5.402931212014119, 4.150132239851832, 6.9901742267796525, 3.41167195155682, 2.770096897454634, 2.2946938603060802, 3.3621999447213735, 2.548923848070895, 1.4629908229768183, 0.583813526729627, 0.0), # 135 (8.610178658254235, 6.385632301916229, 7.294319840535841, 7.62066122534168, 6.703590131466344, 3.205745107116265, 2.7566322321348173, 2.4327212422651154, 3.4889909547398688, 1.3779612074043308, 1.0766015403375297, 0.6397570075960368, 0.0, 8.970543920586536, 7.037327083556404, 5.383007701687648, 4.133883622212991, 6.9779819094797375, 3.4058097391711617, 2.7566322321348173, 2.289817933654475, 3.351795065733172, 2.540220408447227, 1.4588639681071682, 0.58051202744693, 0.0), # 136 (8.570283401677534, 6.348786916192918, 7.273149200987342, 7.593931330317094, 6.682202991010689, 3.1987419316487826, 2.7429419791385277, 2.428455205869179, 3.4827331623385107, 1.3724397125786756, 1.0725373034798844, 0.63745957068981, 0.0, 8.941404352270776, 7.012055277587909, 5.362686517399421, 4.117319137736026, 6.965466324677021, 3.3998372882168506, 2.7429419791385277, 2.284815665463416, 3.3411014955053444, 2.5313104434390317, 1.4546298401974684, 0.577162446926629, 0.0), # 137 (8.529479063132047, 6.311357285803083, 7.251409353467515, 7.566542121184698, 6.660218385571278, 3.1915457757895624, 2.729003402729852, 2.4240910775541624, 3.4762973025530934, 1.3668024642097119, 1.0683854488593754, 0.6351078718401649, 0.0, 8.91146773560639, 6.986186590241813, 5.341927244296877, 4.100407392629135, 6.952594605106187, 3.3937275085758274, 2.729003402729852, 2.2796755541354017, 3.330109192785639, 2.5221807070615663, 1.450281870693503, 0.5737597532548258, 0.0), # 138 (8.487729276840568, 6.273288059693839, 7.229067455205284, 7.538453859990269, 6.63761623264361, 3.184140537302099, 2.7147937671728797, 2.4196095072357395, 3.469666941750957, 1.3610389977001744, 1.0641378935054902, 0.6326980801842089, 0.0, 8.880703777005019, 6.959678882026297, 5.32068946752745, 4.083116993100523, 6.939333883501914, 3.3874533101300353, 2.7147937671728797, 2.274386098072928, 3.318808116321805, 2.51281795333009, 1.4458134910410567, 0.5702989145176218, 0.0), # 139 (8.444997677025897, 6.234523886812306, 7.206090663429573, 7.509626808779583, 6.614376449723186, 3.176510113949888, 2.7002903367316984, 2.4149911448295818, 3.462825646299444, 1.3551388484527966, 1.0597865544477159, 0.6302263648590494, 0.0, 8.849082182878314, 6.932490013449542, 5.298932772238579, 4.0654165453583895, 6.925651292598888, 3.3809876027614147, 2.7002903367316984, 2.2689357956784915, 3.307188224861593, 2.5032089362598615, 1.4412181326859146, 0.5667748988011189, 0.0), # 140 (8.40124789791083, 6.195009416105602, 7.1824461353693, 7.480021229598415, 6.590478954305501, 3.1686384034964257, 2.6854703756703975, 2.4102166402513627, 3.455756982565893, 1.349091551870313, 1.0553233487155398, 0.6276888950017938, 0.0, 8.816572659637913, 6.904577845019731, 5.276616743577699, 4.047274655610939, 6.911513965131786, 3.3743032963519077, 2.6854703756703975, 2.26331314535459, 3.2952394771527507, 2.4933404098661387, 1.4364892270738603, 0.5631826741914184, 0.0), # 141 (8.356443573718156, 6.154689296520844, 7.158101028253392, 7.44959738449254, 6.565903663886058, 3.1605093037052074, 2.670311148253063, 2.4052666434167547, 3.448444516917647, 1.3428866433554572, 1.0507401933384497, 0.6250818397495496, 0.0, 8.783144913695466, 6.875900237245045, 5.253700966692247, 4.028659930066371, 6.896889033835294, 3.3673733007834565, 2.670311148253063, 2.2575066455037196, 3.282951831943029, 2.4831991281641805, 1.4316202056506786, 0.5595172087746222, 0.0), # 142 (8.310548338670674, 6.113508177005149, 7.133022499310772, 7.418315535507731, 6.540630495960352, 3.152106712339729, 2.6547899187437842, 2.4001218042414303, 3.4408718157220486, 1.3365136583109634, 1.0460290053459322, 0.6224013682394242, 0.0, 8.748768651462617, 6.846415050633665, 5.230145026729661, 4.009540974932889, 6.881743631444097, 3.360170525938002, 2.6547899187437842, 2.251504794528378, 3.270315247980176, 2.472771845169244, 1.4266044998621543, 0.5557734706368318, 0.0), # 143 (8.263525826991184, 6.071410706505636, 7.107177705770357, 7.386135944689768, 6.514639368023886, 3.1434145271634857, 2.6388839514066493, 2.3947627726410623, 3.4330224453464364, 1.3299621321395652, 1.0411817017674754, 0.619643649608525, 0.0, 8.713413579351014, 6.816080145693774, 5.205908508837376, 3.9898863964186946, 6.866044890692873, 3.3526678816974873, 2.6388839514066493, 2.245296090831061, 3.257319684011943, 2.4620453148965895, 1.4214355411540713, 0.5519464278641489, 0.0), # 144 (8.215339672902477, 6.0283415339694235, 7.080533804861075, 7.353018874084421, 6.487910197572155, 3.134416645939974, 2.6225705105057466, 2.3891701985313234, 3.424879972158151, 1.3232216002439972, 1.036190199632566, 0.6168048529939595, 0.0, 8.6770494037723, 6.784853382933553, 5.180950998162829, 3.969664800731991, 6.849759944316302, 3.344838277943853, 2.6225705105057466, 2.238869032814267, 3.2439550987860777, 2.451006291361474, 1.4161067609722149, 0.548031048542675, 0.0), # 145 (8.16595351062735, 5.984245308343629, 7.053057953811847, 7.318924585737469, 6.460422902100661, 3.1250969664326886, 2.605826860305165, 2.3833247318278863, 3.4164279625245353, 1.3162815980269928, 1.0310464159706916, 0.6138811475328351, 0.0, 8.639645831138118, 6.7526926228611845, 5.155232079853457, 3.948844794080978, 6.832855925049071, 3.3366546245590407, 2.605826860305165, 2.2322121188804918, 3.2302114510503306, 2.439641528579157, 1.4106115907623695, 0.5440223007585119, 0.0), # 146 (8.1153309743886, 5.93906667857537, 7.024717309851591, 7.283813341694685, 6.4321573991049, 3.1154393864051255, 2.5886302650689905, 2.3772070224464232, 3.40764998281293, 1.3091316608912866, 1.0257422678113395, 0.6108687023622593, 0.0, 8.601172567860118, 6.719555725984851, 5.1287113390566965, 3.9273949826738592, 6.81529996562586, 3.3280898314249923, 2.5886302650689905, 2.2253138474322327, 3.21607869955245, 2.4279377805648954, 1.4049434619703185, 0.5399151525977609, 0.0), # 147 (8.063435698409021, 5.892750293611764, 6.9954790302092364, 7.247645404001847, 6.403093606080374, 3.105427803620781, 2.5709579890613132, 2.3707977203026074, 3.398529599390676, 1.301761324239612, 1.0202696721839972, 0.6077636866193392, 0.0, 8.561599320349941, 6.68540055281273, 5.101348360919985, 3.905283972718835, 6.797059198781352, 3.3191168084236504, 2.5709579890613132, 2.2181627168719866, 3.201546803040187, 2.4158818013339496, 1.3990958060418472, 0.535704572146524, 0.0), # 148 (8.010231316911412, 5.845240802399927, 6.965310272113703, 7.210381034704727, 6.37321144052258, 3.0950461158431497, 2.5527872965462204, 2.3640774753121114, 3.3890503786251127, 1.2941601234747035, 1.0146205461181517, 0.6045622694411826, 0.0, 8.520895795019237, 6.650184963853008, 5.073102730590758, 3.88248037042411, 6.778100757250225, 3.3097084654369557, 2.5527872965462204, 2.21074722560225, 3.18660572026129, 2.403460344901576, 1.3930620544227408, 0.5313855274909026, 0.0), # 149 (7.955681464118564, 5.796482853886981, 6.934178192793912, 7.171980495849104, 6.342490819927017, 3.0842782208357287, 2.5340954517878003, 2.3570269373906068, 3.3791958868835836, 1.2863175939992944, 1.0087868066432906, 0.601260619964897, 0.0, 8.479031698279647, 6.6138668196138655, 5.043934033216452, 3.8589527819978824, 6.758391773767167, 3.2998377123468496, 2.5340954517878003, 2.2030558720255207, 3.1712454099635083, 2.390660165283035, 1.3868356385587826, 0.5269529867169983, 0.0), # 150 (7.899749774253275, 5.746421097020041, 6.902049949478785, 7.132404049480748, 6.310911661789184, 3.0731080163620113, 2.5148597190501416, 2.3496267564537683, 3.3689496905334293, 1.2782232712161197, 1.002760370788901, 0.5978549073275894, 0.0, 8.435976736542818, 6.576403980603482, 5.013801853944504, 3.8346698136483583, 6.737899381066859, 3.2894774590352753, 2.5148597190501416, 2.1950771545442938, 3.155455830894592, 2.377468016493583, 1.3804099898957571, 0.5224019179109128, 0.0), # 151 (7.842399881538343, 5.6950001807462245, 6.868892699397251, 7.091611957645439, 6.278453883604579, 3.0615194001854955, 2.4950573625973322, 2.3418575824172674, 3.3582953559419897, 1.2698666905279126, 0.9965331555844703, 0.5943413006663675, 0.0, 8.391700616220398, 6.537754307330042, 4.982665777922351, 3.809600071583737, 6.716590711883979, 3.2786006153841742, 2.4950573625973322, 2.1867995715610684, 3.1392269418022893, 2.36387065254848, 1.3737785398794504, 0.5177272891587478, 0.0), # 152 (7.78359542019656, 5.642164754012652, 6.834673599778224, 7.049564482388949, 6.245097402868703, 3.049496270069676, 2.4746656466934596, 2.333700065196776, 3.3472164494766075, 1.2612373873374074, 0.9900970780594861, 0.5907159691183387, 0.0, 8.346173043724027, 6.497875660301725, 4.95048539029743, 3.783712162012222, 6.694432898953215, 3.2671800912754865, 2.4746656466934596, 2.17821162147834, 3.1225487014343516, 2.3498548274629836, 1.3669347199556448, 0.5129240685466048, 0.0), # 153 (7.723300024450729, 5.587859465766439, 6.7993598078506325, 7.006221885757057, 6.210822137077053, 3.0370225237780484, 2.453661835602614, 2.325134854707968, 3.3356965375046217, 1.2523248970473384, 0.9834440552434354, 0.5869750818206104, 0.0, 8.299363725465357, 6.456725900026714, 4.917220276217177, 3.7569746911420143, 6.671393075009243, 3.2551887965911552, 2.453661835602614, 2.169301802698606, 3.1054110685385266, 2.335407295252353, 1.3598719615701265, 0.5079872241605854, 0.0), # 154 (7.6614773285236355, 5.532028964954703, 6.762918480843396, 6.961544429795533, 6.175608003725131, 3.0240820590741087, 2.4320231935888805, 2.316142600866515, 3.323719186393376, 1.2431187550604388, 0.9765660041658056, 0.5831148079102902, 0.0, 8.251242367856026, 6.414262887013191, 4.882830020829028, 3.7293562651813157, 6.647438372786752, 3.242599641213121, 2.4320231935888805, 2.160058613624363, 3.0878040018625654, 2.320514809931845, 1.3525836961686795, 0.5029117240867913, 0.0), # 155 (7.598090966638081, 5.474617900524564, 6.725316775985439, 6.915492376550157, 6.139434920308432, 3.0106587737213526, 2.40972698491635, 2.3067039535880913, 3.3112679625102084, 1.2336084967794434, 0.9694548418560842, 0.5791313165244852, 0.0, 8.201778677307685, 6.370444481769337, 4.84727420928042, 3.7008254903383295, 6.622535925020417, 3.2293855350233276, 2.40972698491635, 2.150470552658109, 3.069717460154216, 2.3051641255167192, 1.3450633551970879, 0.49769253641132405, 0.0), # 156 (7.533104573016862, 5.415570921423138, 6.686521850505682, 6.868025988066703, 6.102282804322456, 2.9967365654832747, 2.3867504738491094, 2.2967995627883675, 3.2983264322224626, 1.2237836576070855, 0.9621024853437583, 0.5750207768003032, 0.0, 8.150942360231976, 6.325228544803333, 4.810512426718791, 3.671350972821256, 6.596652864444925, 3.2155193879037145, 2.3867504738491094, 2.140526118202339, 3.051141402161228, 2.2893419960222348, 1.3373043701011365, 0.4923246292202853, 0.0), # 157 (7.464680946405239, 5.353748694041236, 6.644659961585297, 6.817327186238432, 6.062454070580665, 2.9814309445183143, 2.3625533604639286, 2.285748730145572, 3.2838873638663655, 1.213341479072786, 0.9542659587564906, 0.570633297016195, 0.0, 8.096485859415345, 6.276966267178143, 4.771329793782452, 3.640024437218358, 6.567774727732731, 3.200048222203801, 2.3625533604639286, 2.129593531798796, 3.0312270352903323, 2.2724423954128112, 1.3289319923170593, 0.48670442673102154, 0.0), # 158 (7.382286766978402, 5.282809876299521, 6.58894818200249, 6.7529828690913405, 6.010127539854418, 2.95965229467081, 2.334106381692858, 2.2696723053184926, 3.2621424204073812, 1.2005702485246865, 0.9445694892698324, 0.5651135436402591, 0.0, 8.025427646920194, 6.216248980042849, 4.722847446349162, 3.601710745574059, 6.5242848408147625, 3.17754122744589, 2.334106381692858, 2.114037353336293, 3.005063769927209, 2.250994289697114, 1.3177896364004982, 0.4802554432999565, 0.0), # 159 (7.284872094904309, 5.202172001162321, 6.51826746496324, 6.673933132806645, 5.94428008756453, 2.9308657560278157, 2.301121874191892, 2.248166328969728, 3.2324750757428835, 1.1853014129657236, 0.9328765847682567, 0.5583751624073207, 0.0, 7.93642060889358, 6.142126786480525, 4.664382923841283, 3.55590423889717, 6.464950151485767, 3.147432860557619, 2.301121874191892, 2.0934755400198686, 2.972140043782265, 2.2246443776022153, 1.3036534929926482, 0.47292472737839286, 0.0), # 160 (7.17322205458596, 5.11236079574043, 6.4333724765919245, 6.5809293778175455, 5.865595416188075, 2.895420057582683, 2.263840723003438, 2.2215002221290754, 3.1952765889996724, 1.1676645482927346, 0.9192902757666179, 0.5504806224089643, 0.0, 7.830374044819097, 6.055286846498606, 4.596451378833089, 3.5029936448782033, 6.390553177999345, 3.1101003109807053, 2.263840723003438, 2.0681571839876307, 2.9327977080940375, 2.1936431259391824, 1.2866744953183848, 0.46476007234003913, 0.0), # 161 (7.048121770426357, 5.013901987144635, 6.335017883012913, 6.474723004557244, 5.7747572282021356, 2.853663928328766, 2.2225038131699044, 2.1899434058263343, 3.150938219304545, 1.147789230402558, 0.9039135927797701, 0.5414923927367745, 0.0, 7.708197254180333, 5.956416320104519, 4.519567963898851, 3.4433676912076736, 6.30187643860909, 3.065920768156868, 2.2225038131699044, 2.03833137737769, 2.8873786141010678, 2.158241001519082, 1.2670035766025827, 0.4558092715586033, 0.0), # 162 (6.9103563668284975, 4.90732130248573, 6.223958350350585, 6.35606541345895, 5.672449226083792, 2.8059460972594175, 2.1773520297337003, 2.153765301091302, 3.0998512257843016, 1.1258050351920315, 0.8868495663225682, 0.5314729424823361, 0.0, 7.570799536460879, 5.846202367305696, 4.43424783161284, 3.3774151055760937, 6.199702451568603, 3.015271421527823, 2.1773520297337003, 2.0042472123281554, 2.836224613041896, 2.118688471152984, 1.2447916700701172, 0.4461201184077937, 0.0), # 163 (6.760710968195384, 4.793144468874502, 6.100948544729314, 6.225708004955863, 5.559355112310126, 2.752615293367992, 2.128626257737233, 2.113235328953779, 3.0424068675657407, 1.1018415385579923, 0.8682012269098661, 0.5204847407372336, 0.0, 7.419090191144328, 5.725332148109569, 4.34100613454933, 3.305524615673976, 6.0848137351314815, 2.9585294605352903, 2.128626257737233, 1.9661537809771372, 2.779677556155063, 2.075236001651955, 1.2201897089458629, 0.43574040626131844, 0.0), # 164 (6.599970698930017, 4.671897213421746, 5.966743132273474, 6.084402179481189, 5.436158589358215, 2.694020245647842, 2.076567382222911, 2.068622910443561, 2.9789964037756596, 1.0760283163972786, 0.8480716050565187, 0.5085902565930517, 0.0, 7.25397851771427, 5.594492822523568, 4.2403580252825925, 3.2280849491918353, 5.957992807551319, 2.8960720746209856, 2.076567382222911, 1.9243001754627442, 2.7180792946791077, 2.0281340598270634, 1.1933486264546949, 0.42471792849288603, 0.0), # 165 (6.428920683435397, 4.54410526323825, 5.82209677910744, 5.932899337468126, 5.3035433597051425, 2.630509683092322, 2.021416288233143, 2.020197466590449, 2.9100110935408576, 1.0484949446067282, 0.8265637312773799, 0.49585195914137514, 0.0, 7.0763738156542955, 5.454371550555126, 4.1328186563869, 3.145484833820184, 5.820022187081715, 2.8282764532266285, 2.021416288233143, 1.8789354879230868, 2.6517716798525712, 1.9776331124893758, 1.1644193558214881, 0.41310047847620457, 0.0), # 166 (6.248346046114523, 4.410294345434805, 5.667764151355587, 5.771950879349882, 5.1621931258279865, 2.562432334694784, 1.9634138608103373, 1.9682284184242402, 2.835842195988133, 1.0193709990831787, 0.8037806360873045, 0.48233231747378824, 0.0, 6.887185384447996, 5.30565549221167, 4.0189031804365225, 3.058112997249536, 5.671684391976266, 2.755519785793936, 1.9634138608103373, 1.8303088104962744, 2.5810965629139933, 1.9239836264499612, 1.1335528302711175, 0.4009358495849823, 0.0), # 167 (6.059031911370395, 4.270990187122201, 5.50449991514229, 5.60230820555966, 5.012791590203827, 2.490136929448583, 1.902800984996902, 1.9129851869747332, 2.7568809702442847, 0.9887860557234682, 0.7798253500011468, 0.468093800681876, 0.0, 6.6873225235789615, 5.149031807500635, 3.8991267500057343, 2.9663581671704042, 5.513761940488569, 2.6781792617646265, 1.902800984996902, 1.7786692353204163, 2.5063957951019136, 1.867436068519887, 1.100899983028458, 0.3882718351929274, 0.0), # 168 (5.861763403606015, 4.1267185154112305, 5.333058736591924, 5.4247227165306615, 4.856022455309747, 2.413972196347072, 1.8398185458352458, 1.8547371932717271, 2.6735186754361124, 0.9568696904244344, 0.7548009035337614, 0.45319887785722274, 0.0, 6.477694532530785, 4.985187656429449, 3.774004517668807, 2.8706090712733023, 5.347037350872225, 2.596632070580418, 1.8398185458352458, 1.724265854533623, 2.4280112276548733, 1.808240905510221, 1.066611747318385, 0.3751562286737483, 0.0), # 169 (5.657325647224384, 3.978005057412684, 5.154195281828863, 5.23994581269609, 4.692569423622822, 2.334286864383604, 1.7747074283677764, 1.7937538583450197, 2.5861465706904125, 0.9237514790829147, 0.7288103272000027, 0.4377100180914133, 0.0, 6.259210710787055, 4.814810199005545, 3.6440516360000137, 2.7712544372487433, 5.172293141380825, 2.5112554016830275, 1.7747074283677764, 1.6673477602740028, 2.346284711811411, 1.7466486042320304, 1.0308390563657726, 0.36163682340115316, 0.0), # 170 (5.4465037666285, 3.82537554023735, 4.968664216977482, 5.048728894489152, 4.523116197620137, 2.2514296625515327, 1.7077085176369027, 1.7303046032244096, 2.495155915133985, 0.8895609975957474, 0.7019566515147247, 0.4216896904760322, 0.0, 6.032780357831365, 4.638586595236354, 3.509783257573624, 2.6686829927872413, 4.99031183026797, 2.4224264445141737, 1.7077085176369027, 1.6081640446796661, 2.2615580988100685, 1.6829096314963843, 0.9937328433954964, 0.3477614127488501, 0.0), # 171 (5.230082886221365, 3.6693556909960217, 4.777220208162156, 4.851823362343048, 4.348346479778769, 2.1657493198442115, 1.6390626986850327, 1.664658848939696, 2.4009379678936282, 0.8544278218597702, 0.6743429069927823, 0.4052003641026643, 0.0, 5.799312773147303, 4.457204005129307, 3.3717145349639117, 2.56328346557931, 4.8018759357872565, 2.3305223885155746, 1.6390626986850327, 1.5469637998887225, 2.1741732398893845, 1.6172744541143496, 0.9554440416324312, 0.3335777900905475, 0.0), # 172 (5.00884813040598, 3.510471236799489, 4.58061792150726, 4.649980616690982, 4.168943972575801, 2.077594565254994, 1.5690108565545748, 1.5970860165206766, 2.303883988096141, 0.8184815277718206, 0.6460721241490297, 0.3883045080628938, 0.0, 5.5597172562184625, 4.271349588691831, 3.2303606207451483, 2.4554445833154612, 4.607767976192282, 2.235920423128947, 1.5690108565545748, 1.483996118039281, 2.0844719862879004, 1.5499935388969943, 0.916123584301452, 0.31913374879995354, 0.0), # 173 (4.783584623585344, 3.349247904758541, 4.3796120231371685, 4.443952057966156, 3.9855923784883105, 1.987314127777233, 1.4977938762879377, 1.5278555269971503, 2.204385234868321, 0.7818516912287369, 0.6172473334983214, 0.37106459144830567, 0.0, 5.314903106528433, 4.081710505931362, 3.0862366674916064, 2.34555507368621, 4.408770469736642, 2.1389977377960103, 1.4977938762879377, 1.4195100912694523, 1.9927961892441552, 1.4813173526553853, 0.8759224046274336, 0.3044770822507765, 0.0), # 174 (4.555077490162455, 3.18621142198397, 4.174957179176257, 4.2344890866017755, 3.7989753999933793, 1.8952567364042834, 1.425652642927529, 1.457236801398915, 2.102832967336968, 0.7446678881273562, 0.5879715655555117, 0.35354308335048457, 0.0, 5.0657796235608075, 3.8889739168553294, 2.939857827777558, 2.234003664382068, 4.205665934673936, 2.040131521958481, 1.425652642927529, 1.3537548117173452, 1.8994876999966896, 1.411496362200592, 0.8349914358352515, 0.28965558381672457, 0.0), # 175 (4.324111854540319, 3.0218875155865668, 3.9674080557488987, 4.0223431030310435, 3.609776739568087, 1.8017711201294973, 1.3528280415157574, 1.3854992607557703, 1.9996184446288805, 0.7070596943645169, 0.558347850835455, 0.33580245286101496, 0.0, 4.813256106799174, 3.693826981471164, 2.791739254177275, 2.1211790830935504, 3.999236889257761, 1.9396989650580787, 1.3528280415157574, 1.2869793715210696, 1.8048883697840434, 1.3407810343436815, 0.7934816111497798, 0.2747170468715061, 0.0), # 176 (4.0914728411219325, 2.856801912677122, 3.7577193189794698, 3.808265507687162, 3.4186800996895155, 1.7072060079462288, 1.2795609570950313, 1.3129123260975137, 1.8951329258708567, 0.6691566858370562, 0.528479219853006, 0.3179051690714816, 0.0, 4.5582418557271245, 3.496956859786297, 2.6423960992650297, 2.0074700575111684, 3.7902658517417134, 1.838077256536519, 1.2795609570950313, 1.2194328628187348, 1.7093400498447577, 1.269421835895721, 0.751543863795894, 0.25970926478882933, 0.0), # 177 (3.8579455743102966, 2.6914803403664256, 3.5466456349923448, 3.593007701003337, 3.226369182834742, 1.6119101288478317, 1.2060922747077587, 1.239745418453944, 1.7897676701896952, 0.6310884384418126, 0.49846870312301883, 0.299913701073469, 0.0, 4.301646169828252, 3.299050711808158, 2.4923435156150937, 1.8932653153254375, 3.5795353403793904, 1.7356435858355217, 1.2060922747077587, 1.1513643777484512, 1.613184591417371, 1.1976692336677792, 0.7093291269984691, 0.24468003094240237, 0.0), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_allighting_rate = ( (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 8991598675325360468762009371570610170 #index for seed sequence child child_seed_index = ( 1, # 0 30, # 1 )
""" PASSENGERS """ num_passengers = 19048 passenger_arriving = ((2, 7, 5, 2, 8, 1, 2, 1, 2, 1, 0, 1, 0, 11, 2, 3, 4, 3, 0, 0, 0, 1, 0, 0, 0, 0), (10, 5, 4, 4, 7, 4, 2, 0, 1, 3, 0, 0, 0, 6, 8, 4, 3, 2, 3, 5, 3, 1, 1, 0, 0, 0), (8, 6, 11, 4, 2, 2, 4, 3, 3, 0, 1, 1, 0, 4, 4, 5, 3, 6, 1, 1, 0, 4, 0, 2, 0, 0), (6, 4, 3, 4, 3, 1, 1, 0, 2, 6, 1, 0, 0, 7, 5, 2, 6, 2, 3, 2, 4, 0, 0, 1, 0, 0), (5, 10, 2, 8, 0, 2, 6, 1, 1, 2, 0, 0, 0, 3, 5, 4, 2, 6, 2, 0, 0, 4, 4, 0, 1, 0), (11, 7, 5, 1, 6, 1, 3, 1, 2, 2, 1, 0, 0, 11, 6, 3, 5, 4, 4, 3, 3, 2, 2, 1, 0, 0), (9, 9, 2, 7, 11, 0, 1, 2, 3, 0, 3, 0, 0, 4, 4, 9, 1, 13, 3, 2, 2, 3, 2, 1, 1, 0), (7, 5, 5, 6, 8, 2, 4, 3, 2, 0, 0, 0, 0, 7, 5, 7, 3, 6, 5, 1, 2, 4, 3, 1, 0, 0), (9, 6, 8, 10, 7, 1, 1, 1, 3, 2, 2, 3, 0, 12, 3, 10, 5, 6, 6, 4, 0, 5, 1, 0, 0, 0), (7, 9, 12, 9, 4, 1, 5, 5, 3, 3, 2, 2, 0, 6, 12, 7, 6, 5, 7, 4, 3, 2, 2, 0, 0, 0), (9, 9, 10, 14, 6, 5, 6, 2, 2, 2, 0, 2, 0, 8, 6, 10, 5, 4, 2, 4, 1, 1, 4, 1, 1, 0), (6, 10, 5, 4, 4, 1, 4, 6, 5, 1, 1, 2, 0, 10, 10, 7, 4, 7, 2, 4, 4, 5, 1, 1, 2, 0), (11, 7, 8, 8, 3, 0, 4, 4, 7, 0, 0, 1, 0, 6, 9, 4, 6, 6, 5, 4, 4, 6, 3, 1, 2, 0), (7, 9, 5, 13, 7, 7, 2, 4, 1, 1, 2, 1, 0, 11, 6, 8, 5, 8, 3, 3, 6, 3, 1, 3, 1, 0), (2, 10, 8, 13, 6, 3, 2, 3, 2, 3, 1, 0, 0, 12, 9, 3, 7, 5, 3, 1, 1, 5, 1, 1, 1, 0), (6, 16, 9, 8, 8, 4, 2, 1, 3, 0, 3, 2, 0, 5, 5, 8, 4, 5, 7, 5, 4, 4, 5, 3, 0, 0), (10, 12, 6, 9, 8, 4, 6, 4, 2, 1, 1, 2, 0, 8, 13, 6, 6, 5, 5, 4, 4, 4, 3, 0, 0, 0), (6, 9, 9, 7, 6, 3, 2, 0, 5, 0, 1, 0, 0, 10, 6, 11, 6, 9, 4, 4, 3, 7, 3, 2, 2, 0), (9, 4, 9, 8, 8, 4, 1, 2, 6, 2, 0, 1, 0, 9, 10, 7, 3, 5, 7, 2, 2, 5, 3, 1, 0, 0), (8, 13, 15, 10, 8, 3, 3, 2, 0, 1, 1, 2, 0, 7, 13, 9, 3, 8, 4, 5, 0, 3, 1, 4, 2, 0), (14, 9, 11, 8, 8, 2, 2, 3, 5, 0, 2, 2, 0, 12, 14, 4, 5, 7, 5, 7, 1, 4, 4, 1, 0, 0), (8, 7, 5, 14, 7, 3, 3, 5, 4, 2, 3, 0, 0, 14, 6, 6, 5, 9, 7, 7, 3, 3, 2, 0, 3, 0), (16, 11, 12, 15, 4, 6, 2, 3, 5, 0, 3, 1, 0, 11, 14, 5, 7, 6, 9, 6, 1, 2, 4, 0, 0, 0), (24, 8, 8, 10, 4, 5, 3, 4, 2, 3, 3, 1, 0, 16, 8, 6, 2, 2, 3, 4, 2, 4, 4, 3, 0, 0), (11, 10, 6, 7, 8, 4, 3, 5, 4, 2, 2, 0, 0, 15, 10, 5, 9, 7, 5, 5, 4, 4, 2, 0, 1, 0), (9, 8, 8, 5, 8, 3, 3, 5, 3, 1, 2, 1, 0, 7, 9, 12, 5, 2, 1, 3, 4, 3, 2, 1, 0, 0), (7, 12, 12, 11, 9, 1, 8, 5, 3, 3, 2, 0, 0, 7, 8, 7, 5, 8, 12, 2, 4, 2, 1, 2, 0, 0), (6, 7, 6, 15, 7, 4, 5, 5, 2, 1, 0, 0, 0, 10, 8, 10, 6, 9, 4, 3, 2, 5, 3, 1, 0, 0), (11, 11, 11, 7, 7, 4, 2, 9, 5, 1, 1, 0, 0, 10, 11, 4, 5, 15, 8, 2, 1, 1, 1, 1, 1, 0), (7, 10, 7, 11, 9, 5, 4, 4, 3, 3, 1, 0, 0, 9, 8, 9, 9, 5, 1, 3, 1, 3, 5, 1, 2, 0), (15, 7, 8, 9, 6, 3, 4, 9, 4, 5, 1, 1, 0, 4, 12, 6, 8, 5, 5, 3, 3, 3, 2, 2, 0, 0), (9, 12, 12, 7, 9, 5, 2, 4, 3, 3, 3, 0, 0, 10, 5, 8, 5, 6, 7, 7, 2, 4, 4, 1, 0, 0), (5, 11, 5, 11, 5, 2, 4, 2, 6, 0, 2, 1, 0, 13, 8, 10, 6, 8, 3, 7, 3, 4, 1, 2, 0, 0), (11, 11, 8, 8, 11, 4, 10, 6, 4, 1, 2, 0, 0, 8, 12, 4, 10, 9, 5, 4, 3, 4, 7, 2, 0, 0), (6, 10, 9, 10, 5, 2, 4, 3, 6, 3, 0, 2, 0, 10, 10, 6, 6, 11, 5, 6, 6, 6, 3, 0, 2, 0), (7, 7, 8, 6, 7, 2, 6, 2, 6, 2, 3, 0, 0, 9, 8, 7, 3, 5, 7, 7, 5, 4, 1, 3, 1, 0), (3, 7, 9, 10, 5, 7, 2, 5, 6, 4, 0, 1, 0, 10, 9, 6, 6, 9, 2, 2, 0, 4, 2, 2, 1, 0), (10, 7, 8, 20, 3, 4, 2, 7, 3, 1, 2, 1, 0, 10, 6, 5, 4, 9, 5, 2, 6, 5, 3, 2, 1, 0), (8, 10, 9, 6, 7, 4, 5, 3, 2, 1, 0, 0, 0, 11, 6, 4, 6, 6, 10, 3, 2, 3, 5, 0, 2, 0), (9, 6, 3, 9, 6, 4, 2, 6, 6, 2, 2, 0, 0, 10, 12, 12, 4, 4, 0, 2, 2, 8, 2, 4, 0, 0), (11, 8, 7, 8, 5, 1, 3, 5, 7, 1, 0, 0, 0, 9, 6, 11, 8, 11, 2, 4, 4, 1, 2, 0, 1, 0), (9, 5, 15, 12, 7, 2, 3, 1, 1, 0, 0, 0, 0, 9, 15, 5, 6, 8, 2, 3, 5, 2, 1, 0, 2, 0), (14, 9, 4, 8, 7, 3, 2, 5, 3, 0, 2, 0, 0, 9, 3, 1, 3, 10, 4, 4, 3, 3, 3, 4, 0, 0), (10, 3, 6, 14, 10, 3, 2, 5, 4, 1, 2, 1, 0, 14, 7, 9, 8, 7, 8, 3, 5, 5, 2, 2, 0, 0), (11, 13, 9, 5, 9, 3, 6, 7, 6, 0, 0, 0, 0, 12, 8, 4, 2, 9, 7, 5, 1, 1, 3, 0, 0, 0), (12, 12, 4, 11, 9, 1, 1, 6, 1, 0, 1, 0, 0, 3, 6, 3, 8, 10, 4, 3, 2, 4, 6, 0, 0, 0), (6, 12, 5, 6, 5, 6, 3, 4, 3, 2, 1, 1, 0, 8, 5, 4, 3, 8, 4, 3, 1, 3, 7, 1, 1, 0), (14, 7, 10, 8, 9, 2, 1, 3, 6, 1, 1, 1, 0, 8, 6, 5, 5, 7, 5, 4, 2, 8, 2, 0, 2, 0), (11, 5, 8, 10, 6, 1, 3, 4, 5, 3, 0, 0, 0, 8, 6, 9, 6, 14, 7, 11, 5, 1, 2, 2, 1, 0), (9, 3, 9, 9, 6, 2, 5, 7, 5, 2, 1, 0, 0, 7, 8, 5, 6, 10, 4, 5, 4, 5, 2, 3, 6, 0), (9, 9, 11, 7, 9, 4, 2, 6, 8, 2, 0, 0, 0, 10, 7, 9, 8, 5, 4, 6, 3, 5, 1, 0, 2, 0), (9, 8, 12, 12, 11, 5, 5, 6, 5, 4, 0, 0, 0, 16, 6, 4, 8, 10, 6, 2, 3, 4, 4, 3, 0, 0), (4, 6, 9, 9, 7, 2, 3, 4, 3, 4, 3, 1, 0, 9, 10, 6, 2, 4, 8, 2, 0, 2, 4, 1, 0, 0), (9, 11, 6, 5, 7, 3, 4, 0, 4, 0, 2, 1, 0, 9, 12, 8, 4, 11, 4, 5, 0, 0, 1, 2, 1, 0), (5, 13, 8, 8, 6, 3, 2, 2, 4, 5, 2, 2, 0, 6, 5, 5, 7, 7, 5, 5, 0, 4, 2, 2, 0, 0), (16, 7, 8, 10, 7, 5, 1, 6, 6, 4, 2, 2, 0, 7, 11, 4, 5, 7, 4, 2, 1, 5, 4, 2, 0, 0), (11, 11, 8, 6, 5, 6, 2, 2, 4, 1, 3, 1, 0, 10, 10, 4, 7, 9, 5, 4, 2, 4, 1, 1, 1, 0), (13, 14, 3, 12, 7, 6, 4, 3, 2, 0, 0, 1, 0, 6, 13, 2, 10, 8, 6, 5, 5, 2, 4, 3, 1, 0), (3, 6, 6, 8, 12, 5, 3, 3, 5, 1, 1, 1, 0, 10, 2, 9, 5, 11, 6, 1, 1, 3, 2, 1, 1, 0), (6, 10, 6, 10, 7, 3, 3, 2, 4, 1, 1, 1, 0, 17, 9, 11, 6, 8, 4, 3, 0, 0, 3, 1, 0, 0), (10, 9, 12, 13, 4, 3, 6, 5, 7, 0, 0, 1, 0, 14, 7, 6, 6, 8, 5, 8, 4, 3, 2, 1, 2, 0), (13, 10, 5, 6, 6, 2, 1, 4, 4, 4, 2, 2, 0, 8, 4, 11, 5, 11, 3, 2, 1, 4, 2, 4, 0, 0), (9, 12, 5, 8, 10, 5, 3, 4, 4, 4, 4, 0, 0, 9, 9, 9, 4, 7, 7, 5, 1, 2, 1, 2, 1, 0), (17, 9, 7, 11, 6, 2, 4, 2, 3, 2, 1, 1, 0, 7, 9, 11, 5, 10, 5, 2, 1, 5, 5, 1, 2, 0), (8, 7, 7, 9, 9, 7, 6, 8, 3, 3, 3, 1, 0, 8, 6, 4, 4, 13, 9, 3, 1, 3, 5, 1, 0, 0), (16, 8, 10, 5, 9, 6, 7, 4, 2, 3, 3, 0, 0, 10, 6, 7, 4, 8, 4, 6, 1, 2, 3, 1, 1, 0), (8, 16, 13, 8, 5, 2, 3, 4, 5, 1, 1, 0, 0, 9, 16, 3, 5, 8, 4, 2, 2, 3, 6, 0, 0, 0), (7, 9, 9, 6, 7, 3, 2, 3, 4, 1, 2, 2, 0, 13, 9, 7, 6, 7, 0, 3, 2, 3, 4, 2, 1, 0), (11, 6, 9, 5, 5, 2, 1, 4, 2, 1, 0, 1, 0, 12, 7, 8, 6, 7, 6, 0, 1, 0, 1, 1, 1, 0), (6, 7, 8, 7, 5, 3, 2, 1, 4, 1, 0, 0, 0, 13, 13, 6, 5, 6, 2, 4, 3, 0, 2, 1, 1, 0), (9, 9, 8, 3, 9, 5, 0, 0, 2, 2, 1, 1, 0, 10, 7, 5, 4, 5, 3, 4, 2, 3, 1, 1, 0, 0), (5, 11, 10, 8, 7, 1, 3, 3, 5, 1, 2, 1, 0, 9, 8, 6, 3, 7, 3, 3, 5, 3, 4, 3, 0, 0), (8, 7, 5, 9, 6, 5, 7, 7, 4, 1, 0, 0, 0, 9, 5, 8, 1, 6, 5, 2, 4, 3, 2, 1, 1, 0), (11, 3, 8, 6, 13, 7, 7, 3, 2, 1, 2, 1, 0, 17, 12, 9, 1, 11, 7, 4, 2, 3, 1, 2, 0, 0), (8, 9, 7, 6, 10, 9, 4, 2, 4, 3, 0, 0, 0, 11, 6, 4, 3, 5, 3, 5, 1, 3, 0, 2, 1, 0), (16, 12, 3, 16, 11, 3, 1, 0, 6, 0, 0, 1, 0, 11, 8, 8, 7, 6, 5, 4, 3, 5, 6, 3, 1, 0), (14, 4, 9, 4, 5, 2, 7, 4, 4, 1, 1, 0, 0, 8, 9, 2, 3, 10, 6, 5, 0, 4, 2, 2, 1, 0), (6, 4, 4, 14, 8, 5, 5, 2, 4, 3, 2, 0, 0, 12, 8, 8, 8, 14, 2, 5, 4, 6, 3, 0, 1, 0), (3, 9, 9, 6, 8, 1, 3, 6, 8, 3, 1, 0, 0, 7, 5, 7, 4, 8, 2, 1, 0, 3, 3, 3, 2, 0), (5, 6, 11, 13, 4, 4, 1, 4, 5, 4, 3, 0, 0, 12, 6, 5, 8, 9, 10, 5, 5, 6, 2, 2, 3, 0), (15, 10, 6, 9, 12, 6, 2, 6, 2, 1, 1, 3, 0, 13, 9, 5, 6, 8, 4, 3, 5, 4, 2, 1, 1, 0), (13, 5, 6, 10, 11, 5, 4, 8, 3, 1, 0, 0, 0, 9, 6, 5, 3, 3, 5, 4, 1, 6, 1, 1, 0, 0), (14, 6, 6, 6, 9, 4, 5, 4, 3, 1, 0, 1, 0, 11, 9, 5, 6, 7, 4, 4, 2, 2, 2, 1, 0, 0), (8, 10, 10, 8, 6, 1, 5, 4, 6, 2, 2, 0, 0, 12, 12, 10, 4, 9, 5, 7, 2, 2, 6, 2, 0, 0), (12, 4, 7, 7, 8, 4, 4, 4, 1, 2, 0, 1, 0, 7, 12, 7, 0, 5, 5, 1, 1, 7, 4, 0, 0, 0), (10, 10, 2, 8, 6, 1, 2, 3, 2, 1, 4, 2, 0, 13, 8, 7, 4, 11, 8, 4, 3, 3, 1, 0, 0, 0), (14, 10, 4, 5, 7, 0, 4, 4, 8, 2, 0, 2, 0, 4, 12, 5, 4, 4, 1, 1, 4, 2, 3, 4, 0, 0), (8, 12, 6, 14, 7, 3, 5, 0, 4, 1, 2, 1, 0, 7, 10, 13, 5, 7, 8, 4, 3, 3, 3, 0, 0, 0), (13, 12, 10, 10, 6, 5, 3, 0, 5, 4, 0, 2, 0, 10, 6, 9, 2, 6, 4, 3, 4, 6, 2, 3, 1, 0), (3, 7, 10, 11, 7, 5, 5, 1, 2, 1, 0, 0, 0, 12, 9, 8, 2, 9, 7, 2, 4, 3, 2, 1, 1, 0), (15, 9, 8, 6, 6, 4, 4, 4, 6, 1, 2, 3, 0, 10, 3, 4, 5, 9, 7, 5, 2, 3, 2, 4, 1, 0), (9, 11, 8, 15, 9, 2, 3, 3, 4, 7, 1, 2, 0, 9, 16, 7, 9, 7, 3, 3, 6, 3, 2, 2, 0, 0), (13, 4, 5, 7, 3, 3, 3, 3, 6, 1, 5, 0, 0, 11, 3, 9, 1, 1, 2, 3, 0, 5, 1, 1, 1, 0), (9, 6, 4, 11, 6, 3, 2, 2, 3, 2, 1, 1, 0, 3, 4, 8, 4, 9, 2, 1, 3, 3, 5, 0, 0, 0), (15, 6, 8, 10, 7, 4, 2, 3, 5, 1, 0, 1, 0, 5, 5, 4, 5, 11, 5, 3, 2, 2, 1, 1, 0, 0), (9, 5, 7, 12, 7, 1, 6, 2, 4, 1, 3, 1, 0, 12, 6, 11, 2, 3, 3, 3, 3, 4, 1, 1, 0, 0), (7, 6, 6, 7, 6, 3, 4, 3, 4, 0, 1, 0, 0, 6, 9, 8, 3, 8, 5, 2, 3, 6, 1, 2, 2, 0), (9, 7, 10, 8, 13, 4, 3, 3, 5, 0, 4, 1, 0, 8, 10, 6, 5, 5, 8, 4, 3, 6, 4, 0, 1, 0), (10, 7, 11, 7, 3, 3, 4, 4, 4, 5, 2, 0, 0, 11, 8, 11, 2, 8, 3, 6, 2, 3, 4, 1, 0, 0), (15, 3, 6, 12, 7, 4, 3, 2, 5, 2, 2, 0, 0, 7, 9, 5, 4, 11, 1, 1, 1, 7, 3, 3, 0, 0), (8, 6, 7, 7, 9, 5, 4, 3, 2, 3, 1, 0, 0, 12, 7, 6, 6, 6, 3, 1, 2, 2, 1, 0, 0, 0), (7, 15, 7, 9, 10, 1, 8, 1, 4, 0, 2, 0, 0, 8, 6, 6, 5, 6, 0, 0, 0, 4, 5, 3, 1, 0), (13, 8, 9, 8, 3, 2, 4, 4, 5, 2, 4, 1, 0, 11, 5, 5, 6, 4, 6, 2, 0, 4, 1, 1, 1, 0), (11, 5, 9, 7, 4, 9, 6, 2, 1, 3, 1, 0, 0, 10, 5, 7, 3, 7, 6, 3, 1, 3, 4, 2, 0, 0), (10, 8, 8, 4, 9, 2, 6, 7, 7, 6, 0, 2, 0, 10, 8, 7, 9, 2, 3, 2, 4, 7, 1, 0, 0, 0), (13, 3, 5, 6, 11, 3, 4, 1, 4, 0, 2, 0, 0, 11, 8, 4, 1, 8, 7, 7, 4, 5, 2, 1, 0, 0), (9, 7, 9, 11, 5, 1, 5, 4, 3, 0, 0, 1, 0, 10, 10, 6, 5, 11, 1, 4, 3, 5, 0, 0, 2, 0), (9, 5, 10, 6, 10, 6, 3, 5, 4, 2, 0, 0, 0, 6, 10, 7, 7, 6, 3, 7, 2, 6, 4, 0, 1, 0), (9, 7, 9, 8, 4, 4, 4, 3, 2, 2, 1, 1, 0, 12, 10, 5, 8, 6, 5, 2, 1, 3, 3, 3, 3, 0), (7, 10, 7, 5, 13, 2, 7, 1, 4, 2, 2, 1, 0, 6, 9, 7, 2, 8, 2, 5, 2, 4, 5, 2, 1, 0), (17, 5, 8, 8, 6, 2, 1, 2, 3, 1, 2, 2, 0, 7, 11, 2, 3, 7, 4, 5, 3, 5, 0, 3, 1, 0), (9, 8, 11, 10, 6, 7, 1, 2, 4, 2, 0, 1, 0, 10, 7, 8, 4, 4, 3, 1, 3, 3, 5, 2, 1, 0), (10, 3, 9, 8, 7, 3, 0, 2, 4, 2, 0, 3, 0, 8, 8, 7, 5, 7, 6, 3, 0, 3, 3, 2, 0, 0), (6, 9, 6, 7, 9, 3, 3, 2, 9, 0, 6, 0, 0, 9, 10, 6, 7, 9, 1, 7, 2, 2, 2, 1, 0, 0), (9, 4, 5, 7, 6, 1, 0, 4, 2, 1, 0, 0, 0, 5, 6, 3, 7, 9, 3, 6, 0, 7, 2, 4, 2, 0), (10, 8, 6, 4, 2, 3, 5, 2, 3, 2, 2, 1, 0, 12, 10, 5, 2, 6, 1, 5, 3, 0, 2, 1, 1, 0), (14, 4, 8, 3, 11, 7, 3, 3, 10, 1, 0, 0, 0, 7, 8, 8, 4, 7, 1, 2, 0, 2, 3, 1, 0, 0), (13, 5, 8, 2, 5, 7, 1, 4, 6, 1, 1, 2, 0, 12, 14, 3, 2, 10, 5, 1, 2, 7, 6, 3, 1, 0), (7, 6, 4, 14, 4, 1, 6, 3, 2, 1, 0, 2, 0, 11, 6, 6, 5, 9, 4, 3, 3, 4, 1, 0, 0, 0), (11, 5, 10, 8, 9, 2, 2, 2, 2, 0, 2, 0, 0, 7, 6, 3, 5, 6, 4, 2, 2, 1, 3, 0, 0, 0), (9, 5, 11, 8, 7, 1, 6, 8, 0, 0, 1, 0, 0, 12, 7, 6, 3, 5, 4, 2, 1, 6, 8, 3, 1, 0), (5, 10, 8, 7, 8, 6, 5, 3, 4, 0, 0, 0, 0, 18, 7, 5, 3, 4, 4, 5, 4, 1, 3, 1, 0, 0), (6, 4, 9, 5, 12, 5, 2, 2, 6, 1, 0, 0, 0, 17, 8, 7, 4, 8, 2, 3, 0, 2, 4, 1, 1, 0), (3, 11, 7, 7, 7, 7, 5, 1, 4, 2, 1, 1, 0, 13, 4, 11, 4, 10, 2, 3, 1, 3, 6, 2, 1, 0), (17, 6, 8, 13, 6, 5, 3, 3, 1, 0, 1, 0, 0, 5, 12, 7, 3, 12, 3, 4, 6, 5, 5, 1, 2, 0), (9, 6, 7, 11, 3, 3, 2, 2, 4, 1, 1, 3, 0, 5, 8, 9, 2, 11, 4, 5, 2, 3, 1, 1, 0, 0), (10, 4, 6, 8, 3, 3, 6, 3, 0, 3, 0, 1, 0, 10, 11, 2, 5, 11, 5, 5, 2, 4, 3, 1, 0, 0), (9, 9, 13, 7, 3, 1, 1, 3, 3, 1, 1, 3, 0, 10, 5, 9, 5, 12, 2, 0, 1, 3, 0, 1, 0, 0), (14, 7, 9, 13, 7, 3, 2, 5, 7, 1, 2, 2, 0, 11, 4, 6, 4, 4, 6, 6, 2, 1, 1, 0, 0, 0), (9, 5, 11, 9, 6, 3, 3, 1, 4, 0, 0, 0, 0, 9, 3, 7, 3, 2, 2, 3, 1, 3, 4, 3, 0, 0), (8, 2, 6, 8, 6, 1, 5, 1, 4, 0, 1, 1, 0, 7, 7, 3, 6, 10, 3, 4, 5, 2, 1, 1, 1, 0), (10, 8, 10, 10, 6, 6, 5, 4, 0, 3, 3, 0, 0, 8, 11, 3, 6, 4, 8, 4, 2, 3, 0, 0, 0, 0), (8, 7, 5, 13, 7, 4, 2, 7, 1, 0, 1, 0, 0, 15, 8, 10, 4, 11, 6, 0, 1, 2, 2, 1, 1, 0), (16, 7, 4, 13, 4, 2, 0, 1, 2, 1, 1, 0, 0, 10, 4, 4, 6, 6, 5, 4, 2, 4, 2, 2, 1, 0), (9, 5, 4, 7, 14, 7, 4, 5, 2, 3, 2, 2, 0, 6, 10, 7, 4, 7, 2, 3, 6, 4, 1, 0, 1, 0), (11, 10, 9, 6, 12, 4, 3, 3, 3, 0, 1, 1, 0, 11, 6, 2, 4, 9, 7, 3, 0, 4, 3, 1, 0, 0), (6, 4, 9, 9, 7, 4, 4, 3, 3, 0, 2, 1, 0, 14, 10, 5, 3, 10, 3, 4, 2, 4, 1, 3, 1, 0), (12, 11, 4, 8, 2, 3, 5, 2, 7, 0, 1, 0, 0, 10, 7, 7, 3, 7, 5, 6, 2, 5, 2, 1, 1, 0), (7, 6, 5, 9, 5, 2, 2, 3, 5, 2, 1, 0, 0, 7, 7, 6, 4, 4, 2, 3, 2, 2, 5, 1, 1, 0), (7, 4, 11, 10, 9, 3, 1, 4, 1, 2, 0, 1, 0, 7, 5, 9, 4, 5, 4, 7, 6, 2, 4, 2, 2, 0), (11, 4, 7, 11, 10, 2, 3, 2, 4, 2, 2, 0, 0, 7, 11, 4, 2, 4, 3, 1, 1, 2, 2, 2, 0, 0), (6, 1, 5, 11, 7, 1, 2, 1, 2, 4, 0, 0, 0, 3, 5, 4, 3, 6, 5, 2, 2, 1, 2, 1, 0, 0), (4, 3, 4, 3, 8, 2, 2, 4, 3, 0, 1, 1, 0, 10, 11, 4, 9, 7, 1, 1, 3, 2, 2, 2, 2, 0), (7, 7, 7, 8, 7, 4, 6, 0, 3, 0, 1, 1, 0, 13, 12, 2, 5, 7, 2, 2, 0, 6, 2, 0, 0, 0), (8, 3, 8, 7, 9, 6, 2, 0, 3, 1, 2, 0, 0, 10, 10, 6, 4, 4, 4, 2, 4, 0, 3, 1, 1, 0), (15, 6, 3, 8, 7, 4, 2, 4, 6, 3, 2, 0, 0, 8, 5, 7, 1, 11, 2, 3, 1, 3, 3, 2, 0, 0), (7, 4, 10, 4, 10, 1, 1, 0, 6, 1, 1, 1, 0, 11, 7, 3, 4, 6, 3, 2, 3, 5, 2, 2, 0, 0), (13, 8, 11, 3, 8, 7, 2, 1, 2, 0, 2, 0, 0, 12, 8, 4, 4, 6, 1, 3, 1, 3, 1, 3, 1, 0), (7, 5, 10, 3, 7, 2, 3, 6, 2, 1, 1, 1, 0, 9, 8, 5, 4, 7, 3, 1, 0, 5, 2, 2, 0, 0), (10, 4, 7, 8, 4, 3, 3, 3, 2, 1, 0, 0, 0, 8, 7, 9, 0, 7, 3, 0, 1, 1, 4, 1, 0, 0), (11, 4, 2, 6, 6, 5, 4, 1, 3, 1, 0, 0, 0, 11, 3, 5, 5, 7, 4, 2, 2, 4, 1, 3, 0, 0), (11, 12, 7, 9, 5, 4, 1, 6, 4, 0, 1, 1, 0, 6, 7, 6, 4, 8, 4, 3, 4, 3, 4, 1, 0, 0), (10, 4, 7, 6, 10, 4, 2, 2, 6, 1, 0, 0, 0, 3, 8, 9, 3, 3, 2, 4, 4, 3, 3, 3, 1, 0), (11, 7, 8, 5, 8, 4, 4, 2, 4, 1, 0, 0, 0, 4, 5, 5, 5, 8, 4, 2, 2, 4, 3, 1, 1, 0), (12, 5, 7, 7, 5, 5, 0, 2, 2, 2, 0, 0, 0, 7, 8, 4, 4, 6, 2, 1, 5, 5, 2, 1, 3, 0), (8, 3, 5, 9, 4, 2, 1, 5, 3, 0, 1, 0, 0, 12, 7, 3, 5, 9, 4, 2, 1, 2, 4, 1, 1, 0), (8, 6, 8, 8, 5, 5, 7, 1, 5, 0, 1, 0, 0, 11, 10, 2, 2, 7, 6, 3, 2, 6, 2, 2, 0, 0), (6, 7, 5, 6, 6, 2, 2, 1, 3, 1, 0, 0, 0, 7, 7, 2, 4, 8, 2, 3, 3, 4, 3, 3, 0, 0), (8, 5, 7, 3, 7, 5, 3, 5, 3, 0, 0, 0, 0, 7, 2, 6, 8, 4, 2, 6, 1, 2, 2, 1, 0, 0), (13, 4, 9, 4, 7, 2, 4, 0, 2, 0, 2, 1, 0, 3, 9, 5, 3, 7, 4, 4, 1, 2, 4, 2, 1, 0), (8, 4, 2, 6, 5, 6, 1, 5, 2, 1, 2, 0, 0, 6, 7, 4, 3, 8, 2, 4, 1, 3, 3, 2, 0, 0), (8, 2, 7, 13, 3, 6, 5, 3, 2, 1, 0, 0, 0, 8, 3, 5, 3, 7, 3, 2, 1, 1, 3, 0, 0, 0), (6, 4, 10, 9, 7, 5, 2, 1, 2, 0, 0, 0, 0, 7, 9, 4, 3, 6, 2, 2, 2, 2, 3, 0, 0, 0), (2, 8, 2, 3, 12, 3, 5, 5, 0, 1, 1, 0, 0, 14, 3, 4, 2, 9, 4, 6, 2, 1, 1, 2, 0, 0), (8, 3, 8, 8, 6, 0, 2, 1, 2, 0, 2, 1, 0, 6, 6, 8, 1, 2, 3, 3, 3, 3, 0, 1, 0, 0), (6, 9, 5, 4, 4, 3, 0, 1, 3, 1, 1, 1, 0, 6, 3, 4, 3, 7, 2, 1, 3, 4, 0, 1, 1, 0), (6, 2, 5, 7, 8, 2, 0, 0, 3, 1, 3, 2, 0, 10, 8, 7, 2, 2, 8, 2, 1, 3, 3, 0, 0, 0), (3, 3, 5, 5, 9, 3, 4, 4, 4, 2, 0, 1, 0, 6, 5, 4, 4, 5, 0, 1, 0, 4, 0, 1, 0, 0), (7, 6, 8, 8, 8, 3, 2, 4, 2, 1, 1, 1, 0, 3, 2, 2, 4, 6, 3, 7, 3, 4, 1, 1, 0, 0), (12, 3, 7, 7, 3, 2, 0, 4, 2, 2, 2, 0, 0, 5, 5, 2, 5, 6, 0, 3, 2, 3, 1, 1, 0, 0), (9, 2, 4, 8, 4, 2, 2, 1, 3, 1, 0, 0, 0, 6, 4, 9, 8, 4, 0, 1, 2, 2, 0, 1, 1, 0), (9, 7, 4, 5, 7, 4, 0, 1, 6, 2, 0, 0, 0, 4, 3, 7, 2, 5, 2, 2, 1, 5, 1, 0, 0, 0), (3, 1, 7, 9, 4, 1, 0, 1, 4, 1, 1, 1, 0, 8, 5, 2, 0, 4, 1, 5, 2, 3, 3, 1, 0, 0), (5, 1, 7, 7, 2, 4, 1, 2, 3, 0, 0, 2, 0, 11, 5, 9, 2, 6, 3, 0, 1, 5, 4, 2, 0, 0), (1, 4, 3, 3, 3, 2, 1, 2, 0, 1, 0, 0, 0, 7, 4, 3, 3, 1, 1, 0, 0, 3, 1, 0, 0, 0), (6, 2, 4, 6, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 6, 5, 0, 4, 2, 2, 0, 1, 0, 0, 0, 0), (8, 5, 1, 6, 5, 0, 1, 1, 0, 0, 1, 1, 0, 6, 5, 4, 1, 5, 1, 1, 2, 2, 2, 1, 0, 0), (1, 2, 2, 8, 1, 1, 2, 1, 1, 1, 0, 0, 0, 6, 4, 1, 2, 1, 1, 1, 3, 0, 0, 0, 0, 0), (6, 7, 5, 3, 1, 1, 0, 2, 2, 1, 0, 0, 0, 6, 4, 5, 3, 6, 4, 1, 0, 1, 2, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) station_arriving_intensity = ((5.020865578371768, 5.525288559693166, 5.211283229612507, 6.214667773863432, 5.554685607609612, 3.1386549320373387, 4.146035615373915, 4.653176172979423, 6.090099062168007, 3.9580150155223697, 4.205265163885603, 4.897915078306173, 5.083880212578363), (5.354327152019974, 5.890060694144759, 5.555346591330152, 6.625144253276616, 5.922490337474237, 3.3459835840425556, 4.419468941263694, 4.959513722905708, 6.492245326332909, 4.21898069227715, 4.483096135956131, 5.221216660814354, 5.419791647439855), (5.686723008979731, 6.253385170890979, 5.8980422855474135, 7.033987704664794, 6.288962973749744, 3.5524851145124448, 4.691818507960704, 5.264625247904419, 6.892786806877549, 4.478913775020546, 4.759823148776313, 5.543232652053055, 5.75436482820969), (6.016757793146562, 6.613820501936447, 6.238010869319854, 7.439576407532074, 6.652661676001902, 3.757340622585113, 4.962003641647955, 5.567301157494507, 7.290135160921093, 4.736782698426181, 5.0343484118273825, 5.862685684930461, 6.086272806254225), (6.343136148415981, 6.9699251992857745, 6.573892899703036, 7.840288641382569, 7.012144603796492, 3.9597312073986677, 5.2289436685084585, 5.866331861194915, 7.682702045582707, 4.991555897167679, 5.305574134590575, 6.178298392354764, 6.414188632939817), (6.66456271868351, 7.320257774943588, 6.9043289337525175, 8.234502685720393, 7.36596991669928, 4.158837968091214, 5.491557914725224, 6.160507768524592, 8.068899117981559, 5.242201805918663, 5.572402526547132, 6.488793407234148, 6.736785359632827), (6.979742147844666, 7.663376740914501, 7.227959528523866, 8.620596820049652, 7.712695774276043, 4.353842003800864, 5.7487657064812625, 6.4486192890024885, 8.447138035236815, 5.487688859352758, 5.833735797178282, 6.792893362476808, 7.052736037699606), (7.2873790797949685, 7.997840609203132, 7.543425241072635, 8.996949323874462, 8.050880336092554, 4.543924413665721, 5.999486369959585, 6.729456832147552, 8.815830454467644, 5.726985492143586, 6.088476155965268, 7.089320890990929, 7.360713718506519), (7.586178158429934, 8.322207891814099, 7.849366628454396, 9.361938476698928, 8.379081761714586, 4.7282662968238895, 6.2426392313431975, 7.001810807478725, 9.173388032793206, 5.959060138964774, 6.335525812389321, 7.376798625684702, 7.659391453419917), (7.874844027645085, 8.635037100752022, 8.144424247724704, 9.713942558027169, 8.69585821070791, 4.906048752413484, 6.47714361681512, 7.264471624514963, 9.518222427332674, 6.182881234489941, 6.573786975931678, 7.654049199466313, 7.947442293806162), (8.152081331335932, 8.934886748021516, 8.427238655939124, 10.051339847363288, 8.9997678426383, 5.076452879572607, 6.701918852558355, 7.516229692775211, 9.848745295205214, 6.397417213392714, 6.802161856073574, 7.919795245243952, 8.22353929103161), (8.416594713398005, 9.220315345627206, 8.696450410153215, 10.372508624211397, 9.289368817071534, 5.238659777439368, 6.915884264755916, 7.7558754217784145, 10.163368293529993, 6.601636510346719, 7.019552662296249, 8.17275939592581, 8.486355496462611), (8.667088817726812, 9.489881405573698, 8.95070006742254, 10.675827168075612, 9.563219293573377, 5.391850545151869, 7.1179591795908115, 7.982199221043521, 10.460503079426179, 6.794507560025572, 7.224861604080934, 8.411664284420068, 8.734563961465534), (8.902268288217876, 9.74214343986562, 9.188628184802662, 10.959673758460044, 9.819877431709601, 5.5352062818482235, 7.307062923246056, 8.193991500089481, 10.738561310012932, 6.974998797102904, 7.416990890908869, 8.63523254363492, 8.966837737406735), (9.120837768766716, 9.975659960507588, 9.408875319349146, 11.222426674868792, 10.05790139104599, 5.667908086666534, 7.482114821904661, 8.390042668435246, 10.995954642409421, 7.142078656252334, 7.594842732261284, 8.84218680647856, 9.181849875652563), (9.321501903268855, 10.188989479504217, 9.610082028117542, 11.462464196805985, 10.275849331148308, 5.789137058744912, 7.642034201749626, 8.569143135599756, 11.23109473373482, 7.29471557214749, 7.757319337619419, 9.031249705859171, 9.37827342756938), (9.5029653356198, 10.380690508860132, 9.790888868163425, 11.678164603775716, 10.472279411582333, 5.898074297221459, 7.785740388963976, 8.73008331110196, 11.442393241108286, 7.431877979461996, 7.9033229164645125, 9.20114387468494, 9.554781444523545), (9.663932709715075, 10.549321560579946, 9.949936396542352, 11.867906175282112, 10.645749791913838, 5.993900901234285, 7.9121527097307105, 8.871653604460818, 11.628261821648984, 7.552534312869467, 8.031755678277799, 9.350591945864055, 9.710046977881415), (9.803108669450204, 10.693441146668274, 10.08586517030988, 12.030067190829278, 10.794818631708589, 6.075797969921503, 8.020190490232851, 8.99264442519526, 11.787112132476096, 7.6556530070435365, 8.141519832540508, 9.478316552304715, 9.842743079009345), (9.919197858720699, 10.811607779129744, 10.197315746521578, 12.163025929921314, 10.918044090532366, 6.142946602421208, 8.108773056653394, 9.091846182824245, 11.917355830708779, 7.740202496657828, 8.231517588733878, 9.583040326915096, 9.951542799273696), (10.010904921422082, 10.902379969968962, 10.282928682233003, 12.265160672062354, 11.013984327950944, 6.194527897871518, 8.176819735175362, 9.168049286866717, 12.017404573466198, 7.805151216385958, 8.30065115633915, 9.66348590260339, 10.035119190040824), (10.076934501449866, 10.964316231190558, 10.341344534499719, 12.334849696756486, 11.081197503530088, 6.229722955410535, 8.223249851981759, 9.220044146841623, 12.085670017867521, 7.849467600901555, 8.34782274483756, 9.718375912277793, 10.092145302677078), (10.115991242699579, 10.995975074799144, 10.371203860377285, 12.370471283507836, 11.118241776835575, 6.247712874176367, 8.2469827332556, 9.246621172267915, 12.120563821031915, 7.872120084878242, 8.37193456371034, 9.74643298884649, 10.121294188548827), (10.13039336334264, 10.999723593964335, 10.374923182441702, 12.374930812757203, 11.127732056032597, 6.25, 8.249804002259339, 9.249493827160494, 12.124926234567901, 7.874792272519433, 8.37495803716174, 9.749897576588934, 10.125), (10.141012413034153, 10.997537037037038, 10.374314814814815, 12.374381944444446, 11.133107613614852, 6.25, 8.248253812636166, 9.2455, 12.124341666666666, 7.87315061728395, 8.37462457912458, 9.749086419753086, 10.125), (10.15140723021158, 10.993227023319616, 10.373113854595337, 12.373296039094651, 11.138364945594503, 6.25, 8.24519890260631, 9.237654320987655, 12.123186728395062, 7.869918838591678, 8.373963399426362, 9.747485139460448, 10.125), (10.161577019048034, 10.986859396433472, 10.371336762688616, 12.37168544238683, 11.143503868421105, 6.25, 8.240686718308721, 9.226104938271606, 12.1214762345679, 7.865150708733425, 8.372980483850855, 9.745115683584821, 10.125), (10.171520983716636, 10.978499999999999, 10.369, 12.369562499999999, 11.148524198544214, 6.25, 8.234764705882354, 9.211, 12.119225, 7.858899999999999, 8.371681818181818, 9.742, 10.125), (10.181238328390501, 10.968214677640603, 10.366120027434842, 12.366939557613168, 11.153425752413401, 6.25, 8.22748031146615, 9.192487654320988, 12.116447839506172, 7.851220484682213, 8.370073388203018, 9.73816003657979, 10.125), (10.19072825724275, 10.95606927297668, 10.362713305898492, 12.36382896090535, 11.15820834647822, 6.25, 8.218880981199066, 9.170716049382715, 12.113159567901235, 7.842165935070874, 8.368161179698216, 9.733617741197987, 10.125), (10.199989974446497, 10.94212962962963, 10.358796296296296, 12.360243055555555, 11.162871797188236, 6.25, 8.209014161220043, 9.145833333333332, 12.109375, 7.83179012345679, 8.365951178451178, 9.728395061728394, 10.125), (10.209022684174858, 10.926461591220852, 10.354385459533608, 12.356194187242798, 11.167415920993008, 6.25, 8.19792729766804, 9.117987654320988, 12.105108950617284, 7.820146822130773, 8.363449370245666, 9.722513946044812, 10.125), (10.217825590600954, 10.909131001371742, 10.349497256515773, 12.35169470164609, 11.171840534342095, 6.25, 8.185667836681999, 9.087327160493828, 12.100376234567902, 7.807289803383631, 8.360661740865444, 9.715996342021034, 10.125), (10.226397897897897, 10.890203703703703, 10.344148148148149, 12.346756944444444, 11.176145453685063, 6.25, 8.172283224400871, 9.054, 12.095191666666667, 7.793272839506173, 8.357594276094275, 9.708864197530863, 10.125), (10.23473881023881, 10.869745541838133, 10.338354595336076, 12.341393261316872, 11.180330495471466, 6.25, 8.15782090696361, 9.018154320987653, 12.089570061728397, 7.778149702789209, 8.354252961715924, 9.701139460448102, 10.125), (10.242847531796807, 10.847822359396433, 10.332133058984912, 12.335615997942385, 11.18439547615087, 6.25, 8.142328330509159, 8.979938271604938, 12.083526234567902, 7.761974165523548, 8.350643783514153, 9.692844078646548, 10.125), (10.250723266745005, 10.824499999999999, 10.3255, 12.3294375, 11.188340212172836, 6.25, 8.12585294117647, 8.9395, 12.077074999999999, 7.7448, 8.346772727272727, 9.684000000000001, 10.125), (10.258365219256524, 10.799844307270233, 10.318471879286694, 12.322870113168724, 11.192164519986921, 6.25, 8.108442185104494, 8.896987654320988, 12.070231172839506, 7.726680978509374, 8.34264577877541, 9.674629172382259, 10.125), (10.265772593504476, 10.773921124828533, 10.311065157750342, 12.315926183127573, 11.19586821604269, 6.25, 8.09014350843218, 8.85254938271605, 12.063009567901235, 7.707670873342479, 8.33826892380596, 9.664753543667125, 10.125), (10.272944593661986, 10.746796296296296, 10.303296296296297, 12.308618055555556, 11.199451116789703, 6.25, 8.071004357298476, 8.806333333333333, 12.055425000000001, 7.687823456790124, 8.333648148148148, 9.654395061728394, 10.125), (10.279880423902163, 10.718535665294924, 10.295181755829903, 12.300958076131687, 11.202913038677519, 6.25, 8.05107217784233, 8.758487654320989, 12.047492283950618, 7.667192501143119, 8.328789437585733, 9.643575674439873, 10.125), (10.286579288398128, 10.689205075445816, 10.286737997256516, 12.29295859053498, 11.206253798155702, 6.25, 8.030394416202695, 8.709160493827161, 12.0392262345679, 7.645831778692272, 8.323698777902482, 9.632317329675354, 10.125), (10.293040391323, 10.658870370370371, 10.277981481481483, 12.284631944444445, 11.209473211673808, 6.25, 8.009018518518518, 8.6585, 12.030641666666668, 7.623795061728395, 8.318382154882155, 9.620641975308642, 10.125), (10.299262936849892, 10.627597393689987, 10.268928669410151, 12.275990483539095, 11.212571095681403, 6.25, 7.98699193092875, 8.606654320987655, 12.021753395061728, 7.601136122542296, 8.312845554308517, 9.608571559213535, 10.125), (10.305246129151927, 10.595451989026063, 10.259596021947875, 12.267046553497943, 11.215547266628045, 6.25, 7.964362099572339, 8.553771604938273, 12.0125762345679, 7.577908733424783, 8.307094961965332, 9.596128029263832, 10.125), (10.310989172402216, 10.5625, 10.25, 12.2578125, 11.218401540963296, 6.25, 7.9411764705882355, 8.5, 12.003124999999999, 7.554166666666667, 8.301136363636363, 9.583333333333332, 10.125), (10.31649127077388, 10.528807270233196, 10.240157064471878, 12.24830066872428, 11.221133735136716, 6.25, 7.917482490115388, 8.445487654320988, 11.993414506172838, 7.529963694558756, 8.294975745105374, 9.57020941929584, 10.125), (10.321751628440035, 10.49443964334705, 10.230083676268862, 12.238523405349794, 11.223743665597867, 6.25, 7.893327604292747, 8.390382716049382, 11.983459567901235, 7.505353589391861, 8.288619092156129, 9.55677823502515, 10.125), (10.326769449573796, 10.459462962962963, 10.219796296296296, 12.228493055555557, 11.22623114879631, 6.25, 7.868759259259259, 8.334833333333334, 11.973275000000001, 7.4803901234567896, 8.28207239057239, 9.543061728395061, 10.125), (10.331543938348286, 10.42394307270233, 10.209311385459534, 12.218221965020577, 11.228596001181607, 6.25, 7.8438249011538765, 8.278987654320987, 11.96287561728395, 7.455127069044353, 8.275341626137923, 9.529081847279379, 10.125), (10.336074298936616, 10.387945816186559, 10.198645404663925, 12.207722479423868, 11.230838039203315, 6.25, 7.81857197611555, 8.222993827160494, 11.9522762345679, 7.429618198445358, 8.268432784636488, 9.514860539551899, 10.125), (10.34035973551191, 10.351537037037037, 10.187814814814814, 12.197006944444444, 11.232957079310998, 6.25, 7.793047930283224, 8.167, 11.941491666666668, 7.403917283950617, 8.261351851851853, 9.50041975308642, 10.125), (10.344399452247279, 10.314782578875173, 10.176836076817558, 12.186087705761317, 11.234952937954214, 6.25, 7.767300209795852, 8.111154320987653, 11.930536728395062, 7.3780780978509375, 8.254104813567777, 9.485781435756746, 10.125), (10.348192653315843, 10.27774828532236, 10.165725651577505, 12.174977109053497, 11.23682543158253, 6.25, 7.741376260792383, 8.055604938271605, 11.919426234567903, 7.3521544124371285, 8.246697655568026, 9.470967535436671, 10.125), (10.351738542890716, 10.2405, 10.154499999999999, 12.1636875, 11.238574376645502, 6.25, 7.715323529411765, 8.000499999999999, 11.908175, 7.3262, 8.239136363636362, 9.456, 10.125), (10.355036325145022, 10.203103566529492, 10.143175582990398, 12.152231224279834, 11.24019958959269, 6.25, 7.689189461792948, 7.945987654320987, 11.896797839506172, 7.300268632830361, 8.231426923556553, 9.44090077732053, 10.125), (10.358085204251871, 10.165624828532236, 10.131768861454047, 12.140620627572016, 11.241700886873659, 6.25, 7.663021504074881, 7.892216049382716, 11.885309567901235, 7.274414083219022, 8.223575321112358, 9.425691815272062, 10.125), (10.360884384384383, 10.12812962962963, 10.120296296296297, 12.128868055555555, 11.243078084937967, 6.25, 7.636867102396514, 7.839333333333334, 11.873725, 7.24869012345679, 8.215587542087542, 9.410395061728394, 10.125), (10.36343306971568, 10.090683813443073, 10.108774348422497, 12.116985853909464, 11.244331000235174, 6.25, 7.610773702896797, 7.787487654320987, 11.862058950617284, 7.223150525834477, 8.20746957226587, 9.395032464563329, 10.125), (10.36573046441887, 10.053353223593964, 10.097219478737998, 12.104986368312757, 11.245459449214845, 6.25, 7.584788751714678, 7.736827160493827, 11.850326234567902, 7.197849062642891, 8.1992273974311, 9.379625971650663, 10.125), (10.367775772667077, 10.016203703703704, 10.085648148148147, 12.092881944444445, 11.246463248326537, 6.25, 7.558959694989106, 7.6875, 11.838541666666668, 7.172839506172839, 8.190867003367003, 9.364197530864198, 10.125), (10.369568198633415, 9.97930109739369, 10.0740768175583, 12.080684927983539, 11.247342214019811, 6.25, 7.533333978859033, 7.639654320987654, 11.826720061728395, 7.148175628715135, 8.182394375857339, 9.348769090077733, 10.125), (10.371106946491004, 9.942711248285322, 10.062521947873801, 12.068407664609055, 11.248096162744234, 6.25, 7.507959049463406, 7.5934382716049384, 11.814876234567901, 7.123911202560586, 8.17381550068587, 9.333362597165067, 10.125), (10.37239122041296, 9.9065, 10.051, 12.056062500000001, 11.248724910949356, 6.25, 7.482882352941176, 7.549, 11.803025, 7.100099999999999, 8.165136363636364, 9.318, 10.125), (10.373420224572397, 9.870733196159122, 10.039527434842249, 12.043661779835391, 11.249228275084748, 6.25, 7.458151335431292, 7.506487654320988, 11.791181172839506, 7.076795793324188, 8.156362950492579, 9.302703246456334, 10.125), (10.374193163142438, 9.835476680384087, 10.0281207133059, 12.031217849794238, 11.249606071599967, 6.25, 7.433813443072703, 7.466049382716049, 11.779359567901235, 7.054052354823959, 8.147501247038285, 9.287494284407863, 10.125), (10.374709240296196, 9.800796296296298, 10.016796296296297, 12.018743055555555, 11.249858116944573, 6.25, 7.409916122004357, 7.427833333333334, 11.767575, 7.031923456790123, 8.138557239057238, 9.272395061728396, 10.125), (10.374967660206792, 9.766757887517146, 10.005570644718793, 12.006249742798353, 11.24998422756813, 6.25, 7.386506818365206, 7.391987654320989, 11.755842283950617, 7.010462871513489, 8.12953691233321, 9.257427526291723, 10.125), (10.374791614480825, 9.733248639320323, 9.994405949931412, 11.993641740472357, 11.249877955297345, 6.2498840115836, 7.363515194829646, 7.358343850022862, 11.744087848651121, 6.989620441647166, 8.120285988540376, 9.242530021899743, 10.124875150034294), (10.373141706924315, 9.699245519713262, 9.982988425925925, 11.980283514492752, 11.248910675381262, 6.248967078189301, 7.340268181346613, 7.325098765432099, 11.731797839506173, 6.968806390704429, 8.10986283891547, 9.227218973359324, 10.12388599537037), (10.369885787558895, 9.664592459843355, 9.971268432784635, 11.966087124261943, 11.246999314128942, 6.247161255906112, 7.31666013456137, 7.291952446273434, 11.718902892089622, 6.947919524462734, 8.09814888652608, 9.211422761292809, 10.121932334533609), (10.365069660642929, 9.62931016859153, 9.959250085733881, 11.951073503757382, 11.244168078754136, 6.244495808565767, 7.292701659538988, 7.258915866483768, 11.705422210791038, 6.926960359342639, 8.085187370783862, 9.195152937212715, 10.119039887688615), (10.358739130434783, 9.593419354838709, 9.946937499999999, 11.935263586956522, 11.240441176470588, 6.2410000000000005, 7.268403361344538, 7.226, 11.691375, 6.905929411764705, 8.07102153110048, 9.17842105263158, 10.115234375), (10.35094000119282, 9.556940727465816, 9.934334790809327, 11.918678307836823, 11.23584281449205, 6.236703094040542, 7.243775845043092, 7.193215820759031, 11.676780464106082, 6.884827198149493, 8.055694606887588, 9.161238659061919, 10.110541516632374), (10.341718077175404, 9.519894995353777, 9.921446073388202, 11.901338600375738, 11.230397200032275, 6.231634354519128, 7.218829715699722, 7.160574302697759, 11.661657807498857, 6.863654234917561, 8.039249837556856, 9.143617308016267, 10.104987032750344), (10.331119162640901, 9.482302867383511, 9.908275462962962, 11.883265398550725, 11.224128540305012, 6.22582304526749, 7.1935755783795, 7.128086419753086, 11.6460262345679, 6.84241103848947, 8.021730462519935, 9.125568551007147, 10.098596643518519), (10.319189061847677, 9.44418505243595, 9.894827074759945, 11.864479636339238, 11.217061042524005, 6.219298430117361, 7.168024038147495, 7.095763145861912, 11.629904949702789, 6.821098125285779, 8.003179721188491, 9.107103939547082, 10.091396069101508), (10.305973579054093, 9.40556225939201, 9.881105024005485, 11.845002247718732, 11.209218913903008, 6.212089772900472, 7.142185700068779, 7.063615454961135, 11.613313157293096, 6.7997160117270505, 7.983640852974187, 9.088235025148606, 10.083411029663925), (10.291518518518519, 9.366455197132618, 9.867113425925925, 11.824854166666666, 11.200626361655774, 6.204226337448559, 7.116071169208425, 7.031654320987655, 11.596270061728394, 6.7782652142338415, 7.9631570972886765, 9.068973359324238, 10.074667245370371), (10.275869684499314, 9.326884574538697, 9.8528563957476, 11.804056327160493, 11.191307592996047, 6.195737387593354, 7.089691050631501, 6.9998907178783725, 11.578794867398262, 6.756746249226714, 7.941771693543622, 9.049330493586504, 10.065190436385459), (10.259072881254847, 9.286871100491172, 9.838338048696844, 11.782629663177671, 11.181286815137579, 6.18665218716659, 7.063055949403081, 6.968335619570188, 11.560906778692273, 6.7351596331262265, 7.919527881150688, 9.029317979447935, 10.0550063228738), (10.241173913043479, 9.246435483870968, 9.8235625, 11.760595108695654, 11.170588235294117, 6.177, 7.036176470588235, 6.937, 11.542625, 6.713505882352941, 7.8964688995215315, 9.008947368421053, 10.044140624999999), (10.222218584123576, 9.205598433559008, 9.808533864883403, 11.737973597691894, 11.159236060679415, 6.166810089925317, 7.009063219252036, 6.90589483310471, 11.52396873571102, 6.691785513327416, 7.872637988067813, 8.988230212018387, 10.03261906292867), (10.202252698753504, 9.164380658436214, 9.793256258573388, 11.714786064143853, 11.147254498507221, 6.156111720774272, 6.981726800459553, 6.875031092821216, 11.504957190214906, 6.669999042470211, 7.848078386201194, 8.967178061752461, 10.020467356824417), (10.181322061191626, 9.122802867383513, 9.777733796296296, 11.691053442028986, 11.134667755991286, 6.144934156378601, 6.954177819275858, 6.844419753086419, 11.485609567901234, 6.648146986201889, 7.822833333333333, 8.945802469135803, 10.007711226851852), (10.159472475696308, 9.080885769281826, 9.761970593278463, 11.666796665324746, 11.121500040345357, 6.133306660570035, 6.926426880766024, 6.814071787837221, 11.465945073159578, 6.626229860943005, 7.796946068875894, 8.924114985680937, 9.994376393175584), (10.136749746525913, 9.03865007301208, 9.745970764746229, 11.64203666800859, 11.107775558783183, 6.121258497180309, 6.89848458999512, 6.783998171010516, 11.445982910379517, 6.604248183114124, 7.770459832240534, 8.902127162900394, 9.98048857596022), (10.113199677938807, 8.996116487455197, 9.729738425925925, 11.61679438405797, 11.09351851851852, 6.108818930041152, 6.870361552028219, 6.75420987654321, 11.425742283950619, 6.582202469135802, 7.743417862838915, 8.879850552306692, 9.96607349537037), (10.088868074193357, 8.9533057214921, 9.713277692043896, 11.59109074745035, 11.07875312676511, 6.096017222984301, 6.842068371930391, 6.724717878372199, 11.40524239826246, 6.560093235428601, 7.715863400082698, 8.857296705412365, 9.951156871570646), (10.063800739547922, 8.910238484003717, 9.696592678326475, 11.564946692163177, 11.063503590736707, 6.082882639841488, 6.813615654766708, 6.695533150434385, 11.384502457704619, 6.537920998413083, 7.687839683383544, 8.834477173729935, 9.935764424725651), (10.03804347826087, 8.866935483870968, 9.6796875, 11.538383152173914, 11.04779411764706, 6.069444444444445, 6.785014005602241, 6.666666666666666, 11.363541666666668, 6.515686274509804, 7.65938995215311, 8.81140350877193, 9.919921875), (10.011642094590563, 8.823417429974777, 9.662566272290809, 11.511421061460013, 11.031648914709915, 6.055731900624904, 6.756274029502062, 6.638129401005944, 11.342379229538182, 6.4933895801393255, 7.63055744580306, 8.788087262050874, 9.903654942558298), (9.984642392795372, 8.779705031196071, 9.64523311042524, 11.484081353998926, 11.015092189139029, 6.041774272214601, 6.727406331531242, 6.609932327389118, 11.321034350708734, 6.471031431722209, 7.601385403745053, 8.764539985079297, 9.886989347565157), (9.957090177133654, 8.735818996415771, 9.62769212962963, 11.456384963768118, 10.998148148148148, 6.027600823045267, 6.69842151675485, 6.582086419753087, 11.299526234567901, 6.448612345679011, 7.57191706539075, 8.74077322936972, 9.869950810185184), (9.92903125186378, 8.691780034514801, 9.609947445130317, 11.428352824745035, 10.98084099895102, 6.0132408169486355, 6.669330190237961, 6.554602652034752, 11.277874085505259, 6.426132838430297, 7.54219567015181, 8.716798546434674, 9.85256505058299), (9.90051142124411, 8.647608854374088, 9.592003172153635, 11.400005870907139, 10.963194948761398, 5.9987235177564395, 6.640142957045644, 6.527491998171011, 11.25609710791038, 6.403593426396621, 7.512264457439896, 8.69262748778668, 9.834857788923182), (9.871576489533012, 8.603326164874554, 9.573863425925927, 11.371365036231884, 10.945234204793028, 5.984078189300411, 6.610870422242971, 6.500765432098766, 11.234214506172838, 6.3809946259985475, 7.482166666666667, 8.668271604938273, 9.816854745370371), (9.842272260988848, 8.558952674897121, 9.555532321673525, 11.342451254696725, 10.926982974259664, 5.969334095412284, 6.581523190895013, 6.474433927754916, 11.212245484682214, 6.358336953656634, 7.451945537243782, 8.64374244940197, 9.798581640089164), (9.812644539869984, 8.514509093322713, 9.53701397462277, 11.31328546027912, 10.908465464375052, 5.954520499923793, 6.552111868066842, 6.44850845907636, 11.190209247828074, 6.335620925791441, 7.421644308582906, 8.619051572690298, 9.78006419324417), (9.782739130434782, 8.470016129032258, 9.5183125, 11.283888586956522, 10.889705882352942, 5.939666666666667, 6.52264705882353, 6.423, 11.168125, 6.312847058823529, 7.391306220095694, 8.59421052631579, 9.761328125), (9.752601836941611, 8.425494490906676, 9.49943201303155, 11.254281568706388, 10.870728435407084, 5.924801859472641, 6.493139368230145, 6.3979195244627345, 11.146011945587563, 6.290015869173458, 7.36097451119381, 8.569230861790967, 9.742399155521262), (9.722278463648834, 8.380964887826895, 9.480376628943759, 11.224485339506174, 10.85155733075123, 5.909955342173449, 6.463599401351762, 6.3732780064014625, 11.123889288980338, 6.267127873261788, 7.330692421288912, 8.544124130628353, 9.723303004972564), (9.691814814814816, 8.336448028673836, 9.461150462962962, 11.194520833333334, 10.832216775599129, 5.895156378600824, 6.43403776325345, 6.349086419753086, 11.1017762345679, 6.244183587509078, 7.300503189792663, 8.518901884340481, 9.704065393518519), (9.661256694697919, 8.291964622328422, 9.4417576303155, 11.164408984165325, 10.812730977164529, 5.880434232586496, 6.40446505900028, 6.325355738454504, 11.079691986739826, 6.221183528335889, 7.270450056116723, 8.493575674439873, 9.68471204132373), (9.63064990755651, 8.247535377671579, 9.422202246227709, 11.134170725979603, 10.79312414266118, 5.865818167962201, 6.374891893657326, 6.302096936442616, 11.057655749885688, 6.19812821216278, 7.24057625967275, 8.468157052439054, 9.665268668552812), (9.600040257648953, 8.203181003584229, 9.402488425925926, 11.103826992753623, 10.773420479302832, 5.851337448559671, 6.345328872289658, 6.279320987654321, 11.035686728395062, 6.175018155410313, 7.210925039872408, 8.442657569850553, 9.64576099537037), (9.569473549233614, 8.158922208947299, 9.382620284636488, 11.073398718464842, 10.753644194303236, 5.837021338210638, 6.315786599962345, 6.25703886602652, 11.01380412665752, 6.151853874499045, 7.181539636127355, 8.417088778186894, 9.626214741941014), (9.538995586568856, 8.11477970264171, 9.362601937585735, 11.042906837090714, 10.733819494876139, 5.822899100746838, 6.286275681740461, 6.235261545496114, 10.992027149062643, 6.128635885849539, 7.152463287849252, 8.391462228960604, 9.606655628429355), (9.508652173913044, 8.070774193548388, 9.3424375, 11.012372282608696, 10.713970588235293, 5.809, 6.256806722689075, 6.214, 10.970375, 6.105364705882353, 7.1237392344497605, 8.365789473684211, 9.587109375), (9.478489115524543, 8.026926390548255, 9.322131087105625, 10.98181598899624, 10.69412168159445, 5.795353299801859, 6.227390327873262, 6.193265203475081, 10.948866883859168, 6.082040851018047, 7.09541071534054, 8.340082063870238, 9.567601701817559), (9.448552215661715, 7.983257002522237, 9.301686814128946, 10.951258890230811, 10.674296982167354, 5.7819882639841484, 6.198037102358089, 6.173068129858253, 10.92752200502972, 6.058664837677183, 7.06752096993325, 8.314351551031214, 9.54815832904664), (9.41888727858293, 7.9397867383512555, 9.281108796296298, 10.920721920289855, 10.654520697167756, 5.768934156378601, 6.168757651208631, 6.153419753086419, 10.906359567901236, 6.035237182280319, 7.040113237639553, 8.288609486679663, 9.528804976851852), (9.38954010854655, 7.896536306916234, 9.26040114883402, 10.890226013150832, 10.634817033809409, 5.756220240816949, 6.139562579489958, 6.134331047096479, 10.885398776863282, 6.011758401248016, 7.013230757871109, 8.26286742232811, 9.509567365397805), (9.360504223703044, 7.853598618785952, 9.239617828252069, 10.85983388249204, 10.615175680173705, 5.7438697692145135, 6.1105259636567695, 6.115852568780606, 10.86471281125862, 5.988304736612729, 6.9869239061528665, 8.237192936504428, 9.490443900843221), (9.331480897900065, 7.811397183525536, 9.219045675021619, 10.829789421277336, 10.595393354566326, 5.731854608529901, 6.082018208410579, 6.09821125950512, 10.84461903571306, 5.965315167912783, 6.961244337113197, 8.211912172112974, 9.471275414160035), (9.302384903003995, 7.769947198683046, 9.198696932707318, 10.800084505181779, 10.5754076778886, 5.7201435124987645, 6.054059650191562, 6.081402654278709, 10.82512497866879, 5.942825327988077, 6.936154511427094, 8.187037582558851, 9.452006631660376), (9.273179873237634, 7.729188281291702, 9.178532189983873, 10.770666150266404, 10.555188526383779, 5.708708877287098, 6.026604817527893, 6.065380312898993, 10.80618133922783, 5.920793358449547, 6.911605931271481, 8.162523197487346, 9.43260725975589), (9.243829442823772, 7.689060048384721, 9.158512035525986, 10.741481372592244, 10.53470577629511, 5.6975230990608905, 5.9996082389477525, 6.050097795163585, 10.787738816492203, 5.899177400908129, 6.887550098823283, 8.13832304654375, 9.413047004858225), (9.214297245985211, 7.649502116995324, 9.138597058008367, 10.712477188220333, 10.513929303865842, 5.686558573986138, 5.973024442979315, 6.0355086608700965, 10.769748109563935, 5.877935596974759, 6.863938516259424, 8.11439115937335, 9.393295573379024), (9.184546916944742, 7.610454104156729, 9.118747846105723, 10.683600613211706, 10.492828985339221, 5.675787698228833, 5.946807958150756, 6.021566469816145, 10.752159917545043, 5.857026088260372, 6.840722685756828, 8.090681565621434, 9.373322671729932), (9.154542089925162, 7.571855626902158, 9.098924988492762, 10.654798663627394, 10.471374696958497, 5.665182867954965, 5.920913312990253, 6.008224781799343, 10.734924939537558, 5.836407016375905, 6.817854109492416, 8.067148294933297, 9.353098006322597), (9.124246399149268, 7.533646302264829, 9.079089073844187, 10.626018355528434, 10.449536314966918, 5.6547164793305305, 5.89529503602598, 5.995437156617307, 10.717993874643499, 5.816036522932296, 6.795284289643116, 8.043745376954222, 9.33259128356866), (9.093623478839854, 7.495765747277961, 9.059200690834711, 10.597206704975855, 10.427283715607734, 5.644360928521519, 5.869907655786117, 5.983157154067649, 10.70131742196489, 5.795872749540477, 6.772964728385851, 8.0204268413295, 9.31177220987977), (9.062636963219719, 7.458153578974774, 9.039220428139036, 10.568310728030694, 10.40458677512419, 5.634088611693925, 5.844705700798839, 5.971338333947983, 10.684846280603754, 5.775873837811387, 6.750846927897544, 7.997146717704421, 9.290610491667572), (9.031250486511654, 7.420749414388487, 9.01910887443187, 10.539277440753986, 10.381415369759537, 5.623871925013739, 5.819643699592319, 5.959934256055926, 10.668531149662115, 5.755997929355961, 6.728882390355119, 7.973859035724275, 9.269075835343711), (8.999427682938459, 7.38349287055232, 8.998826618387923, 10.51005385920676, 10.357739375757022, 5.613683264646956, 5.794676180694739, 5.948898480189091, 10.652322728241993, 5.736203165785134, 6.707022617935501, 7.950517825034348, 9.247137947319828), (8.967132186722928, 7.346323564499494, 8.978334248681898, 10.480586999450054, 10.333528669359893, 5.603495026759568, 5.76975767263427, 5.938184566145092, 10.636171715445418, 5.7164476887098425, 6.685219112815613, 7.927077115279934, 9.224766534007578), (8.93432763208786, 7.309181113263224, 8.957592353988504, 10.450823877544899, 10.308753126811398, 5.593279607517565, 5.744842703939094, 5.927746073721545, 10.620028810374407, 5.696689639741024, 6.6634233771723785, 7.903490936106316, 9.201931301818599), (8.900977653256046, 7.272005133876735, 8.93656152298245, 10.420711509552332, 10.28338262435479, 5.583009403086944, 5.719885803137382, 5.917536562716062, 10.603844712130984, 5.6768871604896125, 6.641586913182724, 7.879713317158788, 9.178601957164537), (8.867045884450281, 7.234735243373241, 8.91520234433844, 10.390196911533382, 10.257387038233311, 5.572656809633695, 5.694841498757313, 5.90750959292626, 10.587570119817174, 5.656998392566545, 6.619661223023571, 7.855698288082636, 9.154748206457038), (8.832495959893366, 7.197311058785966, 8.893475406731179, 10.359227099549086, 10.230736244690213, 5.562194223323808, 5.669664319327063, 5.89761872414975, 10.571155732535, 5.636981477582757, 6.5975978088718445, 7.831399878523152, 9.130339756107748), (8.797291513808094, 7.159672197148127, 8.87134129883538, 10.327749089660475, 10.203400119968745, 5.55159404032328, 5.644308793374809, 5.88781751618415, 10.554552249386486, 5.616794557149185, 6.575348172904468, 7.806772118125624, 9.105346312528312), (8.76139618041726, 7.121758275492944, 8.848760609325746, 10.295709897928587, 10.175348540312154, 5.540828656798102, 5.618729449428725, 5.878059528827073, 10.537710369473654, 5.596395772876765, 6.552863817298364, 7.781769036535342, 9.079737582130376), (8.724773593943663, 7.083508910853635, 8.825693926876983, 10.263056540414452, 10.146551381963686, 5.529870468914266, 5.592880816016989, 5.868298321876132, 10.520580791898526, 5.575743266376432, 6.53009624423046, 7.756344663397592, 9.053483271325586), (8.687387388610095, 7.044863720263423, 8.802101840163804, 10.229736033179103, 10.116978521166592, 5.518691872837765, 5.566717421667779, 5.858487455128944, 10.503114215763128, 5.5547951792591235, 6.506996955877678, 7.730453028357666, 9.026553086525583), (8.649201198639354, 7.005762320755524, 8.777944937860909, 10.195695392283579, 10.08659983416412, 5.507265264734592, 5.540193794909268, 5.84858048838312, 10.48526134016948, 5.533509653135776, 6.483517454416942, 7.704048161060852, 8.99891673414202), (8.610178658254235, 6.966144329363159, 8.753183808643008, 10.160881633788906, 10.055385197199517, 5.495563040770739, 5.513264464269635, 5.838530981436277, 10.466972864219606, 5.511844829617322, 6.459609242025177, 7.677084091152441, 8.970543920586536), (8.570283401677534, 6.925949363119547, 8.72777904118481, 10.125241773756125, 10.023304486516034, 5.483557597112198, 5.485883958277055, 5.828292494086029, 10.448199487015533, 5.4897588503147015, 6.435223820879306, 7.649514848277719, 8.941404352270776), (8.529479063132047, 6.885117039057908, 8.701691224161017, 10.088722828246263, 9.990327578356919, 5.471221329924964, 5.458006805459704, 5.81781858612999, 10.428891907659281, 5.4672098568388465, 6.410312693156252, 7.621294462081978, 8.91146773560639), (8.487729276840568, 6.843586974211461, 8.67488094624634, 10.051271813320358, 9.956424348965415, 5.458526635375026, 5.429587534345759, 5.807062817365774, 10.409000825252871, 5.444155990800697, 6.38482736103294, 7.592376962210506, 8.880703777005019), (8.444997677025897, 6.801298785613425, 8.647308796115487, 10.012835745039444, 9.92156467458478, 5.445445909628379, 5.400580673463397, 5.795978747590996, 10.388476938898332, 5.420555393811186, 6.358719326686294, 7.562716378308592, 8.849082182878314), (8.40124789791083, 6.758192090297021, 8.61893536244316, 9.973361639464553, 9.885718431458253, 5.431951548851015, 5.370940751340795, 5.78451993660327, 10.36727094769768, 5.396366207481251, 6.331940092293238, 7.532266740021525, 8.816572659637913), (8.356443573718156, 6.714206505295466, 8.58972123390407, 9.93279651265672, 9.848855495829087, 5.418015949208927, 5.340622296506126, 5.772639944200211, 10.345333550752942, 5.371546573421828, 6.304441160030697, 7.500982076994594, 8.783144913695466), (8.310548338670674, 6.669281647641981, 8.559626999172925, 9.891087380676975, 9.810945743940529, 5.403611506868106, 5.3095798374875685, 5.760292330179432, 10.322615447166147, 5.3460546332438525, 6.276174032075593, 7.4688164188730894, 8.748768651462617), (8.263525826991184, 6.623357134369786, 8.528613246924428, 9.848181259586356, 9.771959052035829, 5.388710617994547, 5.277767902813299, 5.747430654338549, 10.29906733603931, 5.31984852855826, 6.247090210604851, 7.435723795302299, 8.713413579351014), (8.215339672902477, 6.576372582512099, 8.496640565833289, 9.804025165445895, 9.731865296358233, 5.3732856787542405, 5.245141021011493, 5.734008476475176, 10.274639916474454, 5.292886400975988, 6.217141197795395, 7.401658235927513, 8.6770494037723), (8.16595351062735, 6.528267609102142, 8.463669544574216, 9.758566114316626, 9.690634353150992, 5.35730908531318, 5.21165372061033, 5.719979356386927, 10.249283887573606, 5.2651263921079705, 6.186278495824149, 7.3665737703940195, 8.639645831138118), (8.1153309743886, 6.47898183117313, 8.42966077182191, 9.71175112225958, 9.648236098657351, 5.340753233837358, 5.177260530137981, 5.705296853871415, 10.22294994843879, 5.236526643565146, 6.154453606868036, 7.3304244283471105, 8.601172567860118), (8.063435698409021, 6.428454865758288, 8.394574836251083, 9.663527205335797, 9.604640409120561, 5.323590520492767, 5.1419159781226265, 5.689914528726257, 10.195588798172029, 5.207045296958447, 6.1216180331039824, 7.29316423943207, 8.561599320349941), (8.010231316911412, 6.37662632989083, 8.358372326536443, 9.613841379606303, 9.55981716078387, 5.3057933414453995, 5.105574593092441, 5.673785940749067, 10.167151135875338, 5.176640493898813, 6.08772327670891, 7.254747233294191, 8.520895795019237), (7.955681464118564, 6.323435840603979, 8.321013831352694, 9.562640661132138, 9.513736229890526, 5.287334092861249, 5.0681909035756005, 5.656864649737456, 10.137587660650752, 5.1452703759971765, 6.0527208398597425, 7.215127439578763, 8.479031698279647), (7.899749774253275, 6.268823014930954, 8.282459939374542, 9.50987206597433, 9.466367492683776, 5.268185170906305, 5.029719438100283, 5.639104215489043, 10.106849071600289, 5.112893084864478, 6.016562224733405, 7.174258887931072, 8.435976736542818), (7.842399881538343, 6.212727469904973, 8.242671239276701, 9.455482610193918, 9.417680825406869, 5.2483189717465635, 4.9901147251946645, 5.620458197801441, 10.07488606782597, 5.079466762111649, 5.979198933506821, 7.132095607996409, 8.391700616220398), (7.78359542019656, 6.155088822559256, 8.201608319733868, 9.399419309851933, 9.367646104303056, 5.2277078915480155, 4.949331293386919, 5.600880156472262, 10.041649348429823, 5.044949549349629, 5.940582468356916, 7.088591629420064, 8.346173043724027), (7.723300024450729, 6.095846689927024, 8.159231769420758, 9.34162918100941, 9.31623320561558, 5.206324326476654, 4.907323671205228, 5.580323651299123, 10.007089612513866, 5.009299588189353, 5.900664331460612, 7.043700981847325, 8.299363725465357), (7.6614773285236355, 6.034940689041495, 8.115502177012075, 9.282059239727378, 9.263412005587696, 5.184140672698471, 4.864046387177761, 5.558742242079636, 9.971157559180128, 4.972475020241754, 5.859396024994833, 6.997377694923482, 8.251242367856026), (7.598090966638081, 5.972310436935888, 8.070380131182526, 9.220656502066875, 9.209152380462648, 5.161129326379461, 4.8194539698327, 5.5360894886114185, 9.933803887530626, 4.934433987117773, 5.816729051136504, 6.949575798293822, 8.201778677307685), (7.533104573016862, 5.907895550643423, 8.023826220606818, 9.157367984088937, 9.153424206483685, 5.137262683685614, 4.773500947698219, 5.512318950692082, 9.894979296667389, 4.895134630428341, 5.772614912062549, 6.900249321603637, 8.150942360231976), (7.464680946405239, 5.840453120772258, 7.973591953902355, 9.089769581651243, 9.093681105870997, 5.11102447631711, 4.725106720927857, 5.485796952349372, 9.851662091599097, 4.8533659162911436, 5.7255957525389425, 6.847599564194339, 8.096485859415345), (7.382286766978402, 5.763065319599478, 7.906737818402988, 9.003977158788453, 9.015191309781628, 5.073689648007103, 4.668212763385716, 5.4472135327643825, 9.786427261222144, 4.802280994098745, 5.667416935618994, 6.781362523683108, 8.025427646920194), (7.284872094904309, 5.675096728540714, 7.821920957955888, 8.89857751040886, 8.916420131346795, 5.024341296047684, 4.602243748383784, 5.3955991895273465, 9.697425227228651, 4.741205651862893, 5.59725950860954, 6.700501948887847, 7.93642060889358), (7.17322205458596, 5.577120868080469, 7.720046971910309, 8.774572503756728, 8.798393124282113, 4.963577241570314, 4.527681446006876, 5.33160053310978, 9.585829766999018, 4.6706581931709374, 5.515741654599707, 6.605767468907571, 7.830374044819097), (7.048121770426357, 5.469711258703239, 7.602021459615496, 8.632964006076326, 8.662135842303204, 4.891995305706455, 4.445007626339809, 5.255864173983202, 9.452814657913637, 4.5911569216102315, 5.42348155667862, 6.497908712841293, 7.708197254180333), (6.9103563668284975, 5.353441420893524, 7.468750020420702, 8.474753884611934, 8.508673839125688, 4.810193309587572, 4.354704059467401, 5.169036722619125, 9.299553677352906, 4.503220140768125, 5.321097397935408, 6.3776753097880325, 7.570799536460879), (6.760710968195384, 5.228884875135821, 7.321138253675176, 8.300944006607818, 8.339032668465189, 4.718769074345129, 4.257252515474466, 5.071764789489069, 9.127220602697223, 4.407366154231968, 5.209207361459196, 6.245816888846803, 7.419090191144328), (6.599970698930017, 5.096615141914632, 7.160091758728169, 8.112536239308252, 8.154237884037324, 4.618320421110586, 4.153134764445822, 4.964694985064546, 8.93698921132698, 4.3041132655891134, 5.088429630339111, 6.10308307911662, 7.25397851771427), (6.428920683435397, 4.957205741714454, 6.9865161349289275, 7.910532449957501, 7.955315039557714, 4.509445171015408, 4.042832576466286, 4.848473919817077, 8.730033280622573, 4.193979778426912, 4.959382387664279, 5.950223509696501, 7.0763738156542955), (6.248346046114523, 4.811230195019787, 6.801316981626704, 7.695934505799843, 7.74328968874198, 4.392741145191058, 3.9268277216206746, 4.723748204218176, 8.5075265879644, 4.077483996332714, 4.822683816523827, 5.7879878096854585, 6.887185384447996), (6.059031911370395, 4.659262022315128, 6.605399898170748, 7.469744274079546, 7.519187385305742, 4.268806164768999, 3.805601969993804, 4.5911644487393595, 8.270642910732855, 3.955144222893872, 4.678952100006881, 5.617125608182511, 6.6873225235789615), (5.861763403606015, 4.501874744084979, 6.399670483910309, 7.232963622040883, 7.28403368296462, 4.138238050880695, 3.6796370916704917, 4.451369263852145, 8.020556026308338, 3.8274787616977366, 4.528805421202568, 5.438386534286672, 6.477694532530785), (5.657325647224384, 4.339641880813837, 6.185034338194635, 6.98659441692812, 7.038854135434233, 4.001634624657607, 3.549414856735553, 4.305009260028047, 7.7584397120712385, 3.6950059163316578, 4.372861963200016, 5.252520217096959, 6.259210710787055), (5.4465037666285, 4.173136952986201, 5.962397060372978, 6.731638525985535, 6.784674296430206, 3.8595937072311983, 3.4154170352738054, 4.152731047738583, 7.485467745401956, 3.5582439903829886, 4.211739909088348, 5.060276285712386, 6.032780357831365), (5.230082886221365, 4.002933481086569, 5.7326642497945866, 6.4690978164573965, 6.5225197196681535, 3.7127131197329337, 3.2781253973700655, 3.9951812374552707, 7.202813903680886, 3.41771128743908, 4.046057441956694, 4.862404369231971, 5.799312773147303), (5.00884813040598, 3.8296049855994423, 5.4967415058087115, 6.1999741555879755, 6.253415958863702, 3.5615906832942748, 3.1380217131091497, 3.8330064396496235, 6.911651964288422, 3.2739261110872815, 3.8764327448941778, 4.659654096754725, 5.5597172562184625), (4.783584623585344, 3.653724987009318, 5.2555344277646014, 5.9252694106215404, 5.978388567732466, 3.406824219046685, 2.9955877525758754, 3.6668532647931604, 6.613155704604964, 3.1274067649149466, 3.7034840009899277, 4.452775097379668, 5.314903106528433), (4.555077490162455, 3.4758670058006946, 5.009948615011508, 5.645985448802367, 5.698463099990069, 3.2490115481216284, 2.851305285855058, 3.497368323357396, 6.308498902010905, 2.9786715525094243, 3.5278293933330693, 4.242517000205814, 5.0657796235608075), (4.324111854540319, 3.296604562458073, 4.760889666898678, 5.363124137374725, 5.41466510935213, 3.0887504916505666, 2.705656083031515, 3.325198225813849, 5.998855333886642, 2.828238777458067, 3.35008710501273, 4.029629434332179, 4.813256106799174), (4.0914728411219325, 3.1165111774659513, 4.5092631827753635, 5.077687343582883, 5.128020149534273, 2.9266388707649633, 2.5591219141900625, 3.1509895826340326, 5.68539877761257, 2.6766267433482245, 3.1708753191180357, 3.8148620288577786, 4.5582418557271245), (3.8579455743102966, 2.9361603713088282, 4.255974761990814, 4.790676934671116, 4.8395537742521135, 2.7632745065962827, 2.4121845494155174, 2.9753890042894655, 5.3693030105690855, 2.52435375376725, 2.9908122187381125, 3.598964412881627, 4.301646169828252), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)) passenger_arriving_acc = ((2, 7, 5, 2, 8, 1, 2, 1, 2, 1, 0, 1, 0, 11, 2, 3, 4, 3, 0, 0, 0, 1, 0, 0, 0, 0), (12, 12, 9, 6, 15, 5, 4, 1, 3, 4, 0, 1, 0, 17, 10, 7, 7, 5, 3, 5, 3, 2, 1, 0, 0, 0), (20, 18, 20, 10, 17, 7, 8, 4, 6, 4, 1, 2, 0, 21, 14, 12, 10, 11, 4, 6, 3, 6, 1, 2, 0, 0), (26, 22, 23, 14, 20, 8, 9, 4, 8, 10, 2, 2, 0, 28, 19, 14, 16, 13, 7, 8, 7, 6, 1, 3, 0, 0), (31, 32, 25, 22, 20, 10, 15, 5, 9, 12, 2, 2, 0, 31, 24, 18, 18, 19, 9, 8, 7, 10, 5, 3, 1, 0), (42, 39, 30, 23, 26, 11, 18, 6, 11, 14, 3, 2, 0, 42, 30, 21, 23, 23, 13, 11, 10, 12, 7, 4, 1, 0), (51, 48, 32, 30, 37, 11, 19, 8, 14, 14, 6, 2, 0, 46, 34, 30, 24, 36, 16, 13, 12, 15, 9, 5, 2, 0), (58, 53, 37, 36, 45, 13, 23, 11, 16, 14, 6, 2, 0, 53, 39, 37, 27, 42, 21, 14, 14, 19, 12, 6, 2, 0), (67, 59, 45, 46, 52, 14, 24, 12, 19, 16, 8, 5, 0, 65, 42, 47, 32, 48, 27, 18, 14, 24, 13, 6, 2, 0), (74, 68, 57, 55, 56, 15, 29, 17, 22, 19, 10, 7, 0, 71, 54, 54, 38, 53, 34, 22, 17, 26, 15, 6, 2, 0), (83, 77, 67, 69, 62, 20, 35, 19, 24, 21, 10, 9, 0, 79, 60, 64, 43, 57, 36, 26, 18, 27, 19, 7, 3, 0), (89, 87, 72, 73, 66, 21, 39, 25, 29, 22, 11, 11, 0, 89, 70, 71, 47, 64, 38, 30, 22, 32, 20, 8, 5, 0), (100, 94, 80, 81, 69, 21, 43, 29, 36, 22, 11, 12, 0, 95, 79, 75, 53, 70, 43, 34, 26, 38, 23, 9, 7, 0), (107, 103, 85, 94, 76, 28, 45, 33, 37, 23, 13, 13, 0, 106, 85, 83, 58, 78, 46, 37, 32, 41, 24, 12, 8, 0), (109, 113, 93, 107, 82, 31, 47, 36, 39, 26, 14, 13, 0, 118, 94, 86, 65, 83, 49, 38, 33, 46, 25, 13, 9, 0), (115, 129, 102, 115, 90, 35, 49, 37, 42, 26, 17, 15, 0, 123, 99, 94, 69, 88, 56, 43, 37, 50, 30, 16, 9, 0), (125, 141, 108, 124, 98, 39, 55, 41, 44, 27, 18, 17, 0, 131, 112, 100, 75, 93, 61, 47, 41, 54, 33, 16, 9, 0), (131, 150, 117, 131, 104, 42, 57, 41, 49, 27, 19, 17, 0, 141, 118, 111, 81, 102, 65, 51, 44, 61, 36, 18, 11, 0), (140, 154, 126, 139, 112, 46, 58, 43, 55, 29, 19, 18, 0, 150, 128, 118, 84, 107, 72, 53, 46, 66, 39, 19, 11, 0), (148, 167, 141, 149, 120, 49, 61, 45, 55, 30, 20, 20, 0, 157, 141, 127, 87, 115, 76, 58, 46, 69, 40, 23, 13, 0), (162, 176, 152, 157, 128, 51, 63, 48, 60, 30, 22, 22, 0, 169, 155, 131, 92, 122, 81, 65, 47, 73, 44, 24, 13, 0), (170, 183, 157, 171, 135, 54, 66, 53, 64, 32, 25, 22, 0, 183, 161, 137, 97, 131, 88, 72, 50, 76, 46, 24, 16, 0), (186, 194, 169, 186, 139, 60, 68, 56, 69, 32, 28, 23, 0, 194, 175, 142, 104, 137, 97, 78, 51, 78, 50, 24, 16, 0), (210, 202, 177, 196, 143, 65, 71, 60, 71, 35, 31, 24, 0, 210, 183, 148, 106, 139, 100, 82, 53, 82, 54, 27, 16, 0), (221, 212, 183, 203, 151, 69, 74, 65, 75, 37, 33, 24, 0, 225, 193, 153, 115, 146, 105, 87, 57, 86, 56, 27, 17, 0), (230, 220, 191, 208, 159, 72, 77, 70, 78, 38, 35, 25, 0, 232, 202, 165, 120, 148, 106, 90, 61, 89, 58, 28, 17, 0), (237, 232, 203, 219, 168, 73, 85, 75, 81, 41, 37, 25, 0, 239, 210, 172, 125, 156, 118, 92, 65, 91, 59, 30, 17, 0), (243, 239, 209, 234, 175, 77, 90, 80, 83, 42, 37, 25, 0, 249, 218, 182, 131, 165, 122, 95, 67, 96, 62, 31, 17, 0), (254, 250, 220, 241, 182, 81, 92, 89, 88, 43, 38, 25, 0, 259, 229, 186, 136, 180, 130, 97, 68, 97, 63, 32, 18, 0), (261, 260, 227, 252, 191, 86, 96, 93, 91, 46, 39, 25, 0, 268, 237, 195, 145, 185, 131, 100, 69, 100, 68, 33, 20, 0), (276, 267, 235, 261, 197, 89, 100, 102, 95, 51, 40, 26, 0, 272, 249, 201, 153, 190, 136, 103, 72, 103, 70, 35, 20, 0), (285, 279, 247, 268, 206, 94, 102, 106, 98, 54, 43, 26, 0, 282, 254, 209, 158, 196, 143, 110, 74, 107, 74, 36, 20, 0), (290, 290, 252, 279, 211, 96, 106, 108, 104, 54, 45, 27, 0, 295, 262, 219, 164, 204, 146, 117, 77, 111, 75, 38, 20, 0), (301, 301, 260, 287, 222, 100, 116, 114, 108, 55, 47, 27, 0, 303, 274, 223, 174, 213, 151, 121, 80, 115, 82, 40, 20, 0), (307, 311, 269, 297, 227, 102, 120, 117, 114, 58, 47, 29, 0, 313, 284, 229, 180, 224, 156, 127, 86, 121, 85, 40, 22, 0), (314, 318, 277, 303, 234, 104, 126, 119, 120, 60, 50, 29, 0, 322, 292, 236, 183, 229, 163, 134, 91, 125, 86, 43, 23, 0), (317, 325, 286, 313, 239, 111, 128, 124, 126, 64, 50, 30, 0, 332, 301, 242, 189, 238, 165, 136, 91, 129, 88, 45, 24, 0), (327, 332, 294, 333, 242, 115, 130, 131, 129, 65, 52, 31, 0, 342, 307, 247, 193, 247, 170, 138, 97, 134, 91, 47, 25, 0), (335, 342, 303, 339, 249, 119, 135, 134, 131, 66, 52, 31, 0, 353, 313, 251, 199, 253, 180, 141, 99, 137, 96, 47, 27, 0), (344, 348, 306, 348, 255, 123, 137, 140, 137, 68, 54, 31, 0, 363, 325, 263, 203, 257, 180, 143, 101, 145, 98, 51, 27, 0), (355, 356, 313, 356, 260, 124, 140, 145, 144, 69, 54, 31, 0, 372, 331, 274, 211, 268, 182, 147, 105, 146, 100, 51, 28, 0), (364, 361, 328, 368, 267, 126, 143, 146, 145, 69, 54, 31, 0, 381, 346, 279, 217, 276, 184, 150, 110, 148, 101, 51, 30, 0), (378, 370, 332, 376, 274, 129, 145, 151, 148, 69, 56, 31, 0, 390, 349, 280, 220, 286, 188, 154, 113, 151, 104, 55, 30, 0), (388, 373, 338, 390, 284, 132, 147, 156, 152, 70, 58, 32, 0, 404, 356, 289, 228, 293, 196, 157, 118, 156, 106, 57, 30, 0), (399, 386, 347, 395, 293, 135, 153, 163, 158, 70, 58, 32, 0, 416, 364, 293, 230, 302, 203, 162, 119, 157, 109, 57, 30, 0), (411, 398, 351, 406, 302, 136, 154, 169, 159, 70, 59, 32, 0, 419, 370, 296, 238, 312, 207, 165, 121, 161, 115, 57, 30, 0), (417, 410, 356, 412, 307, 142, 157, 173, 162, 72, 60, 33, 0, 427, 375, 300, 241, 320, 211, 168, 122, 164, 122, 58, 31, 0), (431, 417, 366, 420, 316, 144, 158, 176, 168, 73, 61, 34, 0, 435, 381, 305, 246, 327, 216, 172, 124, 172, 124, 58, 33, 0), (442, 422, 374, 430, 322, 145, 161, 180, 173, 76, 61, 34, 0, 443, 387, 314, 252, 341, 223, 183, 129, 173, 126, 60, 34, 0), (451, 425, 383, 439, 328, 147, 166, 187, 178, 78, 62, 34, 0, 450, 395, 319, 258, 351, 227, 188, 133, 178, 128, 63, 40, 0), (460, 434, 394, 446, 337, 151, 168, 193, 186, 80, 62, 34, 0, 460, 402, 328, 266, 356, 231, 194, 136, 183, 129, 63, 42, 0), (469, 442, 406, 458, 348, 156, 173, 199, 191, 84, 62, 34, 0, 476, 408, 332, 274, 366, 237, 196, 139, 187, 133, 66, 42, 0), (473, 448, 415, 467, 355, 158, 176, 203, 194, 88, 65, 35, 0, 485, 418, 338, 276, 370, 245, 198, 139, 189, 137, 67, 42, 0), (482, 459, 421, 472, 362, 161, 180, 203, 198, 88, 67, 36, 0, 494, 430, 346, 280, 381, 249, 203, 139, 189, 138, 69, 43, 0), (487, 472, 429, 480, 368, 164, 182, 205, 202, 93, 69, 38, 0, 500, 435, 351, 287, 388, 254, 208, 139, 193, 140, 71, 43, 0), (503, 479, 437, 490, 375, 169, 183, 211, 208, 97, 71, 40, 0, 507, 446, 355, 292, 395, 258, 210, 140, 198, 144, 73, 43, 0), (514, 490, 445, 496, 380, 175, 185, 213, 212, 98, 74, 41, 0, 517, 456, 359, 299, 404, 263, 214, 142, 202, 145, 74, 44, 0), (527, 504, 448, 508, 387, 181, 189, 216, 214, 98, 74, 42, 0, 523, 469, 361, 309, 412, 269, 219, 147, 204, 149, 77, 45, 0), (530, 510, 454, 516, 399, 186, 192, 219, 219, 99, 75, 43, 0, 533, 471, 370, 314, 423, 275, 220, 148, 207, 151, 78, 46, 0), (536, 520, 460, 526, 406, 189, 195, 221, 223, 100, 76, 44, 0, 550, 480, 381, 320, 431, 279, 223, 148, 207, 154, 79, 46, 0), (546, 529, 472, 539, 410, 192, 201, 226, 230, 100, 76, 45, 0, 564, 487, 387, 326, 439, 284, 231, 152, 210, 156, 80, 48, 0), (559, 539, 477, 545, 416, 194, 202, 230, 234, 104, 78, 47, 0, 572, 491, 398, 331, 450, 287, 233, 153, 214, 158, 84, 48, 0), (568, 551, 482, 553, 426, 199, 205, 234, 238, 108, 82, 47, 0, 581, 500, 407, 335, 457, 294, 238, 154, 216, 159, 86, 49, 0), (585, 560, 489, 564, 432, 201, 209, 236, 241, 110, 83, 48, 0, 588, 509, 418, 340, 467, 299, 240, 155, 221, 164, 87, 51, 0), (593, 567, 496, 573, 441, 208, 215, 244, 244, 113, 86, 49, 0, 596, 515, 422, 344, 480, 308, 243, 156, 224, 169, 88, 51, 0), (609, 575, 506, 578, 450, 214, 222, 248, 246, 116, 89, 49, 0, 606, 521, 429, 348, 488, 312, 249, 157, 226, 172, 89, 52, 0), (617, 591, 519, 586, 455, 216, 225, 252, 251, 117, 90, 49, 0, 615, 537, 432, 353, 496, 316, 251, 159, 229, 178, 89, 52, 0), (624, 600, 528, 592, 462, 219, 227, 255, 255, 118, 92, 51, 0, 628, 546, 439, 359, 503, 316, 254, 161, 232, 182, 91, 53, 0), (635, 606, 537, 597, 467, 221, 228, 259, 257, 119, 92, 52, 0, 640, 553, 447, 365, 510, 322, 254, 162, 232, 183, 92, 54, 0), (641, 613, 545, 604, 472, 224, 230, 260, 261, 120, 92, 52, 0, 653, 566, 453, 370, 516, 324, 258, 165, 232, 185, 93, 55, 0), (650, 622, 553, 607, 481, 229, 230, 260, 263, 122, 93, 53, 0, 663, 573, 458, 374, 521, 327, 262, 167, 235, 186, 94, 55, 0), (655, 633, 563, 615, 488, 230, 233, 263, 268, 123, 95, 54, 0, 672, 581, 464, 377, 528, 330, 265, 172, 238, 190, 97, 55, 0), (663, 640, 568, 624, 494, 235, 240, 270, 272, 124, 95, 54, 0, 681, 586, 472, 378, 534, 335, 267, 176, 241, 192, 98, 56, 0), (674, 643, 576, 630, 507, 242, 247, 273, 274, 125, 97, 55, 0, 698, 598, 481, 379, 545, 342, 271, 178, 244, 193, 100, 56, 0), (682, 652, 583, 636, 517, 251, 251, 275, 278, 128, 97, 55, 0, 709, 604, 485, 382, 550, 345, 276, 179, 247, 193, 102, 57, 0), (698, 664, 586, 652, 528, 254, 252, 275, 284, 128, 97, 56, 0, 720, 612, 493, 389, 556, 350, 280, 182, 252, 199, 105, 58, 0), (712, 668, 595, 656, 533, 256, 259, 279, 288, 129, 98, 56, 0, 728, 621, 495, 392, 566, 356, 285, 182, 256, 201, 107, 59, 0), (718, 672, 599, 670, 541, 261, 264, 281, 292, 132, 100, 56, 0, 740, 629, 503, 400, 580, 358, 290, 186, 262, 204, 107, 60, 0), (721, 681, 608, 676, 549, 262, 267, 287, 300, 135, 101, 56, 0, 747, 634, 510, 404, 588, 360, 291, 186, 265, 207, 110, 62, 0), (726, 687, 619, 689, 553, 266, 268, 291, 305, 139, 104, 56, 0, 759, 640, 515, 412, 597, 370, 296, 191, 271, 209, 112, 65, 0), (741, 697, 625, 698, 565, 272, 270, 297, 307, 140, 105, 59, 0, 772, 649, 520, 418, 605, 374, 299, 196, 275, 211, 113, 66, 0), (754, 702, 631, 708, 576, 277, 274, 305, 310, 141, 105, 59, 0, 781, 655, 525, 421, 608, 379, 303, 197, 281, 212, 114, 66, 0), (768, 708, 637, 714, 585, 281, 279, 309, 313, 142, 105, 60, 0, 792, 664, 530, 427, 615, 383, 307, 199, 283, 214, 115, 66, 0), (776, 718, 647, 722, 591, 282, 284, 313, 319, 144, 107, 60, 0, 804, 676, 540, 431, 624, 388, 314, 201, 285, 220, 117, 66, 0), (788, 722, 654, 729, 599, 286, 288, 317, 320, 146, 107, 61, 0, 811, 688, 547, 431, 629, 393, 315, 202, 292, 224, 117, 66, 0), (798, 732, 656, 737, 605, 287, 290, 320, 322, 147, 111, 63, 0, 824, 696, 554, 435, 640, 401, 319, 205, 295, 225, 117, 66, 0), (812, 742, 660, 742, 612, 287, 294, 324, 330, 149, 111, 65, 0, 828, 708, 559, 439, 644, 402, 320, 209, 297, 228, 121, 66, 0), (820, 754, 666, 756, 619, 290, 299, 324, 334, 150, 113, 66, 0, 835, 718, 572, 444, 651, 410, 324, 212, 300, 231, 121, 66, 0), (833, 766, 676, 766, 625, 295, 302, 324, 339, 154, 113, 68, 0, 845, 724, 581, 446, 657, 414, 327, 216, 306, 233, 124, 67, 0), (836, 773, 686, 777, 632, 300, 307, 325, 341, 155, 113, 68, 0, 857, 733, 589, 448, 666, 421, 329, 220, 309, 235, 125, 68, 0), (851, 782, 694, 783, 638, 304, 311, 329, 347, 156, 115, 71, 0, 867, 736, 593, 453, 675, 428, 334, 222, 312, 237, 129, 69, 0), (860, 793, 702, 798, 647, 306, 314, 332, 351, 163, 116, 73, 0, 876, 752, 600, 462, 682, 431, 337, 228, 315, 239, 131, 69, 0), (873, 797, 707, 805, 650, 309, 317, 335, 357, 164, 121, 73, 0, 887, 755, 609, 463, 683, 433, 340, 228, 320, 240, 132, 70, 0), (882, 803, 711, 816, 656, 312, 319, 337, 360, 166, 122, 74, 0, 890, 759, 617, 467, 692, 435, 341, 231, 323, 245, 132, 70, 0), (897, 809, 719, 826, 663, 316, 321, 340, 365, 167, 122, 75, 0, 895, 764, 621, 472, 703, 440, 344, 233, 325, 246, 133, 70, 0), (906, 814, 726, 838, 670, 317, 327, 342, 369, 168, 125, 76, 0, 907, 770, 632, 474, 706, 443, 347, 236, 329, 247, 134, 70, 0), (913, 820, 732, 845, 676, 320, 331, 345, 373, 168, 126, 76, 0, 913, 779, 640, 477, 714, 448, 349, 239, 335, 248, 136, 72, 0), (922, 827, 742, 853, 689, 324, 334, 348, 378, 168, 130, 77, 0, 921, 789, 646, 482, 719, 456, 353, 242, 341, 252, 136, 73, 0), (932, 834, 753, 860, 692, 327, 338, 352, 382, 173, 132, 77, 0, 932, 797, 657, 484, 727, 459, 359, 244, 344, 256, 137, 73, 0), (947, 837, 759, 872, 699, 331, 341, 354, 387, 175, 134, 77, 0, 939, 806, 662, 488, 738, 460, 360, 245, 351, 259, 140, 73, 0), (955, 843, 766, 879, 708, 336, 345, 357, 389, 178, 135, 77, 0, 951, 813, 668, 494, 744, 463, 361, 247, 353, 260, 140, 73, 0), (962, 858, 773, 888, 718, 337, 353, 358, 393, 178, 137, 77, 0, 959, 819, 674, 499, 750, 463, 361, 247, 357, 265, 143, 74, 0), (975, 866, 782, 896, 721, 339, 357, 362, 398, 180, 141, 78, 0, 970, 824, 679, 505, 754, 469, 363, 247, 361, 266, 144, 75, 0), (986, 871, 791, 903, 725, 348, 363, 364, 399, 183, 142, 78, 0, 980, 829, 686, 508, 761, 475, 366, 248, 364, 270, 146, 75, 0), (996, 879, 799, 907, 734, 350, 369, 371, 406, 189, 142, 80, 0, 990, 837, 693, 517, 763, 478, 368, 252, 371, 271, 146, 75, 0), (1009, 882, 804, 913, 745, 353, 373, 372, 410, 189, 144, 80, 0, 1001, 845, 697, 518, 771, 485, 375, 256, 376, 273, 147, 75, 0), (1018, 889, 813, 924, 750, 354, 378, 376, 413, 189, 144, 81, 0, 1011, 855, 703, 523, 782, 486, 379, 259, 381, 273, 147, 77, 0), (1027, 894, 823, 930, 760, 360, 381, 381, 417, 191, 144, 81, 0, 1017, 865, 710, 530, 788, 489, 386, 261, 387, 277, 147, 78, 0), (1036, 901, 832, 938, 764, 364, 385, 384, 419, 193, 145, 82, 0, 1029, 875, 715, 538, 794, 494, 388, 262, 390, 280, 150, 81, 0), (1043, 911, 839, 943, 777, 366, 392, 385, 423, 195, 147, 83, 0, 1035, 884, 722, 540, 802, 496, 393, 264, 394, 285, 152, 82, 0), (1060, 916, 847, 951, 783, 368, 393, 387, 426, 196, 149, 85, 0, 1042, 895, 724, 543, 809, 500, 398, 267, 399, 285, 155, 83, 0), (1069, 924, 858, 961, 789, 375, 394, 389, 430, 198, 149, 86, 0, 1052, 902, 732, 547, 813, 503, 399, 270, 402, 290, 157, 84, 0), (1079, 927, 867, 969, 796, 378, 394, 391, 434, 200, 149, 89, 0, 1060, 910, 739, 552, 820, 509, 402, 270, 405, 293, 159, 84, 0), (1085, 936, 873, 976, 805, 381, 397, 393, 443, 200, 155, 89, 0, 1069, 920, 745, 559, 829, 510, 409, 272, 407, 295, 160, 84, 0), (1094, 940, 878, 983, 811, 382, 397, 397, 445, 201, 155, 89, 0, 1074, 926, 748, 566, 838, 513, 415, 272, 414, 297, 164, 86, 0), (1104, 948, 884, 987, 813, 385, 402, 399, 448, 203, 157, 90, 0, 1086, 936, 753, 568, 844, 514, 420, 275, 414, 299, 165, 87, 0), (1118, 952, 892, 990, 824, 392, 405, 402, 458, 204, 157, 90, 0, 1093, 944, 761, 572, 851, 515, 422, 275, 416, 302, 166, 87, 0), (1131, 957, 900, 992, 829, 399, 406, 406, 464, 205, 158, 92, 0, 1105, 958, 764, 574, 861, 520, 423, 277, 423, 308, 169, 88, 0), (1138, 963, 904, 1006, 833, 400, 412, 409, 466, 206, 158, 94, 0, 1116, 964, 770, 579, 870, 524, 426, 280, 427, 309, 169, 88, 0), (1149, 968, 914, 1014, 842, 402, 414, 411, 468, 206, 160, 94, 0, 1123, 970, 773, 584, 876, 528, 428, 282, 428, 312, 169, 88, 0), (1158, 973, 925, 1022, 849, 403, 420, 419, 468, 206, 161, 94, 0, 1135, 977, 779, 587, 881, 532, 430, 283, 434, 320, 172, 89, 0), (1163, 983, 933, 1029, 857, 409, 425, 422, 472, 206, 161, 94, 0, 1153, 984, 784, 590, 885, 536, 435, 287, 435, 323, 173, 89, 0), (1169, 987, 942, 1034, 869, 414, 427, 424, 478, 207, 161, 94, 0, 1170, 992, 791, 594, 893, 538, 438, 287, 437, 327, 174, 90, 0), (1172, 998, 949, 1041, 876, 421, 432, 425, 482, 209, 162, 95, 0, 1183, 996, 802, 598, 903, 540, 441, 288, 440, 333, 176, 91, 0), (1189, 1004, 957, 1054, 882, 426, 435, 428, 483, 209, 163, 95, 0, 1188, 1008, 809, 601, 915, 543, 445, 294, 445, 338, 177, 93, 0), (1198, 1010, 964, 1065, 885, 429, 437, 430, 487, 210, 164, 98, 0, 1193, 1016, 818, 603, 926, 547, 450, 296, 448, 339, 178, 93, 0), (1208, 1014, 970, 1073, 888, 432, 443, 433, 487, 213, 164, 99, 0, 1203, 1027, 820, 608, 937, 552, 455, 298, 452, 342, 179, 93, 0), (1217, 1023, 983, 1080, 891, 433, 444, 436, 490, 214, 165, 102, 0, 1213, 1032, 829, 613, 949, 554, 455, 299, 455, 342, 180, 93, 0), (1231, 1030, 992, 1093, 898, 436, 446, 441, 497, 215, 167, 104, 0, 1224, 1036, 835, 617, 953, 560, 461, 301, 456, 343, 180, 93, 0), (1240, 1035, 1003, 1102, 904, 439, 449, 442, 501, 215, 167, 104, 0, 1233, 1039, 842, 620, 955, 562, 464, 302, 459, 347, 183, 93, 0), (1248, 1037, 1009, 1110, 910, 440, 454, 443, 505, 215, 168, 105, 0, 1240, 1046, 845, 626, 965, 565, 468, 307, 461, 348, 184, 94, 0), (1258, 1045, 1019, 1120, 916, 446, 459, 447, 505, 218, 171, 105, 0, 1248, 1057, 848, 632, 969, 573, 472, 309, 464, 348, 184, 94, 0), (1266, 1052, 1024, 1133, 923, 450, 461, 454, 506, 218, 172, 105, 0, 1263, 1065, 858, 636, 980, 579, 472, 310, 466, 350, 185, 95, 0), (1282, 1059, 1028, 1146, 927, 452, 461, 455, 508, 219, 173, 105, 0, 1273, 1069, 862, 642, 986, 584, 476, 312, 470, 352, 187, 96, 0), (1291, 1064, 1032, 1153, 941, 459, 465, 460, 510, 222, 175, 107, 0, 1279, 1079, 869, 646, 993, 586, 479, 318, 474, 353, 187, 97, 0), (1302, 1074, 1041, 1159, 953, 463, 468, 463, 513, 222, 176, 108, 0, 1290, 1085, 871, 650, 1002, 593, 482, 318, 478, 356, 188, 97, 0), (1308, 1078, 1050, 1168, 960, 467, 472, 466, 516, 222, 178, 109, 0, 1304, 1095, 876, 653, 1012, 596, 486, 320, 482, 357, 191, 98, 0), (1320, 1089, 1054, 1176, 962, 470, 477, 468, 523, 222, 179, 109, 0, 1314, 1102, 883, 656, 1019, 601, 492, 322, 487, 359, 192, 99, 0), (1327, 1095, 1059, 1185, 967, 472, 479, 471, 528, 224, 180, 109, 0, 1321, 1109, 889, 660, 1023, 603, 495, 324, 489, 364, 193, 100, 0), (1334, 1099, 1070, 1195, 976, 475, 480, 475, 529, 226, 180, 110, 0, 1328, 1114, 898, 664, 1028, 607, 502, 330, 491, 368, 195, 102, 0), (1345, 1103, 1077, 1206, 986, 477, 483, 477, 533, 228, 182, 110, 0, 1335, 1125, 902, 666, 1032, 610, 503, 331, 493, 370, 197, 102, 0), (1351, 1104, 1082, 1217, 993, 478, 485, 478, 535, 232, 182, 110, 0, 1338, 1130, 906, 669, 1038, 615, 505, 333, 494, 372, 198, 102, 0), (1355, 1107, 1086, 1220, 1001, 480, 487, 482, 538, 232, 183, 111, 0, 1348, 1141, 910, 678, 1045, 616, 506, 336, 496, 374, 200, 104, 0), (1362, 1114, 1093, 1228, 1008, 484, 493, 482, 541, 232, 184, 112, 0, 1361, 1153, 912, 683, 1052, 618, 508, 336, 502, 376, 200, 104, 0), (1370, 1117, 1101, 1235, 1017, 490, 495, 482, 544, 233, 186, 112, 0, 1371, 1163, 918, 687, 1056, 622, 510, 340, 502, 379, 201, 105, 0), (1385, 1123, 1104, 1243, 1024, 494, 497, 486, 550, 236, 188, 112, 0, 1379, 1168, 925, 688, 1067, 624, 513, 341, 505, 382, 203, 105, 0), (1392, 1127, 1114, 1247, 1034, 495, 498, 486, 556, 237, 189, 113, 0, 1390, 1175, 928, 692, 1073, 627, 515, 344, 510, 384, 205, 105, 0), (1405, 1135, 1125, 1250, 1042, 502, 500, 487, 558, 237, 191, 113, 0, 1402, 1183, 932, 696, 1079, 628, 518, 345, 513, 385, 208, 106, 0), (1412, 1140, 1135, 1253, 1049, 504, 503, 493, 560, 238, 192, 114, 0, 1411, 1191, 937, 700, 1086, 631, 519, 345, 518, 387, 210, 106, 0), (1422, 1144, 1142, 1261, 1053, 507, 506, 496, 562, 239, 192, 114, 0, 1419, 1198, 946, 700, 1093, 634, 519, 346, 519, 391, 211, 106, 0), (1433, 1148, 1144, 1267, 1059, 512, 510, 497, 565, 240, 192, 114, 0, 1430, 1201, 951, 705, 1100, 638, 521, 348, 523, 392, 214, 106, 0), (1444, 1160, 1151, 1276, 1064, 516, 511, 503, 569, 240, 193, 115, 0, 1436, 1208, 957, 709, 1108, 642, 524, 352, 526, 396, 215, 106, 0), (1454, 1164, 1158, 1282, 1074, 520, 513, 505, 575, 241, 193, 115, 0, 1439, 1216, 966, 712, 1111, 644, 528, 356, 529, 399, 218, 107, 0), (1465, 1171, 1166, 1287, 1082, 524, 517, 507, 579, 242, 193, 115, 0, 1443, 1221, 971, 717, 1119, 648, 530, 358, 533, 402, 219, 108, 0), (1477, 1176, 1173, 1294, 1087, 529, 517, 509, 581, 244, 193, 115, 0, 1450, 1229, 975, 721, 1125, 650, 531, 363, 538, 404, 220, 111, 0), (1485, 1179, 1178, 1303, 1091, 531, 518, 514, 584, 244, 194, 115, 0, 1462, 1236, 978, 726, 1134, 654, 533, 364, 540, 408, 221, 112, 0), (1493, 1185, 1186, 1311, 1096, 536, 525, 515, 589, 244, 195, 115, 0, 1473, 1246, 980, 728, 1141, 660, 536, 366, 546, 410, 223, 112, 0), (1499, 1192, 1191, 1317, 1102, 538, 527, 516, 592, 245, 195, 115, 0, 1480, 1253, 982, 732, 1149, 662, 539, 369, 550, 413, 226, 112, 0), (1507, 1197, 1198, 1320, 1109, 543, 530, 521, 595, 245, 195, 115, 0, 1487, 1255, 988, 740, 1153, 664, 545, 370, 552, 415, 227, 112, 0), (1520, 1201, 1207, 1324, 1116, 545, 534, 521, 597, 245, 197, 116, 0, 1490, 1264, 993, 743, 1160, 668, 549, 371, 554, 419, 229, 113, 0), (1528, 1205, 1209, 1330, 1121, 551, 535, 526, 599, 246, 199, 116, 0, 1496, 1271, 997, 746, 1168, 670, 553, 372, 557, 422, 231, 113, 0), (1536, 1207, 1216, 1343, 1124, 557, 540, 529, 601, 247, 199, 116, 0, 1504, 1274, 1002, 749, 1175, 673, 555, 373, 558, 425, 231, 113, 0), (1542, 1211, 1226, 1352, 1131, 562, 542, 530, 603, 247, 199, 116, 0, 1511, 1283, 1006, 752, 1181, 675, 557, 375, 560, 428, 231, 113, 0), (1544, 1219, 1228, 1355, 1143, 565, 547, 535, 603, 248, 200, 116, 0, 1525, 1286, 1010, 754, 1190, 679, 563, 377, 561, 429, 233, 113, 0), (1552, 1222, 1236, 1363, 1149, 565, 549, 536, 605, 248, 202, 117, 0, 1531, 1292, 1018, 755, 1192, 682, 566, 380, 564, 429, 234, 113, 0), (1558, 1231, 1241, 1367, 1153, 568, 549, 537, 608, 249, 203, 118, 0, 1537, 1295, 1022, 758, 1199, 684, 567, 383, 568, 429, 235, 114, 0), (1564, 1233, 1246, 1374, 1161, 570, 549, 537, 611, 250, 206, 120, 0, 1547, 1303, 1029, 760, 1201, 692, 569, 384, 571, 432, 235, 114, 0), (1567, 1236, 1251, 1379, 1170, 573, 553, 541, 615, 252, 206, 121, 0, 1553, 1308, 1033, 764, 1206, 692, 570, 384, 575, 432, 236, 114, 0), (1574, 1242, 1259, 1387, 1178, 576, 555, 545, 617, 253, 207, 122, 0, 1556, 1310, 1035, 768, 1212, 695, 577, 387, 579, 433, 237, 114, 0), (1586, 1245, 1266, 1394, 1181, 578, 555, 549, 619, 255, 209, 122, 0, 1561, 1315, 1037, 773, 1218, 695, 580, 389, 582, 434, 238, 114, 0), (1595, 1247, 1270, 1402, 1185, 580, 557, 550, 622, 256, 209, 122, 0, 1567, 1319, 1046, 781, 1222, 695, 581, 391, 584, 434, 239, 115, 0), (1604, 1254, 1274, 1407, 1192, 584, 557, 551, 628, 258, 209, 122, 0, 1571, 1322, 1053, 783, 1227, 697, 583, 392, 589, 435, 239, 115, 0), (1607, 1255, 1281, 1416, 1196, 585, 557, 552, 632, 259, 210, 123, 0, 1579, 1327, 1055, 783, 1231, 698, 588, 394, 592, 438, 240, 115, 0), (1612, 1256, 1288, 1423, 1198, 589, 558, 554, 635, 259, 210, 125, 0, 1590, 1332, 1064, 785, 1237, 701, 588, 395, 597, 442, 242, 115, 0), (1613, 1260, 1291, 1426, 1201, 591, 559, 556, 635, 260, 210, 125, 0, 1597, 1336, 1067, 788, 1238, 702, 588, 395, 600, 443, 242, 115, 0), (1619, 1262, 1295, 1432, 1205, 592, 559, 558, 637, 260, 211, 125, 0, 1601, 1342, 1072, 788, 1242, 704, 590, 395, 601, 443, 242, 115, 0), (1627, 1267, 1296, 1438, 1210, 592, 560, 559, 637, 260, 212, 126, 0, 1607, 1347, 1076, 789, 1247, 705, 591, 397, 603, 445, 243, 115, 0), (1628, 1269, 1298, 1446, 1211, 593, 562, 560, 638, 261, 212, 126, 0, 1613, 1351, 1077, 791, 1248, 706, 592, 400, 603, 445, 243, 115, 0), (1634, 1276, 1303, 1449, 1212, 594, 562, 562, 640, 262, 212, 126, 0, 1619, 1355, 1082, 794, 1254, 710, 593, 400, 604, 447, 243, 115, 0), (1634, 1276, 1303, 1449, 1212, 594, 562, 562, 640, 262, 212, 126, 0, 1619, 1355, 1082, 794, 1254, 710, 593, 400, 604, 447, 243, 115, 0)) passenger_arriving_rate = ((5.020865578371768, 5.064847846385402, 4.342736024677089, 4.661000830397574, 3.7031237384064077, 1.8308820436884476, 2.0730178076869574, 1.938823405408093, 2.030033020722669, 0.9895037538805926, 0.7008775273142672, 0.4081595898588478, 0.0, 5.083880212578363, 4.489755488447325, 3.5043876365713356, 2.968511261641777, 4.060066041445338, 2.7143527675713304, 2.0730178076869574, 1.3077728883488913, 1.8515618692032039, 1.5536669434658585, 0.8685472049354179, 0.4604407133077639, 0.0), (5.354327152019974, 5.399222302966028, 4.629455492775127, 4.968858189957462, 3.948326891649491, 1.9518237573581576, 2.209734470631847, 2.066464051210712, 2.164081775444303, 1.0547451730692876, 0.7471826893260219, 0.4351013884011963, 0.0, 5.419791647439855, 4.786115272413158, 3.73591344663011, 3.164235519207862, 4.328163550888606, 2.8930496716949965, 2.209734470631847, 1.3941598266843982, 1.9741634458247455, 1.6562860633191545, 0.9258910985550255, 0.49083839117872996, 0.0), (5.686723008979731, 5.732269739983398, 4.915035237956178, 5.275490778498595, 4.192641982499829, 2.072282983465593, 2.345909253980352, 2.193593853293508, 2.297595602292516, 1.1197284437551367, 0.7933038581293855, 0.46193605433775464, 0.0, 5.75436482820969, 5.0812965977153, 3.9665192906469278, 3.3591853312654094, 4.595191204585032, 3.0710313946109116, 2.345909253980352, 1.480202131046852, 2.0963209912499146, 1.758496926166199, 0.9830070475912357, 0.5211154309075817, 0.0), (6.016757793146562, 6.062668793441743, 5.198342391099879, 5.579682305649055, 4.435107784001268, 2.191782029841316, 2.4810018208239777, 2.3197088156227115, 2.430045053640364, 1.1841956746065454, 0.8390580686378972, 0.4885571404108718, 0.0, 6.086272806254225, 5.374128544519589, 4.195290343189486, 3.5525870238196355, 4.860090107280728, 3.247592341871796, 2.4810018208239777, 1.5655585927437972, 2.217553892000634, 1.8598941018830188, 1.0396684782199759, 0.551151708494704, 0.0), (6.343136148415981, 6.389098099345293, 5.478244083085864, 5.880216481036927, 4.674763069197661, 2.3098432043158894, 2.6144718342542292, 2.444304942164548, 2.560900681860902, 1.24788897429192, 0.8842623557650959, 0.514858199362897, 0.0, 6.414188632939817, 5.6634401929918665, 4.42131177882548, 3.743666922875759, 5.121801363721804, 3.422026919030367, 2.6144718342542292, 1.6498880030827783, 2.3373815345988307, 1.9600721603456428, 1.095648816617173, 0.5808270999404813, 0.0), (6.66456271868351, 6.710236293698289, 5.753607444793765, 6.175877014290295, 4.910646611132853, 2.4259888147198754, 2.745778957362612, 2.566878236885247, 2.689633039327186, 1.310550451479666, 0.9287337544245222, 0.5407327839361791, 0.0, 6.736785359632827, 5.948060623297969, 4.64366877212261, 3.9316513544389973, 5.379266078654372, 3.593629531639346, 2.745778957362612, 1.7328491533713395, 2.4553233055664263, 2.058625671430099, 1.1507214889587531, 0.6100214812452991, 0.0), (6.979742147844666, 7.024762012504959, 6.023299607103222, 6.465447615037239, 5.141797182850695, 2.5397411688838374, 2.8743828532406313, 2.686924703751037, 2.8157126784122717, 1.3719222148381898, 0.9722892995297139, 0.5660744468730674, 0.0, 7.052736037699606, 6.22681891560374, 4.8614464976485685, 4.115766644514569, 5.631425356824543, 3.761694585251452, 2.8743828532406313, 1.8141008349170267, 2.5708985914253475, 2.1551492050124135, 1.2046599214206444, 0.6386147284095418, 0.0), (7.2873790797949685, 7.331353891769537, 6.286187700893863, 6.747711992905847, 5.367253557395036, 2.650622574638337, 2.9997431849797924, 2.8039403467281465, 2.9386101514892147, 1.4317463730358968, 1.0147460259942116, 0.5907767409159108, 0.0, 7.360713718506519, 6.498544150075018, 5.073730129971057, 4.2952391191076895, 5.877220302978429, 3.9255164854194056, 2.9997431849797924, 1.8933018390273837, 2.683626778697518, 2.249237330968616, 1.2572375401787725, 0.6664867174335943, 0.0), (7.586178158429934, 7.628690567496257, 6.54113885704533, 7.021453857524196, 5.586054507809724, 2.7581553398139356, 3.1213196156715988, 2.917421169782802, 3.0577960109310682, 1.4897650347411937, 1.0559209687315536, 0.6147332188070586, 0.0, 7.659391453419917, 6.762065406877643, 5.279604843657768, 4.469295104223581, 6.1155920218621365, 4.084389637695923, 3.1213196156715988, 1.970110957009954, 2.793027253904862, 2.3404846191747324, 1.3082277714090662, 0.6935173243178416, 0.0), (7.874844027645085, 7.915450675689353, 6.787020206437253, 7.285456918520376, 5.797238807138606, 2.861861772241199, 3.23857180840756, 3.0268631768812346, 3.1727408091108913, 1.5457203086224858, 1.0956311626552797, 0.6378374332888596, 0.0, 7.947442293806162, 7.016211766177453, 5.478155813276398, 4.637160925867456, 6.345481618221783, 4.237608447633728, 3.23857180840756, 2.044186980172285, 2.898619403569303, 2.4284856395067926, 1.3574040412874508, 0.7195864250626686, 0.0), (8.152081331335932, 8.190312852353056, 7.022698879949271, 7.538504885522466, 5.999845228425533, 2.961264179750688, 3.3509594262791773, 3.1317623719896712, 3.282915098401738, 1.599354303348179, 1.133693642678929, 0.6599829371036627, 0.0, 8.22353929103161, 7.259812308140289, 5.668468213394645, 4.798062910044536, 6.565830196803476, 4.384467320785539, 3.3509594262791773, 2.11518869982192, 2.9999226142127666, 2.5128349618408223, 1.4045397759898541, 0.7445738956684597, 0.0), (8.416594713398005, 8.451955733491605, 7.247042008461013, 7.779381468158547, 6.192912544714355, 3.055884870172965, 3.457942132377958, 3.2316147590743394, 3.3877894311766643, 1.6504091275866801, 1.1699254437160416, 0.6810632829938176, 0.0, 8.486355496462611, 7.491696112931993, 5.849627218580208, 4.951227382760039, 6.775578862353329, 4.524260662704076, 3.457942132377958, 2.1827749072664036, 3.0964562723571776, 2.5931271560528497, 1.4494084016922026, 0.7683596121356006, 0.0), (8.667088817726812, 8.699057955109222, 7.458916722852117, 8.006870376056709, 6.375479529048918, 3.1452461513385908, 3.5589795897954057, 3.325916342101467, 3.486834359808726, 1.6986268900063934, 1.2041436006801558, 0.7009720237016724, 0.0, 8.734563961465534, 7.710692260718395, 6.020718003400779, 5.095880670019179, 6.973668719617452, 4.656282878942054, 3.5589795897954057, 2.246604393813279, 3.187739764524459, 2.6689567920189035, 1.4917833445704234, 0.7908234504644749, 0.0), (8.902268288217876, 8.93029815321015, 7.657190154002218, 8.219755318845033, 6.546584954473067, 3.2288703310781304, 3.653531461623028, 3.414163125037284, 3.579520436670977, 1.7437496992757264, 1.2361651484848115, 0.7196027119695768, 0.0, 8.966837737406735, 7.915629831665344, 6.180825742424058, 5.2312490978271775, 7.159040873341954, 4.7798283750521975, 3.653531461623028, 2.306335950770093, 3.2732924772365335, 2.7399184396150114, 1.5314380308004438, 0.8118452866554684, 0.0), (9.120837768766716, 9.144354963798623, 7.840729432790956, 8.416820006151594, 6.705267594030659, 3.306279717222145, 3.7410574109523305, 3.4958511118480193, 3.6653182141364735, 1.785519664063084, 1.2658071220435476, 0.7368489005398801, 0.0, 9.181849875652563, 8.10533790593868, 6.329035610217737, 5.3565589921892505, 7.330636428272947, 4.894191556587227, 3.7410574109523305, 2.3616283694443894, 3.3526337970153297, 2.8056066687171985, 1.5681458865581912, 0.8313049967089657, 0.0), (9.321501903268855, 9.339907022878865, 8.008401690097953, 8.59684814760449, 6.850566220765538, 3.376996617601199, 3.821017100874813, 3.5704763064998986, 3.743698244578273, 1.823678893036873, 1.2928865562699035, 0.752604142154931, 0.0, 9.37827342756938, 8.27864556370424, 6.464432781349516, 5.471036679110618, 7.487396489156546, 4.998666829099858, 3.821017100874813, 2.4121404411437135, 3.425283110382769, 2.865616049201497, 1.6016803380195905, 0.8490824566253515, 0.0), (9.5029653356198, 9.51563296645512, 8.159074056802854, 8.758623452831788, 6.981519607721555, 3.4405433400458514, 3.892870194481988, 3.6375347129591504, 3.8141310803694286, 1.8579694948654994, 1.3172204860774188, 0.7667619895570784, 0.0, 9.554781444523545, 8.434381885127861, 6.586102430387094, 5.5739084845964975, 7.628262160738857, 5.092548598142811, 3.892870194481988, 2.4575309571756083, 3.4907598038607777, 2.9195411509439295, 1.6318148113605708, 0.8650575424050111, 0.0), (9.663932709715075, 9.670211430531618, 8.291613663785293, 8.900929631461583, 7.097166527942559, 3.4964421923866666, 3.9560763548653552, 3.6965223351920073, 3.8760872738829946, 1.8881335782173672, 1.3386259463796333, 0.7792159954886714, 0.0, 9.710046977881415, 8.571375950375383, 6.693129731898166, 5.6644007346521, 7.752174547765989, 5.17513126926881, 3.9560763548653552, 2.4974587088476192, 3.5485832639712793, 2.9669765438205284, 1.6583227327570589, 0.8791101300483289, 0.0), (9.803108669450204, 9.802321051112584, 8.404887641924901, 9.022550393121959, 7.1965457544723925, 3.5442154824542103, 4.010095245116426, 3.746935177164692, 3.929037377492032, 1.9139132517608846, 1.3569199720900849, 0.7898597126920597, 0.0, 9.842743079009345, 8.688456839612655, 6.784599860450424, 5.741739755282652, 7.858074754984064, 5.245709248030569, 4.010095245116426, 2.531582487467293, 3.5982728772361963, 3.0075167977073205, 1.6809775283849802, 0.8911200955556896, 0.0), (9.919197858720699, 9.910640464202265, 8.497763122101317, 9.122269447440985, 7.2786960603549105, 3.5833855180790386, 4.054386528326697, 3.7882692428434357, 3.9724519435695926, 1.9350506241644574, 1.3719195981223131, 0.7985866939095915, 0.0, 9.951542799273696, 8.784453633005505, 6.859597990611565, 5.80515187249337, 7.944903887139185, 5.30357693998081, 4.054386528326697, 2.55956108434217, 3.6393480301774552, 3.0407564824803295, 1.6995526244202632, 0.9009673149274788, 0.0), (10.010904921422082, 9.993848305804882, 8.569107235194169, 9.198870504046766, 7.342656218633962, 3.613474607091719, 4.088409867587681, 3.8200205361944657, 4.005801524488732, 1.95128780409649, 1.3834418593898585, 0.805290491883616, 0.0, 10.035119190040824, 8.858195410719775, 6.9172092969492915, 5.853863412289469, 8.011603048977465, 5.348028750672252, 4.088409867587681, 2.5810532907797996, 3.671328109316981, 3.0662901680155894, 1.713821447038834, 0.9085316641640803, 0.0), (10.076934501449866, 10.050623211924679, 8.6177871120831, 9.251137272567364, 7.387465002353392, 3.6340050573228124, 4.1116249259908795, 3.84168506118401, 4.028556672622507, 1.9623669002253892, 1.39130379080626, 0.8098646593564828, 0.0, 10.092145302677078, 8.90851125292131, 6.9565189540313, 5.887100700676166, 8.057113345245014, 5.378359085657614, 4.1116249259908795, 2.5957178980877234, 3.693732501176696, 3.0837124241891223, 1.72355742241662, 0.91369301926588, 0.0), (10.115991242699579, 10.079643818565883, 8.642669883647738, 9.277853462630876, 7.41216118455705, 3.644499176602881, 4.1234913666278, 3.852758821778298, 4.040187940343971, 1.968030021219561, 1.3953224272850568, 0.8122027490705409, 0.0, 10.121294188548827, 8.934230239775948, 6.976612136425284, 5.904090063658682, 8.080375880687942, 5.393862350489617, 4.1234913666278, 2.6032136975734863, 3.706080592278525, 3.09261782087696, 1.7285339767295478, 0.9163312562332622, 0.0), (10.13039336334264, 10.083079961133974, 8.645769318701419, 9.281198109567903, 7.418488037355065, 3.6458333333333335, 4.124902001129669, 3.8539557613168727, 4.0416420781893, 1.9686980681298587, 1.3958263395269568, 0.8124914647157445, 0.0, 10.125, 8.93740611187319, 6.9791316976347835, 5.906094204389575, 8.0832841563786, 5.395538065843622, 4.124902001129669, 2.604166666666667, 3.7092440186775324, 3.0937327031893016, 1.729153863740284, 0.9166436328303613, 0.0), (10.141012413034153, 10.08107561728395, 8.645262345679013, 9.280786458333335, 7.422071742409901, 3.6458333333333335, 4.124126906318083, 3.852291666666667, 4.041447222222222, 1.968287654320988, 1.39577076318743, 0.8124238683127573, 0.0, 10.125, 8.936662551440328, 6.978853815937151, 5.904862962962962, 8.082894444444443, 5.393208333333334, 4.124126906318083, 2.604166666666667, 3.7110358712049507, 3.0935954861111123, 1.7290524691358027, 0.9164614197530866, 0.0), (10.15140723021158, 10.077124771376313, 8.644261545496114, 9.279972029320987, 7.4255766303963355, 3.6458333333333335, 4.122599451303155, 3.8490226337448563, 4.041062242798354, 1.96747970964792, 1.3956605665710604, 0.8122904282883707, 0.0, 10.125, 8.935194711172077, 6.978302832855302, 5.902439128943758, 8.082124485596708, 5.388631687242799, 4.122599451303155, 2.604166666666667, 3.7127883151981678, 3.0933240097736636, 1.728852309099223, 0.9161022519433014, 0.0), (10.161577019048034, 10.071287780064015, 8.642780635573846, 9.278764081790122, 7.429002578947403, 3.6458333333333335, 4.120343359154361, 3.8442103909465026, 4.0404920781893, 1.9662876771833566, 1.3954967473084758, 0.8120929736320684, 0.0, 10.125, 8.933022709952752, 6.977483736542379, 5.898863031550069, 8.0809841563786, 5.381894547325103, 4.120343359154361, 2.604166666666667, 3.7145012894737013, 3.0929213605967085, 1.7285561271147696, 0.915571616369456, 0.0), (10.171520983716636, 10.063624999999998, 8.640833333333333, 9.277171874999999, 7.432349465696142, 3.6458333333333335, 4.117382352941177, 3.837916666666667, 4.039741666666666, 1.9647250000000003, 1.3952803030303031, 0.8118333333333335, 0.0, 10.125, 8.930166666666667, 6.976401515151515, 5.894175, 8.079483333333332, 5.373083333333334, 4.117382352941177, 2.604166666666667, 3.716174732848071, 3.0923906250000006, 1.7281666666666669, 0.914875, 0.0), (10.181238328390501, 10.054196787837219, 8.638433356195703, 9.275204668209877, 7.4356171682756, 3.6458333333333335, 4.113740155733075, 3.830203189300412, 4.038815946502057, 1.9628051211705537, 1.3950122313671698, 0.8115133363816492, 0.0, 10.125, 8.926646700198141, 6.9750611568358485, 5.88841536351166, 8.077631893004114, 5.3622844650205765, 4.113740155733075, 2.604166666666667, 3.7178085841378, 3.091734889403293, 1.7276866712391405, 0.9140178898033837, 0.0), (10.19072825724275, 10.043063500228623, 8.635594421582077, 9.272871720679012, 7.438805564318813, 3.6458333333333335, 4.109440490599533, 3.821131687242798, 4.037719855967078, 1.9605414837677189, 1.3946935299497027, 0.811134811766499, 0.0, 10.125, 8.922482929431489, 6.973467649748514, 5.881624451303155, 8.075439711934155, 5.349584362139917, 4.109440490599533, 2.604166666666667, 3.7194027821594067, 3.0909572402263383, 1.7271188843164156, 0.9130057727480568, 0.0), (10.199989974446497, 10.03028549382716, 8.63233024691358, 9.270182291666666, 7.441914531458824, 3.6458333333333335, 4.104507080610022, 3.8107638888888884, 4.036458333333333, 1.957947530864198, 1.39432519640853, 0.8106995884773662, 0.0, 10.125, 8.917695473251028, 6.9716259820426485, 5.873842592592593, 8.072916666666666, 5.335069444444444, 4.104507080610022, 2.604166666666667, 3.720957265729412, 3.0900607638888897, 1.7264660493827162, 0.9118441358024693, 0.0), (10.209022684174858, 10.01592312528578, 8.62865454961134, 9.267145640432098, 7.444943947328672, 3.6458333333333335, 4.09896364883402, 3.799161522633745, 4.035036316872428, 1.9550367055326936, 1.3939082283742779, 0.8102094955037343, 0.0, 10.125, 8.912304450541077, 6.969541141871389, 5.865110116598079, 8.070072633744855, 5.318826131687243, 4.09896364883402, 2.604166666666667, 3.722471973664336, 3.0890485468107003, 1.7257309099222682, 0.910538465935071, 0.0), (10.217825590600954, 10.00003675125743, 8.624581047096479, 9.263771026234568, 7.447893689561397, 3.6458333333333335, 4.092833918340999, 3.7863863168724285, 4.033458744855967, 1.951822450845908, 1.3934436234775742, 0.8096663618350862, 0.0, 10.125, 8.906329980185948, 6.96721811738787, 5.8554673525377225, 8.066917489711933, 5.3009408436214, 4.092833918340999, 2.604166666666667, 3.7239468447806985, 3.0879236754115236, 1.7249162094192958, 0.909094250114312, 0.0), (10.226397897897897, 9.98268672839506, 8.620123456790123, 9.260067708333333, 7.450763635790041, 3.6458333333333335, 4.086141612200436, 3.7725000000000004, 4.031730555555555, 1.9483182098765437, 1.392932379349046, 0.8090720164609053, 0.0, 10.125, 8.899792181069957, 6.96466189674523, 5.84495462962963, 8.06346111111111, 5.2815, 4.086141612200436, 2.604166666666667, 3.7253818178950207, 3.086689236111112, 1.724024691358025, 0.9075169753086421, 0.0), (10.23473881023881, 9.963933413351622, 8.615295496113397, 9.256044945987654, 7.453553663647644, 3.6458333333333335, 4.078910453481805, 3.7575643004115222, 4.029856687242798, 1.9445374256973027, 1.3923754936193207, 0.8084282883706753, 0.0, 10.125, 8.892711172077426, 6.961877468096604, 5.833612277091907, 8.059713374485597, 5.260590020576132, 4.078910453481805, 2.604166666666667, 3.726776831823822, 3.085348315329219, 1.7230590992226795, 0.9058121284865113, 0.0), (10.242847531796807, 9.943837162780063, 8.610110882487428, 9.25171199845679, 7.456263650767246, 3.6458333333333335, 4.071164165254579, 3.741640946502058, 4.0278420781893, 1.9404935413808875, 1.3917739639190256, 0.807737006553879, 0.0, 10.125, 8.88510707209267, 6.958869819595128, 5.821480624142661, 8.0556841563786, 5.238297325102881, 4.071164165254579, 2.604166666666667, 3.728131825383623, 3.0839039994855972, 1.7220221764974855, 0.9039851966163696, 0.0), (10.250723266745005, 9.922458333333331, 8.604583333333334, 9.247078125, 7.45889347478189, 3.6458333333333335, 4.062926470588235, 3.724791666666667, 4.025691666666666, 1.9362000000000004, 1.391128787878788, 0.8070000000000002, 0.0, 10.125, 8.877, 6.95564393939394, 5.8086, 8.051383333333332, 5.214708333333334, 4.062926470588235, 2.604166666666667, 3.729446737390945, 3.0823593750000007, 1.7209166666666669, 0.9020416666666666, 0.0), (10.258365219256524, 9.89985728166438, 8.598726566072246, 9.242152584876543, 7.4614430133246135, 3.6458333333333335, 4.054221092552247, 3.707078189300412, 4.023410390946502, 1.931670244627344, 1.3904409631292352, 0.8062190976985216, 0.0, 10.125, 8.868410074683737, 6.952204815646175, 5.79501073388203, 8.046820781893004, 5.189909465020577, 4.054221092552247, 2.604166666666667, 3.7307215066623067, 3.080717528292182, 1.7197453132144491, 0.8999870256058529, 0.0), (10.265772593504476, 9.876094364426155, 8.592554298125286, 9.23694463734568, 7.46391214402846, 3.6458333333333335, 4.04507175421609, 3.6885622427983544, 4.021003189300411, 1.92691771833562, 1.3897114873009937, 0.8053961286389272, 0.0, 10.125, 8.859357415028198, 6.948557436504967, 5.780753155006859, 8.042006378600822, 5.163987139917697, 4.04507175421609, 2.604166666666667, 3.73195607201423, 3.078981545781894, 1.7185108596250571, 0.8978267604023779, 0.0), (10.272944593661986, 9.851229938271604, 8.586080246913582, 9.231463541666667, 7.466300744526468, 3.6458333333333335, 4.035502178649238, 3.6693055555555554, 4.0184750000000005, 1.9219558641975314, 1.3889413580246914, 0.8045329218106996, 0.0, 10.125, 8.849862139917693, 6.944706790123457, 5.765867592592593, 8.036950000000001, 5.137027777777778, 4.035502178649238, 2.604166666666667, 3.733150372263234, 3.07715451388889, 1.7172160493827164, 0.8955663580246914, 0.0), (10.279880423902163, 9.82532435985368, 8.579318129858253, 9.225718557098766, 7.468608692451679, 3.6458333333333335, 4.025536088921165, 3.649369855967079, 4.015830761316872, 1.9167981252857802, 1.3881315729309558, 0.8036313062033228, 0.0, 10.125, 8.83994436823655, 6.940657864654778, 5.750394375857339, 8.031661522633744, 5.1091177983539104, 4.025536088921165, 2.604166666666667, 3.7343043462258394, 3.0752395190329227, 1.7158636259716507, 0.8932113054412438, 0.0), (10.286579288398128, 9.79843798582533, 8.57228166438043, 9.219718942901235, 7.4708358654371345, 3.6458333333333335, 4.015197208101347, 3.628816872427984, 4.0130754115226335, 1.9114579446730684, 1.3872831296504138, 0.8026931108062796, 0.0, 10.125, 8.829624218869075, 6.936415648252069, 5.734373834019204, 8.026150823045267, 5.0803436213991775, 4.015197208101347, 2.604166666666667, 3.7354179327185673, 3.073239647633746, 1.7144563328760862, 0.8907670896204848, 0.0), (10.293040391323, 9.770631172839506, 8.564984567901236, 9.213473958333335, 7.472982141115872, 3.6458333333333335, 4.004509259259259, 3.6077083333333335, 4.010213888888889, 1.9059487654320992, 1.3863970258136926, 0.8017201646090536, 0.0, 10.125, 8.818921810699589, 6.931985129068463, 5.717846296296297, 8.020427777777778, 5.050791666666667, 4.004509259259259, 2.604166666666667, 3.736491070557936, 3.0711579861111122, 1.7129969135802474, 0.8882391975308643, 0.0), (10.299262936849892, 9.741964277549155, 8.557440557841794, 9.206992862654321, 7.475047397120935, 3.6458333333333335, 3.993495965464375, 3.58610596707819, 4.007251131687243, 1.9002840306355744, 1.3854742590514195, 0.800714296601128, 0.0, 10.125, 8.807857262612407, 6.927371295257098, 5.700852091906722, 8.014502263374485, 5.020548353909466, 3.993495965464375, 2.604166666666667, 3.7375236985604676, 3.0689976208847747, 1.7114881115683587, 0.8856331161408324, 0.0), (10.305246129151927, 9.712497656607225, 8.549663351623229, 9.200284915123458, 7.477031511085363, 3.6458333333333335, 3.9821810497861696, 3.564071502057614, 4.0041920781893, 1.8944771833561962, 1.3845158269942222, 0.7996773357719861, 0.0, 10.125, 8.796450693491845, 6.92257913497111, 5.683431550068587, 8.0083841563786, 4.98970010288066, 3.9821810497861696, 2.604166666666667, 3.7385157555426813, 3.0667616383744867, 1.709932670324646, 0.8829543324188387, 0.0), (10.310989172402216, 9.682291666666666, 8.541666666666668, 9.193359375, 7.478934360642197, 3.6458333333333335, 3.9705882352941178, 3.541666666666667, 4.001041666666666, 1.8885416666666672, 1.3835227272727273, 0.798611111111111, 0.0, 10.125, 8.784722222222221, 6.917613636363637, 5.665625, 8.002083333333331, 4.958333333333334, 3.9705882352941178, 2.604166666666667, 3.7394671803210984, 3.064453125000001, 1.7083333333333335, 0.8802083333333335, 0.0), (10.31649127077388, 9.65140666438043, 8.533464220393233, 9.186225501543209, 7.480755823424477, 3.6458333333333335, 3.958741245057694, 3.518953189300412, 3.997804835390946, 1.8824909236396894, 1.3824959575175624, 0.7975174516079867, 0.0, 10.125, 8.772691967687852, 6.912479787587812, 5.647472770919067, 7.995609670781892, 4.926534465020577, 3.958741245057694, 2.604166666666667, 3.7403779117122387, 3.062075167181071, 1.7066928440786466, 0.8774006058527665, 0.0), (10.321751628440035, 9.619903006401461, 8.525069730224052, 9.178892554012345, 7.482495777065244, 3.6458333333333335, 3.9466638021463734, 3.4959927983539094, 3.994486522633745, 1.8763383973479657, 1.3814365153593549, 0.7963981862520958, 0.0, 10.125, 8.760380048773053, 6.9071825767967745, 5.629015192043896, 7.98897304526749, 4.894389917695474, 3.9466638021463734, 2.604166666666667, 3.741247888532622, 3.0596308513374493, 1.7050139460448106, 0.8745366369455876, 0.0), (10.326769449573796, 9.587841049382716, 8.516496913580248, 9.171369791666667, 7.48415409919754, 3.6458333333333335, 3.9343796296296296, 3.4728472222222226, 3.9910916666666667, 1.8700975308641978, 1.3803453984287317, 0.7952551440329219, 0.0, 10.125, 8.74780658436214, 6.901726992143659, 5.610292592592592, 7.982183333333333, 4.861986111111112, 3.9343796296296296, 2.604166666666667, 3.74207704959877, 3.05712326388889, 1.7032993827160496, 0.871621913580247, 0.0), (10.331543938348286, 9.555281149977136, 8.507759487882945, 9.163666473765433, 7.485730667454405, 3.6458333333333335, 3.9219124505769383, 3.4495781893004116, 3.987625205761317, 1.8637817672610888, 1.3792236043563206, 0.7940901539399483, 0.0, 10.125, 8.73499169333943, 6.896118021781603, 5.5913453017832655, 7.975250411522634, 4.829409465020577, 3.9219124505769383, 2.604166666666667, 3.7428653337272024, 3.054555491255145, 1.7015518975765893, 0.8686619227251944, 0.0), (10.336074298936616, 9.522283664837678, 8.49887117055327, 9.155791859567902, 7.4872253594688765, 3.6458333333333335, 3.909285988057775, 3.4262474279835393, 3.9840920781893, 1.85740454961134, 1.3780721307727481, 0.7929050449626583, 0.0, 10.125, 8.72195549458924, 6.89036065386374, 5.572213648834019, 7.9681841563786, 4.796746399176955, 3.909285988057775, 2.604166666666667, 3.7436126797344382, 3.051930619855968, 1.6997742341106543, 0.86566215134888, 0.0), (10.34035973551191, 9.488908950617283, 8.489845679012346, 9.147755208333333, 7.488638052873998, 3.6458333333333335, 3.896523965141612, 3.4029166666666666, 3.9804972222222226, 1.8509793209876546, 1.3768919753086422, 0.7917016460905352, 0.0, 10.125, 8.708718106995885, 6.884459876543211, 5.552937962962963, 7.960994444444445, 4.764083333333334, 3.896523965141612, 2.604166666666667, 3.744319026436999, 3.049251736111112, 1.6979691358024693, 0.8626280864197532, 0.0), (10.344399452247279, 9.455217363968908, 8.480696730681299, 9.139565779320987, 7.489968625302809, 3.6458333333333335, 3.883650104897926, 3.3796476337448556, 3.976845576131687, 1.8445195244627348, 1.3756841355946297, 0.7904817863130622, 0.0, 10.125, 8.695299649443683, 6.878420677973147, 5.533558573388203, 7.953691152263374, 4.731506687242798, 3.883650104897926, 2.604166666666667, 3.7449843126514044, 3.04652192644033, 1.69613934613626, 0.8595652149062645, 0.0), (10.348192653315843, 9.421269261545497, 8.471438042981255, 9.131232831790122, 7.491216954388353, 3.6458333333333335, 3.8706881303961915, 3.3565020576131688, 3.9731420781893005, 1.8380386031092826, 1.3744496092613379, 0.7892472946197227, 0.0, 10.125, 8.681720240816947, 6.872248046306688, 5.514115809327846, 7.946284156378601, 4.699102880658437, 3.8706881303961915, 2.604166666666667, 3.7456084771941764, 3.043744277263375, 1.694287608596251, 0.8564790237768635, 0.0), (10.351738542890716, 9.387125000000001, 8.462083333333332, 9.122765625, 7.492382917763668, 3.6458333333333335, 3.8576617647058824, 3.333541666666666, 3.9693916666666667, 1.8315500000000005, 1.3731893939393938, 0.788, 0.0, 10.125, 8.668, 6.865946969696969, 5.49465, 7.938783333333333, 4.666958333333333, 3.8576617647058824, 2.604166666666667, 3.746191458881834, 3.040921875000001, 1.6924166666666667, 0.8533750000000002, 0.0), (10.355036325145022, 9.352844935985367, 8.452646319158665, 9.114173418209877, 7.493466393061793, 3.6458333333333335, 3.844594730896474, 3.3108281893004117, 3.9655992798353905, 1.8250671582075908, 1.3719044872594257, 0.7867417314433777, 0.0, 10.125, 8.654159045877153, 6.859522436297127, 5.4752014746227715, 7.931198559670781, 4.6351594650205765, 3.844594730896474, 2.604166666666667, 3.7467331965308963, 3.0380578060699595, 1.6905292638317333, 0.8502586305441244, 0.0), (10.358085204251871, 9.31848942615455, 8.443140717878373, 9.105465470679011, 7.4944672579157725, 3.6458333333333335, 3.8315107520374405, 3.288423353909465, 3.961769855967078, 1.818603520804756, 1.3705958868520598, 0.7854743179393385, 0.0, 10.125, 8.640217497332722, 6.852979434260299, 5.455810562414267, 7.923539711934156, 4.603792695473251, 3.8315107520374405, 2.604166666666667, 3.7472336289578863, 3.035155156893005, 1.6886281435756747, 0.8471354023776865, 0.0), (10.360884384384383, 9.284118827160494, 8.433580246913582, 9.096651041666666, 7.495385389958644, 3.6458333333333335, 3.818433551198257, 3.2663888888888892, 3.957908333333333, 1.812172530864198, 1.369264590347924, 0.7841995884773663, 0.0, 10.125, 8.626195473251027, 6.8463229517396185, 5.436517592592593, 7.915816666666666, 4.572944444444445, 3.818433551198257, 2.604166666666667, 3.747692694979322, 3.0322170138888898, 1.6867160493827165, 0.844010802469136, 0.0), (10.36343306971568, 9.24979349565615, 8.423978623685414, 9.087739390432098, 7.496220666823449, 3.6458333333333335, 3.8053868514483984, 3.2447865226337447, 3.954019650205761, 1.8057876314586196, 1.367911595377645, 0.7829193720469442, 0.0, 10.125, 8.612113092516385, 6.8395579768882255, 5.417362894375858, 7.908039300411522, 4.5427011316872425, 3.8053868514483984, 2.604166666666667, 3.7481103334117245, 3.029246463477367, 1.684795724737083, 0.8408903177869229, 0.0), (10.36573046441887, 9.215573788294467, 8.414349565614998, 9.078739776234567, 7.49697296614323, 3.6458333333333335, 3.792394375857339, 3.2236779835390945, 3.9501087448559673, 1.799462265660723, 1.3665378995718502, 0.7816354976375554, 0.0, 10.125, 8.597990474013107, 6.83268949785925, 5.398386796982168, 7.900217489711935, 4.513149176954733, 3.792394375857339, 2.604166666666667, 3.748486483071615, 3.02624659207819, 1.6828699131229998, 0.8377794352994972, 0.0), (10.367775772667077, 9.181520061728396, 8.404706790123456, 9.069661458333334, 7.497642165551024, 3.6458333333333335, 3.779479847494553, 3.203125, 3.946180555555556, 1.7932098765432103, 1.3651445005611673, 0.7803497942386832, 0.0, 10.125, 8.583847736625515, 6.825722502805837, 5.37962962962963, 7.892361111111112, 4.484375, 3.779479847494553, 2.604166666666667, 3.748821082775512, 3.023220486111112, 1.6809413580246915, 0.8346836419753088, 0.0), (10.369568198633415, 9.147692672610884, 8.395064014631917, 9.060513695987654, 7.498228142679874, 3.6458333333333335, 3.7666669894295164, 3.183189300411523, 3.9422400205761314, 1.7870439071787843, 1.3637323959762233, 0.7790640908398111, 0.0, 10.125, 8.56970499923792, 6.818661979881115, 5.361131721536351, 7.884480041152263, 4.456465020576132, 3.7666669894295164, 2.604166666666667, 3.749114071339937, 3.0201712319958856, 1.6790128029263836, 0.8316084247828076, 0.0), (10.371106946491004, 9.114151977594878, 8.385434956561502, 9.051305748456791, 7.498730775162823, 3.6458333333333335, 3.753979524731703, 3.1639326131687247, 3.9382920781893, 1.7809778006401469, 1.3623025834476452, 0.7777802164304223, 0.0, 10.125, 8.555582380734645, 6.811512917238226, 5.3429334019204395, 7.8765841563786, 4.429505658436215, 3.753979524731703, 2.604166666666667, 3.7493653875814115, 3.0171019161522645, 1.6770869913123003, 0.8285592706904436, 0.0), (10.37239122041296, 9.080958333333333, 8.375833333333334, 9.042046875, 7.499149940632904, 3.6458333333333335, 3.741441176470588, 3.1454166666666667, 3.9343416666666666, 1.7750250000000003, 1.360856060606061, 0.7765000000000001, 0.0, 10.125, 8.5415, 6.804280303030303, 5.325075, 7.868683333333333, 4.403583333333334, 3.741441176470588, 2.604166666666667, 3.749574970316452, 3.014015625000001, 1.675166666666667, 0.8255416666666667, 0.0), (10.373420224572397, 9.048172096479195, 8.366272862368541, 9.032746334876544, 7.4994855167231655, 3.6458333333333335, 3.729075667715646, 3.127703189300412, 3.9303937242798352, 1.7691989483310475, 1.3593938250820965, 0.7752252705380279, 0.0, 10.125, 8.527477975918305, 6.796969125410483, 5.307596844993141, 7.8607874485596705, 4.378784465020577, 3.729075667715646, 2.604166666666667, 3.7497427583615828, 3.0109154449588487, 1.6732545724737085, 0.822561099679927, 0.0), (10.374193163142438, 9.015853623685413, 8.35676726108825, 9.023413387345679, 7.499737381066645, 3.6458333333333335, 3.7169067215363514, 3.1108539094650207, 3.9264531893004113, 1.7635130887059902, 1.357916874506381, 0.7739578570339887, 0.0, 10.125, 8.513536427373873, 6.7895843725319045, 5.290539266117969, 7.852906378600823, 4.355195473251029, 3.7169067215363514, 2.604166666666667, 3.7498686905333223, 3.0078044624485605, 1.67135345221765, 0.819623056698674, 0.0), (10.374709240296196, 8.984063271604938, 8.34733024691358, 9.014057291666667, 7.499905411296382, 3.6458333333333335, 3.7049580610021784, 3.094930555555556, 3.9225250000000003, 1.7579808641975312, 1.3564262065095398, 0.7726995884773664, 0.0, 10.125, 8.499695473251029, 6.782131032547699, 5.273942592592592, 7.8450500000000005, 4.332902777777778, 3.7049580610021784, 2.604166666666667, 3.749952705648191, 3.0046857638888897, 1.6694660493827165, 0.8167330246913582, 0.0), (10.374967660206792, 8.952861396890716, 8.337975537265661, 9.004687307098765, 7.499989485045419, 3.6458333333333335, 3.693253409182603, 3.0799948559670787, 3.9186140946502057, 1.7526157178783728, 1.3549228187222018, 0.7714522938576437, 0.0, 10.125, 8.485975232434079, 6.774614093611008, 5.257847153635117, 7.837228189300411, 4.31199279835391, 3.693253409182603, 2.604166666666667, 3.7499947425227096, 3.001562435699589, 1.6675951074531323, 0.8138964906264289, 0.0), (10.374791614480825, 8.922144586043629, 8.328671624942844, 8.995231305354269, 7.499918636864896, 3.645765673423767, 3.681757597414823, 3.0659766041761927, 3.9146959495503735, 1.747405110411792, 1.3533809980900628, 0.770210835158312, 0.0, 10.124875150034294, 8.47231918674143, 6.766904990450313, 5.242215331235375, 7.829391899100747, 4.29236724584667, 3.681757597414823, 2.604118338159833, 3.749959318432448, 2.99841043511809, 1.6657343249885688, 0.8111040532766937, 0.0), (10.373141706924315, 8.890975059737157, 8.319157021604937, 8.985212635869564, 7.499273783587508, 3.6452307956104257, 3.6701340906733066, 3.052124485596708, 3.910599279835391, 1.7422015976761076, 1.3516438064859118, 0.7689349144466104, 0.0, 10.12388599537037, 8.458284058912714, 6.758219032429559, 5.226604793028321, 7.821198559670782, 4.272974279835391, 3.6701340906733066, 2.6037362825788755, 3.749636891793754, 2.9950708786231885, 1.6638314043209876, 0.8082704599761052, 0.0), (10.369885787558895, 8.859209754856408, 8.309390360653863, 8.974565343196456, 7.497999542752628, 3.6441773992785653, 3.658330067280685, 3.0383135192805977, 3.9063009640298736, 1.736979881115684, 1.3496914810876801, 0.7676185634410675, 0.0, 10.121932334533609, 8.44380419785174, 6.7484574054383994, 5.210939643347051, 7.812601928059747, 4.253638926992837, 3.658330067280685, 2.6029838566275467, 3.748999771376314, 2.991521781065486, 1.6618780721307727, 0.8053827049869463, 0.0), (10.365069660642929, 8.826867654542236, 8.299375071444901, 8.963305127818035, 7.496112052502757, 3.6426225549966977, 3.646350829769494, 3.0245482777015704, 3.9018074035970125, 1.7317400898356603, 1.347531228463977, 0.7662627447677263, 0.0, 10.119039887688615, 8.428890192444989, 6.737656142319885, 5.195220269506979, 7.803614807194025, 4.234367588782199, 3.646350829769494, 2.6018732535690696, 3.7480560262513785, 2.987768375939346, 1.6598750142889804, 0.8024425140492942, 0.0), (10.358739130434783, 8.793967741935482, 8.289114583333333, 8.95144769021739, 7.493627450980392, 3.6405833333333337, 3.634201680672269, 3.0108333333333333, 3.897125, 1.7264823529411768, 1.3451702551834133, 0.7648684210526316, 0.0, 10.115234375, 8.413552631578947, 6.7258512759170666, 5.179447058823529, 7.79425, 4.215166666666667, 3.634201680672269, 2.600416666666667, 3.746813725490196, 2.983815896739131, 1.6578229166666667, 0.7994516129032258, 0.0), (10.35094000119282, 8.760529000176998, 8.27861232567444, 8.939008730877617, 7.490561876328034, 3.638076804856983, 3.621887922521546, 2.9971732586495965, 3.8922601547020275, 1.7212067995373737, 1.3426157678145982, 0.7634365549218266, 0.0, 10.110541516632374, 8.397802104140093, 6.71307883907299, 5.163620398612119, 7.784520309404055, 4.196042562109435, 3.621887922521546, 2.598626289183559, 3.745280938164017, 2.979669576959206, 1.655722465134888, 0.7964117272888181, 0.0), (10.341718077175404, 8.726570412407629, 8.267871727823502, 8.926003950281803, 7.486931466688183, 3.6351200401361585, 3.609414857849861, 2.9835726261240665, 3.8872192691662857, 1.7159135587293908, 1.3398749729261428, 0.7619681090013557, 0.0, 10.104987032750344, 8.38164919901491, 6.699374864630713, 5.147740676188171, 7.774438538332571, 4.177001676573693, 3.609414857849861, 2.5965143143829703, 3.7434657333440917, 2.975334650093935, 1.6535743455647005, 0.7933245829461482, 0.0), (10.331119162640901, 8.692110961768218, 8.256896219135802, 8.912449048913043, 7.482752360203341, 3.6317301097393697, 3.59678778918975, 2.9700360082304527, 3.8820087448559666, 1.7106027596223679, 1.336955077086656, 0.7604640459172624, 0.0, 10.098596643518519, 8.365104505089885, 6.684775385433279, 5.131808278867102, 7.764017489711933, 4.158050411522634, 3.59678778918975, 2.594092935528121, 3.7413761801016703, 2.9708163496376816, 1.6513792438271604, 0.7901919056152927, 0.0), (10.319189061847677, 8.65716963139962, 8.245689228966622, 8.898359727254428, 7.478040695016003, 3.6279240842351275, 3.5840120190737474, 2.956567977442463, 3.876634983234263, 1.7052745313214452, 1.3338632868647486, 0.7589253282955902, 0.0, 10.091396069101508, 8.348178611251491, 6.669316434323743, 5.115823593964334, 7.753269966468526, 4.139195168419449, 3.5840120190737474, 2.5913743458822336, 3.7390203475080015, 2.96611990908481, 1.6491378457933243, 0.7870154210363293, 0.0), (10.305973579054093, 8.621765404442675, 8.234254186671238, 8.883751685789049, 7.472812609268672, 3.6237190341919425, 3.5710928500343897, 2.9431731062338065, 3.871104385764365, 1.699929002931763, 1.3306068088290313, 0.7573529187623839, 0.0, 10.083411029663925, 8.330882106386222, 6.653034044145156, 5.099787008795288, 7.74220877152873, 4.120442348727329, 3.5710928500343897, 2.58837073870853, 3.736406304634336, 2.9612505619296834, 1.6468508373342476, 0.7837968549493343, 0.0), (10.291518518518519, 8.585917264038233, 8.222594521604938, 8.868640625, 7.467084241103849, 3.6191320301783265, 3.5580355846042124, 2.9298559670781894, 3.8654233539094642, 1.6945663035584608, 1.327192849548113, 0.7557477799436866, 0.0, 10.074667245370371, 8.313225579380552, 6.635964247740564, 5.083698910675381, 7.7308467078189285, 4.101798353909466, 3.5580355846042124, 2.585094307270233, 3.7335421205519244, 2.956213541666667, 1.6445189043209878, 0.7805379330943849, 0.0), (10.275869684499314, 8.549644193327138, 8.210713663123, 8.85304224537037, 7.460871728664031, 3.61418014276279, 3.5448455253157505, 2.916621132449322, 3.859598289132754, 1.6891865623066789, 1.3236286155906039, 0.7541108744655421, 0.0, 10.065190436385459, 8.295219619120962, 6.618143077953018, 5.067559686920035, 7.719196578265508, 4.083269585429051, 3.5448455253157505, 2.5815572448305644, 3.7304358643320157, 2.951014081790124, 1.6421427326246, 0.7772403812115581, 0.0), (10.259072881254847, 8.51296517545024, 8.198615040580703, 8.836972247383253, 7.454191210091719, 3.6088804425138448, 3.5315279747015405, 2.9034731748209115, 3.853635592897424, 1.683789908281557, 1.3199213135251149, 0.7524431649539947, 0.0, 10.0550063228738, 8.27687481449394, 6.599606567625574, 5.05136972484467, 7.707271185794848, 4.064862444749276, 3.5315279747015405, 2.577771744652746, 3.7270956050458595, 2.945657415794418, 1.639723008116141, 0.7739059250409311, 0.0), (10.241173913043479, 8.475899193548386, 8.186302083333333, 8.82044633152174, 7.447058823529411, 3.60325, 3.5180882352941176, 2.890416666666667, 3.8475416666666664, 1.6783764705882358, 1.3160781499202554, 0.7507456140350878, 0.0, 10.044140624999999, 8.258201754385965, 6.580390749601277, 5.035129411764706, 7.695083333333333, 4.046583333333333, 3.5180882352941176, 2.57375, 3.7235294117647055, 2.940148777173914, 1.6372604166666667, 0.7705362903225808, 0.0), (10.222218584123576, 8.438465230762423, 8.17377822073617, 8.803480198268922, 7.43949070711961, 3.5973058857897686, 3.504531609626018, 2.8774561804602956, 3.841322911903673, 1.6729463783318543, 1.3121063313446355, 0.7490191843348656, 0.0, 10.03261906292867, 8.23921102768352, 6.560531656723177, 5.018839134995561, 7.682645823807346, 4.0284386526444145, 3.504531609626018, 2.5695042041355487, 3.719745353559805, 2.934493399422974, 1.634755644147234, 0.767133202796584, 0.0), (10.202252698753504, 8.400682270233196, 8.16104688214449, 8.78608954810789, 7.431502999004814, 3.591065170451659, 3.4908634002297765, 2.8645962886755068, 3.8349857300716352, 1.6674997606175532, 1.3080130643668657, 0.7472648384793719, 0.0, 10.020467356824417, 8.219913223273089, 6.540065321834328, 5.002499281852659, 7.6699714601432705, 4.01043480414571, 3.4908634002297765, 2.5650465503226134, 3.715751499502407, 2.9286965160359637, 1.632209376428898, 0.7636983882030178, 0.0), (10.181322061191626, 8.362569295101553, 8.14811149691358, 8.768290081521739, 7.423111837327523, 3.584544924554184, 3.477088909637929, 2.851841563786008, 3.8285365226337444, 1.6620367465504726, 1.3038055555555557, 0.7454835390946503, 0.0, 10.007711226851852, 8.200318930041153, 6.519027777777778, 4.986110239651417, 7.657073045267489, 3.9925781893004113, 3.477088909637929, 2.5603892318244172, 3.7115559186637617, 2.922763360507247, 1.629622299382716, 0.7602335722819594, 0.0), (10.159472475696308, 8.32414528850834, 8.13497549439872, 8.75009749899356, 7.414333360230238, 3.577762218665854, 3.463213440383012, 2.8391965782655086, 3.8219816910531925, 1.6565574652357518, 1.2994910114793157, 0.7436762488067449, 0.0, 9.994376393175584, 8.180438736874192, 6.497455057396579, 4.969672395707254, 7.643963382106385, 3.9748752095717124, 3.463213440383012, 2.5555444419041815, 3.707166680115119, 2.916699166331187, 1.626995098879744, 0.7567404807734855, 0.0), (10.136749746525913, 8.285429233594407, 8.121642303955191, 8.731527501006443, 7.405183705855455, 3.57073412335518, 3.44924229499756, 2.826665904587715, 3.815327636793172, 1.6510620457785314, 1.2950766387067558, 0.7418439302416996, 0.0, 9.98048857596022, 8.160283232658694, 6.475383193533778, 4.953186137335593, 7.630655273586344, 3.9573322664228017, 3.44924229499756, 2.550524373825129, 3.7025918529277275, 2.910509167002148, 1.6243284607910382, 0.7532208394176735, 0.0), (10.113199677938807, 8.246440113500597, 8.10811535493827, 8.712595788043478, 7.3956790123456795, 3.563477709190672, 3.4351807760141093, 2.8142541152263374, 3.8085807613168727, 1.645550617283951, 1.290569643806486, 0.7399875460255577, 0.0, 9.96607349537037, 8.139863006281134, 6.452848219032429, 4.936651851851852, 7.6171615226337455, 3.9399557613168725, 3.4351807760141093, 2.54534122085048, 3.6978395061728397, 2.904198596014493, 1.6216230709876542, 0.7496763739545999, 0.0), (10.088868074193357, 8.207196911367758, 8.094398076703246, 8.693318060587762, 7.385835417843406, 3.5560100467408424, 3.4210341859651954, 2.801965782655083, 3.8017474660874866, 1.6400233088571508, 1.2859772333471164, 0.7381080587843638, 0.0, 9.951156871570646, 8.119188646628, 6.429886166735582, 4.9200699265714505, 7.603494932174973, 3.9227520957171165, 3.4210341859651954, 2.540007176243459, 3.692917708921703, 2.897772686862588, 1.6188796153406495, 0.7461088101243417, 0.0), (10.063800739547922, 8.16771861033674, 8.080493898605397, 8.673710019122383, 7.375669060491138, 3.5483482065742016, 3.406807827383354, 2.7898054793476605, 3.794834152568206, 1.634480249603271, 1.2813066138972575, 0.7362064311441613, 0.0, 9.935764424725651, 8.098270742585774, 6.4065330694862865, 4.903440748809812, 7.589668305136412, 3.905727671086725, 3.406807827383354, 2.534534433267287, 3.687834530245569, 2.891236673040795, 1.6160987797210793, 0.7425198736669765, 0.0), (10.03804347826087, 8.128024193548386, 8.06640625, 8.653787364130435, 7.365196078431373, 3.5405092592592595, 3.3925070028011204, 2.7777777777777777, 3.7878472222222226, 1.6289215686274514, 1.2765649920255184, 0.7342836257309943, 0.0, 9.919921875, 8.077119883040936, 6.382824960127592, 4.886764705882353, 7.575694444444445, 3.888888888888889, 3.3925070028011204, 2.5289351851851856, 3.6825980392156863, 2.884595788043479, 1.6132812500000002, 0.7389112903225807, 0.0), (10.011642094590563, 8.088132644143545, 8.05213856024234, 8.63356579609501, 7.35443260980661, 3.532510275364528, 3.378137014751031, 2.7658872504191434, 3.780793076512727, 1.6233473950348318, 1.2717595743005101, 0.7323406051709063, 0.0, 9.903654942558298, 8.055746656879968, 6.35879787150255, 4.870042185104494, 7.561586153025454, 3.872242150586801, 3.378137014751031, 2.5232216252603767, 3.677216304903305, 2.8778552653650036, 1.6104277120484682, 0.7352847858312315, 0.0), (9.984642392795372, 8.048062945263066, 8.0376942586877, 8.613061015499195, 7.343394792759352, 3.524368325458518, 3.363703165765621, 2.754138469745466, 3.773678116902911, 1.6177578579305527, 1.2668975672908422, 0.7303783320899415, 0.0, 9.886989347565157, 8.034161652989356, 6.334487836454211, 4.853273573791657, 7.547356233805822, 3.8557938576436523, 3.363703165765621, 2.517405946756084, 3.671697396379676, 2.871020338499732, 1.6075388517375402, 0.7316420859330061, 0.0), (9.957090177133654, 8.00783408004779, 8.023076774691358, 8.592288722826089, 7.332098765432098, 3.5161004801097393, 3.349210758377425, 2.742536008230453, 3.766508744855967, 1.6121530864197533, 1.261986177565125, 0.7283977691141434, 0.0, 9.869950810185184, 8.012375460255576, 6.309930887825625, 4.836459259259259, 7.533017489711934, 3.839550411522634, 3.349210758377425, 2.5115003429355283, 3.666049382716049, 2.86409624094203, 1.6046153549382718, 0.727984916367981, 0.0), (9.92903125186378, 7.967465031638567, 8.008289537608597, 8.571264618558777, 7.320560665967347, 3.5077238098867043, 3.3346650951189805, 2.7310844383478132, 3.759291361835086, 1.6065332096075746, 1.2570326116919686, 0.7263998788695563, 0.0, 9.85256505058299, 7.990398667565118, 6.285163058459842, 4.819599628822722, 7.518582723670172, 3.823518213686939, 3.3346650951189805, 2.5055170070619317, 3.6602803329836733, 2.8570882061862592, 1.6016579075217197, 0.7243150028762335, 0.0), (9.90051142124411, 7.926974783176247, 7.993335976794697, 8.550004403180354, 7.308796632507598, 3.499255385357923, 3.320071478522822, 2.719788332571255, 3.7520323693034596, 1.6008983565991557, 1.2520440762399827, 0.7243856239822234, 0.0, 9.834857788923182, 7.968241863804456, 6.260220381199914, 4.8026950697974655, 7.504064738606919, 3.8077036655997567, 3.320071478522822, 2.4994681323985164, 3.654398316253799, 2.850001467726785, 1.5986671953589393, 0.7206340711978407, 0.0), (9.871576489533012, 7.886382317801674, 7.978219521604939, 8.528523777173913, 7.296822803195352, 3.4907122770919066, 3.3054352111214853, 2.708652263374486, 3.7447381687242793, 1.5952486564996373, 1.247027777777778, 0.7223559670781895, 0.0, 9.816854745370371, 7.945915637860083, 6.23513888888889, 4.785745969498911, 7.489476337448559, 3.7921131687242804, 3.3054352111214853, 2.4933659122085046, 3.648411401597676, 2.8428412590579715, 1.595643904320988, 0.7169438470728796, 0.0), (9.842272260988848, 7.845706618655694, 7.962943601394604, 8.506838441022543, 7.284655316173109, 3.482111555657166, 3.2907615954475067, 2.697680803231215, 3.7374151615607376, 1.589584238414159, 1.2419909228739638, 0.7203118707834976, 0.0, 9.798581640089164, 7.923430578618472, 6.209954614369819, 4.768752715242476, 7.474830323121475, 3.7767531245237014, 3.2907615954475067, 2.4872225397551184, 3.6423276580865545, 2.8356128136741816, 1.5925887202789208, 0.7132460562414268, 0.0), (9.812644539869984, 7.804966668879153, 7.947511645518976, 8.48496409520934, 7.272310309583368, 3.4734702916222124, 3.276055934033421, 2.68687852461515, 3.7300697492760246, 1.5839052314478608, 1.236940718097151, 0.7182542977241916, 0.0, 9.78006419324417, 7.900797274966106, 6.184703590485755, 4.751715694343581, 7.460139498552049, 3.7616299344612103, 3.276055934033421, 2.48105020830158, 3.636155154791684, 2.8283213650697805, 1.589502329103795, 0.7095424244435595, 0.0), (9.782739130434782, 7.764181451612902, 7.931927083333334, 8.462916440217391, 7.259803921568627, 3.464805555555556, 3.261323529411765, 2.67625, 3.7227083333333333, 1.5782117647058826, 1.2318843700159492, 0.7161842105263159, 0.0, 9.761328125, 7.878026315789473, 6.159421850079745, 4.734635294117647, 7.445416666666667, 3.7467500000000005, 3.261323529411765, 2.474861111111111, 3.6299019607843137, 2.820972146739131, 1.5863854166666669, 0.7058346774193549, 0.0), (9.752601836941611, 7.723369949997786, 7.916193344192958, 8.44071117652979, 7.247152290271389, 3.4561344180257074, 3.2465696841150726, 2.665799801859473, 3.715337315195854, 1.572503967293365, 1.2268290851989685, 0.714102571815914, 0.0, 9.742399155521262, 7.8551282899750525, 6.134145425994841, 4.717511901880093, 7.430674630391708, 3.732119722603262, 3.2465696841150726, 2.468667441446934, 3.6235761451356945, 2.8135703921765973, 1.5832386688385918, 0.7021245409088898, 0.0), (9.722278463648834, 7.682551147174654, 7.900313857453133, 8.41836400462963, 7.234371553834153, 3.4474739496011786, 3.231799700675881, 2.6555325026672763, 3.7079630963267793, 1.5667819683154474, 1.2217820702148188, 0.7120103442190294, 0.0, 9.723303004972564, 7.832113786409323, 6.108910351074094, 4.7003459049463405, 7.415926192653559, 3.7177455037341867, 3.231799700675881, 2.4624813925722706, 3.6171857769170765, 2.806121334876544, 1.5800627714906266, 0.6984137406522414, 0.0), (9.691814814814816, 7.641744026284349, 7.884292052469135, 8.395890625, 7.221477850399419, 3.4388412208504806, 3.217018881626725, 2.645452674897119, 3.7005920781893, 1.56104589687727, 1.2167505316321108, 0.7099084903617069, 0.0, 9.704065393518519, 7.808993393978774, 6.083752658160553, 4.683137690631809, 7.4011841563786, 3.703633744855967, 3.217018881626725, 2.4563151577503435, 3.6107389251997093, 2.798630208333334, 1.5768584104938272, 0.6947040023894864, 0.0), (9.661256694697919, 7.60096757046772, 7.8681313585962505, 8.373306738123993, 7.208487318109686, 3.430253302342123, 3.20223252950014, 2.63556489102271, 3.6932306622466085, 1.5552958820839726, 1.211741676019454, 0.7077979728699895, 0.0, 9.68471204132373, 7.785777701569883, 6.058708380097269, 4.6658876462519165, 7.386461324493217, 3.689790847431794, 3.20223252950014, 2.4501809302443736, 3.604243659054843, 2.7911022460413317, 1.5736262717192502, 0.6909970518607019, 0.0), (9.63064990755651, 7.560240762865614, 7.851835205189758, 8.350628044484703, 7.195416095107452, 3.421727264644617, 3.187445946828663, 2.6258737235177567, 3.685885249961896, 1.5495320530406955, 1.2067627099454585, 0.7056797543699213, 0.0, 9.665268668552812, 7.762477298069133, 6.033813549727292, 4.648596159122086, 7.371770499923792, 3.6762232129248593, 3.187445946828663, 2.4440909033175835, 3.597708047553726, 2.783542681494901, 1.5703670410379515, 0.687294614805965, 0.0), (9.600040257648953, 7.519582586618876, 7.835407021604938, 8.327870244565217, 7.182280319535221, 3.4132801783264752, 3.172664436144829, 2.6163837448559675, 3.6785622427983538, 1.5437545388525786, 1.201820839978735, 0.7035547974875461, 0.0, 9.64576099537037, 7.739102772363006, 6.009104199893674, 4.631263616557734, 7.3571244855967075, 3.662937242798354, 3.172664436144829, 2.4380572702331964, 3.5911401597676105, 2.775956748188406, 1.5670814043209877, 0.6835984169653525, 0.0), (9.569473549233614, 7.479012024868357, 7.818850237197074, 8.305049038848631, 7.1690961295354905, 3.404929113956206, 3.1578932999811724, 2.6070995275110502, 3.6712680422191735, 1.5379634686247616, 1.1969232726878927, 0.701424064848908, 0.0, 9.626214741941014, 7.715664713337986, 5.9846163634394625, 4.613890405874283, 7.342536084438347, 3.6499393385154706, 3.1578932999811724, 2.4320922242544327, 3.5845480647677452, 2.768349679616211, 1.5637700474394147, 0.6799101840789417, 0.0), (9.538995586568856, 7.438548060754901, 7.802168281321446, 8.282180127818036, 7.155879663250759, 3.3966911421023225, 3.1431378408702306, 2.5980256439567144, 3.6640090496875475, 1.532158971462385, 1.1920772146415421, 0.6992885190800504, 0.0, 9.606655628429355, 7.692173709880553, 5.96038607320771, 4.596476914387154, 7.328018099375095, 3.6372359015394005, 3.1431378408702306, 2.426207958644516, 3.5779398316253794, 2.760726709272679, 1.5604336562642893, 0.6762316418868093, 0.0), (9.508652173913044, 7.398209677419356, 7.785364583333334, 8.259279211956523, 7.1426470588235285, 3.3885833333333335, 3.1284033613445374, 2.589166666666667, 3.656791666666667, 1.5263411764705888, 1.1872898724082936, 0.6971491228070177, 0.0, 9.587109375, 7.668640350877193, 5.936449362041468, 4.579023529411765, 7.313583333333334, 3.624833333333334, 3.1284033613445374, 2.4204166666666667, 3.5713235294117642, 2.7530930706521746, 1.557072916666667, 0.6725645161290325, 0.0), (9.478489115524543, 7.358015858002567, 7.768442572588021, 8.23636199174718, 7.129414454396299, 3.3806227582177515, 3.113695163936631, 2.580527168114617, 3.6496222946197223, 1.5205102127545123, 1.1825684525567568, 0.6950068386558532, 0.0, 9.567601701817559, 7.645075225214384, 5.9128422627837836, 4.561530638263536, 7.299244589239445, 3.612738035360464, 3.113695163936631, 2.4147305415841083, 3.5647072271981495, 2.7454539972490606, 1.5536885145176043, 0.668910532545688, 0.0), (9.448552215661715, 7.317985585645383, 7.751405678440788, 8.213444167673108, 7.116197988111569, 3.3728264873240867, 3.0990185511790447, 2.5721117207742723, 3.6425073350099066, 1.5146662094192962, 1.177920161655542, 0.6928626292526012, 0.0, 9.54815832904664, 7.621488921778612, 5.8896008082777085, 4.543998628257887, 7.285014670019813, 3.600956409083981, 3.0990185511790447, 2.409161776660062, 3.5580989940557846, 2.737814722557703, 1.5502811356881578, 0.6652714168768531, 0.0), (9.41888727858293, 7.278137843488651, 7.7342573302469155, 8.190541440217391, 7.103013798111837, 3.365211591220851, 3.0843788256043156, 2.5639248971193416, 3.635453189300412, 1.5088092955700803, 1.173352206273259, 0.6907174572233054, 0.0, 9.528804976851852, 7.597892029456357, 5.866761031366295, 4.526427886710239, 7.270906378600824, 3.5894948559670783, 3.0843788256043156, 2.4037225651577505, 3.5515068990559184, 2.7301804800724643, 1.546851466049383, 0.6616488948626047, 0.0), (9.38954010854655, 7.238491614673214, 7.717000957361684, 8.167669509863124, 7.089878022539605, 3.357795140476554, 3.069781289744979, 2.5559712696235333, 3.628466258954427, 1.5029396003120044, 1.1688717929785184, 0.6885722851940093, 0.0, 9.509567365397805, 7.574295137134101, 5.844358964892591, 4.5088188009360115, 7.256932517908854, 3.5783597774729463, 3.069781289744979, 2.3984251003403956, 3.5449390112698027, 2.7225565032877084, 1.543400191472337, 0.6580446922430195, 0.0), (9.360504223703044, 7.1991320672204555, 7.699681523543391, 8.14487541186903, 7.076783786782469, 3.3505906987084666, 3.0552629818283847, 2.548271903658586, 3.6215709370862066, 1.4970761841531826, 1.1644873176921446, 0.6864327447087024, 0.0, 9.490443900843221, 7.550760191795725, 5.8224365884607225, 4.491228552459547, 7.243141874172413, 3.5675806651220205, 3.0552629818283847, 2.3932790705060474, 3.5383918933912346, 2.7149584706230105, 1.5399363047086783, 0.654466551565496, 0.0), (9.331480897900065, 7.16044741823174, 7.682538062518016, 8.122342065958001, 7.063595569710884, 3.343581854975776, 3.0410091042052896, 2.5409213581271333, 3.6148730119043533, 1.491328791978196, 1.1602073895188663, 0.684326014342748, 0.0, 9.471275414160035, 7.5275861577702265, 5.801036947594331, 4.473986375934587, 7.229746023808707, 3.557289901377987, 3.0410091042052896, 2.3882727535541255, 3.531797784855442, 2.7074473553193346, 1.5365076125036032, 0.6509497652937947, 0.0), (9.302384903003995, 7.122451598792792, 7.665580777256098, 8.100063378886334, 7.050271785259067, 3.3367503822909463, 3.027029825095781, 2.533917772616129, 3.6083749928895963, 1.4857063319970194, 1.1560257519045158, 0.6822531318799043, 0.0, 9.452006631660376, 7.5047844506789465, 5.7801287595225785, 4.457118995991058, 7.216749985779193, 3.5474848816625806, 3.027029825095781, 2.3833931302078186, 3.5251358926295335, 2.700021126295445, 1.5331161554512198, 0.647495599890254, 0.0), (9.273179873237634, 7.0850892578507265, 7.648776824986561, 8.077999612699802, 7.036792350922519, 3.330080178417474, 3.0133024087639466, 2.5272417970412473, 3.6020604464092765, 1.480198339612387, 1.1519343218785802, 0.6802102664572789, 0.0, 9.43260725975589, 7.482312931030067, 5.7596716093929015, 4.44059501883716, 7.204120892818553, 3.5381385158577463, 3.0133024087639466, 2.3786286988696244, 3.5183961754612594, 2.6926665375666015, 1.5297553649973124, 0.6440990234409752, 0.0), (9.243829442823772, 7.04830504435266, 7.632093362938321, 8.056111029444182, 7.02313718419674, 3.323555141118853, 2.9998041194738763, 2.5208740813181603, 3.5959129388307343, 1.4747943502270324, 1.1479250164705472, 0.6781935872119792, 0.0, 9.413047004858225, 7.46012945933177, 5.739625082352736, 4.424383050681096, 7.1918258776614685, 3.5292237138454245, 2.9998041194738763, 2.3739679579420376, 3.51156859209837, 2.6853703431480613, 1.5264186725876645, 0.6407550040320601, 0.0), (9.214297245985211, 7.0120436072457135, 7.615497548340306, 8.03435789116525, 7.009286202577227, 3.317159168158581, 2.9865122214896576, 2.51479527536254, 3.5899160365213114, 1.46948389924369, 1.143989752709904, 0.6761992632811126, 0.0, 9.393295573379024, 7.438191896092237, 5.71994876354952, 4.40845169773107, 7.179832073042623, 3.5207133855075567, 2.9865122214896576, 2.369399405827558, 3.5046431012886137, 2.678119297055084, 1.5230995096680613, 0.6374585097496104, 0.0), (9.184546916944742, 6.976249595477001, 7.598956538421437, 8.012700459908778, 6.99521932355948, 3.3108761573001524, 2.973403979075378, 2.5089860290900607, 3.5840533058483475, 1.4642565220650932, 1.1401204476261382, 0.6742234638017862, 0.0, 9.373322671729932, 7.416458101819647, 5.70060223813069, 4.392769566195279, 7.168106611696695, 3.5125804407260848, 2.973403979075378, 2.3649115409286803, 3.49760966177974, 2.670900153302927, 1.5197913076842873, 0.6342045086797276, 0.0), (9.154542089925162, 6.940867657993644, 7.582437490410635, 7.991098997720545, 6.980916464638998, 3.304690006307063, 2.9604566564951265, 2.5034269924163928, 3.578308313179186, 1.4591017540939766, 1.136309018248736, 0.6722623579111081, 0.0, 9.353098006322597, 7.394885937022188, 5.68154509124368, 4.377305262281929, 7.156616626358372, 3.50479778938295, 2.9604566564951265, 2.360492861647902, 3.490458232319499, 2.663699665906849, 1.516487498082127, 0.6309879689085133, 0.0), (9.124246399149268, 6.90584244374276, 7.565907561536823, 7.969513766646325, 6.966357543311279, 3.29858461294281, 2.94764751801299, 2.4980988152572112, 3.572664624881166, 1.4540091307330743, 1.1325473816071863, 0.6703121147461852, 0.0, 9.33259128356866, 7.373433262208036, 5.662736908035931, 4.362027392199222, 7.145329249762332, 3.497338341360096, 2.94764751801299, 2.356131866387721, 3.4831787716556395, 2.656504588882109, 1.5131815123073646, 0.6278038585220692, 0.0), (9.093623478839854, 6.871118601671464, 7.549333909028926, 7.947905028731892, 6.951522477071823, 3.292543874970886, 2.9349538278930587, 2.492982147528187, 3.5671058073216297, 1.4489681873851195, 1.1288274547309753, 0.6683689034441251, 0.0, 9.31177220987977, 7.352057937885375, 5.644137273654876, 4.346904562155357, 7.1342116146432595, 3.490175006539462, 2.9349538278930587, 2.351817053550633, 3.4757612385359113, 2.6493016762439643, 1.5098667818057854, 0.6246471456064968, 0.0), (9.062636963219719, 6.836640780726876, 7.532683690115864, 7.92623304602302, 6.936391183416127, 3.28655169015479, 2.9223528503994194, 2.4880576391449933, 3.5616154268679177, 1.443968459452847, 1.1251411546495909, 0.6664288931420351, 0.0, 9.290610491667572, 7.330717824562385, 5.625705773247954, 4.33190537835854, 7.123230853735835, 3.4832806948029904, 2.9223528503994194, 2.3475369215391355, 3.4681955917080636, 2.642077682007674, 1.5065367380231727, 0.621512798247898, 0.0), (9.031250486511654, 6.802353629856113, 7.515924062026559, 7.90445808056549, 6.920943579839691, 3.2805919562580144, 2.9098218497961597, 2.483305940023303, 3.5561770498873715, 1.4389994823389904, 1.1214803983925201, 0.664488252977023, 0.0, 9.269075835343711, 7.309370782747252, 5.6074019919625995, 4.316998447016971, 7.112354099774743, 3.476628316032624, 2.9098218497961597, 2.3432799687557244, 3.4604717899198456, 2.634819360188497, 1.5031848124053118, 0.618395784532374, 0.0), (8.999427682938459, 6.768201798006293, 7.499022181989936, 7.88254039440507, 6.905159583838015, 3.274648571044058, 2.8973380903473696, 2.478707700078788, 3.5507742427473308, 1.4340507914462837, 1.1178371029892504, 0.6625431520861957, 0.0, 9.247137947319828, 7.2879746729481525, 5.5891855149462515, 4.30215237433885, 7.1015484854946616, 3.470190780110303, 2.8973380903473696, 2.3390346936028985, 3.4525797919190073, 2.6275134648016905, 1.4998044363979874, 0.6152910725460268, 0.0), (8.967132186722928, 6.734129934124536, 7.481945207234916, 7.8604402495875405, 6.889019112906595, 3.2687054322764144, 2.884878836317135, 2.474243569227122, 3.545390571815139, 1.4291119221774609, 1.1142031854692689, 0.6605897596066612, 0.0, 9.224766534007578, 7.266487355673273, 5.571015927346345, 4.287335766532382, 7.090781143630278, 3.463940996917971, 2.884878836317135, 2.334789594483153, 3.4445095564532977, 2.620146749862514, 1.4963890414469831, 0.6121936303749579, 0.0), (8.93432763208786, 6.7000826871579555, 7.464660294990421, 7.838117908158674, 6.8725020845409315, 3.26274643771858, 2.872421351969547, 2.469894197383977, 3.5400096034581354, 1.4241724099352562, 1.1105705628620632, 0.6586242446755264, 0.0, 9.201931301818599, 7.244866691430789, 5.552852814310316, 4.272517229805768, 7.080019206916271, 3.457851876337568, 2.872421351969547, 2.3305331697989855, 3.4362510422704657, 2.612705969386225, 1.4929320589980841, 0.6090984261052688, 0.0), (8.900977653256046, 6.666004706053673, 7.447134602485375, 7.815533632164248, 6.855588416236526, 3.2567554851340508, 2.859942901568691, 2.465640234465026, 3.534614904043661, 1.4192217901224033, 1.1069311521971208, 0.6566427764298991, 0.0, 9.178601957164537, 7.223070540728888, 5.534655760985604, 4.257665370367209, 7.069229808087322, 3.4518963282510366, 2.859942901568691, 2.3262539179528936, 3.427794208118263, 2.6051778773880834, 1.4894269204970751, 0.6060004278230613, 0.0), (8.867045884450281, 6.631840639758805, 7.4293352869486995, 7.792647683650037, 6.838258025488874, 3.250716472286322, 2.8474207493786565, 2.4614623303859418, 3.529190039939058, 1.4142495981416365, 1.1032768705039286, 0.6546415240068865, 0.0, 9.154748206457038, 7.20105676407575, 5.516384352519642, 4.242748794424909, 7.058380079878116, 3.4460472625403185, 2.8474207493786565, 2.321940337347373, 3.419129012744437, 2.597549227883346, 1.4858670573897401, 0.6028946036144368, 0.0), (8.832495959893366, 6.5975351372204685, 7.411229505609316, 7.769420324661814, 6.820490829793475, 3.2446132969388883, 2.8348321596635313, 2.457341135062396, 3.5237185775116666, 1.4092453693956895, 1.0995996348119743, 0.6526166565435961, 0.0, 9.130339756107748, 7.178783221979556, 5.4979981740598705, 4.2277361081870675, 7.047437155023333, 3.4402775890873545, 2.8348321596635313, 2.3175809263849203, 3.4102454148967376, 2.589806774887272, 1.4822459011218634, 0.5997759215654973, 0.0), (8.797291513808094, 6.563032847385783, 7.392784415696151, 7.7458118172453565, 6.802266746645829, 3.238429856855247, 2.8221543966874045, 2.4532572984100627, 3.5181840831288285, 1.4041986392872965, 1.0958913621507447, 0.6505643431771354, 0.0, 9.105346312528312, 7.156207774948489, 5.479456810753724, 4.212595917861889, 7.036368166257657, 3.4345602177740875, 2.8221543966874045, 2.3131641834680337, 3.4011333733229145, 2.5819372724151193, 1.4785568831392302, 0.596639349762344, 0.0), (8.76139618041726, 6.528278419201865, 7.373967174438122, 7.72178242344644, 6.783565693541435, 3.2321500497988933, 2.8093647247143627, 2.449191470344614, 3.5125701231578845, 1.3990989432191914, 1.0921439695497275, 0.6484807530446118, 0.0, 9.079737582130376, 7.13328828349073, 5.460719847748638, 4.1972968296575734, 7.025140246315769, 3.4288680584824593, 2.8093647247143627, 2.3086786069992096, 3.3917828467707176, 2.573927474482147, 1.4747934348876244, 0.5934798562910787, 0.0), (8.724773593943663, 6.493216501615832, 7.354744939064153, 7.697292405310838, 6.764367587975791, 3.225757773533322, 2.7964404080084946, 2.445124300781722, 3.5068602639661752, 1.3939358165941083, 1.0883493740384103, 0.6463620552831327, 0.0, 9.053483271325586, 7.10998260811446, 5.44174687019205, 4.181807449782324, 7.0137205279323505, 3.4231740210944106, 2.7964404080084946, 2.3041126953809443, 3.3821837939878954, 2.5657641351036133, 1.4709489878128308, 0.590292409237803, 0.0), (8.687387388610095, 6.457791743574804, 7.33508486680317, 7.672302024884328, 6.7446523474443945, 3.2192369258220297, 2.7833587108338893, 2.44103643963706, 3.5010380719210428, 1.388698794814781, 1.0844994926462799, 0.6442044190298056, 0.0, 9.026553086525583, 7.0862486093278605, 5.422497463231399, 4.166096384444343, 7.0020761438420855, 3.417451015491884, 2.7833587108338893, 2.2994549470157355, 3.3723261737221972, 2.557434008294776, 1.4670169733606342, 0.5870719766886187, 0.0), (8.649201198639354, 6.421948794025897, 7.314954114884091, 7.646771544212684, 6.724399889442747, 3.212571404428512, 2.770096897454634, 2.4369085368263, 3.4950871133898262, 1.3833774132839443, 1.0805862424028239, 0.6420040134217377, 0.0, 8.99891673414202, 7.0620441476391145, 5.402931212014119, 4.150132239851832, 6.9901742267796525, 3.41167195155682, 2.770096897454634, 2.2946938603060802, 3.3621999447213735, 2.548923848070895, 1.4629908229768183, 0.583813526729627, 0.0), (8.610178658254235, 6.385632301916229, 7.294319840535841, 7.62066122534168, 6.703590131466344, 3.205745107116265, 2.7566322321348173, 2.4327212422651154, 3.4889909547398688, 1.3779612074043308, 1.0766015403375297, 0.6397570075960368, 0.0, 8.970543920586536, 7.037327083556404, 5.383007701687648, 4.133883622212991, 6.9779819094797375, 3.4058097391711617, 2.7566322321348173, 2.289817933654475, 3.351795065733172, 2.540220408447227, 1.4588639681071682, 0.58051202744693, 0.0), (8.570283401677534, 6.348786916192918, 7.273149200987342, 7.593931330317094, 6.682202991010689, 3.1987419316487826, 2.7429419791385277, 2.428455205869179, 3.4827331623385107, 1.3724397125786756, 1.0725373034798844, 0.63745957068981, 0.0, 8.941404352270776, 7.012055277587909, 5.362686517399421, 4.117319137736026, 6.965466324677021, 3.3998372882168506, 2.7429419791385277, 2.284815665463416, 3.3411014955053444, 2.5313104434390317, 1.4546298401974684, 0.577162446926629, 0.0), (8.529479063132047, 6.311357285803083, 7.251409353467515, 7.566542121184698, 6.660218385571278, 3.1915457757895624, 2.729003402729852, 2.4240910775541624, 3.4762973025530934, 1.3668024642097119, 1.0683854488593754, 0.6351078718401649, 0.0, 8.91146773560639, 6.986186590241813, 5.341927244296877, 4.100407392629135, 6.952594605106187, 3.3937275085758274, 2.729003402729852, 2.2796755541354017, 3.330109192785639, 2.5221807070615663, 1.450281870693503, 0.5737597532548258, 0.0), (8.487729276840568, 6.273288059693839, 7.229067455205284, 7.538453859990269, 6.63761623264361, 3.184140537302099, 2.7147937671728797, 2.4196095072357395, 3.469666941750957, 1.3610389977001744, 1.0641378935054902, 0.6326980801842089, 0.0, 8.880703777005019, 6.959678882026297, 5.32068946752745, 4.083116993100523, 6.939333883501914, 3.3874533101300353, 2.7147937671728797, 2.274386098072928, 3.318808116321805, 2.51281795333009, 1.4458134910410567, 0.5702989145176218, 0.0), (8.444997677025897, 6.234523886812306, 7.206090663429573, 7.509626808779583, 6.614376449723186, 3.176510113949888, 2.7002903367316984, 2.4149911448295818, 3.462825646299444, 1.3551388484527966, 1.0597865544477159, 0.6302263648590494, 0.0, 8.849082182878314, 6.932490013449542, 5.298932772238579, 4.0654165453583895, 6.925651292598888, 3.3809876027614147, 2.7002903367316984, 2.2689357956784915, 3.307188224861593, 2.5032089362598615, 1.4412181326859146, 0.5667748988011189, 0.0), (8.40124789791083, 6.195009416105602, 7.1824461353693, 7.480021229598415, 6.590478954305501, 3.1686384034964257, 2.6854703756703975, 2.4102166402513627, 3.455756982565893, 1.349091551870313, 1.0553233487155398, 0.6276888950017938, 0.0, 8.816572659637913, 6.904577845019731, 5.276616743577699, 4.047274655610939, 6.911513965131786, 3.3743032963519077, 2.6854703756703975, 2.26331314535459, 3.2952394771527507, 2.4933404098661387, 1.4364892270738603, 0.5631826741914184, 0.0), (8.356443573718156, 6.154689296520844, 7.158101028253392, 7.44959738449254, 6.565903663886058, 3.1605093037052074, 2.670311148253063, 2.4052666434167547, 3.448444516917647, 1.3428866433554572, 1.0507401933384497, 0.6250818397495496, 0.0, 8.783144913695466, 6.875900237245045, 5.253700966692247, 4.028659930066371, 6.896889033835294, 3.3673733007834565, 2.670311148253063, 2.2575066455037196, 3.282951831943029, 2.4831991281641805, 1.4316202056506786, 0.5595172087746222, 0.0), (8.310548338670674, 6.113508177005149, 7.133022499310772, 7.418315535507731, 6.540630495960352, 3.152106712339729, 2.6547899187437842, 2.4001218042414303, 3.4408718157220486, 1.3365136583109634, 1.0460290053459322, 0.6224013682394242, 0.0, 8.748768651462617, 6.846415050633665, 5.230145026729661, 4.009540974932889, 6.881743631444097, 3.360170525938002, 2.6547899187437842, 2.251504794528378, 3.270315247980176, 2.472771845169244, 1.4266044998621543, 0.5557734706368318, 0.0), (8.263525826991184, 6.071410706505636, 7.107177705770357, 7.386135944689768, 6.514639368023886, 3.1434145271634857, 2.6388839514066493, 2.3947627726410623, 3.4330224453464364, 1.3299621321395652, 1.0411817017674754, 0.619643649608525, 0.0, 8.713413579351014, 6.816080145693774, 5.205908508837376, 3.9898863964186946, 6.866044890692873, 3.3526678816974873, 2.6388839514066493, 2.245296090831061, 3.257319684011943, 2.4620453148965895, 1.4214355411540713, 0.5519464278641489, 0.0), (8.215339672902477, 6.0283415339694235, 7.080533804861075, 7.353018874084421, 6.487910197572155, 3.134416645939974, 2.6225705105057466, 2.3891701985313234, 3.424879972158151, 1.3232216002439972, 1.036190199632566, 0.6168048529939595, 0.0, 8.6770494037723, 6.784853382933553, 5.180950998162829, 3.969664800731991, 6.849759944316302, 3.344838277943853, 2.6225705105057466, 2.238869032814267, 3.2439550987860777, 2.451006291361474, 1.4161067609722149, 0.548031048542675, 0.0), (8.16595351062735, 5.984245308343629, 7.053057953811847, 7.318924585737469, 6.460422902100661, 3.1250969664326886, 2.605826860305165, 2.3833247318278863, 3.4164279625245353, 1.3162815980269928, 1.0310464159706916, 0.6138811475328351, 0.0, 8.639645831138118, 6.7526926228611845, 5.155232079853457, 3.948844794080978, 6.832855925049071, 3.3366546245590407, 2.605826860305165, 2.2322121188804918, 3.2302114510503306, 2.439641528579157, 1.4106115907623695, 0.5440223007585119, 0.0), (8.1153309743886, 5.93906667857537, 7.024717309851591, 7.283813341694685, 6.4321573991049, 3.1154393864051255, 2.5886302650689905, 2.3772070224464232, 3.40764998281293, 1.3091316608912866, 1.0257422678113395, 0.6108687023622593, 0.0, 8.601172567860118, 6.719555725984851, 5.1287113390566965, 3.9273949826738592, 6.81529996562586, 3.3280898314249923, 2.5886302650689905, 2.2253138474322327, 3.21607869955245, 2.4279377805648954, 1.4049434619703185, 0.5399151525977609, 0.0), (8.063435698409021, 5.892750293611764, 6.9954790302092364, 7.247645404001847, 6.403093606080374, 3.105427803620781, 2.5709579890613132, 2.3707977203026074, 3.398529599390676, 1.301761324239612, 1.0202696721839972, 0.6077636866193392, 0.0, 8.561599320349941, 6.68540055281273, 5.101348360919985, 3.905283972718835, 6.797059198781352, 3.3191168084236504, 2.5709579890613132, 2.2181627168719866, 3.201546803040187, 2.4158818013339496, 1.3990958060418472, 0.535704572146524, 0.0), (8.010231316911412, 5.845240802399927, 6.965310272113703, 7.210381034704727, 6.37321144052258, 3.0950461158431497, 2.5527872965462204, 2.3640774753121114, 3.3890503786251127, 1.2941601234747035, 1.0146205461181517, 0.6045622694411826, 0.0, 8.520895795019237, 6.650184963853008, 5.073102730590758, 3.88248037042411, 6.778100757250225, 3.3097084654369557, 2.5527872965462204, 2.21074722560225, 3.18660572026129, 2.403460344901576, 1.3930620544227408, 0.5313855274909026, 0.0), (7.955681464118564, 5.796482853886981, 6.934178192793912, 7.171980495849104, 6.342490819927017, 3.0842782208357287, 2.5340954517878003, 2.3570269373906068, 3.3791958868835836, 1.2863175939992944, 1.0087868066432906, 0.601260619964897, 0.0, 8.479031698279647, 6.6138668196138655, 5.043934033216452, 3.8589527819978824, 6.758391773767167, 3.2998377123468496, 2.5340954517878003, 2.2030558720255207, 3.1712454099635083, 2.390660165283035, 1.3868356385587826, 0.5269529867169983, 0.0), (7.899749774253275, 5.746421097020041, 6.902049949478785, 7.132404049480748, 6.310911661789184, 3.0731080163620113, 2.5148597190501416, 2.3496267564537683, 3.3689496905334293, 1.2782232712161197, 1.002760370788901, 0.5978549073275894, 0.0, 8.435976736542818, 6.576403980603482, 5.013801853944504, 3.8346698136483583, 6.737899381066859, 3.2894774590352753, 2.5148597190501416, 2.1950771545442938, 3.155455830894592, 2.377468016493583, 1.3804099898957571, 0.5224019179109128, 0.0), (7.842399881538343, 5.6950001807462245, 6.868892699397251, 7.091611957645439, 6.278453883604579, 3.0615194001854955, 2.4950573625973322, 2.3418575824172674, 3.3582953559419897, 1.2698666905279126, 0.9965331555844703, 0.5943413006663675, 0.0, 8.391700616220398, 6.537754307330042, 4.982665777922351, 3.809600071583737, 6.716590711883979, 3.2786006153841742, 2.4950573625973322, 2.1867995715610684, 3.1392269418022893, 2.36387065254848, 1.3737785398794504, 0.5177272891587478, 0.0), (7.78359542019656, 5.642164754012652, 6.834673599778224, 7.049564482388949, 6.245097402868703, 3.049496270069676, 2.4746656466934596, 2.333700065196776, 3.3472164494766075, 1.2612373873374074, 0.9900970780594861, 0.5907159691183387, 0.0, 8.346173043724027, 6.497875660301725, 4.95048539029743, 3.783712162012222, 6.694432898953215, 3.2671800912754865, 2.4746656466934596, 2.17821162147834, 3.1225487014343516, 2.3498548274629836, 1.3669347199556448, 0.5129240685466048, 0.0), (7.723300024450729, 5.587859465766439, 6.7993598078506325, 7.006221885757057, 6.210822137077053, 3.0370225237780484, 2.453661835602614, 2.325134854707968, 3.3356965375046217, 1.2523248970473384, 0.9834440552434354, 0.5869750818206104, 0.0, 8.299363725465357, 6.456725900026714, 4.917220276217177, 3.7569746911420143, 6.671393075009243, 3.2551887965911552, 2.453661835602614, 2.169301802698606, 3.1054110685385266, 2.335407295252353, 1.3598719615701265, 0.5079872241605854, 0.0), (7.6614773285236355, 5.532028964954703, 6.762918480843396, 6.961544429795533, 6.175608003725131, 3.0240820590741087, 2.4320231935888805, 2.316142600866515, 3.323719186393376, 1.2431187550604388, 0.9765660041658056, 0.5831148079102902, 0.0, 8.251242367856026, 6.414262887013191, 4.882830020829028, 3.7293562651813157, 6.647438372786752, 3.242599641213121, 2.4320231935888805, 2.160058613624363, 3.0878040018625654, 2.320514809931845, 1.3525836961686795, 0.5029117240867913, 0.0), (7.598090966638081, 5.474617900524564, 6.725316775985439, 6.915492376550157, 6.139434920308432, 3.0106587737213526, 2.40972698491635, 2.3067039535880913, 3.3112679625102084, 1.2336084967794434, 0.9694548418560842, 0.5791313165244852, 0.0, 8.201778677307685, 6.370444481769337, 4.84727420928042, 3.7008254903383295, 6.622535925020417, 3.2293855350233276, 2.40972698491635, 2.150470552658109, 3.069717460154216, 2.3051641255167192, 1.3450633551970879, 0.49769253641132405, 0.0), (7.533104573016862, 5.415570921423138, 6.686521850505682, 6.868025988066703, 6.102282804322456, 2.9967365654832747, 2.3867504738491094, 2.2967995627883675, 3.2983264322224626, 1.2237836576070855, 0.9621024853437583, 0.5750207768003032, 0.0, 8.150942360231976, 6.325228544803333, 4.810512426718791, 3.671350972821256, 6.596652864444925, 3.2155193879037145, 2.3867504738491094, 2.140526118202339, 3.051141402161228, 2.2893419960222348, 1.3373043701011365, 0.4923246292202853, 0.0), (7.464680946405239, 5.353748694041236, 6.644659961585297, 6.817327186238432, 6.062454070580665, 2.9814309445183143, 2.3625533604639286, 2.285748730145572, 3.2838873638663655, 1.213341479072786, 0.9542659587564906, 0.570633297016195, 0.0, 8.096485859415345, 6.276966267178143, 4.771329793782452, 3.640024437218358, 6.567774727732731, 3.200048222203801, 2.3625533604639286, 2.129593531798796, 3.0312270352903323, 2.2724423954128112, 1.3289319923170593, 0.48670442673102154, 0.0), (7.382286766978402, 5.282809876299521, 6.58894818200249, 6.7529828690913405, 6.010127539854418, 2.95965229467081, 2.334106381692858, 2.2696723053184926, 3.2621424204073812, 1.2005702485246865, 0.9445694892698324, 0.5651135436402591, 0.0, 8.025427646920194, 6.216248980042849, 4.722847446349162, 3.601710745574059, 6.5242848408147625, 3.17754122744589, 2.334106381692858, 2.114037353336293, 3.005063769927209, 2.250994289697114, 1.3177896364004982, 0.4802554432999565, 0.0), (7.284872094904309, 5.202172001162321, 6.51826746496324, 6.673933132806645, 5.94428008756453, 2.9308657560278157, 2.301121874191892, 2.248166328969728, 3.2324750757428835, 1.1853014129657236, 0.9328765847682567, 0.5583751624073207, 0.0, 7.93642060889358, 6.142126786480525, 4.664382923841283, 3.55590423889717, 6.464950151485767, 3.147432860557619, 2.301121874191892, 2.0934755400198686, 2.972140043782265, 2.2246443776022153, 1.3036534929926482, 0.47292472737839286, 0.0), (7.17322205458596, 5.11236079574043, 6.4333724765919245, 6.5809293778175455, 5.865595416188075, 2.895420057582683, 2.263840723003438, 2.2215002221290754, 3.1952765889996724, 1.1676645482927346, 0.9192902757666179, 0.5504806224089643, 0.0, 7.830374044819097, 6.055286846498606, 4.596451378833089, 3.5029936448782033, 6.390553177999345, 3.1101003109807053, 2.263840723003438, 2.0681571839876307, 2.9327977080940375, 2.1936431259391824, 1.2866744953183848, 0.46476007234003913, 0.0), (7.048121770426357, 5.013901987144635, 6.335017883012913, 6.474723004557244, 5.7747572282021356, 2.853663928328766, 2.2225038131699044, 2.1899434058263343, 3.150938219304545, 1.147789230402558, 0.9039135927797701, 0.5414923927367745, 0.0, 7.708197254180333, 5.956416320104519, 4.519567963898851, 3.4433676912076736, 6.30187643860909, 3.065920768156868, 2.2225038131699044, 2.03833137737769, 2.8873786141010678, 2.158241001519082, 1.2670035766025827, 0.4558092715586033, 0.0), (6.9103563668284975, 4.90732130248573, 6.223958350350585, 6.35606541345895, 5.672449226083792, 2.8059460972594175, 2.1773520297337003, 2.153765301091302, 3.0998512257843016, 1.1258050351920315, 0.8868495663225682, 0.5314729424823361, 0.0, 7.570799536460879, 5.846202367305696, 4.43424783161284, 3.3774151055760937, 6.199702451568603, 3.015271421527823, 2.1773520297337003, 2.0042472123281554, 2.836224613041896, 2.118688471152984, 1.2447916700701172, 0.4461201184077937, 0.0), (6.760710968195384, 4.793144468874502, 6.100948544729314, 6.225708004955863, 5.559355112310126, 2.752615293367992, 2.128626257737233, 2.113235328953779, 3.0424068675657407, 1.1018415385579923, 0.8682012269098661, 0.5204847407372336, 0.0, 7.419090191144328, 5.725332148109569, 4.34100613454933, 3.305524615673976, 6.0848137351314815, 2.9585294605352903, 2.128626257737233, 1.9661537809771372, 2.779677556155063, 2.075236001651955, 1.2201897089458629, 0.43574040626131844, 0.0), (6.599970698930017, 4.671897213421746, 5.966743132273474, 6.084402179481189, 5.436158589358215, 2.694020245647842, 2.076567382222911, 2.068622910443561, 2.9789964037756596, 1.0760283163972786, 0.8480716050565187, 0.5085902565930517, 0.0, 7.25397851771427, 5.594492822523568, 4.2403580252825925, 3.2280849491918353, 5.957992807551319, 2.8960720746209856, 2.076567382222911, 1.9243001754627442, 2.7180792946791077, 2.0281340598270634, 1.1933486264546949, 0.42471792849288603, 0.0), (6.428920683435397, 4.54410526323825, 5.82209677910744, 5.932899337468126, 5.3035433597051425, 2.630509683092322, 2.021416288233143, 2.020197466590449, 2.9100110935408576, 1.0484949446067282, 0.8265637312773799, 0.49585195914137514, 0.0, 7.0763738156542955, 5.454371550555126, 4.1328186563869, 3.145484833820184, 5.820022187081715, 2.8282764532266285, 2.021416288233143, 1.8789354879230868, 2.6517716798525712, 1.9776331124893758, 1.1644193558214881, 0.41310047847620457, 0.0), (6.248346046114523, 4.410294345434805, 5.667764151355587, 5.771950879349882, 5.1621931258279865, 2.562432334694784, 1.9634138608103373, 1.9682284184242402, 2.835842195988133, 1.0193709990831787, 0.8037806360873045, 0.48233231747378824, 0.0, 6.887185384447996, 5.30565549221167, 4.0189031804365225, 3.058112997249536, 5.671684391976266, 2.755519785793936, 1.9634138608103373, 1.8303088104962744, 2.5810965629139933, 1.9239836264499612, 1.1335528302711175, 0.4009358495849823, 0.0), (6.059031911370395, 4.270990187122201, 5.50449991514229, 5.60230820555966, 5.012791590203827, 2.490136929448583, 1.902800984996902, 1.9129851869747332, 2.7568809702442847, 0.9887860557234682, 0.7798253500011468, 0.468093800681876, 0.0, 6.6873225235789615, 5.149031807500635, 3.8991267500057343, 2.9663581671704042, 5.513761940488569, 2.6781792617646265, 1.902800984996902, 1.7786692353204163, 2.5063957951019136, 1.867436068519887, 1.100899983028458, 0.3882718351929274, 0.0), (5.861763403606015, 4.1267185154112305, 5.333058736591924, 5.4247227165306615, 4.856022455309747, 2.413972196347072, 1.8398185458352458, 1.8547371932717271, 2.6735186754361124, 0.9568696904244344, 0.7548009035337614, 0.45319887785722274, 0.0, 6.477694532530785, 4.985187656429449, 3.774004517668807, 2.8706090712733023, 5.347037350872225, 2.596632070580418, 1.8398185458352458, 1.724265854533623, 2.4280112276548733, 1.808240905510221, 1.066611747318385, 0.3751562286737483, 0.0), (5.657325647224384, 3.978005057412684, 5.154195281828863, 5.23994581269609, 4.692569423622822, 2.334286864383604, 1.7747074283677764, 1.7937538583450197, 2.5861465706904125, 0.9237514790829147, 0.7288103272000027, 0.4377100180914133, 0.0, 6.259210710787055, 4.814810199005545, 3.6440516360000137, 2.7712544372487433, 5.172293141380825, 2.5112554016830275, 1.7747074283677764, 1.6673477602740028, 2.346284711811411, 1.7466486042320304, 1.0308390563657726, 0.36163682340115316, 0.0), (5.4465037666285, 3.82537554023735, 4.968664216977482, 5.048728894489152, 4.523116197620137, 2.2514296625515327, 1.7077085176369027, 1.7303046032244096, 2.495155915133985, 0.8895609975957474, 0.7019566515147247, 0.4216896904760322, 0.0, 6.032780357831365, 4.638586595236354, 3.509783257573624, 2.6686829927872413, 4.99031183026797, 2.4224264445141737, 1.7077085176369027, 1.6081640446796661, 2.2615580988100685, 1.6829096314963843, 0.9937328433954964, 0.3477614127488501, 0.0), (5.230082886221365, 3.6693556909960217, 4.777220208162156, 4.851823362343048, 4.348346479778769, 2.1657493198442115, 1.6390626986850327, 1.664658848939696, 2.4009379678936282, 0.8544278218597702, 0.6743429069927823, 0.4052003641026643, 0.0, 5.799312773147303, 4.457204005129307, 3.3717145349639117, 2.56328346557931, 4.8018759357872565, 2.3305223885155746, 1.6390626986850327, 1.5469637998887225, 2.1741732398893845, 1.6172744541143496, 0.9554440416324312, 0.3335777900905475, 0.0), (5.00884813040598, 3.510471236799489, 4.58061792150726, 4.649980616690982, 4.168943972575801, 2.077594565254994, 1.5690108565545748, 1.5970860165206766, 2.303883988096141, 0.8184815277718206, 0.6460721241490297, 0.3883045080628938, 0.0, 5.5597172562184625, 4.271349588691831, 3.2303606207451483, 2.4554445833154612, 4.607767976192282, 2.235920423128947, 1.5690108565545748, 1.483996118039281, 2.0844719862879004, 1.5499935388969943, 0.916123584301452, 0.31913374879995354, 0.0), (4.783584623585344, 3.349247904758541, 4.3796120231371685, 4.443952057966156, 3.9855923784883105, 1.987314127777233, 1.4977938762879377, 1.5278555269971503, 2.204385234868321, 0.7818516912287369, 0.6172473334983214, 0.37106459144830567, 0.0, 5.314903106528433, 4.081710505931362, 3.0862366674916064, 2.34555507368621, 4.408770469736642, 2.1389977377960103, 1.4977938762879377, 1.4195100912694523, 1.9927961892441552, 1.4813173526553853, 0.8759224046274336, 0.3044770822507765, 0.0), (4.555077490162455, 3.18621142198397, 4.174957179176257, 4.2344890866017755, 3.7989753999933793, 1.8952567364042834, 1.425652642927529, 1.457236801398915, 2.102832967336968, 0.7446678881273562, 0.5879715655555117, 0.35354308335048457, 0.0, 5.0657796235608075, 3.8889739168553294, 2.939857827777558, 2.234003664382068, 4.205665934673936, 2.040131521958481, 1.425652642927529, 1.3537548117173452, 1.8994876999966896, 1.411496362200592, 0.8349914358352515, 0.28965558381672457, 0.0), (4.324111854540319, 3.0218875155865668, 3.9674080557488987, 4.0223431030310435, 3.609776739568087, 1.8017711201294973, 1.3528280415157574, 1.3854992607557703, 1.9996184446288805, 0.7070596943645169, 0.558347850835455, 0.33580245286101496, 0.0, 4.813256106799174, 3.693826981471164, 2.791739254177275, 2.1211790830935504, 3.999236889257761, 1.9396989650580787, 1.3528280415157574, 1.2869793715210696, 1.8048883697840434, 1.3407810343436815, 0.7934816111497798, 0.2747170468715061, 0.0), (4.0914728411219325, 2.856801912677122, 3.7577193189794698, 3.808265507687162, 3.4186800996895155, 1.7072060079462288, 1.2795609570950313, 1.3129123260975137, 1.8951329258708567, 0.6691566858370562, 0.528479219853006, 0.3179051690714816, 0.0, 4.5582418557271245, 3.496956859786297, 2.6423960992650297, 2.0074700575111684, 3.7902658517417134, 1.838077256536519, 1.2795609570950313, 1.2194328628187348, 1.7093400498447577, 1.269421835895721, 0.751543863795894, 0.25970926478882933, 0.0), (3.8579455743102966, 2.6914803403664256, 3.5466456349923448, 3.593007701003337, 3.226369182834742, 1.6119101288478317, 1.2060922747077587, 1.239745418453944, 1.7897676701896952, 0.6310884384418126, 0.49846870312301883, 0.299913701073469, 0.0, 4.301646169828252, 3.299050711808158, 2.4923435156150937, 1.8932653153254375, 3.5795353403793904, 1.7356435858355217, 1.2060922747077587, 1.1513643777484512, 1.613184591417371, 1.1976692336677792, 0.7093291269984691, 0.24468003094240237, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)) passenger_allighting_rate = ((0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1)) '\nparameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html\n' entropy = 8991598675325360468762009371570610170 child_seed_index = (1, 30)
# Problem Link : https://codeforces.com/problemset/problem/339/A# s = input() nums = list(s[0:len(s):2]) nums.sort() j = 0 for i in range(len(s)): if i%2 == 0: print(nums[j], end="") j += 1 else: print("+", end="")
s = input() nums = list(s[0:len(s):2]) nums.sort() j = 0 for i in range(len(s)): if i % 2 == 0: print(nums[j], end='') j += 1 else: print('+', end='')
# # PySNMP MIB module CISCO-SNMPv2-CAPABILITY (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-SNMPv2-CAPABILITY # Produced by pysmi-0.3.4 at Wed May 1 12:12:36 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion") ciscoAgentCapability, = mibBuilder.importSymbols("CISCO-SMI", "ciscoAgentCapability") ModuleCompliance, NotificationGroup, AgentCapabilities = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "AgentCapabilities") TimeTicks, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, MibIdentifier, iso, ObjectIdentity, Integer32, Unsigned32, ModuleIdentity, Counter64, Counter32, Gauge32, NotificationType, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "MibIdentifier", "iso", "ObjectIdentity", "Integer32", "Unsigned32", "ModuleIdentity", "Counter64", "Counter32", "Gauge32", "NotificationType", "Bits") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ciscoSnmpV2Capability = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 7, 113)) ciscoSnmpV2Capability.setRevisions(('2007-11-12 00:00', '2006-05-30 00:00', '2006-04-24 00:00', '2004-03-18 00:00', '2002-02-07 00:00', '2002-01-31 00:00', '1994-08-18 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoSnmpV2Capability.setRevisionsDescriptions(('Added capability statement ciscoSnmpV2Capc4710aceVA1R700 for ACE 4710 Application Control Engine Appliance.', 'Added capability statement ciscoSnmpV2CapACSWV03R000 for Application Control Engine (ACE). For ciscoSnmpV2CapabilityV10R02 commented out references to object groups snmpStatsGroup, snmpV1Group, snmpORGroup, snmpTrapGroup because they are defined only in the original RFC 1450, not in the latest RFC 3418.', 'Added the VARIATION for the notification authenticationFailure in ciscoSnmpV2CapCatOSV08R0301. Added capability statement ciscoSnmpV2CapCatOSV08R0601.', 'Added ciscoSnmpV2CapCatOSV08R0301.', 'Added following agent capabilities: - ciscoMgxSnmpV2CapabilityV20 for MGX8850 series - ciscoBpxSesSnmpV2CapabilityV10 for BPX SES.', "Added 'ciscoRpmsSnmpV2CapabilityV20' for Cisco Resource Policy Management Server (RPMS) 2.0.", 'Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoSnmpV2Capability.setLastUpdated('200711120000Z') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setContactInfo('Cisco Systems Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setDescription('Agent capabilities for SNMPv2-MIB') ciscoSnmpV2CapabilityV10R02 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapabilityV10R02 = ciscoSnmpV2CapabilityV10R02.setProductRelease('Cisco IOS 10.2') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapabilityV10R02 = ciscoSnmpV2CapabilityV10R02.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapabilityV10R02.setDescription('IOS 10.2 SNMPv2 MIB capabilities') ciscoRpmsSnmpV2CapabilityV20 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoRpmsSnmpV2CapabilityV20 = ciscoRpmsSnmpV2CapabilityV20.setProductRelease('Cisco Resource Policy Management Server (RPMS) 2.0') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoRpmsSnmpV2CapabilityV20 = ciscoRpmsSnmpV2CapabilityV20.setStatus('current') if mibBuilder.loadTexts: ciscoRpmsSnmpV2CapabilityV20.setDescription('Cisco RPMS 2.0 SNMPv2 MIB capabilities.') ciscoMgxSnmpV2CapabilityV20 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoMgxSnmpV2CapabilityV20 = ciscoMgxSnmpV2CapabilityV20.setProductRelease('MGX8850 Release 2.0.00') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoMgxSnmpV2CapabilityV20 = ciscoMgxSnmpV2CapabilityV20.setStatus('current') if mibBuilder.loadTexts: ciscoMgxSnmpV2CapabilityV20.setDescription('SNMPv2-MIB capabilities in MGX Series.') ciscoBpxSesSnmpV2CapabilityV10 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 4)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoBpxSesSnmpV2CapabilityV10 = ciscoBpxSesSnmpV2CapabilityV10.setProductRelease('Cisco BPX SES Release 1.0.00') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoBpxSesSnmpV2CapabilityV10 = ciscoBpxSesSnmpV2CapabilityV10.setStatus('current') if mibBuilder.loadTexts: ciscoBpxSesSnmpV2CapabilityV10.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2CapCatOSV08R0301 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 5)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0301 = ciscoSnmpV2CapCatOSV08R0301.setProductRelease('Cisco CatOS 8.3(1) for Catalyst 6000/6500\n and Cisco 7600 series devices.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0301 = ciscoSnmpV2CapCatOSV08R0301.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapCatOSV08R0301.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2CapCatOSV08R0601 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 6)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0601 = ciscoSnmpV2CapCatOSV08R0601.setProductRelease('Cisco CatOS 8.6(1) for Catalyst 6000/6500\n and Cisco 7600 series devices.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0601 = ciscoSnmpV2CapCatOSV08R0601.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapCatOSV08R0601.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2CapACSWV03R000 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 7)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapACSWV03R000 = ciscoSnmpV2CapACSWV03R000.setProductRelease('ACSW (Application Control Software) 3.0\n for Application Control Engine (ACE) \n Service Module.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapACSWV03R000 = ciscoSnmpV2CapACSWV03R000.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapACSWV03R000.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2Capc4710aceVA1R700 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 8)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2Capc4710aceVA1R700 = ciscoSnmpV2Capc4710aceVA1R700.setProductRelease('ACSW (Application Control Software) A1(7)\n for ACE 4710 Application Control Engine \n Appliance.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2Capc4710aceVA1R700 = ciscoSnmpV2Capc4710aceVA1R700.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2Capc4710aceVA1R700.setDescription('SNMPv2-MIB capabilities.') mibBuilder.exportSymbols("CISCO-SNMPv2-CAPABILITY", ciscoSnmpV2CapCatOSV08R0601=ciscoSnmpV2CapCatOSV08R0601, ciscoSnmpV2CapACSWV03R000=ciscoSnmpV2CapACSWV03R000, PYSNMP_MODULE_ID=ciscoSnmpV2Capability, ciscoBpxSesSnmpV2CapabilityV10=ciscoBpxSesSnmpV2CapabilityV10, ciscoSnmpV2CapCatOSV08R0301=ciscoSnmpV2CapCatOSV08R0301, ciscoMgxSnmpV2CapabilityV20=ciscoMgxSnmpV2CapabilityV20, ciscoRpmsSnmpV2CapabilityV20=ciscoRpmsSnmpV2CapabilityV20, ciscoSnmpV2Capability=ciscoSnmpV2Capability, ciscoSnmpV2Capc4710aceVA1R700=ciscoSnmpV2Capc4710aceVA1R700, ciscoSnmpV2CapabilityV10R02=ciscoSnmpV2CapabilityV10R02)
(integer, octet_string, object_identifier) = mibBuilder.importSymbols('ASN1', 'Integer', 'OctetString', 'ObjectIdentifier') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (value_range_constraint, value_size_constraint, constraints_intersection, single_value_constraint, constraints_union) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueRangeConstraint', 'ValueSizeConstraint', 'ConstraintsIntersection', 'SingleValueConstraint', 'ConstraintsUnion') (cisco_agent_capability,) = mibBuilder.importSymbols('CISCO-SMI', 'ciscoAgentCapability') (module_compliance, notification_group, agent_capabilities) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup', 'AgentCapabilities') (time_ticks, mib_scalar, mib_table, mib_table_row, mib_table_column, ip_address, mib_identifier, iso, object_identity, integer32, unsigned32, module_identity, counter64, counter32, gauge32, notification_type, bits) = mibBuilder.importSymbols('SNMPv2-SMI', 'TimeTicks', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'IpAddress', 'MibIdentifier', 'iso', 'ObjectIdentity', 'Integer32', 'Unsigned32', 'ModuleIdentity', 'Counter64', 'Counter32', 'Gauge32', 'NotificationType', 'Bits') (display_string, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TextualConvention') cisco_snmp_v2_capability = module_identity((1, 3, 6, 1, 4, 1, 9, 7, 113)) ciscoSnmpV2Capability.setRevisions(('2007-11-12 00:00', '2006-05-30 00:00', '2006-04-24 00:00', '2004-03-18 00:00', '2002-02-07 00:00', '2002-01-31 00:00', '1994-08-18 00:00')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoSnmpV2Capability.setRevisionsDescriptions(('Added capability statement ciscoSnmpV2Capc4710aceVA1R700 for ACE 4710 Application Control Engine Appliance.', 'Added capability statement ciscoSnmpV2CapACSWV03R000 for Application Control Engine (ACE). For ciscoSnmpV2CapabilityV10R02 commented out references to object groups snmpStatsGroup, snmpV1Group, snmpORGroup, snmpTrapGroup because they are defined only in the original RFC 1450, not in the latest RFC 3418.', 'Added the VARIATION for the notification authenticationFailure in ciscoSnmpV2CapCatOSV08R0301. Added capability statement ciscoSnmpV2CapCatOSV08R0601.', 'Added ciscoSnmpV2CapCatOSV08R0301.', 'Added following agent capabilities: - ciscoMgxSnmpV2CapabilityV20 for MGX8850 series - ciscoBpxSesSnmpV2CapabilityV10 for BPX SES.', "Added 'ciscoRpmsSnmpV2CapabilityV20' for Cisco Resource Policy Management Server (RPMS) 2.0.", 'Initial version of this MIB module.')) if mibBuilder.loadTexts: ciscoSnmpV2Capability.setLastUpdated('200711120000Z') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setContactInfo('Cisco Systems Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setDescription('Agent capabilities for SNMPv2-MIB') cisco_snmp_v2_capability_v10_r02 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_capability_v10_r02 = ciscoSnmpV2CapabilityV10R02.setProductRelease('Cisco IOS 10.2') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_capability_v10_r02 = ciscoSnmpV2CapabilityV10R02.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapabilityV10R02.setDescription('IOS 10.2 SNMPv2 MIB capabilities') cisco_rpms_snmp_v2_capability_v20 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_rpms_snmp_v2_capability_v20 = ciscoRpmsSnmpV2CapabilityV20.setProductRelease('Cisco Resource Policy Management Server (RPMS) 2.0') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_rpms_snmp_v2_capability_v20 = ciscoRpmsSnmpV2CapabilityV20.setStatus('current') if mibBuilder.loadTexts: ciscoRpmsSnmpV2CapabilityV20.setDescription('Cisco RPMS 2.0 SNMPv2 MIB capabilities.') cisco_mgx_snmp_v2_capability_v20 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_mgx_snmp_v2_capability_v20 = ciscoMgxSnmpV2CapabilityV20.setProductRelease('MGX8850 Release 2.0.00') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_mgx_snmp_v2_capability_v20 = ciscoMgxSnmpV2CapabilityV20.setStatus('current') if mibBuilder.loadTexts: ciscoMgxSnmpV2CapabilityV20.setDescription('SNMPv2-MIB capabilities in MGX Series.') cisco_bpx_ses_snmp_v2_capability_v10 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 4)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_bpx_ses_snmp_v2_capability_v10 = ciscoBpxSesSnmpV2CapabilityV10.setProductRelease('Cisco BPX SES Release 1.0.00') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_bpx_ses_snmp_v2_capability_v10 = ciscoBpxSesSnmpV2CapabilityV10.setStatus('current') if mibBuilder.loadTexts: ciscoBpxSesSnmpV2CapabilityV10.setDescription('SNMPv2-MIB capabilities.') cisco_snmp_v2_cap_cat_osv08_r0301 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 5)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_cap_cat_osv08_r0301 = ciscoSnmpV2CapCatOSV08R0301.setProductRelease('Cisco CatOS 8.3(1) for Catalyst 6000/6500\n and Cisco 7600 series devices.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_cap_cat_osv08_r0301 = ciscoSnmpV2CapCatOSV08R0301.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapCatOSV08R0301.setDescription('SNMPv2-MIB capabilities.') cisco_snmp_v2_cap_cat_osv08_r0601 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 6)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_cap_cat_osv08_r0601 = ciscoSnmpV2CapCatOSV08R0601.setProductRelease('Cisco CatOS 8.6(1) for Catalyst 6000/6500\n and Cisco 7600 series devices.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_cap_cat_osv08_r0601 = ciscoSnmpV2CapCatOSV08R0601.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapCatOSV08R0601.setDescription('SNMPv2-MIB capabilities.') cisco_snmp_v2_cap_acswv03_r000 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 7)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_cap_acswv03_r000 = ciscoSnmpV2CapACSWV03R000.setProductRelease('ACSW (Application Control Software) 3.0\n for Application Control Engine (ACE) \n Service Module.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_cap_acswv03_r000 = ciscoSnmpV2CapACSWV03R000.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapACSWV03R000.setDescription('SNMPv2-MIB capabilities.') cisco_snmp_v2_capc4710ace_va1_r700 = agent_capabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 8)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_capc4710ace_va1_r700 = ciscoSnmpV2Capc4710aceVA1R700.setProductRelease('ACSW (Application Control Software) A1(7)\n for ACE 4710 Application Control Engine \n Appliance.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_snmp_v2_capc4710ace_va1_r700 = ciscoSnmpV2Capc4710aceVA1R700.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2Capc4710aceVA1R700.setDescription('SNMPv2-MIB capabilities.') mibBuilder.exportSymbols('CISCO-SNMPv2-CAPABILITY', ciscoSnmpV2CapCatOSV08R0601=ciscoSnmpV2CapCatOSV08R0601, ciscoSnmpV2CapACSWV03R000=ciscoSnmpV2CapACSWV03R000, PYSNMP_MODULE_ID=ciscoSnmpV2Capability, ciscoBpxSesSnmpV2CapabilityV10=ciscoBpxSesSnmpV2CapabilityV10, ciscoSnmpV2CapCatOSV08R0301=ciscoSnmpV2CapCatOSV08R0301, ciscoMgxSnmpV2CapabilityV20=ciscoMgxSnmpV2CapabilityV20, ciscoRpmsSnmpV2CapabilityV20=ciscoRpmsSnmpV2CapabilityV20, ciscoSnmpV2Capability=ciscoSnmpV2Capability, ciscoSnmpV2Capc4710aceVA1R700=ciscoSnmpV2Capc4710aceVA1R700, ciscoSnmpV2CapabilityV10R02=ciscoSnmpV2CapabilityV10R02)
description = 'Asyn serial controllers in the SINQ AMOR.' group='lowlevel' pvprefix = 'SQ:AMOR:serial' devices = dict( serial1=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 1', commandpv=pvprefix + '1.AOUT', replypv=pvprefix + '1.AINP', ), serial2=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 2', commandpv=pvprefix + '2.AOUT', replypv=pvprefix + '2.AINP', ), serial3=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 3', commandpv=pvprefix + '3.AOUT', replypv=pvprefix + '3.AINP', ), cter1=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the counter box', commandpv='SQ:AMOR:cter1.AOUT', replypv='SQ:AMOR:cter1.AINP', ), )
description = 'Asyn serial controllers in the SINQ AMOR.' group = 'lowlevel' pvprefix = 'SQ:AMOR:serial' devices = dict(serial1=device('nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 1', commandpv=pvprefix + '1.AOUT', replypv=pvprefix + '1.AINP'), serial2=device('nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 2', commandpv=pvprefix + '2.AOUT', replypv=pvprefix + '2.AINP'), serial3=device('nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 3', commandpv=pvprefix + '3.AOUT', replypv=pvprefix + '3.AINP'), cter1=device('nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the counter box', commandpv='SQ:AMOR:cter1.AOUT', replypv='SQ:AMOR:cter1.AINP'))
# SPDX-FileCopyrightText: 2021 Pierre Constantineau # SPDX-License-Identifier: MIT """ These keycodes are based on Universal Serial Bus HID Usage Tables Document Version 1.12 Chapter 10: Keyboard/Keypad Page(0x07) - Page 53 https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf """ class Keycode: NO = 0x00 XXXXXXX = 0x00 ROLL_OVER = 0x01 TRANSPARENT = 0x01 TRNS = 0x01 _______ = 0x01 POST_FAIL = 0x02 UNDEFINED = 0x03 A = 0x04 B = 0x05 C = 0x06 D = 0x07 E = 0x08 F = 0x09 G = 0x0A H = 0x0B I = 0x0C J = 0x0D K = 0x0E L = 0x0F M = 0x10 N = 0x11 O = 0x12 P = 0x13 Q = 0x14 R = 0x15 S = 0x16 T = 0x17 U = 0x18 V = 0x19 W = 0x1A X = 0x1B Y = 0x1C Z = 0x1D ONE = 0x1E TWO = 0x1F THREE = 0x20 FOUR = 0x21 FIVE = 0x22 SIX = 0x23 SEVEN = 0x24 EIGHT = 0x25 NINE = 0x26 ZERO = 0x27 ENTER = 0x28 ESCAPE = 0x29 BSPACE = 0x2A TAB = 0x2B SPACE = 0x2C MINUS = 0x2D EQUAL = 0x2E LBRACKET = 0x2F RBRACKET = 0x30 BSLASH = 0x31 NONUS_HASH = 0x32 SCOLON = 0x33 QUOTE = 0x34 GRAVE = 0x35 COMMA = 0x36 DOT = 0x37 SLASH = 0x38 CAPSLOCK = 0x39 F1 = 0x3A F2 = 0x3B F3 = 0x3C F4 = 0x3D F5 = 0x3E F6 = 0x3F F7 = 0x40 F8 = 0x41 F9 = 0x42 F10 = 0x43 F11 = 0x44 F12 = 0x45 PSCREEN = 0x46 SCROLLLOCK = 0x47 PAUSE = 0x48 INSERT = 0x49 HOME = 0x4A PGUP = 0x4B DELETE = 0x4C END = 0x4D PGDOWN = 0x4E RIGHT = 0x4F LEFT = 0x50 DOWN = 0x51 UP = 0x52 NUMLOCK = 0x53 KP_SLASH = 0x54 KP_ASTERISK = 0x55 KP_MINUS = 0x56 KP_PLUS = 0x57 KP_ENTER = 0x58 KP_1 = 0x59 KP_2 = 0x5A KP_3 = 0x5B KP_4 = 0x5C KP_5 = 0x5D KP_6 = 0x5E KP_7 = 0x5F KP_8 = 0x60 KP_9 = 0x61 KP_0 = 0x62 KP_DOT = 0x63 NONUS_BSLASH = 0x64 APPLICATION = 0x65 POWER = 0x66 KP_EQUAL = 0x67 F13 = 0x68 F14 = 0x69 F15 = 0x6A F16 = 0x6B F17 = 0x6C F18 = 0x6D F19 = 0x6E F20 = 0x6F F21 = 0x70 F22 = 0x71 F23 = 0x72 F24 = 0x73 EXECUTE = 0x74 HELP = 0x75 MENU = 0x76 SELECT = 0x77 STOP = 0x78 AGAIN = 0x79 UNDO = 0x7A CUT = 0x7B COPY = 0x7C PASTE = 0x7D FIND = 0x7E MUTE = 0x7F VOLUP = 0x80 VOLDOWN = 0x81 LOCKING_CAPS = 0x82 LOCKING_NUM = 0x83 LOCKING_SCROLL = 0x84 KP_COMMA = 0x85 KP_EQUAL_AS400 = 0x86 INT1 = 0x87 INT2 = 0x88 INT3 = 0x89 INT4 = 0x8A INT5 = 0x8B INT6 = 0x8C INT7 = 0x8D INT8 = 0x8E INT9 = 0x8F LANG1 = 0x90 LANG2 = 0x91 LANG3 = 0x92 LANG4 = 0x93 LANG5 = 0x94 LANG6 = 0x95 LANG7 = 0x96 LANG8 = 0x97 LANG9 = 0x98 ALT_ERASE = 0x99 SYSREQ = 0x9A CANCEL = 0x9B CLEAR = 0x9C PRIOR = 0x9D RETURN = 0x9E SEPARATOR = 0x9F OUT = 0xA0 OPER = 0xA1 CLEAR_AGAIN = 0xA2 CRSEL = 0xA3 EXSEL = 0xA4 # LAST OF THE VALID KEYCODES ANYTHING BELOW SHOULD BE FILTERED OUT RESERVED_A5 = 0xA5 # Used as macro identifier RESERVED_A6 = 0xA6 RESERVED_A7 = 0xA7 RESERVED_A8 = 0xA8 RESERVED_A9 = 0xA9 RESERVED_AA = 0xAA RESERVED_AB = 0xAB RESERVED_AC = 0xAC RESERVED_AD = 0xAD RESERVED_AE = 0xAE RESERVED_AF = 0xAF LCTRL = 0xE0 LSHIFT = 0xE1 LALT = 0xE2 LGUI = 0xE3 RCTRL = 0xE4 RSHIFT = 0xE5 RALT = 0xE6 RGUI = 0xE7 LAYER_0 = 0xF0 LAYER_1 = 0xF1 LAYER_2 = 0xF2 LAYER_3 = 0xF3 LAYER_4 = 0xF4 LAYER_5 = 0xF5 LAYER_6 = 0xF6 LAYER_7 = 0xF7 LAYER_8 = 0xF8 LAYER_9 = 0xF9 LAYER_A = 0xFA LAYER_B = 0xFB LAYER_C = 0xFC LAYER_D = 0xFD LAYER_E = 0xFE LAYER_F = 0xFF LCTL = LCTRL RCTL = RCTRL LSFT = LSHIFT RSFT = RSHIFT ESC = ESCAPE BSPC = BSPACE ENT = ENTER DEL = DELETE INS = INSERT CAPS = CAPSLOCK CLCK = CAPSLOCK RGHT = RIGHT PGDN = PGDOWN PSCR = PSCREEN SLCK = SCROLLLOCK PAUS = PAUSE BRK = PAUSE NLCK = NUMLOCK SPC = SPACE MINS = MINUS EQL = EQUAL GRV = GRAVE RBRC = RBRACKET LBRC = LBRACKET COMM = COMMA BSLS = BSLASH SLSH = SLASH SCLN = SCOLON QUOT = QUOTE APP = APPLICATION NUHS = NONUS_HASH NUBS = NONUS_BSLASH LCAP = LOCKING_CAPS LNUM = LOCKING_NUM LSCR = LOCKING_SCROLL ERAS = ALT_ERASE CLR = CLEAR # Japanese specific ZKHK = GRAVE RO = INT1 KANA = INT2 JYEN = INT3 HENK = INT4 MHEN = INT5 # Korean specific HAEN = LANG1 HANJ = LANG2 # Keypad P1 = KP_1 P2 = KP_2 P3 = KP_3 P4 = KP_4 P5 = KP_5 P6 = KP_6 P7 = KP_7 P8 = KP_8 P9 = KP_9 P0 = KP_0 PDOT = KP_DOT PCMM = KP_COMMA PSLS = KP_SLASH PAST = KP_ASTERISK PMNS = KP_MINUS PPLS = KP_PLUS PEQL = KP_EQUAL PENT = KP_ENTER # Unix function key EXEC = EXECUTE SLCT = SELECT AGIN = AGAIN PSTE = PASTE # GUI key aliases LCMD = LGUI LWIN = LGUI RCMD = RGUI RWIN = RGUI BIT_LCTRL = (1) BIT_LSHIFT = (2) BIT_LALT = (4) BIT_LGUI = (8) BIT_RCTRL = (16) BIT_RSHIFT = (32) BIT_RALT = (64) BIT_RGUI = (128) MOD_LCTRL = (BIT_LCTRL << 8) MOD_LSHIFT = (BIT_LSHIFT << 8) MOD_LALT = (BIT_LALT << 8) MOD_LGUI = (BIT_LGUI << 8) MOD_RCTRL = (BIT_RCTRL << 8) MOD_RSHIFT = (BIT_RSHIFT << 8) MOD_RALT = (BIT_RALT << 8) MOD_RGUI = (BIT_RGUI << 8) def MOD(M, KC): return ( KC | M ) def LALT(KEY): return ( KEY | ((4) << 8) ) def RALT(KEY): return ( KEY | ((64)<< 8) ) def LCTL(KEY): return ( KEY | ((1)<< 8) ) def RCTL(KEY): return ( KEY | ((16) << 8) ) def RSFT(KEY): return ( KEY | ((32) << 8) ) def LSFT(KEY): return ( KEY | ((2) << 8) ) def LGUI(KEY): return ( KEY | ((8) << 8) ) def RGUI(KEY): return ( KEY | ((128) << 8) ) def S(KEY): return ( KEY | ((2) << 8) ) LT = MOD(MOD_LSHIFT, COMMA) GT = MOD(MOD_LSHIFT, DOT) TILD = MOD(MOD_LSHIFT, GRV) EXLM = MOD(MOD_LSHIFT, ONE) AT = MOD(MOD_LSHIFT, TWO) HASH = MOD(MOD_LSHIFT, THREE) DLR = MOD(MOD_LSHIFT, FOUR) PERC = MOD(MOD_LSHIFT, FIVE) CIRC = MOD(MOD_LSHIFT, SIX) AMPR = MOD(MOD_LSHIFT, SEVEN) ASTR = MOD(MOD_LSHIFT, EIGHT) LPRN = MOD(MOD_LSHIFT, NINE) RPRN = MOD(MOD_LSHIFT, ZERO) UNDS = MOD(MOD_LSHIFT, MINUS) PLUS = MOD(MOD_LSHIFT, EQUAL) LCBR = MOD(MOD_LSHIFT, LBRC) RCBR = MOD(MOD_LSHIFT, RBRC) PIPE = MOD(MOD_LSHIFT, BSLS) COLN = MOD(MOD_LSHIFT, SCLN) DQUO = MOD(MOD_LSHIFT, QUOTE) DQT = DQUO LT = MOD(MOD_LSHIFT, COMMA) GT = MOD(MOD_LSHIFT, DOT) QUES = MOD(MOD_LSHIFT, SLASH) NUTL = MOD(MOD_LSHIFT,NUHS) NUPI = MOD(MOD_LSHIFT,NUBS) LABK = LT RABK = GT def MC(KC): return (( KC << 8 ) | 0xA5 ) # move KC to upper 8 bits and use RESERVED_A5 keycode for marking this as a macro. def KB(KC): return (( KC << 8 ) | 0xA6 ) # move KC to upper 8 bits and use RESERVED_A6 keycode for marking this as a special keyboard function. def MK(KC): return (( KC << 8 ) | 0xA7 ) # move KC to upper 8 bits and use RESERVED_A7 keycode for marking this as a media key. def MS(KC): return (( KC << 8 ) | 0xA9 ) # move KC to upper 8 bits and use RESERVED_A9 keycode for marking this as a mouse key. # Mousekey MS_OFF = MS(A) MS_UP = MS(B) MS_DOWN = MS(C) MS_LEFT = MS(D) MS_RIGHT = MS(E) MS_BTN1 = MS(F) MS_BTN2 = MS(G) MS_BTN3 = MS(H) MS_BTN4 = MS(I) MS_BTN5 = MS(J) MS_WH_UP = MS(K) MS_WH_DOWN = MS(L) MS_WH_DN = MS_WH_DOWN MS_WH_LEFT = MS(M) MS_WH_RIGHT = MS(N) MS_ACCEL0 = MS(O) MS_ACCEL1 = MS(P) MS_ACCEL2 = MS(Q) MS_U = MS_UP MS_D = MS_DOWN MS_L = MS_LEFT MS_R = MS_RIGHT BTN1 = MS_BTN1 BTN2 = MS_BTN2 BTN3 = MS_BTN3 BTN4 = MS_BTN4 BTN5 = MS_BTN5 WH_U = MS_WH_UP WH_D = MS_WH_DOWN WH_L = MS_WH_LEFT WH_R = MS_WH_RIGHT ACL0 = MS_ACCEL0 ACL1 = MS_ACCEL1 ACL2 = MS_ACCEL2
""" These keycodes are based on Universal Serial Bus HID Usage Tables Document Version 1.12 Chapter 10: Keyboard/Keypad Page(0x07) - Page 53 https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf """ class Keycode: no = 0 xxxxxxx = 0 roll_over = 1 transparent = 1 trns = 1 _______ = 1 post_fail = 2 undefined = 3 a = 4 b = 5 c = 6 d = 7 e = 8 f = 9 g = 10 h = 11 i = 12 j = 13 k = 14 l = 15 m = 16 n = 17 o = 18 p = 19 q = 20 r = 21 s = 22 t = 23 u = 24 v = 25 w = 26 x = 27 y = 28 z = 29 one = 30 two = 31 three = 32 four = 33 five = 34 six = 35 seven = 36 eight = 37 nine = 38 zero = 39 enter = 40 escape = 41 bspace = 42 tab = 43 space = 44 minus = 45 equal = 46 lbracket = 47 rbracket = 48 bslash = 49 nonus_hash = 50 scolon = 51 quote = 52 grave = 53 comma = 54 dot = 55 slash = 56 capslock = 57 f1 = 58 f2 = 59 f3 = 60 f4 = 61 f5 = 62 f6 = 63 f7 = 64 f8 = 65 f9 = 66 f10 = 67 f11 = 68 f12 = 69 pscreen = 70 scrolllock = 71 pause = 72 insert = 73 home = 74 pgup = 75 delete = 76 end = 77 pgdown = 78 right = 79 left = 80 down = 81 up = 82 numlock = 83 kp_slash = 84 kp_asterisk = 85 kp_minus = 86 kp_plus = 87 kp_enter = 88 kp_1 = 89 kp_2 = 90 kp_3 = 91 kp_4 = 92 kp_5 = 93 kp_6 = 94 kp_7 = 95 kp_8 = 96 kp_9 = 97 kp_0 = 98 kp_dot = 99 nonus_bslash = 100 application = 101 power = 102 kp_equal = 103 f13 = 104 f14 = 105 f15 = 106 f16 = 107 f17 = 108 f18 = 109 f19 = 110 f20 = 111 f21 = 112 f22 = 113 f23 = 114 f24 = 115 execute = 116 help = 117 menu = 118 select = 119 stop = 120 again = 121 undo = 122 cut = 123 copy = 124 paste = 125 find = 126 mute = 127 volup = 128 voldown = 129 locking_caps = 130 locking_num = 131 locking_scroll = 132 kp_comma = 133 kp_equal_as400 = 134 int1 = 135 int2 = 136 int3 = 137 int4 = 138 int5 = 139 int6 = 140 int7 = 141 int8 = 142 int9 = 143 lang1 = 144 lang2 = 145 lang3 = 146 lang4 = 147 lang5 = 148 lang6 = 149 lang7 = 150 lang8 = 151 lang9 = 152 alt_erase = 153 sysreq = 154 cancel = 155 clear = 156 prior = 157 return = 158 separator = 159 out = 160 oper = 161 clear_again = 162 crsel = 163 exsel = 164 reserved_a5 = 165 reserved_a6 = 166 reserved_a7 = 167 reserved_a8 = 168 reserved_a9 = 169 reserved_aa = 170 reserved_ab = 171 reserved_ac = 172 reserved_ad = 173 reserved_ae = 174 reserved_af = 175 lctrl = 224 lshift = 225 lalt = 226 lgui = 227 rctrl = 228 rshift = 229 ralt = 230 rgui = 231 layer_0 = 240 layer_1 = 241 layer_2 = 242 layer_3 = 243 layer_4 = 244 layer_5 = 245 layer_6 = 246 layer_7 = 247 layer_8 = 248 layer_9 = 249 layer_a = 250 layer_b = 251 layer_c = 252 layer_d = 253 layer_e = 254 layer_f = 255 lctl = LCTRL rctl = RCTRL lsft = LSHIFT rsft = RSHIFT esc = ESCAPE bspc = BSPACE ent = ENTER del = DELETE ins = INSERT caps = CAPSLOCK clck = CAPSLOCK rght = RIGHT pgdn = PGDOWN pscr = PSCREEN slck = SCROLLLOCK paus = PAUSE brk = PAUSE nlck = NUMLOCK spc = SPACE mins = MINUS eql = EQUAL grv = GRAVE rbrc = RBRACKET lbrc = LBRACKET comm = COMMA bsls = BSLASH slsh = SLASH scln = SCOLON quot = QUOTE app = APPLICATION nuhs = NONUS_HASH nubs = NONUS_BSLASH lcap = LOCKING_CAPS lnum = LOCKING_NUM lscr = LOCKING_SCROLL eras = ALT_ERASE clr = CLEAR zkhk = GRAVE ro = INT1 kana = INT2 jyen = INT3 henk = INT4 mhen = INT5 haen = LANG1 hanj = LANG2 p1 = KP_1 p2 = KP_2 p3 = KP_3 p4 = KP_4 p5 = KP_5 p6 = KP_6 p7 = KP_7 p8 = KP_8 p9 = KP_9 p0 = KP_0 pdot = KP_DOT pcmm = KP_COMMA psls = KP_SLASH past = KP_ASTERISK pmns = KP_MINUS ppls = KP_PLUS peql = KP_EQUAL pent = KP_ENTER exec = EXECUTE slct = SELECT agin = AGAIN pste = PASTE lcmd = LGUI lwin = LGUI rcmd = RGUI rwin = RGUI bit_lctrl = 1 bit_lshift = 2 bit_lalt = 4 bit_lgui = 8 bit_rctrl = 16 bit_rshift = 32 bit_ralt = 64 bit_rgui = 128 mod_lctrl = BIT_LCTRL << 8 mod_lshift = BIT_LSHIFT << 8 mod_lalt = BIT_LALT << 8 mod_lgui = BIT_LGUI << 8 mod_rctrl = BIT_RCTRL << 8 mod_rshift = BIT_RSHIFT << 8 mod_ralt = BIT_RALT << 8 mod_rgui = BIT_RGUI << 8 def mod(M, KC): return KC | M def lalt(KEY): return KEY | 4 << 8 def ralt(KEY): return KEY | 64 << 8 def lctl(KEY): return KEY | 1 << 8 def rctl(KEY): return KEY | 16 << 8 def rsft(KEY): return KEY | 32 << 8 def lsft(KEY): return KEY | 2 << 8 def lgui(KEY): return KEY | 8 << 8 def rgui(KEY): return KEY | 128 << 8 def s(KEY): return KEY | 2 << 8 lt = mod(MOD_LSHIFT, COMMA) gt = mod(MOD_LSHIFT, DOT) tild = mod(MOD_LSHIFT, GRV) exlm = mod(MOD_LSHIFT, ONE) at = mod(MOD_LSHIFT, TWO) hash = mod(MOD_LSHIFT, THREE) dlr = mod(MOD_LSHIFT, FOUR) perc = mod(MOD_LSHIFT, FIVE) circ = mod(MOD_LSHIFT, SIX) ampr = mod(MOD_LSHIFT, SEVEN) astr = mod(MOD_LSHIFT, EIGHT) lprn = mod(MOD_LSHIFT, NINE) rprn = mod(MOD_LSHIFT, ZERO) unds = mod(MOD_LSHIFT, MINUS) plus = mod(MOD_LSHIFT, EQUAL) lcbr = mod(MOD_LSHIFT, LBRC) rcbr = mod(MOD_LSHIFT, RBRC) pipe = mod(MOD_LSHIFT, BSLS) coln = mod(MOD_LSHIFT, SCLN) dquo = mod(MOD_LSHIFT, QUOTE) dqt = DQUO lt = mod(MOD_LSHIFT, COMMA) gt = mod(MOD_LSHIFT, DOT) ques = mod(MOD_LSHIFT, SLASH) nutl = mod(MOD_LSHIFT, NUHS) nupi = mod(MOD_LSHIFT, NUBS) labk = LT rabk = GT def mc(KC): return KC << 8 | 165 def kb(KC): return KC << 8 | 166 def mk(KC): return KC << 8 | 167 def ms(KC): return KC << 8 | 169 ms_off = ms(A) ms_up = ms(B) ms_down = ms(C) ms_left = ms(D) ms_right = ms(E) ms_btn1 = ms(F) ms_btn2 = ms(G) ms_btn3 = ms(H) ms_btn4 = ms(I) ms_btn5 = ms(J) ms_wh_up = ms(K) ms_wh_down = ms(L) ms_wh_dn = MS_WH_DOWN ms_wh_left = ms(M) ms_wh_right = ms(N) ms_accel0 = ms(O) ms_accel1 = ms(P) ms_accel2 = ms(Q) ms_u = MS_UP ms_d = MS_DOWN ms_l = MS_LEFT ms_r = MS_RIGHT btn1 = MS_BTN1 btn2 = MS_BTN2 btn3 = MS_BTN3 btn4 = MS_BTN4 btn5 = MS_BTN5 wh_u = MS_WH_UP wh_d = MS_WH_DOWN wh_l = MS_WH_LEFT wh_r = MS_WH_RIGHT acl0 = MS_ACCEL0 acl1 = MS_ACCEL1 acl2 = MS_ACCEL2
#!/usr/bin/python3 def NativeZeros(nRows, nCols): return [range(nRows) for col in range(nCols)] matrix = NativeZeros(4, 4) print(matrix) print(sum([sum(row) for row in matrix]))
def native_zeros(nRows, nCols): return [range(nRows) for col in range(nCols)] matrix = native_zeros(4, 4) print(matrix) print(sum([sum(row) for row in matrix]))
def prepare_config_line(name, value): """ Create the entry for one specific configuration with it's name and value :param name: :param value: :return: string """ conf_item = '{}'.format(name) if value and value.lower() != 'true': conf_item += ': {}'.format(value.capitalize()) return conf_item def get_config_string(config): """ Use the given config to extract one string for the output. :param config: a dictionary of configs from a Build object :return: string representation """ configs = {} for key, entry in config.items(): abbrev = entry.get('abbreviation') value = entry.get('value') category = entry.get('category') string = prepare_config_line(abbrev if abbrev else key, value) if category: configs.setdefault(category.capitalize(), []).append(string) out = '' for category in configs: if len(configs[category]) > 0: out += '**' + category + '**: ' out += ', '.join(configs[category]) out += '\n' return out if out != '' else None
def prepare_config_line(name, value): """ Create the entry for one specific configuration with it's name and value :param name: :param value: :return: string """ conf_item = '{}'.format(name) if value and value.lower() != 'true': conf_item += ': {}'.format(value.capitalize()) return conf_item def get_config_string(config): """ Use the given config to extract one string for the output. :param config: a dictionary of configs from a Build object :return: string representation """ configs = {} for (key, entry) in config.items(): abbrev = entry.get('abbreviation') value = entry.get('value') category = entry.get('category') string = prepare_config_line(abbrev if abbrev else key, value) if category: configs.setdefault(category.capitalize(), []).append(string) out = '' for category in configs: if len(configs[category]) > 0: out += '**' + category + '**: ' out += ', '.join(configs[category]) out += '\n' return out if out != '' else None
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'includes': [ '../build/win_precompile.gypi', '../chrome/version.gypi', 'blacklist.gypi', ], 'targets': [ { 'target_name': 'chrome_elf', 'type': 'shared_library', 'include_dirs': [ '..', ], 'sources': [ 'chrome_elf.def', 'chrome_elf_main.cc', 'chrome_elf_main.h', ], 'dependencies': [ 'blacklist', 'chrome_elf_lib', ], 'msvs_settings': { 'VCLinkerTool': { 'BaseAddress': '0x01c20000', # Set /SUBSYSTEM:WINDOWS. 'SubSystem': '2', 'AdditionalDependencies!': [ 'user32.lib', ], 'IgnoreDefaultLibraryNames': [ 'user32.lib', ], }, }, }, { 'target_name': 'chrome_elf_unittests_exe', 'product_name': 'chrome_elf_unittests', 'type': 'executable', 'sources': [ 'blacklist/test/blacklist_test.cc', 'create_file/chrome_create_file_unittest.cc', 'elf_imports_unittest.cc', 'ntdll_cache_unittest.cc', ], 'include_dirs': [ '..', '<(SHARED_INTERMEDIATE_DIR)', ], 'dependencies': [ 'chrome_elf_lib', '../base/base.gyp:base', '../base/base.gyp:run_all_unittests', '../base/base.gyp:test_support_base', '../sandbox/sandbox.gyp:sandbox', '../testing/gtest.gyp:gtest', 'blacklist', 'blacklist_test_dll_1', 'blacklist_test_dll_2', 'blacklist_test_dll_3', 'blacklist_test_main_dll', ], 'conditions': [ ['component=="shared_library"', { # In component builds, all targets depend on chrome_redirects by # default. Remove it here so we are able to test it. 'dependencies!': [ '../chrome_elf/chrome_elf.gyp:chrome_redirects', ], }], ], }, { # A dummy target to ensure that chrome_elf.dll and chrome.exe gets built # when building chrome_elf_unittests.exe without introducing an # explicit runtime dependency. 'target_name': 'chrome_elf_unittests', 'type': 'none', 'dependencies': [ '../chrome/chrome.gyp:chrome', 'chrome_elf', 'chrome_elf_unittests_exe', ], }, { 'target_name': 'chrome_elf_lib', 'type': 'static_library', 'include_dirs': [ '..', ], 'sources': [ 'chrome_elf_constants.cc', 'chrome_elf_constants.h', 'chrome_elf_types.h', 'create_file/chrome_create_file.cc', 'create_file/chrome_create_file.h', 'ntdll_cache.cc', 'ntdll_cache.h', ], 'conditions': [ ['component=="shared_library"', { # In component builds, all targets depend on chrome_redirects by # default. Remove it here to avoid a circular dependency. 'dependencies!': [ '../chrome_elf/chrome_elf.gyp:chrome_redirects', ], }], ], }, ], # targets 'conditions': [ ['component=="shared_library"', { 'targets': [ { 'target_name': 'chrome_redirects', 'type': 'shared_library', 'include_dirs': [ '..', ], 'sources': [ 'chrome_redirects.def', ], 'dependencies': [ 'chrome_elf_lib', ], 'msvs_settings': { 'VCLinkerTool': { 'BaseAddress': '0x01c10000', # Set /SUBSYSTEM:WINDOWS. 'SubSystem': '2', }, }, 'conditions': [ ['component=="shared_library"', { # In component builds, all targets depend on chrome_redirects by # default. Remove it here to avoid a circular dependency. 'dependencies!': [ '../chrome_elf/chrome_elf.gyp:chrome_redirects', ], }], ], }, ], }], ], }
{'variables': {'chromium_code': 1}, 'includes': ['../build/win_precompile.gypi', '../chrome/version.gypi', 'blacklist.gypi'], 'targets': [{'target_name': 'chrome_elf', 'type': 'shared_library', 'include_dirs': ['..'], 'sources': ['chrome_elf.def', 'chrome_elf_main.cc', 'chrome_elf_main.h'], 'dependencies': ['blacklist', 'chrome_elf_lib'], 'msvs_settings': {'VCLinkerTool': {'BaseAddress': '0x01c20000', 'SubSystem': '2', 'AdditionalDependencies!': ['user32.lib'], 'IgnoreDefaultLibraryNames': ['user32.lib']}}}, {'target_name': 'chrome_elf_unittests_exe', 'product_name': 'chrome_elf_unittests', 'type': 'executable', 'sources': ['blacklist/test/blacklist_test.cc', 'create_file/chrome_create_file_unittest.cc', 'elf_imports_unittest.cc', 'ntdll_cache_unittest.cc'], 'include_dirs': ['..', '<(SHARED_INTERMEDIATE_DIR)'], 'dependencies': ['chrome_elf_lib', '../base/base.gyp:base', '../base/base.gyp:run_all_unittests', '../base/base.gyp:test_support_base', '../sandbox/sandbox.gyp:sandbox', '../testing/gtest.gyp:gtest', 'blacklist', 'blacklist_test_dll_1', 'blacklist_test_dll_2', 'blacklist_test_dll_3', 'blacklist_test_main_dll'], 'conditions': [['component=="shared_library"', {'dependencies!': ['../chrome_elf/chrome_elf.gyp:chrome_redirects']}]]}, {'target_name': 'chrome_elf_unittests', 'type': 'none', 'dependencies': ['../chrome/chrome.gyp:chrome', 'chrome_elf', 'chrome_elf_unittests_exe']}, {'target_name': 'chrome_elf_lib', 'type': 'static_library', 'include_dirs': ['..'], 'sources': ['chrome_elf_constants.cc', 'chrome_elf_constants.h', 'chrome_elf_types.h', 'create_file/chrome_create_file.cc', 'create_file/chrome_create_file.h', 'ntdll_cache.cc', 'ntdll_cache.h'], 'conditions': [['component=="shared_library"', {'dependencies!': ['../chrome_elf/chrome_elf.gyp:chrome_redirects']}]]}], 'conditions': [['component=="shared_library"', {'targets': [{'target_name': 'chrome_redirects', 'type': 'shared_library', 'include_dirs': ['..'], 'sources': ['chrome_redirects.def'], 'dependencies': ['chrome_elf_lib'], 'msvs_settings': {'VCLinkerTool': {'BaseAddress': '0x01c10000', 'SubSystem': '2'}}, 'conditions': [['component=="shared_library"', {'dependencies!': ['../chrome_elf/chrome_elf.gyp:chrome_redirects']}]]}]}]]}
elem = lambda value, next: {'value': value, 'next': next} to_str = lambda head: '' if head is None \ else str(head['value']) + ' ' + to_str(head['next']) values = elem(1, elem(2, elem(3, None))) # print(to_str(values)) def make_powers(count): powers = [] for i in range(count): # powers.append(lambda x: x ** i) # wrong code powers.append((lambda p: lambda x: x ** p)(i)) # wrong code return powers powers = make_powers(5) # for power in powers: # print(power(2)) handlers = [] for i in range(1, 4): def on_click(i=i): print('Button {} was clicked!'.format(i)) handlers.append(on_click) for handler in handlers: handler()
elem = lambda value, next: {'value': value, 'next': next} to_str = lambda head: '' if head is None else str(head['value']) + ' ' + to_str(head['next']) values = elem(1, elem(2, elem(3, None))) def make_powers(count): powers = [] for i in range(count): powers.append((lambda p: lambda x: x ** p)(i)) return powers powers = make_powers(5) handlers = [] for i in range(1, 4): def on_click(i=i): print('Button {} was clicked!'.format(i)) handlers.append(on_click) for handler in handlers: handler()
class Allergies(object): def __init__(self, score): self.score = [allergen for num, allergen in list(enumerate([ 'eggs', 'peanuts', 'shellfish', 'strawberries', 'tomatoes', 'chocolate', 'pollen', 'cats' ])) if 0 < (score & (1 << num))] def is_allergic_to(self, item): return item in self.score @property def lst(self): return self.score
class Allergies(object): def __init__(self, score): self.score = [allergen for (num, allergen) in list(enumerate(['eggs', 'peanuts', 'shellfish', 'strawberries', 'tomatoes', 'chocolate', 'pollen', 'cats'])) if 0 < score & 1 << num] def is_allergic_to(self, item): return item in self.score @property def lst(self): return self.score
# 1. Sort the 'people' list of dictionaries alphabetically based on the # 'name' key from each dictionary using the 'sorted' function and store # the new list as 'sorted_by_name' people = [ {'name': 'Kevin Bacon', 'age': 61}, {'name': 'Fred Ward', 'age': 77}, {'name': 'finn Carter', 'age': 59}, {'name': 'Ariana Richards', 'age': 40}, {'name': 'Vicotor Wong', 'age': 74}, ] # sorted_by_name = None # AssertionError sorted_by_name = sorted(people, key=lambda d: d['name'].lower()) assert sorted_by_name == [ {'name': 'Ariana Richards', 'age': 40}, {'name': 'finn Carter', 'age': 59}, {'name': 'Fred Ward', 'age': 77}, {'name': 'Kevin Bacon', 'age': 61}, {'name': 'Vicotor Wong', 'age': 74}, ] # =============================================================================== # # 2. Use the 'map' function to iterate over 'sorted_by_name' to generate a # new list called 'name_declarations' where each value is a string with # '<NAME> is <AGE> years old.' where the '<NAME>' and '<AGE>' values are from # the dictionary. # name_declarations = None # name_declarations = list(map(lambda d: f"{d['name']} is {d['age']} years old", sorted_by_name)) name_declarations = list( map(lambda d: f"{d['name']} is {d['age']} years old", sorted_by_name) ) # print(name_declarations) assert name_declarations == [ "Ariana Richards is 40 years old", "finn Carter is 59 years old", "Fred Ward is 77 years old", "Kevin Bacon is 61 years old", "Victor Wong is 74 years old", ]
people = [{'name': 'Kevin Bacon', 'age': 61}, {'name': 'Fred Ward', 'age': 77}, {'name': 'finn Carter', 'age': 59}, {'name': 'Ariana Richards', 'age': 40}, {'name': 'Vicotor Wong', 'age': 74}] sorted_by_name = sorted(people, key=lambda d: d['name'].lower()) assert sorted_by_name == [{'name': 'Ariana Richards', 'age': 40}, {'name': 'finn Carter', 'age': 59}, {'name': 'Fred Ward', 'age': 77}, {'name': 'Kevin Bacon', 'age': 61}, {'name': 'Vicotor Wong', 'age': 74}] name_declarations = list(map(lambda d: f"{d['name']} is {d['age']} years old", sorted_by_name)) assert name_declarations == ['Ariana Richards is 40 years old', 'finn Carter is 59 years old', 'Fred Ward is 77 years old', 'Kevin Bacon is 61 years old', 'Victor Wong is 74 years old']
# Copyright 2017 Pedro M. Baeza <[email protected]> # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). { "name": "Weights in the invoices analysis view", "version": "13.0.1.0.0", "author": "Tecnativa," "Odoo Community Association (OCA)", "category": "Inventory, Logistics, Warehousing", "development_status": "Production/Stable", "license": "AGPL-3", "website": "https://www.github.com/account_reporting_weight", "depends": ["sale"], "installable": True, }
{'name': 'Weights in the invoices analysis view', 'version': '13.0.1.0.0', 'author': 'Tecnativa,Odoo Community Association (OCA)', 'category': 'Inventory, Logistics, Warehousing', 'development_status': 'Production/Stable', 'license': 'AGPL-3', 'website': 'https://www.github.com/account_reporting_weight', 'depends': ['sale'], 'installable': True}
# Theory: List # In your programs, you often need to group several elements in # order to process them as a single object. For this, you will need # to use different collections. One of the most useful collections # in Python is a list. It is one of the most important things in # Python. # 1. Creating and printing lists # Look at a simple list that stores several names of dog's breed: dog_breeds = ['corgi', 'labrador', 'poodle', 'jack russel'] print(dog_breeds) # In this first line, we use square brackets to create a list that # contains four elements and then assign it to the dog_breeds # variable. In the second line, the list is printed through the # variable's name. All the elements are printed in the same order # as they were stored in the list because lists are ordered. # Here is another list that contains five integers: numbers = [1, 2, 3, 4, 5] print(numbers) # [1, 2, 3, 4, 5] # Another way to create a list is to invoke the list function. It is # used to create a list out of an iterable object: that is, a kind of # object where you can get its elements one by one. The concept # of iterability will be explained in detail further on, but let's look # at the examples below: list_out_of_string = list('danger!') print(list_out_of_string) # ['d', 'a', 'n', 'g', 'e', 'r', '!'] # list_out_of_integer = list(235) # TypeError: 'int' object is not iterable # So, the list function create a list containing each element # from the given iterable object. For now, remember that a string # is an example of an iterable object, and an integer is an example # of non-iterable object. A list itself is also an iterable object. # Let's also note the difference between the list function and # creating a list using square brackets: multi_element_list = list('danger!') print(multi_element_list) # ['d', 'a', 'n', 'g', 'e', 'r', '!'] singe_element_list = ['danger!'] print(singe_element_list) # ['danger!'] # The square brackets and the list function can also be used to # create empty lists that do not have elements at all. empty_list_1 = list() empty_list_2 = [] # In the following topics, we will consider how to fill empty lists. # 2. Features of lists # Lists can store duplicate values as many times as needed. on_off_list = ['on', 'off', 'on', 'off', 'on'] print(on_off_list) # ['on', 'off', 'on', 'off', 'on'] # Another important thing about lists is that they can contain # different types of elements. So there are neither restrictions, # nor fixed list types, and you can add to your list any data you # want, like in the following example: different_object = ['a', 1, 'b', 2] # 3. Length of a list # Sometimes you need to know how many elements are there in a # list. There is a built-in function len that can be applied # to any iterable object, and it returns simply the length of that # object. # So, when applied to a list, it returns the number of elements in # that lists. numbers = [1, 2, 3, 4, 5] print(len(numbers)) # 5 empty_list = list() print(len(empty_list)) # 0 single_element_list = ['danger!'] print(len(single_element_list)) # 1 multi_element_list = list('danger!') print(len(multi_element_list)) # 7 # In the example above, you can see how the len() function # works. Again, pay attention to the difference between list() # and [] as applied to strings: it may not result in what you # expected: # 4. Summary # As a recap, we note that lists are: # ordered, i.e. each element has a fixed position in a list; # iterable, i.e. you can get their elements one by one; # able to store duplicate values; # able to store different types of elements
dog_breeds = ['corgi', 'labrador', 'poodle', 'jack russel'] print(dog_breeds) numbers = [1, 2, 3, 4, 5] print(numbers) list_out_of_string = list('danger!') print(list_out_of_string) multi_element_list = list('danger!') print(multi_element_list) singe_element_list = ['danger!'] print(singe_element_list) empty_list_1 = list() empty_list_2 = [] on_off_list = ['on', 'off', 'on', 'off', 'on'] print(on_off_list) different_object = ['a', 1, 'b', 2] numbers = [1, 2, 3, 4, 5] print(len(numbers)) empty_list = list() print(len(empty_list)) single_element_list = ['danger!'] print(len(single_element_list)) multi_element_list = list('danger!') print(len(multi_element_list))
class State(object): def __init__(self): pass def enter(self): """Initialize data that might not be initialized in init""" pass def exit(self): """State is finished, perform cleanup if necessary""" pass def reason(self): """Conditional or logic to see if the current state needs to end, and a new one started""" pass def act(self): """Per-frame behavior""" pass class StateMachine(object): def __init__(self, host, first_state=None): self.host = host self.current_state = first_state def transition(self, new_state): """Transition to a new State""" self.current_state.exit() self.current_state = new_state # provide state references to host object and fsm instance self.current_state.host = self.host self.current_state.fsm = self self.current_state.enter() def update(self): if self.current_state: # only update if we have a state new_state = self.current_state.reason() if new_state: # if reason provides new state # do transition self.transition(new_state) else: # otherwise act with current state self.current_state.act()
class State(object): def __init__(self): pass def enter(self): """Initialize data that might not be initialized in init""" pass def exit(self): """State is finished, perform cleanup if necessary""" pass def reason(self): """Conditional or logic to see if the current state needs to end, and a new one started""" pass def act(self): """Per-frame behavior""" pass class Statemachine(object): def __init__(self, host, first_state=None): self.host = host self.current_state = first_state def transition(self, new_state): """Transition to a new State""" self.current_state.exit() self.current_state = new_state self.current_state.host = self.host self.current_state.fsm = self self.current_state.enter() def update(self): if self.current_state: new_state = self.current_state.reason() if new_state: self.transition(new_state) else: self.current_state.act()
# -*- python -*- # This software was produced by NIST, an agency of the U.S. government, # and by statute is not subject to copyright in the United States. # Recipients of this software assume all responsibilities associated # with its operation, modification and maintenance. However, to # facilitate maintenance we ask that before distributing modified # versions of this software, you first contact the authors at # [email protected]. # Time, in milliseconds, between the time that a progressbar object is # created and the time that it is installed in the ActivityViewer # window. delay = 2000 # Time in milliseconds between progress bar updates. period = 200 def set_delay(menuitem, milliseconds): global delay delay = milliseconds
delay = 2000 period = 200 def set_delay(menuitem, milliseconds): global delay delay = milliseconds
class Solution: def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]: m = len(image) n = len(image[0]) oldColor = image[sr][sc] if oldColor == newColor: return image def dfs(r, c): nonlocal image, newColor, oldColor if image[r][c] == oldColor: image[r][c] = newColor if r - 1 >= 0: dfs(r-1, c) if r + 1 < m: dfs(r+1, c) if c - 1 >= 0: dfs(r, c-1) if c + 1 < n: dfs(r, c+1) dfs(sr, sc) return image
class Solution: def flood_fill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]: m = len(image) n = len(image[0]) old_color = image[sr][sc] if oldColor == newColor: return image def dfs(r, c): nonlocal image, newColor, oldColor if image[r][c] == oldColor: image[r][c] = newColor if r - 1 >= 0: dfs(r - 1, c) if r + 1 < m: dfs(r + 1, c) if c - 1 >= 0: dfs(r, c - 1) if c + 1 < n: dfs(r, c + 1) dfs(sr, sc) return image
#### digonal sum digonal=[[1,2,3,5], [4,5,6,4], [7,8,9,3] ] def digonaldiffernce(arr): SUM1=0 SUM2=0 j=0 for i in arr: SUM1+=i[j] SUM2+=i[(len(i)-1)-j] j+=1 return abs(SUM1-SUM2) print(digonaldiffernce(digonal))
digonal = [[1, 2, 3, 5], [4, 5, 6, 4], [7, 8, 9, 3]] def digonaldiffernce(arr): sum1 = 0 sum2 = 0 j = 0 for i in arr: sum1 += i[j] sum2 += i[len(i) - 1 - j] j += 1 return abs(SUM1 - SUM2) print(digonaldiffernce(digonal))
""" Module: 'neopixel' on esp32 1.10.0 """ # MCU: (sysname='esp32', nodename='esp32', release='1.10.0', version='v1.10 on 2019-01-25', machine='ESP32 module with ESP32') # Stubber: 1.3.2 class NeoPixel: '' ORDER = None def fill(): pass def write(): pass def neopixel_write(): pass
""" Module: 'neopixel' on esp32 1.10.0 """ class Neopixel: """""" order = None def fill(): pass def write(): pass def neopixel_write(): pass
""" Movie object - title - storyline - poster url - trailer url """ class Movie: def __init__(self, title): self.title = title self.storyline = "" self.poster_url = "" self.trailer_url = ""
""" Movie object - title - storyline - poster url - trailer url """ class Movie: def __init__(self, title): self.title = title self.storyline = '' self.poster_url = '' self.trailer_url = ''
class Main: class featured: it = {'css': '#content > div.row'} products = {'css': it['css'] + ' .product-layout'} names = {'css': products['css'] + ' .caption h4 a'}
class Main: class Featured: it = {'css': '#content > div.row'} products = {'css': it['css'] + ' .product-layout'} names = {'css': products['css'] + ' .caption h4 a'}
def foo(x): print(x) foo([x for x in range(10)])
def foo(x): print(x) foo([x for x in range(10)])
def dogleg(value, units): return_dict = {} if units == 'deg/100ft': return_dict['deg/100ft'] = value return_dict['deg/30m'] = value * 0.9843004 elif units == 'deg/30m': return_dict['deg/100ft'] = value * 1.01595 return_dict['deg/30m'] = value return return_dict def axial_spring_con(value, units): return_dict = {} if units == 'N/m': return_dict['N/m'] = value return_dict['lb/in'] = value * 1.016 elif units == 'lb/in': return_dict['N/m'] = value * 0.984252 return_dict['lb/in'] = value return return_dict def axial_dampening_coef(value, units): return_dict = {} if units == 'N-s/m': return_dict['N-s/m'] = value return_dict['lb-s/in'] = value * 1.016 elif units == 'lb-s/in': return_dict['N-s/m'] = value * 0.984252 return_dict['lb-s/in'] = value return return_dict def torsional_spring_con(value, units): return_dict = {} if units == 'N-m/rad': return_dict['N-m/rad'] = value return_dict['lb-in/rad'] = value * 1.01595 elif units == 'lb-in/rad': return_dict['N-m/rad'] = value * 0.9843004 return_dict['lb-in/rad'] = value return return_dict def torsional_dampening_coef(value, units): return_dict = {} if units == 'N-m-s/rad': return_dict['N-m-s/rad'] = value return_dict['lb-in-s/rad'] = value * 1.01595 elif units == 'lb-in-s/rad': return_dict['N-m-s/rad'] = value * 0.9843004 return_dict['lb-in-s/rad'] = value return return_dict def pressure_grad(value, units): return_dict = {} if units == 'psi/ft': return_dict['psi/ft'] = value return_dict['kPa/m'] = value * 22.5 return_dict['Mpa/m'] = value * 0.0225 return_dict['Pa/m'] = value * 22500 elif units == 'kPa/m': return_dict['psi/ft'] = value * 0.0444444 return_dict['kPa/m'] = value return_dict['Mpa/m'] = value * 0.001 return_dict['Pa/m'] = value * 1000 elif units == 'Mpa/m': return_dict['psi/ft'] = value * 44.4444444 return_dict['kPa/m'] = value * 1000 return_dict['Mpa/m'] = value return_dict['Pa/m'] = value * 1000000 elif units == 'Pa/m': return_dict['psi/ft'] = value * 0.0000444 return_dict['kPa/m'] = value * 0.001 return_dict['Mpa/m'] = value * 0.000001 return_dict['Pa/m'] = value return return_dict def yield_slurry(value, units): return_dict = {} if units == 'ft3/sk': return_dict['ft3/sk'] = value return_dict['m3/sk'] = value * 0.028317 return_dict['gal/sk'] = value * 7 elif units == 'm3/sk': return_dict['ft3/sk'] = value * 35 return_dict['m3/sk'] = value return_dict['gal/sk'] = value * 264 elif units == 'gal/sk': return_dict['ft3/sk'] = value * 0.13369 return_dict['m3/sk'] = value * 0.0037857 return_dict['gal/sk'] = value return return_dict def footage_cost(value, units): return_dict = {} if units == 'cur/ft': return_dict['cur/ft'] = value return_dict['cur/m'] = value * 3.2810014 return_dict['cur/1000ft'] = value / 0.001 return_dict['cur/1000m'] = value * 3281.0014 elif units == 'cur/m': return_dict['cur/ft'] = value * 0.304785 return_dict['cur/m'] = value return_dict['cur/1000ft'] = value / 0.0003048 return_dict['cur/1000m'] = value * 1000 elif units == 'cur/1000ft': return_dict['cur/ft'] = value / 1000 return_dict['cur/m'] = value / 3281.00 return_dict['cur/1000ft'] = value return_dict['cur/1000m'] = value / 3.2810003 elif units == 'cur/1000m': return_dict['cur/ft'] = value / 305 return_dict['cur/m'] = value / 1000 return_dict['cur/1000ft'] = value / 0.3047851 return_dict['cur/1000m'] = value return return_dict def mud_weight(value, units): return_dict = {} if units == 'g/cm3': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 elif units == 'g/L': return_dict['g/cm3'] = value * 0.001 return_dict['g/L'] = value * 1.0 return_dict['kg/m3'] = value * 1.0 return_dict['kg/L'] = value * 0.001 return_dict['kPa/m'] = value * 0.0098114 return_dict['lb/ft3'] = value * 0.0624337 return_dict['lb/bbl'] = value * 0.3505071 return_dict['ppg'] = value * 0.0083454 return_dict['psi/ft'] = value * 0.000434 return_dict['psi/100ft'] = value * 0.0433727 return_dict['SG'] = value * 0.001 elif units == 'kg/m3': return_dict['g/cm3'] = value * 0.001 return_dict['g/L'] = value * 1.0 return_dict['kg/m3'] = value * 1.0 return_dict['kg/L'] = value * 0.001 return_dict['kPa/m'] = value * 0.0098114 return_dict['lb/ft3'] = value * 0.0624337 return_dict['lb/bbl'] = value * 0.3505071 return_dict['ppg'] = value * 0.0083454 return_dict['psi/ft'] = value * 0.000434 return_dict['psi/100ft'] = value * 0.0433727 return_dict['SG'] = value * 0.001 elif units == 'kg/L': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 elif units == 'kPa/m': return_dict['g/cm3'] = value * 0.101922 return_dict['g/L'] = value * 101.922 return_dict['kg/m3'] = value * 101.922 return_dict['kg/L'] = value * 0.101922 return_dict['kPa/m'] = value * 1.0 return_dict['lb/ft3'] = value * 6.3633639 return_dict['lb/bbl'] = value * 35.7243813 return_dict['ppg'] = value * 0.8505805 return_dict['psi/ft'] = value * 0.0442325 return_dict['psi/100ft'] = value * 4.420628 return_dict['SG'] = value * 0.101922 elif units == 'lb/ft3': return_dict['g/cm3'] = value * 0.016017 return_dict['g/L'] = value * 16.017 return_dict['kg/m3'] = value * 16.017 return_dict['kg/L'] = value * 0.016017 return_dict['kPa/m'] = value * 0.1571496 return_dict['lb/ft3'] = value * 1.0 return_dict['lb/bbl'] = value * 5.6140717 return_dict['ppg'] = value * 0.1336684 return_dict['psi/ft'] = value * 0.0069511 return_dict['psi/100ft'] = value * 0.6946999 return_dict['SG'] = value * 0.016017 elif units == 'lb/bbl': return_dict['g/cm3'] = value * 0.002853 return_dict['g/L'] = value * 2.8530095 return_dict['kg/m3'] = value * 2.8530095 return_dict['kg/L'] = value * 0.002853 return_dict['kPa/m'] = value * 0.0279921 return_dict['lb/ft3'] = value * 0.1781238 return_dict['lb/bbl'] = value * 1.0 return_dict['ppg'] = value * 0.0238095 return_dict['psi/ft'] = value * 0.0012382 return_dict['psi/100ft'] = value * 0.1237426 return_dict['SG'] = value * 0.002853 elif units == 'ppg': return_dict['g/cm3'] = value * 0.1198264 return_dict['g/L'] = value * 119.8264 return_dict['kg/m3'] = value * 119.8264 return_dict['kg/L'] = value * 0.1198264 return_dict['kPa/m'] = value * 1.1756677 return_dict['lb/ft3'] = value * 7.4812012 return_dict['lb/bbl'] = value * 42.0 return_dict['ppg'] = value * 1.0 return_dict['psi/ft'] = value * 0.0520028 return_dict['psi/100ft'] = value * 5.1971895 return_dict['SG'] = value * 0.1198264 elif units == 'psi/ft': return_dict['g/cm3'] = value * 2.304231 return_dict['g/L'] = value * 2304.231 return_dict['kg/m3'] = value * 2304.231 return_dict['kg/L'] = value * 2.304231 return_dict['kPa/m'] = value * 22.6077883 return_dict['lb/ft3'] = value * 143.8615846 return_dict['lb/bbl'] = value * 807.6492492 return_dict['ppg'] = value * 19.229744 return_dict['psi/ft'] = value * 1.0 return_dict['psi/100ft'] = value * 99.9406228 return_dict['SG'] = value * 2.304231 elif units == 'psi/100ft': return_dict['g/cm3'] = value * 0.023056 return_dict['g/L'] = value * 23.056 return_dict['kg/m3'] = value * 23.056 return_dict['kg/L'] = value * 0.023056 return_dict['kPa/m'] = value * 0.2262122 return_dict['lb/ft3'] = value * 1.4394706 return_dict['lb/bbl'] = value * 8.0812909 return_dict['ppg'] = value * 0.1924117 return_dict['psi/ft'] = value * 0.0100059 return_dict['psi/100ft'] = value * 1.0 return_dict['SG'] = value * 0.023056 elif units == 'SG': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 return return_dict def flow_rate(value, units): return_dict = {} if units == 'bbl/hr': return_dict['bbl/hr'] = value * 1.0 return_dict['bbl/min'] = value * 0.0166667 return_dict['ft3/min'] = value * 0.0935764 return_dict['m3/hr'] = value * 0.1589873 return_dict['m3/min'] = value * 0.0026498 return_dict['gal/hr'] = value * 42.0 return_dict['gpm'] = value * 0.7 return_dict['L/hr'] = value * 158.9872949 return_dict['L/min'] = value * 2.6497882 elif units == 'bbl/min': return_dict['bbl/hr'] = value * 60.0 return_dict['bbl/min'] = value * 1.0 return_dict['ft3/min'] = value * 5.6145833 return_dict['m3/hr'] = value * 9.5392377 return_dict['m3/min'] = value * 0.1589873 return_dict['gal/hr'] = value * 2520.0 return_dict['gpm'] = value * 42.0 return_dict['L/hr'] = value * 9539.2376957 return_dict['L/min'] = value * 158.9872949 elif units == 'ft3/min': return_dict['bbl/hr'] = value * 10.6864564 return_dict['bbl/min'] = value * 0.1781076 return_dict['ft3/min'] = value * 1.0 return_dict['m3/hr'] = value * 1.6990108 return_dict['m3/min'] = value * 0.0283168 return_dict['gal/hr'] = value * 448.8311688 return_dict['gpm'] = value * 7.4805195 return_dict['L/hr'] = value * 1699.0107955 return_dict['L/min'] = value * 28.3168466 elif units == 'm3/hr': return_dict['bbl/hr'] = value * 6.2898108 return_dict['bbl/min'] = value * 0.1048302 return_dict['ft3/min'] = value * 0.5885778 return_dict['m3/hr'] = value * 1.0 return_dict['m3/min'] = value * 0.0166667 return_dict['gal/hr'] = value * 264.1720524 return_dict['gpm'] = value * 4.4028675 return_dict['L/hr'] = value * 1000.0 return_dict['L/min'] = value * 16.6666667 elif units == 'm3/min': return_dict['bbl/hr'] = value * 377.3886462 return_dict['bbl/min'] = value * 6.2898108 return_dict['ft3/min'] = value * 35.3146667 return_dict['m3/hr'] = value * 60.0 return_dict['m3/min'] = value * 1.0 return_dict['gal/hr'] = value * 15850.3231414 return_dict['gpm'] = value * 264.1720524 return_dict['L/hr'] = value * 60000.0 return_dict['L/min'] = value * 1000.0 elif units == 'gal/hr': return_dict['bbl/hr'] = value * 0.0238095 return_dict['bbl/min'] = value * 0.0003968 return_dict['ft3/min'] = value * 0.002228 return_dict['m3/hr'] = value * 0.0037854 return_dict['m3/min'] = value * 6.31e-05 return_dict['gal/hr'] = value * 1.0 return_dict['gpm'] = value * 0.0166667 return_dict['L/hr'] = value * 3.7854118 return_dict['L/min'] = value * 0.0630902 elif units == 'gpm': return_dict['bbl/hr'] = value * 1.4285714 return_dict['bbl/min'] = value * 0.0238095 return_dict['ft3/min'] = value * 0.1336806 return_dict['m3/hr'] = value * 0.2271247 return_dict['m3/min'] = value * 0.0037854 return_dict['gal/hr'] = value * 60.0 return_dict['gpm'] = value * 1.0 return_dict['L/hr'] = value * 227.124707 return_dict['L/min'] = value * 3.7854118 elif units == 'L/hr': return_dict['bbl/hr'] = value * 0.0062898 return_dict['bbl/min'] = value * 0.0001048 return_dict['ft3/min'] = value * 0.0005886 return_dict['m3/hr'] = value * 0.001 return_dict['m3/min'] = value * 1.67e-05 return_dict['gal/hr'] = value * 0.2641721 return_dict['gpm'] = value * 0.0044029 return_dict['L/hr'] = value * 1.0 return_dict['L/min'] = value * 0.0166667 elif units == 'L/min': return_dict['bbl/hr'] = value * 0.3773886 return_dict['bbl/min'] = value * 0.0062898 return_dict['ft3/min'] = value * 0.0353147 return_dict['m3/hr'] = value * 0.06 return_dict['m3/min'] = value * 0.001 return_dict['gal/hr'] = value * 15.8503231 return_dict['gpm'] = value * 0.2641721 return_dict['L/hr'] = value * 60.0 return_dict['L/min'] = value * 1.0 return return_dict def drilling_rate(value, units): return_dict = {} if units == 'ft/d': return_dict['ft/d'] = value * 1.0 return_dict['ft/hr'] = value * 0.0416667 return_dict['ft/min'] = value * 0.0006944 return_dict['ft/s'] = value * 1.16e-05 return_dict['m/d'] = value * 0.3048 return_dict['m/hr'] = value * 0.0127 return_dict['m/min'] = value * 0.0002117 return_dict['m/s'] = value * 3.5e-06 elif units == 'ft/hr': return_dict['ft/d'] = value * 24.0 return_dict['ft/hr'] = value * 1.0 return_dict['ft/min'] = value * 0.0166667 return_dict['ft/s'] = value * 0.0002778 return_dict['m/d'] = value * 7.3152 return_dict['m/hr'] = value * 0.3048 return_dict['m/min'] = value * 0.00508 return_dict['m/s'] = value * 8.47e-05 elif units == 'ft/min': return_dict['ft/d'] = value * 1440.0 return_dict['ft/hr'] = value * 60.0 return_dict['ft/min'] = value * 1.0 return_dict['ft/s'] = value * 0.0166667 return_dict['m/d'] = value * 438.9119993 return_dict['m/hr'] = value * 18.288 return_dict['m/min'] = value * 0.3048 return_dict['m/s'] = value * 0.00508 elif units == 'ft/s': return_dict['ft/d'] = value * 86400.0 return_dict['ft/hr'] = value * 3600.0 return_dict['ft/min'] = value * 60.0 return_dict['ft/s'] = value * 1.0 return_dict['m/d'] = value * 26334.71996 return_dict['m/hr'] = value * 1097.2799983 return_dict['m/min'] = value * 18.288 return_dict['m/s'] = value * 0.3048 elif units == 'm/d': return_dict['ft/d'] = value * 3.2808399 return_dict['ft/hr'] = value * 0.1367017 return_dict['ft/min'] = value * 0.0022784 return_dict['ft/s'] = value * 3.8e-05 return_dict['m/d'] = value * 1.0 return_dict['m/hr'] = value * 0.0416667 return_dict['m/min'] = value * 0.0006944 return_dict['m/s'] = value * 1.16e-05 elif units == 'm/hr': return_dict['ft/d'] = value * 78.7401576 return_dict['ft/hr'] = value * 3.2808399 return_dict['ft/min'] = value * 0.0546807 return_dict['ft/s'] = value * 0.0009113 return_dict['m/d'] = value * 24.0 return_dict['m/hr'] = value * 1.0 return_dict['m/min'] = value * 0.0166667 return_dict['m/s'] = value * 0.0002778 elif units == 'm/min': return_dict['ft/d'] = value * 4724.409456 return_dict['ft/hr'] = value * 196.850394 return_dict['ft/min'] = value * 3.2808399 return_dict['ft/s'] = value * 0.0546807 return_dict['m/d'] = value * 1440.0 return_dict['m/hr'] = value * 60.0 return_dict['m/min'] = value * 1.0 return_dict['m/s'] = value * 0.0166667 elif units == 'm/s': return_dict['ft/d'] = value * 283464.56736 return_dict['ft/hr'] = value * 11811.02364 return_dict['ft/min'] = value * 196.850394 return_dict['ft/s'] = value * 3.2808399 return_dict['m/d'] = value * 86400.0 return_dict['m/hr'] = value * 3600.0 return_dict['m/min'] = value * 60.0 return_dict['m/s'] = value * 1.0 return return_dict def weight_length(value, units): return_dict = {} if units == 'lb/ft': return_dict['lb/ft'] = value return_dict['kg/m'] = value * 1.48816 elif units == 'kg/m': return_dict['lb/ft'] = value * 0.671969 return_dict['kg/m'] = value return return_dict def geothermal_gradient(value, units): return_dict = {} if units == 'c/100m': return_dict['c/100m'] = value return_dict['f/100ft'] = value * 0.549 elif units == 'f/100ft': return_dict['c/100m'] = value / 0.549 return_dict['f/100ft'] = value return return_dict
def dogleg(value, units): return_dict = {} if units == 'deg/100ft': return_dict['deg/100ft'] = value return_dict['deg/30m'] = value * 0.9843004 elif units == 'deg/30m': return_dict['deg/100ft'] = value * 1.01595 return_dict['deg/30m'] = value return return_dict def axial_spring_con(value, units): return_dict = {} if units == 'N/m': return_dict['N/m'] = value return_dict['lb/in'] = value * 1.016 elif units == 'lb/in': return_dict['N/m'] = value * 0.984252 return_dict['lb/in'] = value return return_dict def axial_dampening_coef(value, units): return_dict = {} if units == 'N-s/m': return_dict['N-s/m'] = value return_dict['lb-s/in'] = value * 1.016 elif units == 'lb-s/in': return_dict['N-s/m'] = value * 0.984252 return_dict['lb-s/in'] = value return return_dict def torsional_spring_con(value, units): return_dict = {} if units == 'N-m/rad': return_dict['N-m/rad'] = value return_dict['lb-in/rad'] = value * 1.01595 elif units == 'lb-in/rad': return_dict['N-m/rad'] = value * 0.9843004 return_dict['lb-in/rad'] = value return return_dict def torsional_dampening_coef(value, units): return_dict = {} if units == 'N-m-s/rad': return_dict['N-m-s/rad'] = value return_dict['lb-in-s/rad'] = value * 1.01595 elif units == 'lb-in-s/rad': return_dict['N-m-s/rad'] = value * 0.9843004 return_dict['lb-in-s/rad'] = value return return_dict def pressure_grad(value, units): return_dict = {} if units == 'psi/ft': return_dict['psi/ft'] = value return_dict['kPa/m'] = value * 22.5 return_dict['Mpa/m'] = value * 0.0225 return_dict['Pa/m'] = value * 22500 elif units == 'kPa/m': return_dict['psi/ft'] = value * 0.0444444 return_dict['kPa/m'] = value return_dict['Mpa/m'] = value * 0.001 return_dict['Pa/m'] = value * 1000 elif units == 'Mpa/m': return_dict['psi/ft'] = value * 44.4444444 return_dict['kPa/m'] = value * 1000 return_dict['Mpa/m'] = value return_dict['Pa/m'] = value * 1000000 elif units == 'Pa/m': return_dict['psi/ft'] = value * 4.44e-05 return_dict['kPa/m'] = value * 0.001 return_dict['Mpa/m'] = value * 1e-06 return_dict['Pa/m'] = value return return_dict def yield_slurry(value, units): return_dict = {} if units == 'ft3/sk': return_dict['ft3/sk'] = value return_dict['m3/sk'] = value * 0.028317 return_dict['gal/sk'] = value * 7 elif units == 'm3/sk': return_dict['ft3/sk'] = value * 35 return_dict['m3/sk'] = value return_dict['gal/sk'] = value * 264 elif units == 'gal/sk': return_dict['ft3/sk'] = value * 0.13369 return_dict['m3/sk'] = value * 0.0037857 return_dict['gal/sk'] = value return return_dict def footage_cost(value, units): return_dict = {} if units == 'cur/ft': return_dict['cur/ft'] = value return_dict['cur/m'] = value * 3.2810014 return_dict['cur/1000ft'] = value / 0.001 return_dict['cur/1000m'] = value * 3281.0014 elif units == 'cur/m': return_dict['cur/ft'] = value * 0.304785 return_dict['cur/m'] = value return_dict['cur/1000ft'] = value / 0.0003048 return_dict['cur/1000m'] = value * 1000 elif units == 'cur/1000ft': return_dict['cur/ft'] = value / 1000 return_dict['cur/m'] = value / 3281.0 return_dict['cur/1000ft'] = value return_dict['cur/1000m'] = value / 3.2810003 elif units == 'cur/1000m': return_dict['cur/ft'] = value / 305 return_dict['cur/m'] = value / 1000 return_dict['cur/1000ft'] = value / 0.3047851 return_dict['cur/1000m'] = value return return_dict def mud_weight(value, units): return_dict = {} if units == 'g/cm3': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 elif units == 'g/L': return_dict['g/cm3'] = value * 0.001 return_dict['g/L'] = value * 1.0 return_dict['kg/m3'] = value * 1.0 return_dict['kg/L'] = value * 0.001 return_dict['kPa/m'] = value * 0.0098114 return_dict['lb/ft3'] = value * 0.0624337 return_dict['lb/bbl'] = value * 0.3505071 return_dict['ppg'] = value * 0.0083454 return_dict['psi/ft'] = value * 0.000434 return_dict['psi/100ft'] = value * 0.0433727 return_dict['SG'] = value * 0.001 elif units == 'kg/m3': return_dict['g/cm3'] = value * 0.001 return_dict['g/L'] = value * 1.0 return_dict['kg/m3'] = value * 1.0 return_dict['kg/L'] = value * 0.001 return_dict['kPa/m'] = value * 0.0098114 return_dict['lb/ft3'] = value * 0.0624337 return_dict['lb/bbl'] = value * 0.3505071 return_dict['ppg'] = value * 0.0083454 return_dict['psi/ft'] = value * 0.000434 return_dict['psi/100ft'] = value * 0.0433727 return_dict['SG'] = value * 0.001 elif units == 'kg/L': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 elif units == 'kPa/m': return_dict['g/cm3'] = value * 0.101922 return_dict['g/L'] = value * 101.922 return_dict['kg/m3'] = value * 101.922 return_dict['kg/L'] = value * 0.101922 return_dict['kPa/m'] = value * 1.0 return_dict['lb/ft3'] = value * 6.3633639 return_dict['lb/bbl'] = value * 35.7243813 return_dict['ppg'] = value * 0.8505805 return_dict['psi/ft'] = value * 0.0442325 return_dict['psi/100ft'] = value * 4.420628 return_dict['SG'] = value * 0.101922 elif units == 'lb/ft3': return_dict['g/cm3'] = value * 0.016017 return_dict['g/L'] = value * 16.017 return_dict['kg/m3'] = value * 16.017 return_dict['kg/L'] = value * 0.016017 return_dict['kPa/m'] = value * 0.1571496 return_dict['lb/ft3'] = value * 1.0 return_dict['lb/bbl'] = value * 5.6140717 return_dict['ppg'] = value * 0.1336684 return_dict['psi/ft'] = value * 0.0069511 return_dict['psi/100ft'] = value * 0.6946999 return_dict['SG'] = value * 0.016017 elif units == 'lb/bbl': return_dict['g/cm3'] = value * 0.002853 return_dict['g/L'] = value * 2.8530095 return_dict['kg/m3'] = value * 2.8530095 return_dict['kg/L'] = value * 0.002853 return_dict['kPa/m'] = value * 0.0279921 return_dict['lb/ft3'] = value * 0.1781238 return_dict['lb/bbl'] = value * 1.0 return_dict['ppg'] = value * 0.0238095 return_dict['psi/ft'] = value * 0.0012382 return_dict['psi/100ft'] = value * 0.1237426 return_dict['SG'] = value * 0.002853 elif units == 'ppg': return_dict['g/cm3'] = value * 0.1198264 return_dict['g/L'] = value * 119.8264 return_dict['kg/m3'] = value * 119.8264 return_dict['kg/L'] = value * 0.1198264 return_dict['kPa/m'] = value * 1.1756677 return_dict['lb/ft3'] = value * 7.4812012 return_dict['lb/bbl'] = value * 42.0 return_dict['ppg'] = value * 1.0 return_dict['psi/ft'] = value * 0.0520028 return_dict['psi/100ft'] = value * 5.1971895 return_dict['SG'] = value * 0.1198264 elif units == 'psi/ft': return_dict['g/cm3'] = value * 2.304231 return_dict['g/L'] = value * 2304.231 return_dict['kg/m3'] = value * 2304.231 return_dict['kg/L'] = value * 2.304231 return_dict['kPa/m'] = value * 22.6077883 return_dict['lb/ft3'] = value * 143.8615846 return_dict['lb/bbl'] = value * 807.6492492 return_dict['ppg'] = value * 19.229744 return_dict['psi/ft'] = value * 1.0 return_dict['psi/100ft'] = value * 99.9406228 return_dict['SG'] = value * 2.304231 elif units == 'psi/100ft': return_dict['g/cm3'] = value * 0.023056 return_dict['g/L'] = value * 23.056 return_dict['kg/m3'] = value * 23.056 return_dict['kg/L'] = value * 0.023056 return_dict['kPa/m'] = value * 0.2262122 return_dict['lb/ft3'] = value * 1.4394706 return_dict['lb/bbl'] = value * 8.0812909 return_dict['ppg'] = value * 0.1924117 return_dict['psi/ft'] = value * 0.0100059 return_dict['psi/100ft'] = value * 1.0 return_dict['SG'] = value * 0.023056 elif units == 'SG': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 return return_dict def flow_rate(value, units): return_dict = {} if units == 'bbl/hr': return_dict['bbl/hr'] = value * 1.0 return_dict['bbl/min'] = value * 0.0166667 return_dict['ft3/min'] = value * 0.0935764 return_dict['m3/hr'] = value * 0.1589873 return_dict['m3/min'] = value * 0.0026498 return_dict['gal/hr'] = value * 42.0 return_dict['gpm'] = value * 0.7 return_dict['L/hr'] = value * 158.9872949 return_dict['L/min'] = value * 2.6497882 elif units == 'bbl/min': return_dict['bbl/hr'] = value * 60.0 return_dict['bbl/min'] = value * 1.0 return_dict['ft3/min'] = value * 5.6145833 return_dict['m3/hr'] = value * 9.5392377 return_dict['m3/min'] = value * 0.1589873 return_dict['gal/hr'] = value * 2520.0 return_dict['gpm'] = value * 42.0 return_dict['L/hr'] = value * 9539.2376957 return_dict['L/min'] = value * 158.9872949 elif units == 'ft3/min': return_dict['bbl/hr'] = value * 10.6864564 return_dict['bbl/min'] = value * 0.1781076 return_dict['ft3/min'] = value * 1.0 return_dict['m3/hr'] = value * 1.6990108 return_dict['m3/min'] = value * 0.0283168 return_dict['gal/hr'] = value * 448.8311688 return_dict['gpm'] = value * 7.4805195 return_dict['L/hr'] = value * 1699.0107955 return_dict['L/min'] = value * 28.3168466 elif units == 'm3/hr': return_dict['bbl/hr'] = value * 6.2898108 return_dict['bbl/min'] = value * 0.1048302 return_dict['ft3/min'] = value * 0.5885778 return_dict['m3/hr'] = value * 1.0 return_dict['m3/min'] = value * 0.0166667 return_dict['gal/hr'] = value * 264.1720524 return_dict['gpm'] = value * 4.4028675 return_dict['L/hr'] = value * 1000.0 return_dict['L/min'] = value * 16.6666667 elif units == 'm3/min': return_dict['bbl/hr'] = value * 377.3886462 return_dict['bbl/min'] = value * 6.2898108 return_dict['ft3/min'] = value * 35.3146667 return_dict['m3/hr'] = value * 60.0 return_dict['m3/min'] = value * 1.0 return_dict['gal/hr'] = value * 15850.3231414 return_dict['gpm'] = value * 264.1720524 return_dict['L/hr'] = value * 60000.0 return_dict['L/min'] = value * 1000.0 elif units == 'gal/hr': return_dict['bbl/hr'] = value * 0.0238095 return_dict['bbl/min'] = value * 0.0003968 return_dict['ft3/min'] = value * 0.002228 return_dict['m3/hr'] = value * 0.0037854 return_dict['m3/min'] = value * 6.31e-05 return_dict['gal/hr'] = value * 1.0 return_dict['gpm'] = value * 0.0166667 return_dict['L/hr'] = value * 3.7854118 return_dict['L/min'] = value * 0.0630902 elif units == 'gpm': return_dict['bbl/hr'] = value * 1.4285714 return_dict['bbl/min'] = value * 0.0238095 return_dict['ft3/min'] = value * 0.1336806 return_dict['m3/hr'] = value * 0.2271247 return_dict['m3/min'] = value * 0.0037854 return_dict['gal/hr'] = value * 60.0 return_dict['gpm'] = value * 1.0 return_dict['L/hr'] = value * 227.124707 return_dict['L/min'] = value * 3.7854118 elif units == 'L/hr': return_dict['bbl/hr'] = value * 0.0062898 return_dict['bbl/min'] = value * 0.0001048 return_dict['ft3/min'] = value * 0.0005886 return_dict['m3/hr'] = value * 0.001 return_dict['m3/min'] = value * 1.67e-05 return_dict['gal/hr'] = value * 0.2641721 return_dict['gpm'] = value * 0.0044029 return_dict['L/hr'] = value * 1.0 return_dict['L/min'] = value * 0.0166667 elif units == 'L/min': return_dict['bbl/hr'] = value * 0.3773886 return_dict['bbl/min'] = value * 0.0062898 return_dict['ft3/min'] = value * 0.0353147 return_dict['m3/hr'] = value * 0.06 return_dict['m3/min'] = value * 0.001 return_dict['gal/hr'] = value * 15.8503231 return_dict['gpm'] = value * 0.2641721 return_dict['L/hr'] = value * 60.0 return_dict['L/min'] = value * 1.0 return return_dict def drilling_rate(value, units): return_dict = {} if units == 'ft/d': return_dict['ft/d'] = value * 1.0 return_dict['ft/hr'] = value * 0.0416667 return_dict['ft/min'] = value * 0.0006944 return_dict['ft/s'] = value * 1.16e-05 return_dict['m/d'] = value * 0.3048 return_dict['m/hr'] = value * 0.0127 return_dict['m/min'] = value * 0.0002117 return_dict['m/s'] = value * 3.5e-06 elif units == 'ft/hr': return_dict['ft/d'] = value * 24.0 return_dict['ft/hr'] = value * 1.0 return_dict['ft/min'] = value * 0.0166667 return_dict['ft/s'] = value * 0.0002778 return_dict['m/d'] = value * 7.3152 return_dict['m/hr'] = value * 0.3048 return_dict['m/min'] = value * 0.00508 return_dict['m/s'] = value * 8.47e-05 elif units == 'ft/min': return_dict['ft/d'] = value * 1440.0 return_dict['ft/hr'] = value * 60.0 return_dict['ft/min'] = value * 1.0 return_dict['ft/s'] = value * 0.0166667 return_dict['m/d'] = value * 438.9119993 return_dict['m/hr'] = value * 18.288 return_dict['m/min'] = value * 0.3048 return_dict['m/s'] = value * 0.00508 elif units == 'ft/s': return_dict['ft/d'] = value * 86400.0 return_dict['ft/hr'] = value * 3600.0 return_dict['ft/min'] = value * 60.0 return_dict['ft/s'] = value * 1.0 return_dict['m/d'] = value * 26334.71996 return_dict['m/hr'] = value * 1097.2799983 return_dict['m/min'] = value * 18.288 return_dict['m/s'] = value * 0.3048 elif units == 'm/d': return_dict['ft/d'] = value * 3.2808399 return_dict['ft/hr'] = value * 0.1367017 return_dict['ft/min'] = value * 0.0022784 return_dict['ft/s'] = value * 3.8e-05 return_dict['m/d'] = value * 1.0 return_dict['m/hr'] = value * 0.0416667 return_dict['m/min'] = value * 0.0006944 return_dict['m/s'] = value * 1.16e-05 elif units == 'm/hr': return_dict['ft/d'] = value * 78.7401576 return_dict['ft/hr'] = value * 3.2808399 return_dict['ft/min'] = value * 0.0546807 return_dict['ft/s'] = value * 0.0009113 return_dict['m/d'] = value * 24.0 return_dict['m/hr'] = value * 1.0 return_dict['m/min'] = value * 0.0166667 return_dict['m/s'] = value * 0.0002778 elif units == 'm/min': return_dict['ft/d'] = value * 4724.409456 return_dict['ft/hr'] = value * 196.850394 return_dict['ft/min'] = value * 3.2808399 return_dict['ft/s'] = value * 0.0546807 return_dict['m/d'] = value * 1440.0 return_dict['m/hr'] = value * 60.0 return_dict['m/min'] = value * 1.0 return_dict['m/s'] = value * 0.0166667 elif units == 'm/s': return_dict['ft/d'] = value * 283464.56736 return_dict['ft/hr'] = value * 11811.02364 return_dict['ft/min'] = value * 196.850394 return_dict['ft/s'] = value * 3.2808399 return_dict['m/d'] = value * 86400.0 return_dict['m/hr'] = value * 3600.0 return_dict['m/min'] = value * 60.0 return_dict['m/s'] = value * 1.0 return return_dict def weight_length(value, units): return_dict = {} if units == 'lb/ft': return_dict['lb/ft'] = value return_dict['kg/m'] = value * 1.48816 elif units == 'kg/m': return_dict['lb/ft'] = value * 0.671969 return_dict['kg/m'] = value return return_dict def geothermal_gradient(value, units): return_dict = {} if units == 'c/100m': return_dict['c/100m'] = value return_dict['f/100ft'] = value * 0.549 elif units == 'f/100ft': return_dict['c/100m'] = value / 0.549 return_dict['f/100ft'] = value return return_dict
# V0 # V1 # http://bookshadow.com/weblog/2016/10/13/leetcode-battleships-in-a-board/ # IDEA : GREEDY class Solution(object): def countBattleships(self, board): """ :type board: List[List[str]] :rtype: int """ h = len(board) w = len(board[0]) if h else 0 ans = 0 for x in range(h): for y in range(w): if board[x][y] == 'X': if x > 0 and board[x - 1][y] == 'X': continue if y > 0 and board[x][y - 1] == 'X': continue ans += 1 return ans # V1' # http://bookshadow.com/weblog/2016/10/13/leetcode-battleships-in-a-board/ # IDEA : DFS class Solution(object): def countBattleships(self, board): """ :type board: List[List[str]] :rtype: int """ vs = set() h = len(board) w = len(board[0]) if h else 0 def dfs(x, y): for dx, dy in zip((1, 0, -1, 0), (0, 1, 0, -1)): nx, ny = x + dx, y + dy if 0 <= nx < h and 0 <= ny < w: if (nx, ny) not in vs and board[nx][ny] == 'X': vs.add((nx, ny)) dfs(nx, ny) ans = 0 for x in range(h): for y in range(w): if (x, y) not in vs and board[x][y] == 'X': ans += 1 vs.add((x, y)) dfs(x, y) return ans # V2 # Time: O(m * n) # Space: O(1) class Solution(object): def countBattleships(self, board): """ :type board: List[List[str]] :rtype: int """ if not board or not board[0]: return 0 cnt = 0 for i in range(len(board)): for j in range(len(board[0])): cnt += int(board[i][j] == 'X' and (i == 0 or board[i - 1][j] != 'X') and (j == 0 or board[i][j - 1] != 'X')) return cnt
class Solution(object): def count_battleships(self, board): """ :type board: List[List[str]] :rtype: int """ h = len(board) w = len(board[0]) if h else 0 ans = 0 for x in range(h): for y in range(w): if board[x][y] == 'X': if x > 0 and board[x - 1][y] == 'X': continue if y > 0 and board[x][y - 1] == 'X': continue ans += 1 return ans class Solution(object): def count_battleships(self, board): """ :type board: List[List[str]] :rtype: int """ vs = set() h = len(board) w = len(board[0]) if h else 0 def dfs(x, y): for (dx, dy) in zip((1, 0, -1, 0), (0, 1, 0, -1)): (nx, ny) = (x + dx, y + dy) if 0 <= nx < h and 0 <= ny < w: if (nx, ny) not in vs and board[nx][ny] == 'X': vs.add((nx, ny)) dfs(nx, ny) ans = 0 for x in range(h): for y in range(w): if (x, y) not in vs and board[x][y] == 'X': ans += 1 vs.add((x, y)) dfs(x, y) return ans class Solution(object): def count_battleships(self, board): """ :type board: List[List[str]] :rtype: int """ if not board or not board[0]: return 0 cnt = 0 for i in range(len(board)): for j in range(len(board[0])): cnt += int(board[i][j] == 'X' and (i == 0 or board[i - 1][j] != 'X') and (j == 0 or board[i][j - 1] != 'X')) return cnt
DYNAMIC_API_URL = 'https://api.vc.bilibili.com/dynamic_svr/v1/dynamic_svr/space_history' GET_DYNAMIC_DETAIL_API_URL = 'https://api.vc.bilibili.com/dynamic_svr/v1/dynamic_svr/get_dynamic_detail' USER_INFO_API_URL = 'https://api.bilibili.com/x/space/acc/info' DYNAMIC_URL = 'https://t.bilibili.com/'
dynamic_api_url = 'https://api.vc.bilibili.com/dynamic_svr/v1/dynamic_svr/space_history' get_dynamic_detail_api_url = 'https://api.vc.bilibili.com/dynamic_svr/v1/dynamic_svr/get_dynamic_detail' user_info_api_url = 'https://api.bilibili.com/x/space/acc/info' dynamic_url = 'https://t.bilibili.com/'
def readDiary(): day = input("What day do you want to read? ") file = open(day, "r") line = file.read() print(line) file.close() def writeDiary(): day = input("What day is your diary for? ") file = open(day, "w") line = input("Enter entry: ") file.write(line) file.close() operation = input("Read entries or write entries (R/W)? ") if (operation == "R"): readDiary() elif (operation == "W"): writeDiary() else: print("Sorry, you can only enter a R (for read) or W (for write). Run the program again.") print("=== All done ===")
def read_diary(): day = input('What day do you want to read? ') file = open(day, 'r') line = file.read() print(line) file.close() def write_diary(): day = input('What day is your diary for? ') file = open(day, 'w') line = input('Enter entry: ') file.write(line) file.close() operation = input('Read entries or write entries (R/W)? ') if operation == 'R': read_diary() elif operation == 'W': write_diary() else: print('Sorry, you can only enter a R (for read) or W (for write). Run the program again.') print('=== All done ===')
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def numComponents(self, head, G): """ :type head: ListNode :type G: List[int] :rtype: int """ bits = [] G = { x:x for x in G } while head: if head.val in G: bits.append(1) else: bits.append(0) head = head.next counter = 0 flag = True for bit in bits: if flag and bit == 1: counter += 1 if bit == 1: flag = False else: flag = True return counter
class Solution: def num_components(self, head, G): """ :type head: ListNode :type G: List[int] :rtype: int """ bits = [] g = {x: x for x in G} while head: if head.val in G: bits.append(1) else: bits.append(0) head = head.next counter = 0 flag = True for bit in bits: if flag and bit == 1: counter += 1 if bit == 1: flag = False else: flag = True return counter
T = int(input()) for c in range(T): N = int(input()) sum = N * (N + 1) // 2 sqs = N * (N + 1) * (2 * N + 1) // 6 d = sum * sum - sqs print(abs(d))
t = int(input()) for c in range(T): n = int(input()) sum = N * (N + 1) // 2 sqs = N * (N + 1) * (2 * N + 1) // 6 d = sum * sum - sqs print(abs(d))
# This file is part of Pynguin. # # Pynguin is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pynguin is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pynguin. If not, see <https://www.gnu.org/licenses/>. """Provides custom exception types.""" class ConfigurationException(BaseException): """An exception type that's raised if the generator has no proper configuration.""" class GenerationException(BaseException): """An exception during test generation. This type shall be used for all exceptions that occur during test generation and that are caused by the test-generation process. """ class ConstructionFailedException(BaseException): """An exception used when error occurs during construction of a test case.""" class TimerError(Exception): """A custom exception used to report errors in use of Timer class"""
"""Provides custom exception types.""" class Configurationexception(BaseException): """An exception type that's raised if the generator has no proper configuration.""" class Generationexception(BaseException): """An exception during test generation. This type shall be used for all exceptions that occur during test generation and that are caused by the test-generation process. """ class Constructionfailedexception(BaseException): """An exception used when error occurs during construction of a test case.""" class Timererror(Exception): """A custom exception used to report errors in use of Timer class"""
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class Opencv(CMakePackage, CudaPackage): """OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library.""" homepage = "https://opencv.org/" url = "https://github.com/opencv/opencv/archive/4.5.0.tar.gz" git = "https://github.com/opencv/opencv.git" maintainers = ["bvanessen", "adamjstewart", "glennpj"] version("master", branch="master") version( "4.5.4", sha256="c20bb83dd790fc69df9f105477e24267706715a9d3c705ca1e7f613c7b3bad3d", ) version( "4.5.2", sha256="ae258ed50aa039279c3d36afdea5c6ecf762515836b27871a8957c610d0424f8", ) version( "4.5.1", sha256="e27fe5b168918ab60d58d7ace2bd82dd14a4d0bd1d3ae182952c2113f5637513", ) version( "4.5.0", sha256="dde4bf8d6639a5d3fe34d5515eab4a15669ded609a1d622350c7ff20dace1907", ) version( "4.2.0", sha256="9ccb2192d7e8c03c58fee07051364d94ed7599363f3b0dce1c5e6cc11c1bb0ec", ) version( "4.1.2", sha256="385dd0a9c25e67ef0dd60e022d2a2d7b17e2f36819cf3cb46aa8cdff5c5282c9", ) version( "4.1.1", sha256="5de5d96bdfb9dad6e6061d70f47a0a91cee96bb35afb9afb9ecb3d43e243d217", ) version( "4.1.0", sha256="8f6e4ab393d81d72caae6e78bd0fd6956117ec9f006fba55fcdb88caf62989b7", ) version( "4.0.1", sha256="7b86a0ee804244e0c407321f895b15e4a7162e9c5c0d2efc85f1cadec4011af4", ) version( "4.0.0", sha256="3787b3cc7b21bba1441819cb00c636911a846c0392ddf6211d398040a1e4886c", ) version( "3.4.12", sha256="c8919dfb5ead6be67534bf794cb0925534311f1cd5c6680f8164ad1813c88d13", ) version( "3.4.6", sha256="e7d311ff97f376b8ee85112e2b536dbf4bdf1233673500175ed7cf21a0089f6d", ) version( "3.4.5", sha256="0c57d9dd6d30cbffe68a09b03f4bebe773ee44dc8ff5cd6eaeb7f4d5ef3b428e", ) version( "3.4.4", sha256="a35b00a71d77b484f73ec485c65fe56c7a6fa48acd5ce55c197aef2e13c78746", ) version( "3.4.3", sha256="4eef85759d5450b183459ff216b4c0fa43e87a4f6aa92c8af649f89336f002ec", ) version( "3.4.1", sha256="f1b87684d75496a1054405ae3ee0b6573acaf3dad39eaf4f1d66fdd7e03dc852", ) version( "3.4.0", sha256="678cc3d2d1b3464b512b084a8cca1fad7de207c7abdf2caa1fed636c13e916da", ) version( "3.3.1", sha256="5dca3bb0d661af311e25a72b04a7e4c22c47c1aa86eb73e70063cd378a2aa6ee", ) version( "3.3.0", sha256="8bb312b9d9fd17336dc1f8b3ac82f021ca50e2034afc866098866176d985adc6", ) contrib_vers = [ "3.3.0", "3.3.1", "3.4.0", "3.4.1", "3.4.3", "3.4.4", "3.4.5", "3.4.6", "3.4.12", "4.0.0", "4.0.1", "4.1.0", "4.1.1", "4.1.2", "4.2.0", "4.5.0", "4.5.1", "4.5.2", "4.5.4", ] for cv in contrib_vers: resource( name="contrib", git="https://github.com/opencv/opencv_contrib.git", tag="{0}".format(cv), when="@{0}".format(cv), ) # Patch to fix conflict between CUDA and OpenCV (reproduced with 3.3.0 # and 3.4.1) header file that have the same name. Problem is fixed in # the current development branch of OpenCV. See #8461 for more information. patch("dnn_cuda.patch", when="@3.3.0:3.4.1+cuda+dnn") patch("opencv3.2_cmake.patch", when="@3.2:3.4.1") # do not prepend system paths patch("cmake_no-system-paths.patch") patch("opencv4.1.1_clp_cmake.patch", when="@4.1.1:") patch("opencv4.0.0_clp_cmake.patch", when="@4.0.0:4.1.0") patch("opencv3.4.12_clp_cmake.patch", when="@3.4.12") patch("opencv3.3_clp_cmake.patch", when="@:3.4.6") patch("opencv3.4.4_cvv_cmake.patch", when="@3.4.4:") patch("opencv3.3_cvv_cmake.patch", when="@:3.4.3") # OpenCV prebuilt apps (variants) # Defined in `apps/*/CMakeLists.txt` using # `ocv_add_application(...)` apps = [ "annotation", "createsamples", "interactive-calibration", "model-diagnostics", "traincascade", "version", "visualisation", ] # app variants for app in apps: variant(app, default=False, description="Install {0} app".format(app)) # app conflicts with when("+annotation"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") with when("+createsamples"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") conflicts("~videoio") with when("+interactive-calibration"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgproc") conflicts("~videoio") with when("+model-diagnostics"): conflicts("~dnn") with when("+traincascade"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") with when("+visualisation"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") # OpenCV modules (variants) # Defined in `modules/*/CMakeLists.txt` using # `ocv_add_module(...)` and `ocv_define_module(...)` modules = [ "calib3d", "dnn", "features2d", "flann", "gapi", "highgui", "imgcodecs", "imgproc", "java", "java_bindings_generator", "ml", "objc", "objc_bindings_generator", "objdetect", "photo", "python2", "python3", "python_bindings_generator", "python_tests", "stitching", "ts", "video", "videoio", "world", ] # These need additional spack packages # js needs Emscripten modules_pending = [ "js", "js_bindings_generator", ] # module variants for mod in modules: # At least one of these modules must be enabled to build OpenCV variant(mod, default=False, description="Include opencv_{0} module".format(mod)) # module conflicts and dependencies with when("+calib3d"): conflicts("~features2d") conflicts("~flann") conflicts("~imgproc") with when("+dnn"): conflicts("~imgproc") conflicts("~protobuf") with when("+features2d"): conflicts("~imgproc") with when("+gapi"): conflicts("~ade") conflicts("~imgproc") with when("+highgui"): conflicts("~imgcodecs") conflicts("~imgproc") with when("+imgcodecs"): conflicts("~imgproc") with when("+java"): conflicts("~imgproc") conflicts("~java_bindings_generator") conflicts("~python2~python3") with when("+java_bindings_generator"): depends_on("java") depends_on("ant") with when("+objc"): conflicts("~imgproc") conflicts("~objc_bindings_generator") with when("+objc_bindings_generator"): conflicts("~imgproc") with when("+objdetect"): conflicts("~calib3d") conflicts("~dnn") conflicts("~imgproc") with when("+photo"): conflicts("~imgproc") with when("+python2"): conflicts("+python3") conflicts("~python_bindings_generator") depends_on("[email protected]:2.8", type=("build", "link", "run")) depends_on("py-setuptools", type="build") depends_on("py-numpy", type=("build", "run")) extends("python", when="+python2") with when("+python3"): conflicts("+python2") conflicts("~python_bindings_generator") depends_on("[email protected]:", type=("build", "link", "run")) depends_on("py-setuptools", type="build") depends_on("py-numpy", type=("build", "run")) extends("python", when="+python3") with when("+stitching"): conflicts("~calib3d") conflicts("~features2d") conflicts("~flann") conflicts("~imgproc") with when("+ts"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") with when("+video"): conflicts("~imgproc") with when("+videoio"): conflicts("~ffmpeg") conflicts("~imgcodecs") conflicts("~imgproc") # OpenCV contrib modules (variants) contrib_modules = [ "alphamat", "aruco", "barcode", "bgsegm", "bioinspired", "ccalib", "cudaarithm", "cudabgsegm", "cudacodec", "cudafeatures2d", "cudafilters", "cudaimgproc", "cudalegacy", "cudaobjdetect", "cudaoptflow", "cudastereo", "cudawarping", "cudev", "cvv", "datasets", "dnn_objdetect", "dnn_superres", "dpm", "face", "freetype", "fuzzy", "hdf", "hfs", "img_hash", "intensity_transform", "line_descriptor", "matlab", "mcc", "optflow", "phase_unwrapping", "plot", "quality", "rapid", "reg", "rgbd", "saliency", "sfm", "shape", "stereo", "structured_light", "superres", "surface_matching", "text", "tracking", "videostab", "viz", "wechat_qrcode", "xfeatures2d", "ximgproc", "xobjdetect", "xphoto", ] contrib_modules_pending = [ "julia", # need a way to manage the installation prefix "ovis", # need ogre ] for mod in contrib_modules: variant( mod, default=False, description="Include opencv_{0} contrib module".format(mod), ) # contrib module conflicts and dependencies with when("+alphamat"): conflicts("~eigen") conflicts("~imgproc") with when("+aruco"): conflicts("~calib3d") conflicts("~imgproc") with when("+barcode"): conflicts("~dnn") conflicts("~imgproc") with when("+bgsegm"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~video") with when("+ccalib"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgproc") with when("+cublas"): conflicts("~cuda") conflicts("~cudev") with when("+cuda"): conflicts("~cudev") with when("+cudaarithm"): conflicts("~cuda") conflicts("~cublas") conflicts("~cudev") conflicts("~cufft") with when("+cudabgsegm"): conflicts("~cuda") conflicts("~cudev") conflicts("~video") with when("+cudacodec"): conflicts("~cudev") conflicts("~videoio") with when("+cudafeatures2d"): conflicts("~cuda") conflicts("~cudafilters") conflicts("~cudawarping") conflicts("~cudev") conflicts("~features2d") with when("+cudafilters"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudev") conflicts("~imgproc") with when("+cudaimgproc"): conflicts("~cuda") conflicts("~cudev") conflicts("~imgproc") with when("+cudalegacy"): conflicts("~cuda") conflicts("~cudev") conflicts("~video") with when("+cudaobjdetect"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudawarping") conflicts("~cudev") conflicts("~objdetect") with when("+cudaoptflow"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudaimgproc") conflicts("~cudawarping") conflicts("~cudev") conflicts("~optflow") conflicts("~video") with when("+cudastereo"): conflicts("~calib3d") conflicts("~cuda") conflicts("~cudev") with when("+cudawarping"): conflicts("~cuda") conflicts("~cudev") conflicts("~imgproc") with when("+cudev"): conflicts("~cuda") with when("+cvv"): conflicts("~features2d") conflicts("~imgproc") conflicts("~qt") with when("+datasets"): conflicts("~flann") conflicts("~imgcodecs") conflicts("~ml") with when("+dnn_objdetect"): conflicts("~dnn") conflicts("~imgproc") with when("+dnn_superres"): conflicts("~dnn") conflicts("~imgproc") with when("+dpm"): conflicts("~imgproc") conflicts("~objdetect") with when("+face"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~objdetect") conflicts("~photo") with when("+fuzzy"): conflicts("~imgproc") with when("+freetype"): conflicts("~imgproc") depends_on("freetype") depends_on("harfbuzz") with when("+hdf"): depends_on("hdf5") with when("+hfs"): with when("+cuda"): conflicts("~cudev") conflicts("~imgproc") with when("+img_hash"): conflicts("~imgproc") with when("+intensity_transform"): conflicts("~imgproc") with when("+line_descriptor"): conflicts("~imgproc") with when("+matlab"): conflicts("~python2~python3") depends_on("matlab") depends_on("py-jinja2") with when("+mcc"): conflicts("~calib3d") conflicts("~dnn") conflicts("~imgproc") with when("+optflow"): conflicts("~calib3d") conflicts("~flann") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~video") conflicts("~ximgproc") with when("+phase_unwrapping"): conflicts("~imgproc") with when("+plot"): conflicts("~imgproc") with when("+quality"): conflicts("~imgproc") conflicts("~ml") with when("+rapid"): conflicts("~calib3d") conflicts("~imgproc") with when("+reg"): conflicts("~imgproc") with when("+rgbd"): conflicts("~calib3d") conflicts("~eigen") conflicts("~imgproc") with when("+saliency"): conflicts("%intel") conflicts("~features2d") conflicts("~imgproc") with when("+sfm"): conflicts("~calib3d") conflicts("~eigen") conflicts("~features2d") conflicts("~imgcodecs") conflicts("~xfeatures2d") depends_on("ceres-solver") depends_on("gflags") depends_on("glog") with when("+shape"): conflicts("~calib3d") conflicts("~imgproc") with when("+stereo"): conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") conflicts("~tracking") with when("+structured_light"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~phase_unwrapping") with when("+superres"): with when("+cuda"): conflicts("~cudev") conflicts("~imgproc") conflicts("~optflow") conflicts("~video") with when("+surface_matching"): conflicts("~flann") with when("+text"): conflicts("~dnn") conflicts("~features2d") conflicts("~imgproc") conflicts("~ml") with when("+tracking"): conflicts("~imgproc") conflicts("~plot") conflicts("~video") with when("+videostab"): with when("+cuda"): conflicts("~cudev") conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") conflicts("~photo") conflicts("~video") with when("+viz"): conflicts("~vtk") with when("+wechat_qrcode"): conflicts("~dnn") conflicts("~imgproc") depends_on("libiconv") with when("+xfeatures2d"): with when("+cuda"): conflicts("~cudev") conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") with when("+ximgproc"): conflicts("~calib3d") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~video") with when("+xobjdetect"): conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") with when("+xphoto"): conflicts("~imgproc") conflicts("~photo") # Optional 3rd party components (variants) # Defined in `CMakeLists.txt` and `modules/gapi/cmake/init.cmake` # using `OCV_OPTION(WITH_* ...)` components = [ "1394", "ade", "android_mediandk", "android_native_camera", "avfoundation", "cap_ios", "carotene", "clp", "cpufeatures", "cublas", "cuda", "cudnn", "cufft", "directx", "dshow", "eigen", "ffmpeg", "gdal", "gtk", "hpx", "imgcodec_hdr", "imgcodec_pfm", "imgcodec_pxm", "imgcodec_sunraster", "ipp", "itt", "jasper", "jpeg", "lapack", "msmf", "msmf_dxva", "onnx", "opencl", "opencl_d3d11_nv", "openexr", "opengl", "openjpeg", "openmp", "plaidml", "png", "protobuf", "pthreads_pf", "qt", "quirc", "tbb", "tengine", "tesseract", "tiff", "v4l", "vtk", "vulcan", "webp", "win32ui", ] # These likely need additional spack packages components_pending = [ "aravis", "gdcm", "gphoto2", "gstreamer", "gtk_2_x", # deprecated in spack "halide", "inf_engine", "librealsense", "mfx", "ngraph", "nvcuvid", # disabled, details: https://github.com/opencv/opencv/issues/14850 "opencl_svm", "openclamdblas", "openclamdfft", "openni", "openni2", "openvx", "pvapi", "ueye", "va", "va_intel", "ximea", "xine", ] # components and modules with the same name # used in `def cmake_args(self)` component_and_module = ["freetype", "julia", "matlab"] for component in components: variant( component, default=False, description="Include {0} support".format(component), ) # Other (variants) variant("shared", default=True, description="Enables the build of shared libraries") variant("powerpc", default=False, description="Enable PowerPC for GCC") variant( "fast-math", default=False, description="Enable -ffast-math (not recommended for GCC 4.6.x)", ) variant("nonfree", default=False, description="Enable non-free algorithms") # Required (dependencies) depends_on("[email protected]:", type="build") depends_on("[email protected]:2.8,3.2:", type="build") depends_on("java", type="build") depends_on("[email protected]:") # Optional 3rd party components (dependencies) depends_on("clp", when="+clp") depends_on("[email protected]:", when="+cuda") depends_on("cuda@:10.2", when="@4.0:4.2+cuda") depends_on("cuda@:9.0", when="@3.3.1:3.4+cuda") depends_on("cuda@:8", when="@:3.3.0+cuda") depends_on("cudnn", when="+cudnn") depends_on("cudnn@:7.6", when="@4.0:4.2+cudnn") depends_on("cudnn@:7.3", when="@3.3.1:3.4+cudnn") depends_on("cudnn@:6", when="@:3.3.0+cudnn") depends_on("eigen", when="+eigen") depends_on("ffmpeg+avresample", when="+ffmpeg") depends_on("gdal", when="+gdal") depends_on("gtkplus", when="+gtk") depends_on("hpx", when="+hpx") depends_on("ipp", when="+ipp") depends_on("jasper", when="+jasper") depends_on("jpeg", when="+jpeg") depends_on("lapack", when="+lapack") depends_on("onnx", when="+onnx") depends_on("opencl", when="+opencl") depends_on("openexr", when="+openexr") depends_on("gl", when="+opengl") depends_on("openjpeg@2:", when="+openjpeg") depends_on("libpng", when="+png") depends_on("[email protected]:", when="@3.4.1: +protobuf") depends_on("[email protected]", when="@3.3.0:3.4.0 +protobuf") depends_on("qt@5:", when="+qt") depends_on("qt@5:+opengl", when="+qt+opengl") depends_on("tbb", when="+tbb") depends_on("libtiff+jpeg+libdeflate+lzma+zlib", when="+tiff") depends_on("vtk", when="+vtk") depends_on("libwebp", when="+webp") depends_on("tesseract", when="+tesseract") depends_on("leptonica", when="+tesseract") depends_on("libdc1394", when="+1394") # Optional 3rd party components (conflicts) # Defined in `CMakeLists.txt` and `modules/gapi/cmake/init.cmake` # using `OCV_OPTION(WITH_* ...)` conflicts("+android_mediandk", when="platform=darwin", msg="Android only") conflicts("+android_mediandk", when="platform=linux", msg="Android only") conflicts("+android_mediandk", when="platform=cray", msg="Android only") conflicts("+android_native_camera", when="platform=darwin", msg="Android only") conflicts("+android_native_camera", when="platform=linux", msg="Android only") conflicts("+android_native_camera", when="platform=cray", msg="Android only") conflicts("+avfoundation", when="platform=linux", msg="iOS/macOS only") conflicts("+avfoundation", when="platform=cray", msg="iOS/macOS only") conflicts("+cap_ios", when="platform=darwin", msg="iOS only") conflicts("+cap_ios", when="platform=linux", msg="iOS only") conflicts("+cap_ios", when="platform=cray", msg="iOS only") conflicts("+carotene", when="target=x86:", msg="ARM/AARCH64 only") conflicts("+carotene", when="target=x86_64:", msg="ARM/AARCH64 only") conflicts("+cpufeatures", when="platform=darwin", msg="Android only") conflicts("+cpufeatures", when="platform=linux", msg="Android only") conflicts("+cpufeatures", when="platform=cray", msg="Android only") conflicts("+cublas", when="~cuda") conflicts("+cudnn", when="~cuda") conflicts("+cufft", when="~cuda") conflicts("+directx", when="platform=darwin", msg="Windows only") conflicts("+directx", when="platform=linux", msg="Windows only") conflicts("+directx", when="platform=cray", msg="Windows only") conflicts("+dshow", when="platform=darwin", msg="Windows only") conflicts("+dshow", when="platform=linux", msg="Windows only") conflicts("+dshow", when="platform=cray", msg="Windows only") conflicts("+gtk", when="platform=darwin", msg="Linux only") conflicts("+ipp", when="target=aarch64:", msg="x86 or x86_64 only") conflicts("+jasper", when="+openjpeg") conflicts("+msmf", when="platform=darwin", msg="Windows only") conflicts("+msmf", when="platform=linux", msg="Windows only") conflicts("+msmf", when="platform=cray", msg="Windows only") conflicts("+msmf_dxva", when="platform=darwin", msg="Windows only") conflicts("+msmf_dxva", when="platform=linux", msg="Windows only") conflicts("+msmf_dxva", when="platform=cray", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=darwin", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=linux", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=cray", msg="Windows only") conflicts("+opengl", when="~qt") conflicts("+tengine", when="platform=darwin", msg="Linux only") conflicts("+tengine", when="target=x86:", msg="ARM/AARCH64 only") conflicts("+tengine", when="target=x86_64:", msg="ARM/AARCH64 only") conflicts("+v4l", when="platform=darwin", msg="Linux only") conflicts("+win32ui", when="platform=darwin", msg="Windows only") conflicts("+win32ui", when="platform=linux", msg="Windows only") conflicts("+win32ui", when="platform=cray", msg="Windows only") def cmake_args(self): spec = self.spec args = [ self.define( "OPENCV_EXTRA_MODULES_PATH", join_path(self.stage.source_path, "opencv_contrib/modules"), ), self.define("BUILD_opencv_core", "on"), ] # OpenCV pre-built apps apps_list = [] for app in self.apps: if "+{0}".format(app) in spec: apps_list.append(app) if apps_list: args.append(self.define("BUILD_opencv_apps", "on")) args.append(self.define("OPENCV_INSTALL_APPS_LIST", ",".join(apps_list))) else: args.append(self.define("BUILD_opencv_apps", "off")) # OpenCV modules for mod in self.modules: args.append(self.define_from_variant("BUILD_opencv_" + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant("WITH_" + mod.upper(), mod)) for mod in self.modules_pending: args.append(self.define("BUILD_opencv_" + mod, "off")) if mod in self.component_and_module: args.append(self.define("WITH_" + mod.upper(), "off")) # OpenCV contrib modules for mod in self.contrib_modules: args.append(self.define_from_variant("BUILD_opencv_" + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant("WITH_" + mod.upper(), mod)) for mod in self.contrib_modules_pending: args.append(self.define("BUILD_opencv_" + mod, "off")) if mod in self.component_and_module: args.append(self.define("WITH_" + mod.upper(), "off")) # Optional 3rd party components for component in self.components: args.append( self.define_from_variant("WITH_" + component.upper(), component) ) for component in self.components_pending: args.append(self.define("WITH_" + component.upper(), "off")) # Other args.extend( [ self.define("ENABLE_CONFIG_VERIFICATION", True), self.define_from_variant("BUILD_SHARED_LIBS", "shared"), self.define("ENABLE_PRECOMPILED_HEADERS", False), self.define_from_variant("WITH_LAPACK", "lapack"), self.define_from_variant("ENABLE_POWERPC", "powerpc"), self.define_from_variant("ENABLE_FAST_MATH", "fast-math"), self.define_from_variant("OPENCV_ENABLE_NONFREE", "nonfree"), ] ) if "+cuda" in spec: if spec.variants["cuda_arch"].value[0] != "none": cuda_arch = spec.variants["cuda_arch"].value args.append(self.define("CUDA_ARCH_BIN", " ".join(cuda_arch))) # TODO: this CMake flag is deprecated if spec.target.family == "ppc64le": args.append(self.define("ENABLE_VSX", True)) # Media I/O zlib = spec["zlib"] args.extend( [ self.define("BUILD_ZLIB", False), self.define("ZLIB_LIBRARY", zlib.libs[0]), self.define("ZLIB_INCLUDE_DIR", zlib.headers.directories[0]), ] ) if "+png" in spec: libpng = spec["libpng"] args.extend( [ self.define("BUILD_PNG", False), self.define("PNG_LIBRARY", libpng.libs[0]), self.define("PNG_INCLUDE_DIR", libpng.headers.directories[0]), ] ) if "+jpeg" in spec: libjpeg = spec["jpeg"] args.extend( [ self.define("BUILD_JPEG", False), self.define("JPEG_LIBRARY", libjpeg.libs[0]), self.define("JPEG_INCLUDE_DIR", libjpeg.headers.directories[0]), ] ) if "+tiff" in spec: libtiff = spec["libtiff"] args.extend( [ self.define("BUILD_TIFF", False), self.define("TIFF_LIBRARY", libtiff.libs[0]), self.define("TIFF_INCLUDE_DIR", libtiff.headers.directories[0]), ] ) if "+jasper" in spec: jasper = spec["jasper"] args.extend( [ self.define("BUILD_JASPER", False), self.define("JASPER_LIBRARY", jasper.libs[0]), self.define("JASPER_INCLUDE_DIR", jasper.headers.directories[0]), ] ) if "+clp" in spec: clp = spec["clp"] args.extend( [ self.define("BUILD_CLP", False), self.define("CLP_LIBRARIES", clp.prefix.lib), self.define("CLP_INCLUDE_DIR", clp.headers.directories[0]), ] ) if "+onnx" in spec: onnx = spec["onnx"] args.extend( [ self.define("BUILD_ONNX", False), self.define("ORT_LIB", onnx.libs[0]), self.define("ORT_INCLUDE", onnx.headers.directories[0]), ] ) if "+tesseract" in spec: tesseract = spec["tesseract"] leptonica = spec["leptonica"] args.extend( [ self.define("Lept_LIBRARY", leptonica.libs[0]), self.define("Tesseract_LIBRARY", tesseract.libs[0]), self.define( "Tesseract_INCLUDE_DIR", tesseract.headers.directories[0] ), ] ) # Python python_exe = spec["python"].command.path python_lib = spec["python"].libs[0] python_include_dir = spec["python"].headers.directories[0] if "+python2" in spec: args.extend( [ self.define("PYTHON2_EXECUTABLE", python_exe), self.define("PYTHON2_LIBRARY", python_lib), self.define("PYTHON2_INCLUDE_DIR", python_include_dir), self.define("PYTHON3_EXECUTABLE", ""), ] ) elif "+python3" in spec: args.extend( [ self.define("PYTHON3_EXECUTABLE", python_exe), self.define("PYTHON3_LIBRARY", python_lib), self.define("PYTHON3_INCLUDE_DIR", python_include_dir), self.define("PYTHON2_EXECUTABLE", ""), ] ) else: args.extend( [ self.define("PYTHON2_EXECUTABLE", ""), self.define("PYTHON3_EXECUTABLE", ""), ] ) return args @property def libs(self): shared = "+shared" in self.spec return find_libraries( "libopencv_*", root=self.prefix, shared=shared, recursive=True )
class Opencv(CMakePackage, CudaPackage): """OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library.""" homepage = 'https://opencv.org/' url = 'https://github.com/opencv/opencv/archive/4.5.0.tar.gz' git = 'https://github.com/opencv/opencv.git' maintainers = ['bvanessen', 'adamjstewart', 'glennpj'] version('master', branch='master') version('4.5.4', sha256='c20bb83dd790fc69df9f105477e24267706715a9d3c705ca1e7f613c7b3bad3d') version('4.5.2', sha256='ae258ed50aa039279c3d36afdea5c6ecf762515836b27871a8957c610d0424f8') version('4.5.1', sha256='e27fe5b168918ab60d58d7ace2bd82dd14a4d0bd1d3ae182952c2113f5637513') version('4.5.0', sha256='dde4bf8d6639a5d3fe34d5515eab4a15669ded609a1d622350c7ff20dace1907') version('4.2.0', sha256='9ccb2192d7e8c03c58fee07051364d94ed7599363f3b0dce1c5e6cc11c1bb0ec') version('4.1.2', sha256='385dd0a9c25e67ef0dd60e022d2a2d7b17e2f36819cf3cb46aa8cdff5c5282c9') version('4.1.1', sha256='5de5d96bdfb9dad6e6061d70f47a0a91cee96bb35afb9afb9ecb3d43e243d217') version('4.1.0', sha256='8f6e4ab393d81d72caae6e78bd0fd6956117ec9f006fba55fcdb88caf62989b7') version('4.0.1', sha256='7b86a0ee804244e0c407321f895b15e4a7162e9c5c0d2efc85f1cadec4011af4') version('4.0.0', sha256='3787b3cc7b21bba1441819cb00c636911a846c0392ddf6211d398040a1e4886c') version('3.4.12', sha256='c8919dfb5ead6be67534bf794cb0925534311f1cd5c6680f8164ad1813c88d13') version('3.4.6', sha256='e7d311ff97f376b8ee85112e2b536dbf4bdf1233673500175ed7cf21a0089f6d') version('3.4.5', sha256='0c57d9dd6d30cbffe68a09b03f4bebe773ee44dc8ff5cd6eaeb7f4d5ef3b428e') version('3.4.4', sha256='a35b00a71d77b484f73ec485c65fe56c7a6fa48acd5ce55c197aef2e13c78746') version('3.4.3', sha256='4eef85759d5450b183459ff216b4c0fa43e87a4f6aa92c8af649f89336f002ec') version('3.4.1', sha256='f1b87684d75496a1054405ae3ee0b6573acaf3dad39eaf4f1d66fdd7e03dc852') version('3.4.0', sha256='678cc3d2d1b3464b512b084a8cca1fad7de207c7abdf2caa1fed636c13e916da') version('3.3.1', sha256='5dca3bb0d661af311e25a72b04a7e4c22c47c1aa86eb73e70063cd378a2aa6ee') version('3.3.0', sha256='8bb312b9d9fd17336dc1f8b3ac82f021ca50e2034afc866098866176d985adc6') contrib_vers = ['3.3.0', '3.3.1', '3.4.0', '3.4.1', '3.4.3', '3.4.4', '3.4.5', '3.4.6', '3.4.12', '4.0.0', '4.0.1', '4.1.0', '4.1.1', '4.1.2', '4.2.0', '4.5.0', '4.5.1', '4.5.2', '4.5.4'] for cv in contrib_vers: resource(name='contrib', git='https://github.com/opencv/opencv_contrib.git', tag='{0}'.format(cv), when='@{0}'.format(cv)) patch('dnn_cuda.patch', when='@3.3.0:3.4.1+cuda+dnn') patch('opencv3.2_cmake.patch', when='@3.2:3.4.1') patch('cmake_no-system-paths.patch') patch('opencv4.1.1_clp_cmake.patch', when='@4.1.1:') patch('opencv4.0.0_clp_cmake.patch', when='@4.0.0:4.1.0') patch('opencv3.4.12_clp_cmake.patch', when='@3.4.12') patch('opencv3.3_clp_cmake.patch', when='@:3.4.6') patch('opencv3.4.4_cvv_cmake.patch', when='@3.4.4:') patch('opencv3.3_cvv_cmake.patch', when='@:3.4.3') apps = ['annotation', 'createsamples', 'interactive-calibration', 'model-diagnostics', 'traincascade', 'version', 'visualisation'] for app in apps: variant(app, default=False, description='Install {0} app'.format(app)) with when('+annotation'): conflicts('~highgui') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~videoio') with when('+createsamples'): conflicts('~calib3d') conflicts('~features2d') conflicts('~highgui') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~objdetect') conflicts('~videoio') with when('+interactive-calibration'): conflicts('~calib3d') conflicts('~features2d') conflicts('~highgui') conflicts('~imgproc') conflicts('~videoio') with when('+model-diagnostics'): conflicts('~dnn') with when('+traincascade'): conflicts('~calib3d') conflicts('~features2d') conflicts('~highgui') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~objdetect') with when('+visualisation'): conflicts('~highgui') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~videoio') modules = ['calib3d', 'dnn', 'features2d', 'flann', 'gapi', 'highgui', 'imgcodecs', 'imgproc', 'java', 'java_bindings_generator', 'ml', 'objc', 'objc_bindings_generator', 'objdetect', 'photo', 'python2', 'python3', 'python_bindings_generator', 'python_tests', 'stitching', 'ts', 'video', 'videoio', 'world'] modules_pending = ['js', 'js_bindings_generator'] for mod in modules: variant(mod, default=False, description='Include opencv_{0} module'.format(mod)) with when('+calib3d'): conflicts('~features2d') conflicts('~flann') conflicts('~imgproc') with when('+dnn'): conflicts('~imgproc') conflicts('~protobuf') with when('+features2d'): conflicts('~imgproc') with when('+gapi'): conflicts('~ade') conflicts('~imgproc') with when('+highgui'): conflicts('~imgcodecs') conflicts('~imgproc') with when('+imgcodecs'): conflicts('~imgproc') with when('+java'): conflicts('~imgproc') conflicts('~java_bindings_generator') conflicts('~python2~python3') with when('+java_bindings_generator'): depends_on('java') depends_on('ant') with when('+objc'): conflicts('~imgproc') conflicts('~objc_bindings_generator') with when('+objc_bindings_generator'): conflicts('~imgproc') with when('+objdetect'): conflicts('~calib3d') conflicts('~dnn') conflicts('~imgproc') with when('+photo'): conflicts('~imgproc') with when('+python2'): conflicts('+python3') conflicts('~python_bindings_generator') depends_on('[email protected]:2.8', type=('build', 'link', 'run')) depends_on('py-setuptools', type='build') depends_on('py-numpy', type=('build', 'run')) extends('python', when='+python2') with when('+python3'): conflicts('+python2') conflicts('~python_bindings_generator') depends_on('[email protected]:', type=('build', 'link', 'run')) depends_on('py-setuptools', type='build') depends_on('py-numpy', type=('build', 'run')) extends('python', when='+python3') with when('+stitching'): conflicts('~calib3d') conflicts('~features2d') conflicts('~flann') conflicts('~imgproc') with when('+ts'): conflicts('~highgui') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~videoio') with when('+video'): conflicts('~imgproc') with when('+videoio'): conflicts('~ffmpeg') conflicts('~imgcodecs') conflicts('~imgproc') contrib_modules = ['alphamat', 'aruco', 'barcode', 'bgsegm', 'bioinspired', 'ccalib', 'cudaarithm', 'cudabgsegm', 'cudacodec', 'cudafeatures2d', 'cudafilters', 'cudaimgproc', 'cudalegacy', 'cudaobjdetect', 'cudaoptflow', 'cudastereo', 'cudawarping', 'cudev', 'cvv', 'datasets', 'dnn_objdetect', 'dnn_superres', 'dpm', 'face', 'freetype', 'fuzzy', 'hdf', 'hfs', 'img_hash', 'intensity_transform', 'line_descriptor', 'matlab', 'mcc', 'optflow', 'phase_unwrapping', 'plot', 'quality', 'rapid', 'reg', 'rgbd', 'saliency', 'sfm', 'shape', 'stereo', 'structured_light', 'superres', 'surface_matching', 'text', 'tracking', 'videostab', 'viz', 'wechat_qrcode', 'xfeatures2d', 'ximgproc', 'xobjdetect', 'xphoto'] contrib_modules_pending = ['julia', 'ovis'] for mod in contrib_modules: variant(mod, default=False, description='Include opencv_{0} contrib module'.format(mod)) with when('+alphamat'): conflicts('~eigen') conflicts('~imgproc') with when('+aruco'): conflicts('~calib3d') conflicts('~imgproc') with when('+barcode'): conflicts('~dnn') conflicts('~imgproc') with when('+bgsegm'): conflicts('~calib3d') conflicts('~imgproc') conflicts('~video') with when('+ccalib'): conflicts('~calib3d') conflicts('~features2d') conflicts('~highgui') conflicts('~imgproc') with when('+cublas'): conflicts('~cuda') conflicts('~cudev') with when('+cuda'): conflicts('~cudev') with when('+cudaarithm'): conflicts('~cuda') conflicts('~cublas') conflicts('~cudev') conflicts('~cufft') with when('+cudabgsegm'): conflicts('~cuda') conflicts('~cudev') conflicts('~video') with when('+cudacodec'): conflicts('~cudev') conflicts('~videoio') with when('+cudafeatures2d'): conflicts('~cuda') conflicts('~cudafilters') conflicts('~cudawarping') conflicts('~cudev') conflicts('~features2d') with when('+cudafilters'): conflicts('~cuda') conflicts('~cudaarithm') conflicts('~cudev') conflicts('~imgproc') with when('+cudaimgproc'): conflicts('~cuda') conflicts('~cudev') conflicts('~imgproc') with when('+cudalegacy'): conflicts('~cuda') conflicts('~cudev') conflicts('~video') with when('+cudaobjdetect'): conflicts('~cuda') conflicts('~cudaarithm') conflicts('~cudawarping') conflicts('~cudev') conflicts('~objdetect') with when('+cudaoptflow'): conflicts('~cuda') conflicts('~cudaarithm') conflicts('~cudaimgproc') conflicts('~cudawarping') conflicts('~cudev') conflicts('~optflow') conflicts('~video') with when('+cudastereo'): conflicts('~calib3d') conflicts('~cuda') conflicts('~cudev') with when('+cudawarping'): conflicts('~cuda') conflicts('~cudev') conflicts('~imgproc') with when('+cudev'): conflicts('~cuda') with when('+cvv'): conflicts('~features2d') conflicts('~imgproc') conflicts('~qt') with when('+datasets'): conflicts('~flann') conflicts('~imgcodecs') conflicts('~ml') with when('+dnn_objdetect'): conflicts('~dnn') conflicts('~imgproc') with when('+dnn_superres'): conflicts('~dnn') conflicts('~imgproc') with when('+dpm'): conflicts('~imgproc') conflicts('~objdetect') with when('+face'): conflicts('~calib3d') conflicts('~imgproc') conflicts('~objdetect') conflicts('~photo') with when('+fuzzy'): conflicts('~imgproc') with when('+freetype'): conflicts('~imgproc') depends_on('freetype') depends_on('harfbuzz') with when('+hdf'): depends_on('hdf5') with when('+hfs'): with when('+cuda'): conflicts('~cudev') conflicts('~imgproc') with when('+img_hash'): conflicts('~imgproc') with when('+intensity_transform'): conflicts('~imgproc') with when('+line_descriptor'): conflicts('~imgproc') with when('+matlab'): conflicts('~python2~python3') depends_on('matlab') depends_on('py-jinja2') with when('+mcc'): conflicts('~calib3d') conflicts('~dnn') conflicts('~imgproc') with when('+optflow'): conflicts('~calib3d') conflicts('~flann') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~video') conflicts('~ximgproc') with when('+phase_unwrapping'): conflicts('~imgproc') with when('+plot'): conflicts('~imgproc') with when('+quality'): conflicts('~imgproc') conflicts('~ml') with when('+rapid'): conflicts('~calib3d') conflicts('~imgproc') with when('+reg'): conflicts('~imgproc') with when('+rgbd'): conflicts('~calib3d') conflicts('~eigen') conflicts('~imgproc') with when('+saliency'): conflicts('%intel') conflicts('~features2d') conflicts('~imgproc') with when('+sfm'): conflicts('~calib3d') conflicts('~eigen') conflicts('~features2d') conflicts('~imgcodecs') conflicts('~xfeatures2d') depends_on('ceres-solver') depends_on('gflags') depends_on('glog') with when('+shape'): conflicts('~calib3d') conflicts('~imgproc') with when('+stereo'): conflicts('~calib3d') conflicts('~features2d') conflicts('~imgproc') conflicts('~tracking') with when('+structured_light'): conflicts('~calib3d') conflicts('~imgproc') conflicts('~phase_unwrapping') with when('+superres'): with when('+cuda'): conflicts('~cudev') conflicts('~imgproc') conflicts('~optflow') conflicts('~video') with when('+surface_matching'): conflicts('~flann') with when('+text'): conflicts('~dnn') conflicts('~features2d') conflicts('~imgproc') conflicts('~ml') with when('+tracking'): conflicts('~imgproc') conflicts('~plot') conflicts('~video') with when('+videostab'): with when('+cuda'): conflicts('~cudev') conflicts('~calib3d') conflicts('~features2d') conflicts('~imgproc') conflicts('~photo') conflicts('~video') with when('+viz'): conflicts('~vtk') with when('+wechat_qrcode'): conflicts('~dnn') conflicts('~imgproc') depends_on('libiconv') with when('+xfeatures2d'): with when('+cuda'): conflicts('~cudev') conflicts('~calib3d') conflicts('~features2d') conflicts('~imgproc') with when('+ximgproc'): conflicts('~calib3d') conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~video') with when('+xobjdetect'): conflicts('~imgcodecs') conflicts('~imgproc') conflicts('~objdetect') with when('+xphoto'): conflicts('~imgproc') conflicts('~photo') components = ['1394', 'ade', 'android_mediandk', 'android_native_camera', 'avfoundation', 'cap_ios', 'carotene', 'clp', 'cpufeatures', 'cublas', 'cuda', 'cudnn', 'cufft', 'directx', 'dshow', 'eigen', 'ffmpeg', 'gdal', 'gtk', 'hpx', 'imgcodec_hdr', 'imgcodec_pfm', 'imgcodec_pxm', 'imgcodec_sunraster', 'ipp', 'itt', 'jasper', 'jpeg', 'lapack', 'msmf', 'msmf_dxva', 'onnx', 'opencl', 'opencl_d3d11_nv', 'openexr', 'opengl', 'openjpeg', 'openmp', 'plaidml', 'png', 'protobuf', 'pthreads_pf', 'qt', 'quirc', 'tbb', 'tengine', 'tesseract', 'tiff', 'v4l', 'vtk', 'vulcan', 'webp', 'win32ui'] components_pending = ['aravis', 'gdcm', 'gphoto2', 'gstreamer', 'gtk_2_x', 'halide', 'inf_engine', 'librealsense', 'mfx', 'ngraph', 'nvcuvid', 'opencl_svm', 'openclamdblas', 'openclamdfft', 'openni', 'openni2', 'openvx', 'pvapi', 'ueye', 'va', 'va_intel', 'ximea', 'xine'] component_and_module = ['freetype', 'julia', 'matlab'] for component in components: variant(component, default=False, description='Include {0} support'.format(component)) variant('shared', default=True, description='Enables the build of shared libraries') variant('powerpc', default=False, description='Enable PowerPC for GCC') variant('fast-math', default=False, description='Enable -ffast-math (not recommended for GCC 4.6.x)') variant('nonfree', default=False, description='Enable non-free algorithms') depends_on('[email protected]:', type='build') depends_on('[email protected]:2.8,3.2:', type='build') depends_on('java', type='build') depends_on('[email protected]:') depends_on('clp', when='+clp') depends_on('[email protected]:', when='+cuda') depends_on('cuda@:10.2', when='@4.0:4.2+cuda') depends_on('cuda@:9.0', when='@3.3.1:3.4+cuda') depends_on('cuda@:8', when='@:3.3.0+cuda') depends_on('cudnn', when='+cudnn') depends_on('cudnn@:7.6', when='@4.0:4.2+cudnn') depends_on('cudnn@:7.3', when='@3.3.1:3.4+cudnn') depends_on('cudnn@:6', when='@:3.3.0+cudnn') depends_on('eigen', when='+eigen') depends_on('ffmpeg+avresample', when='+ffmpeg') depends_on('gdal', when='+gdal') depends_on('gtkplus', when='+gtk') depends_on('hpx', when='+hpx') depends_on('ipp', when='+ipp') depends_on('jasper', when='+jasper') depends_on('jpeg', when='+jpeg') depends_on('lapack', when='+lapack') depends_on('onnx', when='+onnx') depends_on('opencl', when='+opencl') depends_on('openexr', when='+openexr') depends_on('gl', when='+opengl') depends_on('openjpeg@2:', when='+openjpeg') depends_on('libpng', when='+png') depends_on('[email protected]:', when='@3.4.1: +protobuf') depends_on('[email protected]', when='@3.3.0:3.4.0 +protobuf') depends_on('qt@5:', when='+qt') depends_on('qt@5:+opengl', when='+qt+opengl') depends_on('tbb', when='+tbb') depends_on('libtiff+jpeg+libdeflate+lzma+zlib', when='+tiff') depends_on('vtk', when='+vtk') depends_on('libwebp', when='+webp') depends_on('tesseract', when='+tesseract') depends_on('leptonica', when='+tesseract') depends_on('libdc1394', when='+1394') conflicts('+android_mediandk', when='platform=darwin', msg='Android only') conflicts('+android_mediandk', when='platform=linux', msg='Android only') conflicts('+android_mediandk', when='platform=cray', msg='Android only') conflicts('+android_native_camera', when='platform=darwin', msg='Android only') conflicts('+android_native_camera', when='platform=linux', msg='Android only') conflicts('+android_native_camera', when='platform=cray', msg='Android only') conflicts('+avfoundation', when='platform=linux', msg='iOS/macOS only') conflicts('+avfoundation', when='platform=cray', msg='iOS/macOS only') conflicts('+cap_ios', when='platform=darwin', msg='iOS only') conflicts('+cap_ios', when='platform=linux', msg='iOS only') conflicts('+cap_ios', when='platform=cray', msg='iOS only') conflicts('+carotene', when='target=x86:', msg='ARM/AARCH64 only') conflicts('+carotene', when='target=x86_64:', msg='ARM/AARCH64 only') conflicts('+cpufeatures', when='platform=darwin', msg='Android only') conflicts('+cpufeatures', when='platform=linux', msg='Android only') conflicts('+cpufeatures', when='platform=cray', msg='Android only') conflicts('+cublas', when='~cuda') conflicts('+cudnn', when='~cuda') conflicts('+cufft', when='~cuda') conflicts('+directx', when='platform=darwin', msg='Windows only') conflicts('+directx', when='platform=linux', msg='Windows only') conflicts('+directx', when='platform=cray', msg='Windows only') conflicts('+dshow', when='platform=darwin', msg='Windows only') conflicts('+dshow', when='platform=linux', msg='Windows only') conflicts('+dshow', when='platform=cray', msg='Windows only') conflicts('+gtk', when='platform=darwin', msg='Linux only') conflicts('+ipp', when='target=aarch64:', msg='x86 or x86_64 only') conflicts('+jasper', when='+openjpeg') conflicts('+msmf', when='platform=darwin', msg='Windows only') conflicts('+msmf', when='platform=linux', msg='Windows only') conflicts('+msmf', when='platform=cray', msg='Windows only') conflicts('+msmf_dxva', when='platform=darwin', msg='Windows only') conflicts('+msmf_dxva', when='platform=linux', msg='Windows only') conflicts('+msmf_dxva', when='platform=cray', msg='Windows only') conflicts('+opencl_d3d11_nv', when='platform=darwin', msg='Windows only') conflicts('+opencl_d3d11_nv', when='platform=linux', msg='Windows only') conflicts('+opencl_d3d11_nv', when='platform=cray', msg='Windows only') conflicts('+opengl', when='~qt') conflicts('+tengine', when='platform=darwin', msg='Linux only') conflicts('+tengine', when='target=x86:', msg='ARM/AARCH64 only') conflicts('+tengine', when='target=x86_64:', msg='ARM/AARCH64 only') conflicts('+v4l', when='platform=darwin', msg='Linux only') conflicts('+win32ui', when='platform=darwin', msg='Windows only') conflicts('+win32ui', when='platform=linux', msg='Windows only') conflicts('+win32ui', when='platform=cray', msg='Windows only') def cmake_args(self): spec = self.spec args = [self.define('OPENCV_EXTRA_MODULES_PATH', join_path(self.stage.source_path, 'opencv_contrib/modules')), self.define('BUILD_opencv_core', 'on')] apps_list = [] for app in self.apps: if '+{0}'.format(app) in spec: apps_list.append(app) if apps_list: args.append(self.define('BUILD_opencv_apps', 'on')) args.append(self.define('OPENCV_INSTALL_APPS_LIST', ','.join(apps_list))) else: args.append(self.define('BUILD_opencv_apps', 'off')) for mod in self.modules: args.append(self.define_from_variant('BUILD_opencv_' + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant('WITH_' + mod.upper(), mod)) for mod in self.modules_pending: args.append(self.define('BUILD_opencv_' + mod, 'off')) if mod in self.component_and_module: args.append(self.define('WITH_' + mod.upper(), 'off')) for mod in self.contrib_modules: args.append(self.define_from_variant('BUILD_opencv_' + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant('WITH_' + mod.upper(), mod)) for mod in self.contrib_modules_pending: args.append(self.define('BUILD_opencv_' + mod, 'off')) if mod in self.component_and_module: args.append(self.define('WITH_' + mod.upper(), 'off')) for component in self.components: args.append(self.define_from_variant('WITH_' + component.upper(), component)) for component in self.components_pending: args.append(self.define('WITH_' + component.upper(), 'off')) args.extend([self.define('ENABLE_CONFIG_VERIFICATION', True), self.define_from_variant('BUILD_SHARED_LIBS', 'shared'), self.define('ENABLE_PRECOMPILED_HEADERS', False), self.define_from_variant('WITH_LAPACK', 'lapack'), self.define_from_variant('ENABLE_POWERPC', 'powerpc'), self.define_from_variant('ENABLE_FAST_MATH', 'fast-math'), self.define_from_variant('OPENCV_ENABLE_NONFREE', 'nonfree')]) if '+cuda' in spec: if spec.variants['cuda_arch'].value[0] != 'none': cuda_arch = spec.variants['cuda_arch'].value args.append(self.define('CUDA_ARCH_BIN', ' '.join(cuda_arch))) if spec.target.family == 'ppc64le': args.append(self.define('ENABLE_VSX', True)) zlib = spec['zlib'] args.extend([self.define('BUILD_ZLIB', False), self.define('ZLIB_LIBRARY', zlib.libs[0]), self.define('ZLIB_INCLUDE_DIR', zlib.headers.directories[0])]) if '+png' in spec: libpng = spec['libpng'] args.extend([self.define('BUILD_PNG', False), self.define('PNG_LIBRARY', libpng.libs[0]), self.define('PNG_INCLUDE_DIR', libpng.headers.directories[0])]) if '+jpeg' in spec: libjpeg = spec['jpeg'] args.extend([self.define('BUILD_JPEG', False), self.define('JPEG_LIBRARY', libjpeg.libs[0]), self.define('JPEG_INCLUDE_DIR', libjpeg.headers.directories[0])]) if '+tiff' in spec: libtiff = spec['libtiff'] args.extend([self.define('BUILD_TIFF', False), self.define('TIFF_LIBRARY', libtiff.libs[0]), self.define('TIFF_INCLUDE_DIR', libtiff.headers.directories[0])]) if '+jasper' in spec: jasper = spec['jasper'] args.extend([self.define('BUILD_JASPER', False), self.define('JASPER_LIBRARY', jasper.libs[0]), self.define('JASPER_INCLUDE_DIR', jasper.headers.directories[0])]) if '+clp' in spec: clp = spec['clp'] args.extend([self.define('BUILD_CLP', False), self.define('CLP_LIBRARIES', clp.prefix.lib), self.define('CLP_INCLUDE_DIR', clp.headers.directories[0])]) if '+onnx' in spec: onnx = spec['onnx'] args.extend([self.define('BUILD_ONNX', False), self.define('ORT_LIB', onnx.libs[0]), self.define('ORT_INCLUDE', onnx.headers.directories[0])]) if '+tesseract' in spec: tesseract = spec['tesseract'] leptonica = spec['leptonica'] args.extend([self.define('Lept_LIBRARY', leptonica.libs[0]), self.define('Tesseract_LIBRARY', tesseract.libs[0]), self.define('Tesseract_INCLUDE_DIR', tesseract.headers.directories[0])]) python_exe = spec['python'].command.path python_lib = spec['python'].libs[0] python_include_dir = spec['python'].headers.directories[0] if '+python2' in spec: args.extend([self.define('PYTHON2_EXECUTABLE', python_exe), self.define('PYTHON2_LIBRARY', python_lib), self.define('PYTHON2_INCLUDE_DIR', python_include_dir), self.define('PYTHON3_EXECUTABLE', '')]) elif '+python3' in spec: args.extend([self.define('PYTHON3_EXECUTABLE', python_exe), self.define('PYTHON3_LIBRARY', python_lib), self.define('PYTHON3_INCLUDE_DIR', python_include_dir), self.define('PYTHON2_EXECUTABLE', '')]) else: args.extend([self.define('PYTHON2_EXECUTABLE', ''), self.define('PYTHON3_EXECUTABLE', '')]) return args @property def libs(self): shared = '+shared' in self.spec return find_libraries('libopencv_*', root=self.prefix, shared=shared, recursive=True)
# @Vipin Chaudhari host='192.168.1.15' meetup_rsvp_stream_api_url = "http://stream.meetup.com/2/rsvps" # Kafka info kafka_topic = "meetup-rsvp-topic" kafka_server = host+':9092' # MySQL info mysql_user = "python" mysql_pwd = "python" mysql_db = "meetup" mysql_driver = "com.mysql.cj.jdbc.Driver" mysql_tbl = "MeetupRSVP" mysql_jdbc_url = "jdbc:mysql://" + host + ":3306/" + mysql_db + "?useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=UTC" # MongoDB info mongodb_host=host mongodb_user = "admin" mongodb_pwd = "admin" mongodb_db = "meetup" mongodb_collection = "tbl_meetup_rsvp"
host = '192.168.1.15' meetup_rsvp_stream_api_url = 'http://stream.meetup.com/2/rsvps' kafka_topic = 'meetup-rsvp-topic' kafka_server = host + ':9092' mysql_user = 'python' mysql_pwd = 'python' mysql_db = 'meetup' mysql_driver = 'com.mysql.cj.jdbc.Driver' mysql_tbl = 'MeetupRSVP' mysql_jdbc_url = 'jdbc:mysql://' + host + ':3306/' + mysql_db + '?useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=UTC' mongodb_host = host mongodb_user = 'admin' mongodb_pwd = 'admin' mongodb_db = 'meetup' mongodb_collection = 'tbl_meetup_rsvp'
class Layer: def __init__(self): self.input = None self.output = None def forward_propagation(self,input): raise NotImplementedError def backward_propagation(self, output_error,learning_rate): raise NotImplementedError
class Layer: def __init__(self): self.input = None self.output = None def forward_propagation(self, input): raise NotImplementedError def backward_propagation(self, output_error, learning_rate): raise NotImplementedError
def to_fp_name(path, prefix='fp'): if path == 'stdout': return 'stdout' if path == 'stderr': return 'stderr' if path == 'stdin': return 'stdin' # For now, just construct a fd variable name by taking objectionable chars out of the path cleaned = path.replace('.', '_').replace ('/', '_').replace ('-', '_').replace ('+', 'x') return "{}_{}".format(prefix, cleaned) def doinatest(): return "YO"
def to_fp_name(path, prefix='fp'): if path == 'stdout': return 'stdout' if path == 'stderr': return 'stderr' if path == 'stdin': return 'stdin' cleaned = path.replace('.', '_').replace('/', '_').replace('-', '_').replace('+', 'x') return '{}_{}'.format(prefix, cleaned) def doinatest(): return 'YO'
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode: if root is None: return None left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) if (left and right) or root in [p,q]: return root else: return left or right
class Treenode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def lowest_common_ancestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode: if root is None: return None left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) if left and right or root in [p, q]: return root else: return left or right
#!/usr/bin/env python #pylint: skip-file # This source code is licensed under the Apache license found in the # LICENSE file in the root directory of this project. class AclAce(object): def __init__(self): """ Attributes: swaggerTypes (dict): The key is attribute name and the value is attribute type. attributeMap (dict): The key is attribute name and the value is json key in definition. """ self.swaggerTypes = { 'result': 'str', 'matchingPorts': 'list[AclMatchingPorts]', 'ace': 'str' } self.attributeMap = { 'result': 'result', 'matchingPorts': 'matchingPorts', 'ace': 'ace' } self.result = None # str self.matchingPorts = None # list[AclMatchingPorts] self.ace = None # str
class Aclace(object): def __init__(self): """ Attributes: swaggerTypes (dict): The key is attribute name and the value is attribute type. attributeMap (dict): The key is attribute name and the value is json key in definition. """ self.swaggerTypes = {'result': 'str', 'matchingPorts': 'list[AclMatchingPorts]', 'ace': 'str'} self.attributeMap = {'result': 'result', 'matchingPorts': 'matchingPorts', 'ace': 'ace'} self.result = None self.matchingPorts = None self.ace = None
class MarginGetError(Exception): pass class PositionGetError(Exception): pass class TickGetError(Exception): pass class TradeGetError(Exception): pass class BarGetError(Exception): pass class FillGetError(Exception): pass class OrderPostError(Exception): pass class OrderGetError(Exception): pass class OrderBookGetError(Exception): pass class BalanceGetError(Exception): pass class AssetTransferError(Exception): pass
class Margingeterror(Exception): pass class Positiongeterror(Exception): pass class Tickgeterror(Exception): pass class Tradegeterror(Exception): pass class Bargeterror(Exception): pass class Fillgeterror(Exception): pass class Orderposterror(Exception): pass class Ordergeterror(Exception): pass class Orderbookgeterror(Exception): pass class Balancegeterror(Exception): pass class Assettransfererror(Exception): pass
class MyStuff(object): def __init__(self): self.stark = "I am classy Iron Man." def groot(self): print("I am classy groot!") thing = MyStuff() thing.groot() print(thing.stark)
class Mystuff(object): def __init__(self): self.stark = 'I am classy Iron Man.' def groot(self): print('I am classy groot!') thing = my_stuff() thing.groot() print(thing.stark)
expected_output = { "GigabitEthernet0/1/1": { "service_policy": { "output": { "policy_name": { "shape-out": { "class_map": { "class-default": { "bytes": 0, "bytes_output": 0, "match": ["any"], "match_evaluation": "match-any", "no_buffer_drops": 0, "packets": 0, "pkts_output": 0, "queue_depth": 0, "queue_limit_packets": "64", "queueing": True, "rate": { "drop_rate_bps": 0, "interval": 300, "offered_rate_bps": 0, }, "shape_bc_bps": 2000, "shape_be_bps": 2000, "shape_cir_bps": 500000, "shape_type": "average", "target_shape_rate": 500000, "total_drops": 0, } } } } } } } }
expected_output = {'GigabitEthernet0/1/1': {'service_policy': {'output': {'policy_name': {'shape-out': {'class_map': {'class-default': {'bytes': 0, 'bytes_output': 0, 'match': ['any'], 'match_evaluation': 'match-any', 'no_buffer_drops': 0, 'packets': 0, 'pkts_output': 0, 'queue_depth': 0, 'queue_limit_packets': '64', 'queueing': True, 'rate': {'drop_rate_bps': 0, 'interval': 300, 'offered_rate_bps': 0}, 'shape_bc_bps': 2000, 'shape_be_bps': 2000, 'shape_cir_bps': 500000, 'shape_type': 'average', 'target_shape_rate': 500000, 'total_drops': 0}}}}}}}}
class MXVLANPorts(object): def __init__(self, session): super(MXVLANPorts, self).__init__() self._session = session def getNetworkAppliancePorts(self, networkId: str): """ **List per-port VLAN settings for all ports of a MX.** https://developer.cisco.com/meraki/api/#!get-network-appliance-ports - networkId (string) """ metadata = { 'tags': ['MX VLAN ports'], 'operation': 'getNetworkAppliancePorts', } resource = f'/networks/{networkId}/appliancePorts' return self._session.get(metadata, resource) def getNetworkAppliancePort(self, networkId: str, appliancePortId: str): """ **Return per-port VLAN settings for a single MX port.** https://developer.cisco.com/meraki/api/#!get-network-appliance-port - networkId (string) - appliancePortId (string) """ metadata = { 'tags': ['MX VLAN ports'], 'operation': 'getNetworkAppliancePort', } resource = f'/networks/{networkId}/appliancePorts/{appliancePortId}' return self._session.get(metadata, resource) def updateNetworkAppliancePort(self, networkId: str, appliancePortId: str, **kwargs): """ **Update the per-port VLAN settings for a single MX port.** https://developer.cisco.com/meraki/api/#!update-network-appliance-port - networkId (string) - appliancePortId (string) - enabled (boolean): The status of the port - dropUntaggedTraffic (boolean): Trunk port can Drop all Untagged traffic. When true, no VLAN is required. Access ports cannot have dropUntaggedTraffic set to true. - type (string): The type of the port: 'access' or 'trunk'. - vlan (integer): Native VLAN when the port is in Trunk mode. Access VLAN when the port is in Access mode. - allowedVlans (string): Comma-delimited list of the VLAN ID's allowed on the port, or 'all' to permit all VLAN's on the port. - accessPolicy (string): The name of the policy. Only applicable to Access ports. Valid values are: 'open', '8021x-radius', 'mac-radius', 'hybris-radius' for MX64 or Z3 or any MX supporting the per port authentication feature. Otherwise, 'open' is the only valid value and 'open' is the default value if the field is missing. """ kwargs.update(locals()) metadata = { 'tags': ['MX VLAN ports'], 'operation': 'updateNetworkAppliancePort', } resource = f'/networks/{networkId}/appliancePorts/{appliancePortId}' body_params = ['enabled', 'dropUntaggedTraffic', 'type', 'vlan', 'allowedVlans', 'accessPolicy'] payload = {k: v for (k, v) in kwargs.items() if k in body_params} return self._session.put(metadata, resource, payload)
class Mxvlanports(object): def __init__(self, session): super(MXVLANPorts, self).__init__() self._session = session def get_network_appliance_ports(self, networkId: str): """ **List per-port VLAN settings for all ports of a MX.** https://developer.cisco.com/meraki/api/#!get-network-appliance-ports - networkId (string) """ metadata = {'tags': ['MX VLAN ports'], 'operation': 'getNetworkAppliancePorts'} resource = f'/networks/{networkId}/appliancePorts' return self._session.get(metadata, resource) def get_network_appliance_port(self, networkId: str, appliancePortId: str): """ **Return per-port VLAN settings for a single MX port.** https://developer.cisco.com/meraki/api/#!get-network-appliance-port - networkId (string) - appliancePortId (string) """ metadata = {'tags': ['MX VLAN ports'], 'operation': 'getNetworkAppliancePort'} resource = f'/networks/{networkId}/appliancePorts/{appliancePortId}' return self._session.get(metadata, resource) def update_network_appliance_port(self, networkId: str, appliancePortId: str, **kwargs): """ **Update the per-port VLAN settings for a single MX port.** https://developer.cisco.com/meraki/api/#!update-network-appliance-port - networkId (string) - appliancePortId (string) - enabled (boolean): The status of the port - dropUntaggedTraffic (boolean): Trunk port can Drop all Untagged traffic. When true, no VLAN is required. Access ports cannot have dropUntaggedTraffic set to true. - type (string): The type of the port: 'access' or 'trunk'. - vlan (integer): Native VLAN when the port is in Trunk mode. Access VLAN when the port is in Access mode. - allowedVlans (string): Comma-delimited list of the VLAN ID's allowed on the port, or 'all' to permit all VLAN's on the port. - accessPolicy (string): The name of the policy. Only applicable to Access ports. Valid values are: 'open', '8021x-radius', 'mac-radius', 'hybris-radius' for MX64 or Z3 or any MX supporting the per port authentication feature. Otherwise, 'open' is the only valid value and 'open' is the default value if the field is missing. """ kwargs.update(locals()) metadata = {'tags': ['MX VLAN ports'], 'operation': 'updateNetworkAppliancePort'} resource = f'/networks/{networkId}/appliancePorts/{appliancePortId}' body_params = ['enabled', 'dropUntaggedTraffic', 'type', 'vlan', 'allowedVlans', 'accessPolicy'] payload = {k: v for (k, v) in kwargs.items() if k in body_params} return self._session.put(metadata, resource, payload)
TOKEN = '668308467:AAETX4hdMRnVvYVBP4bK5WDgvL8zIXoHq5g' main_url = 'https://schedule.vekclub.com/api/v1/' list_group = 'handbook/groups-by-institution?institutionId=4' shedule_group ='schedule/group?groupId='
token = '668308467:AAETX4hdMRnVvYVBP4bK5WDgvL8zIXoHq5g' main_url = 'https://schedule.vekclub.com/api/v1/' list_group = 'handbook/groups-by-institution?institutionId=4' shedule_group = 'schedule/group?groupId='
# -*- coding: utf-8 -*- """This module contains exceptions """ class PublishError(RuntimeError): """Raised when the published version is not matching the quality """ pass
"""This module contains exceptions """ class Publisherror(RuntimeError): """Raised when the published version is not matching the quality """ pass
# SOME BASIC CONSTANT AND MASS FUNCTION OF POISSION DISTRIBUTION # e is Euler's number (e = 2.71828...) # f(k, lambda) = lambda^k * e^-lambda / k! # Task: # A random variable, X , follows Poisson distribution with mean of 2.5. Find the probability with which the random variable X is equal to 5. # Define functions def factorial(n): if n == 1 or n == 0: return 1 if n > 1: return factorial(n - 1) * n # Input data lam = float(input()) k = float(input()) e = 2.71828 # We can show result on the screen # The round() function returns a floating point number that is a rounded version of the specified number, with the specified number of decimals. # 3 denotes decimal places (i.e., 1.234 format): result = ((lam ** k) * (e ** -lam)) / factorial(k) print(round(result, 3))
def factorial(n): if n == 1 or n == 0: return 1 if n > 1: return factorial(n - 1) * n lam = float(input()) k = float(input()) e = 2.71828 result = lam ** k * e ** (-lam) / factorial(k) print(round(result, 3))
s1 = {'ab', 3,4, (5,6)} s2 = {'ab', 7, (7,6)} print(s1-s2) # Returns all the items in both s1 and s2 print(s1.intersection(s2)) # Returns all the items in a set print(s1.union(s2)) print('ab' in s1) # Testing for a member's presence in the set # Lopping through elements in a set for element in s1: print(element) # Frozen or Immutable sets s1.add(frozenset(s2)) print(s1) # Using frozen set as a key to a dictionary fs1 = frozenset(s1) fs2 = frozenset(s2) {fs1: 'fs1', fs2: 'fs2'}
s1 = {'ab', 3, 4, (5, 6)} s2 = {'ab', 7, (7, 6)} print(s1 - s2) print(s1.intersection(s2)) print(s1.union(s2)) print('ab' in s1) for element in s1: print(element) s1.add(frozenset(s2)) print(s1) fs1 = frozenset(s1) fs2 = frozenset(s2) {fs1: 'fs1', fs2: 'fs2'}
AI_FEEDBACK_SCALAS = { 1: "Strongly disagree", 2: "", 3: "", 4: "", 5: "", 6: "", 7: "Strongly agree" } AI_FEEDBACK_ACCURACY_SCALAS = { "no_clue": "I don't know", "0_percent": "0%", "20_percent": "20%", "40_percent": "40%", "60_percent": "60%", "80_percent": "80%", "100_percent": "100%", } AI_FEEDBACK_ACCURACY_PROPOSER_SCALAS = { "ai_much_worse": "Worse than me", "ai_worse": "", "ai_sligthly_worse": "", "ai_equal_to_proposer": "As good as me", "ai_slighly_better": "", "ai_better": "", "ai_much_better": "Better than me", } AI_FEEDBACK_ACCURACY_RESPONDER_SCALAS = { "ai_much_worse": "Worse than the PROPOSER", "ai_worse": "", "ai_sligthly_worse": "", "ai_equal_to_proposer": "As good as the PROPOSER", "ai_slighly_better": "", "ai_better": "", "ai_much_better": "Better than the PROPOSER", } AI_FEEDBACK_ACCURACY_RESPONDER_SCALAS_T3X = { 1: "Less", 2: "", 3: "", 4: "Equal", 5: "", 6: "", 7: "More" } AI_SYSTEM_DESCRIPTION_BRIEF_STANDALONE_PROPOSER = """Thank you for your offer. You will now make another decision as a PROPOSER. This time you have the option to use an AI Recommendation System (AI System) to help you decide which offer to make. The system was trained using prior interactions of comparable bargaining situations.""" AI_SYSTEM_DESCRIPTION_BRIEF_PROPOSER = """Thank you for your offer. You will now make another decision as a PROPOSER. This time you have the option to use an AI Recommendation System (AI System) to help you decide which offer to make.""" AI_SYSTEM_UNINFORMED_RESPONDER_INFORMATION_PROPOSER = """The RESPONDER does NOT know there is an AI System.""" AI_SYSTEM_INFORMED_RESPONDER_INFORMATION_PROPOSER = """The RESPONDER knows you can use an AI System.""" AI_SYSTEM_DESCRIPTION_EXTENDED_ACC_PROPOSER = """The system was trained using 100 prior interactions of comparable bargaining situations. - The system learned a fixed optimal offer (AI_OFFER). - AI_OFFER was found by testing each possible offer on comparable bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs. - Following the AI System's recommendations, PROPOSERs can gain 80% of the pie left by RESPONDERs. - Following the AI System's recommendations, PROPOSERs can have 95% of their offers accepted. - The probability of an offer being accepted is higher than 50% when the offer is greater than or equal to AI_OFFER. - The probability of an offer being the RESPONDER's minimal offer is higher the closer the offer is to AI_OFFER.""" AI_SYSTEM_DESCRIPTION_EXTENDED_PROPOSER = """The system was trained using 100 prior interactions of comparable bargaining situations. - The system learned a fixed optimal offer (AI_OFFER). - AI_OFFER was found by testing each possible offer on these prior bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs. - Using the same process, the system also constructed an interval that judges offers that deviate from its recommendation.""" AI_SYSTEM_DESCRIPTION_USAGE_PROPOSER = """To use the AI System, simply select a test offer and submit it to the system. The system will tell you its estimates on: 1. The probability that your offer will be accepted by your specific RESPONDER. 2. The probability that your offer is the minimal offer accepted by your specific RESPONDER. You can use the system as often as you want.""" AI_SYSTEM_DESCRIPTION_BRIEF_STANDALONE_RESPONDER = """Thank you for your minimum offer. You will now make another decision as a RESPONDER. This time your PROPOSER has the option to use an AI Recommendation System (AI System) to help them decide which offer to make. The system was trained using prior interactions of comparable bargaining situations.""" AI_SYSTEM_DESCRIPTION_BRIEF_RESPONDER = """Thank you for your minimum offer. You will now make another decision as a RESPONDER. This time your PROPOSER has the option to use an AI Recommendation System (AI System) to help them decide which offer to make.""" AI_SYSTEM_DESCRIPTION_EXTENDED_RESPONDER = AI_SYSTEM_DESCRIPTION_EXTENDED_PROPOSER AI_SYSTEM_AUTO_DESCRIPTION_BRIEF_STANDALONE_RESPONDER = """An AI Machine-Learning System will autonomously make an offer to you on behalf of a human PROPOSER. The system was trained using prior interactions of comparable bargaining situations. The human PROPOSER does not make any decisions, they only receives whatever money the system earns from this task.""" AI_SYSTEM_AUTO_DESCRIPTION_BRIEF_RESPONDER = """An AI Machine-Learning System will autonomously make an offer to you on behalf of a human PROPOSER. The human PROPOSER does not make any decisions, they only receives whatever money the system earns from this task.""" AI_SYSTEM_AUTO_DESCRIPTION_EXTENDED_RESPONDER = """The system was trained using 100 prior interactions of comparable bargaining situations. - The system learned a fixed optimal offer (AI_OFFER). - AI_OFFER was found by testing each possible offer on these prior bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs. - Using the same process, the system also constructed an interval that judges offers that deviate from its recommendation.""" AI_SYSTEM_DESCRIPTION_BRIEF_RESPONDER_T3X="""You have successfully submitted your minimum offer. Now, you have the option to revise your initial minimum offer by making a second decision in your role as RESPONDER. This second decision will be compared to your PROPOSER's offer and determine your bonus payoff from this task. For this second decision, you receive new information: Your matched PROPOSER does not actually make an offer themselves. Instead, an AI Machine-Learning System autonomously makes an offer on the human PROPOSER's behalf. The PROPOSER still receives whatever money the system earns from this task."""
ai_feedback_scalas = {1: 'Strongly disagree', 2: '', 3: '', 4: '', 5: '', 6: '', 7: 'Strongly agree'} ai_feedback_accuracy_scalas = {'no_clue': "I don't know", '0_percent': '0%', '20_percent': '20%', '40_percent': '40%', '60_percent': '60%', '80_percent': '80%', '100_percent': '100%'} ai_feedback_accuracy_proposer_scalas = {'ai_much_worse': 'Worse than me', 'ai_worse': '', 'ai_sligthly_worse': '', 'ai_equal_to_proposer': 'As good as me', 'ai_slighly_better': '', 'ai_better': '', 'ai_much_better': 'Better than me'} ai_feedback_accuracy_responder_scalas = {'ai_much_worse': 'Worse than the PROPOSER', 'ai_worse': '', 'ai_sligthly_worse': '', 'ai_equal_to_proposer': 'As good as the PROPOSER', 'ai_slighly_better': '', 'ai_better': '', 'ai_much_better': 'Better than the PROPOSER'} ai_feedback_accuracy_responder_scalas_t3_x = {1: 'Less', 2: '', 3: '', 4: 'Equal', 5: '', 6: '', 7: 'More'} ai_system_description_brief_standalone_proposer = 'Thank you for your offer. You will now make another decision as a PROPOSER. This time you have the option to use an AI Recommendation System (AI System) to help you decide which offer to make. The system was trained using prior interactions of comparable bargaining situations.' ai_system_description_brief_proposer = 'Thank you for your offer. You will now make another decision as a PROPOSER. This time you have the option to use an AI Recommendation System (AI System) to help you decide which offer to make.' ai_system_uninformed_responder_information_proposer = 'The RESPONDER does NOT know there is an AI System.' ai_system_informed_responder_information_proposer = 'The RESPONDER knows you can use an AI System.' ai_system_description_extended_acc_proposer = "The system was trained using 100 prior interactions of comparable bargaining situations.\n- The system learned a fixed optimal offer (AI_OFFER).\n- AI_OFFER was found by testing each possible offer on comparable bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs.\n- Following the AI System's recommendations, PROPOSERs can gain 80% of the pie left by RESPONDERs.\n- Following the AI System's recommendations, PROPOSERs can have 95% of their offers accepted.\n- The probability of an offer being accepted is higher than 50% when the offer is greater than or equal to AI_OFFER.\n- The probability of an offer being the RESPONDER's minimal offer is higher the closer the offer is to AI_OFFER." ai_system_description_extended_proposer = 'The system was trained using 100 prior interactions of comparable bargaining situations.\n- The system learned a fixed optimal offer (AI_OFFER).\n- AI_OFFER was found by testing each possible offer on these prior bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs.\n- Using the same process, the system also constructed an interval that judges offers that deviate from its recommendation.' ai_system_description_usage_proposer = 'To use the AI System, simply select a test offer and submit it to the system. The system will tell you its estimates on:\n1. The probability that your offer will be accepted by your specific RESPONDER.\n2. The probability that your offer is the minimal offer accepted by your specific RESPONDER.\n\nYou can use the system as often as you want.' ai_system_description_brief_standalone_responder = 'Thank you for your minimum offer. You will now make another decision as a RESPONDER. This time your PROPOSER has the option to use an AI Recommendation System (AI System) to help them decide which offer to make.\nThe system was trained using prior interactions of comparable bargaining situations.' ai_system_description_brief_responder = 'Thank you for your minimum offer. You will now make another decision as a RESPONDER. This time your PROPOSER has the option to use an AI Recommendation System (AI System) to help them decide which offer to make.' ai_system_description_extended_responder = AI_SYSTEM_DESCRIPTION_EXTENDED_PROPOSER ai_system_auto_description_brief_standalone_responder = 'An AI Machine-Learning System will autonomously make an offer to you on behalf of a human PROPOSER. The system was trained using prior interactions of comparable bargaining situations. The human PROPOSER does not make any decisions, they only receives whatever money the system earns from this task.' ai_system_auto_description_brief_responder = 'An AI Machine-Learning System will autonomously make an offer to you on behalf of a human PROPOSER. The human PROPOSER does not make any decisions, they only receives whatever money the system earns from this task.' ai_system_auto_description_extended_responder = 'The system was trained using 100 prior interactions of comparable bargaining situations.\n- The system learned a fixed optimal offer (AI_OFFER).\n- AI_OFFER was found by testing each possible offer on these prior bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs.\n- Using the same process, the system also constructed an interval that judges offers that deviate from its recommendation.' ai_system_description_brief_responder_t3_x = "You have successfully submitted your minimum offer. Now, you have the option to revise your initial minimum offer by making a second decision in your role as RESPONDER.\n\nThis second decision will be compared to your PROPOSER's offer and determine your bonus payoff from this task. For this second decision, you receive new information:\n\nYour matched PROPOSER does not actually make an offer themselves. Instead, an AI Machine-Learning System autonomously makes an offer on the human PROPOSER's behalf. The PROPOSER still receives whatever money the system earns from this task."
# -*- coding: utf-8 -*- class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def tree2str(self, t): if t is None: return '' result = [str(t.val)] if t.left is not None or t.right is not None: result.extend(['(', self.tree2str(t.left), ')']) if t.right is not None: result.extend(['(', self.tree2str(t.right), ')']) return ''.join(result) if __name__ == '__main__': solution = Solution() t0_0 = TreeNode(1) t0_1 = TreeNode(2) t0_2 = TreeNode(3) t0_3 = TreeNode(4) t0_1.left = t0_3 t0_0.right = t0_2 t0_0.left = t0_1 assert '1(2(4))(3)' == solution.tree2str(t0_0) t1_0 = TreeNode(1) t1_1 = TreeNode(2) t1_2 = TreeNode(3) t1_3 = TreeNode(4) t1_1.right = t1_3 t1_0.right = t1_2 t1_0.left = t1_1 assert '1(2()(4))(3)' == solution.tree2str(t1_0)
class Treenode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def tree2str(self, t): if t is None: return '' result = [str(t.val)] if t.left is not None or t.right is not None: result.extend(['(', self.tree2str(t.left), ')']) if t.right is not None: result.extend(['(', self.tree2str(t.right), ')']) return ''.join(result) if __name__ == '__main__': solution = solution() t0_0 = tree_node(1) t0_1 = tree_node(2) t0_2 = tree_node(3) t0_3 = tree_node(4) t0_1.left = t0_3 t0_0.right = t0_2 t0_0.left = t0_1 assert '1(2(4))(3)' == solution.tree2str(t0_0) t1_0 = tree_node(1) t1_1 = tree_node(2) t1_2 = tree_node(3) t1_3 = tree_node(4) t1_1.right = t1_3 t1_0.right = t1_2 t1_0.left = t1_1 assert '1(2()(4))(3)' == solution.tree2str(t1_0)
#!/usr/bin/python # -*- coding: utf-8 -*- # Simulation : https://framagit.org/kepon/PvMonit/issues/8 # ~ print("PID:0x203"); # ~ print("FW:146"); # ~ print("SER#:HQ18523ZGZI"); # ~ print("V:25260"); # ~ print("I:100"); # ~ print("VPV:28600"); # ~ print("PPV:6"); # ~ print("CS:3"); # ~ print("MPPT:2"); # ~ print("OR:0x00000000"); # ~ print("ERR:0"); # ~ print("LOAD:OFF"); # ~ print("Relay:OFF"); # ~ print("H19:3213"); # ~ print("H20:76"); # ~ print("H21:293"); # ~ print("H22:73"); # ~ print("H23:361"); # Simulation BMV 700 print("AR:0"); print("Alarm:OFF"); print("BMV:700"); print("CE:-36228"); print("FW: 0308"); print("H1:-102738"); print("H10:121"); print("H11:0"); print("H12:0"); print("H17:59983"); print("H18:70519"); print("H2:-36228"); print("H3:-102738"); print("H4:1"); print("H5:0"); print("H6:-24205923"); print("H7:21238"); print("H8:29442"); print("H9:104538"); print("I:-2082"); print("P:-50"); print("PID:0x203"); print("Relay:OFF"); print("SOC:886"); print("TTG:3429"); print("V:24061");
print('AR:0') print('Alarm:OFF') print('BMV:700') print('CE:-36228') print('FW: 0308') print('H1:-102738') print('H10:121') print('H11:0') print('H12:0') print('H17:59983') print('H18:70519') print('H2:-36228') print('H3:-102738') print('H4:1') print('H5:0') print('H6:-24205923') print('H7:21238') print('H8:29442') print('H9:104538') print('I:-2082') print('P:-50') print('PID:0x203') print('Relay:OFF') print('SOC:886') print('TTG:3429') print('V:24061')
def check_prime(n): f = 0 for i in range (2, n//2 +1): if n%i==0 : f= 1 break return f def min_range(d): a = (10**(d-1)) return a def max_range(d): b = (10**d) return b d=int(input("Enter d")) twin_prime_list = [] for i in range ( min_range(d) , max_range(d) ): if check_prime(i)== 0 and check_prime(i+2)== 0: twin_prime_list.append((i, i+2)) with open("twin_prime_list.txt", "w") as f: for twin_pair in twin_prime_list: f.write(str(twin_pair)) f.write("\n")
def check_prime(n): f = 0 for i in range(2, n // 2 + 1): if n % i == 0: f = 1 break return f def min_range(d): a = 10 ** (d - 1) return a def max_range(d): b = 10 ** d return b d = int(input('Enter d')) twin_prime_list = [] for i in range(min_range(d), max_range(d)): if check_prime(i) == 0 and check_prime(i + 2) == 0: twin_prime_list.append((i, i + 2)) with open('twin_prime_list.txt', 'w') as f: for twin_pair in twin_prime_list: f.write(str(twin_pair)) f.write('\n')
# -*- coding: utf-8 -*- """ Created on Tue Jun 29 10:24:19 2021 @author: USUARIO """
""" Created on Tue Jun 29 10:24:19 2021 @author: USUARIO """
# Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # DFS class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: self.ans = [] self.dfs(root, 0) return self.ans def dfs(self, node, level): if not node: return if level == len(self.ans): self.ans.append([node.val]) else: self.ans[level].append(node.val) self.dfs(node.left, level + 1) self.dfs(node.right, level + 1) # BFS class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: ans = [] queue = collections.deque([(root, 0)]) while queue: node, level = queue.popleft() if node: if level == len(ans): ans.append([node.val]) else: ans[level].append(node.val) queue.append((node.left, level + 1)) queue.append((node.right, level + 1)) return ans
class Treenode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def level_order(self, root: TreeNode) -> List[List[int]]: self.ans = [] self.dfs(root, 0) return self.ans def dfs(self, node, level): if not node: return if level == len(self.ans): self.ans.append([node.val]) else: self.ans[level].append(node.val) self.dfs(node.left, level + 1) self.dfs(node.right, level + 1) class Solution: def level_order(self, root: TreeNode) -> List[List[int]]: ans = [] queue = collections.deque([(root, 0)]) while queue: (node, level) = queue.popleft() if node: if level == len(ans): ans.append([node.val]) else: ans[level].append(node.val) queue.append((node.left, level + 1)) queue.append((node.right, level + 1)) return ans
""" Calculates compound interest over a specified time period. Since: 1.0.0 Catergory: Maths Args: param1 (int) investment: The amount of original investment. param2 (int) rate: Interest rate in whole number. i.e. 2% = 2. param3 (int) time: Length of investment. Used to exponentially raise total. Assumes interest is applied for every whole integer in param. Returns: Integer: Does not round or format the returned value. Example: >>> print(compound_interest(10, 3, 5)) 11.592740743000002 """ def compound_interest(investment, rate, time): counter = 0 total = investment interest = 1 + (rate * 0.01) while counter < time: total = total * interest counter += 1 return total
""" Calculates compound interest over a specified time period. Since: 1.0.0 Catergory: Maths Args: param1 (int) investment: The amount of original investment. param2 (int) rate: Interest rate in whole number. i.e. 2% = 2. param3 (int) time: Length of investment. Used to exponentially raise total. Assumes interest is applied for every whole integer in param. Returns: Integer: Does not round or format the returned value. Example: >>> print(compound_interest(10, 3, 5)) 11.592740743000002 """ def compound_interest(investment, rate, time): counter = 0 total = investment interest = 1 + rate * 0.01 while counter < time: total = total * interest counter += 1 return total
# Copyright (c) 2016 Alexander Sosedkin <[email protected]> # Distributed under the terms of the MIT License, see below: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module defines a collection of special methods and their fallback functions / canonical invocations. Fallback function invocations will be tried if the special method is missing. At least they should fail like the real deal, right? Taken from https://docs.python.org/3.5/reference/datamodel.html """ __all__ = ['SPECIAL_METHODS'] def _raise(exception_cls, *a, **kwa): raise exception_cls(*a, **kwa) def _will_give_up(msg): return lambda *a, **kwa: RuntimeError(msg) def _setitem(w, k, v): w[k] = v def _delitem(w, k): del w[k] SPECIAL_METHODS = { #'__new__': _will_give_up('no __new__'), #'__init__': _will_give_up('no __init__'), #'__del__': lambda _: None, # gc will call the right __del__ directly '__repr__': repr, '__str__': str, '__bytes__': bytes, '__format__': format, '__lt__': object.__lt__, '__le__': object.__le__, '__eq__': object.__eq__, '__ne__': object.__ne__, '__gt__': object.__gt__, '__ge__': object.__ge__, '__hash__': hash, '__bool__': bool, '__getattr__': getattr, '__getattribute__': object.__getattribute__, '__setattr__': setattr, '__delattr__': delattr, '__dir__': dir, '__get__': lambda w, i, o: w.__get__(i, o), '__set__': lambda w, i, o: w.__set__(i, o), '__delete__': lambda w, i, o: w.__delete__(i, o), '__prepare__': lambda w, n, b, **kwa: w.__prepare__(n, b, **kwa), '__instancecheck__': isinstance, '__subclasscheck__': issubclass, '__call__': lambda w, *a, **kwa: w(*a, **kwa), '__len__': len, '__length_hint__': len, # FIXME '__getitem__': lambda w, k: w[k], '__setitem__': _setitem, #'__missing__', '__delitem__': _delitem, '__iter__': iter, '__reversed__': reversed, '__contains__': lambda w, i: i in w, '__neg__': lambda w: -w, '__pos__': lambda w: +w, '__abs__': abs, '__invert__': lambda w: ~w, '__complex__': complex, '__int__': int, '__float__': float, '__round__': round, '__index__': lambda w: w.__index__(), # FIXME '__enter__': lambda w: w.__enter__(), # FIXME '__exit__': lambda w, et, ev, tb: w.__exit__(et, ev, tb), # FIXME '__await__': lambda w: w.__await__(), # FIXME '__aiter__': lambda w: w.__aiter__(), # FIXME '__anext__': lambda w: w.__anext__(), # FIXME '__aenter__': lambda w: w.__aenter__(), # FIXME '__aexit__': lambda w, et, ev, tb: w.__aexit__(et, ev, tb), # FIXME # # And... # '__next__', } # Also add numerical operators to that dict: _NUMERIC_SPECIAL_METHODS = set(( 'add', 'sub', 'mul', 'matmul', 'truediv', 'floordiv', 'mod', 'divmod', 'pow', 'lshift', 'rshift', 'and', 'xor', 'or', )) # All of these have three forms (__???__, __r???__ and __i???__) # and should not require a fallback if missing def _add_numeric_operators(): # let's not pollute namespace for numeric_name in _NUMERIC_SPECIAL_METHODS: for tmpl in ('__%s__', '__r%s__', '__i%s__'): name = tmpl % numeric_name try: SPECIAL_METHODS[name] = getattr(object, name) except AttributeError: SPECIAL_METHODS[name] = lambda w, o: NotImplemented _add_numeric_operators() del _add_numeric_operators
""" This module defines a collection of special methods and their fallback functions / canonical invocations. Fallback function invocations will be tried if the special method is missing. At least they should fail like the real deal, right? Taken from https://docs.python.org/3.5/reference/datamodel.html """ __all__ = ['SPECIAL_METHODS'] def _raise(exception_cls, *a, **kwa): raise exception_cls(*a, **kwa) def _will_give_up(msg): return lambda *a, **kwa: runtime_error(msg) def _setitem(w, k, v): w[k] = v def _delitem(w, k): del w[k] special_methods = {'__repr__': repr, '__str__': str, '__bytes__': bytes, '__format__': format, '__lt__': object.__lt__, '__le__': object.__le__, '__eq__': object.__eq__, '__ne__': object.__ne__, '__gt__': object.__gt__, '__ge__': object.__ge__, '__hash__': hash, '__bool__': bool, '__getattr__': getattr, '__getattribute__': object.__getattribute__, '__setattr__': setattr, '__delattr__': delattr, '__dir__': dir, '__get__': lambda w, i, o: w.__get__(i, o), '__set__': lambda w, i, o: w.__set__(i, o), '__delete__': lambda w, i, o: w.__delete__(i, o), '__prepare__': lambda w, n, b, **kwa: w.__prepare__(n, b, **kwa), '__instancecheck__': isinstance, '__subclasscheck__': issubclass, '__call__': lambda w, *a, **kwa: w(*a, **kwa), '__len__': len, '__length_hint__': len, '__getitem__': lambda w, k: w[k], '__setitem__': _setitem, '__delitem__': _delitem, '__iter__': iter, '__reversed__': reversed, '__contains__': lambda w, i: i in w, '__neg__': lambda w: -w, '__pos__': lambda w: +w, '__abs__': abs, '__invert__': lambda w: ~w, '__complex__': complex, '__int__': int, '__float__': float, '__round__': round, '__index__': lambda w: w.__index__(), '__enter__': lambda w: w.__enter__(), '__exit__': lambda w, et, ev, tb: w.__exit__(et, ev, tb), '__await__': lambda w: w.__await__(), '__aiter__': lambda w: w.__aiter__(), '__anext__': lambda w: w.__anext__(), '__aenter__': lambda w: w.__aenter__(), '__aexit__': lambda w, et, ev, tb: w.__aexit__(et, ev, tb)} _numeric_special_methods = set(('add', 'sub', 'mul', 'matmul', 'truediv', 'floordiv', 'mod', 'divmod', 'pow', 'lshift', 'rshift', 'and', 'xor', 'or')) def _add_numeric_operators(): for numeric_name in _NUMERIC_SPECIAL_METHODS: for tmpl in ('__%s__', '__r%s__', '__i%s__'): name = tmpl % numeric_name try: SPECIAL_METHODS[name] = getattr(object, name) except AttributeError: SPECIAL_METHODS[name] = lambda w, o: NotImplemented _add_numeric_operators() del _add_numeric_operators
""" """ class ConfigurationManager(object): def __init__(self, full_config): self._full_config = full_config def get(self, task_key): self.result_config = {} self.current_config = self._full_config.copy() [self._add_task_options(task_option) for task_option in task_key.split('.')] return self.result_config def _add_task_options(self, task_option): task_config = self.current_config.get(task_option) if task_config: self._merge_into_result(task_config) self._remove_from_result(task_option) self.current_config = task_config def _merge_into_result(self, task_config): self.result_config.update(task_config) def _remove_from_result(self, task_option): if task_option in self.result_config: del self.result_config[task_option]
""" """ class Configurationmanager(object): def __init__(self, full_config): self._full_config = full_config def get(self, task_key): self.result_config = {} self.current_config = self._full_config.copy() [self._add_task_options(task_option) for task_option in task_key.split('.')] return self.result_config def _add_task_options(self, task_option): task_config = self.current_config.get(task_option) if task_config: self._merge_into_result(task_config) self._remove_from_result(task_option) self.current_config = task_config def _merge_into_result(self, task_config): self.result_config.update(task_config) def _remove_from_result(self, task_option): if task_option in self.result_config: del self.result_config[task_option]
numbers = (input("enter the value of a number")) def divisors(numbers): array = [] for item in range(1, numbers): if(numbers % item == 0): print("divisors items", item) array.append(item) print(array) # print("all items",item) divisors(numbers)
numbers = input('enter the value of a number') def divisors(numbers): array = [] for item in range(1, numbers): if numbers % item == 0: print('divisors items', item) array.append(item) print(array) divisors(numbers)