File size: 7,937 Bytes
d07aeb1 25ff3be d07aeb1 d891d96 25ff3be d07aeb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# /// script
# requires-python = ">=3.9"
# dependencies = [
# "semhash",
# "datasets",
# "huggingface-hub",
# "hf-transfer",
# "hf-xet",
# ]
# ///
"""Deduplicate a Hugging Face dataset using SemHash.
This script uses semantic deduplication to remove duplicate entries from a dataset
based on a specified text column, then pushes the results to a new dataset repository.
"""
import argparse
import os
import sys
from datetime import datetime
from typing import Optional
from datasets import Dataset, load_dataset
from huggingface_hub import DatasetCard
from semhash import SemHash
from huggingface_hub import login
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = (
"1" # Enable HF transfer to speed up transfers
)
HF_TOKEN = os.environ.get("HF_TOKEN", None) # Get Hugging Face token from environment
assert HF_TOKEN, "HF_TOKEN environment variable must be set for authentication"
login(HF_TOKEN)
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Deduplicate a Hugging Face dataset using semantic similarity"
)
parser.add_argument(
"dataset_id",
type=str,
help="Source dataset ID (e.g., 'imdb', 'squad', 'username/dataset-name')",
)
parser.add_argument(
"column",
type=str,
help="Column name to deduplicate on (e.g., 'text', 'question', 'context')",
)
parser.add_argument(
"repo_id",
type=str,
help="Target repository ID for deduplicated dataset (e.g., 'username/my-deduplicated-dataset')",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Dataset split to process (default: train)",
)
parser.add_argument(
"--threshold",
type=float,
default=None,
help="Similarity threshold for deduplication (0-1, default: auto)",
)
parser.add_argument(
"--method",
type=str,
choices=["deduplicate", "filter_outliers", "find_representative"],
default="deduplicate",
help="Deduplication method to use (default: deduplicate)",
)
parser.add_argument(
"--private",
action="store_true",
help="Make the output dataset private",
)
parser.add_argument(
"--max-samples",
type=int,
default=None,
help="Maximum number of samples to process (for testing)",
)
return parser.parse_args()
def create_dataset_card(
original_dataset_id: str,
column: str,
method: str,
duplicate_ratio: float,
original_size: int,
deduplicated_size: int,
threshold: Optional[float] = None,
) -> str:
"""Create a dataset card with deduplication information."""
card_content = f"""---
tags:
- deduplicated
- semhash
- semantic-deduplication
- hfjobs
---
# Deduplicated {original_dataset_id}
This dataset is a deduplicated version of [{original_dataset_id}](https://huggingface.co/datasets/{original_dataset_id})
using semantic deduplication with [SemHash](https://github.com/MinishLab/semhash).
## Deduplication Details
- **Method**: {method}
- **Column**: `{column}`
- **Original size**: {original_size:,} samples
- **Deduplicated size**: {deduplicated_size:,} samples
- **Duplicate ratio**: {duplicate_ratio:.2%}
- **Reduction**: {(1 - deduplicated_size / original_size):.2%}
"""
if threshold is not None:
card_content += f"- **Similarity threshold**: {threshold}\n"
card_content += f"""
- **Date processed**: {datetime.now().strftime("%Y-%m-%d")}
## How to use
```python
from datasets import load_dataset
dataset = load_dataset("{original_dataset_id.split("/")[-1]}-deduplicated")
```
## Processing script
This dataset was created using the following script:
```bash
uv run dedupe-dataset.py {original_dataset_id} {column} <repo_id> --method {method}
```
## About semantic deduplication
Unlike exact deduplication, semantic deduplication identifies and removes samples that are
semantically similar even if they use different words. This helps create cleaner training
datasets and prevents data leakage between train/test splits.
"""
return card_content
def main():
"""Main function to run deduplication."""
args = parse_args()
# Check for HF token
token = os.environ.get("HF_TOKEN")
if not token:
print(
"Warning: HF_TOKEN not found in environment. You may not be able to push to private repos."
)
# Load dataset
print(f"Loading dataset '{args.dataset_id}' (split: {args.split})...")
try:
if args.max_samples:
dataset = load_dataset(
args.dataset_id, split=f"{args.split}[:{args.max_samples}]", token=token
)
else:
dataset = load_dataset(args.dataset_id, split=args.split, token=token)
except Exception as e:
print(f"Error loading dataset: {e}")
sys.exit(1)
# Validate column exists
if args.column not in dataset.column_names:
print(f"Error: Column '{args.column}' not found in dataset.")
print(f"Available columns: {', '.join(dataset.column_names)}")
sys.exit(1)
# Convert dataset to records for semhash
print(f"Preparing dataset for deduplication on column '{args.column}'...")
records = [dict(row) for row in dataset]
original_size = len(records)
print(f"Found {original_size:,} samples")
# Initialize SemHash with the specific column
print("Initializing SemHash with default model...")
semhash = SemHash.from_records(records=records, columns=[args.column])
# Apply selected method
print(f"Applying {args.method} method...")
if args.method == "deduplicate":
if args.threshold:
result = semhash.self_deduplicate(threshold=args.threshold)
else:
result = semhash.self_deduplicate()
elif args.method == "filter_outliers":
result = semhash.self_filter_outliers()
elif args.method == "find_representative":
result = semhash.self_find_representative()
# Get deduplicated records
deduplicated_records = result.selected
deduplicated_size = len(deduplicated_records)
# Print statistics
print("\nDeduplication complete!")
print(f"Original size: {original_size:,}")
print(f"Deduplicated size: {deduplicated_size:,}")
print(
f"Removed: {original_size - deduplicated_size:,} ({result.duplicate_ratio:.2%})"
)
# Create new dataset from deduplicated records
print("\nCreating deduplicated dataset...")
deduplicated_dataset = Dataset.from_list(deduplicated_records)
# Push dataset to hub first (this creates the repo)
print(f"\nPushing deduplicated dataset to '{args.repo_id}'...")
try:
deduplicated_dataset.push_to_hub(
args.repo_id,
private=args.private,
token=token,
commit_message=f"Add deduplicated version of {args.dataset_id}",
)
print("Dataset pushed successfully!")
# Create and push dataset card
print("Creating and pushing dataset card...")
card_content = create_dataset_card(
original_dataset_id=args.dataset_id,
column=args.column,
method=args.method,
duplicate_ratio=result.duplicate_ratio,
original_size=original_size,
deduplicated_size=deduplicated_size,
threshold=args.threshold,
)
card = DatasetCard(card_content)
card.push_to_hub(
repo_id=args.repo_id,
repo_type="dataset",
token=token,
commit_message="Add dataset card",
)
print(
f"\nSuccess! Dataset available at: https://huggingface.co/datasets/{args.repo_id}"
)
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()
|