id
int64
-30,985
55.9k
text
stringlengths
5
437k
24,350
\dfrac{x}{z} = x/z
13,706
\tfrac{-B^4 + 1}{1 - B} = 1 + B + B^2 + B^3
-10,285
-\frac{25\cdot (-1) + 5\cdot q}{15\cdot (-1) + 15\cdot q} = 5/5\cdot (-\dfrac{5\cdot (-1) + q}{3\cdot \left(-1\right) + q\cdot 3})
34,843
e^z = \sinh(z) + \cosh\left(z\right)
4,318
2\times \sin(1) = 1.683\times \dotsm \gt \frac15\times 8
26,618
256\cdot (8\cdot \left(-1\right) + y) + 53\cdot (-1) = y\cdot 256 + 2101\cdot \left(-1\right)
-15,797
5/10\cdot 9 - 6\cdot \frac{5}{10} = \frac{1}{10}15
18,883
0.121 = 10^2\cdot 0.001212\cdot \ldots
20,281
O\cdot A/\sin(E) = O\cdot E/\sin(A) = A\cdot E/\sin(O)
5,419
1775 = 50\cdot \frac{1}{2}\cdot (11 + 60)
-18,701
0.4649 = (-1) \cdot 0.2266 + 0.6915
-26,136
2 \cdot 3 - 2 \cdot 5 = 6 + 10 \left(-1\right) = -4
1,434
\cos(y + 999\cdot y) = \cos{y\cdot 1000}
3,943
-3 = \frac{1}{0(-1) + 3}\left(-7 + 2(-1)\right)
8,652
\frac{5}{x^4} - \dfrac{5}{x^2} = \frac{1}{x^4}(5 - 5x^2) \gt \tfrac{15}{4x^4}
-1,287
8*1/3/\left(\frac12*(-7)\right) = -2/7*8/3
-24,848
\int \dfrac{1}{z^2}\,\mathrm{d}z = \frac{1}{z\cdot (-2 + 1)} + F = -\frac{1}{z} + F
39,004
(\pi \cdot (-1))/8 = -\pi/8
-1,339
\frac{\frac14 \cdot (-1)}{\frac{1}{5} \cdot 4} = 5/4 \cdot (-\frac{1}{4})
21,876
58 = 2 \cdot (-1) + 50 + 1 - 2 \cdot (-7) + 1^2 - 2 \cdot 2 \cdot (-1) + 2 \cdot (-7) + 2^2
-20,365
5/5\cdot \dfrac{1}{s\cdot 6 + 1}\cdot (s + (-1)) = \tfrac{1}{30\cdot s + 5}\cdot (5\cdot s + 5\cdot (-1))
31,384
b \cdot 2 = b \cdot 2
-21,006
\frac{1}{18 \cdot \left(-1\right) - z \cdot 3} \cdot (12 + 2 \cdot z) = \tfrac{6 \cdot (-1) - z}{-z + 6 \cdot (-1)} \cdot (-\frac23)
-15,831
-56/10 = -\frac{9}{10}\cdot 7 + \frac{7}{10}
23,938
1 = (-1)\cdot (-1) = (y + 1/y)\cdot (y^2 + \frac{1}{y^2}) = y^3 + y + \frac1y + \frac{1}{y^3} = y^3 + \left(-1\right) + \frac{1}{y^3}
25,855
1125-54= 1071
33,169
\frac{0}{2}\cdot (0 + 1) = 0
29,070
GYX = XG Y
17,595
1 = (a + f)\cdot \left(c + x\right) = a\cdot c + f\cdot c + a\cdot x + f\cdot x
-22,219
\left(a + 6 \cdot (-1)\right) \cdot (a + 5) = 30 \cdot (-1) + a^2 - a
16,538
\frac{\eta^t}{2}\cdot A\cdot \eta = \dfrac{A}{2}\cdot \eta^t\cdot \eta
3,334
2g\omega = -\left(-g + \omega\right)^2 + \omega^2 + g^2
-9,213
-r \times 2 \times 3 \times 3 \times 3 - 2 \times 3 \times 3 = 18 \times (-1) - 54 \times r
-2,409
(4 + (-1) + 3) \cdot \sqrt{6} = 6 \cdot \sqrt{6}
28,098
\left(x\cdot z\right)^9 = x^9\cdot z^9
32,314
a^a = a^{(-1) + a} a
9,082
2^m + i = 2\cdot 2^{m + \left(-1\right)} + 2\cdot i/2 = 2\cdot (2^{m + \left(-1\right)} + \frac{i}{2})
23,598
\tfrac{1}{36} \cdot \frac{1225}{36} \cdot 35/36 = (\frac{35}{36})^3
-5,276
1.68\cdot 10 = 1.68\cdot 10/100 = \dfrac{1.68}{10}
5,579
(2\cdot l + 1)\cdot 2 = 4\cdot l + 2
-22,253
24 \cdot \left(-1\right) + t^2 + t \cdot 5 = (8 + t) \cdot (t + 3 \cdot (-1))
34,714
4 = 2^2 + 0 \cdot 0 + 0^3
-1,253
54/56 = \frac{54\cdot 1/2}{56\cdot \tfrac{1}{2}} = 27/28
4,854
\dfrac{n!}{2^n} \cdot \dfrac{1}{(1 + n)!} \cdot 2^{1 + n} = \frac{2}{n + 1}
20,466
1/(1/(1/\left(\dfrac{1}{25}\right))) = 5^{-2\left(-(-1) (-1)\right)} = 5^2 = 25
36,481
\tfrac{1}{\sqrt{z + (-1)}}(z + (-1)) = \frac{1}{\sqrt{z + (-1)}}\sqrt{z + (-1)} * \sqrt{z + (-1)} = \sqrt{z + (-1)}
-2,002
\frac{1}{4} \cdot 5 \cdot \pi = \frac13 \cdot \pi + \frac{11}{12} \cdot \pi
19,956
\cosh{z} = (e^z + e^{-z})/2 \times \sinh{z} = \frac{1}{2} \times \left(e^z - e^{-z}\right)
45,346
(\sum_{l=0}^{k + (-1)} e^{\omega^l}\cdot \omega^{-m\cdot l})/k = \frac{1}{k}\cdot \sum_{l=0}^{k + (-1)} (\sum_{n=0}^\infty (\omega^l)^n/n!)\cdot \omega^{-m\cdot l} = \sum_{n=0}^\infty \dfrac{1/k}{n!}\cdot \sum_{l=0}^{k + (-1)} \omega^{(n - m)\cdot l}
36,141
x = x\cdot x^c \Rightarrow x^c \leq x
-1,505
\frac{\frac18 \cdot 7}{\frac{1}{7} \cdot 8} = \frac{1}{8} \cdot 7 \cdot \frac{7}{8}
10,997
1/k + \frac{1}{\sqrt{k}} = (\sqrt{k} + 1)/k
12,708
\mathbb{E}\left(\dfrac{1}{X}\right) = \mathbb{E}\left(X\right)^{-1}
12,273
-\frac{1}{(1 - \frac{x}{2})*2} = \dfrac{1}{2*(-1) + x}
10,379
\left(0 = 4 + x^2 - y^2 + x\cdot 4 \implies (x + 2) \cdot (x + 2) - y^2 = 0\right) \implies 0 = (x + 2 + y)\cdot (x + 2 - y)
13,518
z^k\cdot z^{\alpha} = z^{\alpha + k}
-25,223
lz^{(-1) + l} = \frac{\mathrm{d}}{\mathrm{d}z} z^l
-9,881
\phantom{ -\dfrac{7}{10} \times \dfrac{1}{4} } = \dfrac{-7 \times 1 }{10 \times 4 } = -\dfrac{7}{40}
14,452
NgK = KN g
21,473
\frac{y}{(-1) + y} = \frac{1}{(-1) + y} \cdot (1 + y + (-1))
54,076
18851684897584 = {49 \choose 19}
21,314
(x + a)^2 + (h + y)^2 + 2 + (x - a)^2 + (y - h)^2 = (x^2 + y^2 + 1 + a^2 + h^2)*2
7,225
\sin(\dfrac{2 \pi}{5}) = -\sin(8 \pi/5)
-23,331
\dfrac{2}{21} = \frac{\frac{2}{7}}{3} \cdot 1
1,287
1 = \dfrac{1}{-61^3 + 1049 * 1049^2}\left(1823^3 - 1699^3\right)
31,319
13/18 = 1 - \frac{1}{9} - 1/6
-16,599
4 \sqrt{9} \sqrt{11} = 4*3 \sqrt{11} = 12 \sqrt{11}
-4,294
\frac{1}{x \cdot 9} = \frac{1}{x \cdot 9}
24,582
\frac{1}{1 + 2} = 1 + 2*(-1) + 4 + 8*\left(-1\right) - \ldots = 1/3
10,661
(i + 1)!\cdot \left(i + 1\right) = (1 + i)!\cdot \left(i + 2 + (-1)\right)
30,478
\left(x = \frac{1}{2}\cdot (-x + 1)\cdot \sqrt{2} \Rightarrow x\cdot \sqrt{2} = -x + 1\right) \Rightarrow \sqrt{2} + (-1) = x
-7,161
1/11 = \dfrac{2}{10} \cdot \frac{5}{11}
12,659
|x - z| = z - x = \frac{1}{x + z} \cdot (z \cdot z - x \cdot x) < \frac{z^2 - x^2}{2 \cdot x}
-1,092
((-8) \frac{1}{3})/(5*\frac{1}{8}) = -8/3*\tfrac{8}{5}
7,970
z^3 - 1 + 3z - z^2*3 = (z + (-1))^3
29,441
2/3 = \frac{1}{3} + 1/3
20,941
p \times p - 2\times p + 2 = 1 + (\left(-1\right) + p)^2
20,040
Z^3 \cdot (-p + 1) - Z \cdot Z + p = ((-1) + Z) \cdot (-p + Z \cdot Z \cdot (1 - p) - Z \cdot p)
27,719
\cos(c + b) = \cos\left(c\right)\cdot \cos(b) - \sin(b)\cdot \sin\left(c\right)
19,117
g \cdot b + b \cdot r + (g + b) \cdot (b + r) = g \cdot b + b \cdot r + g \cdot b + g \cdot r + b + b \cdot r = g \cdot r + b
10,336
\int \sec^2{x}\,\text{d}x = \tan{2\frac{x}{2}} + C = \tan{x} + C
7,296
(x^2 + 1)\cdot (x^4 - x \cdot x + 1) = x^6 + 1
18,296
\frac1t \cdot s \cdot \binom{s + (-1)}{(-1) + t} = \binom{s}{t}
39,542
1 + y^2 + (-1) = y^2
10,021
\left(b + a\right)\times (a - b) = -b \times b + a^2
14,108
r/R = r/R
-18,139
50 - 29 = 21
16,393
-\dfrac{d}{z + d} + 1 = \frac{1}{d + z}*z
6,333
x \cdot d_1 \cdot d_2 = (x + d_1 + 2 \cdot x \cdot d_1) \cdot d_2 = x + d_1 + 2 \cdot x \cdot d_1 + d_2 + 2 \cdot x \cdot d_2 + 2 \cdot d_1 \cdot d_2 + 4 \cdot x \cdot d_1 \cdot d_2
2,015
\binom{l}{2}\cdot 2^2 = \binom{l}{2}\cdot 2^2 = \binom{l}{2}\cdot 1^{l + 2\cdot (-1)}\cdot 2^2
13,803
2/9 = (1 - \frac{1}{3})/3
11,847
|r| < 1 \Rightarrow \dfrac{1}{-r + 1} = 1 + r + r * r + r^3 + \dotsm
221
-\frac{1}{12} = 1 + 2 + 3\cdot \dots
-2,533
-\sqrt{7} \cdot 2 + \sqrt{7} \cdot 3 = \sqrt{7} \cdot \sqrt{9} - \sqrt{7} \cdot \sqrt{4}
-11,292
(x + 5(-1))^2 + b = (x + 5(-1)) \left(x + 5(-1)\right) + b = x^2 - 10 x + 25 + b
14,972
f*g*h = h*f*g
-28,858
209\cdot 9/9 = \dfrac{1}{9}\cdot (109 + 100)\cdot (100\cdot (-1) + 109)
21,994
\frac{\sin{Q}}{1 + \sin{Q}} = \frac{1}{\sin{Q} + 1} \cdot (1 + \sin{Q} + (-1)) = 1 - \frac{1}{1 + \sin{Q}}
-20,057
(-8\cdot c + 16\cdot (-1))/\left(24\cdot c\right) = \left(2\cdot \left(-1\right) - c\right)/(c\cdot 3)\cdot 8/8
-28,990
\frac{\pi}{5} = \frac{1}{20} \cdot \pi \cdot 4