id
int64
-30,985
55.9k
text
stringlengths
5
437k
19,627
4^{2\cdot (1 + p)} + 4 = 4 + 4^{2 + p\cdot 2}
9,395
[a, b] = \left\{a\right\} = \left\{b\right\} = \left[b, a\right]
42,125
14 + 3 = 13 + 4
34,933
-(16*5)^{1/2} = -4*5^{1/2}
-20,065
\frac{1}{(-1) \cdot 5 \cdot r} \cdot (r \cdot 5 + 7) \cdot \frac{4}{4} = \dfrac{1}{(-20) \cdot r} \cdot (r \cdot 20 + 28)
22,520
2*4*\sqrt{7} = \sqrt{7}*2*4
-8,004
\dfrac{1}{4 i + 4} \left(i \cdot 4 + 4\right) \frac{1}{-i \cdot 4 + 4} (-8 + 24 i) = \dfrac{-8 + i \cdot 24}{4 - i \cdot 4}
-18,407
\frac{((-1) + t)*t}{(t + 10*(-1))*(t + (-1))} = \frac{t^2 - t}{10 + t^2 - t*11}
272
9! - 3 \cdot 2! \cdot 8! + 3 \cdot 7! \cdot 2! = 151200
39,775
y = \tan(\arctan{y})
6,368
\frac{1}{X + \frac1X} = 1/\left(2*X\right) = \frac{2}{X} = 2*X
11,767
y^{g_2 + g_1} = y^{g_1} \cdot y^{g_2}
-17,886
15 = 37 \cdot \left(-1\right) + 52
477
e^m = 1 + m + m^2/2! + ... \gt m
-10,443
\frac{32}{4*x + 4*(-1)} = \frac{8}{x + \left(-1\right)}*4/4
-28,771
-\frac12 - \frac{1}{2 - 2\times y}\times 4 = -1/2 + \frac{2}{y + (-1)}
10,433
\cos{\dfrac{\pi}{5} \cdot 4} + \cos{\frac25 \cdot \pi} = -\frac12
17,933
\dfrac{5\cdot 10}{2} = 25
-4,898
4.69*10 = \frac{4.69*10}{1000} = \dfrac{1}{100}4.69
23,234
2g + H = (g + H) \left(g + H\right) = (g + H)^2
31,243
\left(3 + n\right)!/n! = \tfrac{\left(n + 3\right)!}{(n + 3 + 3\cdot (-1))!}
-19,304
\frac{3\cdot \tfrac14}{7\cdot \frac13} = 3/7\cdot 3/4
9,609
4/10 = \frac152
-25,847
\frac{f^6}{f^1} = f\cdot f\cdot f\cdot f\cdot f\cdot f/f
11,225
{m + r + 5\cdot (-1) \choose r + 2\cdot (-1)} = {m + 2\cdot (-1) + r + 2\cdot \left(-1\right) + (-1) \choose r + 2\cdot (-1)}
-7,814
\frac{1}{13} \cdot (-3 - 63 \cdot i - 2 \cdot i + 42) = \dfrac{1}{13} \cdot \left(39 - 65 \cdot i\right) = 3 - 5 \cdot i
13,632
i*4 + 4 = (i + 2)^2 - i^2
34,668
12 \left(-1\right) + 20 = 8
21,416
h\cdot \pi\cdot 2 = 2\cdot \pi/(\tfrac{1}{h})
21,772
da/(cb) = a\frac{1}{b}/(c\cdot 1/d)
23,067
\tfrac{1}{a\cdot b} = 1/\left(a\cdot b\right)
8,450
(-d + d_n)\cdot (d_n \cdot d_n + d\cdot d_n + d^2) = d_n^3 - d^3
46,304
256 + 99\cdot (-1) = 157
7,001
12 \cdot g = 11 + \tfrac{24}{3 \cdot g} + 12 \cdot (-1) \implies (-1) + \frac8g = g \cdot 12
8,119
\tfrac{64}{3\cdot 3\cdot 3}\cdot 1 = (\frac13\cdot 4)^3
6,642
(a + b)*2 = a + b + a + b
-23,112
\dfrac{45}{16}*3/4 = 135/64
-488
19/4\cdot \pi - 4\cdot \pi = \frac14\cdot 3\cdot \pi
-20,714
-9/4 \cdot \frac{1}{(-7) \cdot r} \cdot (r \cdot \left(-7\right)) = \frac{r \cdot 63}{r \cdot (-28)}
-19,426
\dfrac83\cdot \frac19 8 = \frac{\frac{8}{3}}{9\cdot 1/8} 1
20,946
\sqrt{(\dfrac{1}{12}*5)^2*((12/5)^4 + 1)} = \frac{5}{12}*\sqrt{\left(12/5\right)^4 + 1} \approx 5/12*(12/5) * (12/5) = 12/5 = 2.4
-12,007
1/2 = x/(12\cdot \pi)\cdot 12\cdot \pi = x
-6,848
11 \cdot 11 \cdot 5 = 605
25,191
\left\{4, 3, \dotsm, 1, 2, 0\right\} = \mathbb{N}
12,318
|\xi| \gt \frac{\mathrm{d}x}{\mathrm{d}t} = 0 \implies x = \xi
-19,058
3/4 = \dfrac{G_t}{49 \cdot π} \cdot 49 \cdot π = G_t
8,301
0 = z^3 - 2z * z - 5z + 6 = (z + (-1)) (z + 2) (z + 3(-1))
-6,207
\tfrac{4 \times p}{p^2 + 5 \times p + 24 \times \left(-1\right)} \times 1 = \dfrac{4 \times p}{(p + 8) \times \left(3 \times (-1) + p\right)}
-5,273
5.3*10^4 = 5.3*10^{9 + 5*(-1)}
-3,330
4\sqrt{6} = (2(-1) + 5 + 1) \sqrt{6}
25,959
984390625 = \frac{1}{4} \cdot 3937562500
14,233
(p + t \cdot l^{\frac{1}{2}})^2 = 2 \cdot t \cdot l^{1 / 2} \cdot p + p^2 + l \cdot t \cdot t
10,616
f - x = (\sqrt{f} - \sqrt{x})*(\sqrt{f} + \sqrt{x}) \geq (\sqrt{f} - \sqrt{x}) * (\sqrt{f} - \sqrt{x})
10,768
d > a\Longrightarrow a \cdot a = a \cdot a \lt a \cdot d < d \cdot d = d^2
51,611
\left(x + z\right) \cdot (x^{2 \cdot l} - z \cdot x^{(-1) + 2 \cdot l} + z^2 \cdot x^{l \cdot 2 + 2 \cdot (-1)} - \ldots + x \cdot x \cdot z^{l \cdot 2 + 2 \cdot (-1)} - z^{2 \cdot l + \left(-1\right)} \cdot x + z^{l \cdot 2}) = x^{2 \cdot l + 1} + z^{2 \cdot l + 1}
-15,571
\frac{1}{y^{25}\cdot (\frac{y}{k^5})^3} = \frac{1}{y^{25}\cdot \frac{y^3}{k^{15}}}
22,765
\left(r^1\right)^2 = r \cdot r
35,508
f^2 + b^2 = f + b = (f + b) * (f + b)
18,866
(x + f) (-x + f) = f^2 - x^2\Longrightarrow f + x = \left(f + x\right) \frac{f - x}{f - x} = \frac{1}{f - x}(f^2 - x^2)
-18,282
\frac{1}{(r + 5 (-1)) (r + 5 (-1))} r*(r + 5 (-1)) = \tfrac{r^2 - 5 r}{25 + r^2 - 10 r}
17,140
(xb)^2 = x^2 b^2
9,802
\frac{1}{-t^j + 1}\cdot \left(-t^{2\cdot j} + 1\right) = 1 + t^j
-1,158
-45/72 = \tfrac{(-45) \frac19}{72*\frac19} = -\dfrac185
8,544
\left(z^2 - 2 \cdot z + (-1)\right) \cdot (z + (-1)) = 1 + z^3 - 3 \cdot z^2 + z
18,525
0 = 4 \cdot \sin^3(s) - 3 \cdot \sin\left(s\right) - \dfrac{37}{64} = -\sin\left(3 \cdot s\right) - 37/64
-20,070
-1/3 \cdot \frac{z \cdot (-8)}{z \cdot (-8)} = \dfrac{z \cdot 8}{\left(-24\right) \cdot z}
48,249
\frac{2^{k + 2}}{e^{k + 3 \cdot (-1)}} = \dfrac{2 \cdot 2}{e^k \cdot \frac{1}{e^3}} \cdot 2^k = \frac{2^k}{e^k} \cdot 4 \cdot e \cdot e \cdot e
-9,598
0.01\cdot (-37) = -37.5/100 = -\frac38
7,664
(1 - y^2/3 + y^4/5 - y^6/7 + \cdots)^{-1} = -\frac{1}{45}*4*y^4 + 1 + y^2/3
7,883
\dfrac{1 + n}{2^{1 + n}} = \dfrac{1}{2^{n + 1}} \left(3 \left(-1\right) + n*2 + 4 - n\right)
-20,134
\frac{1}{x + 10 \times (-1)} \times ((-2) \times x) \times 9/9 = \frac{x \times \left(-18\right)}{9 \times x + 90 \times (-1)}
34,613
105 = 28 \times 15 \times 6/4!
25,925
y^3 - y y - y*2 + 2 = (y^2 + 2 (-1)) \left((-1) + y\right)
12,859
a^{z + x} = a^z*a^x
-4,947
0.85*10^{\left(-1\right)*\left(-1\right) + 2} = 0.85*10^3
23,498
E[Y*X] = E[Y]*E[X]
-20,032
10/7 \frac{x*10 + 5(-1)}{5\left(-1\right) + 10 x} = \dfrac{1}{70 x + 35 (-1)}(50 (-1) + x*100)
9
\cos{m\times s\times 2} = 2\times \cos^2{m\times s} + (-1)
12,371
2^{k+1}+2^{k+1}-2 = 2(2^{k+1}-1)
11,663
z_1^2 - 3z_1 + a = 0 = (-z_1)^2 + 3(-z_1) - a
-3,349
(5 + 3 \cdot (-1) + 4) \cdot \sqrt{13} = \sqrt{13} \cdot 6
-19,459
\dfrac{1}{3}\cdot 5/\left(\tfrac{1}{6}\right) = \dfrac61\cdot 5/3
2,118
z \in C rightarrow z \in C
-10,755
\frac22 \frac{r*3 + 2(-1)}{r*2 + 4} = \frac{r*6 + 4(-1)}{4r + 8}
31,739
-\left(\sqrt{-2 \cdot n}\right)^2 = 2 \cdot n
23,629
v + w = (\frac{v}{2} + \tfrac{w}{2}) \cdot 2
-2,895
-5^{\tfrac{1}{2}} + 4^{1 / 2}\cdot 5^{1 / 2} = -5^{\tfrac{1}{2}} + 2\cdot 5^{\frac{1}{2}}
-206
\frac{1}{3! \cdot 2!}5! = 10
21,982
\dfrac{1}{\cos^2(z)} = 1 + \tan^2(z)
8,860
25 = c \cdot c \implies \sqrt{c^2} = \sqrt{25}
-4,582
\frac{27 \cdot (-1) + x \cdot 7}{x^2 - 8 \cdot x + 15} = \frac{1}{x + 5 \cdot \left(-1\right)} \cdot 4 + \dfrac{1}{3 \cdot (-1) + x} \cdot 3
29,796
\sin(z) = \frac{1}{2 i} (e^{i z} - e^{-i z}) = -i \sinh(i z)
6,678
1 + 9 z^2 + 6 z = \left(z*3 + 1\right) \left(z*3 + 1\right)
292
\sqrt{2 + y^2} + y = r \cdot r \implies \dfrac{1}{2\cdot r \cdot r}\cdot (2\cdot (-1) + r^4) = y
40,078
H_1 \cdot H_2 = H_1 \cdot H_2
19,243
|AB| = |AB|
5,038
A/A = \frac1AA
9,970
\binom{-k + N_2}{-k + N_1} = \dfrac{(N_2 - k)!}{(-N_1 + N_2)! \cdot (N_1 - k)!}
26,547
\sin(x) = \frac{\sin^2(x)}{\sin(x)} = \sin(x)
19,981
\dfrac{1}{2} \cdot (-Q_t^2 + (Q_t + V_t) \cdot (Q_t + V_t) - V_t^2) = V_t \cdot Q_t