id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
25,707 |
\frac73 = 2 + 1/3
|
43,337 |
|X| = |X - w + w| \leq |X - w| + |w|
|
-9,334 |
24*(-1) - p*80 = -2*2*2*2*5*p - 2*2*2*3
|
-23,903 |
\dfrac{1}{7 + 8} \cdot 15 = \dfrac{15}{15} = \frac{1}{15} \cdot 15 = 1
|
-22,797 |
90/40 = \frac{90}{4 \times 10} \times 1
|
2,714 |
\frac{\mathrm{d}}{\mathrm{d}y} \frac{1}{y^2} = -\dfrac{2}{y * y * y}
|
15,315 |
(-\alpha)^{\frac{1}{2}}\cdot i = i\cdot i\cdot \alpha^{1 / 2}\cdot \cdots
|
15,553 |
j\cdot 7 + i\cdot 14 = -7\cdot \left(-j - i\cdot 2\right)
|
13,339 |
\dfrac{6}{3} 1 = 2 (-1) + 2^2
|
20,898 |
S^2 = ((I + (I + \left(I + \dots\right)^{1/2})^{1/2})^{1/2})^2 = I + S
|
51,653 |
909 + 1 = 910
|
-10,695 |
-\tfrac{1}{100 + 100 \cdot y} \cdot 5 = \frac{5}{5} \cdot (-\frac{1}{20 + 20 \cdot y})
|
-29,331 |
-2 \cdot i + 9 = -i \cdot 2 + 1 + 8
|
34,787 |
{n + (-1) \choose r + (-1)} = {(-1) + n \choose -r + n}
|
-17,400 |
0.269 = \tfrac{1}{100}\cdot 26.9
|
10,281 |
\dfrac{dda}{d^2} = da/d
|
11,029 |
b\cdot a - a - b = \left((-1) + b\right)\cdot a + b\cdot (-1)
|
-26,505 |
b^2 + a a + 2 a b = (a + b) (a + b)
|
15,886 |
3\cdot \left(\left(-1\right) + y\cdot 2\right) + 1 = 6\cdot y + 2\cdot (-1)
|
11,397 |
\frac{1 - -1}{2.25 - 1.5} = \frac{2}{0.75} = \frac83 \approx 2.7
|
349 |
2/3 \cdot h + h = 5/3 \cdot h
|
-1,576 |
\pi = \frac{13}{12}\cdot \pi - \frac{1}{12}\cdot \pi
|
-19,069 |
\frac{17}{40} = \tfrac{C_t}{64\cdot \pi}\cdot 64\cdot \pi = C_t
|
17,258 |
171600 = r_2 \cdot r_1 - r_2 + r_1 + 1 = 172451 - r_2 + r_1 + 1
|
19,346 |
(z^{1/2})^2 = \left(z \cdot z\right)^{1/2} = z
|
19,040 |
\frac{h^2}{c + h} = -\frac{h}{c + h}c + h
|
19,806 |
\frac{3y - ny^3}{2} = y - \frac{n y^2 - 1}{2}y
|
10,708 |
Y^T\cdot Y = Y\cdot Y^T
|
20,881 |
d/dx (y^3 \times 4) = y^2 \times \frac{dy}{dx} \times 12
|
14,237 |
L = L\cdot 2 \Rightarrow L = 0
|
-7,008 |
3/8\cdot 6/7 = 9/28
|
15,281 |
\left(y + x \cdot z\right)/x = z + \frac{y}{x}
|
44,047 |
1^3 + 6\times 1^2 + 11 + 6 = 24 = 3\times 8
|
24,610 |
\dfrac{89}{55} = 1 + \frac{34}{55}
|
7,583 |
k = 1/(\dfrac{1}{k})
|
1,897 |
10 = p^4 + 35/p \geq 2 \cdot \left(35 \cdot p \cdot p \cdot p\right)^{\frac{1}{2}}
|
8,530 |
\frac{1}{x^x}*(x + \left(-1\right))^x = \left((x + (-1))/x\right)^x = (1 - \frac{1}{x})^x
|
3,460 |
126 + 5 (-1) + 15 (-1) + 0 = 106
|
23,477 |
\sin(y + h) = \sin{y} \cdot \cos{h} + \cos{y} \cdot \sin{h}
|
-17,440 |
68 + 38\cdot (-1) = 30
|
2,282 |
-3 \cdot \left(y^2 + (-1)\right) + (y \cdot y + 1) \cdot 3 = -2 \cdot (3 \cdot (-1) + 2 \cdot y) + y \cdot 4
|
13,000 |
p^2 + (-1) = (p + 1) ((-1) + p)
|
7,525 |
\sin\left((-x)^2\right) = \sin(x^2)
|
-1,887 |
\frac14 \cdot \pi = -\pi + \frac14 \cdot 5 \cdot \pi
|
10,004 |
\tan^2\left(A\right) + 1 = \frac{1}{\cos^2(A)}
|
-17,242 |
-\frac{5}{3} = -\frac13 \cdot 5
|
-27,629 |
-8 + 3*(-1) + 8 + 3*(-1) = -8 + 8 + 3*(-1) + 3*(-1) = 0 + 6*(-1) = -6
|
-14,725 |
91 = \tfrac{910}{10}
|
-2,852 |
\sqrt{24} + \sqrt{54} - \sqrt{6} = \sqrt{4\cdot 6} + \sqrt{9\cdot 6} - \sqrt{6}
|
30,598 |
\cos(\cos{90*0^{\dfrac{1}{2}}}) = \cos{1} \approx 0.54
|
33,413 |
\dfrac{f^2 + 1}{x^2 + 1} = x/f \implies f = x
|
15,295 |
\sin(u - v) + \sin(v + u) = \cos{v}\cdot \sin{u}\cdot 2
|
23,875 |
x_n = x_{n + (-1)} + g_n \implies g_n = -x_{\left(-1\right) + n} + x_n
|
-30,855 |
\frac{7}{z + 3 \cdot (-1)} = \frac{28 + 7 \cdot z}{z^2 + z + 12 \cdot (-1)}
|
-13,103 |
-10.6 \div 20 = -0.53
|
-28,935 |
\dfrac{285}{5} = 57 = 3 \cdot 19
|
14,521 |
9*37 = 333
|
8,397 |
\left(3 + (-1)\right)/2 = 1
|
25,520 |
f*(3*W + 2) = 80 \Rightarrow 80/\left(3*f\right) - 2/3 = W
|
10,944 |
l!/m! = ((3 + l)*(l + 1)*(l + 2)*\dotsm*(m + 2*(-1))*((-1) + m)*m)^{-1}
|
18,796 |
(aH)(bH) = (ab)H = (ba)H = (bH)(aH)
|
14,898 |
\frac23\cdot 5/7 = \frac{15}{21}\cdot 2/3
|
-27,919 |
\frac{\mathrm{d}}{\mathrm{d}z} \sec(z) = \sec(z) \tan\left(z\right)
|
14,223 |
0 = (-1) + t\cos{\theta}*2 \Rightarrow t\cos{\theta} = 1/2
|
-20,785 |
10*x/\left(x*35\right) = \frac27*5*x/(5*x)
|
-20,008 |
\frac{1}{-4\cdot f + 2}\cdot (-4\cdot f + 2) = \dfrac{1}{-f\cdot 4 + 2}\cdot \left(-f\cdot 4 + 2\right)/1
|
6,091 |
1 = \left[a, b\right] \Rightarrow ( b a, b + a) = 1
|
32,393 |
24 - 24 \times (-1) + 47 = 24 \times 2 + 47 \times \left(-1\right)
|
30,016 |
\tfrac12 \cdot (1 - \cos(t \cdot 2)) = \sin^2\left(t\right)
|
12,122 |
\dfrac{1}{x^n y^n}(x^n + y^n) = \tfrac{1}{x^n} + \dfrac{1}{y^n}
|
26,480 |
A^2*B^2 = (A*B) * (A*B)
|
7,394 |
\frac{1 / 50}{1000} \cdot 1 = \frac{1}{50000}
|
-1,367 |
1/9 \cdot 7/9 = \frac{1}{9 \cdot 9/7}
|
22,373 |
\left(10*b\right)^2*n*0.09 = n*b^2*9
|
18,098 |
\frac{\partial}{\partial x} x^a = a \cdot x^{a + \left(-1\right)}
|
4,591 |
15 j = 3j \cdot 5
|
24,208 |
B'\cdot C + D'\cdot A + A'\cdot B + x\cdot D = (D + A + B + C)\cdot (D' + A' + B' + x)
|
-16,531 |
5\cdot \sqrt{9}\cdot \sqrt{7} = 5\cdot 3\cdot \sqrt{7} = 15\cdot \sqrt{7}
|
-3,858 |
\dfrac{z^5 \cdot 63}{z^5 \cdot 54} = \frac{z^5}{z^5} \cdot \frac{63}{54}
|
5,748 |
\dfrac{1}{x \cdot x + (-1)}x = \frac{1}{1 + x}1/2 + \frac{\dfrac12}{\left(-1\right) + x}
|
23,832 |
50 \cdot x + 20 \cdot y = 1020 \implies 102 = 2 \cdot y + x \cdot 5
|
9,007 |
p = \frac1p*\left(p^2 + 1\right) = p + 1/p
|
-23,496 |
\frac{1}{3} = 5/9\cdot \tfrac{3}{5}
|
25,120 |
42/132 + \dfrac{20}{132} = \frac{1}{132}\cdot 62 = 31/66
|
5,506 |
544320 = \binom{7}{2} \cdot \binom{9}{2} \cdot 6!
|
12,273 |
\frac{1}{x + 2 \cdot (-1)} = -\frac{1}{2 \cdot (1 - x/2)}
|
7,181 |
\dfrac{x + 1}{2 + x} = \frac{1}{x + 2}*(x + 1)
|
-12,142 |
\frac{1}{30} = \frac{q}{20\cdot \pi}\cdot 20\cdot \pi = q
|
-25,791 |
\dfrac{10}{28} = \dfrac{10}{7 \times 4}
|
37,774 |
8/17 = \sin(\alpha) \Rightarrow \frac{1}{17}\cdot 15 = \cos(\alpha)
|
4,427 |
6 + x^2 - 5\cdot x = \left(x + 3\cdot \left(-1\right)\right)\cdot (x + 2\cdot \left(-1\right))
|
-20,126 |
\dfrac{1}{6 + 3 \cdot m} \cdot (27 \cdot (-1) + m \cdot 24) = \frac13 \cdot 3 \cdot \frac{1}{m + 2} \cdot (m \cdot 8 + 9 \cdot (-1))
|
28,463 |
\tan(a) = \tan(2 \cdot a/2) = \frac{2 \cdot \tan(a/2)}{1 - \tan^2(\frac{a}{2})} \cdot 1
|
24,499 |
k = r \cdot n + d \Rightarrow n \cdot r = k - d
|
1,777 |
(a\cdot x + b)\cdot x = b\cdot x + a\cdot x^2
|
19,683 |
\int \sum_{k=1}^\infty x_k\,d\mu = \sum_{k=1}^\infty \int x_k\,d\mu
|
25,578 |
A\cdot Y = I_m rightarrow Y\cdot A = I_m
|
-26,061 |
\dfrac{1}{5}(-2 - 16 i + i + 8(-1)) = (-10 - 15 i)/5 = -2 - 3i
|
14,834 |
{n \choose k} = \frac{n!}{(-k + n)! k!}
|
13,834 |
x^{\left(-1\right) + K} x = x^K
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.