id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
24,207 |
x_{2\cdot n + 1} = \frac{1}{n\cdot 2 + 1}\Longrightarrow 0 = \lim_{n \to \infty} x_{1 + n\cdot 2}
|
-25,233 |
\frac{d}{dz} \sqrt{z} = z/2
|
-16,021 |
-\frac{1}{10}28 = -5*\frac{8}{10} + 2/10*6
|
-531 |
\frac{2}{3}\cdot \pi = -10\cdot \pi + \dfrac{32}{3}\cdot \pi
|
-12,186 |
\frac18 \cdot 5 = \frac{1}{8 \cdot \pi} \cdot s \cdot 8 \cdot \pi = s
|
3,382 |
\sqrt{3} \cdot 2 + 4 = (\sqrt{3} + 1)^2
|
5,888 |
\left(c + f\right) \cdot \left(-c + f\right) = -c \cdot c + f^2
|
27,917 |
g*g_l*G = g*g_l*G
|
-17,787 |
67 = 13 \left(-1\right) + 80
|
22,510 |
\sin(D) = 2\cos(D/2) \sin(D/2)
|
18,712 |
29718^2 - 61\times 3805^2 = -1
|
27,349 |
d^1 + (-1)^1 = (\left(-1\right) + d)^1
|
-20,556 |
\dfrac{1}{54} \cdot (24 - 6 \cdot z) = \frac66 \cdot \frac19 \cdot (4 - z)
|
1,891 |
\mathbb{E}(X^4) = 0 \Rightarrow \mathbb{E}(X \times X) = 0
|
-19,461 |
\dfrac{7}{2} \div \dfrac{9}{8} = \dfrac{7}{2} \times \dfrac{8}{9}
|
4,280 |
\cos{h}*\cos{d} = \tfrac12*\left(\cos\left(h - d\right) + \cos(h + d)\right)
|
23,125 |
zz^{-1} = 1 = z^{-1}z
|
11,523 |
2 \cdot x + 2 \cdot y' \cdot z + 6 \cdot (-1) + y' \cdot 4 = 0 rightarrow y' = \frac{6 - 2 \cdot x}{2 \cdot z + 4} = \tfrac{1}{z + 2} \cdot (3 - x)
|
34,206 |
7/29 \approx 24\% = \tfrac{24}{100}
|
6,984 |
\frac{1}{4^n} = \frac{1^n}{4^n} = \left(1/4\right)^n
|
9,715 |
12 - 2\cdot x^2 \geq 16 + x^2 - x\cdot 8 \implies 4 + 3\cdot x \cdot x - x\cdot 8 \leq 0
|
-18,250 |
\dfrac{1}{z^2 - z*7} \left(7 (-1) + z^2 - z*6\right) = \frac{1}{z*(z + 7 (-1))} (1 + z) (z + 7 (-1))
|
34,112 |
6! = \left(4(-1) + 10\right)!
|
-9,321 |
-2\cdot 2\cdot 3\cdot 3\cdot n + 2\cdot 3\cdot 7 = -n\cdot 36 + 42
|
15,438 |
\tfrac{1}{n!*(n + 2)} = \frac{1}{\left(n + 2\right)!}*(n + 2 + \left(-1\right)) = \frac{1}{(n + 1)!} - \frac{1}{(n + 2)!}
|
26,377 |
x^3 + 1 = (x + 1) (-3x + (x + 1)^2)
|
577 |
T^4 - 6T^2 + 1 = 8(-1) + (3(-1) + T^2)^2
|
-10,463 |
\frac{1}{4 \cdot y} \cdot (2 \cdot y + 10) \cdot 2/2 = \frac{y \cdot 4 + 20}{y \cdot 8}
|
23,330 |
\binom{n}{k} = \dfrac{n!}{k!\cdot (-k + n)!}
|
46,223 |
Q^\complement = Q^\complement
|
29,422 |
D \cup (F \cap X) = (D \cup F) \cap \left(D \cup X\right) = X \cap (D \cup F)
|
3,841 |
7 = \frac12\cdot \left(1 + 4 + 9\right)
|
26,624 |
(z - 1/2)\times 2 = (-1) + z\times 2
|
-720 |
-24\cdot π + \tfrac{299}{12}\cdot π = π\cdot \frac{11}{12}
|
-9,487 |
n \cdot 2 \cdot 3 - nn \cdot 2 \cdot 2 \cdot 5 = -n^2 \cdot 20 + n \cdot 6
|
25,294 |
-4 - 3*i = (a + x*i) * (a + x*i) = a^2 - x * x + 2*a*x*i
|
14,416 |
|z^3 + 3\times z \times z\times h + 3\times z\times h^2 + h^3 - z^3| = |3\times z^2\times h + 3\times z\times h \times h + h^3| \geq 3\times z^2\times h
|
10,619 |
\frac{1}{2}(l + k) \leq 0.5 \implies -k - l + 1 = |k + l + (-1)|
|
3,675 |
(x\cdot A)^V\cdot F = A^V\cdot x^V\cdot F = A^V\cdot x\cdot F
|
17,703 |
n^p + y^p = z^p\Longrightarrow -4*(n*y)^p + (z^2)^p = (n^p - y^p) * (n^p - y^p)
|
23,871 |
\frac{1}{|G|}\times |G\times x| = \frac{1}{|G \cap x|}\times |x| = x \cap x/G
|
46,922 |
1/13 = \frac{1}{52}4
|
27,129 |
(-d + z) \cdot (z^{\left(-1\right) + m} + d \cdot z^{2 \cdot (-1) + m} + \dots + d^{2 \cdot \left(-1\right) + m} \cdot z + d^{m + (-1)}) = z^m - d^m
|
11,530 |
m + n + e = m + n + e
|
-4,055 |
a^2*9/5 = \frac{9 a^2}{5} 1
|
35,202 |
\frac{24541}{7578} = 3 + \dfrac{1}{7578}\cdot 1807
|
31,646 |
(a + b + g)*(a * a + b * b + g^2 - a*b - g*b - a*g) = -a*b*g*3 + a^3 + b^3 + g^3
|
25,793 |
\frac1D*E = \frac{1}{D}*E
|
23,843 |
25 = (-1) \cdot (-25)
|
24,819 |
0 = 8(-1) + 2^6 - 2 * 2 * 2*7
|
40,415 |
3 = 8 + 5\cdot (-1)
|
52,111 |
581 = 490 + 7*13
|
999 |
\frac{g}{b} = g/1\times \frac1b = g/(b) = \dfrac{1}{b}\times g
|
6,560 |
(a_x + d_x)^2 - a_x^2 - d_x^2 = d_x \cdot 2 \cdot a_x
|
8,574 |
\omega\cdot x\cdot 2 + \omega \cdot \omega = -x^2 + \left(x + \omega\right)^2
|
-2,276 |
\frac{1}{11}\cdot 4 = 9/11 - 5/11
|
22,189 |
(\dfrac{1}{z} + 1 + z)^2 = z \times z + 2 \times z + 3 + \dfrac2z + \dfrac{1}{z \times z}
|
32,657 |
x^2 - (x + (-1))^2 = x*2 + \left(-1\right)
|
18,690 |
12 + 6 \cdot \left(-1\right) + 1 = 7
|
-30,277 |
\frac{1}{(-1) + y} (4 \left(-1\right) + y y + y\cdot 6) = \frac{3}{y + (-1)} + y + 7
|
-7,047 |
3/6\times 2/5/4 = \dfrac{1}{20}
|
22,189 |
\left(1 + x + \frac{1}{x}\right)^2 = x^2 + 2 \cdot x + 3 + \dfrac{1}{x} \cdot 2 + \frac{1}{x^2}
|
38,435 |
\sqrt{124} = \sqrt{2^2\times 31} = \sqrt{2^2}\times \sqrt{31} = 2\times \sqrt{31}
|
-20,487 |
(q\cdot 2 + 4)/9\cdot \frac12\cdot 2 = \frac{1}{18}\cdot (8 + q\cdot 4)
|
-11,553 |
-16\times i + 2 = -16\times i - 3 + 5
|
-19,139 |
7/12 = \frac{1}{36\cdot \pi}\cdot E_t\cdot 36\cdot \pi = E_t
|
10,175 |
2\cdot (a^2 + b^2) = \left(a + b\right)^2 + (a - b)^2
|
17,948 |
n^{\frac{n}{2}} \cdot n^{\frac{n}{2}} = n^n
|
27,639 |
(z^{k_1})^{k_2} = (z^{k_2})^{k_1} = z^{k_1 k_2}
|
36,828 |
20 = \left(-32\right)\cdot (-1) - 12
|
27,440 |
\frac{1}{135}\times 120 = \dfrac19\times 8
|
-22,966 |
90/63 = \frac{9 \cdot 10}{7 \cdot 9}
|
-19,688 |
\tfrac{24}{8} = 8\cdot 3/(8)
|
5,894 |
\frac{1}{(-1) + 2} \cdot (9 \cdot \left(-1\right) + 12^3 + \left(-1\right)) = 1718
|
6,952 |
-\frac{1}{3} = \frac{3 + 4\cdot (-1)}{5 + 2\cdot \left(-1\right)}
|
24,132 |
z^3 = 9 + 80^{1 / 2} + 9 - 80^{\frac{1}{2}} + 3((9 + 80^{\frac{1}{2}}) (9 - 80^{\dfrac{1}{2}}))^{1/3} z = 18 + 3z
|
-18,989 |
\frac{5}{8} = \dfrac{A_s}{36\cdot \pi}\cdot 36\cdot \pi = A_s
|
-2,852 |
(4\cdot 6)^{1/2} + (9\cdot 6)^{1/2} - 6^{1/2} = -6^{1/2} + 24^{1/2} + 54^{1/2}
|
29,228 |
\mathbb{P}(n) := \frac{1}{\rho^n} := \left(1/\rho\right)^n
|
20,883 |
B = \frac{A}{A - I} = (B - I) A
|
14,939 |
\sin(\pi/12) = \dfrac14 \left(-2^{1 / 2} + 6^{1 / 2}\right)
|
-30,275 |
x + 4\cdot (-1) - \frac{1}{x + 5\cdot (-1)}\cdot 6 = \dfrac{14 + x^2 - x\cdot 9}{x + 5\cdot (-1)}
|
19,591 |
-w \cdot (x + w) \cdot (-x) \cdot 3 = -w \cdot w \cdot w + (w + x)^2 \cdot (w + x) - x^3
|
50,014 |
x = (x-1) + 1
|
5,282 |
1 + t^2 - t*2 = \left(\left(-1\right) + t\right)^2
|
-7,986 |
\dfrac{1}{-i + 2} \times \left(-3 \times i + 6\right) = \dfrac{6 - i \times 3}{2 - i} \times \frac{i + 2}{i + 2}
|
5,076 |
(1 - y)^{n + 3 \times (-1)} = (-1)^{n + 3 \times (-1)} \times (y + \left(-1\right))^{n + 3 \times (-1)} = (-1)^{n + (-1)} \times (y + \left(-1\right))^{n + 3 \times (-1)}
|
28,920 |
x \cdot x - x \cdot T = T^2 = x \cdot T
|
-2,836 |
16^{\dfrac{1}{2}}\cdot 2^{\frac{1}{2}} - 9^{1 / 2}\cdot 2^{\frac{1}{2}} = -2^{1 / 2}\cdot 3 + 2^{\frac{1}{2}}\cdot 4
|
-20,989 |
-\dfrac{7}{-63} = \frac19\cdot (\left(-1\right)\cdot 7\cdot 1/(-7))
|
16,477 |
m x/b = m/b x = m \frac{x}{b}
|
2,068 |
(8 + 6)\cdot (6^{(-1) + n} - 6^{n + 2\cdot (-1)}\cdot 8 + \dotsm - 6\cdot 8^{2\cdot (-1) + n} + 8^{n + (-1)}) = 6^n + 8^n
|
3,200 |
0 = 3\cdot (-1) + 3\cdot x^2 \implies x^2 = 1
|
-1,483 |
\frac{1/4\cdot (-5)}{(-3)\cdot 1/4} = -\frac13\cdot 4\cdot (-5/4)
|
33,035 |
(2 \cdot x) \cdot (2 \cdot x) = 2^2 \cdot x^2 = 4 \cdot x^2
|
2,650 |
\sinh(x) + 2.5 = 1\Longrightarrow -1.5 = \sinh(x)
|
30,041 |
\frac{1}{2^6}(1^2 + 3^2 + 3^2 + 1^2) = \dfrac{20}{64} = \dfrac{5}{16}
|
-19,581 |
3/8\cdot \frac{9}{5} = 3\cdot \frac18/(\frac{1}{9}\cdot 5)
|
33,312 |
\dfrac{76!}{76! - 75!} = \frac{75! \cdot 76}{75! \cdot (76 + (-1))} = 76/75
|
8,033 |
\dfrac{1}{0.2} + \tfrac{1}{0.5} = 7
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.