id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,091 |
(\frac1Y)^4 = \dfrac{1}{Y^4}
|
27,625 |
\pi/4 = y \implies \cos^5\left(y\right) - \sin^5(y) = 0 \neq \cos(5\times \pi/4)
|
6,820 |
\frac1Y*(J + I) = J/Y + I/Y
|
-7,950 |
\frac{1}{4} \cdot (-16 \cdot i - 20) = -20/4 - \frac{16}{4} \cdot i
|
28,362 |
x*(b + a) = bx + xa
|
273 |
-d^3 + c \cdot c \cdot c = \left(c^2 + d\cdot c + d^2\right)\cdot (c - d)
|
-29,824 |
l*x^{(-1) + l} = \frac{\mathrm{d}}{\mathrm{d}x} x^l
|
-20 |
4 + 3 \cdot (-1) = 1
|
-29,582 |
d/dx (-x*10 + x^4 - 4x^2) = 10 (-1) + 4x^3 - 8x
|
-20,335 |
\frac{8 - z\cdot 4}{14 (-1) + 7z} = -4/7 \frac{2\left(-1\right) + z}{z + 2(-1)}
|
-20,959 |
\dfrac{2}{2}\cdot (-\frac{1}{2}) = -\frac{2}{4}
|
38,568 |
2^2 = x \cdot x \Rightarrow 2 = x
|
12,718 |
\left(y + (-1)\right) (y + 4) = 4(-1) + y^2 + 3y
|
-12,106 |
25/72 = \dfrac{x}{12 \cdot \pi} \cdot 12 \cdot \pi = x
|
19,159 |
1 + b^2 \cdot b = (1 + b^2 - b)\cdot (b + 1)
|
-2,946 |
8 \sqrt{13} = (5 + 3) \sqrt{13}
|
31,563 |
\left(-2\right) \times (-2) = 4
|
1,362 |
e^{H + ...}\cdot e^E = e^E\cdot e^H
|
12,173 |
7^{\frac{1}{2}} = \left(4^2 - 3^2\right)^{\dfrac{1}{2}}
|
-7,291 |
\dfrac{1}{7} \cdot 2/2 = 1/7
|
15,295 |
\sin(-v + u) + \sin(u + v) = 2 \cdot \sin(u) \cdot \cos(v)
|
28,595 |
2\cdot \sin(y)\cdot \cos(y) = \sin(y\cdot 2)
|
-20,956 |
-10/9\cdot \frac{1}{x + 2\cdot (-1)}\cdot (x + 2\cdot (-1)) = \frac{20 - 10\cdot x}{x\cdot 9 + 18\cdot (-1)}
|
36,406 |
\frac{d}{dx} x^{\left\{2\right\}} = x + x = 2*x
|
21,189 |
1 = 8/35 + \frac{12}{35} + \frac17 + \frac17 \cdot 2
|
27,383 |
(-1) + a^k = (a + 1) (a^{k + (-1)} - a^{k + 2 (-1)} + a^{k + 3 \left(-1\right)} - \cdots + a + (-1))
|
4,913 |
s = p^{a \cdot m} \cdot s^{f \cdot m} = (p^a \cdot s^f)^m
|
39,246 |
2^J + 2^m = 2^J + 2^m
|
12,870 |
\tfrac{1}{e^m} = e^{-m}
|
1,836 |
A_D \cdot A_l = A_D \cdot A_l
|
20,581 |
-1 = a + b \Rightarrow -16 = a - b
|
7,262 |
\binom{p}{i} = \tfrac{1}{i! \cdot (-i + p)!} \cdot p!
|
17,368 |
\binom{2 \cdot x}{x} \cdot x!^2 = (x \cdot 2)!
|
13,003 |
n\cdot {n + (-1) \choose x + (-1)} = x\cdot {n \choose x}
|
22,733 |
z \gt 1 rightarrow 7 \cdot z > 7 = 7
|
7,263 |
(-(X - Y)^2 + (X + Y)^2)/4 = Y \cdot X
|
-4,419 |
\frac{-x + 11 \left(-1\right)}{5 + x^2 - x*6} = \tfrac{3}{(-1) + x} - \frac{4}{x + 5(-1)}
|
-9,322 |
2*3*3 - 2*3*7*r = -r*42 + 18
|
-1,626 |
-\dfrac{5}{4}\cdot \pi + 2\cdot \pi = 3/4\cdot \pi
|
18,478 |
x + y \cdot i = (1 - i)^{1/4} \Rightarrow 1 - i = \left(y \cdot i + x\right)^4
|
-4,509 |
(y + 5) \left(y + 1\right) = 5 + y^2 + y*6
|
-734 |
(e^{\pi\cdot i/4})^{14} = e^{14\cdot \pi\cdot i/4}
|
12,000 |
1 = A*a rightarrow A = 1/a
|
14,530 |
g_2^3 + g_1^3 + 3*g_2*g_1 * g_1 + 3*g_1*g_2^2 = \left(g_2 + g_1\right)^2 * (g_2 + g_1)
|
3,369 |
\frac{1}{1 - x}*(1 + x) = \dfrac{2 - 1 - x}{1 - x} = \dfrac{1}{1 - x}*2 + (-1)
|
4,622 |
\sum_{x=1}^\infty h \cdot x \cdot (2 \cdot (-1) + 5)^x = \sum_{x=1}^\infty 3^x \cdot x \cdot h
|
20,992 |
x^3 + 2 = x^3 + (-1) = (x + (-1)) \times \left(x^2 + x + 1\right)
|
-16,797 |
7 = 7\times 5\times x + 7\times 4 = 35\times x + 28 = 35\times x + 28
|
-7,655 |
\left(85 - 35 i - 17 i + 7 (-1)\right)/26 = \frac{1}{26} \left(78 - 52 i\right) = 3 - 2 i
|
13,467 |
2y^2 + 6y + 35 = 2\left(y^2 + 3y\right) + 35 = 2(y + \dfrac{3}{2})^2 + 61/2
|
-20,360 |
\frac{4\cdot x + 4}{9 + x}\cdot 10/10 = \frac{1}{x\cdot 10 + 90}\cdot (40 + 40\cdot x)
|
25,858 |
y^4 + F^4 = -(y\cdot F)^2\cdot 2 + (F^2 + y^2)^2
|
6,828 |
n\cdot \pi = r\cdot \pi/3 \implies n\cdot 3 = r
|
18,406 |
1 + \frac{\mathrm{d}y}{\mathrm{d}t} = y^2 + 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = y^2
|
-10,321 |
(20 + 50 q)/(50 q) = \frac{1}{5q}(5q + 2)*10/10
|
-19,056 |
\frac15 \cdot 4 = \dfrac{A_r}{16 \cdot π} \cdot 16 \cdot π = A_r
|
39,061 |
1/4 + 1/6 = (3 + 2)/12 = \frac{1}{12}\cdot 5
|
12,787 |
(a + 12)\cdot \left(6 + a\right) = a^2 \implies -4 = a
|
3,121 |
\dfrac38 = \frac{1}{8}\cdot 3
|
18,932 |
x + 2 x + 4 x + 8 \cdots = x
|
17,655 |
45 = (2^4 + (-1))\cdot 3
|
16,195 |
(g + b) \cdot \left(g - b\right) = g \cdot g - b^2
|
16,122 |
u^2 - v v = (u + v) (u - v)
|
-20,334 |
-\frac{1}{-3 \cdot s + 8 \cdot (-1)} \cdot 2 \cdot \frac33 = -\tfrac{1}{-9 \cdot s + 24 \cdot (-1)} \cdot 6
|
13,649 |
\frac13 \cdot 210 = 70
|
22,486 |
1 = x^2 + 2 \cdot x \cdot y + 5 \cdot y^2 = \left(x + y\right) \cdot \left(x + y\right) + 4 \cdot y^2
|
15,092 |
\frac{c}{a^4} = \frac{1}{a^4} \cdot c
|
27,502 |
x^2 + (-1) = \left(x + 1\right)*\left(x + (-1)\right)
|
-20,124 |
9/8 \cdot \frac{(-2) \cdot n}{n \cdot (-2)} = \frac{1}{n \cdot \left(-16\right)} \cdot ((-1) \cdot 18 \cdot n)
|
11,541 |
\bar{f_x}\cdot E\cdot a\cdot g = g\cdot \bar{f_x}\cdot E\cdot a
|
17,251 |
h = \left(w/h + \dfrac{h}{w}\right) \cdot x = \frac{w \cdot w + h^2}{w \cdot h} \cdot x
|
15,565 |
0 = (5 \cdot (-1) + 5)/6
|
30,019 |
\cos(b)\times \sin(a) = \frac12\times (\sin(-b + a) + \sin(b + a))
|
14,255 |
31 + 8\cdot \sqrt{15} = (a + b\cdot \sqrt{15})^2 = a^2 + 15\cdot b^2 + 2\cdot a\cdot b\cdot \sqrt{15}
|
22,870 |
5^y - 4^y = ((-1) + (5/4)^y)*4^y
|
22,589 |
2 \cdot a + x + y = y + 2 \cdot a + x
|
6,608 |
2 + 4 + 6 + ... + 2*n = n*\frac{1}{2}*(2*n + 2) = n^2 + n
|
-20,086 |
\dfrac{8}{2} = 2/2\cdot 4/1
|
13,627 |
Y/\left(Y_0\right) = 1000 \implies Y_0 = Y/1000
|
24,889 |
\frac{1}{2^x}\cdot a_{x + (-1)}\cdot 8 = 4\cdot \frac{1}{2^{(-1) + x}}\cdot a_{(-1) + x}
|
12,517 |
-5\cdot b + 5\cdot a = (a - b)\cdot 5
|
6,863 |
-\dfrac{x}{1 + x} + 1 = \dfrac{1}{1 + x}
|
15,668 |
1/4\cdot \frac{\dfrac{1}{4}\cdot 4/4}{4}/4 = \frac{4}{4^5}
|
12,188 |
-2k + 2n \geq n + 1 \implies k \leq \left(n + (-1)\right)/2
|
2,450 |
\infty + 1 = \infty \implies \infty + \infty\cdot \left(-1\right) = \infty - \infty + 1 = -1
|
-22,794 |
\dfrac{60}{40} = \tfrac{3\cdot 20}{2\cdot 20}
|
-16,481 |
\sqrt{9\cdot 3}\cdot 8 = \sqrt{27}\cdot 8
|
29,735 |
gh^n = h^n g
|
-9,081 |
25.2\% = \frac{25.2}{100}
|
22,705 |
144^{1 / 2} = (10^2)^{\frac{1}{2}} + (2 * 2)^{1 / 2}
|
18,321 |
g^2 + h^2 + 2gh = \left(h + g\right)^2
|
16,609 |
(1 + 1 + 1)!/\left(1!*1!*1!\right) = 3! = 6
|
4,066 |
k + 1 = \dfrac{1}{1 + k}\cdot k + k + \frac{1}{1 + k}
|
17,574 |
6 \times (-1) + z^2 - z = 0 \Rightarrow z = 3
|
16,826 |
10 = 0\cdot 10^0 + 10^1
|
-12,379 |
10 \cdot \sqrt{2} = \sqrt{200}
|
2,751 |
2 - \frac{1}{2^{n + \left(-1\right)}} = \frac{1}{2^{n + (-1)}}\cdot (2^n + (-1))
|
-2,335 |
\frac{1}{16} = \frac{1}{16}2 - 1/16
|
25,476 |
1/9 + \tfrac{1}{15}\cdot 2 = 11/45
|
20,229 |
\frac{1}{w \times g} = \frac{1}{g \times w}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.