image
image
page_id
string
expressions
dict
0002194_page22
{ "latex": [ "$J_4$", "$J_5$", "$J_6$", "$J_7$", "$\\partial _j F_{ji}$", "$F$", "$B+F$", "$\\partial _j F_{ji}$", "$\\hat {T}_4$", "$b_1$", "$b_2$", "$b_3$", "$O(B^n)$", "$J_i$", "$F$", "$B+F$", "$J_i (B^n)$", "$J_i (B)$", "$J_i (B^2)$", "$i=1, 2, 3$", "$J_1 (B^2)$", "$J_2 (B^2)$", "$J_3 (B^2)$", "$J_1 (B)$", "$J_2 (B)$", "$J_3 (B)$", "$O(B, \\zeta ^3, k^5)$", "\\begin {equation} {\\cal L} = \\sum _{i=1}^{7} b_i J_i, \\end {equation}", "\\begin {eqnarray} && J_1 = \\partial _n F_{ij} \\partial _n F_{ji} F_{kl} F_{lk}, \\quad J_2 = \\partial _n F_{ij} \\partial _n F_{jk} F_{kl} F_{li}, \\\\ && J_3 = F_{ni} F_{im} \\partial _n F_{kl} \\partial _m F_{lk}, \\quad J_4 = \\partial _n F_{ni} \\partial _m F_{im} F_{kl} F_{lk}, \\\\ && J_5 = -\\partial _n F_{ni} \\partial _m F_{ij} F_{jk} F_{km}, \\quad J_6 = \\partial ^2 F_{ij} F_{ji} F_{kl} F_{lk}, \\\\ && J_7 = \\partial ^2 F_{ij} F_{jk} F_{kl} F_{li}, \\quad \\partial ^2 F_{ij} = \\partial _i \\partial _k F_{kj} - \\partial _j \\partial _k F_{ki}. \\end {eqnarray}", "\\begin {eqnarray} && J_1 (B) = 2 \\partial _n F_{ij} \\partial _n F_{ji} B_{kl} F_{lk}, \\quad J_1 (B^2) = \\partial _n F_{ij} \\partial _n F_{ji} B_{kl} B_{lk}, \\\\ && J_2 (B) = 2 B_{ij} F_{jk} \\partial _n F_{kl} \\partial _n F_{li}, \\quad J_2 (B^2) = \\partial _n F_{ij} \\partial _n F_{jk} B_{kl} B_{li}, \\\\ && J_3 (B) = 2 B_{ni} F_{im} \\partial _n F_{kl} \\partial _m F_{lk}, \\quad J_3 (B^2) = B_{ni} B_{im} \\partial _n F_{kl} \\partial _m F_{lk}. \\end {eqnarray}", "\\begin {eqnarray} J_3 (B) &=& 4 B_{ni} \\partial _i A_m \\partial _n \\partial _k A_l \\partial _m \\partial _l A_k + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{ni} \\partial _i \\partial _l A_m \\partial _n \\partial _k A_l \\partial _m A_k \\\\ && + {\\rm ~a~term~with~} \\partial _l A_l + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{nm} \\partial _i A_j \\partial _n \\partial _j A_k \\partial _m \\partial _k A_i \\\\ && + {\\rm ~a~term~with~} \\partial \\cdot A + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative}. \\end {eqnarray}" ], "latex_norm": [ "$ J _ { 4 } $", "$ J _ { 5 } $", "$ J _ { 6 } $", "$ J _ { 7 } $", "$ \\partial _ { j } F _ { j i } $", "$ F $", "$ B + F $", "$ \\partial _ { j } F _ { j i } $", "$ \\hat { T } _ { 4 } $", "$ b _ { 1 } $", "$ b _ { 2 } $", "$ b _ { 3 } $", "$ O ( B ^ { n } ) $", "$ J _ { i } $", "$ F $", "$ B + F $", "$ J _ { i } ( B ^ { n } ) $", "$ J _ { i } ( B ) $", "$ J _ { i } ( B ^ { 2 } ) $", "$ i = 1 , 2 , 3 $", "$ J _ { 1 } ( B ^ { 2 } ) $", "$ J _ { 2 } ( B ^ { 2 } ) $", "$ J _ { 3 } ( B ^ { 2 } ) $", "$ J _ { 1 } ( B ) $", "$ J _ { 2 } ( B ) $", "$ J _ { 3 } ( B ) $", "$ O ( B , \\zeta ^ { 3 } , k ^ { 5 } ) $", "\\begin{equation*} L = \\sum _ { i = 1 } ^ { 7 } b _ { i } J _ { i } , \\end{equation*}", "\\begin{align*} & & J _ { 1 } = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j i } F _ { k l } F _ { l k } , \\quad J _ { 2 } = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j k } F _ { k l } F _ { l i } , \\\\ & & J _ { 3 } = F _ { n i } F _ { i m } \\partial _ { n } F _ { k l } \\partial _ { m } F _ { l k } , \\quad J _ { 4 } = \\partial _ { n } F _ { n i } \\partial _ { m } F _ { i m } F _ { k l } F _ { l k } , \\\\ & & J _ { 5 } = - \\partial _ { n } F _ { n i } \\partial _ { m } F _ { i j } F _ { j k } F _ { k m } , \\quad J _ { 6 } = \\partial ^ { 2 } F _ { i j } F _ { j i } F _ { k l } F _ { l k } , \\\\ & & J _ { 7 } = \\partial ^ { 2 } F _ { i j } F _ { j k } F _ { k l } F _ { l i } , \\quad \\partial ^ { 2 } F _ { i j } = \\partial _ { i } \\partial _ { k } F _ { k j } - \\partial _ { j } \\partial _ { k } F _ { k i } . \\end{align*}", "\\begin{align*} & & J _ { 1 } ( B ) = 2 \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j i } B _ { k l } F _ { l k } , \\quad J _ { 1 } ( B ^ { 2 } ) = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j i } B _ { k l } B _ { l k } , \\\\ & & J _ { 2 } ( B ) = 2 B _ { i j } F _ { j k } \\partial _ { n } F _ { k l } \\partial _ { n } F _ { l i } , \\quad J _ { 2 } ( B ^ { 2 } ) = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j k } B _ { k l } B _ { l i } , \\\\ & & J _ { 3 } ( B ) = 2 B _ { n i } F _ { i m } \\partial _ { n } F _ { k l } \\partial _ { m } F _ { l k } , \\quad J _ { 3 } ( B ^ { 2 } ) = B _ { n i } B _ { i m } \\partial _ { n } F _ { k l } \\partial _ { m } F _ { l k } . \\end{align*}", "\\begin{align*} J _ { 3 } ( B ) & = & 4 B _ { n i } \\partial _ { i } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } \\partial _ { l } A _ { k } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n i } \\partial _ { i } \\partial _ { l } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } A _ { k } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial _ { l } A _ { l } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n m } \\partial _ { i } A _ { j } \\partial _ { n } \\partial _ { j } A _ { k } \\partial _ { m } \\partial _ { k } A _ { i } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial \\cdot A + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e . \\end{align*}" ], "latex_expand": [ "$ \\mitJ _ { 4 } $", "$ \\mitJ _ { 5 } $", "$ \\mitJ _ { 6 } $", "$ \\mitJ _ { 7 } $", "$ \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\miti } $", "$ \\mitF $", "$ \\mitB + \\mitF $", "$ \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\miti } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\mitb _ { 1 } $", "$ \\mitb _ { 2 } $", "$ \\mitb _ { 3 } $", "$ \\mitO ( \\mitB ^ { \\mitn } ) $", "$ \\mitJ _ { \\miti } $", "$ \\mitF $", "$ \\mitB + \\mitF $", "$ \\mitJ _ { \\miti } ( \\mitB ^ { \\mitn } ) $", "$ \\mitJ _ { \\miti } ( \\mitB ) $", "$ \\mitJ _ { \\miti } ( \\mitB ^ { 2 } ) $", "$ \\miti = 1 , 2 , 3 $", "$ \\mitJ _ { 1 } ( \\mitB ^ { 2 } ) $", "$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $", "$ \\mitJ _ { 3 } ( \\mitB ^ { 2 } ) $", "$ \\mitJ _ { 1 } ( \\mitB ) $", "$ \\mitJ _ { 2 } ( \\mitB ) $", "$ \\mitJ _ { 3 } ( \\mitB ) $", "$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 5 } ) $", "\\begin{equation*} \\mitL = \\sum _ { \\miti = 1 } ^ { 7 } \\mitb _ { \\miti } \\mitJ _ { \\miti } , \\end{equation*}", "\\begin{align*} & & \\displaystyle \\mitJ _ { 1 } = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\miti } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 2 } = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\miti } , \\\\ & & \\displaystyle \\mitJ _ { 3 } = \\mitF _ { \\mitn \\miti } \\mitF _ { \\miti \\mitm } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitm } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 4 } = \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitm } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\\\ & & \\displaystyle \\mitJ _ { 5 } = - \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitm } , \\quad \\mitJ _ { 6 } = \\mitpartial ^ { 2 } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\\\ & & \\displaystyle \\mitJ _ { 7 } = \\mitpartial ^ { 2 } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\miti } , \\quad \\mitpartial ^ { 2 } \\mitF _ { \\miti \\mitj } = \\mitpartial _ { \\miti } \\mitpartial _ { \\mitk } \\mitF _ { \\mitk \\mitj } - \\mitpartial _ { \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitk \\miti } . \\end{align*}", "\\begin{align*} & & \\displaystyle \\mitJ _ { 1 } ( \\mitB ) = 2 \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\miti } \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 1 } ( \\mitB ^ { 2 } ) = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\miti } \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitl \\mitk } , \\\\ & & \\displaystyle \\mitJ _ { 2 } ( \\mitB ) = 2 \\mitB _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitn } \\mitF _ { \\mitl \\miti } , \\quad \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\mitk } \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitl \\miti } , \\\\ & & \\displaystyle \\mitJ _ { 3 } ( \\mitB ) = 2 \\mitB _ { \\mitn \\miti } \\mitF _ { \\miti \\mitm } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitm } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 3 } ( \\mitB ^ { 2 } ) = \\mitB _ { \\mitn \\miti } \\mitB _ { \\miti \\mitm } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitm } \\mitF _ { \\mitl \\mitk } . \\end{align*}", "\\begin{align*} \\displaystyle \\mitJ _ { 3 } ( \\mitB ) & = & \\displaystyle 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitl } \\mitA _ { \\mitk } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial _ { \\mitl } \\mitA _ { \\mitl } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial \\cdot \\mitA + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}" ], "x_min": [ 0.22599999606609344, 0.257099986076355, 0.2874999940395355, 0.35179999470710754, 0.5231999754905701, 0.4546999931335449, 0.5245000123977661, 0.7179999947547913, 0.6122999787330627, 0.2840000092983246, 0.3151000142097473, 0.3801000118255615, 0.31439998745918274, 0.43950000405311584, 0.5059000253677368, 0.630299985408783, 0.7110999822616577, 0.3296000063419342, 0.42160001397132874, 0.51419997215271, 0.42160001397132874, 0.49140000343322754, 0.5935999751091003, 0.8424000144004822, 0.17069999873638153, 0.1768999993801117, 0.7311999797821045, 0.45750001072883606, 0.3109999895095825, 0.2694999873638153, 0.19699999690055847 ], "y_min": [ 0.33889999985694885, 0.33889999985694885, 0.33889999985694885, 0.33889999985694885, 0.3384000062942505, 0.36230000853538513, 0.36230000853538513, 0.36230000853538513, 0.4058000147342682, 0.43309998512268066, 0.43309998512268066, 0.43309998512268066, 0.5029000043869019, 0.5038999915122986, 0.5038999915122986, 0.5038999915122986, 0.5029000043869019, 0.5264000296592712, 0.5259000062942505, 0.5278000235557556, 0.6518999934196472, 0.6518999934196472, 0.6518999934196472, 0.6762999892234802, 0.6996999979019165, 0.7231000065803528, 0.7226999998092651, 0.13570000231266022, 0.21449999511241913, 0.5568000078201294, 0.7768999934196472 ], "x_max": [ 0.24469999969005585, 0.2757999897003174, 0.3068999946117401, 0.37119999527931213, 0.5666999816894531, 0.4706000089645386, 0.5819000005722046, 0.7608000040054321, 0.6323000192642212, 0.30059999227523804, 0.33169999718666077, 0.396699994802475, 0.3711000084877014, 0.45680001378059387, 0.5217999815940857, 0.6827999949455261, 0.7692000269889832, 0.3772999942302704, 0.478300005197525, 0.5950999855995178, 0.48030000925064087, 0.5501000285148621, 0.6517000198364258, 0.892799973487854, 0.22110000252723694, 0.2273000031709671, 0.8327999711036682, 0.5645999908447266, 0.7422000169754028, 0.7878000140190125, 0.8266000151634216 ], "y_max": [ 0.35109999775886536, 0.35109999775886536, 0.35109999775886536, 0.35109999775886536, 0.3529999852180481, 0.3725999891757965, 0.3734999895095825, 0.3765000104904175, 0.4219000041484833, 0.44530001282691956, 0.44530001282691956, 0.44530001282691956, 0.5174999833106995, 0.5160999894142151, 0.51419997215271, 0.5151000022888184, 0.5174999833106995, 0.5410000085830688, 0.5410000085830688, 0.5404999852180481, 0.6675000190734863, 0.6675000190734863, 0.6675000190734863, 0.6909000277519226, 0.7142999768257141, 0.7382000088691711, 0.7383000254631042, 0.1776999980211258, 0.31869998574256897, 0.6337000131607056, 0.8248000144958496 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0002194_page23
{ "latex": [ "$J_3 (B)$", "$\\hat {T}_4$", "$\\hat {T}_4$", "$J_3 (B)$", "$J_3$", "$J_1$", "$J_2$", "$J_1 (B)$", "$J_2 (B)$", "$f(F)$", "$\\alpha '$", "$f(F)$", "$J_1$", "$J_2$", "$J_1$", "$J_2$", "$J_1$", "$J_2$", "$J_3$", "$\\hat {T}_4$", "$\\hat {T}_4$", "$J_3$", "$O(\\partial ^2 F^4)$", "$\\alpha '$", "\\begin {eqnarray} J_3 (B) &=& 4 B_{ni} \\partial _i A_m \\partial _n \\partial _k A_l \\partial _m \\partial _l A_k + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{ni} \\partial _i \\partial _l A_m \\partial _n \\partial _k A_l \\partial _m A_k \\\\ && + {\\rm ~a~term~with~} \\partial _l A_l + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{nm} \\partial _i A_j \\partial _n \\partial _j A_k \\partial _m \\partial _k A_i \\\\ && + {\\rm ~a~term~with~} \\partial \\cdot A + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative}. \\end {eqnarray}", "\\begin {equation} \\hat {T}_4 \\sim -\\frac {1}{4} (2 \\pi \\alpha ')^2 J_3 (B). \\label {T_4-J_3} \\end {equation}", "\\begin {equation} f(B+F) = f(F) + {\\rm total~derivative~using~the~equation~of~motion}, \\label {on-shell-initial} \\end {equation}" ], "latex_norm": [ "$ J _ { 3 } ( B ) $", "$ \\hat { T } _ { 4 } $", "$ \\hat { T } _ { 4 } $", "$ J _ { 3 } ( B ) $", "$ J _ { 3 } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 1 } ( B ) $", "$ J _ { 2 } ( B ) $", "$ f ( F ) $", "$ \\alpha ^ { \\prime } $", "$ f ( F ) $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 3 } $", "$ \\hat { T } _ { 4 } $", "$ \\hat { T } _ { 4 } $", "$ J _ { 3 } $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ \\alpha ^ { \\prime } $", "\\begin{align*} J _ { 3 } ( B ) & = & 4 B _ { n i } \\partial _ { i } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } \\partial _ { l } A _ { k } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n i } \\partial _ { i } \\partial _ { l } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } A _ { k } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial _ { l } A _ { l } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n m } \\partial _ { i } A _ { j } \\partial _ { n } \\partial _ { j } A _ { k } \\partial _ { m } \\partial _ { k } A _ { i } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial \\cdot A + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e . \\end{align*}", "\\begin{equation*} \\hat { T } _ { 4 } \\sim - \\frac { 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } J _ { 3 } ( B ) . \\end{equation*}", "\\begin{equation*} f ( B + F ) = f ( F ) + t o t a l ~ d e r i v a t i v e ~ u s i n g ~ t h e ~ e q u a t i o n ~ o f ~ m o t i o n , \\end{equation*}" ], "latex_expand": [ "$ \\mitJ _ { 3 } ( \\mitB ) $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\mitJ _ { 3 } ( \\mitB ) $", "$ \\mitJ _ { 3 } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 1 } ( \\mitB ) $", "$ \\mitJ _ { 2 } ( \\mitB ) $", "$ \\mitf ( \\mitF ) $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitf ( \\mitF ) $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 3 } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\mitJ _ { 3 } $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitalpha ^ { \\prime } $", "\\begin{align*} \\displaystyle \\mitJ _ { 3 } ( \\mitB ) & = & \\displaystyle 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitl } \\mitA _ { \\mitk } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial _ { \\mitl } \\mitA _ { \\mitl } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial \\cdot \\mitA + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}", "\\begin{equation*} \\hat { \\mitT } _ { 4 } \\sim - \\frac { 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitJ _ { 3 } ( \\mitB ) . \\end{equation*}", "\\begin{equation*} \\mitf ( \\mitB + \\mitF ) = \\mitf ( \\mitF ) + \\mathrm { t o t a l ~ d e r i v a t i v e } ~ \\mathrm { u s i n g } ~ \\mathrm { t h e } ~ \\mathrm { e q u a t i o n } ~ \\mathrm { o f } ~ \\mathrm { m o t i o n } , \\end{equation*}" ], "x_min": [ 0.5950000286102295, 0.1534000039100647, 0.7063000202178955, 0.7616000175476074, 0.2840000092983246, 0.5037999749183655, 0.5666999816894531, 0.45820000767707825, 0.5515000224113464, 0.5805000066757202, 0.3158000111579895, 0.36559998989105225, 0.5978000164031982, 0.6607000231742859, 0.5099999904632568, 0.5708000063896179, 0.2847000062465668, 0.3490000069141388, 0.20319999754428864, 0.5286999940872192, 0.6101999878883362, 0.6690000295639038, 0.6474999785423279, 0.18729999661445618, 0.25920000672340393, 0.4147000014781952, 0.2003999948501587 ], "y_min": [ 0.19140000641345978, 0.211899995803833, 0.211899995803833, 0.21480000019073486, 0.31299999356269836, 0.31299999356269836, 0.31299999356269836, 0.3353999853134155, 0.3353999853134155, 0.3594000041484833, 0.45649999380111694, 0.45649999380111694, 0.48100000619888306, 0.48100000619888306, 0.5278000235557556, 0.5278000235557556, 0.551800012588501, 0.551800012588501, 0.5752000212669373, 0.5713000297546387, 0.5952000021934509, 0.6226000189781189, 0.6445000171661377, 0.739300012588501, 0.093299999833107, 0.263700008392334, 0.39259999990463257 ], "x_max": [ 0.6453999876976013, 0.17339999973773956, 0.7263000011444092, 0.8119999766349792, 0.3034000098705292, 0.5231999754905701, 0.5860999822616577, 0.5085999965667725, 0.6018999814987183, 0.6233000159263611, 0.33379998803138733, 0.4090999960899353, 0.6172000169754028, 0.6801000237464905, 0.5293999910354614, 0.5902000069618225, 0.30410000681877136, 0.3684000074863434, 0.22190000116825104, 0.5486999750137329, 0.6302000284194946, 0.6876999735832214, 0.7214000225067139, 0.2053000032901764, 0.8065000176429749, 0.6116999983787537, 0.7718999981880188 ], "y_max": [ 0.20600000023841858, 0.22849999368190765, 0.22849999368190765, 0.22990000247955322, 0.3257000148296356, 0.3257000148296356, 0.3257000148296356, 0.3504999876022339, 0.3504999876022339, 0.37400001287460327, 0.4677000045776367, 0.47110000252723694, 0.4936999976634979, 0.4936999976634979, 0.5404999852180481, 0.5404999852180481, 0.5640000104904175, 0.5640000104904175, 0.5874000191688538, 0.5874000191688538, 0.611299991607666, 0.6348000168800354, 0.659600019454956, 0.7505000233650208, 0.16940000653266907, 0.2964000105857849, 0.41119998693466187 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0002194_page24
{ "latex": [ "$O(\\partial ^2 F^4)$", "$\\hat {T}_4$", "$J_3$", "$\\hat {T}_4$", "$F^3$", "$O(D^2 F^4)$", "$O(\\partial ^2 F^4)$", "${\\cal L} (B+F)$", "$\\hat {{\\cal L}} (\\hat {F})$", "$J_1$", "$J_2$", "$J_3$", "$O(\\partial ^2 F^4)$", "$O(\\partial ^2 F^4)$", "$\\hat {A}_i$", "$A_i$", "$b_3$", "$+$", "\\begin {equation} -\\frac {1}{4} J_1 +2 J_2 + J_3. \\label {Okawa-J} \\end {equation}", "\\begin {equation} -\\frac {1}{4} J_1 -2 J_2 + J_3. \\label {AT-J} \\end {equation}" ], "latex_norm": [ "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ \\hat { T } _ { 4 } $", "$ J _ { 3 } $", "$ \\hat { T } _ { 4 } $", "$ F ^ { 3 } $", "$ O ( D ^ { 2 } F ^ { 4 } ) $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ L ( B + F ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 3 } $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ b _ { 3 } $", "$ + $", "\\begin{equation*} - \\frac { 1 } { 4 } J _ { 1 } + 2 J _ { 2 } + J _ { 3 } . \\end{equation*}", "\\begin{equation*} - \\frac { 1 } { 4 } J _ { 1 } - 2 J _ { 2 } + J _ { 3 } . \\end{equation*}" ], "latex_expand": [ "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\mitJ _ { 3 } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\mitF ^ { 3 } $", "$ \\mitO ( \\mitD ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 3 } $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitb _ { 3 } $", "$ + $", "\\begin{equation*} - \\frac { 1 } { 4 } \\mitJ _ { 1 } + 2 \\mitJ _ { 2 } + \\mitJ _ { 3 } . \\end{equation*}", "\\begin{equation*} - \\frac { 1 } { 4 } \\mitJ _ { 1 } - 2 \\mitJ _ { 2 } + \\mitJ _ { 3 } . \\end{equation*}" ], "x_min": [ 0.527999997138977, 0.2281000018119812, 0.29580000042915344, 0.367000013589859, 0.6633999943733215, 0.1298999935388565, 0.3587000072002411, 0.1298999935388565, 0.26260000467300415, 0.6640999913215637, 0.6952000260353088, 0.7595000267028809, 0.40149998664855957, 0.669700026512146, 0.5446000099182129, 0.6129999756813049, 0.3725000023841858, 0.5196999907493591, 0.4318999946117401, 0.4318999946117401 ], "y_min": [ 0.09960000216960907, 0.2621999979019165, 0.2660999894142151, 0.28610000014305115, 0.3353999853134155, 0.3589000105857849, 0.40619999170303345, 0.4302000105381012, 0.42719998955726624, 0.4546000063419342, 0.4546000063419342, 0.4546000063419342, 0.5311999917030334, 0.6518999934196472, 0.6967999935150146, 0.7006999850273132, 0.8125, 0.8140000104904175, 0.48969998955726624, 0.6044999957084656 ], "x_max": [ 0.6018999814987183, 0.24809999763965607, 0.31520000100135803, 0.3869999945163727, 0.6869000196456909, 0.210099995136261, 0.4332999885082245, 0.21629999577999115, 0.3075000047683716, 0.6834999918937683, 0.7146000266075134, 0.7789000272750854, 0.47540000081062317, 0.7443000078201294, 0.5652999877929688, 0.6337000131607056, 0.38769999146461487, 0.532800018787384, 0.5845999717712402, 0.5845999717712402 ], "y_max": [ 0.1151999980211258, 0.27880001068115234, 0.27880001068115234, 0.30219998955726624, 0.34709998965263367, 0.37400001287460327, 0.4212999939918518, 0.44530001282691956, 0.44530001282691956, 0.4672999978065491, 0.4672999978065491, 0.4672999978065491, 0.5462999939918518, 0.6675000190734863, 0.7134000062942505, 0.7134000062942505, 0.823199987411499, 0.8223000168800354, 0.5218999981880188, 0.6366999745368958 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0002194_page25
{ "latex": [ "$\\hat {A}_i$", "$A_i$", "$J_1$", "$J_2$", "$J_1 (B)$", "$J_1 (B^2)$", "$J_2 (B)$", "$J_2 (B^2)$", "$J_4$", "$J_5$", "$J_6$", "$J_7$", "$J_1$", "$J_2$", "$\\hat {A}_i$", "$A_i$", "$J_2$", "$O(\\alpha '^3)$", "$J_3$", "$\\hat {T}_4$", "$\\hat {{\\cal L}} (\\hat {F})$", "$O(\\alpha ')$", "$\\hat {{\\cal L}} (\\hat {F})$", "$\\hat {T}_1$", "$O(\\alpha '^2)$", "$O(\\alpha '^3)$", "$O(\\alpha ')$", "$\\hat {{\\cal L}} (\\hat {F})$", "$O(\\alpha '^2)$", "$\\hat {{\\cal L}} (\\hat {F})$", "$B$", "$\\alpha '^3$", "$J_2 (B)$", "$J_2 (B^2)$", "$B$", "$B+F$", "$J_2$", "$\\hat {F}^2$", "$O(\\alpha '^3)$", "$\\hat {A}_i$", "$J_2 (B)$", "$J_2 (B^2)$", "\\begin {eqnarray} J_2 (B) &=& -2 \\partial _n F_{ni} \\partial _j (F B F)_{ji} + {\\rm total~derivative}, \\\\ J_2 (B^2) &=& - \\partial _n F_{ni} \\partial _j (B^2 F + F B^2)_{ji} + {\\rm total~derivative}. \\end {eqnarray}" ], "latex_norm": [ "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 1 } ( B ) $", "$ J _ { 1 } ( B ^ { 2 } ) $", "$ J _ { 2 } ( B ) $", "$ J _ { 2 } ( B ^ { 2 } ) $", "$ J _ { 4 } $", "$ J _ { 5 } $", "$ J _ { 6 } $", "$ J _ { 7 } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ J _ { 2 } $", "$ O ( \\alpha ^ { \\prime 3 } ) $", "$ J _ { 3 } $", "$ \\hat { T } _ { 4 } $", "$ \\hat { L } ( \\hat { F } ) $", "$ O ( \\alpha ^ { \\prime } ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ \\hat { T } _ { 1 } $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ O ( \\alpha ^ { \\prime 3 } ) $", "$ O ( \\alpha ^ { \\prime } ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ B $", "$ \\alpha ^ { \\prime 3 } $", "$ J _ { 2 } ( B ) $", "$ J _ { 2 } ( B ^ { 2 } ) $", "$ B $", "$ B + F $", "$ J _ { 2 } $", "$ \\hat { F } ^ { 2 } $", "$ O ( \\alpha ^ { \\prime 3 } ) $", "$ \\hat { A } _ { i } $", "$ J _ { 2 } ( B ) $", "$ J _ { 2 } ( B ^ { 2 } ) $", "\\begin{align*} J _ { 2 } ( B ) & = & - 2 \\partial _ { n } F _ { n i } \\partial _ { j } ( F B F ) _ { j i } + t o t a l ~ d e r i v a t i v e , \\\\ J _ { 2 } ( B ^ { 2 } ) & = & - \\partial _ { n } F _ { n i } \\partial _ { j } ( B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + t o t a l ~ d e r i v a t i v e . \\end{align*}" ], "latex_expand": [ "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 1 } ( \\mitB ) $", "$ \\mitJ _ { 1 } ( \\mitB ^ { 2 } ) $", "$ \\mitJ _ { 2 } ( \\mitB ) $", "$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $", "$ \\mitJ _ { 4 } $", "$ \\mitJ _ { 5 } $", "$ \\mitJ _ { 6 } $", "$ \\mitJ _ { 7 } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitJ _ { 2 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $", "$ \\mitJ _ { 3 } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitO ( \\mitalpha ^ { \\prime } ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\hat { \\mitT } _ { 1 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $", "$ \\mitO ( \\mitalpha ^ { \\prime } ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitB $", "$ \\mitalpha ^ { \\prime 3 } $", "$ \\mitJ _ { 2 } ( \\mitB ) $", "$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $", "$ \\mitB $", "$ \\mitB + \\mitF $", "$ \\mitJ _ { 2 } $", "$ \\hat { \\mitF } ^ { 2 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitJ _ { 2 } ( \\mitB ) $", "$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $", "\\begin{align*} \\displaystyle \\mitJ _ { 2 } ( \\mitB ) & = & \\displaystyle - 2 \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitj } ( \\mitF \\mitB \\mitF ) _ { \\mitj \\miti } + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\\\ \\displaystyle \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) & = & \\displaystyle - \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitj } ( \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}" ], "x_min": [ 0.5439000129699707, 0.6087999939918518, 0.6668999791145325, 0.7318999767303467, 0.2736999988555908, 0.3352000117301941, 0.4043000042438507, 0.49619999527931213, 0.23080000281333923, 0.2646999955177307, 0.29919999837875366, 0.3682999908924103, 0.396699994802475, 0.46369999647140503, 0.6827999949455261, 0.7346000075340271, 0.49549999833106995, 0.6323000192642212, 0.2231999933719635, 0.3490000069141388, 0.588100016117096, 0.2888999879360199, 0.420199990272522, 0.7008000016212463, 0.5273000001907349, 0.33719998598098755, 0.7649999856948853, 0.1306000053882599, 0.3407000005245209, 0.4643999934196472, 0.6557999849319458, 0.1306000053882599, 0.7366999983787537, 0.8292999863624573, 0.420199990272522, 0.6468999981880188, 0.8202999830245972, 0.3359000086784363, 0.4830999970436096, 0.8285999894142151, 0.5030999779701233, 0.5978000164031982, 0.26809999346733093 ], "y_min": [ 0.17720000445842743, 0.18119999766349792, 0.2280000001192093, 0.2280000001192093, 0.25099998712539673, 0.25, 0.25099998712539673, 0.25049999356269836, 0.298799991607666, 0.298799991607666, 0.298799991607666, 0.298799991607666, 0.322299987077713, 0.322299987077713, 0.3422999978065491, 0.34619998931884766, 0.46389999985694885, 0.46239998936653137, 0.48730000853538513, 0.4839000105857849, 0.4839000105857849, 0.5102999806404114, 0.5073000192642212, 0.5073000192642212, 0.5332000255584717, 0.5800999999046326, 0.5806000232696533, 0.6015999913215637, 0.6035000085830688, 0.6015999913215637, 0.6050000190734863, 0.6273999810218811, 0.6279000043869019, 0.6273999810218811, 0.6523000001907349, 0.6523000001907349, 0.6523000001907349, 0.6723999977111816, 0.6743000149726868, 0.6723999977111816, 0.6987000107765198, 0.698199987411499, 0.7305999994277954 ], "x_max": [ 0.5645999908447266, 0.6294999718666077, 0.6862999796867371, 0.7512999773025513, 0.32409998774528503, 0.39329999685287476, 0.4546999931335449, 0.5548999905586243, 0.2502000033855438, 0.2840999960899353, 0.31859999895095825, 0.38769999146461487, 0.4153999984264374, 0.4830999970436096, 0.703499972820282, 0.7559999823570251, 0.5149000287055969, 0.6883000135421753, 0.2425999939441681, 0.36899998784065247, 0.6337000131607056, 0.33799999952316284, 0.4650999903678894, 0.72079998254776, 0.5825999975204468, 0.39320001006126404, 0.8133999705314636, 0.17550000548362732, 0.3959999978542328, 0.5092999935150146, 0.6723999977111816, 0.15549999475479126, 0.7871000170707703, 0.8873999714851379, 0.4368000030517578, 0.699400007724762, 0.8396999835968018, 0.36010000109672546, 0.5390999913215637, 0.8493000268936157, 0.5534999966621399, 0.6559000015258789, 0.755299985408783 ], "y_max": [ 0.19329999387264252, 0.19339999556541443, 0.24070000648498535, 0.24070000648498535, 0.2655999958515167, 0.2655999958515167, 0.2655999958515167, 0.2655999958515167, 0.31150001287460327, 0.31150001287460327, 0.31150001287460327, 0.31150001287460327, 0.33500000834465027, 0.33500000834465027, 0.35839998722076416, 0.35839998722076416, 0.4765999913215637, 0.47749999165534973, 0.5, 0.5, 0.5015000104904175, 0.5249000191688538, 0.5249000191688538, 0.5234000086784363, 0.54830002784729, 0.5957000255584717, 0.5957000255584717, 0.6191999912261963, 0.6190999746322632, 0.6191999912261963, 0.6157000064849854, 0.6391000151634216, 0.6424999833106995, 0.6424999833106995, 0.6625999808311462, 0.6635000109672546, 0.6650000214576721, 0.6861000061035156, 0.6898999810218811, 0.6884999871253967, 0.7132999897003174, 0.7132999897003174, 0.7806000113487244 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0002194_page26
{ "latex": [ "$c_2 (2 \\pi \\alpha ')^3 ( J_2 (B) + J_2 (B^2) )$", "$\\hat {F}^2$", "$\\hat {D} \\hat {F}$", "$\\hat {F}$", "$O(\\alpha '^3)$", "$G_{ij}$", "$\\alpha '$", "$O(B)$", "\\begin {eqnarray} \\hat {A}_i &=& A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) \\\\ && -\\frac {1}{4} c_2 (2 \\pi \\alpha ')^3 \\partial _j ( 2 F B F + B^2 F + F B^2 )_{ji} + O(\\alpha '^4) \\end {eqnarray}", "\\begin {eqnarray} {\\cal L}(B+F) &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ {\\rm Tr} (B+F)^2 + (2 \\pi \\alpha ')^2 \\left [ \\frac {1}{2} {\\rm Tr} (B+F)^4 -\\frac {1}{8} [ {\\rm Tr} (B+F)^2 ]^2 \\right ] \\\\ && \\qquad \\qquad + c_2 (2 \\pi \\alpha ')^3 \\partial _n (B+F)_{ij} \\partial _n (B+F)_{jk} (B+F)_{kl} (B+F)_{li} \\\\ && \\qquad \\qquad + ~O(\\alpha '^4) \\Biggr ], \\end {eqnarray}", "\\begin {eqnarray} \\hat {{\\cal L}}(\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ {\\rm Tr} ( G^{-1} \\hat {F} \\ast G^{-1} \\hat {F} ) \\\\ && \\qquad \\quad + (2 \\pi \\alpha ')^2 \\biggl [ \\frac {1}{2} {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ && \\qquad \\quad + c_2 (2 \\pi \\alpha ')^3 ( \\hat {D}_n \\hat {F}_{ij} \\ast \\hat {D}_n \\hat {F}_{jk} \\ast \\hat {F}_{kl} \\ast \\hat {F}_{li} )_{G, \\rm ~arbitrary} + ~O(\\alpha '^4) \\Biggr ], \\end {eqnarray}", "\\begin {equation} B_{ij} = -\\frac {1}{(2 \\pi \\alpha ')^2} ( g \\theta g )_{ij} + O( \\theta ^2 ), \\end {equation}", "\\begin {equation} \\hat {A}_i \\to \\tilde {A}_i \\to A_i, \\end {equation}", "\\begin {eqnarray} \\hat {A}_i &=& \\tilde {A}_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} \\tilde {A}_k (\\partial _l \\tilde {A}_i + \\tilde {F}_{li}) + O(\\alpha '^4), \\\\ \\tilde {A}_i &=& A_i -\\frac {1}{4} c_2 (2 \\pi \\alpha ')^3 \\partial _j ( 2 F B F + B^2 F + F B^2 )_{ji} + O(\\alpha '^4). \\end {eqnarray}" ], "latex_norm": [ "$ c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } ( J _ { 2 } ( B ) + J _ { 2 } ( B ^ { 2 } ) ) $", "$ \\hat { F } ^ { 2 } $", "$ \\hat { D } \\hat { F } $", "$ \\hat { F } $", "$ O ( \\alpha ^ { \\prime 3 } ) $", "$ G _ { i j } $", "$ \\alpha ^ { \\prime } $", "$ O ( B ) $", "\\begin{align*} \\hat { A } _ { i } & = & A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) \\\\ & & - \\frac { 1 } { 4 } c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { j } ( 2 F B F + B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + O ( \\alpha ^ { \\prime 4 } ) \\end{align*}", "\\begin{align*} L ( B + F ) & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( B + F ) ^ { 4 } - \\frac { 1 } { 8 } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } ] \\\\ & & \\qquad \\qquad + c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { n } ( B + F ) _ { i j } \\partial _ { n } ( B + F ) _ { j k } ( B + F ) _ { k l } ( B + F ) _ { l i } \\\\ & & \\qquad \\qquad + ~ O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}", "\\begin{align*} \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) \\\\ & & \\qquad \\quad + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & & \\qquad \\quad + c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } ( \\hat { D } _ { n } \\hat { F } _ { i j } \\ast \\hat { D } _ { n } \\hat { F } _ { j k } \\ast \\hat { F } _ { k l } \\ast \\hat { F } _ { l i } ) _ { G , ~ a r b i t r a r y } + ~ O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}", "\\begin{equation*} B _ { i j } = - \\frac { 1 } { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } ( g \\theta g ) _ { i j } + O ( \\theta ^ { 2 } ) , \\end{equation*}", "\\begin{equation*} \\hat { A } _ { i } \\rightarrow \\widetilde { A } _ { i } \\rightarrow A _ { i } , \\end{equation*}", "\\begin{align*} \\hat { A } _ { i } & = & \\widetilde { A } _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\widetilde { A } _ { k } ( \\partial _ { l } \\widetilde { A } _ { i } + \\widetilde { F } _ { l i } ) + O ( \\alpha ^ { \\prime 4 } ) , \\\\ \\widetilde { A } _ { i } & = & A _ { i } - \\frac { 1 } { 4 } c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { j } ( 2 F B F + B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + O ( \\alpha ^ { \\prime 4 } ) . \\end{align*}" ], "latex_expand": [ "$ \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } ( \\mitJ _ { 2 } ( \\mitB ) + \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) ) $", "$ \\hat { \\mitF } ^ { 2 } $", "$ \\hat { \\mitD } \\hat { \\mitF } $", "$ \\hat { \\mitF } $", "$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $", "$ \\mitG _ { \\miti \\mitj } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitO ( \\mitB ) $", "\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) \\\\ & & \\displaystyle - \\frac { 1 } { 4 } \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitj } ( 2 \\mitF \\mitB \\mitF + \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\end{align*}", "\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } - \\frac { 1 } { 8 } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } \\right] \\\\ & & \\displaystyle \\qquad \\qquad + \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitn } ( \\mitB + \\mitF ) _ { \\miti \\mitj } \\mitpartial _ { \\mitn } ( \\mitB + \\mitF ) _ { \\mitj \\mitk } ( \\mitB + \\mitF ) _ { \\mitk \\mitl } ( \\mitB + \\mitF ) _ { \\mitl \\miti } \\\\ & & \\displaystyle \\qquad \\qquad + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}", "\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) \\\\ & & \\displaystyle \\qquad \\quad + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\bigg [ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & & \\displaystyle \\qquad \\quad + \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } ( \\hat { \\mitD } _ { \\mitn } \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitD } _ { \\mitn } \\hat { \\mitF } _ { \\mitj \\mitk } \\ast \\hat { \\mitF } _ { \\mitk \\mitl } \\ast \\hat { \\mitF } _ { \\mitl \\miti } ) _ { \\mitG , ~ \\mathrm { a r b i t r a r y } } + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}", "\\begin{equation*} \\mitB _ { \\miti \\mitj } = - \\frac { 1 } { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } ( \\mitg \\mittheta \\mitg ) _ { \\miti \\mitj } + \\mitO ( \\mittheta ^ { 2 } ) , \\end{equation*}", "\\begin{equation*} \\hat { \\mitA } _ { \\miti } \\rightarrow \\tilde { \\mitA } _ { \\miti } \\rightarrow \\mitA _ { \\miti } , \\end{equation*}", "\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\tilde { \\mitA } _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\tilde { \\mitA } _ { \\mitk } ( \\mitpartial _ { \\mitl } \\tilde { \\mitA } _ { \\miti } + \\tilde { \\mitF } _ { \\mitl \\miti } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\\\ \\displaystyle \\tilde { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } - \\frac { 1 } { 4 } \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitj } ( 2 \\mitF \\mitB \\mitF + \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{align*}" ], "x_min": [ 0.21979999542236328, 0.5479999780654907, 0.3912000060081482, 0.4837999939918518, 0.5784000158309937, 0.8396999835968018, 0.3815000057220459, 0.527999997138977, 0.2639999985694885, 0.16660000383853912, 0.17970000207424164, 0.37389999628067017, 0.44510000944137573, 0.250900000333786 ], "y_min": [ 0.20309999585151672, 0.2011999934911728, 0.5092999935150146, 0.5092999935150146, 0.5116999745368958, 0.5131999850273132, 0.5595999956130981, 0.5590999722480774, 0.12349999696016312, 0.24819999933242798, 0.3804999887943268, 0.5946999788284302, 0.7026000022888184, 0.7621999979019165 ], "x_max": [ 0.4512999951839447, 0.5722000002861023, 0.4237000048160553, 0.49970000982284546, 0.6344000101089478, 0.8679999709129333, 0.3995000123977661, 0.574999988079071, 0.7595000267028809, 0.8569999933242798, 0.8438000082969666, 0.6482999920845032, 0.5770999789237976, 0.7727000117301941 ], "y_max": [ 0.21870000660419464, 0.21490000188350677, 0.5235000252723694, 0.5235000252723694, 0.5267999768257141, 0.527400016784668, 0.5702999830245972, 0.5741999745368958, 0.19419999420642853, 0.3495999872684479, 0.49709999561309814, 0.6308000087738037, 0.722599983215332, 0.8328999876976013 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0002194_page27
{ "latex": [ "$\\hat {A}_i$", "$\\tilde {A}_i$", "$\\tilde {A}_i$", "$A_i$", "$\\tilde {A}_i$", "$A_i$", "$B$", "$B$", "$\\tilde {A}_i$", "$B+F$", "$B$", "$A_i$", "$\\hat {A}_i$", "$\\delta \\theta ^{ij}$", "$(g^{-1})^{ij}$", "$J_i$", "$J_3$", "$J_3$", "$\\hat {T}_4$", "$\\hat {{\\cal L}} (\\hat {F})$", "$J_3$", "$O(\\alpha '^2)$", "$O(\\alpha ')$", "$\\hat {T}_4$", "$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$", "$G_s$", "$\\hat {J}_i$", "$J_i$", "\\begin {equation} \\hat {{\\cal L}}_1 (\\hat {F}) = \\frac {\\sqrt {\\det G}}{G_s} \\left [ \\hat {T}_3 + (2 \\pi \\alpha ')^2 \\left ( -\\frac {1}{4} \\hat {J}_1 + 2 \\hat {J}_2 + \\hat {J}_3 \\right ) + O(\\alpha '^4) \\right ], \\end {equation}", "\\begin {equation} \\hat {{\\cal L}}_2 (\\hat {F}) = \\frac {\\sqrt {\\det G}}{G_s} \\left [ \\hat {T}_1 + (2 \\pi \\alpha ')^2 \\left ( \\hat {J}_5 -\\frac {1}{8} \\hat {J}_6 + \\frac {1}{2} \\hat {J}_7 \\right ) + O(\\alpha '^4) \\right ], \\end {equation}" ], "latex_norm": [ "$ \\hat { A } _ { i } $", "$ \\widetilde { A } _ { i } $", "$ \\widetilde { A } _ { i } $", "$ A _ { i } $", "$ \\widetilde { A } _ { i } $", "$ A _ { i } $", "$ B $", "$ B $", "$ \\widetilde { A } _ { i } $", "$ B + F $", "$ B $", "$ A _ { i } $", "$ \\hat { A } _ { i } $", "$ \\delta \\theta ^ { i j } $", "$ ( g ^ { - 1 } ) ^ { i j } $", "$ J _ { i } $", "$ J _ { 3 } $", "$ J _ { 3 } $", "$ \\hat { T } _ { 4 } $", "$ \\hat { L } ( \\hat { F } ) $", "$ J _ { 3 } $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ O ( \\alpha ^ { \\prime } ) $", "$ \\hat { T } _ { 4 } $", "$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $", "$ G _ { s } $", "$ \\hat { J } _ { i } $", "$ J _ { i } $", "\\begin{equation*} \\hat { L } _ { 1 } ( \\hat { F } ) = \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\hat { T } _ { 3 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( - \\frac { 1 } { 4 } \\hat { J } _ { 1 } + 2 \\hat { J } _ { 2 } + \\hat { J } _ { 3 } ) + O ( \\alpha ^ { \\prime 4 } ) ] , \\end{equation*}", "\\begin{equation*} \\hat { L } _ { 2 } ( \\hat { F } ) = \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\hat { T } _ { 1 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( \\hat { J } _ { 5 } - \\frac { 1 } { 8 } \\hat { J } _ { 6 } + \\frac { 1 } { 2 } \\hat { J } _ { 7 } ) + O ( \\alpha ^ { \\prime 4 } ) ] , \\end{equation*}" ], "latex_expand": [ "$ \\hat { \\mitA } _ { \\miti } $", "$ \\tilde { \\mitA } _ { \\miti } $", "$ \\tilde { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\tilde { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitB $", "$ \\mitB $", "$ \\tilde { \\mitA } _ { \\miti } $", "$ \\mitB + \\mitF $", "$ \\mitB $", "$ \\mitA _ { \\miti } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitdelta \\mittheta ^ { \\miti \\mitj } $", "$ ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } $", "$ \\mitJ _ { \\miti } $", "$ \\mitJ _ { 3 } $", "$ \\mitJ _ { 3 } $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitJ _ { 3 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\mitO ( \\mitalpha ^ { \\prime } ) $", "$ \\hat { \\mitT } _ { 4 } $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $", "$ \\mitG _ { \\mits } $", "$ \\hat { \\mitJ } _ { \\miti } $", "$ \\mitJ _ { \\miti } $", "\\begin{equation*} \\hat { \\mitL } _ { 1 } ( \\hat { \\mitF } ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\left[ \\hat { \\mitT } _ { 3 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 1 } + 2 \\hat { \\mitJ } _ { 2 } + \\hat { \\mitJ } _ { 3 } \\right) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] , \\end{equation*}", "\\begin{equation*} \\hat { \\mitL } _ { 2 } ( \\hat { \\mitF } ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\left[ \\hat { \\mitT } _ { 1 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 8 } \\hat { \\mitJ } _ { 6 } + \\frac { 1 } { 2 } \\hat { \\mitJ } _ { 7 } \\right) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] , \\end{equation*}" ], "x_min": [ 0.6406000256538391, 0.22599999606609344, 0.6869000196456909, 0.31380000710487366, 0.832099974155426, 0.1306000053882599, 0.5349000096321106, 0.6406000256538391, 0.5631999969482422, 0.19769999384880066, 0.41670000553131104, 0.6869000196456909, 0.7401999831199646, 0.48030000925064087, 0.6184999942779541, 0.5002999901771545, 0.5964000225067139, 0.4691999852657318, 0.3573000133037567, 0.4056999981403351, 0.6247000098228455, 0.47200000286102295, 0.2556999921798706, 0.3594000041484833, 0.1906999945640564, 0.2425999939441681, 0.38769999146461487, 0.7885000109672546, 0.24330000579357147, 0.24879999458789825 ], "y_min": [ 0.09769999980926514, 0.12160000205039978, 0.12160000205039978, 0.14839999377727509, 0.14499999582767487, 0.17190000414848328, 0.17190000414848328, 0.21879999339580536, 0.23929999768733978, 0.2660999894142151, 0.2660999894142151, 0.36039999127388, 0.3564000129699707, 0.3822999894618988, 0.3822999894618988, 0.4311999976634979, 0.4311999976634979, 0.4546000063419342, 0.4745999872684479, 0.4745999872684479, 0.4779999852180481, 0.5005000233650208, 0.524399995803833, 0.5214999914169312, 0.7060999870300293, 0.7333999872207642, 0.7294999957084656, 0.7333999872207642, 0.5976999998092651, 0.6592000126838684 ], "x_max": [ 0.661300003528595, 0.2467000037431717, 0.7075999975204468, 0.3352000117301941, 0.8528000116348267, 0.15129999816417694, 0.5515000224113464, 0.6571999788284302, 0.583899974822998, 0.24950000643730164, 0.4332999885082245, 0.7075999975204468, 0.7609000205993652, 0.5120999813079834, 0.6758999824523926, 0.5169000029563904, 0.6158000230789185, 0.4885999858379364, 0.3772999942302704, 0.4505999982357025, 0.64410001039505, 0.527999997138977, 0.30480000376701355, 0.37940001487731934, 0.3427000045776367, 0.2653999924659729, 0.4043000042438507, 0.8058000206947327, 0.7796000242233276, 0.7739999890327454 ], "y_max": [ 0.11379999667406082, 0.1371999979019165, 0.1371999979019165, 0.16060000658035278, 0.16060000658035278, 0.18459999561309814, 0.18219999969005585, 0.22949999570846558, 0.2549000084400177, 0.27730000019073486, 0.27639999985694885, 0.37310001254081726, 0.37299999594688416, 0.3944999873638153, 0.3978999853134155, 0.4438999891281128, 0.4438999891281128, 0.4672999978065491, 0.49070000648498535, 0.49219998717308044, 0.49070000648498535, 0.5156000256538391, 0.5394999980926514, 0.538100004196167, 0.7236999869346619, 0.7455999851226807, 0.7455999851226807, 0.7455999851226807, 0.6363000273704529, 0.6977999806404114 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0002194_page28
{ "latex": [ "${\\cal L} (B+F) \\to \\hat {{\\cal L}} (\\hat {F})$", "$\\{ \\hat {T}_1, \\hat {T}_4 \\}$", "$\\alpha '$", "$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$", "$G_s$", "$\\hat {{\\cal L}}' (\\hat {F}) = {\\cal L}' (B+F)$", "$G_s$", "${\\cal L}' (F) - {\\cal L} (F)$", "$O(\\partial ^2 F^4)$", "$O(\\partial ^2 F^4)$", "$O(\\partial ^2 F^4)$", "${\\cal F} (F)$", "$a=0$", "$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$", "$G_s$", "\\begin {eqnarray} \\hat {{\\cal L}} (\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ a \\hat {T}_1 + b \\hat {T}_4 + a (2 \\pi \\alpha ')^2 \\left ( \\hat {J}_5 -\\frac {1}{8} \\hat {J}_6 + \\frac {1}{2} \\hat {J}_7 \\right ) \\\\ && \\quad - \\frac {1}{4} b (2 \\pi \\alpha ')^2 \\left ( -\\frac {1}{4} \\hat {J}_1 + 2 \\hat {J}_2 + \\hat {J}_3 +2 \\hat {J}_5 -\\frac {1}{4} \\hat {J}_6 + \\hat {J}_7 \\right ) + O(\\alpha '^4) \\Biggr ]. \\end {eqnarray}", "\\begin {eqnarray} \\hat {{\\cal L}}' (\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ a \\hat {T}_1 + b \\hat {T}_4 \\\\ && + ~O(\\alpha '^2) {\\rm ~terms~different~from~those~of~} \\hat {{\\cal L}} (\\hat {F}) + O(\\alpha '^4) \\Biggr ], \\end {eqnarray}", "\\begin {equation} {\\cal F} (F) \\equiv -\\frac {1}{4} J_1 + 2 J_2 + J_3 +2 J_5 -\\frac {1}{4} J_6 + J_7, \\label {necessary} \\end {equation}", "\\begin {equation} -\\frac {1}{4} {\\cal F} (B+F) = \\frac {1}{2} B_{nm} F_{ij} \\partial _n F_{jk} \\partial _m F_{ki} -\\frac {1}{4} {\\cal F} (F) + {\\rm total~derivative}, \\end {equation}" ], "latex_norm": [ "$ L ( B + F ) \\rightarrow \\hat { L } ( \\hat { F } ) $", "$ \\{ \\hat { T } _ { 1 } , \\hat { T } _ { 4 } \\} $", "$ \\alpha ^ { \\prime } $", "$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $", "$ G _ { s } $", "$ \\hat { L } ^ { \\prime } ( \\hat { F } ) = L ^ { \\prime } ( B + F ) $", "$ G _ { s } $", "$ L ^ { \\prime } ( F ) - L ( F ) $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ F ( F ) $", "$ a = 0 $", "$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $", "$ G _ { s } $", "\\begin{align*} \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ a \\hat { T } _ { 1 } + b \\hat { T } _ { 4 } + a ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( \\hat { J } _ { 5 } - \\frac { 1 } { 8 } \\hat { J } _ { 6 } + \\frac { 1 } { 2 } \\hat { J } _ { 7 } ) \\\\ & & \\quad - \\frac { 1 } { 4 } b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( - \\frac { 1 } { 4 } \\hat { J } _ { 1 } + 2 \\hat { J } _ { 2 } + \\hat { J } _ { 3 } + 2 \\hat { J } _ { 5 } - \\frac { 1 } { 4 } \\hat { J } _ { 6 } + \\hat { J } _ { 7 } ) + O ( \\alpha ^ { \\prime 4 } ) ] . \\end{align*}", "\\begin{align*} \\hat { L } ^ { \\prime } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ a \\hat { T } _ { 1 } + b \\hat { T } _ { 4 } \\\\ & & + ~ O ( \\alpha ^ { \\prime 2 } ) ~ t e r m s ~ d i f f e r e n t ~ f r o m ~ t h o s e ~ o f ~ \\hat { L } ( \\hat { F } ) + O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}", "\\begin{equation*} F ( F ) \\equiv - \\frac { 1 } { 4 } J _ { 1 } + 2 J _ { 2 } + J _ { 3 } + 2 J _ { 5 } - \\frac { 1 } { 4 } J _ { 6 } + J _ { 7 } , \\end{equation*}", "\\begin{equation*} - \\frac { 1 } { 4 } F ( B + F ) = \\frac { 1 } { 2 } B _ { n m } F _ { i j } \\partial _ { n } F _ { j k } \\partial _ { m } F _ { k i } - \\frac { 1 } { 4 } F ( F ) + t o t a l ~ d e r i v a t i v e , \\end{equation*}" ], "latex_expand": [ "$ \\mitL ( \\mitB + \\mitF ) \\rightarrow \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\{ \\hat { \\mitT } _ { 1 } , \\hat { \\mitT } _ { 4 } \\} $", "$ \\mitalpha ^ { \\prime } $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $", "$ \\mitG _ { \\mits } $", "$ \\hat { \\mitL } ^ { \\prime } ( \\hat { \\mitF } ) = \\mitL ^ { \\prime } ( \\mitB + \\mitF ) $", "$ \\mitG _ { \\mits } $", "$ \\mitL ^ { \\prime } ( \\mitF ) - \\mitL ( \\mitF ) $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitF ( \\mitF ) $", "$ \\mita = 0 $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $", "$ \\mitG _ { \\mits } $", "\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mita \\hat { \\mitT } _ { 1 } + \\mitb \\hat { \\mitT } _ { 4 } + \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 8 } \\hat { \\mitJ } _ { 6 } + \\frac { 1 } { 2 } \\hat { \\mitJ } _ { 7 } \\right) \\\\ & & \\displaystyle \\quad - \\frac { 1 } { 4 } \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 1 } + 2 \\hat { \\mitJ } _ { 2 } + \\hat { \\mitJ } _ { 3 } + 2 \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 6 } + \\hat { \\mitJ } _ { 7 } \\right) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] . \\end{align*}", "\\begin{align*} \\displaystyle \\hat { \\mitL } ^ { \\prime } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mita \\hat { \\mitT } _ { 1 } + \\mitb \\hat { \\mitT } _ { 4 } \\\\ & & \\displaystyle + ~ \\mitO ( \\mitalpha ^ { \\prime 2 } ) ~ \\mathrm { t e r m s } ~ \\mathrm { d i f f e r e n t } ~ \\mathrm { f r o m } ~ \\mathrm { t h o s e } ~ \\mathrm { o f } ~ \\hat { \\mitL } ( \\hat { \\mitF } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}", "\\begin{equation*} \\mitF ( \\mitF ) \\equiv - \\frac { 1 } { 4 } \\mitJ _ { 1 } + 2 \\mitJ _ { 2 } + \\mitJ _ { 3 } + 2 \\mitJ _ { 5 } - \\frac { 1 } { 4 } \\mitJ _ { 6 } + \\mitJ _ { 7 } , \\end{equation*}", "\\begin{equation*} - \\frac { 1 } { 4 } \\mitF ( \\mitB + \\mitF ) = \\frac { 1 } { 2 } \\mitB _ { \\mitn \\mitm } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\mitk } \\mitpartial _ { \\mitm } \\mitF _ { \\mitk \\miti } - \\frac { 1 } { 4 } \\mitF ( \\mitF ) + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\end{equation*}" ], "x_min": [ 0.2184000015258789, 0.1306000053882599, 0.4036000072956085, 0.6365000009536743, 0.6917999982833862, 0.29919999837875366, 0.3682999908924103, 0.6198999881744385, 0.24050000309944153, 0.1298999935388565, 0.36899998784065247, 0.1306000053882599, 0.23770000040531158, 0.3801000118255615, 0.4796000123023987, 0.1899999976158142, 0.21770000457763672, 0.321399986743927, 0.19900000095367432 ], "y_min": [ 0.09769999980926514, 0.1445000022649765, 0.28610000014305115, 0.2831999957561493, 0.31049999594688416, 0.44679999351501465, 0.4740999937057495, 0.4731000065803528, 0.4966000020503998, 0.5435000061988831, 0.5669000148773193, 0.6596999764442444, 0.7080000042915344, 0.7035999894142151, 0.7310000061988831, 0.1703999936580658, 0.35409998893737793, 0.5903000235557556, 0.7529000043869019 ], "x_max": [ 0.3828999996185303, 0.19830000400543213, 0.42089998722076416, 0.79339998960495, 0.7153000235557556, 0.4657999873161316, 0.3917999863624573, 0.7325000166893005, 0.31439998745918274, 0.2045000046491623, 0.44359999895095825, 0.17829999327659607, 0.29510000348091125, 0.5501000285148621, 0.5030999779701233, 0.8334000110626221, 0.8058000206947327, 0.7014999985694885, 0.7649999856948853 ], "y_max": [ 0.1152999997138977, 0.16210000216960907, 0.29679998755455017, 0.30079999566078186, 0.32269999384880066, 0.4648999869823456, 0.4867999851703644, 0.48820000886917114, 0.5116999745368958, 0.5590999722480774, 0.5824999809265137, 0.6743000149726868, 0.7178000211715698, 0.7211999893188477, 0.7437000274658203, 0.2558000087738037, 0.43549999594688416, 0.6225000023841858, 0.785099983215332 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0002194_page29
{ "latex": [ "${\\cal F} (F)$", "$O(\\partial ^2 F^4)$", "$\\alpha '$", "$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$", "$G_s$", "$J_3$", "${\\cal L} (B+F)$", "${\\hat {\\cal L}} (\\hat {F})$", "$J_i$", "$J_3$", "$\\alpha '^3$", "$J_2$", "$J_1$", "$J_2$", "$J_3$", "$b (2 \\pi \\alpha ')^3 \\hat {J_2}$", "$J_4$", "$J_5$", "$J_6$", "$J_7$", "$O(\\alpha '^3)$", "\\begin {eqnarray} \\hat {{\\cal L}}(\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ {\\rm Tr} ( G^{-1} \\hat {F} \\ast G^{-1} \\hat {F} ) + b (2 \\pi \\alpha ') \\hat {T}_4 \\\\ && \\qquad \\qquad + (2 \\pi \\alpha ')^2 \\biggl [ \\frac {1}{2} {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ && \\qquad \\qquad - \\frac {1}{4} b (2 \\pi \\alpha ')^3 \\left ( -\\frac {1}{4} \\hat {J}_1 + 2 \\hat {J}_2 + \\hat {J}_3 +2 \\hat {J}_5 -\\frac {1}{4} \\hat {J}_6 + \\hat {J}_7 \\right ) \\\\ && \\qquad \\qquad + ~O(\\alpha '^4) \\Biggr ], \\end {eqnarray}", "\\begin {eqnarray} \\hat {A}_i &=& A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) \\\\ && -\\frac {1}{4} b (2 \\pi \\alpha ')^3 \\partial _j ( 2 F B F + B^2 F + F B^2 )_{ji} + O(\\alpha '^4). \\end {eqnarray}" ], "latex_norm": [ "$ F ( F ) $", "$ O ( \\partial ^ { 2 } F ^ { 4 } ) $", "$ \\alpha ^ { \\prime } $", "$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $", "$ G _ { s } $", "$ J _ { 3 } $", "$ L ( B + F ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ J _ { i } $", "$ J _ { 3 } $", "$ \\alpha ^ { \\prime 3 } $", "$ J _ { 2 } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 3 } $", "$ b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\hat { J _ { 2 } } $", "$ J _ { 4 } $", "$ J _ { 5 } $", "$ J _ { 6 } $", "$ J _ { 7 } $", "$ O ( \\alpha ^ { \\prime 3 } ) $", "\\begin{align*} \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) + b ( 2 \\pi \\alpha ^ { \\prime } ) \\hat { T } _ { 4 } \\\\ & & \\qquad \\qquad + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & & \\qquad \\qquad - \\frac { 1 } { 4 } b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } ( - \\frac { 1 } { 4 } \\hat { J } _ { 1 } + 2 \\hat { J } _ { 2 } + \\hat { J } _ { 3 } + 2 \\hat { J } _ { 5 } - \\frac { 1 } { 4 } \\hat { J } _ { 6 } + \\hat { J } _ { 7 } ) \\\\ & & \\qquad \\qquad + ~ O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}", "\\begin{align*} \\hat { A } _ { i } & = & A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) \\\\ & & - \\frac { 1 } { 4 } b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { j } ( 2 F B F + B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + O ( \\alpha ^ { \\prime 4 } ) . \\end{align*}" ], "latex_expand": [ "$ \\mitF ( \\mitF ) $", "$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $", "$ \\mitalpha ^ { \\prime } $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $", "$ \\mitG _ { \\mits } $", "$ \\mitJ _ { 3 } $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitJ _ { \\miti } $", "$ \\mitJ _ { 3 } $", "$ \\mitalpha ^ { \\prime 3 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 3 } $", "$ \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\hat { \\mitJ _ { 2 } } $", "$ \\mitJ _ { 4 } $", "$ \\mitJ _ { 5 } $", "$ \\mitJ _ { 6 } $", "$ \\mitJ _ { 7 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $", "\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) + \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\hat { \\mitT } _ { 4 } \\\\ & & \\displaystyle \\qquad \\qquad + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\bigg [ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & & \\displaystyle \\qquad \\qquad - \\frac { 1 } { 4 } \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\left( - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 1 } + 2 \\hat { \\mitJ } _ { 2 } + \\hat { \\mitJ } _ { 3 } + 2 \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 6 } + \\hat { \\mitJ } _ { 7 } \\right) \\\\ & & \\displaystyle \\qquad \\qquad + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}", "\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) \\\\ & & \\displaystyle - \\frac { 1 } { 4 } \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitj } ( 2 \\mitF \\mitB \\mitF + \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{align*}" ], "x_min": [ 0.29580000042915344, 0.1298999935388565, 0.7297999858856201, 0.19280000030994415, 0.274399995803833, 0.802299976348877, 0.16930000483989716, 0.4180999994277954, 0.4982999861240387, 0.5992000102996826, 0.3912000060081482, 0.1298999935388565, 0.3476000130176544, 0.3772999942302704, 0.4368000030517578, 0.5245000123977661, 0.527999997138977, 0.5583999752998352, 0.588100016117096, 0.6503000259399414, 0.30410000681877136, 0.19349999725818634, 0.2653999924659729 ], "y_min": [ 0.10010000318288803, 0.1469999998807907, 0.17139999568462372, 0.19189999997615814, 0.21879999339580536, 0.24269999563694, 0.45750001072883606, 0.45509999990463257, 0.48240000009536743, 0.48240000009536743, 0.5044000148773193, 0.5292999744415283, 0.6000999808311462, 0.6000999808311462, 0.6000999808311462, 0.6201000213623047, 0.7559000253677368, 0.7559000253677368, 0.7559000253677368, 0.7559000253677368, 0.801800012588501, 0.2892000079154968, 0.6718999743461609 ], "x_max": [ 0.3434999883174896, 0.2045000046491623, 0.7470999956130981, 0.3544999957084656, 0.2971999943256378, 0.8216999769210815, 0.2563999891281128, 0.46299999952316284, 0.5156000256538391, 0.6186000108718872, 0.41609999537467957, 0.1492999941110611, 0.367000013589859, 0.396699994802475, 0.4562000036239624, 0.614300012588501, 0.5473999977111816, 0.5777999758720398, 0.6075000166893005, 0.6690000295639038, 0.3594000041484833, 0.8299999833106995, 0.7580999732017517 ], "y_max": [ 0.1151999980211258, 0.16210000216960907, 0.18209999799728394, 0.2094999998807907, 0.23149999976158142, 0.2549000084400177, 0.4726000130176544, 0.47269999980926514, 0.49459999799728394, 0.49459999799728394, 0.5160999894142151, 0.5419999957084656, 0.6128000020980835, 0.6128000020980835, 0.6128000020980835, 0.6377000212669373, 0.7685999870300293, 0.7685999870300293, 0.7685999870300293, 0.7685999870300293, 0.8169000148773193, 0.4399999976158142, 0.7461000084877014 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0002194_page30
{ "latex": [ "$O(\\alpha '^3)$", "$J_1$", "$J_2$", "$J_3$", "$\\alpha '^3$", "$\\alpha '$", "$O(B) \\sim O(\\theta )$", "$\\delta \\hat {A} (\\theta )$", "$\\hat {{\\cal L}} (\\hat {F})$", "${\\cal L} (B+F)$", "$B$", "$\\alpha '$", "$\\hat {A}_i$", "$A_i$", "$B$", "$g_{ij}$", "$\\hat {A}_i$", "$A_i$" ], "latex_norm": [ "$ O ( \\alpha ^ { \\prime 3 } ) $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 3 } $", "$ \\alpha ^ { \\prime 3 } $", "$ \\alpha ^ { \\prime } $", "$ O ( B ) \\sim O ( \\theta ) $", "$ \\delta \\hat { A } ( \\theta ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ L ( B + F ) $", "$ B $", "$ \\alpha ^ { \\prime } $", "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ B $", "$ g _ { i j } $", "$ \\hat { A } _ { i } $", "$ A _ { i } $" ], "latex_expand": [ "$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 3 } $", "$ \\mitalpha ^ { \\prime 3 } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitO ( \\mitB ) \\sim \\mitO ( \\mittheta ) $", "$ \\mitdelta \\hat { \\mitA } ( \\mittheta ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\mitB $", "$ \\mitalpha ^ { \\prime } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitB $", "$ \\mitg _ { \\miti \\mitj } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $" ], "x_min": [ 0.3199999928474426, 0.6654999852180481, 0.6952000260353088, 0.7559999823570251, 0.5935999751091003, 0.6758999824523926, 0.49070000648498535, 0.1534000039100647, 0.37040001153945923, 0.7450000047683716, 0.3359000086784363, 0.16380000114440918, 0.1306000053882599, 0.3303000032901764, 0.8701000213623047, 0.19349999725818634, 0.704200029373169, 0.7588000297546387 ], "y_min": [ 0.09960000216960907, 0.14839999377727509, 0.14839999377727509, 0.14839999377727509, 0.1703999936580658, 0.19480000436306, 0.26510000228881836, 0.28610000014305115, 0.43700000643730164, 0.4399000108242035, 0.4643999934196472, 0.48730000853538513, 0.5311999917030334, 0.5351999998092651, 0.6762999892234802, 0.7509999871253967, 0.7437000274658203, 0.7470999956130981 ], "x_max": [ 0.37599998712539673, 0.6848999857902527, 0.7146000266075134, 0.7753999829292297, 0.6184999942779541, 0.6938999891281128, 0.6096000075340271, 0.20319999754428864, 0.41530001163482666, 0.8327999711036682, 0.35249999165534973, 0.1817999929189682, 0.15129999816417694, 0.3517000079154968, 0.8866999745368958, 0.21559999883174896, 0.7249000072479248, 0.7795000076293945 ], "y_max": [ 0.1151999980211258, 0.16060000658035278, 0.16060000658035278, 0.16060000658035278, 0.18209999799728394, 0.20550000667572021, 0.2802000045776367, 0.3037000000476837, 0.4546000063419342, 0.4544999897480011, 0.474700003862381, 0.49799999594688416, 0.5472999811172485, 0.5473999977111816, 0.6869999766349792, 0.7616999745368958, 0.7598000168800354, 0.7598000168800354 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0002194_page31
{ "latex": [ "$\\hat {A}_i$", "$A_i$", "$g_{ij}$", "$g_{ij}$", "$\\hat {A}_i$", "$A_i$", "$\\alpha '$", "$\\alpha '$", "$\\alpha '$", "$J_1$", "$J_2$", "$J_3$", "$2n$", "$\\alpha '$", "$(2n+2)$" ], "latex_norm": [ "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ g _ { i j } $", "$ g _ { i j } $", "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ \\alpha ^ { \\prime } $", "$ \\alpha ^ { \\prime } $", "$ \\alpha ^ { \\prime } $", "$ J _ { 1 } $", "$ J _ { 2 } $", "$ J _ { 3 } $", "$ 2 n $", "$ \\alpha ^ { \\prime } $", "$ ( 2 n + 2 ) $" ], "latex_expand": [ "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitg _ { \\miti \\mitj } $", "$ \\mitg _ { \\miti \\mitj } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitJ _ { 1 } $", "$ \\mitJ _ { 2 } $", "$ \\mitJ _ { 3 } $", "$ 2 \\mitn $", "$ \\mitalpha ^ { \\prime } $", "$ ( 2 \\mitn + 2 ) $" ], "x_min": [ 0.7843999862670898, 0.8355000019073486, 0.574999988079071, 0.46790000796318054, 0.19280000030994415, 0.24400000274181366, 0.7139000296592712, 0.5605000257492065, 0.5286999940872192, 0.5307999849319458, 0.5619000196456909, 0.6254000067710876, 0.6723999977111816, 0.21289999783039093, 0.24400000274181366 ], "y_min": [ 0.12110000103712082, 0.125, 0.19920000433921814, 0.3402999937534332, 0.3564000129699707, 0.36039999127388, 0.43070000410079956, 0.47749999165534973, 0.5717999935150146, 0.6195999979972839, 0.6195999979972839, 0.6195999979972839, 0.6909000277519226, 0.7134000062942505, 0.736299991607666 ], "x_max": [ 0.8051000237464905, 0.8568999767303467, 0.597100019454956, 0.49000000953674316, 0.2134999930858612, 0.2646999955177307, 0.7318999767303467, 0.5777999758720398, 0.5460000038146973, 0.5501999855041504, 0.5813000202178955, 0.6448000073432922, 0.6945000290870667, 0.23019999265670776, 0.31310001015663147 ], "y_max": [ 0.1371999979019165, 0.1371999979019165, 0.20990000665187836, 0.35100001096725464, 0.37299999594688416, 0.37310001254081726, 0.4413999915122986, 0.4887000024318695, 0.5830000042915344, 0.6323000192642212, 0.6323000192642212, 0.6323000192642212, 0.7006999850273132, 0.7240999937057495, 0.7513999938964844 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0002194_page32
{ "latex": [ "$g_s$", "$g_s$", "$\\alpha '$", "$g_s$" ], "latex_norm": [ "$ g _ { s } $", "$ g _ { s } $", "$ \\alpha ^ { \\prime } $", "$ g _ { s } $" ], "latex_expand": [ "$ \\mitg _ { \\mits } $", "$ \\mitg _ { \\mits } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitg _ { \\mits } $" ], "x_min": [ 0.6827999949455261, 0.8755999803543091, 0.8755999803543091, 0.16859999299049377 ], "y_min": [ 0.29350000619888306, 0.31690001487731934, 0.3833000063896179, 0.41110000014305115 ], "x_max": [ 0.7001000046730042, 0.8928999900817871, 0.8928999900817871, 0.1859000027179718 ], "y_max": [ 0.3027999997138977, 0.32670000195503235, 0.3944999873638153, 0.4203999936580658 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0002194_page33
{ "latex": [ "$O(\\alpha '^0)$", "$G_s$", "$O(\\alpha '^0)$", "$G_s$", "$t$", "$A_i$", "$\\hat {A}_i$", "$t \\ne 1$", "$t \\ne 1$", "${\\bf A}_i$", "${\\bf \\hat {A}}_i$", "${\\cal L} (B+F)$", "$\\hat {{\\cal L}} (\\hat {F})$", "${\\bf A}_i$", "${\\bf \\hat {A}}_i$", "$\\alpha '$", "$F^4$", "$\\alpha '$", "${\\bf \\hat {A}}_i$", "\\begin {equation} {\\bf A}_i = \\frac {A_i}{\\sqrt {g_s}}, \\quad {\\bf \\hat {A}}_i = \\frac {\\hat {A}_i}{\\sqrt {G_s}}. \\end {equation}", "\\begin {eqnarray} {\\bf F}_{ij} &\\equiv & \\partial _i {\\bf A}_j - \\partial _j {\\bf A}_i, \\\\ {\\bf \\hat {F}}_{ij} &\\equiv & \\partial _i {\\bf \\hat {A}}_j - \\partial _j {\\bf \\hat {A}}_i -i \\sqrt {G_s} {\\bf \\hat {A}}_i \\ast {\\bf \\hat {A}}_j +i \\sqrt {G_s} {\\bf \\hat {A}}_j \\ast {\\bf \\hat {A}}_i, \\end {eqnarray}", "\\begin {eqnarray} {\\cal L} (B+F) &=& \\sqrt {\\det g} \\, {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 + O(\\alpha ') \\\\ &=& \\sqrt {\\det g} \\, {\\rm Tr} \\, {\\bf F}^2 + {\\rm total~derivative} + O(\\alpha '), \\\\ \\hat {{\\cal L}} (\\hat {F}) &=& \\sqrt {\\det G} \\, {\\rm Tr} ( G^{-1} {\\bf \\hat {F}} \\ast G^{-1} {\\bf \\hat {F}} ) + O(\\alpha '). \\end {eqnarray}", "\\begin {equation} {\\bf \\hat {A}}_i = {\\bf A}_i + O(\\alpha '). \\end {equation}", "\\begin {eqnarray} && \\sqrt {\\det G} \\, {\\rm Tr } (G^{-1} {\\bf \\hat {F}} \\ast G^{-1} {\\bf \\hat {F}}) \\\\ &=& \\sqrt {\\det g} \\Biggl [ ( \\partial _i {\\bf \\hat {A}}_j - \\partial _j {\\bf \\hat {A}}_i ) ( \\partial _j {\\bf \\hat {A}}_i - \\partial _i {\\bf \\hat {A}}_j ) -4 (2 \\pi \\alpha ')^2 \\sqrt {G_s} B_{kl} \\partial _k {\\bf \\hat {A}}_i \\partial _l {\\bf \\hat {A}}_j \\partial _j {\\bf \\hat {A}}_i \\\\ && +2 (2 \\pi \\alpha ')^2 (B^2)_{ij} ( \\partial _j {\\bf \\hat {A}}_k - \\partial _k {\\bf \\hat {A}}_j ) ( \\partial _k {\\bf \\hat {A}}_i - \\partial _i {\\bf \\hat {A}}_k ) \\\\ && -\\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 ( \\partial _i {\\bf \\hat {A}}_j - \\partial _j {\\bf \\hat {A}}_i ) ( \\partial _j {\\bf \\hat {A}}_i - \\partial _i {\\bf \\hat {A}}_j ) + O(\\alpha '^4) \\Biggr ]. \\end {eqnarray}" ], "latex_norm": [ "$ O ( \\alpha ^ { \\prime 0 } ) $", "$ G _ { s } $", "$ O ( \\alpha ^ { \\prime 0 } ) $", "$ G _ { s } $", "$ t $", "$ A _ { i } $", "$ \\hat { A } _ { i } $", "$ t \\ne 1 $", "$ t \\ne 1 $", "$ A _ { i } $", "$ \\hat { A } _ { i } $", "$ L ( B + F ) $", "$ \\hat { L } ( \\hat { F } ) $", "$ A _ { i } $", "$ \\hat { A } _ { i } $", "$ \\alpha ^ { \\prime } $", "$ F ^ { 4 } $", "$ \\alpha ^ { \\prime } $", "$ \\hat { A } _ { i } $", "\\begin{equation*} A _ { i } = \\frac { A _ { i } } { \\sqrt { g _ { s } } } , \\quad \\hat { A } _ { i } = \\frac { \\hat { A } _ { i } } { \\sqrt { G _ { s } } } . \\end{equation*}", "\\begin{align*} F _ { i j } & \\equiv & \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } , \\\\ \\hat { F } _ { i j } & \\equiv & \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } - i \\sqrt { G _ { s } } \\hat { A } _ { i } \\ast \\hat { A } _ { j } + i \\sqrt { G _ { s } } \\hat { A } _ { j } \\ast \\hat { A } _ { i } , \\end{align*}", "\\begin{align*} L ( B + F ) & = & \\sqrt { \\operatorname { d e t } g } \\, T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } + O ( \\alpha ^ { \\prime } ) \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, T r \\, F ^ { 2 } + t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime } ) , \\\\ \\hat { L } ( \\hat { F } ) & = & \\sqrt { \\operatorname { d e t } G } \\, T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) + O ( \\alpha ^ { \\prime } ) . \\end{align*}", "\\begin{equation*} \\hat { A } _ { i } = A _ { i } + O ( \\alpha ^ { \\prime } ) . \\end{equation*}", "\\begin{align*} & & \\sqrt { \\operatorname { d e t } G } \\, T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) \\\\ & = & \\sqrt { \\operatorname { d e t } g } [ ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) - 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\sqrt { G _ { s } } B _ { k l } \\partial _ { k } \\hat { A } _ { i } \\partial _ { l } \\hat { A } _ { j } \\partial _ { j } \\hat { A } _ { i } \\\\ & & + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( B ^ { 2 } ) _ { i j } ( \\partial _ { j } \\hat { A } _ { k } - \\partial _ { k } \\hat { A } _ { j } ) ( \\partial _ { k } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { k } ) \\\\ & & - \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) + O ( \\alpha ^ { \\prime 4 } ) ] . \\end{align*}" ], "latex_expand": [ "$ \\mitO ( \\mitalpha ^ { \\prime 0 } ) $", "$ \\mitG _ { \\mits } $", "$ \\mitO ( \\mitalpha ^ { \\prime 0 } ) $", "$ \\mitG _ { \\mits } $", "$ \\mitt $", "$ \\mitA _ { \\miti } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitt \\ne 1 $", "$ \\mitt \\ne 1 $", "$ \\mitA _ { \\miti } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitA _ { \\miti } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitalpha ^ { \\prime } $", "$ \\mitF ^ { 4 } $", "$ \\mitalpha ^ { \\prime } $", "$ \\hat { \\mitA } _ { \\miti } $", "\\begin{equation*} \\mitA _ { \\miti } = \\frac { \\mitA _ { \\miti } } { \\sqrt { \\mitg _ { \\mits } } } , \\quad \\hat { \\mitA } _ { \\miti } = \\frac { \\hat { \\mitA } _ { \\miti } } { \\sqrt { \\mitG _ { \\mits } } } . \\end{equation*}", "\\begin{align*} \\displaystyle \\mitF _ { \\miti \\mitj } & \\displaystyle \\equiv & \\displaystyle \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } , \\\\ \\displaystyle \\hat { \\mitF } _ { \\miti \\mitj } & \\displaystyle \\equiv & \\displaystyle \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\miti \\sqrt { \\mitG _ { \\mits } } \\hat { \\mitA } _ { \\miti } \\ast \\hat { \\mitA } _ { \\mitj } + \\miti \\sqrt { \\mitG _ { \\mits } } \\hat { \\mitA } _ { \\mitj } \\ast \\hat { \\mitA } _ { \\miti } , \\end{align*}", "\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime } ) \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mathrm { T r } \\, \\mitF ^ { 2 } + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime } ) , \\\\ \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitG } \\, \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) + \\mitO ( \\mitalpha ^ { \\prime } ) . \\end{align*}", "\\begin{equation*} \\hat { \\mitA } _ { \\miti } = \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) . \\end{equation*}", "\\begin{align*} & & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitG } \\, \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\Bigg [ ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) - 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\sqrt { \\mitG _ { \\mits } } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } \\mitpartial _ { \\mitl } \\hat { \\mitA } _ { \\mitj } \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } \\\\ & & \\displaystyle + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitB ^ { 2 } ) _ { \\miti \\mitj } ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\mitk } - \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\mitj } ) ( \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitk } ) \\\\ & & \\displaystyle - \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] . \\end{align*}" ], "x_min": [ 0.5113999843597412, 0.6628000140190125, 0.46369999647140503, 0.588100016117096, 0.8016999959945679, 0.5950000286102295, 0.6571999788284302, 0.8644999861717224, 0.1306000053882599, 0.5224999785423279, 0.5902000069618225, 0.35109999775886536, 0.5273000001907349, 0.6614000201225281, 0.7318999767303467, 0.2639999985694885, 0.6254000067710876, 0.1298999935388565, 0.5942999720573425, 0.4043000042438507, 0.2791999876499176, 0.2702000141143799, 0.4368000030517578, 0.20319999754428864 ], "y_min": [ 0.09719999879598618, 0.09910000115633011, 0.1371999979019165, 0.1386999934911728, 0.1395999938249588, 0.16259999573230743, 0.15870000422000885, 0.16210000216960907, 0.1860000044107437, 0.2328999936580658, 0.22949999570846558, 0.41019999980926514, 0.40720000863075256, 0.5508000254631042, 0.5473999977111816, 0.5737000107765198, 0.6269999742507935, 0.6747999787330627, 0.6718999743461609, 0.2563000023365021, 0.3395000100135803, 0.43549999594688416, 0.5907999873161316, 0.7037000060081482 ], "x_max": [ 0.5777000188827515, 0.691100001335144, 0.5196999907493591, 0.6115999817848206, 0.8093000054359436, 0.6164000034332275, 0.6779000163078308, 0.8984000086784363, 0.14030000567436218, 0.5460000038146973, 0.6136999726295471, 0.4361000061035156, 0.5728999972343445, 0.6841999888420105, 0.7547000050544739, 0.28200000524520874, 0.6488999724388123, 0.14790000021457672, 0.6171000003814697, 0.6212999820709229, 0.7436000108718872, 0.7498000264167786, 0.5895000100135803, 0.836899995803833 ], "y_max": [ 0.11580000072717667, 0.11420000344514847, 0.15279999375343323, 0.15139999985694885, 0.149399995803833, 0.17479999363422394, 0.17479999363422394, 0.1753000020980835, 0.19920000433921814, 0.24560000002384186, 0.24560000002384186, 0.42480000853538513, 0.42480000853538513, 0.5634999871253967, 0.5634999871253967, 0.5843999981880188, 0.638700008392334, 0.6859999895095825, 0.6880000233650208, 0.2978000044822693, 0.39149999618530273, 0.5306000113487244, 0.6118000149726868, 0.833899974822998 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0002194_page34
{ "latex": [ "$\\hat {{\\cal L}} (\\hat {F})$", "${\\cal L} (B+F)$", "$O(B,\\zeta ^3,k^3)$", "${\\cal L} (B+F)$", "$t$", "$O(B)$", "$O(B^2)$", "$O(\\alpha '^2)$", "$B$", "\\begin {eqnarray} && \\frac {\\sqrt {\\det g}}{g_s} {\\rm Tr} (B+F)^4 = \\sqrt {\\det g} \\, g_s {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^4 \\\\ &=& \\sqrt {\\det g} \\, \\left [ g_s {\\rm Tr} \\, {\\bf F}^4 + 4 \\sqrt {g_s} \\, {\\rm Tr} B {\\bf F}^3 + O(B^2) \\right ], \\\\ && \\frac {\\sqrt {\\det g}}{g_s} [{\\rm Tr} (B+F)^2]^2 = \\sqrt {\\det g} \\, g_s \\left [ {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 \\right ]^2 \\\\ &=& \\sqrt {\\det g} \\, \\left [ g_s ( {\\rm Tr} \\, {\\bf F}^2 )^2 + 4 \\sqrt {g_s} \\, {\\rm Tr} B {\\bf F} \\, {\\rm Tr} \\, {\\bf F}^2 + O(B^2) \\right ]. \\end {eqnarray}", "\\begin {eqnarray} {\\cal L} (B+F) &=& \\sqrt {\\det g} \\left [ {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 + (2 \\pi \\alpha ')^2 \\sqrt {G_s \\, g_s} \\left [ \\frac {1}{2} {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^4 \\right . \\right . \\\\ && \\qquad \\qquad \\left . \\left . -\\frac {1}{8} \\left ( {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 \\right )^2 \\right ] + O(\\alpha '^4) + {\\rm derivative~corrections} \\right ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ {\\rm Tr} (B+F)^2 + \\sqrt {t} \\, (2 \\pi \\alpha ')^2 \\left [ \\frac {1}{2} {\\rm Tr} (B+F)^4 \\right . \\\\ && \\qquad \\qquad \\left . -\\frac {1}{8} [ {\\rm Tr} (B+F)^2 ]^2 \\right ] + ~O(\\alpha '^4) + {\\rm derivative~corrections} \\Biggr ], \\end {eqnarray}", "\\begin {eqnarray} && \\sqrt {\\det g} \\, (2 \\pi \\alpha ')^2 \\sqrt {G_s \\, g_s} \\left [ \\frac {1}{2} {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^4 -\\frac {1}{8} \\left ( {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 \\right )^2 \\right ] \\\\ &=& \\sqrt {\\det g} \\, (2 \\pi \\alpha ')^2 \\Biggl [ \\sqrt {t} \\, g_s \\left [ \\frac {1}{2} {\\rm Tr} \\, {\\bf F}^4 -\\frac {1}{8} ( {\\rm Tr} \\, {\\bf F}^2 )^2 \\right ] \\\\ && + \\sqrt {t \\, g_s} \\left ( 2 {\\rm Tr} B {\\bf F}^3 -\\frac {1}{2} {\\rm Tr} B {\\bf F} \\, {\\rm Tr} \\, {\\bf F}^2 \\right ) \\\\ && + \\sqrt {t} \\left ( 2 {\\rm Tr} B^2 {\\bf F}^2 -\\frac {1}{4} {\\rm Tr} B^2 \\, {\\rm Tr} \\, {\\bf F}^2 \\right ) + {\\rm total~derivative} + {\\rm const.} \\Biggr ]. \\end {eqnarray}" ], "latex_norm": [ "$ \\hat { L } ( \\hat { F } ) $", "$ L ( B + F ) $", "$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $", "$ L ( B + F ) $", "$ t $", "$ O ( B ) $", "$ O ( B ^ { 2 } ) $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ B $", "\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } T r ( B + F ) ^ { 4 } = \\sqrt { \\operatorname { d e t } g } \\, g _ { s } T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 4 } \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, [ g _ { s } T r \\, F ^ { 4 } + 4 \\sqrt { g _ { s } } \\, T r B F ^ { 3 } + O ( B ^ { 2 } ) ] , \\\\ & & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } = \\sqrt { \\operatorname { d e t } g } \\, g _ { s } { [ T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } ] } ^ { 2 } \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, [ g _ { s } ( T r \\, F ^ { 2 } ) ^ { 2 } + 4 \\sqrt { g _ { s } } \\, T r B F \\, T r \\, F ^ { 2 } + O ( B ^ { 2 } ) ] . \\end{align*}", "\\begin{align*} L ( B + F ) & = & \\sqrt { \\operatorname { d e t } g } [ T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\sqrt { G _ { s } \\, g _ { s } } [ \\frac { 1 } { 2 } T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 4 } \\\\ & & \\qquad \\qquad - \\frac { 1 } { 8 } { ( T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } ) } ^ { 2 } ] + O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + \\sqrt { t } \\, ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( B + F ) ^ { 4 } \\\\ & & \\qquad \\qquad - \\frac { 1 } { 8 } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } ] + ~ O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ] , \\end{align*}", "\\begin{align*} & & \\sqrt { \\operatorname { d e t } g } \\, ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\sqrt { G _ { s } \\, g _ { s } } [ \\frac { 1 } { 2 } T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 4 } - \\frac { 1 } { 8 } { ( T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } ) } ^ { 2 } ] \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\sqrt { t } \\, g _ { s } [ \\frac { 1 } { 2 } T r \\, F ^ { 4 } - \\frac { 1 } { 8 } ( T r \\, F ^ { 2 } ) ^ { 2 } ] \\\\ & & + \\sqrt { t \\, g _ { s } } ( 2 T r B F ^ { 3 } - \\frac { 1 } { 2 } T r B F \\, T r \\, F ^ { 2 } ) \\\\ & & + \\sqrt { t } ( 2 T r B ^ { 2 } F ^ { 2 } - \\frac { 1 } { 4 } T r B ^ { 2 } \\, T r \\, F ^ { 2 } ) + t o t a l ~ d e r i v a t i v e + c o n s t . ] . \\end{align*}" ], "latex_expand": [ "$ \\hat { \\mitL } ( \\hat { \\mitF } ) $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\mitt $", "$ \\mitO ( \\mitB ) $", "$ \\mitO ( \\mitB ^ { 2 } ) $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\mitB $", "\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } = \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mitg _ { \\mits } \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 4 } \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\left[ \\mitg _ { \\mits } \\mathrm { T r } \\, \\mitF ^ { 4 } + 4 \\sqrt { \\mitg _ { \\mits } } \\, \\mathrm { T r } \\mitB \\mitF ^ { 3 } + \\mitO ( \\mitB ^ { 2 } ) \\right] , \\\\ & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } = \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mitg _ { \\mits } { \\left[ \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } \\right] } ^ { 2 } \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\left[ \\mitg _ { \\mits } ( \\mathrm { T r } \\, \\mitF ^ { 2 } ) ^ { 2 } + 4 \\sqrt { \\mitg _ { \\mits } } \\, \\mathrm { T r } \\mitB \\mitF \\, \\mathrm { T r } \\, \\mitF ^ { 2 } + \\mitO ( \\mitB ^ { 2 } ) \\right] . \\end{align*}", "\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\left[ \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\sqrt { \\mitG _ { \\mits } \\, \\mitg _ { \\mits } } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 4 } \\right. \\right. \\\\ & & \\displaystyle \\qquad \\qquad \\left. \\left. - \\frac { 1 } { 8 } { \\left( \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } \\right) } ^ { 2 } \\right] + \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } \\right] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + \\sqrt { \\mitt } \\, ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } \\right. \\\\ & & \\displaystyle \\qquad \\qquad \\left. - \\frac { 1 } { 8 } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } \\right] + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } \\Bigg ] , \\end{align*}", "\\begin{align*} & & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\sqrt { \\mitG _ { \\mits } \\, \\mitg _ { \\mits } } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 4 } - \\frac { 1 } { 8 } { \\left( \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } \\right) } ^ { 2 } \\right] \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\Bigg [ \\sqrt { \\mitt } \\, \\mitg _ { \\mits } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } \\, \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } \\, \\mitF ^ { 2 } ) ^ { 2 } \\right] \\\\ & & \\displaystyle + \\sqrt { \\mitt \\, \\mitg _ { \\mits } } \\left( 2 \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB \\mitF \\, \\mathrm { T r } \\, \\mitF ^ { 2 } \\right) \\\\ & & \\displaystyle + \\sqrt { \\mitt } \\left( 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitB ^ { 2 } \\, \\mathrm { T r } \\, \\mitF ^ { 2 } \\right) + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mathrm { c o n s t } . \\Bigg ] . \\end{align*}" ], "x_min": [ 0.487199991941452, 0.579800009727478, 0.2937000095844269, 0.7595000267028809, 0.259799987077713, 0.47200000286102295, 0.274399995803833, 0.4325999915599823, 0.22179999947547913, 0.2736999988555908, 0.14249999821186066, 0.21289999783039093 ], "y_min": [ 0.2870999872684479, 0.2896000146865845, 0.3125, 0.31349998712539673, 0.5605000257492065, 0.5586000084877014, 0.6050000190734863, 0.6050000190734863, 0.6304000020027161, 0.12160000205039978, 0.3628000020980835, 0.6561999917030334 ], "x_max": [ 0.5321000218391418, 0.6668999791145325, 0.3953000009059906, 0.8485999703407288, 0.26739999651908875, 0.5189999938011169, 0.3296999931335449, 0.4885999858379364, 0.23839999735355377, 0.7630000114440918, 0.8769000172615051, 0.817300021648407 ], "y_max": [ 0.30469998717308044, 0.30469998717308044, 0.3280999958515167, 0.3280999958515167, 0.5698000192642212, 0.5737000107765198, 0.6205999851226807, 0.6205999851226807, 0.6406999826431274, 0.273499995470047, 0.5493000149726868, 0.8295000195503235 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0002194_page35
{ "latex": [ "$O(B^2)$", "${\\rm Tr} B^2 {\\rm Tr} F^2$", "$t$", "${\\rm Tr} B^2 F^2$", "${\\rm Tr} B^2 F^2$", "$t$", "$O(\\alpha '^2)$", "$G_s$", "$\\alpha '^2$", "$O(\\alpha '^2)$", "$G_s$", "$\\hat {A}_i$", "$A_i$", "$c$", "$c$", "$\\alpha '^4$", "$\\ast $", "$\\hat {F}^4$", "$O(\\alpha '^4)$", "$\\ast $", "$\\hat {F}^4$", "$\\alpha '$", "\\begin {equation} t=1. \\end {equation}", "\\begin {eqnarray} G_s &=& g_s \\left [ 1 +\\frac {c-1}{4} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 + O(\\alpha '^4) \\right ], \\\\ \\hat {A}_i &=& A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) + \\frac {c}{8} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 A_i + O(\\alpha '^4), \\end {eqnarray}", "\\begin {eqnarray} (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} &=& (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} G^{-1} \\hat {F} G^{-1} \\hat {F} G^{-1} \\hat {F} ) + O(\\alpha '^6), \\\\ (2 \\pi \\alpha ')^2 ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} &=& (2 \\pi \\alpha ')^2 [ {\\rm Tr} ( G^{-1} \\hat {F} G^{-1} \\hat {F} ) ]^2 + O(\\alpha '^6), \\end {eqnarray}", "\\begin {eqnarray} && \\frac {\\sqrt {\\det G}}{G_s} \\biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} F^4 -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} F^2 )^2 \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B F^5 -\\frac {1}{4} {\\rm Tr} BF {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} BF^3 {\\rm Tr} F^2 +\\frac {1}{16} {\\rm Tr} BF ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B^2 F^4 + \\frac {c-1}{8} {\\rm Tr} B^2 {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} B^2 F^2 {\\rm Tr} F^2 +\\frac {1-c}{32} {\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + {\\rm ~total~derivative} + O(\\alpha '^6) \\Biggr ]. \\end {eqnarray}" ], "latex_norm": [ "$ O ( B ^ { 2 } ) $", "$ T r B ^ { 2 } T r F ^ { 2 } $", "$ t $", "$ T r B ^ { 2 } F ^ { 2 } $", "$ T r B ^ { 2 } F ^ { 2 } $", "$ t $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ G _ { s } $", "$ \\alpha ^ { \\prime 2 } $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ G _ { s } $", "$ \\hat { A } _ { i } $", "$ A _ { i } $", "$ c $", "$ c $", "$ \\alpha ^ { \\prime 4 } $", "$ \\ast $", "$ \\hat { F } ^ { 4 } $", "$ O ( \\alpha ^ { \\prime 4 } ) $", "$ \\ast $", "$ \\hat { F } ^ { 4 } $", "$ \\alpha ^ { \\prime } $", "\\begin{equation*} t = 1 . \\end{equation*}", "\\begin{align*} G _ { s } & = & g _ { s } [ 1 + \\frac { c - 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } + O ( \\alpha ^ { \\prime 4 } ) ] , \\\\ \\hat { A } _ { i } & = & A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) + \\frac { c } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } A _ { i } + O ( \\alpha ^ { \\prime 4 } ) , \\end{align*}", "\\begin{align*} ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } & = & ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } ) + O ( \\alpha ^ { \\prime 6 } ) , \\\\ ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } & = & ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ T r ( G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } ) ] ^ { 2 } + O ( \\alpha ^ { \\prime 6 } ) , \\end{align*}", "\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B F ^ { 5 } - \\frac { 1 } { 4 } T r B F T r F ^ { 4 } - \\frac { 1 } { 2 } T r B F ^ { 3 } T r F ^ { 2 } + \\frac { 1 } { 1 6 } T r B F ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B ^ { 2 } F ^ { 4 } + \\frac { c - 1 } { 8 } T r B ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 2 } T r B ^ { 2 } F ^ { 2 } T r F ^ { 2 } + \\frac { 1 - c } { 3 2 } T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ~ t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 6 } ) ] . \\end{align*}" ], "latex_expand": [ "$ \\mitO ( \\mitB ^ { 2 } ) $", "$ \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } $", "$ \\mitt $", "$ \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } $", "$ \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } $", "$ \\mitt $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\mitG _ { \\mits } $", "$ \\mitalpha ^ { \\prime 2 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\mitG _ { \\mits } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitA _ { \\miti } $", "$ \\mitc $", "$ \\mitc $", "$ \\mitalpha ^ { \\prime 4 } $", "$ \\ast $", "$ \\hat { \\mitF } ^ { 4 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 4 } ) $", "$ \\ast $", "$ \\hat { \\mitF } ^ { 4 } $", "$ \\mitalpha ^ { \\prime } $", "\\begin{equation*} \\mitt = 1 . \\end{equation*}", "\\begin{align*} \\displaystyle \\mitG _ { \\mits } & = & \\displaystyle \\mitg _ { \\mits } \\left[ 1 + \\frac { \\mitc - 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] , \\\\ \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) + \\frac { \\mitc } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\end{align*}", "\\begin{align*} \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } & = & \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } ) + \\mitO ( \\mitalpha ^ { \\prime 6 } ) , \\\\ \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } & = & \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } ) ] ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime 6 } ) , \\end{align*}", "\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB \\mitF ^ { 5 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 } { 1 6 } \\mathrm { T r } \\mitB \\mitF ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 4 } + \\frac { \\mitc - 1 } { 8 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 - \\mitc } { 3 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ~ \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 6 } ) \\Bigg ] . \\end{align*}" ], "x_min": [ 0.1720999926328659, 0.8051000237464905, 0.4242999851703644, 0.6661999821662903, 0.5486999750137329, 0.4740999937057495, 0.5099999904632568, 0.6621000170707703, 0.8093000054359436, 0.37389999628067017, 0.5099999904632568, 0.19280000030994415, 0.24400000274181366, 0.18799999356269836, 0.8562999963760376, 0.36010000109672546, 0.8824999928474426, 0.49070000648498535, 0.7781999707221985, 0.37599998712539673, 0.5548999905586243, 0.1306000053882599, 0.487199991941452, 0.21080000698566437, 0.1768999993801117, 0.16519999504089355 ], "y_min": [ 0.09960000216960907, 0.09960000216960907, 0.149399995803833, 0.1469999998807907, 0.19380000233650208, 0.22020000219345093, 0.2930000126361847, 0.29490000009536743, 0.3330000042915344, 0.3564000129699707, 0.3578999936580658, 0.37790000438690186, 0.38179999589920044, 0.490200012922287, 0.490200012922287, 0.5088000297546387, 0.5371000170707703, 0.5536999702453613, 0.5562000274658203, 0.7060999870300293, 0.6991999745368958, 0.725600004196167, 0.25200000405311584, 0.4043000042438507, 0.609499990940094, 0.7494999766349792 ], "x_max": [ 0.227400004863739, 0.8935999870300293, 0.4318999946117401, 0.7346000075340271, 0.6164000034332275, 0.48170000314712524, 0.5763000249862671, 0.6897000074386597, 0.8349000215530396, 0.42989999055862427, 0.532800018787384, 0.2134999930858612, 0.2646999955177307, 0.19699999690055847, 0.8652999997138977, 0.38499999046325684, 0.8928999900817871, 0.51419997215271, 0.8342000246047974, 0.3864000141620636, 0.5784000158309937, 0.14790000021457672, 0.5389999747276306, 0.8126999735832214, 0.8431000113487244, 0.7727000117301941 ], "y_max": [ 0.1151999980211258, 0.11180000007152557, 0.15870000422000885, 0.15870000422000885, 0.20550000667572021, 0.22949999570846558, 0.311599999666214, 0.3100000023841858, 0.34470000863075256, 0.3720000088214874, 0.37059998512268066, 0.39399999380111694, 0.39399999380111694, 0.4970000088214874, 0.4970000088214874, 0.5205000042915344, 0.5443999767303467, 0.5679000020027161, 0.5713000297546387, 0.7128999829292297, 0.7128999829292297, 0.7368000149726868, 0.2646999955177307, 0.4790000021457672, 0.6600000262260437, 0.8270999789237976 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0002194_page36
{ "latex": [ "$O(B F^5)$", "$O(BF^5)$", "$O(BF^5)$", "${\\cal L}(B+F)$", "$F^6$", "$F^6$", "$O(\\alpha '^2)$", "$G_s$", "$B$", "$O(B^2)$", "\\begin {eqnarray} && \\frac {\\sqrt {\\det G}}{G_s} \\biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} F^4 -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} F^2 )^2 \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B F^5 -\\frac {1}{4} {\\rm Tr} BF {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} BF^3 {\\rm Tr} F^2 +\\frac {1}{16} {\\rm Tr} BF ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B^2 F^4 + \\frac {c-1}{8} {\\rm Tr} B^2 {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} B^2 F^2 {\\rm Tr} F^2 +\\frac {1-c}{32} {\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + {\\rm ~total~derivative} + O(\\alpha '^6) \\Biggr ]. \\end {eqnarray}", "\\begin {eqnarray} {\\rm Tr} (B+F)^6 &=& {\\rm Tr} F^6 + 6 {\\rm Tr} B F^5 + O(B^2), \\\\ {\\rm Tr} (B+F)^2 {\\rm Tr} (B+F)^4 &=& {\\rm Tr} F^2 {\\rm Tr} F^4 \\\\ && + 2 {\\rm Tr} B F {\\rm Tr} F^4 + 4 {\\rm Tr} F^2 {\\rm Tr} B F^3 + O(B^2), \\\\ \\left [ {\\rm Tr} (B+F)^2 \\right ]^3 &=& ( {\\rm Tr} F^2 )^3 + 6 {\\rm Tr} B F ( {\\rm Tr} F^2 )^2 + O(B^2). \\end {eqnarray}", "\\begin {equation} \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\left [ \\frac {1}{3} {\\rm Tr} (B+F)^6 - \\frac {1}{8} {\\rm Tr} (B+F)^2 {\\rm Tr} (B+F)^4 + \\frac {1}{96} \\left [ {\\rm Tr} (B+F)^2 \\right ]^3 \\right ]. \\label {(B+F)^6} \\end {equation}", "\\begin {eqnarray} && \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\left [ 2 {\\rm Tr} B^2 F^4 - \\frac {1}{8} {\\rm Tr} B^2 {\\rm Tr} F^4 - \\frac {1}{2} {\\rm Tr} F^2 {\\rm Tr} B^2 F^2 + \\frac {1}{32} {\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2 \\right . \\\\ && \\qquad \\qquad \\qquad \\qquad + 2 {\\rm Tr} B F B F^3 + {\\rm Tr} B F^2 B F^2 - {\\rm Tr} B F {\\rm Tr} B F^3 \\\\ && \\qquad \\qquad \\qquad \\qquad \\left . - \\frac {1}{4} {\\rm Tr} F^2 {\\rm Tr} B F B F + \\frac {1}{8} {\\rm Tr} F^2 ( {\\rm Tr} B F )^2 \\right ], \\end {eqnarray}" ], "latex_norm": [ "$ O ( B F ^ { 5 } ) $", "$ O ( B F ^ { 5 } ) $", "$ O ( B F ^ { 5 } ) $", "$ L ( B + F ) $", "$ F ^ { 6 } $", "$ F ^ { 6 } $", "$ O ( \\alpha ^ { \\prime 2 } ) $", "$ G _ { s } $", "$ B $", "$ O ( B ^ { 2 } ) $", "\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B F ^ { 5 } - \\frac { 1 } { 4 } T r B F T r F ^ { 4 } - \\frac { 1 } { 2 } T r B F ^ { 3 } T r F ^ { 2 } + \\frac { 1 } { 1 6 } T r B F ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B ^ { 2 } F ^ { 4 } + \\frac { c - 1 } { 8 } T r B ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 2 } T r B ^ { 2 } F ^ { 2 } T r F ^ { 2 } + \\frac { 1 - c } { 3 2 } T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ~ t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 6 } ) ] . \\end{align*}", "\\begin{align*} T r ( B + F ) ^ { 6 } & = & T r F ^ { 6 } + 6 T r B F ^ { 5 } + O ( B ^ { 2 } ) , \\\\ T r ( B + F ) ^ { 2 } T r ( B + F ) ^ { 4 } & = & T r F ^ { 2 } T r F ^ { 4 } \\\\ & & + 2 T r B F T r F ^ { 4 } + 4 T r F ^ { 2 } T r B F ^ { 3 } + O ( B ^ { 2 } ) , \\\\ { [ T r ( B + F ) ^ { 2 } ] } ^ { 3 } & = & ( T r F ^ { 2 } ) ^ { 3 } + 6 T r B F ( T r F ^ { 2 } ) ^ { 2 } + O ( B ^ { 2 } ) . \\end{align*}", "\\begin{equation*} \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ \\frac { 1 } { 3 } T r ( B + F ) ^ { 6 } - \\frac { 1 } { 8 } T r ( B + F ) ^ { 2 } T r ( B + F ) ^ { 4 } + \\frac { 1 } { 9 6 } { [ T r ( B + F ) ^ { 2 } ] } ^ { 3 } ] . \\end{equation*}", "\\begin{align*} & & \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ 2 T r B ^ { 2 } F ^ { 4 } - \\frac { 1 } { 8 } T r B ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 2 } T r F ^ { 2 } T r B ^ { 2 } F ^ { 2 } + \\frac { 1 } { 3 2 } T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & \\qquad \\qquad \\qquad \\qquad + 2 T r B F B F ^ { 3 } + T r B F ^ { 2 } B F ^ { 2 } - T r B F T r B F ^ { 3 } \\\\ & & \\qquad \\qquad \\qquad \\qquad - \\frac { 1 } { 4 } T r F ^ { 2 } T r B F B F + \\frac { 1 } { 8 } T r F ^ { 2 } ( T r B F ) ^ { 2 } ] , \\end{align*}" ], "latex_expand": [ "$ \\mitO ( \\mitB \\mitF ^ { 5 } ) $", "$ \\mitO ( \\mitB \\mitF ^ { 5 } ) $", "$ \\mitO ( \\mitB \\mitF ^ { 5 } ) $", "$ \\mitL ( \\mitB + \\mitF ) $", "$ \\mitF ^ { 6 } $", "$ \\mitF ^ { 6 } $", "$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $", "$ \\mitG _ { \\mits } $", "$ \\mitB $", "$ \\mitO ( \\mitB ^ { 2 } ) $", "\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB \\mitF ^ { 5 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 } { 1 6 } \\mathrm { T r } \\mitB \\mitF ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 4 } + \\frac { \\mitc - 1 } { 8 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 - \\mitc } { 3 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ~ \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 6 } ) \\Bigg ] . \\end{align*}", "\\begin{align*} \\displaystyle \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 6 } & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 6 } + 6 \\mathrm { T r } \\mitB \\mitF ^ { 5 } + \\mitO ( \\mitB ^ { 2 } ) , \\\\ \\displaystyle \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } \\\\ & & \\displaystyle + 2 \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 4 } + 4 \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } + \\mitO ( \\mitB ^ { 2 } ) , \\\\ \\displaystyle { \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\right] } ^ { 3 } & = & \\displaystyle ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 3 } + 6 \\mathrm { T r } \\mitB \\mitF ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } + \\mitO ( \\mitB ^ { 2 } ) . \\end{align*}", "\\begin{equation*} \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\frac { 1 } { 3 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 6 } - \\frac { 1 } { 8 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } + \\frac { 1 } { 9 6 } { \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\right] } ^ { 3 } \\right] . \\end{equation*}", "\\begin{align*} & & \\displaystyle \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 4 } - \\frac { 1 } { 8 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } + \\frac { 1 } { 3 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\right. \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\qquad + 2 \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF ^ { 3 } + \\mathrm { T r } \\mitB \\mitF ^ { 2 } \\mitB \\mitF ^ { 2 } - \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitB \\mitF ^ { 3 } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\qquad \\left. - \\frac { 1 } { 4 } \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF + \\frac { 1 } { 8 } \\mathrm { T r } \\mitF ^ { 2 } ( \\mathrm { T r } \\mitB \\mitF ) ^ { 2 } \\right] , \\end{align*}" ], "x_min": [ 0.42640000581741333, 0.8223999738693237, 0.43050000071525574, 0.20800000429153442, 0.8141000270843506, 0.5224999785423279, 0.35589998960494995, 0.49000000953674316, 0.5446000099182129, 0.3711000084877014, 0.20069999992847443, 0.20800000429153442, 0.15070000290870667, 0.18449999392032623 ], "y_min": [ 0.21580000221729279, 0.23929999768733978, 0.41940000653266907, 0.44339999556541443, 0.5443999767303467, 0.5913000106811523, 0.638700008392334, 0.6401000022888184, 0.6636000275611877, 0.7095000147819519, 0.0934000015258789, 0.29260000586509705, 0.46970000863075256, 0.7372999787330627 ], "x_max": [ 0.4968999922275543, 0.8928999900817871, 0.5009999871253967, 0.2937000095844269, 0.8382999897003174, 0.5467000007629395, 0.41190001368522644, 0.5134999752044678, 0.5612000226974487, 0.42640000581741333, 0.8679999709129333, 0.8119999766349792, 0.8313999772071838, 0.8521000146865845 ], "y_max": [ 0.23090000450611115, 0.2549000084400177, 0.4350000023841858, 0.4584999978542328, 0.5561000108718872, 0.6035000085830688, 0.6538000106811523, 0.6528000235557556, 0.6739000082015991, 0.7246000170707703, 0.20399999618530273, 0.4002000093460083, 0.5073000192642212, 0.8353999853134155 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0002194_page37
{ "latex": [ "$O(B^2)$", "$\\alpha '^4$", "$\\hat {F}^2$", "${\\rm Tr} B^2 {\\rm Tr} F^4$", "${\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2$", "$c$", "$O(B^2)$", "$\\alpha '^4$", "$\\hat {A}_i$", "$\\alpha '^4$", "$O(\\theta ^2)$", "$c$", "${\\rm Tr} B^2 = B_{ij} B_{ji}$", "\\begin {eqnarray} \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\left [ {\\rm Tr} B F^2 B F^2 + 2 A_k B_{kl} \\partial _l F_{ij} (FBF)_{ji} + A_k B_{kl} \\partial _l F_{ij} A_n B_{nm} \\partial _m F_{ji} \\right . \\\\ \\left . + 2 B_{kl} B_{nm} A_n ( \\partial _m A_i + F_{mi} ) \\partial _l A_j \\partial _k F_{ji} + O(B^3) + {\\rm total~derivative} \\right ]. \\end {eqnarray}", "\\begin {equation} c=0. \\end {equation}", "\\begin {eqnarray} && \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\biggl [ 2 {\\rm Tr} B F B F^3 - {\\rm Tr} B F {\\rm Tr} B F^3 - \\frac {1}{4} {\\rm Tr} F^2 {\\rm Tr} B F B F + \\frac {1}{8} {\\rm Tr} F^2 ( {\\rm Tr} B F )^2 \\\\ && \\qquad \\qquad \\qquad \\quad - 2 A_k B_{kl} \\partial _l F_{ij} (FBF)_{ji} - A_k B_{kl} \\partial _l F_{ij} A_n B_{nm} \\partial _m F_{ji} \\\\ && \\qquad \\qquad \\qquad \\quad - 2 B_{kl} B_{nm} A_n ( \\partial _m A_i + F_{mi} ) \\partial _l A_j \\partial _k F_{ji} \\biggr ], \\end {eqnarray}" ], "latex_norm": [ "$ O ( B ^ { 2 } ) $", "$ \\alpha ^ { \\prime 4 } $", "$ \\hat { F } ^ { 2 } $", "$ T r B ^ { 2 } T r F ^ { 4 } $", "$ T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } $", "$ c $", "$ O ( B ^ { 2 } ) $", "$ \\alpha ^ { \\prime 4 } $", "$ \\hat { A } _ { i } $", "$ \\alpha ^ { \\prime 4 } $", "$ O ( \\theta ^ { 2 } ) $", "$ c $", "$ T r B ^ { 2 } = B _ { i j } B _ { j i } $", "\\begin{align*} \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r B F ^ { 2 } B F ^ { 2 } + 2 A _ { k } B _ { k l } \\partial _ { l } F _ { i j } ( F B F ) _ { j i } + A _ { k } B _ { k l } \\partial _ { l } F _ { i j } A _ { n } B _ { n m } \\partial _ { m } F _ { j i } \\\\ + 2 B _ { k l } B _ { n m } A _ { n } ( \\partial _ { m } A _ { i } + F _ { m i } ) \\partial _ { l } A _ { j } \\partial _ { k } F _ { j i } + O ( B ^ { 3 } ) + t o t a l ~ d e r i v a t i v e ] . \\end{align*}", "\\begin{equation*} c = 0 . \\end{equation*}", "\\begin{align*} & & \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ 2 T r B F B F ^ { 3 } - T r B F T r B F ^ { 3 } - \\frac { 1 } { 4 } T r F ^ { 2 } T r B F B F + \\frac { 1 } { 8 } T r F ^ { 2 } ( T r B F ) ^ { 2 } \\\\ & & \\qquad \\qquad \\qquad \\quad - 2 A _ { k } B _ { k l } \\partial _ { l } F _ { i j } ( F B F ) _ { j i } - A _ { k } B _ { k l } \\partial _ { l } F _ { i j } A _ { n } B _ { n m } \\partial _ { m } F _ { j i } \\\\ & & \\qquad \\qquad \\qquad \\quad - 2 B _ { k l } B _ { n m } A _ { n } ( \\partial _ { m } A _ { i } + F _ { m i } ) \\partial _ { l } A _ { j } \\partial _ { k } F _ { j i } ] , \\end{align*}" ], "latex_expand": [ "$ \\mitO ( \\mitB ^ { 2 } ) $", "$ \\mitalpha ^ { \\prime 4 } $", "$ \\hat { \\mitF } ^ { 2 } $", "$ \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } $", "$ \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } $", "$ \\mitc $", "$ \\mitO ( \\mitB ^ { 2 } ) $", "$ \\mitalpha ^ { \\prime 4 } $", "$ \\hat { \\mitA } _ { \\miti } $", "$ \\mitalpha ^ { \\prime 4 } $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mitc $", "$ \\mathrm { T r } \\mitB ^ { 2 } = \\mitB _ { \\miti \\mitj } \\mitB _ { \\mitj \\miti } $", "\\begin{align*} \\displaystyle \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\mathrm { T r } \\mitB \\mitF ^ { 2 } \\mitB \\mitF ^ { 2 } + 2 \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } ( \\mitF \\mitB \\mitF ) _ { \\mitj \\miti } + \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } \\mitA _ { \\mitn } \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\mitm } \\mitF _ { \\mitj \\miti } \\right. \\\\ \\displaystyle \\left. + 2 \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitn \\mitm } \\mitA _ { \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\miti } + \\mitF _ { \\mitm \\miti } ) \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitj \\miti } + \\mitO ( \\mitB ^ { 3 } ) + \\mathrm { t o t a l ~ d e r i v a t i v e } \\right] . \\end{align*}", "\\begin{equation*} \\mitc = 0 . \\end{equation*}", "\\begin{align*} & & \\displaystyle \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\bigg [ 2 \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF ^ { 3 } - \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF + \\frac { 1 } { 8 } \\mathrm { T r } \\mitF ^ { 2 } ( \\mathrm { T r } \\mitB \\mitF ) ^ { 2 } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\quad - 2 \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } ( \\mitF \\mitB \\mitF ) _ { \\mitj \\miti } - \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } \\mitA _ { \\mitn } \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\mitm } \\mitF _ { \\mitj \\miti } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\quad - 2 \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitn \\mitm } \\mitA _ { \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\miti } + \\mitF _ { \\mitm \\miti } ) \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitj \\miti } \\bigg ] , \\end{align*}" ], "x_min": [ 0.7954000234603882, 0.2791999876499176, 0.6952000260353088, 0.5113999843597412, 0.6413000226020813, 0.5902000069618225, 0.42570000886917114, 0.6087999939918518, 0.7968000173568726, 0.1298999935388565, 0.7124999761581421, 0.883899986743927, 0.1298999935388565, 0.16169999539852142, 0.48649999499320984, 0.18240000307559967 ], "y_min": [ 0.09960000216960907, 0.12300000339746475, 0.12110000103712082, 0.2328999936580658, 0.2328999936580658, 0.26170000433921814, 0.3319999873638153, 0.3319999873638153, 0.486299991607666, 0.5121999979019165, 0.5121999979019165, 0.5410000085830688, 0.5830000042915344, 0.1469999998807907, 0.2930000126361847, 0.37599998712539673 ], "x_max": [ 0.8507000207901001, 0.30410000681877136, 0.7193999886512756, 0.5999000072479248, 0.7526000142097473, 0.5992000102996826, 0.48100000619888306, 0.6337000131607056, 0.8174999952316284, 0.15549999475479126, 0.7616000175476074, 0.8928999900817871, 0.2556999921798706, 0.8278999924659729, 0.5396999716758728, 0.8741999864578247 ], "y_max": [ 0.1151999980211258, 0.13519999384880066, 0.13529999554157257, 0.24459999799728394, 0.24799999594688416, 0.2680000066757202, 0.34709998965263367, 0.34369999170303345, 0.5023999810218811, 0.524399995803833, 0.5278000235557556, 0.5478000044822693, 0.5990999937057495, 0.2168000042438507, 0.3061999976634979, 0.4722000062465668 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003051_page01
{ "latex": [ "$OSp(8/4,\\mathbb {R})$", "$AdS_4$", "$^\\dagger $", "$^\\ddagger $", "$^\\dagger $", "$^\\ddagger $", "$OSp(8/4,\\mathbb {R})$", "$N=8$", "$AdS_4$" ], "latex_norm": [ "$ O S p ( 8 \\slash 4 , R ) $", "$ A d S _ { 4 } $", "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ O S p ( 8 \\slash 4 , R ) $", "$ N = 8 $", "$ A d S _ { 4 } $" ], "latex_expand": [ "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitA \\mitd \\mitS _ { 4 } $", "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitN = 8 $", "$ \\mitA \\mitd \\mitS _ { 4 } $" ], "x_min": [ 0.5259000062942505, 0.5321000218391418, 0.44780001044273376, 0.6890000104904175, 0.22599999606609344, 0.1768999993801117, 0.4104999899864197, 0.6704000234603882, 0.7415000200271606 ], "y_min": [ 0.2549000084400177, 0.27639999985694885, 0.38040000200271606, 0.38040000200271606, 0.4927000105381012, 0.5170999765396118, 0.7020999789237976, 0.7026000022888184, 0.7714999914169312 ], "x_max": [ 0.6772000193595886, 0.597100019454956, 0.45680001378059387, 0.6973000168800354, 0.23360000550746918, 0.18449999392032623, 0.5099999904632568, 0.72079998254776, 0.7843000292778015 ], "y_max": [ 0.2759000062942505, 0.2944999933242798, 0.3955000042915344, 0.3955000042915344, 0.5048999786376953, 0.5292999744415283, 0.7153000235557556, 0.7124000191688538, 0.7827000021934509 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003051_page02
{ "latex": [ "$\\theta $", "$N=1$", "$U(1)$", "$N$", "$d=4$", "$d=3$", "$SO(N)$", "$USp(2N)$", "$d=4$", "$N\\geq 2$", "$SU(N)$", "$G/H$", "$G$", "$H$", "$H$", "$G$", "$CFT_d$", "$AdS_{d+1}$", "$d$", "$AdS_{d+1}$" ], "latex_norm": [ "$ \\theta $", "$ N = 1 $", "$ U ( 1 ) $", "$ N $", "$ d = 4 $", "$ d = 3 $", "$ S O ( N ) $", "$ U S p ( 2 N ) $", "$ d = 4 $", "$ N \\geq 2 $", "$ S U ( N ) $", "$ G \\slash H $", "$ G $", "$ H $", "$ H $", "$ G $", "$ C F T _ { d } $", "$ A d S _ { d + 1 } $", "$ d $", "$ A d S _ { d + 1 } $" ], "latex_expand": [ "$ \\mittheta $", "$ \\mitN = 1 $", "$ \\mitU ( 1 ) $", "$ \\mitN $", "$ \\mitd = 4 $", "$ \\mitd = 3 $", "$ \\mitS \\mitO ( \\mitN ) $", "$ \\mitU \\mitS \\mitp ( 2 \\mitN ) $", "$ \\mitd = 4 $", "$ \\mitN \\geq 2 $", "$ \\mitS \\mitU ( \\mitN ) $", "$ \\mitG \\slash \\mitH $", "$ \\mitG $", "$ \\mitH $", "$ \\mitH $", "$ \\mitG $", "$ \\mitC \\mitF \\mitT _ { \\mitd } $", "$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $", "$ \\mitd $", "$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $" ], "x_min": [ 0.5853000283241272, 0.6841999888420105, 0.6682999730110168, 0.2281000018119812, 0.5023999810218811, 0.7789000272750854, 0.5715000033378601, 0.6800000071525574, 0.24740000069141388, 0.3303000032901764, 0.6018999814987183, 0.6531000137329102, 0.7580999732017517, 0.5985000133514404, 0.2937000095844269, 0.4097999930381775, 0.32760000228881836, 0.6730999946594238, 0.44510000944137573, 0.49619999527931213 ], "y_min": [ 0.3955000042915344, 0.42969998717308044, 0.4805000126361847, 0.4984999895095825, 0.4984999895095825, 0.5497999787330627, 0.5663999915122986, 0.5663999915122986, 0.5845000147819519, 0.5845000147819519, 0.5835000276565552, 0.600600004196167, 0.6015999913215637, 0.6187000274658203, 0.635699987411499, 0.635699987411499, 0.7387999892234802, 0.7387999892234802, 0.7900000214576721, 0.8070999979972839 ], "x_max": [ 0.5957000255584717, 0.7387999892234802, 0.7098000049591064, 0.2468000054359436, 0.5541999936103821, 0.8266000151634216, 0.6344000101089478, 0.7621999979019165, 0.29440000653266907, 0.3849000036716461, 0.6640999913215637, 0.6966000199317932, 0.7739999890327454, 0.6172000169754028, 0.3124000132083893, 0.42570000886917114, 0.37869998812675476, 0.7366999983787537, 0.4562000036239624, 0.5598000288009644 ], "y_max": [ 0.4058000147342682, 0.44040000438690186, 0.4950999915599823, 0.5088000297546387, 0.5088000297546387, 0.5605000257492065, 0.5809999704360962, 0.5809999704360962, 0.5947999954223633, 0.5967000126838684, 0.5981000065803528, 0.6151999831199646, 0.6118999719619751, 0.6290000081062317, 0.6460000276565552, 0.6460000276565552, 0.7515000104904175, 0.7524999976158142, 0.8007000088691711, 0.8208000063896179 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003051_page03
{ "latex": [ "$d=4$", "$N=1$", "$N$", "$AdS_5/CFT_4$", "$CFT_d$", "$AdS_{d+1}$", "$AdS_d$", "$d=4,6$", "$d=3$", "$d=3$", "$N=8$", "$OSp(8/4,\\mathbb {R})$", "$(2,0)$", "$d=6$", "$AdS_7\\times S^4$", "$AdS_4\\times S_7$", "$d=3$", "$N=8$", "$AdS_4$", "$AdS$", "$AdS_4$", "$N=8$", "$SO(8)$", "$OSp(8/4,\\mathbb {R})$", "$OSp(8/4,\\mathbb {R})$", "$N=8$", "$S-$", "$Q-$", "$SO(8)$", "$N=8$" ], "latex_norm": [ "$ d = 4 $", "$ N = 1 $", "$ N $", "$ A d S _ { 5 } \\slash C F T _ { 4 } $", "$ C F T _ { d } $", "$ A d S _ { d + 1 } $", "$ A d S _ { d } $", "$ d = 4 , 6 $", "$ d = 3 $", "$ d = 3 $", "$ N = 8 $", "$ O S p ( 8 \\slash 4 , R ) $", "$ ( 2 , 0 ) $", "$ d = 6 $", "$ A d S _ { 7 } \\times S ^ { 4 } $", "$ A d S _ { 4 } \\times S _ { 7 } $", "$ d = 3 $", "$ N = 8 $", "$ A d S _ { 4 } $", "$ A d S $", "$ A d S _ { 4 } $", "$ N = 8 $", "$ S O ( 8 ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ N = 8 $", "$ S - $", "$ Q - $", "$ S O ( 8 ) $", "$ N = 8 $" ], "latex_expand": [ "$ \\mitd = 4 $", "$ \\mitN = 1 $", "$ \\mitN $", "$ \\mitA \\mitd \\mitS _ { 5 } \\slash \\mitC \\mitF \\mitT _ { 4 } $", "$ \\mitC \\mitF \\mitT _ { \\mitd } $", "$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $", "$ \\mitA \\mitd \\mitS _ { \\mitd } $", "$ \\mitd = 4 , 6 $", "$ \\mitd = 3 $", "$ \\mitd = 3 $", "$ \\mitN = 8 $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ ( 2 , 0 ) $", "$ \\mitd = 6 $", "$ \\mitA \\mitd \\mitS _ { 7 } \\times \\mitS ^ { 4 } $", "$ \\mitA \\mitd \\mitS _ { 4 } \\times \\mitS _ { 7 } $", "$ \\mitd = 3 $", "$ \\mitN = 8 $", "$ \\mitA \\mitd \\mitS _ { 4 } $", "$ \\mitA \\mitd \\mitS $", "$ \\mitA \\mitd \\mitS _ { 4 } $", "$ \\mitN = 8 $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitN = 8 $", "$ \\mitS - $", "$ \\mitQ - $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitN = 8 $" ], "x_min": [ 0.7332000136375427, 0.5992000102996826, 0.2549999952316284, 0.7200999855995178, 0.4271000027656555, 0.2646999955177307, 0.5245000123977661, 0.7580999732017517, 0.789900004863739, 0.1728000044822693, 0.19210000336170197, 0.5030999779701233, 0.6399000287055969, 0.7739999890327454, 0.48240000009536743, 0.20589999854564667, 0.23149999976158142, 0.28610000014305115, 0.1949000060558319, 0.37459999322891235, 0.7249000072479248, 0.6365000009536743, 0.7718999981880188, 0.5708000063896179, 0.2515999972820282, 0.4284999966621399, 0.6987000107765198, 0.1728000044822693, 0.3345000147819519, 0.5605000257492065 ], "y_min": [ 0.19290000200271606, 0.20999999344348907, 0.22709999978542328, 0.22609999775886536, 0.2612000107765198, 0.2782999873161316, 0.3472000062465668, 0.3984000086784363, 0.41600000858306885, 0.43309998512268066, 0.43309998512268066, 0.44920000433921814, 0.46630001068115234, 0.4672999978065491, 0.4828999936580658, 0.5015000104904175, 0.5702999830245972, 0.5702999830245972, 0.5874000191688538, 0.5874000191688538, 0.6215999722480774, 0.63919997215271, 0.6381999850273132, 0.6894999742507935, 0.7064999938011169, 0.7074999809265137, 0.7246000170707703, 0.7592999935150146, 0.7925000190734863, 0.8446999788284302 ], "x_max": [ 0.7835999727249146, 0.6545000076293945, 0.27300000190734863, 0.8264999985694885, 0.4781999886035919, 0.32899999618530273, 0.5701000094413757, 0.8264999985694885, 0.8271999955177307, 0.18320000171661377, 0.2563999891281128, 0.6101999878883362, 0.6840999722480774, 0.8209999799728394, 0.5695000290870667, 0.29440000653266907, 0.2791999876499176, 0.34139999747276306, 0.24050000309944153, 0.4133000075817108, 0.7698000073432922, 0.695900022983551, 0.8264999985694885, 0.6779000163078308, 0.3587000072002411, 0.49000000953674316, 0.7283999919891357, 0.2046000063419342, 0.38909998536109924, 0.6198999881744385 ], "y_max": [ 0.20319999754428864, 0.22030000388622284, 0.23739999532699585, 0.24120000004768372, 0.27390000224113464, 0.2919999957084656, 0.35989999771118164, 0.4115999937057495, 0.4262999892234802, 0.44339999556541443, 0.44339999556541443, 0.46380001306533813, 0.4814000129699707, 0.47760000824928284, 0.49709999561309814, 0.51419997215271, 0.5806000232696533, 0.5806000232696533, 0.6000999808311462, 0.5976999998092651, 0.6342999935150146, 0.6495000123977661, 0.6528000235557556, 0.7045999765396118, 0.7215999960899353, 0.7178000211715698, 0.736299991607666, 0.7720000147819519, 0.8070999979972839, 0.8550000190734863 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003051_page04
{ "latex": [ "$AdS_4$", "$OSp(8/4,\\mathbb {R})$", "$OSp(8/4,\\mathbb {R})$", "$OSp(8/4,\\mathbb {R})$", "$N=8$", "$Q^i_\\alpha $", "$N=8$", "$\\alpha =1,2$", "$SO(8)$", "$i=1,\\ldots ,8$", "$S^i_\\alpha $", "$P_\\mu $", "$\\mu =0,1,2$", "$K_\\mu $", "$M_{\\alpha \\beta } = M_{\\beta \\alpha }$", "$SO(2,1)\\sim SL(2,\\mathbb {R})$", "$SO(2,1)\\sim SL(2,\\mathbb {R})$", "$D$", "$T^{ij}=-T^{ji}$", "$SO(8)$", "$Q^i_\\alpha $", "$SO(8)$", "$8_v$", "$8_s$", "$8_c$", "$SO(8)$", "$N$", "$8_v$", "$i$", "\\begin {eqnarray} && \\{Q^i_\\alpha , Q^j_\\beta \\} = 2\\delta ^{ij} \\Gamma ^\\mu _{\\alpha \\beta } P_\\mu \\;, \\qquad \\{S^i_\\alpha , S^j_\\beta \\} = 2\\delta ^{ij} \\Gamma ^\\mu _{\\alpha \\beta } K_\\mu \\;, \\\\ && \\{Q^i_\\alpha , S^j_\\beta \\} = \\delta ^{ij} M_{\\alpha \\beta } + 2\\epsilon _{\\alpha \\beta } (T^{ij} + \\delta ^{ij} D) \\;, \\\\ && [D,Q^i_\\alpha ] = {i\\over 2}Q^i_\\alpha \\;, \\qquad [D,S^i_\\alpha ] = -{i\\over 2}S^i_\\alpha \\;,\\\\ && [M_{\\alpha \\beta }, Q^i_\\gamma ] = i(\\epsilon _{\\gamma \\alpha } Q^i_\\beta + \\epsilon _{\\gamma \\beta } Q^i_\\alpha )\\;,\\qquad [M_{\\alpha \\beta }, S^i_\\gamma ] = i(\\epsilon _{\\gamma \\alpha } S^i_\\beta + \\epsilon _{\\gamma \\beta } S^i_\\alpha )\\;,\\\\ && [T^{ij}, Q^k_\\alpha ] = i(\\delta ^{ki} Q^j_\\alpha - \\delta ^{kj} Q^i_\\alpha )\\;,\\qquad [T^{ij}, S^k_\\alpha ] = i(\\delta ^{ki} S^j_\\alpha - \\delta ^{kj} S^i_\\alpha )\\;,\\\\ && [T^{ij}, T^{kl}] = i(\\delta ^{ik} T^{jl} + \\delta ^{jl} T^{ik} - \\delta ^{jk} T^{il} - \\delta ^{il} T^{jk})\\;. \\end {eqnarray}" ], "latex_norm": [ "$ A d S _ { 4 } $", "$ O S p ( 8 \\slash 4 , R ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ N = 8 $", "$ Q _ { \\alpha } ^ { i } $", "$ N = 8 $", "$ \\alpha = 1 , 2 $", "$ S O ( 8 ) $", "$ i = 1 , \\ldots , 8 $", "$ S _ { \\alpha } ^ { i } $", "$ P _ { \\mu } $", "$ \\mu = 0 , 1 , 2 $", "$ K _ { \\mu } $", "$ M _ { \\alpha \\beta } = M _ { \\beta \\alpha } $", "$ S O ( 2 , 1 ) \\sim S L ( 2 , R ) $", "$ S O ( 2 , 1 ) \\sim S L ( 2 , R ) $", "$ D $", "$ T ^ { i j } = - T ^ { j i } $", "$ S O ( 8 ) $", "$ Q _ { \\alpha } ^ { i } $", "$ S O ( 8 ) $", "$ 8 _ { v } $", "$ 8 _ { s } $", "$ 8 _ { c } $", "$ S O ( 8 ) $", "$ N $", "$ 8 _ { v } $", "$ i $", "\\begin{align*} & & \\{ Q _ { \\alpha } ^ { i } , Q _ { \\beta } ^ { j } \\} = 2 \\delta ^ { i j } \\Gamma _ { \\alpha \\beta } ^ { \\mu } P _ { \\mu } \\; , \\qquad \\{ S _ { \\alpha } ^ { i } , S _ { \\beta } ^ { j } \\} = 2 \\delta ^ { i j } \\Gamma _ { \\alpha \\beta } ^ { \\mu } K _ { \\mu } \\; , \\\\ & & \\{ Q _ { \\alpha } ^ { i } , S _ { \\beta } ^ { j } \\} = \\delta ^ { i j } M _ { \\alpha \\beta } + 2 \\epsilon _ { \\alpha \\beta } ( T ^ { i j } + \\delta ^ { i j } D ) \\; , \\\\ & & [ D , Q _ { \\alpha } ^ { i } ] = \\frac { i } { 2 } Q _ { \\alpha } ^ { i } \\; , \\qquad [ D , S _ { \\alpha } ^ { i } ] = - \\frac { i } { 2 } S _ { \\alpha } ^ { i } \\; , \\\\ & & [ M _ { \\alpha \\beta } , Q _ { \\gamma } ^ { i } ] = i ( \\epsilon _ { \\gamma \\alpha } Q _ { \\beta } ^ { i } + \\epsilon _ { \\gamma \\beta } Q _ { \\alpha } ^ { i } ) \\; , \\qquad [ M _ { \\alpha \\beta } , S _ { \\gamma } ^ { i } ] = i ( \\epsilon _ { \\gamma \\alpha } S _ { \\beta } ^ { i } + \\epsilon _ { \\gamma \\beta } S _ { \\alpha } ^ { i } ) \\; , \\\\ & & [ T ^ { i j } , Q _ { \\alpha } ^ { k } ] = i ( \\delta ^ { k i } Q _ { \\alpha } ^ { j } - \\delta ^ { k j } Q _ { \\alpha } ^ { i } ) \\; , \\qquad [ T ^ { i j } , S _ { \\alpha } ^ { k } ] = i ( \\delta ^ { k i } S _ { \\alpha } ^ { j } - \\delta ^ { k j } S _ { \\alpha } ^ { i } ) \\; , \\\\ & & [ T ^ { i j } , T ^ { k l } ] = i ( \\delta ^ { i k } T ^ { j l } + \\delta ^ { j l } T ^ { i k } - \\delta ^ { j k } T ^ { i l } - \\delta ^ { i l } T ^ { j k } ) \\; . \\end{align*}" ], "latex_expand": [ "$ \\mitA \\mitd \\mitS _ { 4 } $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitN = 8 $", "$ \\mitQ _ { \\mitalpha } ^ { \\miti } $", "$ \\mitN = 8 $", "$ \\mitalpha = 1 , 2 $", "$ \\mitS \\mitO ( 8 ) $", "$ \\miti = 1 , \\ldots , 8 $", "$ \\mitS _ { \\mitalpha } ^ { \\miti } $", "$ \\mitP _ { \\mitmu } $", "$ \\mitmu = 0 , 1 , 2 $", "$ \\mitK _ { \\mitmu } $", "$ \\mitM _ { \\mitalpha \\mitbeta } = \\mitM _ { \\mitbeta \\mitalpha } $", "$ \\mitS \\mitO ( 2 , 1 ) \\sim \\mitS \\mitL ( 2 , \\BbbR ) $", "$ \\mitS \\mitO ( 2 , 1 ) \\sim \\mitS \\mitL ( 2 , \\BbbR ) $", "$ \\mitD $", "$ \\mitT ^ { \\miti \\mitj } = - \\mitT ^ { \\mitj \\miti } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitQ _ { \\mitalpha } ^ { \\miti } $", "$ \\mitS \\mitO ( 8 ) $", "$ 8 _ { \\mitv } $", "$ 8 _ { \\mits } $", "$ 8 _ { \\mitc } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitN $", "$ 8 _ { \\mitv } $", "$ \\miti $", "\\begin{align*} & & \\displaystyle \\{ \\mitQ _ { \\mitalpha } ^ { \\miti } , \\mitQ _ { \\mitbeta } ^ { \\mitj } \\} = 2 \\mitdelta ^ { \\miti \\mitj } \\mupGamma _ { \\mitalpha \\mitbeta } ^ { \\mitmu } \\mitP _ { \\mitmu } \\; , \\qquad \\{ \\mitS _ { \\mitalpha } ^ { \\miti } , \\mitS _ { \\mitbeta } ^ { \\mitj } \\} = 2 \\mitdelta ^ { \\miti \\mitj } \\mupGamma _ { \\mitalpha \\mitbeta } ^ { \\mitmu } \\mitK _ { \\mitmu } \\; , \\\\ & & \\displaystyle \\{ \\mitQ _ { \\mitalpha } ^ { \\miti } , \\mitS _ { \\mitbeta } ^ { \\mitj } \\} = \\mitdelta ^ { \\miti \\mitj } \\mitM _ { \\mitalpha \\mitbeta } + 2 \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitT ^ { \\miti \\mitj } + \\mitdelta ^ { \\miti \\mitj } \\mitD ) \\; , \\\\ & & \\displaystyle [ \\mitD , \\mitQ _ { \\mitalpha } ^ { \\miti } ] = \\frac { \\miti } { 2 } \\mitQ _ { \\mitalpha } ^ { \\miti } \\; , \\qquad [ \\mitD , \\mitS _ { \\mitalpha } ^ { \\miti } ] = - \\frac { \\miti } { 2 } \\mitS _ { \\mitalpha } ^ { \\miti } \\; , \\\\ & & \\displaystyle [ \\mitM _ { \\mitalpha \\mitbeta } , \\mitQ _ { \\mitgamma } ^ { \\miti } ] = \\miti ( \\mitepsilon _ { \\mitgamma \\mitalpha } \\mitQ _ { \\mitbeta } ^ { \\miti } + \\mitepsilon _ { \\mitgamma \\mitbeta } \\mitQ _ { \\mitalpha } ^ { \\miti } ) \\; , \\qquad [ \\mitM _ { \\mitalpha \\mitbeta } , \\mitS _ { \\mitgamma } ^ { \\miti } ] = \\miti ( \\mitepsilon _ { \\mitgamma \\mitalpha } \\mitS _ { \\mitbeta } ^ { \\miti } + \\mitepsilon _ { \\mitgamma \\mitbeta } \\mitS _ { \\mitalpha } ^ { \\miti } ) \\; , \\\\ & & \\displaystyle [ \\mitT ^ { \\miti \\mitj } , \\mitQ _ { \\mitalpha } ^ { \\mitk } ] = \\miti ( \\mitdelta ^ { \\mitk \\miti } \\mitQ _ { \\mitalpha } ^ { \\mitj } - \\mitdelta ^ { \\mitk \\mitj } \\mitQ _ { \\mitalpha } ^ { \\miti } ) \\; , \\qquad [ \\mitT ^ { \\miti \\mitj } , \\mitS _ { \\mitalpha } ^ { \\mitk } ] = \\miti ( \\mitdelta ^ { \\mitk \\miti } \\mitS _ { \\mitalpha } ^ { \\mitj } - \\mitdelta ^ { \\mitk \\mitj } \\mitS _ { \\mitalpha } ^ { \\miti } ) \\; , \\\\ & & \\displaystyle [ \\mitT ^ { \\miti \\mitj } , \\mitT ^ { \\mitk \\mitl } ] = \\miti ( \\mitdelta ^ { \\miti \\mitk } \\mitT ^ { \\mitj \\mitl } + \\mitdelta ^ { \\mitj \\mitl } \\mitT ^ { \\miti \\mitk } - \\mitdelta ^ { \\mitj \\mitk } \\mitT ^ { \\miti \\mitl } - \\mitdelta ^ { \\miti \\mitl } \\mitT ^ { \\mitj \\mitk } ) \\; . \\end{align*}" ], "x_min": [ 0.47130000591278076, 0.6578999757766724, 0.5286999940872192, 0.36070001125335693, 0.5321000218391418, 0.5016999840736389, 0.5543000102043152, 0.4885999858379364, 0.6399000287055969, 0.1728000044822693, 0.28130000829696655, 0.5659999847412109, 0.600600004196167, 0.1728000044822693, 0.39320001006126404, 0.7290999889373779, 0.1728000044822693, 0.259799987077713, 0.3912000060081482, 0.5149000287055969, 0.7394999861717224, 0.20319999754428864, 0.5562999844551086, 0.583299994468689, 0.6378999948501587, 0.3765999972820282, 0.1728000044822693, 0.4339999854564667, 0.5009999871253967, 0.23010000586509705 ], "y_min": [ 0.24410000443458557, 0.3716000020503998, 0.42480000853538513, 0.44190001487731934, 0.44290000200271606, 0.6577000021934509, 0.6592000126838684, 0.6772000193595886, 0.6758000254631042, 0.6937999725341797, 0.6919000148773193, 0.6934000253677368, 0.6942999958992004, 0.7109000086784363, 0.7109000086784363, 0.7099999785423279, 0.7271000146865845, 0.7279999852180481, 0.7261000275611877, 0.7271000146865845, 0.760699987411499, 0.7890999913215637, 0.7900000214576721, 0.7900000214576721, 0.7900000214576721, 0.8032000064849854, 0.8324999809265137, 0.8471999764442444, 0.8467000126838684, 0.49900001287460327 ], "x_max": [ 0.5169000029563904, 0.8091999888420105, 0.6365000009536743, 0.4684999883174896, 0.592199981212616, 0.527999997138977, 0.6089000105857849, 0.5625, 0.6945000290870667, 0.2702000141143799, 0.30410000681877136, 0.5888000130653381, 0.6862999796867371, 0.19910000264644623, 0.5016999840736389, 0.8292999863624573, 0.24809999763965607, 0.27709999680519104, 0.48660001158714294, 0.5695000290870667, 0.7657999992370605, 0.24950000643730164, 0.5728999972343445, 0.5992000102996826, 0.6531000137329102, 0.42289999127388, 0.18870000541210175, 0.4505999982357025, 0.5072000026702881, 0.802299976348877 ], "y_max": [ 0.25679999589920044, 0.39259999990463257, 0.43939998745918274, 0.4569999873638153, 0.45320001244544983, 0.67330002784729, 0.6699000000953674, 0.6894000172615051, 0.6904000043869019, 0.7064999938011169, 0.7074999809265137, 0.7080000042915344, 0.7064999938011169, 0.7250999808311462, 0.7250999808311462, 0.7246000170707703, 0.7416999936103821, 0.7383000254631042, 0.739300012588501, 0.7416999936103821, 0.7763000130653381, 0.8012999892234802, 0.8003000020980835, 0.8003000020980835, 0.8003000020980835, 0.8154000043869019, 0.8407999873161316, 0.8569999933242798, 0.8550000190734863, 0.6499000191688538 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003051_page05
{ "latex": [ "$SO(8)$", "$[SO(2)]^4\\sim [U(1)]^4$", "$SO(8)$", "$Q^i_\\alpha $", "$U(1)$", "$H_1 = 2iT^{12}$", "$H_2 = 2iT^{34}$", "$\\underline {i}=5,6,7,8$", "$8_v$", "$SO(8)$", "$SO(4)$", "$SO(4)\\sim SU(2)\\times SU(2)$", "$Q^{\\underline {i}} \\ \\rightarrow \\^^MQ^{\\underline {a}\\underline {a}'}= Q^{\\underline {i}} (\\sigma ^{\\underline {i}})^{\\underline {a}\\underline {a}'}$", "$SU(2)$", "$t$", "\\begin {equation}\\label {2.2} Q^{\\pm \\pm }_\\alpha = {1\\over 2}(Q^1_\\alpha \\pm Q^2_\\alpha ) \\end {equation}", "\\begin {equation}\\label {2.3} [H_1, Q^{\\pm \\pm }_\\alpha ] = \\pm 2i Q^{\\pm \\pm }_\\alpha \\;. \\end {equation}", "\\begin {equation}\\label {2.4} \\{Q^{++}_\\alpha , S^{--}_\\beta \\} = {1\\over 2} M_{\\alpha \\beta } + \\epsilon _{\\alpha \\beta } (D-{1\\over 2}H_1) \\; . \\end {equation}", "\\begin {equation}\\label {2.5} Q^{(\\pm \\pm )}_\\alpha = {1\\over 2}(Q^3_\\alpha \\pm Q^4_\\alpha ) \\end {equation}", "\\begin {equation}\\label {2.6} [H_2, Q^{(\\pm \\pm )}_\\alpha ] = \\pm 2i Q^{(\\pm \\pm )}_\\alpha \\end {equation}", "\\begin {equation}\\label {2.7} \\{Q^{(++)}_\\alpha , S^{(--)}_\\beta \\} = {1\\over 2} M_{\\alpha \\beta } + \\epsilon _{\\alpha \\beta } (D - {1\\over 2}H_2) \\; . \\end {equation}", "\\begin {equation}\\label {2.8} \\{Q^{\\underline {a}\\underline {a}'}_\\alpha , S^{\\underline {b}\\underline {b}'}_\\beta \\} = {1\\over 2} \\epsilon ^{\\underline {a}\\underline {b}} \\epsilon ^{\\underline {a}'\\underline {b}'} M_{\\alpha \\beta } -{1\\over 2} \\epsilon _{\\alpha \\beta } (t^{\\underline {a}\\underline {b}} \\epsilon ^{\\underline {a}'\\underline {b}'} + \\epsilon ^{\\underline {a}\\underline {b}} t^{\\underline {a}'\\underline {b}'} -2 \\epsilon ^{\\underline {a}\\underline {b}} \\epsilon ^{\\underline {a}'\\underline {b}'} D) \\end {equation}", "\\begin {equation}\\label {2.9} [t^{\\underline {a}\\underline {b}} ,Q^{\\underline {c}\\underline {c}'}] = i (\\epsilon ^{\\underline {c}\\underline {a}}Q^{\\underline {b}\\underline {c}'} +\\epsilon ^{\\underline {c}\\underline {b}}Q^{\\underline {a}\\underline {c}'})\\;, \\qquad [t^{\\underline {a}'\\underline {b}'} , Q^{\\underline {c}\\underline {c}'}] = i(\\epsilon ^{\\underline {c}'\\underline {a}'}Q^{\\underline {c}\\underline {b}'} +\\epsilon ^{\\underline {c}'\\underline {b}'}Q^{\\underline {c}\\underline {a}'})\\;. \\end {equation}" ], "latex_norm": [ "$ S O ( 8 ) $", "$ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $", "$ S O ( 8 ) $", "$ Q _ { \\alpha } ^ { i } $", "$ U ( 1 ) $", "$ H _ { 1 } = 2 i T ^ { 1 2 } $", "$ H _ { 2 } = 2 i T ^ { 3 4 } $", "$ \\underline { i } = 5 , 6 , 7 , 8 $", "$ 8 _ { v } $", "$ S O ( 8 ) $", "$ S O ( 4 ) $", "$ S O ( 4 ) \\sim S U ( 2 ) \\times S U ( 2 ) $", "$ Q ^ { \\underline { i } } ~ \\rightarrow ~ Q ^ { \\underline { a } \\underline { a } ^ { \\prime } } = Q ^ { \\underline { i } } ( \\sigma ^ { \\underline { i } } ) ^ { \\underline { a } \\underline { a } ^ { \\prime } } $", "$ S U ( 2 ) $", "$ t $", "\\begin{equation*} Q _ { \\alpha } ^ { \\pm \\pm } = \\frac { 1 } { 2 } ( Q _ { \\alpha } ^ { 1 } \\pm Q _ { \\alpha } ^ { 2 } ) \\end{equation*}", "\\begin{equation*} [ H _ { 1 } , Q _ { \\alpha } ^ { \\pm \\pm } ] = \\pm 2 i Q _ { \\alpha } ^ { \\pm \\pm } \\; . \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\alpha } ^ { + + } , S _ { \\beta } ^ { - - } \\} = \\frac { 1 } { 2 } M _ { \\alpha \\beta } + \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 1 } ) \\; . \\end{equation*}", "\\begin{equation*} Q _ { \\alpha } ^ { ( \\pm \\pm ) } = \\frac { 1 } { 2 } ( Q _ { \\alpha } ^ { 3 } \\pm Q _ { \\alpha } ^ { 4 } ) \\end{equation*}", "\\begin{equation*} [ H _ { 2 } , Q _ { \\alpha } ^ { ( \\pm \\pm ) } ] = \\pm 2 i Q _ { \\alpha } ^ { ( \\pm \\pm ) } \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\alpha } ^ { ( + + ) } , S _ { \\beta } ^ { ( - - ) } \\} = \\frac { 1 } { 2 } M _ { \\alpha \\beta } + \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 2 } ) \\; . \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\alpha } ^ { \\underline { a } \\underline { a } ^ { \\prime } } , S _ { \\beta } ^ { \\underline { b } \\underline { b } ^ { \\prime } } \\} = \\frac { 1 } { 2 } \\epsilon ^ { \\underline { a } \\underline { b } } \\epsilon ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } M _ { \\alpha \\beta } - \\frac { 1 } { 2 } \\epsilon _ { \\alpha \\beta } ( t ^ { \\underline { a } \\underline { b } } \\epsilon ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } + \\epsilon ^ { \\underline { a } \\underline { b } } t ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } - 2 \\epsilon ^ { \\underline { a } \\underline { b } } \\epsilon ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } D ) \\end{equation*}", "\\begin{equation*} [ t ^ { \\underline { a } \\underline { b } } , Q ^ { \\underline { c } \\underline { c } ^ { \\prime } } ] = i ( \\epsilon ^ { \\underline { c } \\underline { a } } Q ^ { \\underline { b } \\underline { c } ^ { \\prime } } + \\epsilon ^ { \\underline { c } \\underline { b } } Q ^ { \\underline { a } \\underline { c } ^ { \\prime } } ) \\; , \\qquad [ t ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } , Q ^ { \\underline { c } \\underline { c } ^ { \\prime } } ] = i ( \\epsilon ^ { \\underline { c } ^ { \\prime } \\underline { a } ^ { \\prime } } Q ^ { \\underline { c } \\underline { b } ^ { \\prime } } + \\epsilon ^ { \\underline { c } ^ { \\prime } \\underline { b } ^ { \\prime } } Q ^ { \\underline { c } \\underline { a } ^ { \\prime } } ) \\; . \\end{equation*}" ], "latex_expand": [ "$ \\mitS \\mitO ( 8 ) $", "$ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitQ _ { \\mitalpha } ^ { \\miti } $", "$ \\mitU ( 1 ) $", "$ \\mitH _ { 1 } = 2 \\miti \\mitT ^ { 1 2 } $", "$ \\mitH _ { 2 } = 2 \\miti \\mitT ^ { 3 4 } $", "$ \\underline { \\miti } = 5 , 6 , 7 , 8 $", "$ 8 _ { \\mitv } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitS \\mitO ( 4 ) $", "$ \\mitS \\mitO ( 4 ) \\sim \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) $", "$ \\mitQ ^ { \\underline { \\miti } } ~ \\rightarrow ~ \\mitQ ^ { \\underline { \\mita } \\underline { \\mita } ^ { \\prime } } = \\mitQ ^ { \\underline { \\miti } } ( \\mitsigma ^ { \\underline { \\miti } } ) ^ { \\underline { \\mita } \\underline { \\mita } ^ { \\prime } } $", "$ \\mitS \\mitU ( 2 ) $", "$ \\mitt $", "\\begin{equation*} \\mitQ _ { \\mitalpha } ^ { \\pm \\pm } = \\frac { 1 } { 2 } ( \\mitQ _ { \\mitalpha } ^ { 1 } \\pm \\mitQ _ { \\mitalpha } ^ { 2 } ) \\end{equation*}", "\\begin{equation*} [ \\mitH _ { 1 } , \\mitQ _ { \\mitalpha } ^ { \\pm \\pm } ] = \\pm 2 \\miti \\mitQ _ { \\mitalpha } ^ { \\pm \\pm } \\; . \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { + + } , \\mitS _ { \\mitbeta } ^ { - - } \\} = \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } + \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 1 } ) \\; . \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitalpha } ^ { ( \\pm \\pm ) } = \\frac { 1 } { 2 } ( \\mitQ _ { \\mitalpha } ^ { 3 } \\pm \\mitQ _ { \\mitalpha } ^ { 4 } ) \\end{equation*}", "\\begin{equation*} [ \\mitH _ { 2 } , \\mitQ _ { \\mitalpha } ^ { ( \\pm \\pm ) } ] = \\pm 2 \\miti \\mitQ _ { \\mitalpha } ^ { ( \\pm \\pm ) } \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { ( + + ) } , \\mitS _ { \\mitbeta } ^ { ( - - ) } \\} = \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } + \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 2 } ) \\; . \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { \\underline { \\mita } \\underline { \\mita } ^ { \\prime } } , \\mitS _ { \\mitbeta } ^ { \\underline { \\mitb } \\underline { \\mitb } ^ { \\prime } } \\} = \\frac { 1 } { 2 } \\mitepsilon ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitepsilon ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } \\mitM _ { \\mitalpha \\mitbeta } - \\frac { 1 } { 2 } \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitt ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitepsilon ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } + \\mitepsilon ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitt ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } - 2 \\mitepsilon ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitepsilon ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } \\mitD ) \\end{equation*}", "\\begin{equation*} [ \\mitt ^ { \\underline { \\mita } \\underline { \\mitb } } , \\mitQ ^ { \\underline { \\mitc } \\underline { \\mitc } ^ { \\prime } } ] = \\miti ( \\mitepsilon ^ { \\underline { \\mitc } \\underline { \\mita } } \\mitQ ^ { \\underline { \\mitb } \\underline { \\mitc } ^ { \\prime } } + \\mitepsilon ^ { \\underline { \\mitc } \\underline { \\mitb } } \\mitQ ^ { \\underline { \\mita } \\underline { \\mitc } ^ { \\prime } } ) \\; , \\qquad [ \\mitt ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } , \\mitQ ^ { \\underline { \\mitc } \\underline { \\mitc } ^ { \\prime } } ] = \\miti ( \\mitepsilon ^ { \\underline { \\mitc } ^ { \\prime } \\underline { \\mita } ^ { \\prime } } \\mitQ ^ { \\underline { \\mitc } \\underline { \\mitb } ^ { \\prime } } + \\mitepsilon ^ { \\underline { \\mitc } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } \\mitQ ^ { \\underline { \\mitc } \\underline { \\mita } ^ { \\prime } } ) \\; . \\end{equation*}" ], "x_min": [ 0.2281000018119812, 0.3677000105381012, 0.7117999792098999, 0.1728000044822693, 0.6647999882698059, 0.5404000282287598, 0.30480000376701355, 0.2827000021934509, 0.4560999870300293, 0.506600022315979, 0.6468999981880188, 0.1728000044822693, 0.4043000042438507, 0.2694999873638153, 0.4311999976634979, 0.414000004529953, 0.4036000072956085, 0.3296000063419342, 0.4090999960899353, 0.39809998869895935, 0.31859999895095825, 0.210099995136261, 0.18240000307559967 ], "y_min": [ 0.20900000631809235, 0.2084999978542328, 0.20900000631809235, 0.225600004196167, 0.22609999775886536, 0.3158999979496002, 0.5346999764442444, 0.6650000214576721, 0.6650000214576721, 0.6636000275611877, 0.6636000275611877, 0.6807000041007996, 0.6963000297546387, 0.7851999998092651, 0.7871000170707703, 0.26899999380111694, 0.34380000829696655, 0.42239999771118164, 0.4878000020980835, 0.5609999895095825, 0.6064000129699707, 0.7378000020980835, 0.8276000022888184 ], "x_max": [ 0.2827000021934509, 0.5307999849319458, 0.7663999795913696, 0.19840000569820404, 0.7063000202178955, 0.6371999979019165, 0.40220001339912415, 0.38839998841285706, 0.4747999906539917, 0.5612000226974487, 0.7014999985694885, 0.3862999975681305, 0.6068000197410583, 0.32409998774528503, 0.43880000710487366, 0.5874999761581421, 0.5978000164031982, 0.6717000007629395, 0.5928999781608582, 0.6033999919891357, 0.6827999949455261, 0.7560999989509583, 0.794700026512146 ], "y_max": [ 0.2240999937057495, 0.2240999937057495, 0.2240999937057495, 0.24070000648498535, 0.24120000004768372, 0.33009999990463257, 0.5489000082015991, 0.6776999831199646, 0.6772000193595886, 0.6786999702453613, 0.6786999702453613, 0.6958000063896179, 0.7128999829292297, 0.7997999787330627, 0.7964000105857849, 0.3012000024318695, 0.3628000020980835, 0.4546000063419342, 0.5199999809265137, 0.5814999938011169, 0.6391000151634216, 0.7705000042915344, 0.8485999703407288 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page06
{ "latex": [ "${\\underline {1}}\\equiv {[+]}\\;, \\^^M{\\underline {2}}\\equiv {[-]}$", "${\\underline {1}'}\\equiv {\\{+\\}}\\;, \\ {\\underline {2}'}\\equiv {\\{-\\}}$", "$SO(2)$", "$SO(8)$", "$28-4 = 24$", "$28-4 = 24$", "$SO(8)$", "$T^{[++]}, \\ T^{\\{++\\}}, \\ T^{++(--)}, \\ T^{(++)[-]\\{-\\}}$", "$SO(8)$", "$[SO(2)]^4$", "$8_v$", "$Q^i$", "$28$", "$SO(8)$", "$T^{ij}$", "$8_s$", "$\\phi ^a$", "$a=1,\\ldots ,8$", "$8_c$", "$\\psi ^{\\dot a}$", "$\\dot a=1,\\ldots ,8$", "$SO(8)\\^^M\\rightarrow \\ SO(2)\\times SO(6)\\sim U(1)\\times SU(4) \\ \\rightarrow \\ [SO(2)]^2\\times SO(4)\\sim [U(1)]^2\\times SU(2)\\times SU(2) \\^^M\\rightarrow \\ [SO(2)]^4 \\sim [U(1)]^4$", "$SO(8)\\^^M\\rightarrow \\ SO(2)\\times SO(6)\\sim U(1)\\times SU(4) \\ \\rightarrow \\ [SO(2)]^2\\times SO(4)\\sim [U(1)]^2\\times SU(2)\\times SU(2) \\^^M\\rightarrow \\ [SO(2)]^4 \\sim [U(1)]^4$", "$SO(8)\\^^M\\rightarrow \\ SO(2)\\times SO(6)\\sim U(1)\\times SU(4) \\ \\rightarrow \\ [SO(2)]^2\\times SO(4)\\sim [U(1)]^2\\times SU(2)\\times SU(2) \\^^M\\rightarrow \\ [SO(2)]^4 \\sim [U(1)]^4$", "$OSp(8/4,\\mathbb {R})$", "$OSp(8/4,\\mathbb {R})$", "$\\ell $", "$J$", "$d_1,d_2,d_3,d_4$", "$SO(8)$", "\\begin {equation}\\label {2.10} H_3 = t^{\\underline {1}\\underline {2}}\\;, \\qquad H_4 = t^{\\underline {1}'\\underline {2}'}\\;, \\end {equation}", "\\begin {equation}\\label {2.11} [H_3, Q^{[\\pm ]\\{\\pm \\}}] = [H_4, Q^{[\\pm ]\\{\\pm \\}}] = \\pm i Q^{[\\pm ]\\{\\pm \\}}\\;. \\end {equation}", "\\begin {equation}\\label {2.12} \\{Q^{[+]\\{+\\}}_\\alpha , S^{[-]\\{-\\}}_\\beta \\} = {1\\over 2} M_{\\alpha \\beta } + \\epsilon _{\\alpha \\beta } (D - {1\\over 2}H_3 - {1\\over 2}H_4) \\; , \\end {equation}", "\\begin {equation}\\label {2.13} \\{Q^{[+]\\{-\\}}_\\alpha , S^{[-]\\{+\\}}_\\beta \\} = -{1\\over 2} M_{\\alpha \\beta } - \\epsilon _{\\alpha \\beta } (D - {1\\over 2}H_3 + {1\\over 2}H_4) \\; . \\end {equation}", "\\begin {equation}\\label {2.14} \\{{\\cal T}\\}_+ = \\left \\{ \\begin {array}{l} T^{++(++)}\\;, \\ T^{++(--)}\\;, \\ T^{++[\\pm ]\\{\\pm \\}}\\;; \\\\ T^{(++)[\\pm ]\\{\\pm \\}}\\;; \\\\ T^{[++]} \\equiv T^{[+]\\{+\\}[+]\\{-\\}}\\;, \\ T^{\\{++\\}} \\equiv T^{[+]\\{+\\}[-]\\{+\\}} \\end {array} \\right . \\end {equation}", "\\begin {eqnarray} \\phi ^a &\\rightarrow & \\phi ^{+(+)[\\pm ]}, \\ \\phi ^{-(-)[\\pm ]}, \\ \\phi ^{+(-)\\{\\pm \\}}, \\ \\phi ^{-(+)\\{\\pm \\}}\\\\ \\sigma ^{\\dot a} &\\rightarrow & \\sigma ^{+(+)\\{\\pm \\}}, \\ \\sigma ^{-(-)\\{\\pm \\}}, \\ \\sigma ^{+(-)[\\pm ]}, \\^^M\\sigma ^{-(+)[\\pm ]}\\end {eqnarray}", "\\begin {equation}\\label {555} {\\cal D}(\\ell , J; d_1,d_2,d_3,d_4) \\end {equation}" ], "latex_norm": [ "$ \\underline { 1 } \\equiv [ + ] \\; , ~ \\underline { 2 } \\equiv [ - ] $", "$ \\underline { 1 } ^ { \\prime } \\equiv \\{ + \\} \\; , ~ \\underline { 2 } ^ { \\prime } \\equiv \\{ - \\} $", "$ S O ( 2 ) $", "$ S O ( 8 ) $", "$ 2 8 - 4 = 2 4 $", "$ 2 8 - 4 = 2 4 $", "$ S O ( 8 ) $", "$ T ^ { [ + + ] } , ~ T ^ { \\{ + + \\} } , ~ T ^ { + + ( - - ) } , ~ T ^ { ( + + ) [ - ] \\{ - \\} } $", "$ S O ( 8 ) $", "$ [ S O ( 2 ) ] ^ { 4 } $", "$ 8 _ { v } $", "$ Q ^ { i } $", "$ 2 8 $", "$ S O ( 8 ) $", "$ T ^ { i j } $", "$ 8 _ { s } $", "$ \\phi ^ { a } $", "$ a = 1 , \\ldots , 8 $", "$ 8 _ { c } $", "$ \\psi ^ { \\dot { a } } $", "$ \\dot { a } = 1 , \\ldots , 8 $", "$ S O ( 8 ) ~ \\rightarrow ~ S O ( 2 ) \\times S O ( 6 ) \\sim U ( 1 ) \\times S U ( 4 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 2 } \\times S O ( 4 ) \\sim [ U ( 1 ) ] ^ { 2 } \\times S U ( 2 ) \\times S U ( 2 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $", "$ S O ( 8 ) ~ \\rightarrow ~ S O ( 2 ) \\times S O ( 6 ) \\sim U ( 1 ) \\times S U ( 4 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 2 } \\times S O ( 4 ) \\sim [ U ( 1 ) ] ^ { 2 } \\times S U ( 2 ) \\times S U ( 2 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $", "$ S O ( 8 ) ~ \\rightarrow ~ S O ( 2 ) \\times S O ( 6 ) \\sim U ( 1 ) \\times S U ( 4 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 2 } \\times S O ( 4 ) \\sim [ U ( 1 ) ] ^ { 2 } \\times S U ( 2 ) \\times S U ( 2 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $", "$ O S p ( 8 \\slash 4 , R ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ l $", "$ J $", "$ d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } $", "$ S O ( 8 ) $", "\\begin{equation*} H _ { 3 } = t ^ { \\underline { 1 } \\underline { 2 } } \\; , \\qquad H _ { 4 } = t ^ { \\underline { 1 } ^ { \\prime } \\underline { 2 } ^ { \\prime } } \\; , \\end{equation*}", "\\begin{equation*} [ H _ { 3 } , Q ^ { [ \\pm ] \\{ \\pm \\} } ] = [ H _ { 4 } , Q ^ { [ \\pm ] \\{ \\pm \\} } ] = \\pm i Q ^ { [ \\pm ] \\{ \\pm \\} } \\; . \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\alpha } ^ { [ + ] \\{ + \\} } , S _ { \\beta } ^ { [ - ] \\{ - \\} } \\} = \\frac { 1 } { 2 } M _ { \\alpha \\beta } + \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 3 } - \\frac { 1 } { 2 } H _ { 4 } ) \\; , \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\alpha } ^ { [ + ] \\{ - \\} } , S _ { \\beta } ^ { [ - ] \\{ + \\} } \\} = - \\frac { 1 } { 2 } M _ { \\alpha \\beta } - \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 3 } + \\frac { 1 } { 2 } H _ { 4 } ) \\; . \\end{equation*}", "\\begin{align*} \\{ T \\} _ { + } = \\{ \\begin{array}{l} T ^ { + + ( + + ) } \\; , ~ T ^ { + + ( - - ) } \\; , ~ T ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ T ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ T ^ { [ + + ] } \\equiv T ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ T ^ { \\{ + + \\} } \\equiv T ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\end{align*}", "\\begin{align*} \\phi ^ { a } & \\rightarrow & \\phi ^ { + ( + ) [ \\pm ] } , ~ \\phi ^ { - ( - ) [ \\pm ] } , ~ \\phi ^ { + ( - ) \\{ \\pm \\} } , ~ \\phi ^ { - ( + ) \\{ \\pm \\} } \\\\ \\sigma ^ { \\dot { a } } & \\rightarrow & \\sigma ^ { + ( + ) \\{ \\pm \\} } , ~ \\sigma ^ { - ( - ) \\{ \\pm \\} } , ~ \\sigma ^ { + ( - ) [ \\pm ] } , ~ \\sigma ^ { - ( + ) [ \\pm ] } \\end{align*}", "\\begin{equation*} D ( l , J ; d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } ) \\end{equation*}" ], "latex_expand": [ "$ \\underline { 1 } \\equiv [ + ] \\; , ~ \\underline { 2 } \\equiv [ - ] $", "$ \\underline { 1 } ^ { \\prime } \\equiv \\{ + \\} \\; , ~ \\underline { 2 } ^ { \\prime } \\equiv \\{ - \\} $", "$ \\mitS \\mitO ( 2 ) $", "$ \\mitS \\mitO ( 8 ) $", "$ 2 8 - 4 = 2 4 $", "$ 2 8 - 4 = 2 4 $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitT ^ { [ + + ] } , ~ \\mitT ^ { \\{ + + \\} } , ~ \\mitT ^ { + + ( - - ) } , ~ \\mitT ^ { ( + + ) [ - ] \\{ - \\} } $", "$ \\mitS \\mitO ( 8 ) $", "$ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } $", "$ 8 _ { \\mitv } $", "$ \\mitQ ^ { \\miti } $", "$ 2 8 $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitT ^ { \\miti \\mitj } $", "$ 8 _ { \\mits } $", "$ \\mitphi ^ { \\mita } $", "$ \\mita = 1 , \\ldots , 8 $", "$ 8 _ { \\mitc } $", "$ \\mitpsi ^ { \\dot { \\mita } } $", "$ \\dot { \\mita } = 1 , \\ldots , 8 $", "$ \\mitS \\mitO ( 8 ) ~ \\rightarrow ~ \\mitS \\mitO ( 2 ) \\times \\mitS \\mitO ( 6 ) \\sim \\mitU ( 1 ) \\times \\mitS \\mitU ( 4 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 2 } \\times \\mitS \\mitO ( 4 ) \\sim [ \\mitU ( 1 ) ] ^ { 2 } \\times \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitS \\mitO ( 8 ) ~ \\rightarrow ~ \\mitS \\mitO ( 2 ) \\times \\mitS \\mitO ( 6 ) \\sim \\mitU ( 1 ) \\times \\mitS \\mitU ( 4 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 2 } \\times \\mitS \\mitO ( 4 ) \\sim [ \\mitU ( 1 ) ] ^ { 2 } \\times \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitS \\mitO ( 8 ) ~ \\rightarrow ~ \\mitS \\mitO ( 2 ) \\times \\mitS \\mitO ( 6 ) \\sim \\mitU ( 1 ) \\times \\mitS \\mitU ( 4 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 2 } \\times \\mitS \\mitO ( 4 ) \\sim [ \\mitU ( 1 ) ] ^ { 2 } \\times \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\ell $", "$ \\mitJ $", "$ \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } $", "$ \\mitS \\mitO ( 8 ) $", "\\begin{equation*} \\mitH _ { 3 } = \\mitt ^ { \\underline { 1 } \\underline { 2 } } \\; , \\qquad \\mitH _ { 4 } = \\mitt ^ { \\underline { 1 } ^ { \\prime } \\underline { 2 } ^ { \\prime } } \\; , \\end{equation*}", "\\begin{equation*} [ \\mitH _ { 3 } , \\mitQ ^ { [ \\pm ] \\{ \\pm \\} } ] = [ \\mitH _ { 4 } , \\mitQ ^ { [ \\pm ] \\{ \\pm \\} } ] = \\pm \\miti \\mitQ ^ { [ \\pm ] \\{ \\pm \\} } \\; . \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { [ + ] \\{ + \\} } , \\mitS _ { \\mitbeta } ^ { [ - ] \\{ - \\} } \\} = \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } + \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 3 } - \\frac { 1 } { 2 } \\mitH _ { 4 } ) \\; , \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { [ + ] \\{ - \\} } , \\mitS _ { \\mitbeta } ^ { [ - ] \\{ + \\} } \\} = - \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } - \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 3 } + \\frac { 1 } { 2 } \\mitH _ { 4 } ) \\; . \\end{equation*}", "\\begin{align*} \\{ \\mitT \\} _ { + } = \\left\\{ \\begin{array}{l} \\mitT ^ { + + ( + + ) } \\; , ~ \\mitT ^ { + + ( - - ) } \\; , ~ \\mitT ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitT ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitT ^ { [ + + ] } \\equiv \\mitT ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ \\mitT ^ { \\{ + + \\} } \\equiv \\mitT ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\right. \\end{align*}", "\\begin{align*} \\displaystyle \\mitphi ^ { \\mita } & \\displaystyle \\rightarrow & \\displaystyle \\mitphi ^ { + ( + ) [ \\pm ] } , ~ \\mitphi ^ { - ( - ) [ \\pm ] } , ~ \\mitphi ^ { + ( - ) \\{ \\pm \\} } , ~ \\mitphi ^ { - ( + ) \\{ \\pm \\} } \\\\ \\displaystyle \\mitsigma ^ { \\dot { \\mita } } & \\displaystyle \\rightarrow & \\displaystyle \\mitsigma ^ { + ( + ) \\{ \\pm \\} } , ~ \\mitsigma ^ { - ( - ) \\{ \\pm \\} } , ~ \\mitsigma ^ { + ( - ) [ \\pm ] } , ~ \\mitsigma ^ { - ( + ) [ \\pm ] } \\end{align*}", "\\begin{equation*} \\mitD ( \\ell , \\mitJ ; \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } ) \\end{equation*}" ], "x_min": [ 0.31929999589920044, 0.510699987411499, 0.3483000099658966, 0.6108999848365784, 0.7491000294685364, 0.1728000044822693, 0.19280000030994415, 0.597100019454956, 0.19419999420642853, 0.5529000163078308, 0.29510000348091125, 0.5929999947547913, 0.7649999856948853, 0.1728000044822693, 0.3255000114440918, 0.43880000710487366, 0.4691999852657318, 0.49970000982284546, 0.6496000289916992, 0.6793000102043152, 0.7124999761581421, 0.6324999928474426, 0.17249999940395355, 0.17249999940395355, 0.6765999794006348, 0.7186999917030334, 0.2281000018119812, 0.4796000123023987, 0.6952000260353088, 0.5224999785423279, 0.38769999146461487, 0.321399986743927, 0.2750999927520752, 0.2687999904155731, 0.25290000438690186, 0.3034000098705292, 0.4147000014781952 ], "y_min": [ 0.21480000019073486, 0.21480000019073486, 0.3765000104904175, 0.3765000104904175, 0.37790000438690186, 0.39500001072883606, 0.5199999809265137, 0.5181000232696533, 0.5541999936103821, 0.5536999702453613, 0.5727999806404114, 0.5702999830245972, 0.5727999806404114, 0.5884000062942505, 0.5878999829292297, 0.6068999767303467, 0.6064000129699707, 0.6068999767303467, 0.6068999767303467, 0.6044999957084656, 0.6068999767303467, 0.683899998664856, 0.6988999843597412, 0.7159000039100647, 0.7354000210762024, 0.7523999810218811, 0.8276000022888184, 0.8276000022888184, 0.8276000022888184, 0.8438000082969666, 0.18070000410079956, 0.2378000020980835, 0.29589998722076416, 0.336899995803833, 0.43459999561309814, 0.6273999810218811, 0.7949000000953674 ], "x_max": [ 0.46650001406669617, 0.6862000226974487, 0.40290001034736633, 0.6654999852180481, 0.8306000232696533, 0.19280000030994415, 0.24740000069141388, 0.8970000147819519, 0.24879999458789825, 0.6262000203132629, 0.31380000710487366, 0.6144000291824341, 0.7850000262260437, 0.227400004863739, 0.35249999165534973, 0.45680001378059387, 0.48919999599456787, 0.600600004196167, 0.6668999791145325, 0.7013999819755554, 0.8133999705314636, 0.8284000158309937, 0.8284000158309937, 0.3384000062942505, 0.7836999893188477, 0.8258000016212463, 0.2371000051498413, 0.4927000105381012, 0.794700026512146, 0.5770999789237976, 0.6101999878883362, 0.6808000206947327, 0.7235999703407288, 0.7325000166893005, 0.7455999851226807, 0.695900022983551, 0.5867999792098999 ], "y_max": [ 0.22990000247955322, 0.22990000247955322, 0.39160001277923584, 0.39160001277923584, 0.38909998536109924, 0.40619999170303345, 0.534600019454956, 0.5336999893188477, 0.5687999725341797, 0.5687999725341797, 0.5845000147819519, 0.5853999853134155, 0.5825999975204468, 0.6035000085830688, 0.5996000170707703, 0.6190999746322632, 0.6195999979972839, 0.6195999979972839, 0.6190999746322632, 0.6195999979972839, 0.6195999979972839, 0.6966000199317932, 0.7125999927520752, 0.7305999994277954, 0.75, 0.7670000195503235, 0.8378999829292297, 0.8378999829292297, 0.8407999873161316, 0.8589000105857849, 0.20020000636577606, 0.2583000063896179, 0.3280999958515167, 0.36959999799728394, 0.49079999327659607, 0.6757000088691711, 0.8130000233650208 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page07
{ "latex": [ "$q_1,q_2,q_3,q_4$", "$H_1,\\ldots ,H_4$", "$|\\ell , J, q_i\\rangle $", "$[d_1,d_2,d_3,d_4]$", "$U(1)$", "$(q_1,q_2,q_3,q_4)$", "$8_v: \\ [1,0,0,0] \\ \\leftrightarrow (2,0,0,0)$", "$8_v: \\ [1,0,0,0] \\ \\leftrightarrow (2,0,0,0)$", "$28: \\ [0,1,0,0] \\ \\leftrightarrow (2,2,0,0)$", "$8_s: \\ [0,0,1,0] \\^^M\\leftrightarrow (1,1,1,0)$", "$8_c: \\ [0,0,0,1] \\ \\leftrightarrow (1,1,0,1)$", "$K_\\mu $", "$SO(8)$", "$|\\ell , J, q_i\\rangle $", "$SO(8)$", "$|\\ell , J, q_i\\rangle $", "$D,\\ M^2,\\ H_i$", "$\\ell $", "$J$", "$q_i$", "$Q^i_\\alpha $", "$Q$", "$Q$", "$P_\\mu $", "$SO(8)$", "$\\{{\\cal T}\\}_+$", "$4= {1\\over 2}\\;8$", "\\begin {equation}\\label {172} d_1 = {1\\over 2} (q_1-q_2)\\;, \\ d_2 = {1\\over 2} (q_2-q_3-q_4)\\;, \\^^Md_3 = q_3\\;, \\ d_4=q_4\\;. \\end {equation}", "\\begin {equation}\\label {173} q_1-q_2 =2n \\geq 0 \\;, \\quad q_2 - q_3 - q_4 =2k \\geq 0 \\;, \\quad q_3 \\geq 0\\;, \\quad q_4 \\geq 0\\;. \\end {equation}", "\\begin {equation}\\label {2.15} S^i_\\alpha |\\ell , J, q_i\\rangle = 0 \\end {equation}", "\\begin {equation}\\label {2.16} \\{{\\cal T}\\}_+ |\\ell , J, q_i\\rangle = 0\\;. \\end {equation}", "\\begin {eqnarray} \\mbox {type I 1/2 BPS:} &&Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = Q^{[+]\\{+\\}}|\\ell , J, q_i\\rangle = \\\\ && Q^{[+]\\{-\\}}|\\ell , J, q_i\\rangle = 0 \\end {eqnarray}" ], "latex_norm": [ "$ q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } $", "$ H _ { 1 } , \\ldots , H _ { 4 } $", "$ \\vert l , J , q _ { i } \\rangle $", "$ [ d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } ] $", "$ U ( 1 ) $", "$ ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) $", "$ 8 _ { v } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $", "$ 8 _ { v } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $", "$ 2 8 : ~ [ 0 , 1 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 2 , 0 , 0 ) $", "$ 8 _ { s } : ~ [ 0 , 0 , 1 , 0 ] ~ \\leftrightarrow ( 1 , 1 , 1 , 0 ) $", "$ 8 _ { c } : ~ [ 0 , 0 , 0 , 1 ] ~ \\leftrightarrow ( 1 , 1 , 0 , 1 ) $", "$ K _ { \\mu } $", "$ S O ( 8 ) $", "$ \\vert l , J , q _ { i } \\rangle $", "$ S O ( 8 ) $", "$ \\vert l , J , q _ { i } \\rangle $", "$ D , ~ M ^ { 2 } , ~ H _ { i } $", "$ l $", "$ J $", "$ q _ { i } $", "$ Q _ { \\alpha } ^ { i } $", "$ Q $", "$ Q $", "$ P _ { \\mu } $", "$ S O ( 8 ) $", "$ \\{ T \\} _ { + } $", "$ 4 = \\frac { 1 } { 2 } \\; 8 $", "\\begin{equation*} d _ { 1 } = \\frac { 1 } { 2 } ( q _ { 1 } - q _ { 2 } ) \\; , ~ d _ { 2 } = \\frac { 1 } { 2 } ( q _ { 2 } - q _ { 3 } - q _ { 4 } ) \\; , ~ d _ { 3 } = q _ { 3 } \\; , ~ d _ { 4 } = q _ { 4 } \\; . \\end{equation*}", "\\begin{equation*} q _ { 1 } - q _ { 2 } = 2 n \\geq 0 \\; , \\quad q _ { 2 } - q _ { 3 } - q _ { 4 } = 2 k \\geq 0 \\; , \\quad q _ { 3 } \\geq 0 \\; , \\quad q _ { 4 } \\geq 0 \\; . \\end{equation*}", "\\begin{equation*} S _ { \\alpha } ^ { i } \\vert l , J , q _ { i } \\rangle = 0 \\end{equation*}", "\\begin{equation*} \\{ T \\} _ { + } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}", "\\begin{align*} t y p e ~ I ~ 1 \\slash 2 ~ B P S : & & Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = Q ^ { [ + ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = \\\\ & & Q ^ { [ + ] \\{ - \\} } \\vert l , J , q _ { i } \\rangle = 0 \\end{align*}" ], "latex_expand": [ "$ \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } $", "$ \\mitH _ { 1 } , \\ldots , \\mitH _ { 4 } $", "$ \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle $", "$ [ \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } ] $", "$ \\mitU ( 1 ) $", "$ ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) $", "$ 8 _ { \\mitv } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $", "$ 8 _ { \\mitv } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $", "$ 2 8 : ~ [ 0 , 1 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 2 , 0 , 0 ) $", "$ 8 _ { \\mits } : ~ [ 0 , 0 , 1 , 0 ] ~ \\leftrightarrow ( 1 , 1 , 1 , 0 ) $", "$ 8 _ { \\mitc } : ~ [ 0 , 0 , 0 , 1 ] ~ \\leftrightarrow ( 1 , 1 , 0 , 1 ) $", "$ \\mitK _ { \\mitmu } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle $", "$ \\mitS \\mitO ( 8 ) $", "$ \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle $", "$ \\mitD , ~ \\mitM ^ { 2 } , ~ \\mitH _ { \\miti } $", "$ \\ell $", "$ \\mitJ $", "$ \\mitq _ { \\miti } $", "$ \\mitQ _ { \\mitalpha } ^ { \\miti } $", "$ \\mitQ $", "$ \\mitQ $", "$ \\mitP _ { \\mitmu } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\{ \\mitT \\} _ { + } $", "$ 4 = \\frac { 1 } { 2 } \\; 8 $", "\\begin{equation*} \\mitd _ { 1 } = \\frac { 1 } { 2 } ( \\mitq _ { 1 } - \\mitq _ { 2 } ) \\; , ~ \\mitd _ { 2 } = \\frac { 1 } { 2 } ( \\mitq _ { 2 } - \\mitq _ { 3 } - \\mitq _ { 4 } ) \\; , ~ \\mitd _ { 3 } = \\mitq _ { 3 } \\; , ~ \\mitd _ { 4 } = \\mitq _ { 4 } \\; . \\end{equation*}", "\\begin{equation*} \\mitq _ { 1 } - \\mitq _ { 2 } = 2 \\mitn \\geq 0 \\; , \\quad \\mitq _ { 2 } - \\mitq _ { 3 } - \\mitq _ { 4 } = 2 \\mitk \\geq 0 \\; , \\quad \\mitq _ { 3 } \\geq 0 \\; , \\quad \\mitq _ { 4 } \\geq 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitalpha } ^ { \\miti } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\end{equation*}", "\\begin{equation*} \\{ \\mitT \\} _ { + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}", "\\begin{align*} \\displaystyle \\mathrm { t y p e } ~ \\mathrm { I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : & & \\displaystyle \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { [ + ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\\\ & & \\displaystyle \\mitQ ^ { [ + ] \\{ - \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\end{align*}" ], "x_min": [ 0.5695000290870667, 0.1728000044822693, 0.6448000073432922, 0.2281000018119812, 0.5009999871253967, 0.6177999973297119, 0.6807000041007996, 0.1728000044822693, 0.2702000141143799, 0.5543000102043152, 0.1728000044822693, 0.4375, 0.5964000225067139, 0.4223000109195709, 0.6966000199317932, 0.7616000175476074, 0.5321000218391418, 0.8119999766349792, 0.2142000049352646, 0.34139999747276306, 0.4706000089645386, 0.33169999718666077, 0.7968000173568726, 0.4361000061035156, 0.7249000072479248, 0.2888999879360199, 0.18039999902248383, 0.24879999458789825, 0.2087000012397766, 0.43810001015663147, 0.4194999933242798, 0.20319999754428864 ], "y_min": [ 0.16210000216960907, 0.17579999566078186, 0.17479999363422394, 0.19189999997615814, 0.19189999997615814, 0.19189999997615814, 0.2831999957561493, 0.3003000020980835, 0.3003000020980835, 0.3003000020980835, 0.3174000084400177, 0.4779999852180481, 0.4771000146865845, 0.5360999703407288, 0.5360999703407288, 0.5536999702453613, 0.5702999830245972, 0.5713000297546387, 0.5889000296592712, 0.5922999978065491, 0.6215999722480774, 0.6401000022888184, 0.6571999788284302, 0.6919000148773193, 0.7080000042915344, 0.7250999808311462, 0.7583000063896179, 0.218299999833107, 0.36329999566078186, 0.4408999979496002, 0.5083000063896179, 0.7856000065803528 ], "x_max": [ 0.6628000140190125, 0.2653999924659729, 0.7091000080108643, 0.33869999647140503, 0.5418000221252441, 0.7263000011444092, 0.836899995803833, 0.25429999828338623, 0.5382999777793884, 0.8210999965667725, 0.4325999915599823, 0.46380001306533813, 0.6510000228881836, 0.48660001158714294, 0.7512000203132629, 0.8266000151634216, 0.631600022315979, 0.8209999799728394, 0.2273000031709671, 0.35659998655319214, 0.4968999922275543, 0.3476000130176544, 0.8126999735832214, 0.45890000462532043, 0.7795000076293945, 0.33730000257492065, 0.24400000274181366, 0.7526000142097473, 0.7573999762535095, 0.5631999969482422, 0.5819000005722046, 0.789900004863739 ], "y_max": [ 0.17190000414848328, 0.1889999955892563, 0.18940000236034393, 0.2070000022649765, 0.20649999380111694, 0.2070000022649765, 0.2978000044822693, 0.3149000108242035, 0.3149000108242035, 0.3149000108242035, 0.3319999873638153, 0.49219998717308044, 0.49219998717308044, 0.5511999726295471, 0.5511999726295471, 0.5683000087738037, 0.5849000215530396, 0.5820000171661377, 0.5992000102996826, 0.6021000146865845, 0.6366999745368958, 0.6532999873161316, 0.6704000234603882, 0.7060999870300293, 0.722599983215332, 0.7397000193595886, 0.7753999829292297, 0.25049999356269836, 0.3799000084400177, 0.4603999853134155, 0.5264000296592712, 0.8343999981880188 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page08
{ "latex": [ "$2\\ell \\equiv m$", "$q_3=m$", "$q_4=n$", "$m,n$", "\\begin {eqnarray} \\mbox {type II 1/2 BPS:} &&Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = Q^{[+]\\{+\\}}|\\ell , J, q_i\\rangle = \\\\ && Q^{[-]\\{+\\}}|\\ell , J, q_i\\rangle = 0\\;. \\end {eqnarray}", "\\begin {equation}\\label {2.18} \\mbox {type I 1/2 BPS:} \\qquad q_1=q_2=q_3 = 2\\ell \\;, \\quad q_4=0\\;, \\quad J=0\\;; \\end {equation}", "\\begin {equation}\\label {2.18''} \\mbox {type II 1/2 BPS:} \\qquad q_1=q_2=q_4 = 2\\ell \\;, \\quad q_3=0\\;, \\quad J=0\\;, \\end {equation}", "\\begin {equation}\\label {2.18'} \\mbox {type I 1/2 BPS:} \\qquad {\\cal D}(m/2, 0; 0,0,m,0)\\;; \\end {equation}", "\\begin {equation}\\label {2.18'''} \\mbox {type II 1/2 BPS:} \\qquad {\\cal D}(m/2, 0; 0,0,0,m)\\;. \\end {equation}", "\\begin {equation}\\label {2.19} \\mbox {3/8 BPS:} \\qquad Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = Q^{[+]\\{+\\}}|\\ell , J, q_i\\rangle = 0\\;. \\end {equation}", "\\begin {equation}\\label {2.20} q_1=q_2 = q_3+q_4= 2\\ell \\;, \\quad J=0\\;. \\end {equation}", "\\begin {equation}\\label {2.21} \\mbox {3/8 BPS:} \\qquad {\\cal D}(1/2(m+n), 0; 0,0,m,n)\\;. \\end {equation}", "\\begin {equation}\\label {2.22} \\mbox {1/4 BPS:} \\qquad Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = 0\\;. \\end {equation}", "\\begin {equation}\\label {2.23} q_1=q_2 = 2\\ell \\;, \\quad J=0\\;, \\end {equation}" ], "latex_norm": [ "$ 2 l \\equiv m $", "$ q _ { 3 } = m $", "$ q _ { 4 } = n $", "$ m , n $", "\\begin{align*} t y p e ~ I I ~ 1 \\slash 2 ~ B P S : & & Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = Q ^ { [ + ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = \\\\ & & Q ^ { [ - ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{align*}", "\\begin{equation*} t y p e ~ I ~ 1 \\slash 2 ~ B P S : \\qquad q _ { 1 } = q _ { 2 } = q _ { 3 } = 2 l \\; , \\quad q _ { 4 } = 0 \\; , \\quad J = 0 \\; ; \\end{equation*}", "\\begin{equation*} t y p e ~ I I ~ 1 \\slash 2 ~ B P S : \\qquad q _ { 1 } = q _ { 2 } = q _ { 4 } = 2 l \\; , \\quad q _ { 3 } = 0 \\; , \\quad J = 0 \\; , \\end{equation*}", "\\begin{equation*} t y p e ~ I ~ 1 \\slash 2 ~ B P S : \\qquad D ( m \\slash 2 , 0 ; 0 , 0 , m , 0 ) \\; ; \\end{equation*}", "\\begin{equation*} t y p e ~ I I ~ 1 \\slash 2 ~ B P S : \\qquad D ( m \\slash 2 , 0 ; 0 , 0 , 0 , m ) \\; . \\end{equation*}", "\\begin{equation*} 3 \\slash 8 ~ B P S : \\qquad Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = Q ^ { [ + ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}", "\\begin{equation*} q _ { 1 } = q _ { 2 } = q _ { 3 } + q _ { 4 } = 2 l \\; , \\quad J = 0 \\; . \\end{equation*}", "\\begin{equation*} 3 \\slash 8 ~ B P S : \\qquad D ( 1 \\slash 2 ( m + n ) , 0 ; 0 , 0 , m , n ) \\; . \\end{equation*}", "\\begin{equation*} 1 \\slash 4 ~ B P S : \\qquad Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}", "\\begin{equation*} q _ { 1 } = q _ { 2 } = 2 l \\; , \\quad J = 0 \\; , \\end{equation*}" ], "latex_expand": [ "$ 2 \\ell \\equiv \\mitm $", "$ \\mitq _ { 3 } = \\mitm $", "$ \\mitq _ { 4 } = \\mitn $", "$ \\mitm , \\mitn $", "\\begin{align*} \\displaystyle \\mathrm { t y p e } ~ \\mathrm { I I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : & & \\displaystyle \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { [ + ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\\\ & & \\displaystyle \\mitQ ^ { [ - ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{align*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitq _ { 3 } = 2 \\ell \\; , \\quad \\mitq _ { 4 } = 0 \\; , \\quad \\mitJ = 0 \\; ; \\end{equation*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitq _ { 4 } = 2 \\ell \\; , \\quad \\mitq _ { 3 } = 0 \\; , \\quad \\mitJ = 0 \\; , \\end{equation*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitD ( \\mitm \\slash 2 , 0 ; 0 , 0 , \\mitm , 0 ) \\; ; \\end{equation*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitD ( \\mitm \\slash 2 , 0 ; 0 , 0 , 0 , \\mitm ) \\; . \\end{equation*}", "\\begin{equation*} 3 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { [ + ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitq _ { 3 } + \\mitq _ { 4 } = 2 \\ell \\; , \\quad \\mitJ = 0 \\; . \\end{equation*}", "\\begin{equation*} 3 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitD ( 1 \\slash 2 ( \\mitm + \\mitn ) , 0 ; 0 , 0 , \\mitm , \\mitn ) \\; . \\end{equation*}", "\\begin{equation*} 1 \\slash 4 ~ \\mathrm { B P S } : \\qquad \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitq _ { 1 } = \\mitq _ { 2 } = 2 \\ell \\; , \\quad \\mitJ = 0 \\; , \\end{equation*}" ], "x_min": [ 0.22939999401569366, 0.2556999921798706, 0.32690000534057617, 0.4408999979496002, 0.19900000095367432, 0.24459999799728394, 0.2231999933719635, 0.31929999589920044, 0.3165000081062317, 0.20110000669956207, 0.3580000102519989, 0.31859999895095825, 0.29440000653266907, 0.39809998869895935 ], "y_min": [ 0.3540000021457672, 0.6425999999046326, 0.6425999999046326, 0.6425999999046326, 0.17970000207424164, 0.2969000041484833, 0.326200008392334, 0.39649999141693115, 0.4253000020980835, 0.5278000235557556, 0.6064000129699707, 0.6812000274658203, 0.7544000148773193, 0.8159000277519226 ], "x_max": [ 0.2922999858856201, 0.3165000081062317, 0.3822000026702881, 0.4788999855518341, 0.7940000295639038, 0.7531999945640564, 0.7394000291824341, 0.6794000267982483, 0.6841999888420105, 0.7649999856948853, 0.6434000134468079, 0.6834999918937683, 0.7070000171661377, 0.5999000072479248 ], "y_max": [ 0.36469998955726624, 0.652400016784668, 0.652400016784668, 0.6518999934196472, 0.22849999368190765, 0.3149999976158142, 0.3443000018596649, 0.4146000146865845, 0.44339999556541443, 0.54830002784729, 0.6230000257492065, 0.6992999911308289, 0.7749000191688538, 0.8324999809265137 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page09
{ "latex": [ "$q_3$", "$q_4$", "$q_1=q_2 = m+n+2k$", "$q_3=m$", "$q_4=n$", "$m,n,k$", "$Q^i$", "$q_2,q_3$", "$q_4$", "$q_1 = m+n+2k+2l$", "$q_2=m+n+2k$", "$q_3=m$", "$q_4=n$", "$m,n,k,l$", "$OSp(8/4,\\mathbb {R})$", "$OSp(8/4,\\mathbb {R})$", "$OSp(8/4,\\mathbb {R})$", "$m=1$", "${\\cal D}(1/2, 0; 0,0,1,0)$", "${\\cal D}(1/2, 0; 0,0,0,1)$", "$8_v$", "$SO(8)$", "$N=8$", "$N=8$", "${\\cal D}(1/2, 0; 0,0,1,0)$", "\\begin {equation}\\label {2.24} \\mbox {1/4 BPS:} \\qquad {\\cal D}(1/2(m+n)+k, 0; 0,k,m,n)\\;. \\end {equation}", "\\begin {equation}\\label {2.25} \\mbox {1/8 BPS:} \\qquad Q^{++}|\\ell , J, q_i\\rangle = 0\\;. \\end {equation}", "\\begin {equation}\\label {2.26} q_1 = 2\\ell \\;, \\quad J=0\\;, \\end {equation}", "\\begin {equation}\\label {2.27} \\mbox {1/8 BPS:} \\qquad {\\cal D}(1/2(m+n)+k+l, 0; l,k,m,n)\\;. \\end {equation}" ], "latex_norm": [ "$ q _ { 3 } $", "$ q _ { 4 } $", "$ q _ { 1 } = q _ { 2 } = m + n + 2 k $", "$ q _ { 3 } = m $", "$ q _ { 4 } = n $", "$ m , n , k $", "$ Q ^ { i } $", "$ q _ { 2 } , q _ { 3 } $", "$ q _ { 4 } $", "$ q _ { 1 } = m + n + 2 k + 2 l $", "$ q _ { 2 } = m + n + 2 k $", "$ q _ { 3 } = m $", "$ q _ { 4 } = n $", "$ m , n , k , l $", "$ O S p ( 8 \\slash 4 , R ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ m = 1 $", "$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $", "$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 0 , 1 ) $", "$ 8 _ { v } $", "$ S O ( 8 ) $", "$ N = 8 $", "$ N = 8 $", "$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $", "\\begin{equation*} 1 \\slash 4 ~ B P S : \\qquad D ( 1 \\slash 2 ( m + n ) + k , 0 ; 0 , k , m , n ) \\; . \\end{equation*}", "\\begin{equation*} 1 \\slash 8 ~ B P S : \\qquad Q ^ { + + } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}", "\\begin{equation*} q _ { 1 } = 2 l \\; , \\quad J = 0 \\; , \\end{equation*}", "\\begin{equation*} 1 \\slash 8 ~ B P S : \\qquad D ( 1 \\slash 2 ( m + n ) + k + l , 0 ; l , k , m , n ) \\; . \\end{equation*}" ], "latex_expand": [ "$ \\mitq _ { 3 } $", "$ \\mitq _ { 4 } $", "$ \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitm + \\mitn + 2 \\mitk $", "$ \\mitq _ { 3 } = \\mitm $", "$ \\mitq _ { 4 } = \\mitn $", "$ \\mitm , \\mitn , \\mitk $", "$ \\mitQ ^ { \\miti } $", "$ \\mitq _ { 2 } , \\mitq _ { 3 } $", "$ \\mitq _ { 4 } $", "$ \\mitq _ { 1 } = \\mitm + \\mitn + 2 \\mitk + 2 \\mitl $", "$ \\mitq _ { 2 } = \\mitm + \\mitn + 2 \\mitk $", "$ \\mitq _ { 3 } = \\mitm $", "$ \\mitq _ { 4 } = \\mitn $", "$ \\mitm , \\mitn , \\mitk , \\mitl $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitm = 1 $", "$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $", "$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 0 , 1 ) $", "$ 8 _ { \\mitv } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitN = 8 $", "$ \\mitN = 8 $", "$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $", "\\begin{equation*} 1 \\slash 4 ~ \\mathrm { B P S } : \\qquad \\mitD ( 1 \\slash 2 ( \\mitm + \\mitn ) + \\mitk , 0 ; 0 , \\mitk , \\mitm , \\mitn ) \\; . \\end{equation*}", "\\begin{equation*} 1 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitq _ { 1 } = 2 \\ell \\; , \\quad \\mitJ = 0 \\; , \\end{equation*}", "\\begin{equation*} 1 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitD ( 1 \\slash 2 ( \\mitm + \\mitn ) + \\mitk + \\mitl , 0 ; \\mitl , \\mitk , \\mitm , \\mitn ) \\; . \\end{equation*}" ], "x_min": [ 0.1728000044822693, 0.23770000040531158, 0.6205999851226807, 0.1728000044822693, 0.25290000438690186, 0.3801000118255615, 0.6807000041007996, 0.1728000044822693, 0.25850000977516174, 0.5009999871253967, 0.6848999857902527, 0.1728000044822693, 0.24529999494552612, 0.3634999990463257, 0.19699999690055847, 0.47749999165534973, 0.4187999963760376, 0.46650001406669617, 0.7146000266075134, 0.19699999690055847, 0.5701000094413757, 0.6171000003814697, 0.3580000102519989, 0.6434000134468079, 0.6717000007629395, 0.29989999532699585, 0.36489999294281006, 0.420199990272522, 0.28679999709129333 ], "y_min": [ 0.16210000216960907, 0.16210000216960907, 0.1581999957561493, 0.17919999361038208, 0.17919999361038208, 0.1753000020980835, 0.2709999978542328, 0.3978999853134155, 0.3984000086784363, 0.3944999873638153, 0.3944999873638153, 0.4154999852180481, 0.4154999852180481, 0.4115999937057495, 0.49070000648498535, 0.5590999722480774, 0.6553000211715698, 0.673799991607666, 0.6723999977111816, 0.6894999742507935, 0.7768999934196472, 0.7753999829292297, 0.7935000061988831, 0.8276000022888184, 0.8438000082969666, 0.22020000219345093, 0.298799991607666, 0.3662000000476837, 0.4390000104904175 ], "x_max": [ 0.19009999930858612, 0.25429999828338623, 0.8209999799728394, 0.23909999430179596, 0.31369999051094055, 0.4381999969482422, 0.7020999789237976, 0.21559999883174896, 0.2750999927520752, 0.673799991607666, 0.8209999799728394, 0.23360000550746918, 0.30059999227523804, 0.4368000030517578, 0.30480000376701355, 0.5845999717712402, 0.5259000062942505, 0.5203999876976013, 0.8687000274658203, 0.35179999470710754, 0.5888000130653381, 0.6717000007629395, 0.4153999984264374, 0.6980000138282776, 0.8264999985694885, 0.7013999819755554, 0.6371999979019165, 0.578499972820282, 0.7146000266075134 ], "y_max": [ 0.17190000414848328, 0.17190000414848328, 0.17190000414848328, 0.1889999955892563, 0.1889999955892563, 0.1889999955892563, 0.2856000065803528, 0.4077000021934509, 0.4077000021934509, 0.4077000021934509, 0.4077000021934509, 0.42480000853538513, 0.42480000853538513, 0.42480000853538513, 0.505299985408783, 0.5741999745368958, 0.6699000000953674, 0.6836000084877014, 0.6869999766349792, 0.7041000127792358, 0.7886000275611877, 0.7900000214576721, 0.8037999868392944, 0.8378999829292297, 0.8589000105857849, 0.23829999566078186, 0.31779998540878296, 0.38280001282691956, 0.4571000039577484 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page10
{ "latex": [ "$8_s$", "$SO(8)$", "$\\Phi _a(x^\\mu , \\theta ^\\alpha _i)$", "$8_s$", "$a$", "$\\Phi _a$", "$N=8$", "$SO(8)$", "$\\psi _{\\alpha \\; ia} \\ \\rightarrow \\^^M8_v \\otimes 8_s = 8_c \\oplus 56_s$", "$56_s$", "$\\psi _{\\alpha \\; ia}$", "$D^i_\\alpha $", "$SO(8)$", "$\\gamma ^i_{a\\dot b}$", "$\\tilde \\gamma ^i_{\\dot a b} = (\\gamma ^{iT})_{\\dot a b}$", "$\\partial _{\\alpha \\beta }= \\partial _{\\beta \\alpha } = (\\Gamma ^\\mu )_{\\alpha \\beta }\\partial _\\mu $", "$\\gamma _{ij\\ldots }$", "$SO(8)$", "$8_s$", "$8_c$", "$SO(8)$", "$OSp(N/4)$", "\\begin {equation}\\label {2} \\Phi _a(x^\\mu , \\theta ^\\alpha _i) = \\phi _a(x) + \\theta ^\\alpha _i \\psi _{\\alpha \\; ia}(x) + \\ldots \\;, \\end {equation}", "\\begin {equation}\\label {3} \\mbox {type I:}\\qquad D^i_\\alpha \\Phi _a = {1\\over 8}\\gamma ^i_{a\\dot b}\\tilde \\gamma ^j_{\\dot b c} D^j_\\alpha \\Phi _c\\;. \\end {equation}", "\\begin {equation}\\label {4} \\{D^i_\\alpha ,D^j_\\beta \\}= 2i\\delta ^{ij}(\\Gamma ^\\mu )_{\\alpha \\beta }\\partial _\\mu \\;. \\end {equation}", "\\begin {equation}\\label {5} \\gamma ^i_{a\\dot b}\\tilde \\gamma ^j_{\\dot b c} + \\gamma ^j_{a\\dot b}\\tilde \\gamma ^i_{\\dot b c} = 2\\delta ^{ij} \\delta _{ac}\\;, \\qquad \\tilde \\gamma ^i_{\\dot ab}\\gamma ^j_{b\\dot c} + \\tilde \\gamma ^j_{\\dot ab}\\gamma ^i_{b\\dot c} = 2\\delta ^{ij} \\delta _{\\dot a\\dot c}\\;. \\end {equation}", "\\begin {eqnarray} \\Phi _a(x^\\mu , \\theta ^\\alpha _i)&=&\\phi _a(x) + \\theta ^\\alpha _i (\\gamma _i)_{a\\dot b}\\; \\psi _{\\alpha \\; \\dot b}(x) \\\\ && +\\theta ^{\\alpha }_i\\theta ^{\\beta }_j (\\gamma _{ij})_{ab} \\; i\\partial _{\\alpha \\beta } \\phi _b \\\\ && +\\theta ^{\\alpha }_i\\theta ^\\beta _i\\theta ^{\\gamma }_k (\\gamma _{ijk})_{a\\dot b} \\; i\\partial _{(\\alpha \\beta } \\psi _{\\gamma )\\dot b} \\\\ && +\\theta ^{\\alpha }_i\\theta ^\\beta _i\\theta ^\\gamma _k\\theta ^{\\delta }_l (\\gamma _{ijkl})_{ab}\\; \\partial _{(\\alpha \\beta } \\partial _{\\gamma \\delta )} \\phi _b \\end {eqnarray}", "\\begin {equation}\\label {7} \\square \\phi _a = 0\\;, \\qquad \\partial ^{\\alpha \\beta }\\psi _{\\beta \\; \\dot a} = 0\\;. \\end {equation}" ], "latex_norm": [ "$ 8 _ { s } $", "$ S O ( 8 ) $", "$ \\Phi _ { a } ( x ^ { \\mu } , \\theta _ { i } ^ { \\alpha } ) $", "$ 8 _ { s } $", "$ a $", "$ \\Phi _ { a } $", "$ N = 8 $", "$ S O ( 8 ) $", "$ \\psi _ { \\alpha \\; i a } ~ \\rightarrow ~ 8 _ { v } \\otimes 8 _ { s } = 8 _ { c } \\oplus 5 6 _ { s } $", "$ 5 6 _ { s } $", "$ \\psi _ { \\alpha \\; i a } $", "$ D _ { \\alpha } ^ { i } $", "$ S O ( 8 ) $", "$ \\gamma _ { a \\dot { b } } ^ { i } $", "$ \\widetilde { \\gamma } _ { \\dot { a } b } ^ { i } = ( \\gamma ^ { i T } ) _ { \\dot { a } b } $", "$ \\partial _ { \\alpha \\beta } = \\partial _ { \\beta \\alpha } = ( \\Gamma ^ { \\mu } ) _ { \\alpha \\beta } \\partial _ { \\mu } $", "$ \\gamma _ { i j \\ldots } $", "$ S O ( 8 ) $", "$ 8 _ { s } $", "$ 8 _ { c } $", "$ S O ( 8 ) $", "$ O S p ( N \\slash 4 ) $", "\\begin{equation*} \\Phi _ { a } ( x ^ { \\mu } , \\theta _ { i } ^ { \\alpha } ) = \\phi _ { a } ( x ) + \\theta _ { i } ^ { \\alpha } \\psi _ { \\alpha \\; i a } ( x ) + \\ldots \\; , \\end{equation*}", "\\begin{equation*} t y p e ~ I : \\qquad D _ { \\alpha } ^ { i } \\Phi _ { a } = \\frac { 1 } { 8 } \\gamma _ { a \\dot { b } } ^ { i } \\widetilde { \\gamma } _ { \\dot { b } c } ^ { j } D _ { \\alpha } ^ { j } \\Phi _ { c } \\; . \\end{equation*}", "\\begin{equation*} \\{ D _ { \\alpha } ^ { i } , D _ { \\beta } ^ { j } \\} = 2 i \\delta ^ { i j } ( \\Gamma ^ { \\mu } ) _ { \\alpha \\beta } \\partial _ { \\mu } \\; . \\end{equation*}", "\\begin{equation*} \\gamma _ { a \\dot { b } } ^ { i } \\widetilde { \\gamma } _ { \\dot { b } c } ^ { j } + \\gamma _ { a \\dot { b } } ^ { j } \\widetilde { \\gamma } _ { \\dot { b } c } ^ { i } = 2 \\delta ^ { i j } \\delta _ { a c } \\; , \\qquad \\widetilde { \\gamma } _ { \\dot { a } b } ^ { i } \\gamma _ { b \\dot { c } } ^ { j } + \\widetilde { \\gamma } _ { \\dot { a } b } ^ { j } \\gamma _ { b \\dot { c } } ^ { i } = 2 \\delta ^ { i j } \\delta _ { \\dot { a } \\dot { c } } \\; . \\end{equation*}", "\\begin{align*} \\Phi _ { a } ( x ^ { \\mu } , \\theta _ { i } ^ { \\alpha } ) & = & \\phi _ { a } ( x ) + \\theta _ { i } ^ { \\alpha } ( \\gamma _ { i } ) _ { a \\dot { b } } \\; \\psi _ { \\alpha \\; \\dot { b } } ( x ) \\\\ & & + \\theta _ { i } ^ { \\alpha } \\theta _ { j } ^ { \\beta } ( \\gamma _ { i j } ) _ { a b } \\; i \\partial _ { \\alpha \\beta } \\phi _ { b } \\\\ & & + \\theta _ { i } ^ { \\alpha } \\theta _ { i } ^ { \\beta } \\theta _ { k } ^ { \\gamma } ( \\gamma _ { i j k } ) _ { a \\dot { b } } \\; i \\partial _ { ( \\alpha \\beta } \\psi _ { \\gamma ) \\dot { b } } \\\\ & & + \\theta _ { i } ^ { \\alpha } \\theta _ { i } ^ { \\beta } \\theta _ { k } ^ { \\gamma } \\theta _ { l } ^ { \\delta } ( \\gamma _ { i j k l } ) _ { a b } \\; \\partial _ { ( \\alpha \\beta } \\partial _ { \\gamma \\delta ) } \\phi _ { b } \\end{align*}", "\\begin{equation*} \\square \\phi _ { a } = 0 \\; , \\qquad \\partial ^ { \\alpha \\beta } \\psi _ { \\beta \\; \\dot { a } } = 0 \\; . \\end{equation*}" ], "latex_expand": [ "$ 8 _ { \\mits } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mupPhi _ { \\mita } ( \\mitx ^ { \\mitmu } , \\mittheta _ { \\miti } ^ { \\mitalpha } ) $", "$ 8 _ { \\mits } $", "$ \\mita $", "$ \\mupPhi _ { \\mita } $", "$ \\mitN = 8 $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitpsi _ { \\mitalpha \\; \\miti \\mita } ~ \\rightarrow ~ 8 _ { \\mitv } \\otimes 8 _ { \\mits } = 8 _ { \\mitc } \\oplus 5 6 _ { \\mits } $", "$ 5 6 _ { \\mits } $", "$ \\mitpsi _ { \\mitalpha \\; \\miti \\mita } $", "$ \\mitD _ { \\mitalpha } ^ { \\miti } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\miti } $", "$ \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\miti } = ( \\mitgamma ^ { \\miti \\mitT } ) _ { \\dot { \\mita } \\mitb } $", "$ \\mitpartial _ { \\mitalpha \\mitbeta } = \\mitpartial _ { \\mitbeta \\mitalpha } = ( \\mupGamma ^ { \\mitmu } ) _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitmu } $", "$ \\mitgamma _ { \\miti \\mitj \\ldots } $", "$ \\mitS \\mitO ( 8 ) $", "$ 8 _ { \\mits } $", "$ 8 _ { \\mitc } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitO \\mitS \\mitp ( \\mitN \\slash 4 ) $", "\\begin{equation*} \\mupPhi _ { \\mita } ( \\mitx ^ { \\mitmu } , \\mittheta _ { \\miti } ^ { \\mitalpha } ) = \\mitphi _ { \\mita } ( \\mitx ) + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mitpsi _ { \\mitalpha \\; \\miti \\mita } ( \\mitx ) + \\ldots \\; , \\end{equation*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } : \\qquad \\mitD _ { \\mitalpha } ^ { \\miti } \\mupPhi _ { \\mita } = \\frac { 1 } { 8 } \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\miti } \\tilde { \\mitgamma } _ { \\dot { \\mitb } \\mitc } ^ { \\mitj } \\mitD _ { \\mitalpha } ^ { \\mitj } \\mupPhi _ { \\mitc } \\; . \\end{equation*}", "\\begin{equation*} \\{ \\mitD _ { \\mitalpha } ^ { \\miti } , \\mitD _ { \\mitbeta } ^ { \\mitj } \\} = 2 \\miti \\mitdelta ^ { \\miti \\mitj } ( \\mupGamma ^ { \\mitmu } ) _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitmu } \\; . \\end{equation*}", "\\begin{equation*} \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\miti } \\tilde { \\mitgamma } _ { \\dot { \\mitb } \\mitc } ^ { \\mitj } + \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\mitj } \\tilde { \\mitgamma } _ { \\dot { \\mitb } \\mitc } ^ { \\miti } = 2 \\mitdelta ^ { \\miti \\mitj } \\mitdelta _ { \\mita \\mitc } \\; , \\qquad \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\miti } \\mitgamma _ { \\mitb \\dot { \\mitc } } ^ { \\mitj } + \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\mitj } \\mitgamma _ { \\mitb \\dot { \\mitc } } ^ { \\miti } = 2 \\mitdelta ^ { \\miti \\mitj } \\mitdelta _ { \\dot { \\mita } \\dot { \\mitc } } \\; . \\end{equation*}", "\\begin{align*} \\displaystyle \\mupPhi _ { \\mita } ( \\mitx ^ { \\mitmu } , \\mittheta _ { \\miti } ^ { \\mitalpha } ) & = & \\displaystyle \\mitphi _ { \\mita } ( \\mitx ) + \\mittheta _ { \\miti } ^ { \\mitalpha } ( \\mitgamma _ { \\miti } ) _ { \\mita \\dot { \\mitb } } \\; \\mitpsi _ { \\mitalpha \\; \\dot { \\mitb } } ( \\mitx ) \\\\ & & \\displaystyle + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mittheta _ { \\mitj } ^ { \\mitbeta } ( \\mitgamma _ { \\miti \\mitj } ) _ { \\mita \\mitb } \\; \\miti \\mitpartial _ { \\mitalpha \\mitbeta } \\mitphi _ { \\mitb } \\\\ & & \\displaystyle + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mittheta _ { \\miti } ^ { \\mitbeta } \\mittheta _ { \\mitk } ^ { \\mitgamma } ( \\mitgamma _ { \\miti \\mitj \\mitk } ) _ { \\mita \\dot { \\mitb } } \\; \\miti \\mitpartial _ { ( \\mitalpha \\mitbeta } \\mitpsi _ { \\mitgamma ) \\dot { \\mitb } } \\\\ & & \\displaystyle + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mittheta _ { \\miti } ^ { \\mitbeta } \\mittheta _ { \\mitk } ^ { \\mitgamma } \\mittheta _ { \\mitl } ^ { \\mitdelta } ( \\mitgamma _ { \\miti \\mitj \\mitk \\mitl } ) _ { \\mita \\mitb } \\; \\mitpartial _ { ( \\mitalpha \\mitbeta } \\mitpartial _ { \\mitgamma \\mitdelta ) } \\mitphi _ { \\mitb } \\end{align*}", "\\begin{equation*} \\square \\mitphi _ { \\mita } = 0 \\; , \\qquad \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitpsi _ { \\mitbeta \\; \\dot { \\mita } } = 0 \\; . \\end{equation*}" ], "x_min": [ 0.5009999871253967, 0.5432000160217285, 0.1728000044822693, 0.446399986743927, 0.5231999754905701, 0.33169999718666077, 0.6316999793052673, 0.33309999108314514, 0.40220001339912415, 0.20659999549388885, 0.30550000071525574, 0.22050000727176666, 0.21220000088214874, 0.4174000024795532, 0.48579999804496765, 0.23010000586509705, 0.46860000491142273, 0.2053000032901764, 0.6365000009536743, 0.1728000044822693, 0.274399995803833, 0.46299999952316284, 0.33169999718666077, 0.3531000018119812, 0.3828999996185303, 0.2653999924659729, 0.30410000681877136, 0.3808000087738037 ], "y_min": [ 0.15919999778270721, 0.15770000219345093, 0.17479999363422394, 0.17630000412464142, 0.17919999361038208, 0.19290000200271606, 0.19290000200271606, 0.2890999913215637, 0.2896000146865845, 0.3246999979019165, 0.32420000433921814, 0.3959999978542328, 0.45750001072883606, 0.45649999380111694, 0.45649999380111694, 0.6869999766349792, 0.6913999915122986, 0.7041000127792358, 0.7817000150680542, 0.798799991607666, 0.7973999977111816, 0.8256999850273132, 0.25440001487731934, 0.34860000014305115, 0.4253000020980835, 0.5, 0.5776000022888184, 0.7333999872207642 ], "x_max": [ 0.5189999938011169, 0.5978000164031982, 0.2599000036716461, 0.4643999934196472, 0.5343000292778015, 0.3544999957084656, 0.6862999796867371, 0.38769999146461487, 0.64410001039505, 0.23420000076293945, 0.3449000120162964, 0.2475000023841858, 0.2667999863624573, 0.4429999887943268, 0.5942999720573425, 0.4221999943256378, 0.5031999945640564, 0.2599000036716461, 0.6545000076293945, 0.19009999930858612, 0.32899999618530273, 0.5404000282287598, 0.6661999821662903, 0.6481999754905701, 0.6186000108718872, 0.7360000014305115, 0.694599986076355, 0.6205999851226807 ], "y_max": [ 0.17090000212192535, 0.17229999601840973, 0.18940000236034393, 0.18799999356269836, 0.1860000044107437, 0.20559999346733093, 0.20319999754428864, 0.3037000000476837, 0.3027999997138977, 0.33640000224113464, 0.33739998936653137, 0.4115999937057495, 0.47209998965263367, 0.4745999872684479, 0.47209998965263367, 0.7020999789237976, 0.7020999789237976, 0.7186999917030334, 0.7939000129699707, 0.8109999895095825, 0.8125, 0.8378999829292297, 0.27250000834465027, 0.3813000023365021, 0.44780001044273376, 0.5234000086784363, 0.6766999959945679, 0.7538999915122986 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page11
{ "latex": [ "$\\phi _a$", "$\\psi _{\\alpha \\; \\dot a}$", "$1/2$", "$1$", "$\\Phi _a$", "$1/2$", "${\\cal D}(1/2, 0; 0,0,1,0)$", "$\\Sigma _{\\dot a}$", "$8_c$", "$\\sigma _{\\dot a}(x)$", "$\\chi _{\\alpha \\;a}(x)$", "$8_c$", "$8_s$", "$28-4 = 24$", "$SO(8)$", "$8_s,8_c,8_v$", "$Spin(8)/U(4)$", "$U(4)$", "\\begin {equation}\\label {3'} \\mbox {type II:}\\qquad D^i_\\alpha \\Sigma _{\\dot a} = {1\\over 8}\\tilde \\gamma ^i_{\\dot a b}\\gamma ^j_{b\\dot c} D^j_\\alpha \\Sigma _{\\dot c}\\;. \\end {equation}", "\\begin {equation}\\label {8} {SO(8)\\over [SO(2)]^4} \\ \\sim \\ {Spin(8)\\over [U(1)]^4}\\;. \\end {equation}", "\\begin {equation}\\label {9} u_a^A\\;, \\ w^{\\dot A}_{\\dot a}\\;, \\ v^I_i \\end {equation}" ], "latex_norm": [ "$ \\phi _ { a } $", "$ \\psi _ { \\alpha \\; \\dot { a } } $", "$ 1 \\slash 2 $", "$ 1 $", "$ \\Phi _ { a } $", "$ 1 \\slash 2 $", "$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $", "$ \\Sigma _ { \\dot { a } } $", "$ 8 _ { c } $", "$ \\sigma _ { \\dot { a } } ( x ) $", "$ \\chi _ { \\alpha \\; a } ( x ) $", "$ 8 _ { c } $", "$ 8 _ { s } $", "$ 2 8 - 4 = 2 4 $", "$ S O ( 8 ) $", "$ 8 _ { s } , 8 _ { c } , 8 _ { v } $", "$ S p i n ( 8 ) \\slash U ( 4 ) $", "$ U ( 4 ) $", "\\begin{equation*} t y p e ~ I I : \\qquad D _ { \\alpha } ^ { i } \\Sigma _ { \\dot { a } } = \\frac { 1 } { 8 } \\widetilde { \\gamma } _ { \\dot { a } b } ^ { i } \\gamma _ { b \\dot { c } } ^ { j } D _ { \\alpha } ^ { j } \\Sigma _ { \\dot { c } } \\; . \\end{equation*}", "\\begin{equation*} \\frac { S O ( 8 ) } { [ S O ( 2 ) ] ^ { 4 } } ~ \\sim ~ \\frac { S p i n ( 8 ) } { [ U ( 1 ) ] ^ { 4 } } \\; . \\end{equation*}", "\\begin{equation*} u _ { a } ^ { A } \\; , ~ w _ { \\dot { a } } ^ { \\dot { A } } \\; , ~ v _ { i } ^ { I } \\end{equation*}" ], "latex_expand": [ "$ \\mitphi _ { \\mita } $", "$ \\mitpsi _ { \\mitalpha \\; \\dot { \\mita } } $", "$ 1 \\slash 2 $", "$ 1 $", "$ \\mupPhi _ { \\mita } $", "$ 1 \\slash 2 $", "$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $", "$ \\mupSigma _ { \\dot { \\mita } } $", "$ 8 _ { \\mitc } $", "$ \\mitsigma _ { \\dot { \\mita } } ( \\mitx ) $", "$ \\mitchi _ { \\mitalpha \\; \\mita } ( \\mitx ) $", "$ 8 _ { \\mitc } $", "$ 8 _ { \\mits } $", "$ 2 8 - 4 = 2 4 $", "$ \\mitS \\mitO ( 8 ) $", "$ 8 _ { \\mits } , 8 _ { \\mitc } , 8 _ { \\mitv } $", "$ \\mitS \\mitp \\miti \\mitn ( 8 ) \\slash \\mitU ( 4 ) $", "$ \\mitU ( 4 ) $", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } : \\qquad \\mitD _ { \\mitalpha } ^ { \\miti } \\mupSigma _ { \\dot { \\mita } } = \\frac { 1 } { 8 } \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\miti } \\mitgamma _ { \\mitb \\dot { \\mitc } } ^ { \\mitj } \\mitD _ { \\mitalpha } ^ { \\mitj } \\mupSigma _ { \\dot { \\mitc } } \\; . \\end{equation*}", "\\begin{equation*} \\frac { \\mitS \\mitO ( 8 ) } { [ \\mitS \\mitO ( 2 ) ] ^ { 4 } } ~ \\sim ~ \\frac { \\mitS \\mitp \\miti \\mitn ( 8 ) } { [ \\mitU ( 1 ) ] ^ { 4 } } \\; . \\end{equation*}", "\\begin{equation*} \\mitu _ { \\mita } ^ { \\mitA } \\; , ~ \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } \\; , ~ \\mitv _ { \\miti } ^ { \\mitI } \\end{equation*}" ], "x_min": [ 0.5839999914169312, 0.6545000076293945, 0.274399995803833, 0.349700003862381, 0.7670999765396118, 0.2646999955177307, 0.6661999821662903, 0.4277999997138977, 0.5583999752998352, 0.6600000262260437, 0.1728000044822693, 0.29649999737739563, 0.3580000102519989, 0.25780001282691956, 0.6682999730110168, 0.6288999915122986, 0.541100025177002, 0.7214999794960022, 0.349700003862381, 0.4000999927520752, 0.44510000944137573 ], "y_min": [ 0.1753000020980835, 0.1753000020980835, 0.19189999997615814, 0.19339999556541443, 0.19290000200271606, 0.20900000631809235, 0.20900000631809235, 0.24410000443458557, 0.2451000064611435, 0.30959999561309814, 0.32710000872612, 0.3285999894142151, 0.3285999894142151, 0.5957000255584717, 0.6460000276565552, 0.6646000146865845, 0.7710000276565552, 0.7851999998092651, 0.26899999380111694, 0.5429999828338623, 0.7070000171661377 ], "x_max": [ 0.6047000288963318, 0.6891000270843506, 0.30410000681877136, 0.36010000109672546, 0.7906000018119812, 0.29440000653266907, 0.8209999799728394, 0.4505999982357025, 0.5756999850273132, 0.7063000202178955, 0.23360000550746918, 0.31380000710487366, 0.37599998712539673, 0.36489999294281006, 0.7221999764442444, 0.699400007724762, 0.6413000226020813, 0.7560999989509583, 0.652400016784668, 0.6011999845504761, 0.5570999979972839 ], "y_max": [ 0.1889999955892563, 0.1889999955892563, 0.20649999380111694, 0.20319999754428864, 0.20559999346733093, 0.2240999937057495, 0.2240999937057495, 0.25679999589920044, 0.25679999589920044, 0.3246999979019165, 0.3416999876499176, 0.3402999937534332, 0.3402999937534332, 0.6068999767303467, 0.6606000065803528, 0.676800012588501, 0.7832000255584717, 0.7973999977111816, 0.30169999599456787, 0.5806000232696533, 0.7294999957084656 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003051_page12
{ "latex": [ "$A$", "$\\dot A$", "$I$", "$8_s$", "$8_c$", "$8_v$", "$U(1)$", "$[U(1)]^4$", "$8\\times 8$", "$SO(8)\\sim Spin(8)$", "$SO(8)$", "$SO(8)$", "$u,w$", "$[U(1)]^4$", "$U(1)$", "$[U(1)]^4$", "$SO(8)\\sim Spin(8)$", "$SO(8)$", "$SO(8)$", "\\begin {equation}\\label {10} u_a^A u_a^B = \\delta ^{AB}\\;, \\quad w^{\\dot A}_{\\dot a} w^{\\dot B}_{\\dot a} = \\delta ^{\\dot A\\dot B}\\;, \\quad v^I_i v^J_i = \\delta ^{IJ} \\end {equation}", "\\begin {equation}\\label {11} u_a^A (\\gamma ^I)_{A\\dot A} w^{\\dot A}_{\\dot a} = v^I_i (\\gamma ^i)_{a\\dot a}\\;. \\end {equation}", "\\begin {eqnarray} \\phi ^{+(+)[+]}(u,w) &=&\\phi _a u^{+(+)[+]}_a \\\\ && + \\phi _{abc} u^{+(+)[+]}_a u^{+(+)[+]}_b u^{-(-)[-]}_c \\\\ && + \\phi _{a\\dot b\\dot c} u^{+(+)[+]}_a w^{+(+)\\{+\\}}_{\\dot b} w^{-(-)\\{-\\}}_{\\dot c} + \\ldots \\;. \\end {eqnarray}", "\\begin {equation}\\label {14} D^{IJ} = u^A_a (\\gamma ^{IJ})^{AB}{\\partial \\over \\partial u^B_a} + w^{\\dot A}_{\\dot a} (\\gamma ^{IJ})^{\\dot A\\dot B}{\\partial \\over \\partial w^{\\dot B}_{\\dot a}} + v^{[I}_i {\\partial \\over \\partial v^{J]}_{i}}\\;. \\end {equation}" ], "latex_norm": [ "$ A $", "$ \\dot { A } $", "$ I $", "$ 8 _ { s } $", "$ 8 _ { c } $", "$ 8 _ { v } $", "$ U ( 1 ) $", "$ [ U ( 1 ) ] ^ { 4 } $", "$ 8 \\times 8 $", "$ S O ( 8 ) \\sim S p i n ( 8 ) $", "$ S O ( 8 ) $", "$ S O ( 8 ) $", "$ u , w $", "$ [ U ( 1 ) ] ^ { 4 } $", "$ U ( 1 ) $", "$ [ U ( 1 ) ] ^ { 4 } $", "$ S O ( 8 ) \\sim S p i n ( 8 ) $", "$ S O ( 8 ) $", "$ S O ( 8 ) $", "\\begin{equation*} u _ { a } ^ { A } u _ { a } ^ { B } = \\delta ^ { A B } \\; , \\quad w _ { \\dot { a } } ^ { \\dot { A } } w _ { \\dot { a } } ^ { \\dot { B } } = \\delta ^ { \\dot { A } \\dot { B } } \\; , \\quad v _ { i } ^ { I } v _ { i } ^ { J } = \\delta ^ { I J } \\end{equation*}", "\\begin{equation*} u _ { a } ^ { A } ( \\gamma ^ { I } ) _ { A \\dot { A } } w _ { \\dot { a } } ^ { \\dot { A } } = v _ { i } ^ { I } ( \\gamma ^ { i } ) _ { a \\dot { a } } \\; . \\end{equation*}", "\\begin{align*} \\phi ^ { + ( + ) [ + ] } ( u , w ) & = & \\phi _ { a } u _ { a } ^ { + ( + ) [ + ] } \\\\ & & + \\phi _ { a b c } u _ { a } ^ { + ( + ) [ + ] } u _ { b } ^ { + ( + ) [ + ] } u _ { c } ^ { - ( - ) [ - ] } \\\\ & & + \\phi _ { a \\dot { b } \\dot { c } } u _ { a } ^ { + ( + ) [ + ] } w _ { \\dot { b } } ^ { + ( + ) \\{ + \\} } w _ { \\dot { c } } ^ { - ( - ) \\{ - \\} } + \\ldots \\; . \\end{align*}", "\\begin{equation*} D ^ { I J } = u _ { a } ^ { A } ( \\gamma ^ { I J } ) ^ { A B } \\frac { \\partial } { \\partial u _ { a } ^ { B } } + w _ { \\dot { a } } ^ { \\dot { A } } ( \\gamma ^ { I J } ) ^ { \\dot { A } \\dot { B } } \\frac { \\partial } { \\partial w _ { \\dot { a } } ^ { \\dot { B } } } + v _ { i } ^ { [ I } \\frac { \\partial } { \\partial v _ { i } ^ { J ] } } \\; . \\end{equation*}" ], "latex_expand": [ "$ \\mitA $", "$ \\dot { \\mitA } $", "$ \\mitI $", "$ 8 _ { \\mits } $", "$ 8 _ { \\mitc } $", "$ 8 _ { \\mitv } $", "$ \\mitU ( 1 ) $", "$ [ \\mitU ( 1 ) ] ^ { 4 } $", "$ 8 \\times 8 $", "$ \\mitS \\mitO ( 8 ) \\sim \\mitS \\mitp \\miti \\mitn ( 8 ) $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitu , \\mitw $", "$ [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitU ( 1 ) $", "$ [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitS \\mitO ( 8 ) \\sim \\mitS \\mitp \\miti \\mitn ( 8 ) $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitS \\mitO ( 8 ) $", "\\begin{equation*} \\mitu _ { \\mita } ^ { \\mitA } \\mitu _ { \\mita } ^ { \\mitB } = \\mitdelta ^ { \\mitA \\mitB } \\; , \\quad \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitB } } = \\mitdelta ^ { \\dot { \\mitA } \\dot { \\mitB } } \\; , \\quad \\mitv _ { \\miti } ^ { \\mitI } \\mitv _ { \\miti } ^ { \\mitJ } = \\mitdelta ^ { \\mitI \\mitJ } \\end{equation*}", "\\begin{equation*} \\mitu _ { \\mita } ^ { \\mitA } ( \\mitgamma ^ { \\mitI } ) _ { \\mitA \\dot { \\mitA } } \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } = \\mitv _ { \\miti } ^ { \\mitI } ( \\mitgamma ^ { \\miti } ) _ { \\mita \\dot { \\mita } } \\; . \\end{equation*}", "\\begin{align*} \\displaystyle \\mitphi ^ { + ( + ) [ + ] } ( \\mitu , \\mitw ) & = & \\displaystyle \\mitphi _ { \\mita } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\\\ & & \\displaystyle + \\mitphi _ { \\mita \\mitb \\mitc } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\mitu _ { \\mitb } ^ { + ( + ) [ + ] } \\mitu _ { \\mitc } ^ { - ( - ) [ - ] } \\\\ & & \\displaystyle + \\mitphi _ { \\mita \\dot { \\mitb } \\dot { \\mitc } } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\mitw _ { \\dot { \\mitb } } ^ { + ( + ) \\{ + \\} } \\mitw _ { \\dot { \\mitc } } ^ { - ( - ) \\{ - \\} } + \\ldots \\; . \\end{align*}", "\\begin{equation*} \\mitD ^ { \\mitI \\mitJ } = \\mitu _ { \\mita } ^ { \\mitA } ( \\mitgamma ^ { \\mitI \\mitJ } ) ^ { \\mitA \\mitB } \\frac { \\mitpartial } { \\mitpartial \\mitu _ { \\mita } ^ { \\mitB } } + \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } ( \\mitgamma ^ { \\mitI \\mitJ } ) ^ { \\dot { \\mitA } \\dot { \\mitB } } \\frac { \\mitpartial } { \\mitpartial \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitB } } } + \\mitv _ { \\miti } ^ { [ \\mitI } \\frac { \\mitpartial } { \\mitpartial \\mitv _ { \\miti } ^ { \\mitJ ] } } \\; . \\end{equation*}" ], "x_min": [ 0.22869999706745148, 0.25429999828338623, 0.3124000132083893, 0.6068000197410583, 0.6358000040054321, 0.6952000260353088, 0.4097999930381775, 0.1728000044822693, 0.5825999975204468, 0.5612000226974487, 0.7339000105857849, 0.2777999937534332, 0.4505999982357025, 0.33719998598098755, 0.33379998803138733, 0.6654999852180481, 0.5791000127792358, 0.7063000202178955, 0.1728000044822693, 0.3109999895095825, 0.3946000039577484, 0.25220000743865967, 0.27639999985694885 ], "y_min": [ 0.15870000422000885, 0.15530000627040863, 0.15870000422000885, 0.15919999778270721, 0.15919999778270721, 0.15919999778270721, 0.17479999363422394, 0.19140000641345978, 0.19339999556541443, 0.20900000631809235, 0.22609999775886536, 0.39890000224113464, 0.4722000062465668, 0.5185999870300293, 0.5360999703407288, 0.663100004196167, 0.6807000041007996, 0.698199987411499, 0.8467000126838684, 0.25540000200271606, 0.35109999775886536, 0.5845000147819519, 0.7675999999046326 ], "x_max": [ 0.24390000104904175, 0.2694999873638153, 0.32280001044273376, 0.6248000264167786, 0.6531000137329102, 0.7139000296592712, 0.4505999982357025, 0.2321999967098236, 0.6281999945640564, 0.7091000080108643, 0.7885000109672546, 0.33239999413490295, 0.48579999804496765, 0.39730000495910645, 0.37529999017715454, 0.725600004196167, 0.7360000014305115, 0.7609000205993652, 0.2190999984741211, 0.6904000043869019, 0.6068000197410583, 0.7462999820709229, 0.7249000072479248 ], "y_max": [ 0.16899999976158142, 0.16899999976158142, 0.16899999976158142, 0.17090000212192535, 0.17090000212192535, 0.17090000212192535, 0.18940000236034393, 0.2070000022649765, 0.2046000063419342, 0.2240999937057495, 0.24120000004768372, 0.41350001096725464, 0.4814999997615814, 0.5336999893188477, 0.5507000088691711, 0.6786999702453613, 0.6958000063896179, 0.7128000259399414, 0.8589000105857849, 0.2773999869823456, 0.3736000061035156, 0.6611999869346619, 0.807200014591217 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page13
{ "latex": [ "$SO(8)$", "$[U(1)]^4$", "$A,\\dot A, I$", "$U(1)$", "$[U(1)]^4$", "$SO(8)$", "$SO(8)$", "$8_s$", "$SO(8)$", "$SO(8)$", "$i$", "$a$", "$U(1)$", "$D^i_\\alpha \\ \\rightarrow \\ D^I_\\alpha = v^I_iD^i_\\alpha $", "$\\Phi _a \\ \\rightarrow \\ \\Phi ^A = u^A_a\\Phi _a$", "\\begin {equation}\\label {151} H_n f^{(q_1,q_2,q_3,q_4)} (u,w) = q_n f^{(q_1,q_2,q_3,q_4)} (u,w)\\;, \\quad n=1,2,3,4\\;. \\end {equation}", "\\begin {equation}\\label {16} \\{{\\cal D}\\}_+ = \\left \\{ \\begin {array}{l} D^{++(++)}\\;, \\ D^{++(--)}\\;, \\ D^{++[\\pm ]\\{\\pm \\}}\\;; \\\\ D^{(++)[\\pm ]\\{\\pm \\}}\\;; \\\\ D^{[++]} \\equiv D^{[+]\\{+\\}[+]\\{-\\}}\\;, \\ D^{\\{++\\}} \\equiv D^{[+]\\{+\\}[-]\\{+\\}} \\end {array} \\right . \\end {equation}", "\\begin {equation}\\label {17} \\{{\\cal D}\\}_+\\phi ^{+(+)[+]}(u,w) = 0 \\ \\Rightarrow \\^^M\\phi ^{+(+)[+]}(u,w) = \\phi _a u^{+(+)[+]}_a \\;, \\end {equation}", "\\begin {equation}\\label {171} \\{{\\cal D}\\}_+ f^{(q_1,q_2,q_3,q_4)} (u,w) = 0\\;. \\end {equation}", "\\begin {eqnarray} && f^{(q_1,q_2,q_3,q_4)} (u,w) = f^{(2d_1+2d_2+d_3+d_4,2d_2+d_3+d_4,d_3,d_4)} (u,w) = \\\\ &&f_{a\\ldots b\\ldots c\\ldots \\dot d\\ldots } (u^{+(+)[+]}_a)^{d_2+d_3} (u^{+(+)[-]}_b)^{d_2} (u^{+(-)\\{-\\}}_c)^{d_1} (w^{+(+)\\{+\\}}_{\\dot d})^{d_1+d_4} \\;. \\end {eqnarray}" ], "latex_norm": [ "$ S O ( 8 ) $", "$ [ U ( 1 ) ] ^ { 4 } $", "$ A , \\dot { A } , I $", "$ U ( 1 ) $", "$ [ U ( 1 ) ] ^ { 4 } $", "$ S O ( 8 ) $", "$ S O ( 8 ) $", "$ 8 _ { s } $", "$ S O ( 8 ) $", "$ S O ( 8 ) $", "$ i $", "$ a $", "$ U ( 1 ) $", "$ D _ { \\alpha } ^ { i } ~ \\rightarrow ~ D _ { \\alpha } ^ { I } = v _ { i } ^ { I } D _ { \\alpha } ^ { i } $", "$ \\Phi _ { a } ~ \\rightarrow ~ \\Phi ^ { A } = u _ { a } ^ { A } \\Phi _ { a } $", "\\begin{equation*} H _ { n } f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) = q _ { n } f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) \\; , \\quad n = 1 , 2 , 3 , 4 \\; . \\end{equation*}", "\\begin{align*} \\{ D \\} _ { + } = \\{ \\begin{array}{l} D ^ { + + ( + + ) } \\; , ~ D ^ { + + ( - - ) } \\; , ~ D ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ D ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ D ^ { [ + + ] } \\equiv D ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ D ^ { \\{ + + \\} } \\equiv D ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\end{align*}", "\\begin{equation*} \\{ D \\} _ { + } \\phi ^ { + ( + ) [ + ] } ( u , w ) = 0 ~ \\Rightarrow ~ \\phi ^ { + ( + ) [ + ] } ( u , w ) = \\phi _ { a } u _ { a } ^ { + ( + ) [ + ] } \\; , \\end{equation*}", "\\begin{equation*} \\{ D \\} _ { + } f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) = 0 \\; . \\end{equation*}", "\\begin{align*} & & f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) = f ^ { ( 2 d _ { 1 } + 2 d _ { 2 } + d _ { 3 } + d _ { 4 } , 2 d _ { 2 } + d _ { 3 } + d _ { 4 } , d _ { 3 } , d _ { 4 } ) } ( u , w ) = \\\\ & & f _ { a \\ldots b \\ldots c \\ldots \\dot { d } \\ldots } ( u _ { a } ^ { + ( + ) [ + ] } ) ^ { d _ { 2 } + d _ { 3 } } ( u _ { b } ^ { + ( + ) [ - ] } ) ^ { d _ { 2 } } ( u _ { c } ^ { + ( - ) \\{ - \\} } ) ^ { d _ { 1 } } ( w _ { \\dot { d } } ^ { + ( + ) \\{ + \\} } ) ^ { d _ { 1 } + d _ { 4 } } \\; . \\end{align*}" ], "latex_expand": [ "$ \\mitS \\mitO ( 8 ) $", "$ [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitA , \\dot { \\mitA } , \\mitI $", "$ \\mitU ( 1 ) $", "$ [ \\mitU ( 1 ) ] ^ { 4 } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitS \\mitO ( 8 ) $", "$ 8 _ { \\mits } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitS \\mitO ( 8 ) $", "$ \\miti $", "$ \\mita $", "$ \\mitU ( 1 ) $", "$ \\mitD _ { \\mitalpha } ^ { \\miti } ~ \\rightarrow ~ \\mitD _ { \\mitalpha } ^ { \\mitI } = \\mitv _ { \\miti } ^ { \\mitI } \\mitD _ { \\mitalpha } ^ { \\miti } $", "$ \\mupPhi _ { \\mita } ~ \\rightarrow ~ \\mupPhi ^ { \\mitA } = \\mitu _ { \\mita } ^ { \\mitA } \\mupPhi _ { \\mita } $", "\\begin{equation*} \\mitH _ { \\mitn } \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) = \\mitq _ { \\mitn } \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) \\; , \\quad \\mitn = 1 , 2 , 3 , 4 \\; . \\end{equation*}", "\\begin{align*} \\{ \\mitD \\} _ { + } = \\left\\{ \\begin{array}{l} \\mitD ^ { + + ( + + ) } \\; , ~ \\mitD ^ { + + ( - - ) } \\; , ~ \\mitD ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitD ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitD ^ { [ + + ] } \\equiv \\mitD ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ \\mitD ^ { \\{ + + \\} } \\equiv \\mitD ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\right. \\end{align*}", "\\begin{equation*} \\{ \\mitD \\} _ { + } \\mitphi ^ { + ( + ) [ + ] } ( \\mitu , \\mitw ) = 0 ~ \\Rightarrow ~ \\mitphi ^ { + ( + ) [ + ] } ( \\mitu , \\mitw ) = \\mitphi _ { \\mita } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\; , \\end{equation*}", "\\begin{equation*} \\{ \\mitD \\} _ { + } \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) = 0 \\; . \\end{equation*}", "\\begin{align*} & & \\displaystyle \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) = \\mitf ^ { ( 2 \\mitd _ { 1 } + 2 \\mitd _ { 2 } + \\mitd _ { 3 } + \\mitd _ { 4 } , 2 \\mitd _ { 2 } + \\mitd _ { 3 } + \\mitd _ { 4 } , \\mitd _ { 3 } , \\mitd _ { 4 } ) } ( \\mitu , \\mitw ) = \\\\ & & \\displaystyle \\mitf _ { \\mita \\ldots \\mitb \\ldots \\mitc \\ldots \\dot { \\mitd } \\ldots } ( \\mitu _ { \\mita } ^ { + ( + ) [ + ] } ) ^ { \\mitd _ { 2 } + \\mitd _ { 3 } } ( \\mitu _ { \\mitb } ^ { + ( + ) [ - ] } ) ^ { \\mitd _ { 2 } } ( \\mitu _ { \\mitc } ^ { + ( - ) \\{ - \\} } ) ^ { \\mitd _ { 1 } } ( \\mitw _ { \\dot { \\mitd } } ^ { + ( + ) \\{ + \\} } ) ^ { \\mitd _ { 1 } + \\mitd _ { 4 } } \\; . \\end{align*}" ], "x_min": [ 0.5770999789237976, 0.7663999795913696, 0.32409998774528503, 0.1728000044822693, 0.24950000643730164, 0.4657999873161316, 0.72079998254776, 0.4519999921321869, 0.656499981880188, 0.6427000164985657, 0.46720001101493835, 0.5175999999046326, 0.5742999911308289, 0.4361000061035156, 0.6531000137329102, 0.250900000333786, 0.24740000069141388, 0.25780001282691956, 0.3822000026702881, 0.24529999494552612 ], "y_min": [ 0.17479999363422394, 0.17430000007152557, 0.18950000405311584, 0.20900000631809235, 0.28610000014305115, 0.39890000224113464, 0.4507000148296356, 0.5297999978065491, 0.6060000061988831, 0.8095999956130981, 0.8281000256538391, 0.8314999938011169, 0.82669997215271, 0.8428000211715698, 0.8428000211715698, 0.23389999568462372, 0.31200000643730164, 0.4927000105381012, 0.5702999830245972, 0.6615999937057495 ], "x_max": [ 0.6316999793052673, 0.8258000016212463, 0.3822000026702881, 0.21359999477863312, 0.30959999561309814, 0.5196999907493591, 0.7753999829292297, 0.4699999988079071, 0.7110999822616577, 0.6973000168800354, 0.4747999906539917, 0.5286999940872192, 0.6151000261306763, 0.6075000166893005, 0.8209999799728394, 0.7512000203132629, 0.7505000233650208, 0.7401999831199646, 0.6191999912261963, 0.7871000170707703 ], "y_max": [ 0.18940000236034393, 0.18940000236034393, 0.2061000019311905, 0.2240999937057495, 0.30169999599456787, 0.414000004529953, 0.4652999937534332, 0.5414999723434448, 0.6211000084877014, 0.8241999745368958, 0.8378999829292297, 0.8378000259399414, 0.8417999744415283, 0.8589000105857849, 0.8589000105857849, 0.25440001487731934, 0.36820000410079956, 0.5131999850273132, 0.5907999873161316, 0.7153000235557556 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page14
{ "latex": [ "$\\Phi ^{+(+)[+]}$", "$\\Phi ^{+(+)[+]}$", "$\\Phi ^{+(+)[+]}$", "$\\Phi ^{+(+)[+]}$", "$\\{{\\cal D}\\}_+$", "$D^{++(++)} = \\partial ^{++(++)}_{u,w} + i\\theta ^{++}\\Gamma ^\\mu \\theta ^{(++)}\\partial _\\mu $", "$D^{++[+]\\{\\pm \\}} = \\partial ^{++[+]\\{\\pm \\}}_{u,w} + i\\theta ^{++}\\Gamma ^\\mu \\theta ^{[+]\\{\\pm \\}}\\partial _\\mu $", "$D^{++[+]\\{\\pm \\}} = \\partial ^{++[+]\\{\\pm \\}}_{u,w} + i\\theta ^{++}\\Gamma ^\\mu \\theta ^{[+]\\{\\pm \\}}\\partial _\\mu $", "$\\Phi ^{+(+)[+]}\\;$", "$\\Phi ^{+(+)[+]}$", "\\begin {equation}\\label {18} D^{++}\\Phi ^{+(+)[+]} = D^{(++)}\\Phi ^{+(+)[+]} = D^{[+]\\{\\pm \\}}\\Phi ^{+(+)[+]} = 0\\;. \\end {equation}", "\\begin {equation}\\label {19} \\mbox {type I:}\\qquad \\Phi ^{+(+)[+]} = \\Phi ^{+(+)[+]} (x_A,\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[+]\\{\\pm \\}}, u,w) \\end {equation}", "\\begin {equation}\\label {191} x_{A\\alpha \\beta } = x_{\\alpha \\beta } + i\\theta ^{++}_{(\\alpha }\\theta ^{--}_{\\beta )} + i\\theta ^{(++)}_{(\\alpha }\\theta ^{(--)}_{\\beta )} + i\\theta ^{[+]\\{+\\}}_{(\\alpha }\\theta ^{[-]\\{-\\}}_{\\beta )} + i\\theta ^{[+]\\{-\\}}_{(\\alpha }\\theta ^{[-]\\{+\\}}_{\\beta )}\\;. \\end {equation}", "\\begin {equation}\\label {20} \\{{\\cal D}\\}_+\\Phi ^{+(+)[+]} (x,\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[+]\\{\\pm \\}}, u,w) = 0\\;. \\end {equation}", "\\begin {eqnarray} \\Phi ^{+(+)[+]} &=& u^{+(+)[+]}_a \\phi _a(x) \\\\ &&+(\\theta ^{[+]\\{-\\}\\alpha }w^{+(+)\\{+\\}}_{\\dot a} - \\theta ^{[+]\\{+\\}\\alpha }w^{+(+)\\{-\\}}_{\\dot a} \\\\ &&\\phantom {+(} - \\theta ^{++\\alpha } w^{-(+)[+]}_{\\dot a} - \\theta ^{(++)\\alpha } w^{+(-)[+]}_{\\dot a})\\psi _{\\dot a\\;\\alpha }(x) \\\\ && + \\mbox { derivative terms}\\end {eqnarray}" ], "latex_norm": [ "$ \\Phi ^ { + ( + ) [ + ] } $", "$ \\Phi ^ { + ( + ) [ + ] } $", "$ \\Phi ^ { + ( + ) [ + ] } $", "$ \\Phi ^ { + ( + ) [ + ] } $", "$ \\{ D \\} _ { + } $", "$ D ^ { + + ( + + ) } = \\partial _ { u , w } ^ { + + ( + + ) } + i \\theta ^ { + + } \\Gamma ^ { \\mu } \\theta ^ { ( + + ) } \\partial _ { \\mu } $", "$ D ^ { + + [ + ] \\{ \\pm \\} } = \\partial _ { u , w } ^ { + + [ + ] \\{ \\pm \\} } + i \\theta ^ { + + } \\Gamma ^ { \\mu } \\theta ^ { [ + ] \\{ \\pm \\} } \\partial _ { \\mu } $", "$ D ^ { + + [ + ] \\{ \\pm \\} } = \\partial _ { u , w } ^ { + + [ + ] \\{ \\pm \\} } + i \\theta ^ { + + } \\Gamma ^ { \\mu } \\theta ^ { [ + ] \\{ \\pm \\} } \\partial _ { \\mu } $", "$ \\Phi ^ { + ( + ) [ + ] } \\; $", "$ \\Phi ^ { + ( + ) [ + ] } $", "\\begin{equation*} D ^ { + + } \\Phi ^ { + ( + ) [ + ] } = D ^ { ( + + ) } \\Phi ^ { + ( + ) [ + ] } = D ^ { [ + ] \\{ \\pm \\} } \\Phi ^ { + ( + ) [ + ] } = 0 \\; . \\end{equation*}", "\\begin{equation*} t y p e ~ I : \\qquad \\Phi ^ { + ( + ) [ + ] } = \\Phi ^ { + ( + ) [ + ] } ( x _ { A } , \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ \\pm \\} } , u , w ) \\end{equation*}", "\\begin{equation*} x _ { A \\alpha \\beta } = x _ { \\alpha \\beta } + i \\theta _ { ( \\alpha } ^ { + + } \\theta _ { \\beta ) } ^ { - - } + i \\theta _ { ( \\alpha } ^ { ( + + ) } \\theta _ { \\beta ) } ^ { ( - - ) } + i \\theta _ { ( \\alpha } ^ { [ + ] \\{ + \\} } \\theta _ { \\beta ) } ^ { [ - ] \\{ - \\} } + i \\theta _ { ( \\alpha } ^ { [ + ] \\{ - \\} } \\theta _ { \\beta ) } ^ { [ - ] \\{ + \\} } \\; . \\end{equation*}", "\\begin{equation*} \\{ D \\} _ { + } \\Phi ^ { + ( + ) [ + ] } ( x , \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ \\pm \\} } , u , w ) = 0 \\; . \\end{equation*}", "\\begin{align*} \\Phi ^ { + ( + ) [ + ] } & = & u _ { a } ^ { + ( + ) [ + ] } \\phi _ { a } ( x ) \\\\ & & + ( \\theta ^ { [ + ] \\{ - \\} \\alpha } w _ { \\dot { a } } ^ { + ( + ) \\{ + \\} } - \\theta ^ { [ + ] \\{ + \\} \\alpha } w _ { \\dot { a } } ^ { + ( + ) \\{ - \\} } \\\\ & & - \\theta ^ { + + \\alpha } w _ { \\dot { a } } ^ { - ( + ) [ + ] } - \\theta ^ { ( + + ) \\alpha } w _ { \\dot { a } } ^ { + ( - ) [ + ] } ) \\psi _ { \\dot { a } \\; \\alpha } ( x ) \\\\ & & + ~ d e r i v a t i v e ~ t e r m s \\end{align*}" ], "latex_expand": [ "$ \\mupPhi ^ { + ( + ) [ + ] } $", "$ \\mupPhi ^ { + ( + ) [ + ] } $", "$ \\mupPhi ^ { + ( + ) [ + ] } $", "$ \\mupPhi ^ { + ( + ) [ + ] } $", "$ \\{ \\mitD \\} _ { + } $", "$ \\mitD ^ { + + ( + + ) } = \\mitpartial _ { \\mitu , \\mitw } ^ { + + ( + + ) } + \\miti \\mittheta ^ { + + } \\mupGamma ^ { \\mitmu } \\mittheta ^ { ( + + ) } \\mitpartial _ { \\mitmu } $", "$ \\mitD ^ { + + [ + ] \\{ \\pm \\} } = \\mitpartial _ { \\mitu , \\mitw } ^ { + + [ + ] \\{ \\pm \\} } + \\miti \\mittheta ^ { + + } \\mupGamma ^ { \\mitmu } \\mittheta ^ { [ + ] \\{ \\pm \\} } \\mitpartial _ { \\mitmu } $", "$ \\mitD ^ { + + [ + ] \\{ \\pm \\} } = \\mitpartial _ { \\mitu , \\mitw } ^ { + + [ + ] \\{ \\pm \\} } + \\miti \\mittheta ^ { + + } \\mupGamma ^ { \\mitmu } \\mittheta ^ { [ + ] \\{ \\pm \\} } \\mitpartial _ { \\mitmu } $", "$ \\mupPhi ^ { + ( + ) [ + ] } \\; $", "$ \\mupPhi ^ { + ( + ) [ + ] } $", "\\begin{equation*} \\mitD ^ { + + } \\mupPhi ^ { + ( + ) [ + ] } = \\mitD ^ { ( + + ) } \\mupPhi ^ { + ( + ) [ + ] } = \\mitD ^ { [ + ] \\{ \\pm \\} } \\mupPhi ^ { + ( + ) [ + ] } = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } : \\qquad \\mupPhi ^ { + ( + ) [ + ] } = \\mupPhi ^ { + ( + ) [ + ] } ( \\mitx _ { \\mitA } , \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ \\pm \\} } , \\mitu , \\mitw ) \\end{equation*}", "\\begin{equation*} \\mitx _ { \\mitA \\mitalpha \\mitbeta } = \\mitx _ { \\mitalpha \\mitbeta } + \\miti \\mittheta _ { ( \\mitalpha } ^ { + + } \\mittheta _ { \\mitbeta ) } ^ { - - } + \\miti \\mittheta _ { ( \\mitalpha } ^ { ( + + ) } \\mittheta _ { \\mitbeta ) } ^ { ( - - ) } + \\miti \\mittheta _ { ( \\mitalpha } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitbeta ) } ^ { [ - ] \\{ - \\} } + \\miti \\mittheta _ { ( \\mitalpha } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitbeta ) } ^ { [ - ] \\{ + \\} } \\; . \\end{equation*}", "\\begin{equation*} \\{ \\mitD \\} _ { + } \\mupPhi ^ { + ( + ) [ + ] } ( \\mitx , \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ \\pm \\} } , \\mitu , \\mitw ) = 0 \\; . \\end{equation*}", "\\begin{align*} \\displaystyle \\mupPhi ^ { + ( + ) [ + ] } & = & \\displaystyle \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\mitphi _ { \\mita } ( \\mitx ) \\\\ & & \\displaystyle + ( \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { + ( + ) \\{ + \\} } - \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { + ( + ) \\{ - \\} } \\\\ & & \\displaystyle - \\mittheta ^ { + + \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { - ( + ) [ + ] } - \\mittheta ^ { ( + + ) \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { + ( - ) [ + ] } ) \\mitpsi _ { \\dot { \\mita } \\; \\mitalpha } ( \\mitx ) \\\\ & & \\displaystyle + ~ \\mathrm { d e r i v a t i v e ~ t e r m s } \\end{align*}" ], "x_min": [ 0.1728000044822693, 0.7533000111579895, 0.22869999706745148, 0.31929999589920044, 0.6455000042915344, 0.2777999937534332, 0.6122999787330627, 0.1728000044822693, 0.4194999933242798, 0.6723999977111816, 0.27090001106262207, 0.250900000333786, 0.18240000307559967, 0.30410000681877136, 0.2556999921798706 ], "y_min": [ 0.17329999804496765, 0.23579999804496765, 0.30469998717308044, 0.45019999146461487, 0.6689000129699707, 0.6845999956130981, 0.6845999956130981, 0.7016000151634216, 0.7207000255584717, 0.7207000255584717, 0.20010000467300415, 0.3490999937057495, 0.41019999980926514, 0.5464000105857849, 0.7656000256538391 ], "x_max": [ 0.24050000309944153, 0.8209999799728394, 0.2964000105857849, 0.3869999945163727, 0.6938999891281128, 0.6021999716758728, 0.8264999985694885, 0.3131999969482422, 0.4927999973297119, 0.7401000261306763, 0.7305999994277954, 0.7505999803543091, 0.789900004863739, 0.6973000168800354, 0.742900013923645 ], "y_max": [ 0.1860000044107437, 0.2485000044107437, 0.3174000084400177, 0.4629000127315521, 0.6840000152587891, 0.7002000212669373, 0.7035999894142151, 0.7202000021934509, 0.7333999872207642, 0.7333999872207642, 0.22059999406337738, 0.36959999799728394, 0.43560001254081726, 0.5669000148773193, 0.8574000000953674 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page15
{ "latex": [ "$\\theta $", "$8_s$", "$SO(8)$", "$\\theta $", "$\\theta ^{[+]\\{-\\}}$", "$\\{{\\cal D}\\}_+$", "$SO(8)$", "$\\theta ^{[+]\\{-\\}}$", "$\\theta $", "$\\theta ^{[+]\\{-\\}\\alpha }\\psi ^{+(+)\\{+\\}}_\\alpha (x,u,w)$", "$\\{{\\cal D}\\}_+ \\psi ^{+(+)\\{+\\}}_\\alpha =0$", "$(1,1,0,1)\\ \\leftrightarrow \\^^M[0,0,0,1]$", "$8_c$", "$D^{\\{++\\}}\\psi ^{+(+)\\{-\\}}_\\alpha = \\psi ^{+(+)\\{+\\}}_\\alpha $", "$8_c$", "$\\theta $", "$SO(8)$", "$\\Phi ^{+(+)[+]}$", "$A^{(1,1,-1,2)}=0$", "$B_{(\\alpha \\beta )}^{(1,1,-1,0)} = i\\partial _{\\alpha \\beta }\\phi _a u_a^{+(+)[-]}$", "\\begin {equation}\\label {211} \\theta ^{[+]\\{-\\}}\\ \\stackrel {D^{\\{++\\}}}{\\rightarrow } \\^^M\\theta ^{[+]\\{+\\}}\\ \\stackrel {D^{(++)[-]\\{-\\}}}{\\rightarrow } \\^^M\\theta ^{(++)}\\ \\stackrel {D^{++(--)}}{\\rightarrow } \\ \\theta ^{++}\\;. \\end {equation}", "\\begin {equation}\\label {212} \\theta ^{[+]\\{-\\}\\alpha }\\theta ^{[+]\\{-\\}}_\\alpha A^{(1,1,-1,2)}\\;, \\qquad \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } B_{(\\alpha \\beta )}^{(1,1,-1,0)} \\end {equation}", "\\begin {equation}\\label {212'} \\mbox {type II:}\\qquad \\Sigma ^{+(+)\\{+\\}}(\\theta ^{++},\\theta ^{(++)},\\theta ^{[\\pm ]\\{+\\}}) \\end {equation}" ], "latex_norm": [ "$ \\theta $", "$ 8 _ { s } $", "$ S O ( 8 ) $", "$ \\theta $", "$ \\theta ^ { [ + ] \\{ - \\} } $", "$ \\{ D \\} _ { + } $", "$ S O ( 8 ) $", "$ \\theta ^ { [ + ] \\{ - \\} } $", "$ \\theta $", "$ \\theta ^ { [ + ] \\{ - \\} \\alpha } \\psi _ { \\alpha } ^ { + ( + ) \\{ + \\} } ( x , u , w ) $", "$ \\{ D \\} _ { + } \\psi _ { \\alpha } ^ { + ( + ) \\{ + \\} } = 0 $", "$ ( 1 , 1 , 0 , 1 ) ~ \\leftrightarrow ~ [ 0 , 0 , 0 , 1 ] $", "$ 8 _ { c } $", "$ D ^ { \\{ + + \\} } \\psi _ { \\alpha } ^ { + ( + ) \\{ - \\} } = \\psi _ { \\alpha } ^ { + ( + ) \\{ + \\} } $", "$ 8 _ { c } $", "$ \\theta $", "$ S O ( 8 ) $", "$ \\Phi ^ { + ( + ) [ + ] } $", "$ A ^ { ( 1 , 1 , - 1 , 2 ) } = 0 $", "$ B _ { ( \\alpha \\beta ) } ^ { ( 1 , 1 , - 1 , 0 ) } = i \\partial _ { \\alpha \\beta } \\phi _ { a } u _ { a } ^ { + ( + ) [ - ] } $", "\\begin{equation*} \\theta ^ { [ + ] \\{ - \\} } ~ \\overset { D ^ { \\{ + + \\} } } { \\rightarrow } ~ \\theta ^ { [ + ] \\{ + \\} } ~ \\overset { D ^ { ( + + ) [ - ] \\{ - \\} } } { \\rightarrow } ~ \\theta ^ { ( + + ) } ~ \\overset { D ^ { + + ( - - ) } } { \\rightarrow } ~ \\theta ^ { + + } \\; . \\end{equation*}", "\\begin{equation*} \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta _ { \\alpha } ^ { [ + ] \\{ - \\} } A ^ { ( 1 , 1 , - 1 , 2 ) } \\; , \\qquad \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } B _ { ( \\alpha \\beta ) } ^ { ( 1 , 1 , - 1 , 0 ) } \\end{equation*}", "\\begin{equation*} t y p e ~ I I : \\qquad \\Sigma ^ { + ( + ) \\{ + \\} } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ \\pm ] \\{ + \\} } ) \\end{equation*}" ], "latex_expand": [ "$ \\mittheta $", "$ 8 _ { \\mits } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mittheta $", "$ \\mittheta ^ { [ + ] \\{ - \\} } $", "$ \\{ \\mitD \\} _ { + } $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mittheta ^ { [ + ] \\{ - \\} } $", "$ \\mittheta $", "$ \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ + \\} } ( \\mitx , \\mitu , \\mitw ) $", "$ \\{ \\mitD \\} _ { + } \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ + \\} } = 0 $", "$ ( 1 , 1 , 0 , 1 ) ~ \\leftrightarrow ~ [ 0 , 0 , 0 , 1 ] $", "$ 8 _ { \\mitc } $", "$ \\mitD ^ { \\{ + + \\} } \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ - \\} } = \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ + \\} } $", "$ 8 _ { \\mitc } $", "$ \\mittheta $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mupPhi ^ { + ( + ) [ + ] } $", "$ \\mitA ^ { ( 1 , 1 , - 1 , 2 ) } = 0 $", "$ \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { ( 1 , 1 , - 1 , 0 ) } = \\miti \\mitpartial _ { \\mitalpha \\mitbeta } \\mitphi _ { \\mita } \\mitu _ { \\mita } ^ { + ( + ) [ - ] } $", "\\begin{equation*} \\mittheta ^ { [ + ] \\{ - \\} } ~ \\overset { \\mitD ^ { \\{ + + \\} } } { \\rightarrow } ~ \\mittheta ^ { [ + ] \\{ + \\} } ~ \\overset { \\mitD ^ { ( + + ) [ - ] \\{ - \\} } } { \\rightarrow } ~ \\mittheta ^ { ( + + ) } ~ \\overset { \\mitD ^ { + + ( - - ) } } { \\rightarrow } ~ \\mittheta ^ { + + } \\; . \\end{equation*}", "\\begin{equation*} \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta _ { \\mitalpha } ^ { [ + ] \\{ - \\} } \\mitA ^ { ( 1 , 1 , - 1 , 2 ) } \\; , \\qquad \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { ( 1 , 1 , - 1 , 0 ) } \\end{equation*}", "\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } : \\qquad \\mupSigma ^ { + ( + ) \\{ + \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ \\pm ] \\{ + \\} } ) \\end{equation*}" ], "x_min": [ 0.5770999789237976, 0.6434000134468079, 0.2750999927520752, 0.7975000143051147, 0.36070001125335693, 0.6690000295639038, 0.28200000524520874, 0.3449000120162964, 0.48100000619888306, 0.31310001015663147, 0.2142000049352646, 0.3379000127315521, 0.6633999943733215, 0.1728000044822693, 0.49140000343322754, 0.46299999952316284, 0.6295999884605408, 0.7588000297546387, 0.3109999895095825, 0.46720001101493835, 0.27160000801086426, 0.2702000141143799, 0.32829999923706055 ], "y_min": [ 0.20999999344348907, 0.22750000655651093, 0.2777999937534332, 0.2782999873161316, 0.29350000619888306, 0.31200000643730164, 0.32910001277923584, 0.38670000433921814, 0.44040000438690186, 0.45509999990463257, 0.4740999937057495, 0.4950999915599823, 0.4966000020503998, 0.5259000062942505, 0.54830002784729, 0.5814999938011169, 0.6689000129699707, 0.70169997215271, 0.7188000082969666, 0.7163000106811523, 0.35109999775886536, 0.6176999807357788, 0.7943999767303467 ], "x_max": [ 0.5867999792098999, 0.6614000201225281, 0.3296999931335449, 0.807200014591217, 0.41600000858306885, 0.7174000144004822, 0.33660000562667847, 0.4002000093460083, 0.49140000343322754, 0.5203999876976013, 0.3752000033855438, 0.5479999780654907, 0.6807000041007996, 0.3995000123977661, 0.5087000131607056, 0.4733999967575073, 0.6841999888420105, 0.8264999985694885, 0.42570000886917114, 0.6931999921798706, 0.7304999828338623, 0.7311999797821045, 0.6732000112533569 ], "y_max": [ 0.22030000388622284, 0.23970000445842743, 0.2924000024795532, 0.289000004529953, 0.3061999976634979, 0.32659998536109924, 0.3441999852657318, 0.39989998936653137, 0.4510999917984009, 0.47369998693466187, 0.4927000105381012, 0.5097000002861023, 0.5083000063896179, 0.5435000061988831, 0.5600000023841858, 0.592199981212616, 0.6834999918937683, 0.7143999934196472, 0.7319999933242798, 0.7383000254631042, 0.37310001254081726, 0.6431000232696533, 0.8148999810218811 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003051_page16
{ "latex": [ "$8_c$", "$8_s$", "$OSp(8/4,\\mathbb {R})$", "$p$", "$(\\Phi ^{+(+)[+]})^p$", "$p\\geq 4$", "$\\theta $", "\\begin {eqnarray} (\\Phi ^{+(+)[+]})^p &=& \\phi ^{[0,0,p,0]} \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha }\\psi ^{[0,0,p-1,1]}_\\alpha + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 A^{[0,0,p-2,2]} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } B_{(\\alpha \\beta )}^{[0,1,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha }\\chi ^{[0,1,p-3,1]}_\\alpha + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\rho _{(\\alpha \\beta \\gamma )}^{[1,0,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2(\\theta ^{[+]\\{+\\}})^2 C^{[0,2,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } D^{[1,0,p-3,1]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\theta ^{++\\delta } E^{[0,0,p-2,0]}_{(\\alpha \\beta \\gamma \\delta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\sigma ^{[1,1,p-4,0]}_{\\alpha } + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 \\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } \\theta ^{++\\gamma } \\omega ^{[0,0,p-3,1]}_{(\\alpha \\beta \\gamma )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 F^{[2,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\theta ^{++\\beta } G^{[0,1,p-4,0]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 \\theta ^{++\\alpha }\\tau _\\alpha ^{[1,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 (\\theta ^{++})^2 H^{[0,0,p-4,0]} + \\ldots \\\\ &+& \\mbox { derivative terms} \\end {eqnarray}" ], "latex_norm": [ "$ 8 _ { c } $", "$ 8 _ { s } $", "$ O S p ( 8 \\slash 4 , R ) $", "$ p $", "$ ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } $", "$ p \\geq 4 $", "$ \\theta $", "\\begin{align*} ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } & = & \\phi ^ { [ 0 , 0 , p , 0 ] } \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\psi _ { \\alpha } ^ { [ 0 , 0 , p - 1 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } A ^ { [ 0 , 0 , p - 2 , 2 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } B _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\chi _ { \\alpha } ^ { [ 0 , 1 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\rho _ { ( \\alpha \\beta \\gamma ) } ^ { [ 1 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } C ^ { [ 0 , 2 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } D _ { ( \\alpha \\beta ) } ^ { [ 1 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\theta ^ { + + \\delta } E _ { ( \\alpha \\beta \\gamma \\delta ) } ^ { [ 0 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\sigma _ { \\alpha } ^ { [ 1 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } \\theta ^ { + + \\gamma } \\omega _ { ( \\alpha \\beta \\gamma ) } ^ { [ 0 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } F ^ { [ 2 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\theta ^ { + + \\beta } G _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } \\theta ^ { + + \\alpha } \\tau _ { \\alpha } ^ { [ 1 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } ( \\theta ^ { + + } ) ^ { 2 } H ^ { [ 0 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ~ d e r i v a t i v e ~ t e r m s \\end{align*}" ], "latex_expand": [ "$ 8 _ { \\mitc } $", "$ 8 _ { \\mits } $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitp $", "$ ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } $", "$ \\mitp \\geq 4 $", "$ \\mittheta $", "\\begin{align*} \\displaystyle ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } & = & \\displaystyle \\mitphi ^ { [ 0 , 0 , \\mitp , 0 ] } \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { [ 0 , 0 , \\mitp - 1 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mitA ^ { [ 0 , 0 , \\mitp - 2 , 2 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mitchi _ { \\mitalpha } ^ { [ 0 , 1 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mitrho _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 1 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mitC ^ { [ 0 , 2 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mitD _ { ( \\mitalpha \\mitbeta ) } ^ { [ 1 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mittheta ^ { + + \\mitdelta } \\mitE _ { ( \\mitalpha \\mitbeta \\mitgamma \\mitdelta ) } ^ { [ 0 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mitsigma _ { \\mitalpha } ^ { [ 1 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mittheta ^ { + + \\mitgamma } \\mitomega _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 0 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mitF ^ { [ 2 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mittheta ^ { + + \\mitbeta } \\mitG _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mittheta ^ { + + \\mitalpha } \\mittau _ { \\mitalpha } ^ { [ 1 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } ( \\mittheta ^ { + + } ) ^ { 2 } \\mitH ^ { [ 0 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ~ \\mathrm { d e r i v a t i v e ~ t e r m s } \\end{align*}" ], "x_min": [ 0.40149998664855957, 0.5120999813079834, 0.2231999933719635, 0.7540000081062317, 0.48170000314712524, 0.414000004529953, 0.5073000192642212, 0.22179999947547913 ], "y_min": [ 0.15919999778270721, 0.15919999778270721, 0.399399995803833, 0.48969998955726624, 0.5005000233650208, 0.5893999934196472, 0.5889000296592712, 0.6288999915122986 ], "x_max": [ 0.4187999963760376, 0.5293999910354614, 0.3303000032901764, 0.7644000053405762, 0.5728999972343445, 0.4650999903678894, 0.5177000164985657, 0.7110999822616577 ], "y_max": [ 0.17090000212192535, 0.17090000212192535, 0.414000004529953, 0.49900001287460327, 0.5170999765396118, 0.6021000146865845, 0.5992000102996826, 0.8589000105857849 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003051_page17
{ "latex": [ "$SO(8)$", "$p/2$", "$\\theta $", "$-1/2$", "$(\\Phi ^{+(+)[+]})^p$", "$p=1$", "$p=2,3$", "$p=2$", "$\\partial ^{\\alpha \\beta } E^{[0,0,0,0]}_{(\\alpha \\beta \\gamma \\delta )} =\\partial ^{\\alpha \\beta } \\rho ^{[1,0,0,0]}_{(\\alpha \\beta \\gamma )} =\\partial ^{\\alpha \\beta } B^{[0,1,0,0]}_{(\\alpha \\beta )} = 0$", "$SO(8)$", "$OSp(8/4,\\mathbb {R})$", "$\\Phi ^{+(+)[+]}$", "$\\theta ^{--}$", "$8_v$", "$\\theta $", "$SO(8)$", "\\begin {eqnarray} (\\Phi ^{+(+)[+]})^p &=& \\phi ^{[0,0,p,0]} \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha }\\psi ^{[0,0,p-1,1]}_\\alpha + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 A^{[0,0,p-2,2]} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } B_{(\\alpha \\beta )}^{[0,1,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha }\\chi ^{[0,1,p-3,1]}_\\alpha + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\rho _{(\\alpha \\beta \\gamma )}^{[1,0,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2(\\theta ^{[+]\\{+\\}})^2 C^{[0,2,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } D^{[1,0,p-3,1]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\theta ^{++\\delta } E^{[0,0,p-2,0]}_{(\\alpha \\beta \\gamma \\delta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\sigma ^{[1,1,p-4,0]}_{\\alpha } + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 \\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } \\theta ^{++\\gamma } \\omega ^{[0,0,p-3,1]}_{(\\alpha \\beta \\gamma )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 F^{[2,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\theta ^{++\\beta } G^{[0,1,p-4,0]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 \\theta ^{++\\alpha }\\tau _\\alpha ^{[1,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 (\\theta ^{++})^2 H^{[0,0,p-4,0]} + \\ldots \\\\ &+& \\mbox { derivative terms} \\end {eqnarray}", "\\begin {eqnarray} &&\\Phi ^{+(+)[+]} (\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[+]\\{+\\}}, \\theta ^{[+]\\{-\\}})\\;, \\\\ &&\\Phi ^{+(+)[-]} (\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[-]\\{+\\}}, \\theta ^{[-]\\{-\\}})\\;, \\\\ &&\\Phi ^{+(-)\\{+\\}} (\\theta ^{++}, \\theta ^{(--)}, \\theta ^{[+]\\{+\\}}, \\theta ^{[-]\\{+\\}})\\;, \\\\ &&\\Phi ^{+(-)\\{-\\}} (\\theta ^{++}, \\theta ^{(--)}, \\theta ^{[+]\\{-\\}}, \\theta ^{[-]\\{-\\}})\\;. \\end {eqnarray}" ], "latex_norm": [ "$ S O ( 8 ) $", "$ p \\slash 2 $", "$ \\theta $", "$ - 1 \\slash 2 $", "$ ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } $", "$ p = 1 $", "$ p = 2 , 3 $", "$ p = 2 $", "$ \\partial ^ { \\alpha \\beta } E _ { ( \\alpha \\beta \\gamma \\delta ) } ^ { [ 0 , 0 , 0 , 0 ] } = \\partial ^ { \\alpha \\beta } \\rho _ { ( \\alpha \\beta \\gamma ) } ^ { [ 1 , 0 , 0 , 0 ] } = \\partial ^ { \\alpha \\beta } B _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , 0 , 0 ] } = 0 $", "$ S O ( 8 ) $", "$ O S p ( 8 \\slash 4 , R ) $", "$ \\Phi ^ { + ( + ) [ + ] } $", "$ \\theta ^ { - - } $", "$ 8 _ { v } $", "$ \\theta $", "$ S O ( 8 ) $", "\\begin{align*} ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } & = & \\phi ^ { [ 0 , 0 , p , 0 ] } \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\psi _ { \\alpha } ^ { [ 0 , 0 , p - 1 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } A ^ { [ 0 , 0 , p - 2 , 2 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } B _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\chi _ { \\alpha } ^ { [ 0 , 1 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\rho _ { ( \\alpha \\beta \\gamma ) } ^ { [ 1 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } C ^ { [ 0 , 2 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } D _ { ( \\alpha \\beta ) } ^ { [ 1 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\theta ^ { + + \\delta } E _ { ( \\alpha \\beta \\gamma \\delta ) } ^ { [ 0 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\sigma _ { \\alpha } ^ { [ 1 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } \\theta ^ { + + \\gamma } \\omega _ { ( \\alpha \\beta \\gamma ) } ^ { [ 0 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } F ^ { [ 2 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\theta ^ { + + \\beta } G _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } \\theta ^ { + + \\alpha } \\tau _ { \\alpha } ^ { [ 1 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } ( \\theta ^ { + + } ) ^ { 2 } H ^ { [ 0 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ~ d e r i v a t i v e ~ t e r m s \\end{align*}", "\\begin{align*} & & \\Phi ^ { + ( + ) [ + ] } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ + \\} } , \\theta ^ { [ + ] \\{ - \\} } ) \\; , \\\\ & & \\Phi ^ { + ( + ) [ - ] } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ - ] \\{ + \\} } , \\theta ^ { [ - ] \\{ - \\} } ) \\; , \\\\ & & \\Phi ^ { + ( - ) \\{ + \\} } ( \\theta ^ { + + } , \\theta ^ { ( - - ) } , \\theta ^ { [ + ] \\{ + \\} } , \\theta ^ { [ - ] \\{ + \\} } ) \\; , \\\\ & & \\Phi ^ { + ( - ) \\{ - \\} } ( \\theta ^ { + + } , \\theta ^ { ( - - ) } , \\theta ^ { [ + ] \\{ - \\} } , \\theta ^ { [ - ] \\{ - \\} } ) \\; . \\end{align*}" ], "latex_expand": [ "$ \\mitS \\mitO ( 8 ) $", "$ \\mitp \\slash 2 $", "$ \\mittheta $", "$ - 1 \\slash 2 $", "$ ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } $", "$ \\mitp = 1 $", "$ \\mitp = 2 , 3 $", "$ \\mitp = 2 $", "$ \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitE _ { ( \\mitalpha \\mitbeta \\mitgamma \\mitdelta ) } ^ { [ 0 , 0 , 0 , 0 ] } = \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitrho _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 1 , 0 , 0 , 0 ] } = \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , 0 , 0 ] } = 0 $", "$ \\mitS \\mitO ( 8 ) $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mupPhi ^ { + ( + ) [ + ] } $", "$ \\mittheta ^ { - - } $", "$ 8 _ { \\mitv } $", "$ \\mittheta $", "$ \\mitS \\mitO ( 8 ) $", "\\begin{align*} \\displaystyle ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } & = & \\displaystyle \\mitphi ^ { [ 0 , 0 , \\mitp , 0 ] } \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { [ 0 , 0 , \\mitp - 1 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mitA ^ { [ 0 , 0 , \\mitp - 2 , 2 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mitchi _ { \\mitalpha } ^ { [ 0 , 1 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mitrho _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 1 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mitC ^ { [ 0 , 2 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mitD _ { ( \\mitalpha \\mitbeta ) } ^ { [ 1 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mittheta ^ { + + \\mitdelta } \\mitE _ { ( \\mitalpha \\mitbeta \\mitgamma \\mitdelta ) } ^ { [ 0 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mitsigma _ { \\mitalpha } ^ { [ 1 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mittheta ^ { + + \\mitgamma } \\mitomega _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 0 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mitF ^ { [ 2 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mittheta ^ { + + \\mitbeta } \\mitG _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mittheta ^ { + + \\mitalpha } \\mittau _ { \\mitalpha } ^ { [ 1 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } ( \\mittheta ^ { + + } ) ^ { 2 } \\mitH ^ { [ 0 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ~ \\mathrm { d e r i v a t i v e ~ t e r m s } \\end{align*}", "\\begin{align*} & & \\displaystyle \\mupPhi ^ { + ( + ) [ + ] } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ + \\} } , \\mittheta ^ { [ + ] \\{ - \\} } ) \\; , \\\\ & & \\displaystyle \\mupPhi ^ { + ( + ) [ - ] } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ - ] \\{ + \\} } , \\mittheta ^ { [ - ] \\{ - \\} } ) \\; , \\\\ & & \\displaystyle \\mupPhi ^ { + ( - ) \\{ + \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( - - ) } , \\mittheta ^ { [ + ] \\{ + \\} } , \\mittheta ^ { [ - ] \\{ + \\} } ) \\; , \\\\ & & \\displaystyle \\mupPhi ^ { + ( - ) \\{ - \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( - - ) } , \\mittheta ^ { [ + ] \\{ - \\} } , \\mittheta ^ { [ - ] \\{ - \\} } ) \\; . \\end{align*}" ], "x_min": [ 0.7186999917030334, 0.1728000044822693, 0.32829999923706055, 0.36489999294281006, 0.3158000111579895, 0.4194999933242798, 0.574999988079071, 0.20319999754428864, 0.1956000030040741, 0.46160000562667847, 0.2874999940395355, 0.36899998784065247, 0.23639999330043793, 0.3359000086784363, 0.4927000105381012, 0.24529999494552612, 0.32409998774528503, 0.3580000102519989 ], "y_min": [ 0.3188000023365021, 0.4219000041484833, 0.42239999771118164, 0.4219000041484833, 0.43700000643730164, 0.4745999872684479, 0.4745999872684479, 0.5092999935150146, 0.5228999853134155, 0.5454000234603882, 0.5967000126838684, 0.6636000275611877, 0.7163000106811523, 0.7182999849319458, 0.7172999978065491, 0.7339000105857849, 0.14830000698566437, 0.774399995803833 ], "x_max": [ 0.7732999920845032, 0.20250000059604645, 0.33869999647140503, 0.4104999899864197, 0.40700000524520874, 0.4699000120162964, 0.64410001039505, 0.250900000333786, 0.5728999972343445, 0.5162000060081482, 0.3946000039577484, 0.4366999864578247, 0.2696000039577484, 0.3546000123023987, 0.5030999779701233, 0.29919999837875366, 0.7732999920845032, 0.6744999885559082 ], "y_max": [ 0.33340001106262207, 0.43650001287460327, 0.43309998512268066, 0.43650001287460327, 0.4535999894142151, 0.48730000853538513, 0.48730000853538513, 0.5214999914169312, 0.5443999767303467, 0.5600000023841858, 0.6118000149726868, 0.676800012588501, 0.7279999852180481, 0.7300000190734863, 0.7279999852180481, 0.7490000128746033, 0.28679999709129333, 0.8647000193595886 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0003051_page18
{ "latex": [ "$SO(8)$", "$[r+2s,q,p,r]$", "$\\ell = {1\\over 2}(p+2q+3r+4s)$", "$1/2$", "$J_{top}=2$", "$q=r=s=0$", "$J_{top}=3$", "$r=s=0$", "$J_{top}=7/2$", "$r\\neq 0$", "$s\\neq 0$", "$\\ell [J_{top}] = {1\\over 2}(p+2q+3r+4s)+J_{top}$", "$\\theta $", "$-1/2$", "$J=5/2$", "$\\theta $", "$OSp(8/4,\\mathbb {R})$", "$1/8$", "$1/4$", "$1/2$", "$\\Phi $", "$\\Sigma $", "$d_1-d_4 = 2s$", "\\begin {eqnarray} &&(\\Phi ^{+(+)[+]})^{p+q+r+s}(\\Phi ^{+(+)[-]})^{q+r+s} (\\Phi ^{+(-)\\{+\\}})^{r+s}(\\Phi ^{+(-)\\{-\\}})^{s}\\\\ &&\\ =\\phi ^{[r+2s,q,p,r]} +\\ldots \\\\ &&\\ +\\theta ^{[+]\\{-\\}}_{\\alpha _1} \\theta ^{[+]\\{+\\}}_{\\alpha _2} \\theta ^{(++)}_{\\alpha _3} \\theta ^{++}_{\\alpha _4} A^{[r+2s,q,p-2,r](\\alpha _1\\ldots \\alpha _4)} +\\ldots \\\\ &&\\ +\\theta ^{[+]\\{-\\}}_{\\alpha _1} \\theta ^{[+]\\{+\\}}_{\\alpha _2} \\theta ^{(++)}_{\\alpha _3} \\theta ^{++}_{\\alpha _4} \\theta ^{[-]\\{+\\}}_{\\alpha _5} \\theta ^{[-]\\{-\\}}_{\\alpha _6} B^{[r+2s,q-1,p,r](\\alpha _1\\ldots \\alpha _6)} +\\ldots \\\\ &&\\ +\\theta ^{[+]\\{-\\}}_{\\alpha _1} \\theta ^{[+]\\{+\\}}_{\\alpha _2} \\theta ^{(++)}_{\\alpha _3} \\theta ^{++}_{\\alpha _4} \\theta ^{[-]\\{+\\}}_{\\alpha _5} \\theta ^{[-]\\{-\\}}_{\\alpha _6} \\theta ^{(--)}_{\\alpha _7} \\chi ^{[r+2s-1,q,p,r](\\alpha _1\\ldots \\alpha _7)} +\\ldots \\end {eqnarray}", "\\begin {eqnarray} {1\\over 8} \\mbox { BPS:} && {\\cal D}(d_1+d_2 + {1\\over 2}(d_3+d_4), 0; d_1,d_2,d_3,d_4)\\;, \\quad d_1-d_4 = 2s \\geq 0\\;; \\\\ {1\\over 4} \\mbox { BPS:} && {\\cal D}(d_2 + {1\\over 2}d_3, 0; 0,d_2,d_3,0)\\;; \\\\ {1\\over 2} \\mbox { BPS:} && {\\cal D}({1\\over 2}d_3, 0; 0,0,d_3,0)\\;. \\end {eqnarray}", "\\begin {equation}\\label {009} [\\Phi ^{+(+)[+]}(\\theta ^{++},\\theta ^{(++)},\\theta ^{[+]\\{\\pm \\}})]^{p+q} [\\Sigma ^{+(+)\\{+\\}}(\\theta ^{++},\\theta ^{(++)},\\theta ^{[\\pm ]\\{+\\}})]^{q}\\;, \\end {equation}", "\\begin {equation}\\label {00777} [\\Phi ^{+(+)[+]}]^{m+k}[\\Phi ^{+(+)[-]}]^{k} [\\Sigma ^{+(+)\\{+\\}}]^{n} \\end {equation}" ], "latex_norm": [ "$ S O ( 8 ) $", "$ [ r + 2 s , q , p , r ] $", "$ l = \\frac { 1 } { 2 } ( p + 2 q + 3 r + 4 s ) $", "$ 1 \\slash 2 $", "$ J _ { t o p } = 2 $", "$ q = r = s = 0 $", "$ J _ { t o p } = 3 $", "$ r = s = 0 $", "$ J _ { t o p } = 7 \\slash 2 $", "$ r \\ne 0 $", "$ s \\ne 0 $", "$ l [ J _ { t o p } ] = \\frac { 1 } { 2 } ( p + 2 q + 3 r + 4 s ) + J _ { t o p } $", "$ \\theta $", "$ - 1 \\slash 2 $", "$ J = 5 \\slash 2 $", "$ \\theta $", "$ O S p ( 8 \\slash 4 , R ) $", "$ 1 \\slash 8 $", "$ 1 \\slash 4 $", "$ 1 \\slash 2 $", "$ \\Phi $", "$ \\Sigma $", "$ d _ { 1 } - d _ { 4 } = 2 s $", "\\begin{align*} & & ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p + q + r + s } ( \\Phi ^ { + ( + ) [ - ] } ) ^ { q + r + s } ( \\Phi ^ { + ( - ) \\{ + \\} } ) ^ { r + s } ( \\Phi ^ { + ( - ) \\{ - \\} } ) ^ { s } \\\\ & & ~ = \\phi ^ { [ r + 2 s , q , p , r ] } + \\ldots \\\\ & & ~ + \\theta _ { \\alpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\theta _ { \\alpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\theta _ { \\alpha _ { 3 } } ^ { ( + + ) } \\theta _ { \\alpha _ { 4 } } ^ { + + } A ^ { [ r + 2 s , q , p - 2 , r ] ( \\alpha _ { 1 } \\ldots \\alpha _ { 4 } ) } + \\ldots \\\\ & & ~ + \\theta _ { \\alpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\theta _ { \\alpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\theta _ { \\alpha _ { 3 } } ^ { ( + + ) } \\theta _ { \\alpha _ { 4 } } ^ { + + } \\theta _ { \\alpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\theta _ { \\alpha _ { 6 } } ^ { [ - ] \\{ - \\} } B ^ { [ r + 2 s , q - 1 , p , r ] ( \\alpha _ { 1 } \\ldots \\alpha _ { 6 } ) } + \\ldots \\\\ & & ~ + \\theta _ { \\alpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\theta _ { \\alpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\theta _ { \\alpha _ { 3 } } ^ { ( + + ) } \\theta _ { \\alpha _ { 4 } } ^ { + + } \\theta _ { \\alpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\theta _ { \\alpha _ { 6 } } ^ { [ - ] \\{ - \\} } \\theta _ { \\alpha _ { 7 } } ^ { ( - - ) } \\chi ^ { [ r + 2 s - 1 , q , p , r ] ( \\alpha _ { 1 } \\ldots \\alpha _ { 7 } ) } + \\ldots \\end{align*}", "\\begin{align*} \\frac { 1 } { 8 } ~ B P S : & & D ( d _ { 1 } + d _ { 2 } + \\frac { 1 } { 2 } ( d _ { 3 } + d _ { 4 } ) , 0 ; d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } ) \\; , \\quad d _ { 1 } - d _ { 4 } = 2 s \\geq 0 \\; ; \\\\ \\frac { 1 } { 4 } ~ B P S : & & D ( d _ { 2 } + \\frac { 1 } { 2 } d _ { 3 } , 0 ; 0 , d _ { 2 } , d _ { 3 } , 0 ) \\; ; \\\\ \\frac { 1 } { 2 } ~ B P S : & & D ( \\frac { 1 } { 2 } d _ { 3 } , 0 ; 0 , 0 , d _ { 3 } , 0 ) \\; . \\end{align*}", "\\begin{equation*} [ \\Phi ^ { + ( + ) [ + ] } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ \\pm \\} } ) ] ^ { p + q } [ \\Sigma ^ { + ( + ) \\{ + \\} } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ \\pm ] \\{ + \\} } ) ] ^ { q } \\; , \\end{equation*}", "\\begin{equation*} [ \\Phi ^ { + ( + ) [ + ] } ] ^ { m + k } [ \\Phi ^ { + ( + ) [ - ] } ] ^ { k } [ \\Sigma ^ { + ( + ) \\{ + \\} } ] ^ { n } \\end{equation*}" ], "latex_expand": [ "$ \\mitS \\mitO ( 8 ) $", "$ [ \\mitr + 2 \\mits , \\mitq , \\mitp , \\mitr ] $", "$ \\ell = \\frac { 1 } { 2 } ( \\mitp + 2 \\mitq + 3 \\mitr + 4 \\mits ) $", "$ 1 \\slash 2 $", "$ \\mitJ _ { \\mitt \\mito \\mitp } = 2 $", "$ \\mitq = \\mitr = \\mits = 0 $", "$ \\mitJ _ { \\mitt \\mito \\mitp } = 3 $", "$ \\mitr = \\mits = 0 $", "$ \\mitJ _ { \\mitt \\mito \\mitp } = 7 \\slash 2 $", "$ \\mitr \\ne 0 $", "$ \\mits \\ne 0 $", "$ \\ell [ \\mitJ _ { \\mitt \\mito \\mitp } ] = \\frac { 1 } { 2 } ( \\mitp + 2 \\mitq + 3 \\mitr + 4 \\mits ) + \\mitJ _ { \\mitt \\mito \\mitp } $", "$ \\mittheta $", "$ - 1 \\slash 2 $", "$ \\mitJ = 5 \\slash 2 $", "$ \\mittheta $", "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ 1 \\slash 8 $", "$ 1 \\slash 4 $", "$ 1 \\slash 2 $", "$ \\mupPhi $", "$ \\mupSigma $", "$ \\mitd _ { 1 } - \\mitd _ { 4 } = 2 \\mits $", "\\begin{align*} & & \\displaystyle ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp + \\mitq + \\mitr + \\mits } ( \\mupPhi ^ { + ( + ) [ - ] } ) ^ { \\mitq + \\mitr + \\mits } ( \\mupPhi ^ { + ( - ) \\{ + \\} } ) ^ { \\mitr + \\mits } ( \\mupPhi ^ { + ( - ) \\{ - \\} } ) ^ { \\mits } \\\\ & & \\displaystyle ~ = \\mitphi ^ { [ \\mitr + 2 \\mits , \\mitq , \\mitp , \\mitr ] } + \\ldots \\\\ & & \\displaystyle ~ + \\mittheta _ { \\mitalpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 3 } } ^ { ( + + ) } \\mittheta _ { \\mitalpha _ { 4 } } ^ { + + } \\mitA ^ { [ \\mitr + 2 \\mits , \\mitq , \\mitp - 2 , \\mitr ] ( \\mitalpha _ { 1 } \\ldots \\mitalpha _ { 4 } ) } + \\ldots \\\\ & & \\displaystyle ~ + \\mittheta _ { \\mitalpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 3 } } ^ { ( + + ) } \\mittheta _ { \\mitalpha _ { 4 } } ^ { + + } \\mittheta _ { \\mitalpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 6 } } ^ { [ - ] \\{ - \\} } \\mitB ^ { [ \\mitr + 2 \\mits , \\mitq - 1 , \\mitp , \\mitr ] ( \\mitalpha _ { 1 } \\ldots \\mitalpha _ { 6 } ) } + \\ldots \\\\ & & \\displaystyle ~ + \\mittheta _ { \\mitalpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 3 } } ^ { ( + + ) } \\mittheta _ { \\mitalpha _ { 4 } } ^ { + + } \\mittheta _ { \\mitalpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 6 } } ^ { [ - ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 7 } } ^ { ( - - ) } \\mitchi ^ { [ \\mitr + 2 \\mits - 1 , \\mitq , \\mitp , \\mitr ] ( \\mitalpha _ { 1 } \\ldots \\mitalpha _ { 7 } ) } + \\ldots \\end{align*}", "\\begin{align*} \\displaystyle \\frac { 1 } { 8 } ~ \\mathrm { B P S } : & & \\displaystyle \\mitD ( \\mitd _ { 1 } + \\mitd _ { 2 } + \\frac { 1 } { 2 } ( \\mitd _ { 3 } + \\mitd _ { 4 } ) , 0 ; \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } ) \\; , \\quad \\mitd _ { 1 } - \\mitd _ { 4 } = 2 \\mits \\geq 0 \\; ; \\\\ \\displaystyle \\frac { 1 } { 4 } ~ \\mathrm { B P S } : & & \\displaystyle \\mitD ( \\mitd _ { 2 } + \\frac { 1 } { 2 } \\mitd _ { 3 } , 0 ; 0 , \\mitd _ { 2 } , \\mitd _ { 3 } , 0 ) \\; ; \\\\ \\displaystyle \\frac { 1 } { 2 } ~ \\mathrm { B P S } : & & \\displaystyle \\mitD ( \\frac { 1 } { 2 } \\mitd _ { 3 } , 0 ; 0 , 0 , \\mitd _ { 3 } , 0 ) \\; . \\end{align*}", "\\begin{equation*} [ \\mupPhi ^ { + ( + ) [ + ] } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ \\pm \\} } ) ] ^ { \\mitp + \\mitq } [ \\mupSigma ^ { + ( + ) \\{ + \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ \\pm ] \\{ + \\} } ) ] ^ { \\mitq } \\; , \\end{equation*}", "\\begin{equation*} [ \\mupPhi ^ { + ( + ) [ + ] } ] ^ { \\mitm + \\mitk } [ \\mupPhi ^ { + ( + ) [ - ] } ] ^ { \\mitk } [ \\mupSigma ^ { + ( + ) \\{ + \\} } ] ^ { \\mitn } \\end{equation*}" ], "x_min": [ 0.7276999950408936, 0.1728000044822693, 0.5396999716758728, 0.6779999732971191, 0.609499990940094, 0.7020999789237976, 0.1728000044822693, 0.26739999651908875, 0.3849000036716461, 0.5555999875068665, 0.6351000070571899, 0.33169999718666077, 0.7526000142097473, 0.2667999863624573, 0.7103999853134155, 0.5266000032424927, 0.28060001134872437, 0.5425000190734863, 0.5839999914169312, 0.64410001039505, 0.33379998803138733, 0.39739999175071716, 0.2667999863624573, 0.22599999606609344, 0.18870000541210175, 0.21220000088214874, 0.3537999987602234 ], "y_min": [ 0.30219998955726624, 0.3188000023365021, 0.31790000200271606, 0.33640000224113464, 0.3544999957084656, 0.35499998927116394, 0.3716000020503998, 0.37209999561309814, 0.37059998512268066, 0.3716000020503998, 0.3716000020503998, 0.38670000433921814, 0.388700008392334, 0.4047999978065491, 0.4047999978065491, 0.4399000108242035, 0.49070000648498535, 0.49070000648498535, 0.49070000648498535, 0.49070000648498535, 0.7354000210762024, 0.7354000210762024, 0.8446999788284302, 0.17870000004768372, 0.5166000127792358, 0.6996999979019165, 0.7973999977111816 ], "x_max": [ 0.7815999984741211, 0.2847999930381775, 0.7193999886512756, 0.7077000141143799, 0.6772000193595886, 0.8209999799728394, 0.2418999969959259, 0.3531000018119812, 0.4740000069141388, 0.6032999753952026, 0.6827999949455261, 0.6420000195503235, 0.7623000144958496, 0.3124000132083893, 0.7829999923706055, 0.5370000004768372, 0.38769999146461487, 0.5722000002861023, 0.6144000291824341, 0.6744999885559082, 0.3483000099658966, 0.41190001368522644, 0.37389999628067017, 0.8065000176429749, 0.807200014591217, 0.7512000203132629, 0.6474999785423279 ], "y_max": [ 0.31679999828338623, 0.33390000462532043, 0.33550000190734863, 0.35100001096725464, 0.3686999976634979, 0.3677000105381012, 0.38580000400543213, 0.38190001249313354, 0.385699987411499, 0.384799987077713, 0.384799987077713, 0.40380001068115234, 0.39899998903274536, 0.41990000009536743, 0.41990000009536743, 0.4505999982357025, 0.505299985408783, 0.505299985408783, 0.505299985408783, 0.505299985408783, 0.7457000017166138, 0.7457000017166138, 0.8574000000953674, 0.29440000653266907, 0.6201000213623047, 0.7202000021934509, 0.8179000020027161 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003051_page19
{ "latex": [ "$OSp(8/4,\\mathbb {R})$", "$N=1$", "$AdS_4$", "$AdS_4\\times S^7$", "$M^4\\times T^7$", "$AdS_4$", "$N=8$", "$E_{7(7)}$", "$N=8$" ], "latex_norm": [ "$ O S p ( 8 \\slash 4 , R ) $", "$ N = 1 $", "$ A d S _ { 4 } $", "$ A d S _ { 4 } \\times S ^ { 7 } $", "$ M ^ { 4 } \\times T ^ { 7 } $", "$ A d S _ { 4 } $", "$ N = 8 $", "$ E _ { 7 ( 7 ) } $", "$ N = 8 $" ], "latex_expand": [ "$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $", "$ \\mitN = 1 $", "$ \\mitA \\mitd \\mitS _ { 4 } $", "$ \\mitA \\mitd \\mitS _ { 4 } \\times \\mitS ^ { 7 } $", "$ \\mitM ^ { 4 } \\times \\mitT ^ { 7 } $", "$ \\mitA \\mitd \\mitS _ { 4 } $", "$ \\mitN = 8 $", "$ \\mitE _ { 7 ( 7 ) } $", "$ \\mitN = 8 $" ], "x_min": [ 0.7387999892234802, 0.47130000591278076, 0.6980000138282776, 0.5638999938964844, 0.5895000100135803, 0.6531000137329102, 0.23980000615119934, 0.33169999718666077, 0.4934000074863434 ], "y_min": [ 0.1889999955892563, 0.2754000127315521, 0.30959999561309814, 0.35989999771118164, 0.41110000014305115, 0.42969998717308044, 0.447299987077713, 0.4814000129699707, 0.4814000129699707 ], "x_max": [ 0.8458999991416931, 0.5307000279426575, 0.7436000108718872, 0.6557999849319458, 0.6654999852180481, 0.6987000107765198, 0.2971999943256378, 0.373199999332428, 0.5479999780654907 ], "y_max": [ 0.20360000431537628, 0.2856999933719635, 0.322299987077713, 0.374099999666214, 0.4242999851703644, 0.4424000084400177, 0.4575999975204468, 0.4959999918937683, 0.4916999936103821 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003051_page20
{ "latex": [ "$N$", "$_4$" ], "latex_norm": [ "$ N $", "$ { } _ { 4 } $" ], "latex_expand": [ "$ \\mitN $", "$ { } _ { 4 } $" ], "x_min": [ 0.4311999976634979, 0.5909000039100647 ], "y_min": [ 0.5160999894142151, 0.5214999914169312 ], "x_max": [ 0.4499000012874603, 0.5992000102996826 ], "y_max": [ 0.5264000296592712, 0.5282999873161316 ], "expr_type": [ "embedded", "embedded" ] }
0003060_page01
{ "latex": [ "$\\mathcal {J}_{mn}$", "$d$", "$d-d_{k}$", "$d_{k}$", "$d_{k}=2$", "$d_{k}$", "$(d-d_{k})$", "$\\mathcal {J}$", "$\\mathcal {J}$", "$H=dB$", "$F_{(2)}$", "\\begin {eqnarray} 0&=& R_{\\mu \\nu } \\,-\\, 2\\nabla _{\\mu }\\nabla _{\\nu }\\phi \\,+\\, \\textstyle {\\frac {1}{4}} {H_{\\mu }}^{\\kappa \\rho }H_{\\nu \\kappa \\rho } \\,-\\, \\textstyle {\\frac {1}{2}}e^{2\\phi } \\left [ F_{(2)\\mu \\kappa }{F_{(2)\\nu }}^{\\kappa } \\,-\\, \\textstyle {\\frac {1}{4}}g_{\\mu \\nu }F_{(2)}^{2} \\right ] \\; ,\\\\ && \\\\ 0 &=& R \\,+\\, 4\\left (\\partial \\phi \\right )^{2} \\,-\\, 4 \\nabla ^{2}\\phi \\,+\\, \\textstyle {\\frac {1}{2\\cdot 3!}}H^{2} \\; , \\\\ && \\\\ 0 &=& \\nabla _{\\mu }\\left ( e^{-2\\phi }H^{\\mu \\kappa \\rho }\\right ) \\;=\\; \\nabla _{\\mu }F_{(2)}^{\\mu \\nu } \\; , \\end {eqnarray}" ], "latex_norm": [ "$ J _ { m n } $", "$ d $", "$ d - d _ { k } $", "$ d _ { k } $", "$ d _ { k } = 2 $", "$ d _ { k } $", "$ ( d - d _ { k } ) $", "$ J $", "$ J $", "$ H = d B $", "$ F _ { ( 2 ) } $", "\\begin{align*} 0 & = & R _ { \\mu \\nu } \\, - \\, 2 \\nabla _ { \\mu } \\nabla _ { \\nu } \\phi \\, + \\, \\frac { 1 } { 4 } { H _ { \\mu } } ^ { \\kappa \\rho } H _ { \\nu \\kappa \\rho } \\, - \\, \\frac { 1 } { 2 } e ^ { 2 \\phi } [ F _ { ( 2 ) \\mu \\kappa } { F _ { ( 2 ) \\nu } } ^ { \\kappa } \\, - \\, \\frac { 1 } { 4 } g _ { \\mu \\nu } F _ { ( 2 ) } ^ { 2 } ] \\; , \\\\ 0 & = & R \\, + \\, 4 { ( \\partial \\phi ) } ^ { 2 } \\, - \\, 4 \\nabla ^ { 2 } \\phi \\, + \\, \\frac { 1 } { 2 \\cdot 3 ! } H ^ { 2 } \\; , \\\\ 0 & = & \\nabla _ { \\mu } ( e ^ { - 2 \\phi } H ^ { \\mu \\kappa \\rho } ) \\; = \\; \\nabla _ { \\mu } F _ { ( 2 ) } ^ { \\mu \\nu } \\; , \\end{align*}" ], "latex_expand": [ "$ \\mscrJ _ { \\mitm \\mitn } $", "$ \\mitd $", "$ \\mitd - \\mitd _ { \\mitk } $", "$ \\mitd _ { \\mitk } $", "$ \\mitd _ { \\mitk } = 2 $", "$ \\mitd _ { \\mitk } $", "$ ( \\mitd - \\mitd _ { \\mitk } ) $", "$ \\mscrJ $", "$ \\mscrJ $", "$ \\mitH = \\mitd \\mitB $", "$ \\mitF _ { ( 2 ) } $", "\\begin{align*} \\displaystyle 0 & = & \\displaystyle \\mitR _ { \\mitmu \\mitnu } \\, - \\, 2 \\nabla _ { \\mitmu } \\nabla _ { \\mitnu } \\mitphi \\, + \\, \\textstyle \\frac { 1 } { 4 } { \\mitH _ { \\mitmu } } ^ { \\mitkappa \\mitrho } \\mitH _ { \\mitnu \\mitkappa \\mitrho } \\, - \\, \\textstyle \\frac { 1 } { 2 } \\mite ^ { 2 \\mitphi } \\left[ \\mitF _ { ( 2 ) \\mitmu \\mitkappa } { \\mitF _ { ( 2 ) \\mitnu } } ^ { \\mitkappa } \\, - \\, \\textstyle \\frac { 1 } { 4 } \\mitg _ { \\mitmu \\mitnu } \\mitF _ { ( 2 ) } ^ { 2 } \\right] \\; , \\\\ \\displaystyle 0 & = & \\displaystyle \\mitR \\, + \\, 4 { \\left( \\mitpartial \\mitphi \\right) } ^ { 2 } \\, - \\, 4 \\nabla ^ { 2 } \\mitphi \\, + \\, \\textstyle \\frac { 1 } { 2 \\cdot 3 ! } \\mitH ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle \\nabla _ { \\mitmu } \\left( \\mite ^ { - 2 \\mitphi } \\mitH ^ { \\mitmu \\mitkappa \\mitrho } \\right) \\; = \\; \\nabla _ { \\mitmu } \\mitF _ { ( 2 ) } ^ { \\mitmu \\mitnu } \\; , \\end{align*}" ], "x_min": [ 0.37869998812675476, 0.13609999418258667, 0.7311999797821045, 0.8410999774932861, 0.6571999788284302, 0.5645999908447266, 0.13609999418258667, 0.15960000455379486, 0.2667999863624573, 0.6032999753952026, 0.6807000041007996, 0.20730000734329224 ], "y_min": [ 0.5273000001907349, 0.5590999722480774, 0.5590999722480774, 0.5590999722480774, 0.5913000106811523, 0.6557999849319458, 0.6714000105857849, 0.7041000127792358, 0.7202000021934509, 0.7523999810218811, 0.7523999810218811, 0.7811999917030334 ], "x_max": [ 0.4138999879360199, 0.14579999446868896, 0.7789000272750854, 0.8597999811172485, 0.7159000039100647, 0.583299994468689, 0.20239999890327454, 0.1762000024318695, 0.2827000021934509, 0.6690000295639038, 0.7117999792098999, 0.8029999732971191 ], "y_max": [ 0.5385000109672546, 0.5688999891281128, 0.5708000063896179, 0.5708000063896179, 0.6029999852180481, 0.6675000190734863, 0.6845999956130981, 0.7148000001907349, 0.73089998960495, 0.7616999745368958, 0.7670000195503235, 0.8916000127792358 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003060_page02
{ "latex": [ "$dH=dF_{(2)}=0$", "$\\overline {g}_{ij}$", "$R(\\overline {g})_{ij}\\equiv \\lambda \\overline {g}_{ij}$", "$h_{mn}$", "$d_{k}$", "$D\\equiv d-1-d_{k}$", "$d$", "$\\mathcal {J}$", "$\\overline {\\nabla }$", "$\\sigma $", "$\\aleph $", "$M=e^{-2\\psi }N$", "$e^{2\\psi }d\\sigma =dt$", "$t$", "$\\lambda =0$", "$M=e^{\\alpha t}$", "$\\eta =e^{\\beta t}$", "$h_{mn}$", "\\begin {equation} ds^{2}\\;=\\; N^{2}(\\sigma )d\\sigma ^{2} \\,-\\,\\eta ^{2}(\\sigma )\\overline {g}_{ij}dx^{i}dx^{j} \\,-\\, R^{2}(\\sigma )h_{mn}dy^{m}dy^{n} \\; , \\label {eq:AnsatzG} \\end {equation}", "\\begin {equation} B \\;=\\; f(\\sigma )\\, \\mathcal {J} \\;=\\; \\textstyle {\\frac {1}{2}} f(\\sigma ) \\mathcal {J}_{mn} dy^{m}\\wedge dy^{n} \\; , \\end {equation}", "\\begin {equation} {\\mathcal {J}^{m}}_{p}{\\mathcal {J}^{p}}_{n} \\;=\\; -{\\delta ^{m}}_{n} \\hspace {.5cm},\\hspace {.5cm} \\overline {\\nabla }_{m}\\, \\mathcal {J}_{np}\\;=\\; 0 \\; , \\label {eq:KDef} \\end {equation}", "\\begin {equation} \\dot {f} \\;=\\; \\aleph \\, Ne^{2\\phi }\\eta ^{-D}R^{4-d_{k}} \\; , \\end {equation}", "\\begin {equation} \\psi \\;=\\; \\phi \\,+\\, \\textstyle {\\frac {1}{2}}\\log \\left ( N\\right ) \\,-\\, \\textstyle {\\frac {D}{2}}\\log \\left ( \\eta \\right ) \\,-\\, \\textstyle {\\frac {d_{k}}{2}}\\log \\left ( R\\right ) \\; , \\end {equation}", "\\begin {eqnarray} 0 &=& \\left (\\log R\\right )^{\\prime \\prime } \\,+\\, \\textstyle {\\frac {\\aleph ^{2}}{2}}R^{4} \\; ,\\\\ 0 &=& \\left (\\log \\eta \\right )^{\\prime \\prime } \\,-\\, \\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left (\\log M\\right )^{\\prime \\prime } \\,-\\, D\\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left [ \\left (\\log M\\right )^{\\prime }\\right ]^{2} \\,-\\, D \\left [ \\left (\\log \\eta \\right )^{\\prime }\\right ]^{2} \\,-\\, d_{k}\\left [ \\left (\\log R\\right )^{\\prime }\\right ]^{2} \\,-\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{4}}R^{4} \\; , \\end {eqnarray}", "\\begin {equation} R(t)\\;=\\; R_{0}\\, \\cosh ^{-1/2}\\left ( \\aleph R_{0}^{2}t\\right ) \\; , \\end {equation}" ], "latex_norm": [ "$ d H = d F _ { ( 2 ) } = 0 $", "$ \\overline { g } _ { i j } $", "$ R ( \\overline { g } ) _ { i j } \\equiv \\lambda \\overline { g } _ { i j } $", "$ h _ { m n } $", "$ d _ { k } $", "$ D \\equiv d - 1 - d _ { k } $", "$ d $", "$ J $", "$ \\overline { \\nabla } $", "$ \\sigma $", "$ \\aleph $", "$ M = e ^ { - 2 \\psi } N $", "$ e ^ { 2 \\psi } d \\sigma = d t $", "$ t $", "$ \\lambda = 0 $", "$ M = e ^ { \\alpha t } $", "$ \\eta = e ^ { \\beta t } $", "$ h _ { m n } $", "\\begin{equation*} d s ^ { 2 } \\; = \\; N ^ { 2 } ( \\sigma ) d \\sigma ^ { 2 } \\, - \\, \\eta ^ { 2 } ( \\sigma ) \\overline { g } _ { i j } d x ^ { i } d x ^ { j } \\, - \\, R ^ { 2 } ( \\sigma ) h _ { m n } d y ^ { m } d y ^ { n } \\; , \\end{equation*}", "\\begin{equation*} B \\; = \\; f ( \\sigma ) \\, J \\; = \\; \\frac { 1 } { 2 } f ( \\sigma ) J _ { m n } d y ^ { m } \\wedge d y ^ { n } \\; , \\end{equation*}", "\\begin{equation*} { J ^ { m } } _ { p } { J ^ { p } } _ { n } \\; = \\; - { \\delta ^ { m } } _ { n } \\hspace{14.23pt} , \\hspace{14.23pt} \\overline { \\nabla } _ { m } \\, J _ { n p } \\; = \\; 0 \\; , \\end{equation*}", "\\begin{equation*} \\dot { f } \\; = \\; \\aleph \\, N e ^ { 2 \\phi } \\eta ^ { - D } R ^ { 4 - d _ { k } } \\; , \\end{equation*}", "\\begin{equation*} \\psi \\; = \\; \\phi \\, + \\, \\frac { 1 } { 2 } \\operatorname { l o g } ( N ) \\, - \\, \\frac { D } { 2 } \\operatorname { l o g } ( \\eta ) \\, - \\, \\frac { d _ { k } } { 2 } \\operatorname { l o g } ( R ) \\; , \\end{equation*}", "\\begin{align*} 0 & = & { ( \\operatorname { l o g } R ) } ^ { \\prime \\prime } \\, + \\, \\frac { \\aleph ^ { 2 } } { 2 } R ^ { 4 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } \\eta ) } ^ { \\prime \\prime } \\, - \\, \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } M ) } ^ { \\prime \\prime } \\, - \\, D \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { [ { ( \\operatorname { l o g } M ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, D { [ { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, d _ { k } { [ { ( \\operatorname { l o g } R ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 4 } R ^ { 4 } \\; , \\end{align*}", "\\begin{equation*} R ( t ) \\; = \\; R _ { 0 } \\, { \\operatorname { c o s h } } ^ { - 1 \\slash 2 } ( \\aleph R _ { 0 } ^ { 2 } t ) \\; , \\end{equation*}" ], "latex_expand": [ "$ \\mitd \\mitH = \\mitd \\mitF _ { ( 2 ) } = 0 $", "$ \\overline { \\mitg } _ { \\miti \\mitj } $", "$ \\mitR ( \\overline { \\mitg } ) _ { \\miti \\mitj } \\equiv \\mitlambda \\overline { \\mitg } _ { \\miti \\mitj } $", "$ \\Planckconst _ { \\mitm \\mitn } $", "$ \\mitd _ { \\mitk } $", "$ \\mitD \\equiv \\mitd - 1 - \\mitd _ { \\mitk } $", "$ \\mitd $", "$ \\mscrJ $", "$ \\overline { \\nabla } $", "$ \\mitsigma $", "$ \\aleph $", "$ \\mitM = \\mite ^ { - 2 \\mitpsi } \\mitN $", "$ \\mite ^ { 2 \\mitpsi } \\mitd \\mitsigma = \\mitd \\mitt $", "$ \\mitt $", "$ \\mitlambda = 0 $", "$ \\mitM = \\mite ^ { \\mitalpha \\mitt } $", "$ \\miteta = \\mite ^ { \\mitbeta \\mitt } $", "$ \\Planckconst _ { \\mitm \\mitn } $", "\\begin{equation*} \\mitd \\mits ^ { 2 } \\; = \\; \\mitN ^ { 2 } ( \\mitsigma ) \\mitd \\mitsigma ^ { 2 } \\, - \\, \\miteta ^ { 2 } ( \\mitsigma ) \\overline { \\mitg } _ { \\miti \\mitj } \\mitd \\mitx ^ { \\miti } \\mitd \\mitx ^ { \\mitj } \\, - \\, \\mitR ^ { 2 } ( \\mitsigma ) \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\end{equation*}", "\\begin{equation*} \\mitB \\; = \\; \\mitf ( \\mitsigma ) \\, \\mscrJ \\; = \\; \\textstyle \\frac { 1 } { 2 } \\mitf ( \\mitsigma ) \\mscrJ _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\wedge \\mitd \\mity ^ { \\mitn } \\; , \\end{equation*}", "\\begin{equation*} { \\mscrJ ^ { \\mitm } } _ { \\mitp } { \\mscrJ ^ { \\mitp } } _ { \\mitn } \\; = \\; - { \\mitdelta ^ { \\mitm } } _ { \\mitn } \\hspace{14.23pt} , \\hspace{14.23pt} \\overline { \\nabla } _ { \\mitm } \\, \\mscrJ _ { \\mitn \\mitp } \\; = \\; 0 \\; , \\end{equation*}", "\\begin{equation*} \\dot { \\mitf } \\; = \\; \\aleph \\, \\mitN \\mite ^ { 2 \\mitphi } \\miteta ^ { - \\mitD } \\mitR ^ { 4 - \\mitd _ { \\mitk } } \\; , \\end{equation*}", "\\begin{equation*} \\mitpsi \\; = \\; \\mitphi \\, + \\, \\textstyle \\frac { 1 } { 2 } \\operatorname { l o g } \\left( \\mitN \\right) \\, - \\, \\textstyle \\frac { \\mitD } { 2 } \\operatorname { l o g } \\left( \\miteta \\right) \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } } { 2 } \\operatorname { l o g } \\left( \\mitR \\right) \\; , \\end{equation*}", "\\begin{align*} \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime \\prime } \\, + \\, \\textstyle \\frac { \\aleph ^ { 2 } } { 2 } \\mitR ^ { 4 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime \\prime } \\, - \\, \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime \\prime } \\, - \\, \\mitD \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left[ { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitD { \\left[ { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitd _ { \\mitk } { \\left[ { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 4 } \\mitR ^ { 4 } \\; , \\end{align*}", "\\begin{equation*} \\mitR ( \\mitt ) \\; = \\; \\mitR _ { 0 } \\, { \\operatorname { c o s h } } ^ { - 1 \\slash 2 } \\left( \\aleph \\mitR _ { 0 } ^ { 2 } \\mitt \\right) \\; , \\end{equation*}" ], "x_min": [ 0.37940001487731934, 0.18870000541210175, 0.5175999999046326, 0.6704000234603882, 0.7892000079154968, 0.5016999840736389, 0.7027999758720398, 0.18799999356269836, 0.18870000541210175, 0.18240000307559967, 0.18870000541210175, 0.23430000245571136, 0.5548999905586243, 0.5625, 0.5605000257492065, 0.6158000230789185, 0.6952000260353088, 0.7746999859809875, 0.27230000495910645, 0.3483000099658966, 0.3441999852657318, 0.4083999991416931, 0.3172000050544739, 0.2502000033855438, 0.3856000006198883 ], "y_min": [ 0.13429999351501465, 0.2632000148296356, 0.26170000433921814, 0.2621999979019165, 0.2782999873161316, 0.29440000653266907, 0.29440000653266907, 0.43309998512268066, 0.5054000020027161, 0.5268999934196472, 0.5981000065803528, 0.6538000106811523, 0.6538000106811523, 0.7925000190734863, 0.8076000213623047, 0.8062000274658203, 0.8051999807357788, 0.8637999892234802, 0.22750000655651093, 0.3984000086784363, 0.47269999980926514, 0.5625, 0.6205999851226807, 0.6942999958992004, 0.8295999765396118 ], "x_max": [ 0.5044999718666077, 0.21080000698566437, 0.6247000098228455, 0.7035999894142151, 0.8079000115394592, 0.6351000070571899, 0.7131999731063843, 0.2046000063419342, 0.20389999449253082, 0.1941000074148178, 0.2003999948501587, 0.33379998803138733, 0.6434000134468079, 0.5694000124931335, 0.605400025844574, 0.6841999888420105, 0.7526000142097473, 0.8036999702453613, 0.7408999800682068, 0.6647999882698059, 0.6690000295639038, 0.6047000288963318, 0.695900022983551, 0.7630000114440918, 0.6274999976158142 ], "y_max": [ 0.14890000224113464, 0.2768999934196472, 0.2768000066280365, 0.27390000224113464, 0.28999999165534973, 0.3061000108718872, 0.3041999936103821, 0.44429999589920044, 0.5163999795913696, 0.5332000255584717, 0.6074000000953674, 0.6654999852180481, 0.6654999852180481, 0.8008000254631042, 0.8173999786376953, 0.8169000148773193, 0.8198000192642212, 0.8730999827384949, 0.2475000023841858, 0.41839998960494995, 0.4916999936103821, 0.5810999870300293, 0.6410999894142151, 0.7832000255584717, 0.850600004196167 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003060_page03
{ "latex": [ "$g_{s}^{2}= e^{2\\phi }=M^{-1}\\eta ^{D}R^{d_{k}}$", "$g_{s}^{2}= e^{2\\phi }=M^{-1}\\eta ^{D}R^{d_{k}}$", "$H=\\aleph R^{4}dt\\wedge \\mathcal {J}$", "$\\beta =0$", "$\\alpha =1$", "$\\tau $", "$R$", "$f$", "$SL(2,\\mathbb {R})/U(1)$", "$d_{k}=6$", "$SL(2,\\mathbb {R})$", "$d_{k}=4$", "$R=R_{0}e^{\\alpha t}$", "$M$", "$\\eta $", "$M=\\eta ^{D+2}$", "\\begin {equation} \\alpha ^{2}\\,-\\, D\\beta ^{2} \\;=\\; \\frac {d_{k}\\aleph ^{2}R_{0}^{4}}{4} \\; . \\end {equation}", "\\begin {eqnarray} ds^{2} &=& d\\tau ^{2}\\,-\\, d\\vec {x}_{(D)} \\,-\\, 2R^{2}_{0} B(\\tau )^{-1} \\,h_{mn}dy^{m}dy^{n} \\; , \\\\ e^{2\\phi } &=& \\left ( \\sqrt {2}R_{0} \\right )^{d_{k}} \\tau ^{-1}B(\\tau )^{-d_{k}/2} \\; ,\\\\ H &=& 8R_{0}^{2} d_{k}^{-1/2} \\tau ^{-1}B(\\tau )^{-2} \\, d\\tau \\wedge \\mathcal {J} \\; , \\\\ B(\\tau ) &=& \\tau ^{2/\\sqrt {d_{k}}}\\,+\\, \\tau ^{-2/\\sqrt {d_{k}}} \\; . \\end {eqnarray}", "\\begin {equation} F_{(2)} \\;=\\; \\aleph \\mathcal {J} \\;=\\; \\textstyle {\\frac {1}{2}} \\aleph \\mathcal {J}_{mn} dy^{m}\\wedge dy^{n} \\; . \\label {eq:F2Ansatz} \\end {equation}", "\\begin {eqnarray} 0 &=& \\left (\\log R\\right )^{\\prime \\prime } \\,+\\, \\textstyle {\\frac {(d_{k}-4)\\aleph ^{2}}{8}} M\\eta ^{D}R^{d_{k}-4} \\; ,\\\\ 0 &=& \\left (\\log \\eta \\right )^{\\prime \\prime } \\,+\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{8}} M\\eta ^{D}R^{d_{k}-4} \\,-\\, \\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left (\\log M\\right )^{\\prime \\prime } \\,-\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{8}} M\\eta ^{D}R^{d_{k}-4} \\,-\\, D\\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left [ \\left (\\log M\\right )^{\\prime }\\right ]^{2} \\,-\\, D \\left [ \\left (\\log \\eta \\right )^{\\prime }\\right ]^{2} \\,-\\, d_{k}\\left [ \\left (\\log R\\right )^{\\prime }\\right ]^{2} \\,-\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{4}}M\\eta ^{D}R^{d_{k}-4} \\,-\\, D\\lambda M^{2}\\eta ^{-2} \\; , \\end {eqnarray}", "\\begin {equation} \\lambda \\;=\\; \\frac {\\aleph ^{2}}{4}\\left ( D+3 \\right ) \\; . \\end {equation}" ], "latex_norm": [ "$ g _ { s } ^ { 2 } = e ^ { 2 \\phi } = M ^ { - 1 } \\eta ^ { D } R ^ { d _ { k } } $", "$ g _ { s } ^ { 2 } = e ^ { 2 \\phi } = M ^ { - 1 } \\eta ^ { D } R ^ { d _ { k } } $", "$ H = \\aleph R ^ { 4 } d t \\wedge J $", "$ \\beta = 0 $", "$ \\alpha = 1 $", "$ \\tau $", "$ R $", "$ f $", "$ S L ( 2 , R ) \\slash U ( 1 ) $", "$ d _ { k } = 6 $", "$ S L ( 2 , R ) $", "$ d _ { k } = 4 $", "$ R = R _ { 0 } e ^ { \\alpha t } $", "$ M $", "$ \\eta $", "$ M = \\eta ^ { D + 2 } $", "\\begin{equation*} \\alpha ^ { 2 } \\, - \\, D \\beta ^ { 2 } \\; = \\; \\frac { d _ { k } \\aleph ^ { 2 } R _ { 0 } ^ { 4 } } { 4 } \\; . \\end{equation*}", "\\begin{align*} d s ^ { 2 } & = & d \\tau ^ { 2 } \\, - \\, d \\vec { x } _ { ( D ) } \\, - \\, 2 R _ { 0 } ^ { 2 } B ( \\tau ) ^ { - 1 } \\, h _ { m n } d y ^ { m } d y ^ { n } \\; , \\\\ e ^ { 2 \\phi } & = & { ( \\sqrt { 2 } R _ { 0 } ) } ^ { d _ { k } } \\tau ^ { - 1 } B ( \\tau ) ^ { - d _ { k } \\slash 2 } \\; , \\\\ H & = & 8 R _ { 0 } ^ { 2 } d _ { k } ^ { - 1 \\slash 2 } \\tau ^ { - 1 } B ( \\tau ) ^ { - 2 } \\, d \\tau \\wedge J \\; , \\\\ B ( \\tau ) & = & \\tau ^ { 2 \\slash \\sqrt { d _ { k } } } \\, + \\, \\tau ^ { - 2 \\slash \\sqrt { d _ { k } } } \\; . \\end{align*}", "\\begin{equation*} F _ { ( 2 ) } \\; = \\; \\aleph J \\; = \\; \\frac { 1 } { 2 } \\aleph J _ { m n } d y ^ { m } \\wedge d y ^ { n } \\; . \\end{equation*}", "\\begin{align*} 0 & = & { ( \\operatorname { l o g } R ) } ^ { \\prime \\prime } \\, + \\, \\frac { ( d _ { k } - 4 ) \\aleph ^ { 2 } } { 8 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } \\eta ) } ^ { \\prime \\prime } \\, + \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 8 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\, - \\, \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } M ) } ^ { \\prime \\prime } \\, - \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 8 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\, - \\, D \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { [ { ( \\operatorname { l o g } M ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, D { [ { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, d _ { k } { [ { ( \\operatorname { l o g } R ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 4 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\, - \\, D \\lambda M ^ { 2 } \\eta ^ { - 2 } \\; , \\end{align*}", "\\begin{equation*} \\lambda \\; = \\; \\frac { \\aleph ^ { 2 } } { 4 } ( D + 3 ) \\; . \\end{equation*}" ], "latex_expand": [ "$ \\mitg _ { \\mits } ^ { 2 } = \\mite ^ { 2 \\mitphi } = \\mitM ^ { - 1 } \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } } $", "$ \\mitg _ { \\mits } ^ { 2 } = \\mite ^ { 2 \\mitphi } = \\mitM ^ { - 1 } \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } } $", "$ \\mitH = \\aleph \\mitR ^ { 4 } \\mitd \\mitt \\wedge \\mscrJ $", "$ \\mitbeta = 0 $", "$ \\mitalpha = 1 $", "$ \\mittau $", "$ \\mitR $", "$ \\mitf $", "$ \\mitS \\mitL ( 2 , \\BbbR ) \\slash \\mitU ( 1 ) $", "$ \\mitd _ { \\mitk } = 6 $", "$ \\mitS \\mitL ( 2 , \\BbbR ) $", "$ \\mitd _ { \\mitk } = 4 $", "$ \\mitR = \\mitR _ { 0 } \\mite ^ { \\mitalpha \\mitt } $", "$ \\mitM $", "$ \\miteta $", "$ \\mitM = \\miteta ^ { \\mitD + 2 } $", "\\begin{equation*} \\mitalpha ^ { 2 } \\, - \\, \\mitD \\mitbeta ^ { 2 } \\; = \\; \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } \\mitR _ { 0 } ^ { 4 } } { 4 } \\; . \\end{equation*}", "\\begin{align*} \\displaystyle \\mitd \\mits ^ { 2 } & = & \\displaystyle \\mitd \\mittau ^ { 2 } \\, - \\, \\mitd \\vec { \\mitx } _ { ( \\mitD ) } \\, - \\, 2 \\mitR _ { 0 } ^ { 2 } \\mitB ( \\mittau ) ^ { - 1 } \\, \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\\\ \\displaystyle \\mite ^ { 2 \\mitphi } & = & \\displaystyle { \\left( \\sqrt { 2 } \\mitR _ { 0 } \\right) } ^ { \\mitd _ { \\mitk } } \\mittau ^ { - 1 } \\mitB ( \\mittau ) ^ { - \\mitd _ { \\mitk } \\slash 2 } \\; , \\\\ \\displaystyle \\mitH & = & \\displaystyle 8 \\mitR _ { 0 } ^ { 2 } \\mitd _ { \\mitk } ^ { - 1 \\slash 2 } \\mittau ^ { - 1 } \\mitB ( \\mittau ) ^ { - 2 } \\, \\mitd \\mittau \\wedge \\mscrJ \\; , \\\\ \\displaystyle \\mitB ( \\mittau ) & = & \\displaystyle \\mittau ^ { 2 \\slash \\sqrt { \\mitd _ { \\mitk } } } \\, + \\, \\mittau ^ { - 2 \\slash \\sqrt { \\mitd _ { \\mitk } } } \\; . \\end{align*}", "\\begin{equation*} \\mitF _ { ( 2 ) } \\; = \\; \\aleph \\mscrJ \\; = \\; \\textstyle \\frac { 1 } { 2 } \\aleph \\mscrJ _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\wedge \\mitd \\mity ^ { \\mitn } \\; . \\end{equation*}", "\\begin{align*} \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime \\prime } \\, + \\, \\textstyle \\frac { ( \\mitd _ { \\mitk } - 4 ) \\aleph ^ { 2 } } { 8 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime \\prime } \\, + \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 8 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\, - \\, \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime \\prime } \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 8 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\, - \\, \\mitD \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left[ { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitD { \\left[ { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitd _ { \\mitk } { \\left[ { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 4 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\, - \\, \\mitD \\mitlambda \\mitM ^ { 2 } \\miteta ^ { - 2 } \\; , \\end{align*}", "\\begin{equation*} \\mitlambda \\; = \\; \\frac { \\aleph ^ { 2 } } { 4 } \\left( \\mitD + 3 \\right) \\; . \\end{equation*}" ], "x_min": [ 0.7864999771118164, 0.13609999418258667, 0.5501000285148621, 0.40700000524520874, 0.3849000036716461, 0.2888999879360199, 0.6309999823570251, 0.6966000199317932, 0.28679999709129333, 0.5701000094413757, 0.5605000257492065, 0.26190000772476196, 0.20589999854564667, 0.5515000224113464, 0.6164000034332275, 0.13609999418258667, 0.41119998693466187, 0.2985000014305115, 0.3682999908924103, 0.16030000150203705, 0.4332999885082245 ], "y_min": [ 0.20360000431537628, 0.21969999372959137, 0.22020000219345093, 0.2538999915122986, 0.2709999978542328, 0.2896000146865845, 0.46970000863075256, 0.46970000863075256, 0.48489999771118164, 0.48579999804496765, 0.5009999871253967, 0.788100004196167, 0.8026999831199646, 0.8047000169754028, 0.8076000213623047, 0.8184000253677368, 0.15770000219345093, 0.3075999915599823, 0.614300012588501, 0.6669999957084656, 0.8428000211715698 ], "x_max": [ 0.8784000277519226, 0.2280000001192093, 0.677299976348877, 0.4553999900817871, 0.4339999854564667, 0.2992999851703644, 0.6455000042915344, 0.7077000141143799, 0.4036000072956085, 0.6226000189781189, 0.630299985408783, 0.31859999895095825, 0.2957000136375427, 0.5715000033378601, 0.626800000667572, 0.22110000252723694, 0.605400025844574, 0.7117999792098999, 0.6474999785423279, 0.8528000116348267, 0.5825999975204468 ], "y_max": [ 0.21870000660419464, 0.23479999601840973, 0.2328999936580658, 0.2660999894142151, 0.2797999978065491, 0.29589998722076416, 0.4794999957084656, 0.48190000653266907, 0.4986000061035156, 0.4975000023841858, 0.5146999955177307, 0.7997999787330627, 0.8159000277519226, 0.8140000104904175, 0.8163999915122986, 0.8325999975204468, 0.1898999959230423, 0.40610000491142273, 0.6342999935150146, 0.763700008392334, 0.8755000233650208 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003060_page04
{ "latex": [ "$\\alpha \\neq 0$", "$\\alpha =0$", "$t$", "$Mdt=d\\tau $", "$\\tau \\rightarrow \\infty $", "$d_{k}$", "$R =\\eta ^{\\alpha }$", "$M=\\eta ^{\\beta }$", "$\\beta = D+2+\\alpha (d_{k}-4)$", "$e^{\\phi }=\\eta ^{2\\alpha -1}$", "$A$", "$t$", "$\\tau $", "$\\eta = B\\tau $", "\\begin {equation} \\left (\\log \\eta \\right )^{\\prime } \\;=\\; \\pm \\left [ \\frac {\\aleph ^{2}}{4} \\eta ^{2(D+1)}\\,+\\, \\frac {4\\alpha ^{2}}{D(D+3)+4} \\right ]^{1/2} \\; . \\end {equation}", "\\begin {equation} \\eta \\;=\\; \\left ( A \\,\\mp \\, \\frac {(D+1)\\aleph ^{2}}{2}t \\right )^{-\\frac {1}{D+1}} \\; , \\end {equation}", "\\begin {eqnarray} ds^{2} &=& d\\tau ^{2} \\,-\\, \\left ( \\frac {\\aleph ^{2}}{2}\\tau \\right )^{2}d\\Omega ^{2}_{\\lambda } \\,-\\, R_{0}^{2}\\,h_{mn}dy^{m}dy^{n} \\; ,\\\\ e^{\\phi } &=& 4R_{0}^{2}\\aleph ^{-2}\\, \\tau ^{-1} \\; . \\end {eqnarray}", "\\begin {eqnarray} \\lambda &=& \\frac {\\aleph ^{2}}{16}\\left ( d_{k}(D+3)\\,+\\, (d_{k}-4)^{2} \\right ) \\; , \\\\ && \\\\ \\alpha &=& -2\\frac {d_{k}-4}{d_{k}(D+1)+(d_{k}-4)^{2}} \\; ,\\\\ && \\\\ \\beta &=& \\frac {d_{k}(D+1)(D+2)+D(d_{k}-4)^{2}}{d_{k}(D+1)+(d_{k}-4)^{2}} \\; , \\end {eqnarray}", "\\begin {equation} \\left (\\log \\eta \\right )^{\\prime } \\;=\\; \\pm B\\, \\eta ^{\\beta -1} \\; , \\end {equation}", "\\begin {equation} B^{2} \\;=\\; \\frac {\\aleph ^{2}}{16}\\, \\frac {\\left [ d_{k}(D+1) +(d_{k}-4)^{2} \\right ]^{2}}{d_{k}(D+1)+(D-1)(d_{k}-4)^{2}} \\; . \\end {equation}", "\\begin {equation} \\eta \\;=\\; \\left [ A\\mp (\\beta -1)B\\, t\\right ]^{\\frac {1}{\\beta -1}} \\; , \\end {equation}", "\\begin {eqnarray} ds^{2} &=& d\\tau ^{2} \\,-\\, B^{2}\\tau ^{2}d\\Omega ^{2}_{\\lambda } \\,-\\, \\left ( B\\tau \\right )^{2\\alpha }h_{mn}dy^{m}dy^{n} \\; ,\\\\ e^{\\phi } &=& \\left ( B\\tau \\right )^{2\\alpha -1} \\; . \\end {eqnarray}" ], "latex_norm": [ "$ \\alpha \\ne 0 $", "$ \\alpha = 0 $", "$ t $", "$ M d t = d \\tau $", "$ \\tau \\rightarrow \\infty $", "$ d _ { k } $", "$ R = \\eta ^ { \\alpha } $", "$ M = \\eta ^ { \\beta } $", "$ \\beta = D + 2 + \\alpha ( d _ { k } - 4 ) $", "$ e ^ { \\phi } = \\eta ^ { 2 \\alpha - 1 } $", "$ A $", "$ t $", "$ \\tau $", "$ \\eta = B \\tau $", "\\begin{equation*} { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } \\; = \\; \\pm { [ \\frac { \\aleph ^ { 2 } } { 4 } \\eta ^ { 2 ( D + 1 ) } \\, + \\, \\frac { 4 \\alpha ^ { 2 } } { D ( D + 3 ) + 4 } ] } ^ { 1 \\slash 2 } \\; . \\end{equation*}", "\\begin{equation*} \\eta \\; = \\; { ( A \\, \\mp \\, \\frac { ( D + 1 ) \\aleph ^ { 2 } } { 2 } t ) } ^ { - \\frac { 1 } { D + 1 } } \\; , \\end{equation*}", "\\begin{align*} d s ^ { 2 } & = & d \\tau ^ { 2 } \\, - \\, { ( \\frac { \\aleph ^ { 2 } } { 2 } \\tau ) } ^ { 2 } d \\Omega _ { \\lambda } ^ { 2 } \\, - \\, R _ { 0 } ^ { 2 } \\, h _ { m n } d y ^ { m } d y ^ { n } \\; , \\\\ e ^ { \\phi } & = & 4 R _ { 0 } ^ { 2 } \\aleph ^ { - 2 } \\, \\tau ^ { - 1 } \\; . \\end{align*}", "\\begin{align*} \\lambda & = & \\frac { \\aleph ^ { 2 } } { 1 6 } ( d _ { k } ( D + 3 ) \\, + \\, ( d _ { k } - 4 ) ^ { 2 } ) \\; , \\\\ \\alpha & = & - 2 \\frac { d _ { k } - 4 } { d _ { k } ( D + 1 ) + ( d _ { k } - 4 ) ^ { 2 } } \\; , \\\\ \\beta & = & \\frac { d _ { k } ( D + 1 ) ( D + 2 ) + D ( d _ { k } - 4 ) ^ { 2 } } { d _ { k } ( D + 1 ) + ( d _ { k } - 4 ) ^ { 2 } } \\; , \\end{align*}", "\\begin{equation*} { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } \\; = \\; \\pm B \\, \\eta ^ { \\beta - 1 } \\; , \\end{equation*}", "\\begin{equation*} B ^ { 2 } \\; = \\; \\frac { \\aleph ^ { 2 } } { 1 6 } \\, \\frac { { [ d _ { k } ( D + 1 ) + ( d _ { k } - 4 ) ^ { 2 } ] } ^ { 2 } } { d _ { k } ( D + 1 ) + ( D - 1 ) ( d _ { k } - 4 ) ^ { 2 } } \\; . \\end{equation*}", "\\begin{equation*} \\eta \\; = \\; { [ A \\mp ( \\beta - 1 ) B \\, t ] } ^ { \\frac { 1 } { \\beta - 1 } } \\; , \\end{equation*}", "\\begin{align*} d s ^ { 2 } & = & d \\tau ^ { 2 } \\, - \\, B ^ { 2 } \\tau ^ { 2 } d \\Omega _ { \\lambda } ^ { 2 } \\, - \\, { ( B \\tau ) } ^ { 2 \\alpha } h _ { m n } d y ^ { m } d y ^ { n } \\; , \\\\ e ^ { \\phi } & = & { ( B \\tau ) } ^ { 2 \\alpha - 1 } \\; . \\end{align*}" ], "latex_expand": [ "$ \\mitalpha \\ne 0 $", "$ \\mitalpha = 0 $", "$ \\mitt $", "$ \\mitM \\mitd \\mitt = \\mitd \\mittau $", "$ \\mittau \\rightarrow \\infty $", "$ \\mitd _ { \\mitk } $", "$ \\mitR = \\miteta ^ { \\mitalpha } $", "$ \\mitM = \\miteta ^ { \\mitbeta } $", "$ \\mitbeta = \\mitD + 2 + \\mitalpha ( \\mitd _ { \\mitk } - 4 ) $", "$ \\mite ^ { \\mitphi } = \\miteta ^ { 2 \\mitalpha - 1 } $", "$ \\mitA $", "$ \\mitt $", "$ \\mittau $", "$ \\miteta = \\mitB \\mittau $", "\\begin{equation*} { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\; = \\; \\pm { \\left[ \\frac { \\aleph ^ { 2 } } { 4 } \\miteta ^ { 2 ( \\mitD + 1 ) } \\, + \\, \\frac { 4 \\mitalpha ^ { 2 } } { \\mitD ( \\mitD + 3 ) + 4 } \\right] } ^ { 1 \\slash 2 } \\; . \\end{equation*}", "\\begin{equation*} \\miteta \\; = \\; { \\left( \\mitA \\, \\mp \\, \\frac { ( \\mitD + 1 ) \\aleph ^ { 2 } } { 2 } \\mitt \\right) } ^ { - \\frac { 1 } { \\mitD + 1 } } \\; , \\end{equation*}", "\\begin{align*} \\displaystyle \\mitd \\mits ^ { 2 } & = & \\displaystyle \\mitd \\mittau ^ { 2 } \\, - \\, { \\left( \\frac { \\aleph ^ { 2 } } { 2 } \\mittau \\right) } ^ { 2 } \\mitd \\mupOmega _ { \\mitlambda } ^ { 2 } \\, - \\, \\mitR _ { 0 } ^ { 2 } \\, \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\\\ \\displaystyle \\mite ^ { \\mitphi } & = & \\displaystyle 4 \\mitR _ { 0 } ^ { 2 } \\aleph ^ { - 2 } \\, \\mittau ^ { - 1 } \\; . \\end{align*}", "\\begin{align*} \\displaystyle \\mitlambda & = & \\displaystyle \\frac { \\aleph ^ { 2 } } { 1 6 } \\left( \\mitd _ { \\mitk } ( \\mitD + 3 ) \\, + \\, ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } \\right) \\; , \\\\ \\displaystyle \\mitalpha & = & \\displaystyle - 2 \\frac { \\mitd _ { \\mitk } - 4 } { \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } \\; , \\\\ \\displaystyle \\mitbeta & = & \\displaystyle \\frac { \\mitd _ { \\mitk } ( \\mitD + 1 ) ( \\mitD + 2 ) + \\mitD ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } { \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } \\; , \\end{align*}", "\\begin{equation*} { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\; = \\; \\pm \\mitB \\, \\miteta ^ { \\mitbeta - 1 } \\; , \\end{equation*}", "\\begin{equation*} \\mitB ^ { 2 } \\; = \\; \\frac { \\aleph ^ { 2 } } { 1 6 } \\, \\frac { { \\left[ \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } \\right] } ^ { 2 } } { \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitD - 1 ) ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } \\; . \\end{equation*}", "\\begin{equation*} \\miteta \\; = \\; { \\left[ \\mitA \\mp ( \\mitbeta - 1 ) \\mitB \\, \\mitt \\right] } ^ { \\frac { 1 } { \\mitbeta - 1 } } \\; , \\end{equation*}", "\\begin{align*} \\displaystyle \\mitd \\mits ^ { 2 } & = & \\displaystyle \\mitd \\mittau ^ { 2 } \\, - \\, \\mitB ^ { 2 } \\mittau ^ { 2 } \\mitd \\mupOmega _ { \\mitlambda } ^ { 2 } \\, - \\, { \\left( \\mitB \\mittau \\right) } ^ { 2 \\mitalpha } \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\\\ \\displaystyle \\mite ^ { \\mitphi } & = & \\displaystyle { \\left( \\mitB \\mittau \\right) } ^ { 2 \\mitalpha - 1 } \\; . \\end{align*}" ], "x_min": [ 0.2321999967098236, 0.7512000203132629, 0.29159998893737793, 0.7540000081062317, 0.5149000287055969, 0.4788999855518341, 0.23010000586509705, 0.29989999532699585, 0.2971999943256378, 0.3628000020980835, 0.18870000541210175, 0.5722000002861023, 0.13609999418258667, 0.274399995803833, 0.3124000132083893, 0.37529999017715454, 0.30820000171661377, 0.34279999136924744, 0.4187999963760376, 0.3400000035762787, 0.39809998869895935, 0.3061999976634979 ], "y_min": [ 0.20509999990463257, 0.20559999346733093, 0.2768999934196472, 0.2919999957084656, 0.4169999957084656, 0.42969998717308044, 0.4458000063896179, 0.44339999556541443, 0.46140000224113464, 0.6157000064849854, 0.7797999978065491, 0.7807999849319458, 0.8314999938011169, 0.8281000256538391, 0.1543000042438507, 0.2280000001192093, 0.326200008392334, 0.4828999936580658, 0.6553000211715698, 0.6948000192642212, 0.7480000257492065, 0.8471999764442444 ], "x_max": [ 0.2799000144004822, 0.7989000082015991, 0.2985000014305115, 0.8389999866485596, 0.5723000168800354, 0.4975999891757965, 0.2888000011444092, 0.3634999990463257, 0.4790000021457672, 0.4505999982357025, 0.20250000059604645, 0.5791000127792358, 0.14650000631809235, 0.3345000147819519, 0.7008000016212463, 0.6378999948501587, 0.7020999789237976, 0.6711000204086304, 0.5916000008583069, 0.6765999794006348, 0.6151000261306763, 0.7042999863624573 ], "y_max": [ 0.21729999780654907, 0.21490000188350677, 0.28519999980926514, 0.3012999892234802, 0.42329999804496765, 0.4413999915122986, 0.4580000042915344, 0.4580000042915344, 0.4745999872684479, 0.630299985408783, 0.7896000146865845, 0.7896000146865845, 0.8378000259399414, 0.8403000235557556, 0.193900004029274, 0.2685000002384186, 0.38920000195503235, 0.6093999743461609, 0.6739000082015991, 0.7339000105857849, 0.7699999809265137, 0.8935999870300293 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003060_page05
{ "latex": [ "$\\tau $", "$d_{k}=2$", "$\\alpha =2d^{-1}$", "$d=3$", "$d_{k}=2$", "$d=3$" ], "latex_norm": [ "$ \\tau $", "$ d _ { k } = 2 $", "$ \\alpha = 2 d ^ { - 1 } $", "$ d = 3 $", "$ d _ { k } = 2 $", "$ d = 3 $" ], "latex_expand": [ "$ \\mittau $", "$ \\mitd _ { \\mitk } = 2 $", "$ \\mitalpha = 2 \\mitd ^ { - 1 } $", "$ \\mitd = 3 $", "$ \\mitd _ { \\mitk } = 2 $", "$ \\mitd = 3 $" ], "x_min": [ 0.2750999927520752, 0.16449999809265137, 0.3869999945163727, 0.8086000084877014, 0.506600022315979, 0.5715000033378601 ], "y_min": [ 0.15379999577999115, 0.1665000021457672, 0.16459999978542328, 0.1665000021457672, 0.19869999587535858, 0.19869999587535858 ], "x_max": [ 0.28619998693466187, 0.21979999542236328, 0.46369999647140503, 0.8555999994277954, 0.5598000288009644, 0.6164000034332275 ], "y_max": [ 0.16009999811649323, 0.17820000648498535, 0.17630000412464142, 0.17630000412464142, 0.21040000021457672, 0.2084999978542328 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003079_page02
{ "latex": [ "$SU(2)$", "$SU(3)_c$", "$U(1)$" ], "latex_norm": [ "$ S U ( 2 ) $", "$ S U ( 3 ) _ { c } $", "$ U ( 1 ) $" ], "latex_expand": [ "$ \\mitS \\mitU ( 2 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitc } $", "$ \\mitU ( 1 ) $" ], "x_min": [ 0.1395999938249588, 0.8065000176429749, 0.8258000016212463 ], "y_min": [ 0.30660000443458557, 0.45170000195503235, 0.6929000020027161 ], "x_max": [ 0.1906999945640564, 0.8639000058174133, 0.8644999861717224 ], "y_max": [ 0.32030001282691956, 0.4648999869823456, 0.70660001039505 ], "expr_type": [ "embedded", "embedded", "embedded" ] }
0003079_page09
{ "latex": [ "$SU(2)$" ], "latex_norm": [ "$ S U ( 2 ) $" ], "latex_expand": [ "$ \\mitS \\mitU ( 2 ) $" ], "x_min": [ 0.1996999979019165 ], "y_min": [ 0.2709999978542328 ], "x_max": [ 0.2500999867916107 ], "y_max": [ 0.2847000062465668 ], "expr_type": [ "embedded" ] }
0003087_page02
{ "latex": [ "$S$" ], "latex_norm": [ "$ S $" ], "latex_expand": [ "$ \\mitS $" ], "x_min": [ 0.3682999908924103 ], "y_min": [ 0.3174000084400177 ], "x_max": [ 0.382099986076355 ], "y_max": [ 0.3280999958515167 ], "expr_type": [ "embedded" ] }
0003087_page03
{ "latex": [ "$D_{\\soft }\\ne 1$", "$t$", "$\\psi $", "$A_\\mu (x)\\to A_\\mu (x) + \\partial _\\mu \\theta (x)$", "$\\psi (x)\\to \\ee ^{ie\\theta (x)}\\psi (x)$", "$h^{-1}(x)\\psi (x)$", "$h^{-1}(x) \\to h^{-1}(x) \\ee ^{-ie\\theta (x)}$", "$S$", "\\begin {equation}\\label {2bbad} b(q,s, t):=\\intx \\frac 1{\\sqrt {2E_{\\smash {q}}}}u^{\\dag s}(q)\\psi (x)\\ee ^{iq\\ecd x}\\,, \\end {equation}", "\\begin {equation}\\label {2bbadr} b(q,s,t)=D_\\soft (q,t)b(q,s)\\,, \\end {equation}", "\\begin {equation}\\label {2dsoft} D_{\\soft }(q,t)=\\exp \\left \\{-e\\!\\!\\!\\intks \\frac 1{2\\omega _k} \\left ( \\frac {q\\cd a(k)}{q\\cd k}\\ee ^{-itk\\ecd q/E_q}- \\frac {q\\cd \\ad (k)}{q\\cd k}\\ee ^{itk\\ecd q/E_q} \\right )\\right \\}\\,, \\end {equation}", "\\begin {equation}\\label {4de} u\\cd \\pa h^{-1}(x)=-ieh^{-1}(x)u\\cd A(x)\\,, \\end {equation}" ], "latex_norm": [ "$ D _ { s o f t } \\ne 1 $", "$ t $", "$ \\psi $", "$ A _ { \\mu } ( x ) \\rightarrow A _ { \\mu } ( x ) + \\partial _ { \\mu } \\theta ( x ) $", "$ \\psi ( x ) \\rightarrow e ^ { i e \\theta ( x ) } \\psi ( x ) $", "$ h ^ { - 1 } ( x ) \\psi ( x ) $", "$ h ^ { - 1 } ( x ) \\rightarrow h ^ { - 1 } ( x ) e ^ { - i e \\theta ( x ) } $", "$ S $", "\\begin{equation*} b ( q , s , t ) : = \\intx \\frac { 1 } { \\sqrt { 2 E _ { q } } } u ^ { \\dagger s } ( q ) \\psi ( x ) e ^ { i q \\cdot x } \\, , \\end{equation*}", "\\begin{equation*} b ( q , s , t ) = D _ { s o f t } ( q , t ) b ( q , s ) \\, , \\end{equation*}", "\\begin{equation*} D _ { s o f t } ( q , t ) = \\operatorname { e x p } \\{ - e \\! \\! \\! \\int _ { s o f t } \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } ( \\frac { q \\cdot a ( k ) } { q \\cdot k } e ^ { - i t k \\cdot q \\slash E _ { q } } - \\frac { q \\cdot a ^ { \\dagger } ( k ) } { q \\cdot k } e ^ { i t k \\cdot q \\slash E _ { q } } ) \\} \\, , \\end{equation*}", "\\begin{equation*} u \\cdot \\partial h ^ { - 1 } ( x ) = - i e h ^ { - 1 } ( x ) u \\cdot A ( x ) \\, , \\end{equation*}" ], "latex_expand": [ "$ \\mitD _ { \\mathrm { s o f t } } \\ne 1 $", "$ \\mitt $", "$ \\mitpsi $", "$ \\mitA _ { \\mitmu } ( \\mitx ) \\rightarrow \\mitA _ { \\mitmu } ( \\mitx ) + \\mitpartial _ { \\mitmu } \\mittheta ( \\mitx ) $", "$ \\mitpsi ( \\mitx ) \\rightarrow \\mathrm { e } ^ { \\miti \\mite \\mittheta ( \\mitx ) } \\mitpsi ( \\mitx ) $", "$ \\Planckconst ^ { - 1 } ( \\mitx ) \\mitpsi ( \\mitx ) $", "$ \\Planckconst ^ { - 1 } ( \\mitx ) \\rightarrow \\Planckconst ^ { - 1 } ( \\mitx ) \\mathrm { e } ^ { - \\miti \\mite \\mittheta ( \\mitx ) } $", "$ \\mitS $", "\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitt ) : = \\intx \\frac { 1 } { \\sqrt { 2 \\mitE _ { \\mitq } } } \\mitu ^ { \\dagger \\mits } ( \\mitq ) \\mitpsi ( \\mitx ) \\mathrm { e } ^ { \\miti \\mitq \\cdot \\mitx } \\, , \\end{equation*}", "\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitt ) = \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) \\mitb ( \\mitq , \\mits ) \\, , \\end{equation*}", "\\begin{equation*} \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) = \\operatorname { e x p } \\left\\{ - \\mite \\! \\! \\! \\int \\limits _ { \\mathrm { s o f t } } \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\left( \\frac { \\mitq \\cdot \\mita ( \\mitk ) } { \\mitq \\cdot \\mitk } \\mathrm { e } ^ { - \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } - \\frac { \\mitq \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitq \\cdot \\mitk } \\mathrm { e } ^ { \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\right) \\right\\} \\, , \\end{equation*}", "\\begin{equation*} \\mitu \\cdot \\mitpartial \\Planckconst ^ { - 1 } ( \\mitx ) = - \\miti \\mite \\Planckconst ^ { - 1 } ( \\mitx ) \\mitu \\cdot \\mitA ( \\mitx ) \\, , \\end{equation*}" ], "x_min": [ 0.6488999724388123, 0.5902000069618225, 0.7276999950408936, 0.1251000016927719, 0.39250001311302185, 0.4375, 0.1251000016927719, 0.6668999791145325, 0.3296000063419342, 0.3808000087738037, 0.17829999327659607, 0.35519999265670776 ], "y_min": [ 0.41260001063346863, 0.44780001044273376, 0.524399995803833, 0.6610999703407288, 0.6596999764442444, 0.6776999831199646, 0.6937999725341797, 0.8324999809265137, 0.19920000433921814, 0.2768999934196472, 0.33250001072883606, 0.798799991607666 ], "x_max": [ 0.7263000011444092, 0.5978000164031982, 0.7415000200271606, 0.3456000089645386, 0.5569999814033508, 0.5349000096321106, 0.32899999618530273, 0.6793000102043152, 0.6682000160217285, 0.6177999973297119, 0.8202999830245972, 0.6427000164985657 ], "y_max": [ 0.42579999566078186, 0.4571000039577484, 0.5375999808311462, 0.6766999959945679, 0.6762999892234802, 0.6933000087738037, 0.7103999853134155, 0.8413000106811523, 0.23479999601840973, 0.29499998688697815, 0.38040000200271606, 0.8183000087738037 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003087_page04
{ "latex": [ "$u^\\mu =\\gamma (\\eta +v)^\\mu $", "$\\eta $", "$v=(0,\\vb )$", "$\\gamma =(1-|\\vb |^2)^{-1/2}$", "$K$", "$\\chi $", "$\\G ^\\mu =(\\eta +v)^\\mu (\\eta -v)\\cd \\pa -\\pa ^\\mu $", "$D_\\soft (q,t)$", "$ V^\\mu =(\\eta +v)^\\mu (\\eta -v)\\cd k-k^\\mu $", "$\\G ^\\mu $", "\\begin {equation}\\label {4sol} h^{-1}(x)\\psi (x)=\\ee ^{-ieK(x)}\\ee ^{-ie\\chi (x)}\\psi (x)\\,. \\end {equation}", "\\begin {equation}\\label {4min} \\chi (x)=\\frac {\\G \\cd A}{\\G \\cd \\pa }\\,, \\end {equation}", "\\begin {equation}\\label {2bgood} b(q,s,v,t):=\\intx \\frac 1{\\sqrt {2E_{\\smash {q}}}}u^{\\dag s}(q)\\ee ^{-ie\\chi (x)} \\psi (x)\\ee ^{iq\\ecd x}\\,. \\end {equation}", "\\begin {equation}\\label {3bexp} b(q,s,t,v)\\to h^{-1}_\\soft (q,t,v)D_\\soft (q,t)b(q,s)\\,, \\end {equation}", "\\begin {equation}\\label {3ddress} h^{-1}_{\\soft }(q,t,v)=\\exp \\left \\{e\\!\\!\\!\\intks \\frac 1{2\\omega _k} \\left ( \\frac {V\\cd a(k)}{V\\cd k}\\ee ^{-itk\\ecd q/E_q}- \\frac {V\\cd \\ad (k)}{V\\cd k}\\ee ^{itk\\ecd q/E_q} \\right )\\right \\}\\,, \\end {equation}", "\\begin {eqnarray} h^{-1}_\\soft (q,t,v)D_{\\soft }(q,t)&=&\\exp \\Bigg (e\\!\\!\\intks \\frac 1{2\\omega _k} \\bigg [\\bigg ( \\frac {V\\cd a(k)}{V\\cd k}-\\frac {q\\cd a(k)}{q\\cd k}\\bigg )\\ee ^{-itk\\ecd q/E_q}\\\\ &&\\qquad \\qquad \\qquad - \\bigg (\\frac {V\\cd \\ad (k)}{V\\cd k}-\\frac {q\\cd \\ad (k)}{q\\cd k}\\bigg )\\ee ^{itk\\ecd q/E_q} \\bigg ]\\Bigg )\\,. \\end {eqnarray}" ], "latex_norm": [ "$ u ^ { \\mu } = \\gamma ( \\eta + v ) ^ { \\mu } $", "$ \\eta $", "$ v=(0,v ) $", "$ \\gamma = ( 1 - \\vert v \\vert ^ { 2 } ) ^ { - 1 \\slash 2 } $", "$ K $", "$ \\chi $", "$ G ^ { \\mu } = ( \\eta + v ) ^ { \\mu } ( \\eta - v ) \\cdot \\partial - \\partial ^ { \\mu } $", "$ D _ { s o f t } ( q , t ) $", "$ V ^ { \\mu } = ( \\eta + v ) ^ { \\mu } ( \\eta - v ) \\cdot k - k ^ { \\mu } $", "$ G ^ { \\mu } $", "\\begin{equation*} h ^ { - 1 } ( x ) \\psi ( x ) = e ^ { - i e K ( x ) } e ^ { - i e \\chi ( x ) } \\psi ( x ) \\, . \\end{equation*}", "\\begin{equation*} \\chi ( x ) = \\frac { G \\cdot A } { G \\cdot \\partial } \\, , \\end{equation*}", "\\begin{equation*} b ( q , s , v , t ) : = \\intx \\frac { 1 } { \\sqrt { 2 E _ { q } } } u ^ { \\dagger s } ( q ) e ^ { - i e \\chi ( x ) } \\psi ( x ) e ^ { i q \\cdot x } \\, . \\end{equation*}", "\\begin{equation*} b ( q , s , t , v ) \\rightarrow h _ { s o f t } ^ { - 1 } ( q , t , v ) D _ { s o f t } ( q , t ) b ( q , s ) \\, , \\end{equation*}", "\\begin{equation*} h _ { s o f t } ^ { - 1 } ( q , t , v ) = \\operatorname { e x p } \\{ e \\! \\! \\! \\int _ { s o f t } \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } ( \\frac { V \\cdot a ( k ) } { V \\cdot k } e ^ { - i t k \\cdot q \\slash E _ { q } } - \\frac { V \\cdot a ^ { \\dagger } ( k ) } { V \\cdot k } e ^ { i t k \\cdot q \\slash E _ { q } } ) \\} \\, , \\end{equation*}", "\\begin{align*} h _ { s o f t } ^ { - 1 } ( q , t , v ) D _ { s o f t } ( q , t ) & = & \\operatorname { e x p } ( e \\! \\! \\int _ { s o f t } \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } [ ( \\frac { V \\cdot a ( k ) } { V \\cdot k } - \\frac { q \\cdot a ( k ) } { q \\cdot k } ) e ^ { - i t k \\cdot q \\slash E _ { q } } \\\\ & & \\qquad \\qquad \\qquad - ( \\frac { V \\cdot a ^ { \\dagger } ( k ) } { V \\cdot k } - \\frac { q \\cdot a ^ { \\dagger } ( k ) } { q \\cdot k } ) e ^ { i t k \\cdot q \\slash E _ { q } } ] ) \\, . \\end{align*}" ], "latex_expand": [ "$ \\mitu ^ { \\mitmu } = \\mitgamma ( \\miteta + \\mitv ) ^ { \\mitmu } $", "$ \\miteta $", "$ \\mitv=(0,\\textstyle \\mitv ) $", "$ \\mitgamma = ( 1 - \\vert \\mitv \\vert ^ { 2 } ) ^ { - 1 \\slash 2 } $", "$ \\mitK $", "$ \\mitchi $", "$ \\mitG ^ { \\mitmu } = ( \\miteta + \\mitv ) ^ { \\mitmu } ( \\miteta - \\mitv ) \\cdot \\mitpartial - \\mitpartial ^ { \\mitmu } $", "$ \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) $", "$ \\mitV ^ { \\mitmu } = ( \\miteta + \\mitv ) ^ { \\mitmu } ( \\miteta - \\mitv ) \\cdot \\mitk - \\mitk ^ { \\mitmu } $", "$ \\mitG ^ { \\mitmu } $", "\\begin{equation*} \\Planckconst ^ { - 1 } ( \\mitx ) \\mitpsi ( \\mitx ) = \\mathrm { e } ^ { - \\miti \\mite \\mitK ( \\mitx ) } \\mathrm { e } ^ { - \\miti \\mite \\mitchi ( \\mitx ) } \\mitpsi ( \\mitx ) \\, . \\end{equation*}", "\\begin{equation*} \\mitchi ( \\mitx ) = \\frac { \\mitG \\cdot \\mitA } { \\mitG \\cdot \\mitpartial } \\, , \\end{equation*}", "\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitv , \\mitt ) : = \\intx \\frac { 1 } { \\sqrt { 2 \\mitE _ { \\mitq } } } \\mitu ^ { \\dagger \\mits } ( \\mitq ) \\mathrm { e } ^ { - \\miti \\mite \\mitchi ( \\mitx ) } \\mitpsi ( \\mitx ) \\mathrm { e } ^ { \\miti \\mitq \\cdot \\mitx } \\, . \\end{equation*}", "\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitt , \\mitv ) \\rightarrow \\Planckconst _ { \\mathrm { s o f t } } ^ { - 1 } ( \\mitq , \\mitt , \\mitv ) \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) \\mitb ( \\mitq , \\mits ) \\, , \\end{equation*}", "\\begin{equation*} \\Planckconst _ { \\mathrm { s o f t } } ^ { - 1 } ( \\mitq , \\mitt , \\mitv ) = \\operatorname { e x p } \\left\\{ \\mite \\! \\! \\! \\int \\limits _ { \\mathrm { s o f t } } \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\left( \\frac { \\mitV \\cdot \\mita ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { - \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } - \\frac { \\mitV \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\right) \\right\\} \\, , \\end{equation*}", "\\begin{align*} \\displaystyle \\Planckconst _ { \\mathrm { s o f t } } ^ { - 1 } ( \\mitq , \\mitt , \\mitv ) \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) & = & \\displaystyle \\operatorname { e x p } \\Bigg ( \\mite \\! \\! \\int \\limits _ { \\mathrm { s o f t } } \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\bigg [ \\bigg ( \\frac { \\mitV \\cdot \\mita ( \\mitk ) } { \\mitV \\cdot \\mitk } - \\frac { \\mitq \\cdot \\mita ( \\mitk ) } { \\mitq \\cdot \\mitk } \\bigg ) \\mathrm { e } ^ { - \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad - \\bigg ( \\frac { \\mitV \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitV \\cdot \\mitk } - \\frac { \\mitq \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitq \\cdot \\mitk } \\bigg ) \\mathrm { e } ^ { \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\bigg ] \\Bigg ) \\, . \\end{align*}" ], "x_min": [ 0.1817999929189682, 0.6876000165939331, 0.19140000641345978, 0.45820000767707825, 0.16660000383853912, 0.399399995803833, 0.1817999929189682, 0.1817999929189682, 0.18240000307559967, 0.8452000021934509, 0.35109999775886536, 0.4375, 0.2922999858856201, 0.321399986743927, 0.16030000150203705, 0.17000000178813934 ], "y_min": [ 0.15770000219345093, 0.16210000216960907, 0.17479999363422394, 0.17329999804496765, 0.34860000014305115, 0.36959999799728394, 0.43799999356269836, 0.6478999853134155, 0.7354000210762024, 0.736299991607666, 0.31150001287460327, 0.38960000872612, 0.4887999892234802, 0.6187000274658203, 0.67330002784729, 0.7768999934196472 ], "x_max": [ 0.30970001220703125, 0.6980000138282776, 0.2799000144004822, 0.6177999973297119, 0.18529999256134033, 0.4124999940395355, 0.4327000081539154, 0.26269999146461487, 0.4422000050544739, 0.8687000274658203, 0.6503000259399414, 0.5605000257492065, 0.7089999914169312, 0.6765999794006348, 0.8133999705314636, 0.8292999863624573 ], "y_max": [ 0.17229999601840973, 0.17190000414848328, 0.18940000236034393, 0.18940000236034393, 0.3589000105857849, 0.3788999915122986, 0.4530999958515167, 0.6625000238418579, 0.7505000233650208, 0.7480000257492065, 0.3319999873638153, 0.423799991607666, 0.524399995803833, 0.6381999850273132, 0.7215999960899353, 0.8666999936103821 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003087_page05
{ "latex": [ "$k$", "$q^\\mu =m\\gamma (\\eta +v)^\\mu $", "$B$", "$\\Haas $", "$\\Afree $", "$\\Aas $", "\\begin {eqnarray} \\frac {V^\\mu }{V\\cd k}-\\frac {q^\\mu }{q\\cd k}&=& \\frac {(\\eta +v)^\\mu (\\eta -v)\\cd k-k^\\mu }{(\\eta +v)\\cd k(\\eta -v)\\cd k}-\\frac {q^\\mu }{q\\cd k}\\\\ &=&\\frac {(\\eta +v)^\\mu }{(\\eta +v)\\cd k}-\\frac {q^\\mu }{q\\cd k}-\\frac {k^\\mu }{V\\cd k}\\,. \\end {eqnarray}", "\\begin {equation} -e\\intk \\frac 1{2\\omega _k} \\bigg ( \\frac {k\\cd a(k)}{V\\cd k}\\ee ^{-it\\omega _k} -\\frac {k\\cd a^\\dag (k)}{V\\cd k} \\ee ^{it\\omega _k}\\bigg )\\,, \\end {equation}", "\\begin {eqnarray}\\Aas _\\mu (x)&=&\\exp \\!\\!\\left (i\\!\\!\\int _{-\\infty }^t\\!\\!\\!\\!\\!\\! d\\tau \\,\\Haas (\\tau )\\right )\\Afree _\\mu (x) \\exp \\!\\!\\left (-i\\!\\!\\int _{-\\infty }^t\\!\\!\\!\\!\\!\\!d\\tau \\, \\Haas (\\tau )\\right )\\\\ &=&\\Afree _\\mu (x)-e\\int _{-\\infty }^t\\!\\!d\\tau d^3y\\,D(\\tau -t, \\yb -\\xb )J^\\as _\\mu (\\tau ,\\yb )\\,, \\end {eqnarray}", "\\begin {equation}\\label {2jas} J^\\mu _{\\as }(t,\\xb )=\\intp \\frac {p^\\mu }{E_p}\\rho (p)\\delta ^3 \\bigl (\\xb -t\\pb /E_p\\bigr )\\,. \\end {equation}" ], "latex_norm": [ "$ k $", "$ q ^ { \\mu } = m \\gamma ( \\eta + v ) ^ { \\mu } $", "$ B $", "$ H _ { i n t } ^ { a s } $", "$ A ^ { f } $", "$ A ^ { a s } $", "\\begin{align*} \\frac { V ^ { \\mu } } { V \\cdot k } - \\frac { q ^ { \\mu } } { q \\cdot k } & = & \\frac { ( \\eta + v ) ^ { \\mu } ( \\eta - v ) \\cdot k - k ^ { \\mu } } { ( \\eta + v ) \\cdot k ( \\eta - v ) \\cdot k } - \\frac { q ^ { \\mu } } { q \\cdot k } \\\\ & = & \\frac { ( \\eta + v ) ^ { \\mu } } { ( \\eta + v ) \\cdot k } - \\frac { q ^ { \\mu } } { q \\cdot k } - \\frac { k ^ { \\mu } } { V \\cdot k } \\, . \\end{align*}", "\\begin{equation*} - e \\int \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } ( \\frac { k \\cdot a ( k ) } { V \\cdot k } e ^ { - i t \\omega _ { k } } - \\frac { k \\cdot a ^ { \\dagger } ( k ) } { V \\cdot k } e ^ { i t \\omega _ { k } } ) \\, , \\end{equation*}", "\\begin{align*} A _ { \\mu } ^ { a s } ( x ) & = & \\operatorname { e x p } \\! \\! ( i \\! \\! \\int _ { - \\infty } ^ { t } \\! \\! \\! \\! \\! \\! d \\tau \\, H _ { i n t } ^ { a s } ( \\tau ) ) A _ { \\mu } ^ { f } ( x ) \\operatorname { e x p } \\! \\! ( - i \\! \\! \\int _ { - \\infty } ^ { t } \\! \\! \\! \\! \\! \\! d \\tau \\, H _ { i n t } ^ { a s } ( \\tau ) ) \\\\ & = & Af\\mu(x)-e󰞂t-\\inftyd\\taud3yD(\\tau-t,y -x )Jas\\mu(\\tau,y ), \\end{align*}", "\\begin{equation*} J _ { a s } ^ { \\mu } ( t , x ) = \\int \\! \\frac { d ^ { 3 } p } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { p ^ { \\mu } } { E _ { p } } \\rho ( p ) \\delta ^ { 3 } ( x - t p \\slash E _ { p } ) \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitk $", "$ \\mitq ^ { \\mitmu } = \\mitm \\mitgamma ( \\miteta + \\mitv ) ^ { \\mitmu } $", "$ \\mitB $", "$ \\mitH _ { \\mathrm { i n t } } ^ { \\mathrm { a s } } $", "$ \\mitA ^ { \\mathrm { f } } $", "$ \\mitA ^ { \\mathrm { a s } } $", "\\begin{align*} \\displaystyle \\frac { \\mitV ^ { \\mitmu } } { \\mitV \\cdot \\mitk } - \\frac { \\mitq ^ { \\mitmu } } { \\mitq \\cdot \\mitk } & = & \\displaystyle \\frac { ( \\miteta + \\mitv ) ^ { \\mitmu } ( \\miteta - \\mitv ) \\cdot \\mitk - \\mitk ^ { \\mitmu } } { ( \\miteta + \\mitv ) \\cdot \\mitk ( \\miteta - \\mitv ) \\cdot \\mitk } - \\frac { \\mitq ^ { \\mitmu } } { \\mitq \\cdot \\mitk } \\\\ & = & \\displaystyle \\frac { ( \\miteta + \\mitv ) ^ { \\mitmu } } { ( \\miteta + \\mitv ) \\cdot \\mitk } - \\frac { \\mitq ^ { \\mitmu } } { \\mitq \\cdot \\mitk } - \\frac { \\mitk ^ { \\mitmu } } { \\mitV \\cdot \\mitk } \\, . \\end{align*}", "\\begin{equation*} - \\mite \\int \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\bigg ( \\frac { \\mitk \\cdot \\mita ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { - \\miti \\mitt \\mitomega _ { \\mitk } } - \\frac { \\mitk \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { \\miti \\mitt \\mitomega _ { \\mitk } } \\bigg ) \\, , \\end{equation*}", "\\begin{align*} \\displaystyle \\mitA _ { \\mitmu } ^ { \\mathrm { a s } } ( \\mitx ) & = & \\displaystyle \\operatorname { e x p } \\! \\! \\left( \\miti \\! \\! \\int _ { - \\infty } ^ { \\mitt } \\! \\! \\! \\! \\! \\! \\mitd \\mittau \\, \\mitH _ { \\mathrm { i n t } } ^ { \\mathrm { a s } } ( \\mittau ) \\right) \\mitA _ { \\mitmu } ^ { \\mathrm { f } } ( \\mitx ) \\operatorname { e x p } \\! \\! \\left( - \\miti \\! \\! \\int _ { - \\infty } ^ { \\mitt } \\! \\! \\! \\! \\! \\! \\mitd \\mittau \\, \\mitH _ { \\mathrm { i n t } } ^ { \\mathrm { a s } } ( \\mittau ) \\right) \\\\ & = & \\mitA ^ { f } _ { \\mitmu } ( \\mitx ) - \\mite \\mitt-\\infty\\mitd\\mittau\\mitd3\\mity\\mitD(\\mittau-\\mitt,\\displaystyle \\mity -\\displaystyle \\mitx )\\mitJas\\mitmu(\\mittau,\\displaystyle \\mity ), \\end{align*}", "\\begin{equation*} \\mitJ _ { \\mathrm { a s } } ^ { \\mitmu } ( \\mitt , \\mitx ) = \\int \\! \\frac { \\mitd ^ { 3 } \\mitp } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { \\mitp ^ { \\mitmu } } { \\mitE _ { \\mitp } } \\mitrho ( \\mitp ) \\mitdelta ^ { 3 } \\big ( \\mitx - \\mitt \\mitp \\slash \\mitE _ { \\mitp } \\big ) \\, . \\end{equation*}" ], "x_min": [ 0.5044999718666077, 0.5134999752044678, 0.20250000059604645, 0.6129999756813049, 0.8230999708175659, 0.4083999991416931, 0.2840000092983246, 0.28610000014305115, 0.25850000977516174, 0.31929999589920044 ], "y_min": [ 0.1581999957561493, 0.2705000042915344, 0.3978999853134155, 0.6625999808311462, 0.6776999831199646, 0.6967999935150146, 0.18160000443458557, 0.3109999895095825, 0.7206000089645386, 0.8237000107765198 ], "x_max": [ 0.5156000256538391, 0.6621000170707703, 0.2190999984741211, 0.647599995136261, 0.8445000052452087, 0.4374000132083893, 0.7152000069618225, 0.703499972820282, 0.7394999861717224, 0.6820999979972839 ], "y_max": [ 0.1688999980688095, 0.2851000130176544, 0.4081999957561493, 0.6762999892234802, 0.6898999810218811, 0.7074999809265137, 0.2621999979019165, 0.3495999872684479, 0.7907999753952026, 0.8622999787330627 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003087_page06
{ "latex": [ "$(\\delta _{ij}-\\partial _{i}\\partial _{j}/\\nabla ^2)\\Aas _{j}$", "$S$" ], "latex_norm": [ "$ ( \\delta _ { i j } - \\partial _ { i } \\partial _ { j } \\slash \\nabla ^ { 2 } ) A _ { j } ^ { a s } $", "$ S $" ], "latex_expand": [ "$ ( \\mitdelta _ { \\miti \\mitj } - \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } \\slash \\nabla ^ { 2 } ) \\mitA _ { \\mitj } ^ { \\mathrm { a s } } $", "$ \\mitS $" ], "x_min": [ 0.31310001015663147, 0.553600013256073 ], "y_min": [ 0.2084999978542328, 0.6044999957084656 ], "x_max": [ 0.46720001101493835, 0.5673999786376953 ], "y_max": [ 0.225600004196167, 0.614799976348877 ], "expr_type": [ "embedded", "embedded" ] }
0003126_page01
{ "latex": [ "$(\\square ^{1/n})$", "$n=1$", "$2$", "$n>2$", "$SU(n)$", "$(s\\geq 1)$", "$n$", "$n=2$", "$n>2$", "$n=1,2$" ], "latex_norm": [ "$ ( \\square ^ { 1 \\slash n } ) $", "$ n = 1 $", "$ 2 $", "$ n > 2 $", "$ S U ( n ) $", "$ ( s \\geq 1 ) $", "$ n $", "$ n = 2 $", "$ n > 2 $", "$ n = 1 , 2 $" ], "latex_expand": [ "$ ( \\square ^ { 1 \\slash \\mitn } ) $", "$ \\mitn = 1 $", "$ 2 $", "$ \\mitn > 2 $", "$ \\mitS \\mitU ( \\mitn ) $", "$ ( \\mits \\geq 1 ) $", "$ \\mitn $", "$ \\mitn = 2 $", "$ \\mitn > 2 $", "$ \\mitn = 1 , 2 $" ], "x_min": [ 0.5791000127792358, 0.5162000060081482, 0.5999000072479248, 0.34209999442100525, 0.515500009059906, 0.6793000102043152, 0.7774999737739563, 0.600600004196167, 0.5314000248908997, 0.25290000438690186 ], "y_min": [ 0.43070000410079956, 0.44679999351501465, 0.44679999351501465, 0.47269999980926514, 0.4975999891757965, 0.7002000212669373, 0.7890999913215637, 0.8008000254631042, 0.8148999810218811, 0.8291000127792358 ], "x_max": [ 0.6247000098228455, 0.5611000061035156, 0.6082000136375427, 0.3815000057220459, 0.5597000122070312, 0.7332000136375427, 0.7878999710083008, 0.64410001039505, 0.5748999714851379, 0.3151000142097473 ], "y_max": [ 0.4438999891281128, 0.45410001277923584, 0.45410001277923584, 0.4805000126361847, 0.5088000297546387, 0.7124000191688538, 0.7950000166893005, 0.8090999722480774, 0.8237000107765198, 0.8398000001907349 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003126_page02
{ "latex": [ "$SU(n)$", "$f(\\square )$", "$n\\times n,$", "$n\\geq 2$", "$\\alpha =\\exp (2\\pi i/n)$", "\\begin {equation} S=\\left ( \\begin {array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & 1 \\\\ 1 & & & & & \\qquad \\\\ \\qquad & 1 & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & 1 & 0 \\end {array} \\right ) , \\label {ga1} \\end {equation}", "\\begin {equation} T=\\left ( \\begin {array}{cccccc} 1 & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha & & & & \\\\ & & \\alpha ^{2} & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^{n-1} \\end {array} \\right ) \\label {gb1} \\end {equation}" ], "latex_norm": [ "$ S U ( n ) $", "$ f ( \\square ) $", "$ n \\times n , $", "$ n \\geq 2 $", "$ \\alpha = e x p ( 2 \\pi i \\slash n ) $", "\\begin{align*} S = ( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & 1 \\\\ 1 & & & & & \\qquad \\\\ \\qquad & 1 & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & 1 & 0 \\end{array} ) , \\end{align*}", "\\begin{align*} T = ( \\begin{array}{cccccc} 1 & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha & & & & \\\\ & & \\alpha ^ { 2 } & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^ { n - 1 } \\end{array} ) \\end{align*}" ], "latex_expand": [ "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitf ( \\square ) $", "$ \\mitn \\times \\mitn , $", "$ \\mitn \\geq 2 $", "$ \\mitalpha = \\mathrm { e x p } ( 2 \\mitpi \\miti \\slash \\mitn ) $", "\\begin{align*} \\mitS = \\left( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & 1 \\\\ 1 & & & & & \\qquad \\\\ \\qquad & 1 & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & 1 & 0 \\end{array} \\right) , \\end{align*}", "\\begin{align*} \\mitT = \\left( \\begin{array}{cccccc} 1 & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\mitalpha & & & & \\\\ & & \\mitalpha ^ { 2 } & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\mitalpha ^ { \\mitn - 1 } \\end{array} \\right) \\end{align*}" ], "x_min": [ 0.4180999994277954, 0.2467000037431717, 0.7408000230789185, 0.3808000087738037, 0.257099986076355, 0.30889999866485596, 0.3109999895095825 ], "y_min": [ 0.18160000443458557, 0.3521000146865845, 0.5541999936103821, 0.6079000234603882, 0.8227999806404114, 0.6273999810218811, 0.725600004196167 ], "x_max": [ 0.46650001406669617, 0.2833000123500824, 0.7878000140190125, 0.4223000109195709, 0.3718000054359436, 0.6883000135421753, 0.6862999796867371 ], "y_max": [ 0.19429999589920044, 0.36480000615119934, 0.5640000104904175, 0.6176999807357788, 0.8349999785423279, 0.7167999744415283, 0.8149999976158142 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0003126_page07
{ "latex": [ "$P_{j}^{-}$", "$P_{j}^{+}$", "$F_{pr} $", "$\\alpha ^{p+r}=1$", "$n$", "$\\alpha =\\exp (2\\pi i/n)$", "$\\alpha $", "$Q_{pr}$", "$n^{2}$", "$r\\neq n$", "$s\\neq n$", "$Q_{pr}$", "$Q_{pr}$", "$A$", "\\begin {equation} P_{j}^{+}\\circ S^{p}T^{r}=\\alpha ^{j}S^{p}T^{r} \\end {equation}", "\\begin {equation} \\{S^{p},T^{r}\\}=\\left ( \\sum _{k_{p}=0}^{r}...\\sum _{k_{2}=0}^{k_{3}}\\sum _{k_{1}=0}^{k_{2}}\\alpha ^{k_{1}}\\alpha ^{k_{2}}...\\alpha ^{k_{p}}\\right ) S^{p}T^{r}. \\label {gaa26} \\end {equation}", "\\begin {equation} \\{S^{p},T^{r}\\}=\\left ( \\sum _{k_{r}=0}^{p}...\\sum _{k_{2}=0}^{k_{3}}\\sum _{k_{1}=0}^{k_{2}}\\alpha ^{k_{1}}\\alpha ^{k_{2}}...\\alpha ^{k_{r}}\\right ) S^{p}T^{r}. \\label {gab26} \\end {equation}", "\\begin {equation} F_{pr}(\\alpha )=F_{rp}(\\alpha ). \\label {gac26} \\end {equation}", "\\begin {equation} Q_{pr}=S^{p}T^{r},\\qquad p,r=1,2,...,n \\label {ga27} \\end {equation}", "\\begin {equation} \\label {gaa27} Q_{rs}Q_{pq}=\\alpha ^{s\\cdot p}Q_{kl};\\ k=\\text {mod}(r+p-1,n)+1,\\ l=\\text {mod }(s+q-1,n)+1, \\end {equation}", "\\begin {equation} \\label {ga28} Q_{rs}Q_{pq}=\\alpha ^{s\\cdot p-r\\cdot q}Q_{pq}Q_{rs}, \\end {equation}", "\\begin {equation} \\label {ga29} \\left ( Q_{rs}\\right ) ^n=(-1)^{(n-1)r\\cdot s}I, \\end {equation}", "\\begin {equation} \\label {ga30} Q_{rs}^{\\dagger }Q_{rs}=Q_{rs}Q_{rs}^{\\dagger }=I, \\end {equation}", "\\begin {equation} \\label {gaa30} Q_{rs}^{\\dagger }=\\alpha ^{r\\cdot s}Q_{kl};\\qquad k=n-r,\\qquad l=n-s, \\end {equation}", "\\begin {equation} \\label {ga31} \\det Q_{rs}=(-1)^{(n-1)(r+s)} \\end {equation}", "\\begin {equation} \\label {ga32} \\text {\\textrm {Tr }}Q_{rs}=0. \\end {equation}", "\\begin {equation} A=\\sum _{k,l=1}^{n}a_{kl}Q_{kl},\\qquad a_{kl}=\\frac {1}{n}\\text {\\textrm {Tr}} (Q_{kl}^{\\dagger }A). \\label {ga33} \\end {equation}" ], "latex_norm": [ "$ P _ { j } ^ { - } $", "$ P _ { j } ^ { + } $", "$ F _ { p r } $", "$ \\alpha ^ { p + r } = 1 $", "$ n $", "$ \\alpha = e x p ( 2 \\pi i \\slash n ) $", "$ \\alpha $", "$ Q _ { p r } $", "$ n ^ { 2 } $", "$ r \\ne n $", "$ s \\ne n $", "$ Q _ { p r } $", "$ Q _ { p r } $", "$ A $", "\\begin{equation*} P _ { j } ^ { + } \\circ S ^ { p } T ^ { r } = \\alpha ^ { j } S ^ { p } T ^ { r } \\end{equation*}", "\\begin{equation*} \\{ S ^ { p } , T ^ { r } \\} = ( \\sum _ { k _ { p } = 0 } ^ { r } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } \\alpha ^ { k _ { 1 } } \\alpha ^ { k _ { 2 } } . . . \\alpha ^ { k _ { p } } ) S ^ { p } T ^ { r } . \\end{equation*}", "\\begin{equation*} \\{ S ^ { p } , T ^ { r } \\} = ( \\sum _ { k _ { r } = 0 } ^ { p } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } \\alpha ^ { k _ { 1 } } \\alpha ^ { k _ { 2 } } . . . \\alpha ^ { k _ { r } } ) S ^ { p } T ^ { r } . \\end{equation*}", "\\begin{equation*} F _ { p r } ( \\alpha ) = F _ { r p } ( \\alpha ) . \\end{equation*}", "\\begin{equation*} Q _ { p r } = S ^ { p } T ^ { r } , \\qquad p , r = 1 , 2 , . . . , n \\end{equation*}", "\\begin{equation*} Q _ { r s } Q _ { p q } = \\alpha ^ { s \\cdot p } Q _ { k l } ; ~ k = m o d ( r + p - 1 , n ) + 1 , ~ l = m o d ~ ( s + q - 1 , n ) + 1 , \\end{equation*}", "\\begin{equation*} Q _ { r s } Q _ { p q } = \\alpha ^ { s \\cdot p - r \\cdot q } Q _ { p q } Q _ { r s } , \\end{equation*}", "\\begin{equation*} { ( Q _ { r s } ) } ^ { n } = ( - 1 ) ^ { ( n - 1 ) r \\cdot s } I , \\end{equation*}", "\\begin{equation*} Q _ { r s } ^ { \\dagger } Q _ { r s } = Q _ { r s } Q _ { r s } ^ { \\dagger } = I , \\end{equation*}", "\\begin{equation*} Q _ { r s } ^ { \\dagger } = \\alpha ^ { r \\cdot s } Q _ { k l } ; \\qquad k = n - r , \\qquad l = n - s , \\end{equation*}", "\\begin{equation*} \\operatorname { d e t } Q _ { r s } = ( - 1 ) ^ { ( n - 1 ) ( r + s ) } \\end{equation*}", "\\begin{equation*} T r \\hspace{3.33pt} Q _ { r s } = 0 . \\end{equation*}", "\\begin{equation*} A = \\sum _ { k , l = 1 } ^ { n } a _ { k l } Q _ { k l } , \\qquad a _ { k l } = \\frac { 1 } { n } T r ( Q _ { k l } ^ { \\dagger } A ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitP _ { \\mitj } ^ { - } $", "$ \\mitP _ { \\mitj } ^ { + } $", "$ \\mitF _ { \\mitp \\mitr } $", "$ \\mitalpha ^ { \\mitp + \\mitr } = 1 $", "$ \\mitn $", "$ \\mitalpha = \\mathrm { e x p } ( 2 \\mitpi \\miti \\slash \\mitn ) $", "$ \\mitalpha $", "$ \\mitQ _ { \\mitp \\mitr } $", "$ \\mitn ^ { 2 } $", "$ \\mitr \\ne \\mitn $", "$ \\mits \\ne \\mitn $", "$ \\mitQ _ { \\mitp \\mitr } $", "$ \\mitQ _ { \\mitp \\mitr } $", "$ \\mitA $", "\\begin{equation*} \\mitP _ { \\mitj } ^ { + } \\vysmwhtcircle \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } = \\mitalpha ^ { \\mitj } \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } \\end{equation*}", "\\begin{equation*} \\{ \\mitS ^ { \\mitp } , \\mitT ^ { \\mitr } \\} = \\left( \\sum _ { \\mitk _ { \\mitp } = 0 } ^ { \\mitr } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitalpha ^ { \\mitk _ { 1 } } \\mitalpha ^ { \\mitk _ { 2 } } . . . \\mitalpha ^ { \\mitk _ { \\mitp } } \\right) \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } . \\end{equation*}", "\\begin{equation*} \\{ \\mitS ^ { \\mitp } , \\mitT ^ { \\mitr } \\} = \\left( \\sum _ { \\mitk _ { \\mitr } = 0 } ^ { \\mitp } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitalpha ^ { \\mitk _ { 1 } } \\mitalpha ^ { \\mitk _ { 2 } } . . . \\mitalpha ^ { \\mitk _ { \\mitr } } \\right) \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } . \\end{equation*}", "\\begin{equation*} \\mitF _ { \\mitp \\mitr } ( \\mitalpha ) = \\mitF _ { \\mitr \\mitp } ( \\mitalpha ) . \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitp \\mitr } = \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } , \\qquad \\mitp , \\mitr = 1 , 2 , . . . , \\mitn \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitr \\mits } \\mitQ _ { \\mitp \\mitq } = \\mitalpha ^ { \\mits \\cdot \\mitp } \\mitQ _ { \\mitk \\mitl } ; ~ \\mitk = \\mathrm { m o d } ( \\mitr + \\mitp - 1 , \\mitn ) + 1 , ~ \\mitl = \\mathrm { m o d } ~ ( \\mits + \\mitq - 1 , \\mitn ) + 1 , \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitr \\mits } \\mitQ _ { \\mitp \\mitq } = \\mitalpha ^ { \\mits \\cdot \\mitp - \\mitr \\cdot \\mitq } \\mitQ _ { \\mitp \\mitq } \\mitQ _ { \\mitr \\mits } , \\end{equation*}", "\\begin{equation*} { \\left( \\mitQ _ { \\mitr \\mits } \\right) } ^ { \\mitn } = ( - 1 ) ^ { ( \\mitn - 1 ) \\mitr \\cdot \\mits } \\mitI , \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitr \\mits } ^ { \\dagger } \\mitQ _ { \\mitr \\mits } = \\mitQ _ { \\mitr \\mits } \\mitQ _ { \\mitr \\mits } ^ { \\dagger } = \\mitI , \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitr \\mits } ^ { \\dagger } = \\mitalpha ^ { \\mitr \\cdot \\mits } \\mitQ _ { \\mitk \\mitl } ; \\qquad \\mitk = \\mitn - \\mitr , \\qquad \\mitl = \\mitn - \\mits , \\end{equation*}", "\\begin{equation*} \\operatorname { d e t } \\mitQ _ { \\mitr \\mits } = ( - 1 ) ^ { ( \\mitn - 1 ) ( \\mitr + \\mits ) } \\end{equation*}", "\\begin{equation*} \\mathrm { T r } \\hspace{3.33pt} \\mitQ _ { \\mitr \\mits } = 0 . \\end{equation*}", "\\begin{equation*} \\mitA = \\sum _ { \\mitk , \\mitl = 1 } ^ { \\mitn } \\mita _ { \\mitk \\mitl } \\mitQ _ { \\mitk \\mitl } , \\qquad \\mita _ { \\mitk \\mitl } = \\frac { 1 } { \\mitn } \\mathrm { T r } ( \\mitQ _ { \\mitk \\mitl } ^ { \\dagger } \\mitA ) . \\end{equation*}" ], "x_min": [ 0.6115999817848206, 0.7153000235557556, 0.605400025844574, 0.6710000038146973, 0.3116999864578247, 0.36010000109672546, 0.24120000004768372, 0.4325999915599823, 0.5439000129699707, 0.2687999904155731, 0.33660000562667847, 0.5224999785423279, 0.4194999933242798, 0.7483999729156494, 0.420199990272522, 0.31439998745918274, 0.3158000111579895, 0.4361000061035156, 0.37869998812675476, 0.2184000015258789, 0.4007999897003174, 0.4090999960899353, 0.414000004529953, 0.33379998803138733, 0.40700000524520874, 0.4553999900817871, 0.3531000018119812 ], "y_min": [ 0.3100999891757965, 0.3100999891757965, 0.4009000062942505, 0.4487000107765198, 0.4672999978065491, 0.4634000062942505, 0.4814000129699707, 0.5038999915122986, 0.5023999810218811, 0.7109000086784363, 0.7109000086784363, 0.7645999789237976, 0.7900000214576721, 0.7900000214576721, 0.1738000065088272, 0.22509999573230743, 0.3456999957561493, 0.42480000853538513, 0.5253999829292297, 0.5756999850273132, 0.5996000170707703, 0.6211000084877014, 0.6425999999046326, 0.663100004196167, 0.6836000084877014, 0.7217000126838684, 0.8241999745368958 ], "x_max": [ 0.6358000040054321, 0.7401999831199646, 0.630299985408783, 0.7372999787330627, 0.3221000134944916, 0.47620001435279846, 0.2522999942302704, 0.4602000117301941, 0.5626000165939331, 0.30959999561309814, 0.3774000108242035, 0.5501000285148621, 0.44780001044273376, 0.7615000009536743, 0.579800009727478, 0.6855000257492065, 0.6834999918937683, 0.5640000104904175, 0.6212999820709229, 0.7588000297546387, 0.5964000225067139, 0.5853000283241272, 0.5825999975204468, 0.6633999943733215, 0.5900999903678894, 0.5444999933242798, 0.6467999815940857 ], "y_max": [ 0.3257000148296356, 0.3257000148296356, 0.41260001063346863, 0.45899999141693115, 0.4731999933719635, 0.47609999775886536, 0.48730000853538513, 0.5156000256538391, 0.5127000212669373, 0.7215999960899353, 0.7215999960899353, 0.7767999768257141, 0.8016999959945679, 0.79830002784729, 0.19329999387264252, 0.27149999141693115, 0.3882000148296356, 0.4413999915122986, 0.5410000085830688, 0.5917999744415283, 0.6172000169754028, 0.63919997215271, 0.6596999764442444, 0.6807000041007996, 0.70169997215271, 0.7358999848365784, 0.8647000193595886 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page08
{ "latex": [ "$Q_{kl}$", "$a_{rs}\\neq 0$", "$n\\times n$", "$n\\geq 2$", "$n^2$", "$Q_\\lambda ,Q_\\mu ,Q_\\nu $", "$n\\geq 3$", "$\\lambda =1n,\\^^M\\mu =11,\\ \\nu =n1.$", "$\\{X^{p},Z^{r}\\}=0$", "$j$", "\\begin {equation} \\sum _{k,l=1}^{n}a_{kl}Q_{kl}=0, \\end {equation}", "\\begin {equation} \\text {\\textrm {Tr}}\\sum _{k,l=1}^{n}a_{kl}Q_{rs}^{\\dagger }Q_{kl}=a_{rs}n=0. \\end {equation}", "\\begin {equation} \\label {ga34} \\{Q_\\lambda ^p,Q_\\mu ^r\\}=\\{Q_\\mu ^p,Q_\\nu ^r\\}=\\{Q_\\nu ^p,Q_\\lambda ^r\\}=0;\\qquad 0<p,r,\\qquad p+r=n \\end {equation}", "\\begin {equation} \\label {ga35} \\{Q_\\lambda ^p,Q_\\mu ^r,Q_\\nu ^s\\}=0;\\qquad 0<p,r,s,\\qquad p+r+s=n. \\end {equation}", "\\begin {equation} X=Q_{1n}=S,\\qquad Y=Q_{11},\\qquad Z=Q_{n1}=T, \\label {ga35.1} \\end {equation}", "\\begin {equation} YX=\\alpha XY,\\qquad ZX=\\alpha XZ,\\qquad ZY=\\alpha YZ. \\label {gaa35} \\end {equation}", "\\begin {equation} \\{X^{p},Y^{r},Z^{s}\\} \\label {ga36} \\end {equation}", "\\begin {equation} =\\sum _{j_{p}=0}^{r+s}...\\sum _{j_{2}=0}^{j_{3}} \\sum _{j_{1}=0}^{j_{2}}P_{j_{1}}^{+}\\circ P_{j_{2}}^{+}...P_{j_{p}}^{+}\\circ X^{p}\\sum _{k_{p}=0}^{s}...\\sum _{k_{2}=0}^{k_{3}} \\sum _{k_{1}=0}^{k_{2}}P_{k_{1}}^{+}\\circ P_{k_{2}}^{+}...P_{k_{r}}^{+}\\circ Y^{r}Z^{s}, \\end {equation}", "\\begin {equation} \\{X^{p},Y^{r},Z^{s}\\} \\end {equation}", "\\begin {equation} =\\left ( \\sum _{j_{p}=0}^{r+s}...\\sum _{j_{2}=0}^{j_{3}}\\sum _{j_{1}=0}^{j_{2}}\\alpha ^{j_{1}}\\alpha ^{j_{2}}...\\alpha ^{j_{p}}\\right ) \\left ( \\sum _{k_{p}=0}^{s}...\\sum _{k_{2}=0}^{k_{3}}\\sum _{k_{1}=0}^{k_{2}}\\alpha ^{k_{1}}\\alpha ^{k_{2}}...\\alpha ^{k_{r}}\\right ) X^{p}Y^{r}Z^{s}. \\end {equation}" ], "latex_norm": [ "$ Q _ { k l } $", "$ a _ { r s } \\ne 0 $", "$ n \\times n $", "$ n \\geq 2 $", "$ n ^ { 2 } $", "$ Q _ { \\lambda } , Q _ { \\mu } , Q _ { \\nu } $", "$ n \\geq 3 $", "$ \\lambda = 1 n , ~ \\mu = 1 1 , ~ \\nu = n 1 . $", "$ \\{ X ^ { p } , Z ^ { r } \\} = 0 $", "$ j $", "\\begin{equation*} \\sum _ { k , l = 1 } ^ { n } a _ { k l } Q _ { k l } = 0 , \\end{equation*}", "\\begin{equation*} T r \\sum _ { k , l = 1 } ^ { n } a _ { k l } Q _ { r s } ^ { \\dagger } Q _ { k l } = a _ { r s } n = 0 . \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\lambda } ^ { p } , Q _ { \\mu } ^ { r } \\} = \\{ Q _ { \\mu } ^ { p } , Q _ { \\nu } ^ { r } \\} = \\{ Q _ { \\nu } ^ { p } , Q _ { \\lambda } ^ { r } \\} = 0 ; \\qquad 0 < p , r , \\qquad p + r = n \\end{equation*}", "\\begin{equation*} \\{ Q _ { \\lambda } ^ { p } , Q _ { \\mu } ^ { r } , Q _ { \\nu } ^ { s } \\} = 0 ; \\qquad 0 < p , r , s , \\qquad p + r + s = n . \\end{equation*}", "\\begin{equation*} X = Q _ { 1 n } = S , \\qquad Y = Q _ { 1 1 } , \\qquad Z = Q _ { n 1 } = T , \\end{equation*}", "\\begin{equation*} Y X = \\alpha X Y , \\qquad Z X = \\alpha X Z , \\qquad Z Y = \\alpha Y Z . \\end{equation*}", "\\begin{equation*} \\{ X ^ { p } , Y ^ { r } , Z ^ { s } \\} \\end{equation*}", "\\begin{equation*} = \\sum _ { j _ { p } = 0 } ^ { r + s } . . . \\sum _ { j _ { 2 } = 0 } ^ { j _ { 3 } } \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } P _ { j _ { 1 } } ^ { + } \\circ P _ { j _ { 2 } } ^ { + } . . . P _ { j _ { p } } ^ { + } \\circ X ^ { p } \\sum _ { k _ { p } = 0 } ^ { s } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } P _ { k _ { 1 } } ^ { + } \\circ P _ { k _ { 2 } } ^ { + } . . . P _ { k _ { r } } ^ { + } \\circ Y ^ { r } Z ^ { s } , \\end{equation*}", "\\begin{equation*} \\{ X ^ { p } , Y ^ { r } , Z ^ { s } \\} \\end{equation*}", "\\begin{equation*} = ( \\sum _ { j _ { p } = 0 } ^ { r + s } . . . \\sum _ { j _ { 2 } = 0 } ^ { j _ { 3 } } \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\alpha ^ { j _ { 1 } } \\alpha ^ { j _ { 2 } } . . . \\alpha ^ { j _ { p } } ) ( \\sum _ { k _ { p } = 0 } ^ { s } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } \\alpha ^ { k _ { 1 } } \\alpha ^ { k _ { 2 } } . . . \\alpha ^ { k _ { r } } ) X ^ { p } Y ^ { r } Z ^ { s } . \\end{equation*}" ], "latex_expand": [ "$ \\mitQ _ { \\mitk \\mitl } $", "$ \\mita _ { \\mitr \\mits } \\ne 0 $", "$ \\mitn \\times \\mitn $", "$ \\mitn \\geq 2 $", "$ \\mitn ^ { 2 } $", "$ \\mitQ _ { \\mitlambda } , \\mitQ _ { \\mitmu } , \\mitQ _ { \\mitnu } $", "$ \\mitn \\geq 3 $", "$ \\mitlambda = 1 \\mitn , ~ \\mitmu = 1 1 , ~ \\mitnu = \\mitn 1 . $", "$ \\{ \\mitX ^ { \\mitp } , \\mitZ ^ { \\mitr } \\} = 0 $", "$ \\mitj $", "\\begin{equation*} \\sum _ { \\mitk , \\mitl = 1 } ^ { \\mitn } \\mita _ { \\mitk \\mitl } \\mitQ _ { \\mitk \\mitl } = 0 , \\end{equation*}", "\\begin{equation*} \\mathrm { T r } \\sum _ { \\mitk , \\mitl = 1 } ^ { \\mitn } \\mita _ { \\mitk \\mitl } \\mitQ _ { \\mitr \\mits } ^ { \\dagger } \\mitQ _ { \\mitk \\mitl } = \\mita _ { \\mitr \\mits } \\mitn = 0 . \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitlambda } ^ { \\mitp } , \\mitQ _ { \\mitmu } ^ { \\mitr } \\} = \\{ \\mitQ _ { \\mitmu } ^ { \\mitp } , \\mitQ _ { \\mitnu } ^ { \\mitr } \\} = \\{ \\mitQ _ { \\mitnu } ^ { \\mitp } , \\mitQ _ { \\mitlambda } ^ { \\mitr } \\} = 0 ; \\qquad 0 < \\mitp , \\mitr , \\qquad \\mitp + \\mitr = \\mitn \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { \\mitlambda } ^ { \\mitp } , \\mitQ _ { \\mitmu } ^ { \\mitr } , \\mitQ _ { \\mitnu } ^ { \\mits } \\} = 0 ; \\qquad 0 < \\mitp , \\mitr , \\mits , \\qquad \\mitp + \\mitr + \\mits = \\mitn . \\end{equation*}", "\\begin{equation*} \\mitX = \\mitQ _ { 1 \\mitn } = \\mitS , \\qquad \\mitY = \\mitQ _ { 1 1 } , \\qquad \\mitZ = \\mitQ _ { \\mitn 1 } = \\mitT , \\end{equation*}", "\\begin{equation*} \\mitY \\mitX = \\mitalpha \\mitX \\mitY , \\qquad \\mitZ \\mitX = \\mitalpha \\mitX \\mitZ , \\qquad \\mitZ \\mitY = \\mitalpha \\mitY \\mitZ . \\end{equation*}", "\\begin{equation*} \\{ \\mitX ^ { \\mitp } , \\mitY ^ { \\mitr } , \\mitZ ^ { \\mits } \\} \\end{equation*}", "\\begin{equation*} = \\sum _ { \\mitj _ { \\mitp } = 0 } ^ { \\mitr + \\mits } . . . \\sum _ { \\mitj _ { 2 } = 0 } ^ { \\mitj _ { 3 } } \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\mitP _ { \\mitj _ { 1 } } ^ { + } \\vysmwhtcircle \\mitP _ { \\mitj _ { 2 } } ^ { + } . . . \\mitP _ { \\mitj _ { \\mitp } } ^ { + } \\vysmwhtcircle \\mitX ^ { \\mitp } \\sum _ { \\mitk _ { \\mitp } = 0 } ^ { \\mits } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitP _ { \\mitk _ { 1 } } ^ { + } \\vysmwhtcircle \\mitP _ { \\mitk _ { 2 } } ^ { + } . . . \\mitP _ { \\mitk _ { \\mitr } } ^ { + } \\vysmwhtcircle \\mitY ^ { \\mitr } \\mitZ ^ { \\mits } , \\end{equation*}", "\\begin{equation*} \\{ \\mitX ^ { \\mitp } , \\mitY ^ { \\mitr } , \\mitZ ^ { \\mits } \\} \\end{equation*}", "\\begin{equation*} = \\left( \\sum _ { \\mitj _ { \\mitp } = 0 } ^ { \\mitr + \\mits } . . . \\sum _ { \\mitj _ { 2 } = 0 } ^ { \\mitj _ { 3 } } \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\mitalpha ^ { \\mitj _ { 1 } } \\mitalpha ^ { \\mitj _ { 2 } } . . . \\mitalpha ^ { \\mitj _ { \\mitp } } \\right) \\left( \\sum _ { \\mitk _ { \\mitp } = 0 } ^ { \\mits } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitalpha ^ { \\mitk _ { 1 } } \\mitalpha ^ { \\mitk _ { 2 } } . . . \\mitalpha ^ { \\mitk _ { \\mitr } } \\right) \\mitX ^ { \\mitp } \\mitY ^ { \\mitr } \\mitZ ^ { \\mits } . \\end{equation*}" ], "x_min": [ 0.3801000118255615, 0.7339000105857849, 0.6966000199317932, 0.38359999656677246, 0.4921000003814697, 0.2093999981880188, 0.3303000032901764, 0.5708000063896179, 0.37040001153945923, 0.506600022315979, 0.4368000030517578, 0.38839998841285706, 0.23430000245571136, 0.3068000078201294, 0.32409998774528503, 0.3255000114440918, 0.4505999982357025, 0.21559999883174896, 0.4505999982357025, 0.2184000015258789 ], "y_min": [ 0.16850000619888306, 0.16850000619888306, 0.32760000228881836, 0.36719998717308044, 0.365200012922287, 0.38089999556541443, 0.4336000084877014, 0.49900001287460327, 0.6000999808311462, 0.8281000256538391, 0.19089999794960022, 0.25929999351501465, 0.40230000019073486, 0.4546000063419342, 0.524399995803833, 0.5717999935150146, 0.6538000106811523, 0.673799991607666, 0.7480000257492065, 0.7728999853134155 ], "x_max": [ 0.40639999508857727, 0.7878000140190125, 0.7353000044822693, 0.42640000581741333, 0.5108000040054321, 0.29089999198913574, 0.3718000054359436, 0.7573999762535095, 0.47130000591278076, 0.5149000287055969, 0.557699978351593, 0.6115999817848206, 0.7228999733924866, 0.6923999786376953, 0.6730999946594238, 0.6744999885559082, 0.5486999750137329, 0.7767999768257141, 0.5486999750137329, 0.7767999768257141 ], "y_max": [ 0.17919999361038208, 0.17919999361038208, 0.33640000224113464, 0.37700000405311584, 0.37549999356269836, 0.39309999346733093, 0.44339999556541443, 0.510200023651123, 0.6128000020980835, 0.8388000130653381, 0.2313999980688095, 0.29980000853538513, 0.4203999936580658, 0.4722000062465668, 0.5386000275611877, 0.5860000252723694, 0.6693999767303467, 0.7177000045776367, 0.7635999917984009, 0.8192999958992004 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page09
{ "latex": [ "$Q_{\\lambda }$", "$a,b,c$", "$n>2$", "$Q_{rs}$", "$X,Y,Z$", "$XY=YX,$", "$Y\\sim X^{p},2\\leq p<n$", "$Q_{rs}$", "$2\\leq n\\leq 20$", "$X,Y,Z$", "$p,r,s\\geq 1$", "$p+r+s\\leq n$", "$X^{p}Y^{r}Z^{s}\\sim I$", "$\\beta _{k}$", "$\\beta _{k}$", "$p<n$", "$\\beta _{k}^{p}=1$", "$n$", "$X,Y,Z$", "$X^{\\prime },Y^{\\prime },Z^{\\prime }$", "$X,Y,Z$", "$\\beta _{k}\\neq \\beta _{k}^{\\prime }.$", "$N$", "$2\\leq n\\leq 10$", "$N=4$", "$U_{l},l=1,2,3$", "$n^{2}\\times n^{2}$", "\\begin {equation} (aQ_{\\lambda }+bQ_{\\mu }+cQ_{\\nu })^{n}=(a^{n}+b^{n}+c^{n})I. \\label {ga37} \\end {equation}", "\\begin {equation} XY=\\beta _{3}YX\\qquad YZ=\\beta _{1}ZY\\qquad ZX=\\beta _{2}XZ \\label {gaa37} \\end {equation}", "\\begin {equation} \\begin {array}{cccccccccccccccccccc} n: & \\text {{\\footnotesize 2}} & \\text {{\\footnotesize 3}} & \\text { {\\footnotesize 4}} & \\text {{\\footnotesize 5}} & \\text {{\\footnotesize 6}} & \\text {{\\footnotesize 7}} & \\text {{\\footnotesize 8}} & \\text {{\\footnotesize 9} } & \\text {{\\footnotesize 10}} & \\text {{\\footnotesize 11}} & \\text { {\\footnotesize 12}} & \\text {{\\footnotesize 13}} & \\text {{\\footnotesize 14}} & \\text {{\\footnotesize 15}} & \\text {{\\footnotesize 16}} & \\text { {\\footnotesize 17}} & \\text {{\\footnotesize 18}} & \\text {{\\footnotesize 19}} & \\text {{\\footnotesize 20}} \\\\ \\#3: & \\text {{\\footnotesize 1}} & \\text {{\\footnotesize 1}} & \\text { {\\footnotesize 1}} & \\text {{\\footnotesize 4}} & \\text {{\\footnotesize 1}} & \\text {{\\footnotesize 9}} & \\text {{\\footnotesize 4}} & \\text {{\\footnotesize 9} } & \\text {{\\footnotesize 4}} & \\text {{\\footnotesize 25}} & \\text { {\\footnotesize 4}} & \\text {{\\footnotesize 36}} & \\text {{\\footnotesize 9}} & \\text {{\\footnotesize 16}} & \\text {{\\footnotesize 16}} & \\text {{\\footnotesize 64}} & \\text {{\\footnotesize 9}} & \\text {{\\footnotesize 81}} & \\text { {\\footnotesize 16}} \\end {array} \\end {equation}", "\\begin {equation} \\left ( \\sum _{\\lambda =0}^{N-1}a_{\\lambda }Q_{\\lambda }\\right ) ^{n}=\\sum _{\\lambda =0}^{N-1}a_{\\lambda }^{n}. \\label {ga38} \\end {equation}", "\\begin {equation} Q_{0}=I\\otimes T=\\left ( \\begin {array}{cccccc} I & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha I & & & & \\\\ & & \\alpha ^{2}I & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^{n-1}I \\end {array} \\right ) , \\label {ga39} \\end {equation}", "\\begin {equation} Q_{l}=U_{l}\\otimes S=\\left ( \\begin {array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & U_{l} \\\\ U_{l} & & & & & \\qquad \\\\ \\qquad & U_{l} & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & U_{l} & 0 \\end {array} \\right ) \\label {gb39} \\end {equation}" ], "latex_norm": [ "$ Q _ { \\lambda } $", "$ a , b , c $", "$ n > 2 $", "$ Q _ { r s } $", "$ X , Y , Z $", "$ X Y = Y X , $", "$ Y \\sim X ^ { p } , 2 \\leq p < n $", "$ Q _ { r s } $", "$ 2 \\leq n \\leq 2 0 $", "$ X , Y , Z $", "$ p , r , s \\geq 1 $", "$ p + r + s \\leq n $", "$ X ^ { p } Y ^ { r } Z ^ { s } \\sim I $", "$ \\beta _ { k } $", "$ \\beta _ { k } $", "$ p < n $", "$ \\beta _ { k } ^ { p } = 1 $", "$ n $", "$ X , Y , Z $", "$ X ^ { \\prime } , Y ^ { \\prime } , Z ^ { \\prime } $", "$ X , Y , Z $", "$ \\beta _ { k } \\ne \\beta _ { k } ^ { \\prime } . $", "$ N $", "$ 2 \\leq n \\leq 1 0 $", "$ N = 4 $", "$ U _ { l } , l = 1 , 2 , 3 $", "$ n ^ { 2 } \\times n ^ { 2 } $", "\\begin{equation*} ( a Q _ { \\lambda } + b Q _ { \\mu } + c Q _ { \\nu } ) ^ { n } = ( a ^ { n } + b ^ { n } + c ^ { n } ) I . \\end{equation*}", "\\begin{equation*} X Y = \\beta _ { 3 } Y X \\qquad Y Z = \\beta _ { 1 } Z Y \\qquad Z X = \\beta _ { 2 } X Z \\end{equation*}", "\\begin{align*} \\begin{array}{cccccccccccccccccccc} n : & 2 & 3 & ~ 4 & 5 & 6 & 7 & 8 & 9 ~ & 1 0 & 1 1 & ~ 1 2 & 1 3 & 1 4 & 1 5 & 1 6 & ~ 1 7 & 1 8 & 1 9 & 2 0 \\\\ \\# 3 : & 1 & 1 & ~ 1 & 4 & 1 & 9 & 4 & 9 ~ & 4 & 2 5 & ~ 4 & 3 6 & 9 & 1 6 & 1 6 & 6 4 & 9 & 8 1 & ~ 1 6 \\end{array} \\end{align*}", "\\begin{equation*} { ( \\sum _ { \\lambda = 0 } ^ { N - 1 } a _ { \\lambda } Q _ { \\lambda } ) } ^ { n } = \\sum _ { \\lambda = 0 } ^ { N - 1 } a _ { \\lambda } ^ { n } . \\end{equation*}", "\\begin{align*} Q _ { 0 } = I \\otimes T = ( \\begin{array}{cccccc} I & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha I & & & & \\\\ & & \\alpha ^ { 2 } I & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^ { n - 1 } I \\end{array} ) , \\end{align*}", "\\begin{align*} Q _ { l } = U _ { l } \\otimes S = ( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & U _ { l } \\\\ U _ { l } & & & & & \\qquad \\\\ \\qquad & U _ { l } & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & U _ { l } & 0 \\end{array} ) \\end{align*}" ], "latex_expand": [ "$ \\mitQ _ { \\mitlambda } $", "$ \\mita , \\mitb , \\mitc $", "$ \\mitn > 2 $", "$ \\mitQ _ { \\mitr \\mits } $", "$ \\mitX , \\mitY , \\mitZ $", "$ \\mitX \\mitY = \\mitY \\mitX , $", "$ \\mitY \\sim \\mitX ^ { \\mitp } , 2 \\leq \\mitp < \\mitn $", "$ \\mitQ _ { \\mitr \\mits } $", "$ 2 \\leq \\mitn \\leq 2 0 $", "$ \\mitX , \\mitY , \\mitZ $", "$ \\mitp , \\mitr , \\mits \\geq 1 $", "$ \\mitp + \\mitr + \\mits \\leq \\mitn $", "$ \\mitX ^ { \\mitp } \\mitY ^ { \\mitr } \\mitZ ^ { \\mits } \\sim \\mitI $", "$ \\mitbeta _ { \\mitk } $", "$ \\mitbeta _ { \\mitk } $", "$ \\mitp < \\mitn $", "$ \\mitbeta _ { \\mitk } ^ { \\mitp } = 1 $", "$ \\mitn $", "$ \\mitX , \\mitY , \\mitZ $", "$ \\mitX ^ { \\prime } , \\mitY ^ { \\prime } , \\mitZ ^ { \\prime } $", "$ \\mitX , \\mitY , \\mitZ $", "$ \\mitbeta _ { \\mitk } \\ne \\mitbeta _ { \\mitk } ^ { \\prime } . $", "$ \\mitN $", "$ 2 \\leq \\mitn \\leq 1 0 $", "$ \\mitN = 4 $", "$ \\mitU _ { \\mitl } , \\mitl = 1 , 2 , 3 $", "$ \\mitn ^ { 2 } \\times \\mitn ^ { 2 } $", "\\begin{equation*} ( \\mita \\mitQ _ { \\mitlambda } + \\mitb \\mitQ _ { \\mitmu } + \\mitc \\mitQ _ { \\mitnu } ) ^ { \\mitn } = ( \\mita ^ { \\mitn } + \\mitb ^ { \\mitn } + \\mitc ^ { \\mitn } ) \\mitI . \\end{equation*}", "\\begin{equation*} \\mitX \\mitY = \\mitbeta _ { 3 } \\mitY \\mitX \\qquad \\mitY \\mitZ = \\mitbeta _ { 1 } \\mitZ \\mitY \\qquad \\mitZ \\mitX = \\mitbeta _ { 2 } \\mitX \\mitZ \\end{equation*}", "\\begin{align*} \\begin{array}{cccccccccccccccccccc} \\mitn : & 2 & 3 & ~ 4 & 5 & 6 & 7 & 8 & 9 ~ & 1 0 & 1 1 & ~ 1 2 & 1 3 & 1 4 & 1 5 & 1 6 & ~ 1 7 & 1 8 & 1 9 & 2 0 \\\\ \\# 3 : & 1 & 1 & ~ 1 & 4 & 1 & 9 & 4 & 9 ~ & 4 & 2 5 & ~ 4 & 3 6 & 9 & 1 6 & 1 6 & 6 4 & 9 & 8 1 & ~ 1 6 \\end{array} \\end{align*}", "\\begin{equation*} { \\left( \\sum _ { \\mitlambda = 0 } ^ { \\mitN - 1 } \\mita _ { \\mitlambda } \\mitQ _ { \\mitlambda } \\right) } ^ { \\mitn } = \\sum _ { \\mitlambda = 0 } ^ { \\mitN - 1 } \\mita _ { \\mitlambda } ^ { \\mitn } . \\end{equation*}", "\\begin{align*} \\mitQ _ { 0 } = \\mitI \\otimes \\mitT = \\left( \\begin{array}{cccccc} \\mitI & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\mitalpha \\mitI & & & & \\\\ & & \\mitalpha ^ { 2 } \\mitI & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\mitalpha ^ { \\mitn - 1 } \\mitI \\end{array} \\right) , \\end{align*}", "\\begin{align*} \\mitQ _ { \\mitl } = \\mitU _ { \\mitl } \\otimes \\mitS = \\left( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & \\mitU _ { \\mitl } \\\\ \\mitU _ { \\mitl } & & & & & \\qquad \\\\ \\qquad & \\mitU _ { \\mitl } & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & \\mitU _ { \\mitl } & 0 \\end{array} \\right) \\end{align*}" ], "x_min": [ 0.38420000672340393, 0.5508000254631042, 0.3917999863624573, 0.2093999981880188, 0.6517000198364258, 0.2093999981880188, 0.4429999887943268, 0.6385999917984009, 0.699400007724762, 0.3718000054359436, 0.6841999888420105, 0.2093999981880188, 0.3822000026702881, 0.7692000269889832, 0.6385999917984009, 0.6973000168800354, 0.22869999706745148, 0.7656999826431274, 0.40149998664855957, 0.5867000222206116, 0.4643999934196472, 0.4781999886035919, 0.7718999981880188, 0.24120000004768372, 0.373199999332428, 0.2777999937534332, 0.5314000248908997, 0.35249999165534973, 0.32339999079704285, 0.2093999981880188, 0.4050000011920929, 0.24740000069141388, 0.25429999828338623 ], "y_min": [ 0.16850000619888306, 0.1826000064611435, 0.23880000412464142, 0.26660001277923584, 0.26660001277923584, 0.28119999170303345, 0.28119999170303345, 0.30959999561309814, 0.3100999891757965, 0.3237000107765198, 0.32420000433921814, 0.3384000062942505, 0.3379000127315521, 0.3521000146865845, 0.4077000021934509, 0.4097000062465668, 0.42089998722076416, 0.43950000405311584, 0.5034000277519226, 0.5023999810218811, 0.5175999999046326, 0.5307999849319458, 0.5458999872207642, 0.625, 0.6244999766349792, 0.6528000235557556, 0.6654999852180481, 0.19920000433921814, 0.3833000063896179, 0.4629000127315521, 0.5756999850273132, 0.6826000213623047, 0.7753999829292297 ], "x_max": [ 0.40700000524520874, 0.5895000100135803, 0.4415999948978424, 0.2370000034570694, 0.704200029373169, 0.29580000042915344, 0.5888000130653381, 0.6661999821662903, 0.7878999710083008, 0.42500001192092896, 0.7547000050544739, 0.3158000111579895, 0.48170000314712524, 0.7878999710083008, 0.6565999984741211, 0.7436000108718872, 0.2847000062465668, 0.7760999798774719, 0.45399999618530273, 0.6571999788284302, 0.5175999999046326, 0.541100025177002, 0.7878000140190125, 0.33239999413490295, 0.42500001192092896, 0.36970001459121704, 0.5874000191688538, 0.647599995136261, 0.6765000224113464, 0.7903000116348267, 0.5922999978065491, 0.7070000171661377, 0.699400007724762 ], "y_max": [ 0.17919999361038208, 0.19380000233650208, 0.2476000040769577, 0.2777999937534332, 0.2777999937534332, 0.29190000891685486, 0.29190000891685486, 0.32030001282691956, 0.3199000060558319, 0.3343999981880188, 0.3345000147819519, 0.34869998693466187, 0.3467000126838684, 0.3628000020980835, 0.4189000129699707, 0.4189999997615814, 0.4341000020503998, 0.4449000060558319, 0.5141000151634216, 0.5141000151634216, 0.5282999873161316, 0.5435000061988831, 0.5547000169754028, 0.6348000168800354, 0.6333000063896179, 0.6639999747276306, 0.6766999959945679, 0.21529999375343323, 0.3978999853134155, 0.4950999915599823, 0.6172000169754028, 0.7714999914169312, 0.864799976348877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page10
{ "latex": [ "$N=4$", "$U_{\\lambda }$", "$N\\geq 3$", "$N+1$", "$n=2$", "$\\sigma _{j}$", "$\\gamma _{\\mu }$", "$Q_{rs}$", "$Q_{nn}=I$", "$n^{2}-1$", "$SU(n)$", "$a_{rs}$", "$G$", "$n=2$", "$a_{rs}$", "$SU(2)$", "\\begin {equation} \\sum _{k=0}^{N}p_{k}=n, \\end {equation}", "\\begin {equation} \\{Q_{0}^{p_{0}},Q_{1}^{p_{1}},...Q_{N}^{p_{N}}\\}= \\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}} \\sum _{j_{0}=0}^{j_{1}}P_{j_{0}}^{-}\\circ P_{j_{1}}^{-}...P_{j_{p_{N}}}^{-}\\circ \\{Q_{0}^{p_{0}},...Q_{N-1}^{p_{N-1}}\\}Q_{N}^{p_{N}} \\end {equation}", "\\begin {equation} =\\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}} \\sum _{j_{0}=0}^{j_{1}}P_{j_{0}}^{-}\\circ P_{j_{1}}^{-}...P_{j_{p_{N}}}^{-}\\circ \\{(U_{0}\\otimes S)^{p_{0}},...(U_{N-1}\\otimes S)^{p_{N-1}}\\}(I\\otimes T)^{p_{N}} \\end {equation}", "\\begin {equation} =\\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}}\\sum _{j_{0}=0}^{j_{1}} \\alpha ^{j_{0}}\\alpha ^{j_{1}}...\\alpha ^{j_{p_{N}}}\\{(U_{0}\\otimes S)^{p_{0}},...(U_{N-1}\\otimes S)^{p_{N}-1}\\}(I\\otimes T)^{p_{N}} \\end {equation}", "\\begin {equation} =\\left ( \\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}}\\sum _{j_{0}=0}^{j_{1}} \\alpha ^{j_{0}}\\alpha ^{j_{1}}...\\alpha ^{j_{p_{N}}}\\right ) \\{U_{1}^{p_{1}},...U_{N-1}^{p_{N-1}}\\}\\otimes S^{n-p_{N}}T^{p_{N}}, \\end {equation}", "\\begin {equation} G_{rs}=a_{rs}Q_{rs}+a_{rs}^{\\ast }Q_{rs}^{+}, \\label {ga40} \\end {equation}", "\\begin {equation} a_{kl}=\\frac {1}{\\sqrt {2}}\\alpha ^{\\lbrack kl+n(k+l-1/4)]/2} \\label {ga41} \\end {equation}", "\\begin {equation} \\left [ G_{kl},G_{rs}\\right ] =i\\sin \\left ( \\pi (ks-lr)/n\\right ) \\label {ga42} \\end {equation}", "\\begin {equation} \\cdot \\left \\{ \\mathrm {sg}(k+r,l+s,n)\\left ( G_{k+r,l+s}-(-1)^{n+k+l+r+s}G_{-k-r,-l-s}\\right ) \\right . \\end {equation}", "\\begin {equation} -\\left . \\mathrm {sg}(k-r,l-s,n)\\left ( G_{k-r,l-s}-(-1)^{n+k+l+r+s}G_{r-k,s-l}\\right ) \\right \\} , \\end {equation}", "\\begin {equation} \\mathrm {sg}(p,q,n)=(-1)^{p\\cdot m_{q}+q\\cdot m_{p}-n},\\qquad m_{x}=\\frac {x- \\text {mod}(x-1,n)-1}{n}. \\end {equation}" ], "latex_norm": [ "$ N = 4 $", "$ U _ { \\lambda } $", "$ N \\geq 3 $", "$ N + 1 $", "$ n = 2 $", "$ \\sigma _ { j } $", "$ \\gamma _ { \\mu } $", "$ Q _ { r s } $", "$ Q _ { n n } = I $", "$ n ^ { 2 } - 1 $", "$ S U ( n ) $", "$ a _ { r s } $", "$ G $", "$ n = 2 $", "$ a _ { r s } $", "$ S U ( 2 ) $", "\\begin{equation*} \\sum _ { k = 0 } ^ { N } p _ { k } = n , \\end{equation*}", "\\begin{equation*} \\{ Q _ { 0 } ^ { p _ { 0 } } , Q _ { 1 } ^ { p _ { 1 } } , . . . Q _ { N } ^ { p _ { N } } \\} = \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } P _ { j _ { 0 } } ^ { - } \\circ P _ { j _ { 1 } } ^ { - } . . . P _ { j _ { p _ { N } } } ^ { - } \\circ \\{ Q _ { 0 } ^ { p _ { 0 } } , . . . Q _ { N - 1 } ^ { p _ { N - 1 } } \\} Q _ { N } ^ { p _ { N } } \\end{equation*}", "\\begin{equation*} = \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } P _ { j _ { 0 } } ^ { - } \\circ P _ { j _ { 1 } } ^ { - } . . . P _ { j _ { p _ { N } } } ^ { - } \\circ \\{ ( U _ { 0 } \\otimes S ) ^ { p _ { 0 } } , . . . ( U _ { N - 1 } \\otimes S ) ^ { p _ { N - 1 } } \\} ( I \\otimes T ) ^ { p _ { N } } \\end{equation*}", "\\begin{equation*} = \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } \\alpha ^ { j _ { 0 } } \\alpha ^ { j _ { 1 } } . . . \\alpha ^ { j _ { p _ { N } } } \\{ ( U _ { 0 } \\otimes S ) ^ { p _ { 0 } } , . . . ( U _ { N - 1 } \\otimes S ) ^ { p _ { N } - 1 } \\} ( I \\otimes T ) ^ { p _ { N } } \\end{equation*}", "\\begin{equation*} = ( \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } \\alpha ^ { j _ { 0 } } \\alpha ^ { j _ { 1 } } . . . \\alpha ^ { j _ { p _ { N } } } ) \\{ U _ { 1 } ^ { p _ { 1 } } , . . . U _ { N - 1 } ^ { p _ { N - 1 } } \\} \\otimes S ^ { n - p _ { N } } T ^ { p _ { N } } , \\end{equation*}", "\\begin{equation*} G _ { r s } = a _ { r s } Q _ { r s } + a _ { r s } ^ { \\ast } Q _ { r s } ^ { + } , \\end{equation*}", "\\begin{equation*} a _ { k l } = \\frac { 1 } { \\sqrt { 2 } } \\alpha ^ { [ k l + n ( k + l - 1 \\slash 4 ) ] \\slash 2 } \\end{equation*}", "\\begin{equation*} [ G _ { k l } , G _ { r s } ] = i \\operatorname { s i n } ( \\pi ( k s - l r ) \\slash n ) \\end{equation*}", "\\begin{equation*} \\cdot \\{ s g ( k + r , l + s , n ) ( G _ { k + r , l + s } - ( - 1 ) ^ { n + k + l + r + s } G _ { - k - r , - l - s } ) \\end{equation*}", "\\begin{equation*} - s g ( k - r , l - s , n ) ( G _ { k - r , l - s } - ( - 1 ) ^ { n + k + l + r + s } G _ { r - k , s - l } ) \\} , \\end{equation*}", "\\begin{equation*} s g ( p , q , n ) = ( - 1 ) ^ { p \\cdot m _ { q } + q \\cdot m _ { p } - n } , \\qquad m _ { x } = \\frac { x - m o d ( x - 1 , n ) - 1 } { n } . \\end{equation*}" ], "latex_expand": [ "$ \\mitN = 4 $", "$ \\mitU _ { \\mitlambda } $", "$ \\mitN \\geq 3 $", "$ \\mitN + 1 $", "$ \\mitn = 2 $", "$ \\mitsigma _ { \\mitj } $", "$ \\mitgamma _ { \\mitmu } $", "$ \\mitQ _ { \\mitr \\mits } $", "$ \\mitQ _ { \\mitn \\mitn } = \\mitI $", "$ \\mitn ^ { 2 } - 1 $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mita _ { \\mitr \\mits } $", "$ \\mitG $", "$ \\mitn = 2 $", "$ \\mita _ { \\mitr \\mits } $", "$ \\mitS \\mitU ( 2 ) $", "\\begin{equation*} \\sum _ { \\mitk = 0 } ^ { \\mitN } \\mitp _ { \\mitk } = \\mitn , \\end{equation*}", "\\begin{equation*} \\{ \\mitQ _ { 0 } ^ { \\mitp _ { 0 } } , \\mitQ _ { 1 } ^ { \\mitp _ { 1 } } , . . . \\mitQ _ { \\mitN } ^ { \\mitp _ { \\mitN } } \\} = \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitP _ { \\mitj _ { 0 } } ^ { - } \\vysmwhtcircle \\mitP _ { \\mitj _ { 1 } } ^ { - } . . . \\mitP _ { \\mitj _ { \\mitp _ { \\mitN } } } ^ { - } \\vysmwhtcircle \\{ \\mitQ _ { 0 } ^ { \\mitp _ { 0 } } , . . . \\mitQ _ { \\mitN - 1 } ^ { \\mitp _ { \\mitN - 1 } } \\} \\mitQ _ { \\mitN } ^ { \\mitp _ { \\mitN } } \\end{equation*}", "\\begin{equation*} = \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitP _ { \\mitj _ { 0 } } ^ { - } \\vysmwhtcircle \\mitP _ { \\mitj _ { 1 } } ^ { - } . . . \\mitP _ { \\mitj _ { \\mitp _ { \\mitN } } } ^ { - } \\vysmwhtcircle \\{ ( \\mitU _ { 0 } \\otimes \\mitS ) ^ { \\mitp _ { 0 } } , . . . ( \\mitU _ { \\mitN - 1 } \\otimes \\mitS ) ^ { \\mitp _ { \\mitN - 1 } } \\} ( \\mitI \\otimes \\mitT ) ^ { \\mitp _ { \\mitN } } \\end{equation*}", "\\begin{equation*} = \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitalpha ^ { \\mitj _ { 0 } } \\mitalpha ^ { \\mitj _ { 1 } } . . . \\mitalpha ^ { \\mitj _ { \\mitp _ { \\mitN } } } \\{ ( \\mitU _ { 0 } \\otimes \\mitS ) ^ { \\mitp _ { 0 } } , . . . ( \\mitU _ { \\mitN - 1 } \\otimes \\mitS ) ^ { \\mitp _ { \\mitN } - 1 } \\} ( \\mitI \\otimes \\mitT ) ^ { \\mitp _ { \\mitN } } \\end{equation*}", "\\begin{equation*} = \\left( \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitalpha ^ { \\mitj _ { 0 } } \\mitalpha ^ { \\mitj _ { 1 } } . . . \\mitalpha ^ { \\mitj _ { \\mitp _ { \\mitN } } } \\right) \\{ \\mitU _ { 1 } ^ { \\mitp _ { 1 } } , . . . \\mitU _ { \\mitN - 1 } ^ { \\mitp _ { \\mitN - 1 } } \\} \\otimes \\mitS ^ { \\mitn - \\mitp _ { \\mitN } } \\mitT ^ { \\mitp _ { \\mitN } } , \\end{equation*}", "\\begin{equation*} \\mitG _ { \\mitr \\mits } = \\mita _ { \\mitr \\mits } \\mitQ _ { \\mitr \\mits } + \\mita _ { \\mitr \\mits } ^ { \\ast } \\mitQ _ { \\mitr \\mits } ^ { + } , \\end{equation*}", "\\begin{equation*} \\mita _ { \\mitk \\mitl } = \\frac { 1 } { \\sqrt { 2 } } \\mitalpha ^ { [ \\mitk \\mitl + \\mitn ( \\mitk + \\mitl - 1 \\slash 4 ) ] \\slash 2 } \\end{equation*}", "\\begin{equation*} \\left[ \\mitG _ { \\mitk \\mitl } , \\mitG _ { \\mitr \\mits } \\right] = \\miti \\operatorname { s i n } \\left( \\mitpi ( \\mitk \\mits - \\mitl \\mitr ) \\slash \\mitn \\right) \\end{equation*}", "\\begin{equation*} \\cdot \\left\\{ \\mathrm { s g } ( \\mitk + \\mitr , \\mitl + \\mits , \\mitn ) \\left( \\mitG _ { \\mitk + \\mitr , \\mitl + \\mits } - ( - 1 ) ^ { \\mitn + \\mitk + \\mitl + \\mitr + \\mits } \\mitG _ { - \\mitk - \\mitr , - \\mitl - \\mits } \\right) \\right. \\end{equation*}", "\\begin{equation*} - \\left. \\mathrm { s g } ( \\mitk - \\mitr , \\mitl - \\mits , \\mitn ) \\left( \\mitG _ { \\mitk - \\mitr , \\mitl - \\mits } - ( - 1 ) ^ { \\mitn + \\mitk + \\mitl + \\mitr + \\mits } \\mitG _ { \\mitr - \\mitk , \\mits - \\mitl } \\right) \\right\\} , \\end{equation*}", "\\begin{equation*} \\mathrm { s g } ( \\mitp , \\mitq , \\mitn ) = ( - 1 ) ^ { \\mitp \\cdot \\mitm _ { \\mitq } + \\mitq \\cdot \\mitm _ { \\mitp } - \\mitn } , \\qquad \\mitm _ { \\mitx } = \\frac { \\mitx - \\mathrm { m o d } ( \\mitx - 1 , \\mitn ) - 1 } { \\mitn } . \\end{equation*}" ], "x_min": [ 0.39809998869895935, 0.5529000163078308, 0.36070001125335693, 0.5825999975204468, 0.3711000084877014, 0.6931999921798706, 0.27639999985694885, 0.4921000003814697, 0.6593000292778015, 0.3296000063419342, 0.7394999861717224, 0.25780001282691956, 0.31929999589920044, 0.6455000042915344, 0.38769999146461487, 0.5929999947547913, 0.4553999900817871, 0.2231999933719635, 0.2093999981880188, 0.22179999947547913, 0.2515999972820282, 0.4104999899864197, 0.4000999927520752, 0.3808000087738037, 0.27639999985694885, 0.2784999907016754, 0.26330000162124634 ], "y_min": [ 0.1543000042438507, 0.1543000042438507, 0.16850000619888306, 0.1826000064611435, 0.49709999561309814, 0.51419997215271, 0.5278000235557556, 0.5390999913215637, 0.5390999913215637, 0.551800012588501, 0.5526999831199646, 0.6050000190734863, 0.8070999979972839, 0.8223000168800354, 0.8389000296592712, 0.8490999937057495, 0.21480000019073486, 0.28220000863075256, 0.33399999141693115, 0.3813000023365021, 0.4287000000476837, 0.57669997215271, 0.6201000213623047, 0.6812000274658203, 0.7035999894142151, 0.725600004196167, 0.7670999765396118 ], "x_max": [ 0.44510000944137573, 0.5735999941825867, 0.4083999991416931, 0.6288999915122986, 0.4133000075817108, 0.7098000049591064, 0.29510000348091125, 0.5196999907493591, 0.7214999794960022, 0.3772999942302704, 0.7878999710083008, 0.28130000829696655, 0.33309999108314514, 0.6897000074386597, 0.4104999899864197, 0.6392999887466431, 0.5389999747276306, 0.7767999768257141, 0.7912999987602234, 0.772599995136261, 0.7408999800682068, 0.5867000222206116, 0.5997999906539917, 0.6129999756813049, 0.7159000039100647, 0.7139000296592712, 0.7366999983787537 ], "y_max": [ 0.163100004196167, 0.16459999978542328, 0.17880000174045563, 0.1923999935388565, 0.5054000020027161, 0.5230000019073486, 0.5371000170707703, 0.5503000020980835, 0.5503000020980835, 0.5630000233650208, 0.5648999810218811, 0.6122999787330627, 0.8159000277519226, 0.8306000232696533, 0.8461999893188477, 0.8618000149726868, 0.2558000087738037, 0.32659998536109924, 0.37790000438690186, 0.4251999855041504, 0.47510001063346863, 0.5938000082969666, 0.6503999829292297, 0.6973000168800354, 0.7221999764442444, 0.7441999912261963, 0.7964000105857849 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page11
{ "latex": [ "$\\square ^{1/n}$", "$\\mu ,\\ \\pi _{\\lambda }$", "$n-1$", "$\\Gamma $", "$p-$", "$n^{2}$", "$\\Psi $", "$n^{2}$", "$n^{2}=4$", "$n>2$", "$U_{l}$", "$Q_{l}$", "$h_{1},h_{2},...h_{n}$", "$p$", "$\\pi _{\\lambda }$", "\\begin {equation} \\left ( Q_{0}\\right ) ^{n}=-\\left ( Q_{l}\\right ) ^{n}=I,\\qquad l=1,2,3, \\label {s1} \\end {equation}", "\\begin {equation} \\left ( \\Gamma (p)-\\mu I\\right ) \\Psi (p)=0, \\label {s2} \\end {equation}", "\\begin {equation} \\Gamma (p)=\\sum _{\\lambda =0}^{3}\\pi _{\\lambda }Q_{\\lambda }. \\label {s3} \\end {equation}", "\\begin {equation} \\mu ^{n}=m^{2},\\qquad \\pi _{\\lambda }^{n}=p_{\\lambda }^{2}, \\label {sa3} \\end {equation}", "\\begin {equation} \\Gamma (p)^{n}=p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}\\equiv p^{2} \\label {sb3} \\end {equation}", "\\begin {equation} \\left ( p^{2}-m^{2}\\right ) \\Psi (p)=0. \\label {s4} \\end {equation}", "\\begin {equation} \\Psi (p)=\\left ( \\begin {array}{c} \\mathbf {h} \\\\ \\frac {U(p)}{\\alpha \\pi _{0}-\\mu }\\mathbf {h} \\\\ \\frac {U^{2}(p)}{(\\alpha \\pi _{0}-\\mu )(\\alpha ^{2}\\pi _{0}-\\mu )}\\mathbf {h} \\\\ \\cdot \\\\ \\cdot \\\\ \\frac {U^{n-1}(p)}{(\\alpha \\pi _{0}-\\mu )...(\\alpha ^{n-1}\\pi _{0}-\\mu )} \\mathbf {h} \\end {array} \\right ) ,\\qquad \\mathbf {h}=\\left ( \\begin {array}{c} h_{1} \\\\ h_{2} \\\\ \\cdot \\\\ \\cdot \\\\ h_{n} \\end {array} \\right ) , \\label {sa4} \\end {equation}", "\\begin {equation} U(p)=\\sum _{l=1}^{3}\\pi _{l}U_{l},\\qquad \\left ( U_{l}\\right ) ^{n}=-I, \\end {equation}", "\\begin {equation} \\pi _{0}^{n}-\\pi _{1}^{n}-\\pi _{2}^{n}-\\pi _{3}^{n}=\\mu ^{n}=m^{2}. \\label {sb4} \\end {equation}" ], "latex_norm": [ "$ \\square ^ { 1 \\slash n } $", "$ \\mu , ~ \\pi _ { \\lambda } $", "$ n - 1 $", "$ \\Gamma $", "$ p - $", "$ n ^ { 2 } $", "$ \\Psi $", "$ n ^ { 2 } $", "$ n ^ { 2 } = 4 $", "$ n > 2 $", "$ U _ { l } $", "$ Q _ { l } $", "$ h _ { 1 } , h _ { 2 } , . . . h _ { n } $", "$ p $", "$ \\pi _ { \\lambda } $", "\\begin{equation*} { ( Q _ { 0 } ) } ^ { n } = - { ( Q _ { l } ) } ^ { n } = I , \\qquad l = 1 , 2 , 3 , \\end{equation*}", "\\begin{equation*} ( \\Gamma ( p ) - \\mu I ) \\Psi ( p ) = 0 , \\end{equation*}", "\\begin{equation*} \\Gamma ( p ) = \\sum _ { \\lambda = 0 } ^ { 3 } \\pi _ { \\lambda } Q _ { \\lambda } . \\end{equation*}", "\\begin{equation*} \\mu ^ { n } = m ^ { 2 } , \\qquad \\pi _ { \\lambda } ^ { n } = p _ { \\lambda } ^ { 2 } , \\end{equation*}", "\\begin{equation*} \\Gamma ( p ) ^ { n } = p _ { 0 } ^ { 2 } - p _ { 1 } ^ { 2 } - p _ { 2 } ^ { 2 } - p _ { 3 } ^ { 2 } \\equiv p ^ { 2 } \\end{equation*}", "\\begin{equation*} ( p ^ { 2 } - m ^ { 2 } ) \\Psi ( p ) = 0 . \\end{equation*}", "\\begin{align*} \\Psi ( p ) = ( \\begin{array}{c} h \\\\ \\frac { U ( p ) } { \\alpha \\pi _ { 0 } - \\mu } h \\\\ \\frac { U ^ { 2 } ( p ) } { ( \\alpha \\pi _ { 0 } - \\mu ) ( \\alpha ^ { 2 } \\pi _ { 0 } - \\mu ) } h \\\\ \\cdot \\\\ \\cdot \\\\ \\frac { U ^ { n - 1 } ( p ) } { ( \\alpha \\pi _ { 0 } - \\mu ) . . . ( \\alpha ^ { n - 1 } \\pi _ { 0 } - \\mu ) } h \\end{array} ) , \\qquad h = ( \\begin{array}{c} h _ { 1 } \\\\ h _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ h _ { n } \\end{array} ) , \\end{align*}", "\\begin{equation*} U ( p ) = \\sum _ { l = 1 } ^ { 3 } \\pi _ { l } U _ { l } , \\qquad { ( U _ { l } ) } ^ { n } = - I , \\end{equation*}", "\\begin{equation*} \\pi _ { 0 } ^ { n } - \\pi _ { 1 } ^ { n } - \\pi _ { 2 } ^ { n } - \\pi _ { 3 } ^ { n } = \\mu ^ { n } = m ^ { 2 } . \\end{equation*}" ], "latex_expand": [ "$ \\square ^ { 1 \\slash \\mitn } $", "$ \\mitmu , ~ \\mitpi _ { \\mitlambda } $", "$ \\mitn - 1 $", "$ \\mupGamma $", "$ \\mitp - $", "$ \\mitn ^ { 2 } $", "$ \\mupPsi $", "$ \\mitn ^ { 2 } $", "$ \\mitn ^ { 2 } = 4 $", "$ \\mitn > 2 $", "$ \\mitU _ { \\mitl } $", "$ \\mitQ _ { \\mitl } $", "$ \\Planckconst _ { 1 } , \\Planckconst _ { 2 } , . . . \\Planckconst _ { \\mitn } $", "$ \\mitp $", "$ \\mitpi _ { \\mitlambda } $", "\\begin{equation*} { \\left( \\mitQ _ { 0 } \\right) } ^ { \\mitn } = - { \\left( \\mitQ _ { \\mitl } \\right) } ^ { \\mitn } = \\mitI , \\qquad \\mitl = 1 , 2 , 3 , \\end{equation*}", "\\begin{equation*} \\left( \\mupGamma ( \\mitp ) - \\mitmu \\mitI \\right) \\mupPsi ( \\mitp ) = 0 , \\end{equation*}", "\\begin{equation*} \\mupGamma ( \\mitp ) = \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitpi _ { \\mitlambda } \\mitQ _ { \\mitlambda } . \\end{equation*}", "\\begin{equation*} \\mitmu ^ { \\mitn } = \\mitm ^ { 2 } , \\qquad \\mitpi _ { \\mitlambda } ^ { \\mitn } = \\mitp _ { \\mitlambda } ^ { 2 } , \\end{equation*}", "\\begin{equation*} \\mupGamma ( \\mitp ) ^ { \\mitn } = \\mitp _ { 0 } ^ { 2 } - \\mitp _ { 1 } ^ { 2 } - \\mitp _ { 2 } ^ { 2 } - \\mitp _ { 3 } ^ { 2 } \\equiv \\mitp ^ { 2 } \\end{equation*}", "\\begin{equation*} \\left( \\mitp ^ { 2 } - \\mitm ^ { 2 } \\right) \\mupPsi ( \\mitp ) = 0 . \\end{equation*}", "\\begin{align*} \\mupPsi ( \\mitp ) = \\left( \\begin{array}{c} \\mbfh \\\\ \\frac { \\mitU ( \\mitp ) } { \\mitalpha \\mitpi _ { 0 } - \\mitmu } \\mbfh \\\\ \\frac { \\mitU ^ { 2 } ( \\mitp ) } { ( \\mitalpha \\mitpi _ { 0 } - \\mitmu ) ( \\mitalpha ^ { 2 } \\mitpi _ { 0 } - \\mitmu ) } \\mbfh \\\\ \\cdot \\\\ \\cdot \\\\ \\frac { \\mitU ^ { \\mitn - 1 } ( \\mitp ) } { ( \\mitalpha \\mitpi _ { 0 } - \\mitmu ) . . . ( \\mitalpha ^ { \\mitn - 1 } \\mitpi _ { 0 } - \\mitmu ) } \\mbfh \\end{array} \\right) , \\qquad \\mbfh = \\left( \\begin{array}{c} \\Planckconst _ { 1 } \\\\ \\Planckconst _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ \\Planckconst _ { \\mitn } \\end{array} \\right) , \\end{align*}", "\\begin{equation*} \\mitU ( \\mitp ) = \\sum _ { \\mitl = 1 } ^ { 3 } \\mitpi _ { \\mitl } \\mitU _ { \\mitl } , \\qquad { \\left( \\mitU _ { \\mitl } \\right) } ^ { \\mitn } = - \\mitI , \\end{equation*}", "\\begin{equation*} \\mitpi _ { 0 } ^ { \\mitn } - \\mitpi _ { 1 } ^ { \\mitn } - \\mitpi _ { 2 } ^ { \\mitn } - \\mitpi _ { 3 } ^ { \\mitn } = \\mitmu ^ { \\mitn } = \\mitm ^ { 2 } . \\end{equation*}" ], "x_min": [ 0.5777000188827515, 0.3199999928474426, 0.2827000021934509, 0.6468999981880188, 0.5465999841690063, 0.515500009059906, 0.7193999886512756, 0.2093999981880188, 0.4781999886035919, 0.24050000309944153, 0.21629999577999115, 0.5078999996185303, 0.39250001311302185, 0.6744999885559082, 0.25220000743865967, 0.3628000020980835, 0.4174000024795532, 0.43540000915527344, 0.41260001063346863, 0.3849000036716461, 0.4235999882221222, 0.2937000095844269, 0.37529999017715454, 0.38359999656677246 ], "y_min": [ 0.16850000619888306, 0.3774000108242035, 0.46000000834465027, 0.4595000147819519, 0.4745999872684479, 0.5238999724388123, 0.5253999829292297, 0.538100004196167, 0.538100004196167, 0.5547000169754028, 0.774399995803833, 0.774399995803833, 0.788100004196167, 0.7914999723434448, 0.8057000041007996, 0.23680000007152557, 0.2896000146865845, 0.3257000148296356, 0.3970000147819519, 0.4325999915599823, 0.49410000443458557, 0.6029999852180481, 0.7250999808311462, 0.823199987411499 ], "x_max": [ 0.6240000128746033, 0.36079999804496765, 0.32280001044273376, 0.6579999923706055, 0.5687000155448914, 0.5335000157356262, 0.7325000166893005, 0.227400004863739, 0.5273000001907349, 0.28610000014305115, 0.2328999936580658, 0.5266000032424927, 0.47540000081062317, 0.6827999949455261, 0.27090001106262207, 0.631600022315979, 0.5770000219345093, 0.5645999908447266, 0.5839999914169312, 0.6150000095367432, 0.5735999941825867, 0.7027999758720398, 0.621999979019165, 0.6158000230789185 ], "y_max": [ 0.18410000205039978, 0.38519999384880066, 0.4693000018596649, 0.4683000147342682, 0.4844000041484833, 0.5342000126838684, 0.5342000126838684, 0.5483999848365784, 0.5483999848365784, 0.5634999871253967, 0.7846999764442444, 0.785099983215332, 0.7993000149726868, 0.7993000149726868, 0.8130000233650208, 0.2533999979496002, 0.3052000105381012, 0.3662000000476837, 0.4140999913215637, 0.4496999979019165, 0.5127000212669373, 0.7064999938011169, 0.7656000256538391, 0.8403000235557556 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page12
{ "latex": [ "$x-$", "$p-$", "$x-$", "$\\Gamma $", "$p_{\\lambda }$", "$p_{\\lambda }^{\\prime }$", "$d\\omega $", "$\\tanh \\psi _{i}=v_{i}/c\\equiv \\beta _{i}$", "$\\epsilon _{ijk}$", "\\begin {equation} \\pi _{\\lambda }=(p_{\\lambda })^{2/n}\\rightarrow (i\\partial _{\\lambda })^{2/n}. \\label {s5} \\end {equation}", "\\begin {equation} \\Gamma (p)\\rightarrow \\Gamma (p^{\\prime })=\\Lambda \\Gamma (p)\\Lambda ^{-1} \\label {s6} \\end {equation}", "\\begin {equation} \\Psi (p)\\rightarrow \\Psi ^{\\prime }(p^{\\prime })=\\Lambda \\Psi (p) \\label {s7} \\end {equation}", "\\begin {equation} \\Lambda (d\\omega )=I+id\\omega \\cdot L_{\\omega }, \\label {s8} \\end {equation}", "\\begin {equation} p_{i}^{\\prime }=p_{i}+\\epsilon _{ijk}p_{j}d\\varphi _{k},\\qquad i=1,2,3 \\label {s9} \\end {equation}", "\\begin {equation} p_{i}^{\\prime }=p_{i}+p_{0}d\\psi _{i},\\qquad p_{0}^{\\prime }=p_{0}+p_{i}d\\psi _{i},\\qquad i=1,2,3, \\label {s10} \\end {equation}", "\\begin {equation} p_{1}^{\\prime }=p_{1}\\cos \\varphi _{3}+p_{2}\\sin \\varphi _{3},\\qquad p_{2}^{\\prime }=p_{2}\\cos \\varphi _{3}-p_{1}\\sin \\varphi _{3},\\qquad p_{3}^{\\prime }=p_{3}, \\label {sa10} \\end {equation}", "\\begin {equation} p_{2}^{\\prime }=p_{2}\\cos \\varphi _{1}+p_{3}\\sin \\varphi _{1},\\qquad p_{3}^{\\prime }=p_{3}\\cos \\varphi _{1}-p_{2}\\sin \\varphi _{1},\\qquad p_{1}^{\\prime }=p_{1}, \\label {sb10} \\end {equation}", "\\begin {equation} p_{3}^{\\prime }=p_{3}\\cos \\varphi _{2}+p_{1}\\sin \\varphi _{2},\\qquad p_{1}^{\\prime }=p_{1}\\cos \\varphi _{2}-p_{3}\\sin \\varphi _{2},\\qquad p_{2}^{\\prime }=p_{2} \\label {sc10} \\end {equation}", "\\begin {equation} p_{0}^{\\prime }=p_{0}\\cosh \\psi _{i}+p_{i}\\sinh \\psi _{i},\\qquad i=1,2,3, \\label {sd10} \\end {equation}", "\\begin {equation} \\cosh \\psi _{i}=\\frac {1}{\\sqrt {1-\\beta _{i}^{2}}},\\qquad \\sinh \\psi _{i}= \\frac {\\beta _{i}}{\\sqrt {1-\\beta _{i}^{2}}}. \\label {se10} \\end {equation}" ], "latex_norm": [ "$ x - $", "$ p - $", "$ x - $", "$ \\Gamma $", "$ p _ { \\lambda } $", "$ p _ { \\lambda } ^ { \\prime } $", "$ d \\omega $", "$ t a n h \\psi _ { i } = v _ { i } \\slash c \\equiv \\beta _ { i } $", "$ \\epsilon _ { i j k } $", "\\begin{equation*} \\pi _ { \\lambda } = ( p _ { \\lambda } ) ^ { 2 \\slash n } \\rightarrow ( i \\partial _ { \\lambda } ) ^ { 2 \\slash n } . \\end{equation*}", "\\begin{equation*} \\Gamma ( p ) \\rightarrow \\Gamma ( p ^ { \\prime } ) = \\Lambda \\Gamma ( p ) \\Lambda ^ { - 1 } \\end{equation*}", "\\begin{equation*} \\Psi ( p ) \\rightarrow \\Psi ^ { \\prime } ( p ^ { \\prime } ) = \\Lambda \\Psi ( p ) \\end{equation*}", "\\begin{equation*} \\Lambda ( d \\omega ) = I + i d \\omega \\cdot L _ { \\omega } , \\end{equation*}", "\\begin{equation*} p _ { i } ^ { \\prime } = p _ { i } + \\epsilon _ { i j k } p _ { j } d \\varphi _ { k } , \\qquad i = 1 , 2 , 3 \\end{equation*}", "\\begin{equation*} p _ { i } ^ { \\prime } = p _ { i } + p _ { 0 } d \\psi _ { i } , \\qquad p _ { 0 } ^ { \\prime } = p _ { 0 } + p _ { i } d \\psi _ { i } , \\qquad i = 1 , 2 , 3 , \\end{equation*}", "\\begin{equation*} p _ { 1 } ^ { \\prime } = p _ { 1 } \\operatorname { c o s } \\varphi _ { 3 } + p _ { 2 } \\operatorname { s i n } \\varphi _ { 3 } , \\qquad p _ { 2 } ^ { \\prime } = p _ { 2 } \\operatorname { c o s } \\varphi _ { 3 } - p _ { 1 } \\operatorname { s i n } \\varphi _ { 3 } , \\qquad p _ { 3 } ^ { \\prime } = p _ { 3 } , \\end{equation*}", "\\begin{equation*} p _ { 2 } ^ { \\prime } = p _ { 2 } \\operatorname { c o s } \\varphi _ { 1 } + p _ { 3 } \\operatorname { s i n } \\varphi _ { 1 } , \\qquad p _ { 3 } ^ { \\prime } = p _ { 3 } \\operatorname { c o s } \\varphi _ { 1 } - p _ { 2 } \\operatorname { s i n } \\varphi _ { 1 } , \\qquad p _ { 1 } ^ { \\prime } = p _ { 1 } , \\end{equation*}", "\\begin{equation*} p _ { 3 } ^ { \\prime } = p _ { 3 } \\operatorname { c o s } \\varphi _ { 2 } + p _ { 1 } \\operatorname { s i n } \\varphi _ { 2 } , \\qquad p _ { 1 } ^ { \\prime } = p _ { 1 } \\operatorname { c o s } \\varphi _ { 2 } - p _ { 3 } \\operatorname { s i n } \\varphi _ { 2 } , \\qquad p _ { 2 } ^ { \\prime } = p _ { 2 } \\end{equation*}", "\\begin{equation*} p _ { 0 } ^ { \\prime } = p _ { 0 } \\operatorname { c o s h } \\psi _ { i } + p _ { i } \\operatorname { s i n h } \\psi _ { i } , \\qquad i = 1 , 2 , 3 , \\end{equation*}", "\\begin{equation*} \\operatorname { c o s h } \\psi _ { i } = \\frac { 1 } { \\sqrt { 1 - \\beta _ { i } ^ { 2 } } } , \\qquad \\operatorname { s i n h } \\psi _ { i } = \\frac { \\beta _ { i } } { \\sqrt { 1 - \\beta _ { i } ^ { 2 } } } . \\end{equation*}" ], "latex_expand": [ "$ \\mitx - $", "$ \\mitp - $", "$ \\mitx - $", "$ \\mupGamma $", "$ \\mitp _ { \\mitlambda } $", "$ \\mitp _ { \\mitlambda } ^ { \\prime } $", "$ \\mitd \\mitomega $", "$ \\mathrm { t a n h } \\mitpsi _ { \\miti } = \\mitv _ { \\miti } \\slash \\mitc \\equiv \\mitbeta _ { \\miti } $", "$ \\mitepsilon _ { \\miti \\mitj \\mitk } $", "\\begin{equation*} \\mitpi _ { \\mitlambda } = ( \\mitp _ { \\mitlambda } ) ^ { 2 \\slash \\mitn } \\rightarrow ( \\miti \\mitpartial _ { \\mitlambda } ) ^ { 2 \\slash \\mitn } . \\end{equation*}", "\\begin{equation*} \\mupGamma ( \\mitp ) \\rightarrow \\mupGamma ( \\mitp ^ { \\prime } ) = \\mupLambda \\mupGamma ( \\mitp ) \\mupLambda ^ { - 1 } \\end{equation*}", "\\begin{equation*} \\mupPsi ( \\mitp ) \\rightarrow \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupLambda \\mupPsi ( \\mitp ) \\end{equation*}", "\\begin{equation*} \\mupLambda ( \\mitd \\mitomega ) = \\mitI + \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } , \\end{equation*}", "\\begin{equation*} \\mitp _ { \\miti } ^ { \\prime } = \\mitp _ { \\miti } + \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitp _ { \\mitj } \\mitd \\mitvarphi _ { \\mitk } , \\qquad \\miti = 1 , 2 , 3 \\end{equation*}", "\\begin{equation*} \\mitp _ { \\miti } ^ { \\prime } = \\mitp _ { \\miti } + \\mitp _ { 0 } \\mitd \\mitpsi _ { \\miti } , \\qquad \\mitp _ { 0 } ^ { \\prime } = \\mitp _ { 0 } + \\mitp _ { \\miti } \\mitd \\mitpsi _ { \\miti } , \\qquad \\miti = 1 , 2 , 3 , \\end{equation*}", "\\begin{equation*} \\mitp _ { 1 } ^ { \\prime } = \\mitp _ { 1 } \\operatorname { c o s } \\mitvarphi _ { 3 } + \\mitp _ { 2 } \\operatorname { s i n } \\mitvarphi _ { 3 } , \\qquad \\mitp _ { 2 } ^ { \\prime } = \\mitp _ { 2 } \\operatorname { c o s } \\mitvarphi _ { 3 } - \\mitp _ { 1 } \\operatorname { s i n } \\mitvarphi _ { 3 } , \\qquad \\mitp _ { 3 } ^ { \\prime } = \\mitp _ { 3 } , \\end{equation*}", "\\begin{equation*} \\mitp _ { 2 } ^ { \\prime } = \\mitp _ { 2 } \\operatorname { c o s } \\mitvarphi _ { 1 } + \\mitp _ { 3 } \\operatorname { s i n } \\mitvarphi _ { 1 } , \\qquad \\mitp _ { 3 } ^ { \\prime } = \\mitp _ { 3 } \\operatorname { c o s } \\mitvarphi _ { 1 } - \\mitp _ { 2 } \\operatorname { s i n } \\mitvarphi _ { 1 } , \\qquad \\mitp _ { 1 } ^ { \\prime } = \\mitp _ { 1 } , \\end{equation*}", "\\begin{equation*} \\mitp _ { 3 } ^ { \\prime } = \\mitp _ { 3 } \\operatorname { c o s } \\mitvarphi _ { 2 } + \\mitp _ { 1 } \\operatorname { s i n } \\mitvarphi _ { 2 } , \\qquad \\mitp _ { 1 } ^ { \\prime } = \\mitp _ { 1 } \\operatorname { c o s } \\mitvarphi _ { 2 } - \\mitp _ { 3 } \\operatorname { s i n } \\mitvarphi _ { 2 } , \\qquad \\mitp _ { 2 } ^ { \\prime } = \\mitp _ { 2 } \\end{equation*}", "\\begin{equation*} \\mitp _ { 0 } ^ { \\prime } = \\mitp _ { 0 } \\operatorname { c o s h } \\mitpsi _ { \\miti } + \\mitp _ { \\miti } \\operatorname { s i n h } \\mitpsi _ { \\miti } , \\qquad \\miti = 1 , 2 , 3 , \\end{equation*}", "\\begin{equation*} \\operatorname { c o s h } \\mitpsi _ { \\miti } = \\frac { 1 } { \\sqrt { 1 - \\mitbeta _ { \\miti } ^ { 2 } } } , \\qquad \\operatorname { s i n h } \\mitpsi _ { \\miti } = \\frac { \\mitbeta _ { \\miti } } { \\sqrt { 1 - \\mitbeta _ { \\miti } ^ { 2 } } } . \\end{equation*}" ], "x_min": [ 0.2093999981880188, 0.515500009059906, 0.4747999906539917, 0.5383999943733215, 0.7049000263214111, 0.30889999866485596, 0.257099986076355, 0.25780001282691956, 0.31380000710487366, 0.40700000524520874, 0.4036000072956085, 0.41190001368522644, 0.4174000024795532, 0.37389999628067017, 0.3068000078201294, 0.22390000522136688, 0.22390000522136688, 0.227400004863739, 0.34279999136924744, 0.3345000147819519 ], "y_min": [ 0.18410000205039978, 0.23440000414848328, 0.2485000044107437, 0.39010000228881836, 0.39309999346733093, 0.4032999873161316, 0.5098000168800354, 0.6244999766349792, 0.6567000150680542, 0.20170000195503235, 0.32420000433921814, 0.364300012588501, 0.4805000126361847, 0.5443999767303467, 0.5952000021934509, 0.7026000022888184, 0.7279999852180481, 0.7490000128746033, 0.7949000000953674, 0.8310999870300293 ], "x_max": [ 0.2328999936580658, 0.5375999808311462, 0.4975999891757965, 0.548799991607666, 0.7228999733924866, 0.32690000534057617, 0.27709999680519104, 0.3995000123977661, 0.3400999903678894, 0.5928999781608582, 0.5964000225067139, 0.588100016117096, 0.579800009727478, 0.6261000037193298, 0.6904000043869019, 0.7304999828338623, 0.7304999828338623, 0.7297999858856201, 0.6538000106811523, 0.6628000140190125 ], "y_max": [ 0.1923999935388565, 0.24420000612735748, 0.2572999894618988, 0.39890000224113464, 0.4009000062942505, 0.41600000858306885, 0.5185999870300293, 0.6366999745368958, 0.6654999852180481, 0.21979999542236328, 0.34130001068115234, 0.38089999556541443, 0.4961000084877014, 0.5615000128746033, 0.611299991607666, 0.7192000150680542, 0.7440999746322632, 0.7651000022888184, 0.8115000128746033, 0.864799976348877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page13
{ "latex": [ "$p\\rightarrow p^{\\prime }$", "$f(p)$", "$d/d\\omega $", "$\\mathbf {L_{\\omega }}$", "$\\mathbf {L_{\\omega }}$", "$n>2$", "$L_{\\omega } $", "$L_{\\omega }$", "$\\frac {d}{d\\omega }\\Gamma (p)$", "$p_{i}^{2/n-1}p_{j}$", "$L_{\\omega }\\Gamma -\\Gamma L_{\\omega }$", "$p_{k}^{2/n}$", "$n=2,$", "$n>2$", "$L_{\\omega }$", "$L_{\\omega }$", "$p_{i}$", "\\begin {equation} f(p)\\rightarrow f(p^{\\prime })=f(p+\\delta p)=f(p)+\\frac {df}{d\\omega }d\\omega , \\label {s11} \\end {equation}", "\\begin {equation} \\frac {d}{d\\varphi _{i}}=-\\epsilon _{ijk}p_{j}\\frac {\\partial }{\\partial p_{k}} ,\\qquad \\frac {d}{d\\psi _{i}}=p_{0}\\frac {\\partial }{\\partial p_{i}}+p_{i} \\frac {\\partial }{\\partial p_{0}},\\qquad i=1,2,3. \\label {s12} \\end {equation}", "\\begin {equation} p^{\\prime }=p+\\frac {dp}{d\\omega }d\\omega \\label {s13} \\end {equation}", "\\begin {equation} \\Gamma (p^{\\prime })=\\Gamma (p)+\\frac {d\\Gamma (p)}{d\\omega }d\\omega =\\left ( I+id\\omega \\cdot L_{\\omega }\\right ) \\Gamma (p)\\left ( I-id\\omega \\cdot L_{\\omega }\\right ) , \\label {s14} \\end {equation}", "\\begin {equation} \\Psi ^{\\prime }(p^{\\prime })=\\Psi ^{\\prime }(p)+\\frac {d\\Psi ^{\\prime }(p)}{ d\\omega }d\\omega =\\left ( I+id\\omega \\cdot L_{\\omega }\\right ) \\Psi (p). \\label {s15} \\end {equation}", "\\begin {equation} \\mathbf {L_{\\omega }}=L_{\\omega }+i\\frac {d}{d\\omega }, \\label {s16} \\end {equation}", "\\begin {equation} \\lbrack \\mathbf {L_{\\omega }},\\Gamma ]=0, \\label {s17} \\end {equation}", "\\begin {equation} \\Psi ^{\\prime }(p)=\\left ( I+id\\omega \\cdot \\mathbf {L_{\\omega }}\\right ) \\Psi (p). \\label {s18} \\end {equation}", "\\begin {equation} \\lbrack \\mathbf {L_{\\varphi _{j}}},\\mathbf {L_{\\varphi _{k}}}]=i\\epsilon _{jkl} \\mathbf {L_{\\varphi _{l}},} \\label {s19} \\end {equation}", "\\begin {equation} \\lbrack \\mathbf {L_{\\psi _{j}}},\\mathbf {L_{\\psi _{k}}}]=-i\\epsilon _{jkl} \\mathbf {L_{\\varphi _{l}},} \\label {s20} \\end {equation}", "\\begin {equation} \\lbrack \\mathbf {L_{\\varphi _{j}}},\\mathbf {L_{\\psi _{k}}}]=i\\epsilon _{jkl} \\mathbf {L_{\\psi _{l}},\\qquad }j,k,l=1,2,3. \\label {s21} \\end {equation}" ], "latex_norm": [ "$ p \\rightarrow p ^ { \\prime } $", "$ f ( p ) $", "$ d \\slash d \\omega $", "$ L _ { \\omega } $", "$ L _ { \\omega } $", "$ n > 2 $", "$ L _ { \\omega } $", "$ L _ { \\omega } $", "$ \\frac { d } { d \\omega } \\Gamma ( p ) $", "$ p _ { i } ^ { 2 \\slash n - 1 } p _ { j } $", "$ L _ { \\omega } \\Gamma - \\Gamma L _ { \\omega } $", "$ p _ { k } ^ { 2 \\slash n } $", "$ n = 2 , $", "$ n > 2 $", "$ L _ { \\omega } $", "$ L _ { \\omega } $", "$ p _ { i } $", "\\begin{equation*} f ( p ) \\rightarrow f ( p ^ { \\prime } ) = f ( p + \\delta p ) = f ( p ) + \\frac { d f } { d \\omega } d \\omega , \\end{equation*}", "\\begin{equation*} \\frac { d } { d \\varphi _ { i } } = - \\epsilon _ { i j k } p _ { j } \\frac { \\partial } { \\partial p _ { k } } , \\qquad \\frac { d } { d \\psi _ { i } } = p _ { 0 } \\frac { \\partial } { \\partial p _ { i } } + p _ { i } \\frac { \\partial } { \\partial p _ { 0 } } , \\qquad i = 1 , 2 , 3 . \\end{equation*}", "\\begin{equation*} p ^ { \\prime } = p + \\frac { d p } { d \\omega } d \\omega \\end{equation*}", "\\begin{equation*} \\Gamma ( p ^ { \\prime } ) = \\Gamma ( p ) + \\frac { d \\Gamma ( p ) } { d \\omega } d \\omega = ( I + i d \\omega \\cdot L _ { \\omega } ) \\Gamma ( p ) ( I - i d \\omega \\cdot L _ { \\omega } ) , \\end{equation*}", "\\begin{equation*} \\Psi ^ { \\prime } ( p ^ { \\prime } ) = \\Psi ^ { \\prime } ( p ) + \\frac { d \\Psi ^ { \\prime } ( p ) } { d \\omega } d \\omega = ( I + i d \\omega \\cdot L _ { \\omega } ) \\Psi ( p ) . \\end{equation*}", "\\begin{equation*} L _ { \\omega } = L _ { \\omega } + i \\frac { d } { d \\omega } , \\end{equation*}", "\\begin{equation*} [ L _ { \\omega } , \\Gamma ] = 0 , \\end{equation*}", "\\begin{equation*} \\Psi ^ { \\prime } ( p ) = ( I + i d \\omega \\cdot L _ { \\omega } ) \\Psi ( p ) . \\end{equation*}", "\\begin{equation*} [ L _ { \\varphi _ { j } } , L _ { \\varphi _ { k } } ] = i \\epsilon _ { j k l } L _ { \\varphi _ { l } } , \\end{equation*}", "\\begin{equation*} [ L _ { \\psi _ { j } } , L _ { \\psi _ { k } } ] = - i \\epsilon _ { j k l } L _ { \\varphi _ { l } } , \\end{equation*}", "\\begin{equation*} [ L _ { \\varphi _ { j } } , L _ { \\psi _ { k } } ] = i \\epsilon _ { j k l } L _ { \\psi _ { l } } , \\qquad j , k , l = 1 , 2 , 3 . \\end{equation*}" ], "latex_expand": [ "$ \\mitp \\rightarrow \\mitp ^ { \\prime } $", "$ \\mitf ( \\mitp ) $", "$ \\mitd \\slash \\mitd \\mitomega $", "$ \\mbfL _ { \\mbfitomega } $", "$ \\mbfL _ { \\mbfitomega } $", "$ \\mitn > 2 $", "$ \\mitL _ { \\mitomega } $", "$ \\mitL _ { \\mitomega } $", "$ \\frac { \\mitd } { \\mitd \\mitomega } \\mupGamma ( \\mitp ) $", "$ \\mitp _ { \\miti } ^ { 2 \\slash \\mitn - 1 } \\mitp _ { \\mitj } $", "$ \\mitL _ { \\mitomega } \\mupGamma - \\mupGamma \\mitL _ { \\mitomega } $", "$ \\mitp _ { \\mitk } ^ { 2 \\slash \\mitn } $", "$ \\mitn = 2 , $", "$ \\mitn > 2 $", "$ \\mitL _ { \\mitomega } $", "$ \\mitL _ { \\mitomega } $", "$ \\mitp _ { \\miti } $", "\\begin{equation*} \\mitf ( \\mitp ) \\rightarrow \\mitf ( \\mitp ^ { \\prime } ) = \\mitf ( \\mitp + \\mitdelta \\mitp ) = \\mitf ( \\mitp ) + \\frac { \\mitd \\mitf } { \\mitd \\mitomega } \\mitd \\mitomega , \\end{equation*}", "\\begin{equation*} \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\miti } } = - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitp _ { \\mitj } \\frac { \\mitpartial } { \\mitpartial \\mitp _ { \\mitk } } , \\qquad \\frac { \\mitd } { \\mitd \\mitpsi _ { \\miti } } = \\mitp _ { 0 } \\frac { \\mitpartial } { \\mitpartial \\mitp _ { \\miti } } + \\mitp _ { \\miti } \\frac { \\mitpartial } { \\mitpartial \\mitp _ { 0 } } , \\qquad \\miti = 1 , 2 , 3 . \\end{equation*}", "\\begin{equation*} \\mitp ^ { \\prime } = \\mitp + \\frac { \\mitd \\mitp } { \\mitd \\mitomega } \\mitd \\mitomega \\end{equation*}", "\\begin{equation*} \\mupGamma ( \\mitp ^ { \\prime } ) = \\mupGamma ( \\mitp ) + \\frac { \\mitd \\mupGamma ( \\mitp ) } { \\mitd \\mitomega } \\mitd \\mitomega = \\left( \\mitI + \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } \\right) \\mupGamma ( \\mitp ) \\left( \\mitI - \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } \\right) , \\end{equation*}", "\\begin{equation*} \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupPsi ^ { \\prime } ( \\mitp ) + \\frac { \\mitd \\mupPsi ^ { \\prime } ( \\mitp ) } { \\mitd \\mitomega } \\mitd \\mitomega = \\left( \\mitI + \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } \\right) \\mupPsi ( \\mitp ) . \\end{equation*}", "\\begin{equation*} \\mbfL _ { \\mbfitomega } = \\mitL _ { \\mitomega } + \\miti \\frac { \\mitd } { \\mitd \\mitomega } , \\end{equation*}", "\\begin{equation*} [ \\mbfL _ { \\mbfitomega } , \\mupGamma ] = 0 , \\end{equation*}", "\\begin{equation*} \\mupPsi ^ { \\prime } ( \\mitp ) = \\left( \\mitI + \\miti \\mitd \\mitomega \\cdot \\mbfL _ { \\mbfitomega } \\right) \\mupPsi ( \\mitp ) . \\end{equation*}", "\\begin{equation*} [ \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } , \\mbfL _ { \\mbfitvarphi _ { \\mbfk } } ] = \\miti \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mbfL _ { \\mbfitvarphi _ { \\mbfl } } , \\end{equation*}", "\\begin{equation*} [ \\mbfL _ { \\mbfitpsi _ { \\mbfj } } , \\mbfL _ { \\mbfitpsi _ { \\mbfk } } ] = - \\miti \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mbfL _ { \\mbfitvarphi _ { \\mbfl } } , \\end{equation*}", "\\begin{equation*} [ \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } , \\mbfL _ { \\mbfitpsi _ { \\mbfk } } ] = \\miti \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mbfL _ { \\mbfitpsi _ { \\mbfl } } , \\qquad \\mitj , \\mitk , \\mitl = 1 , 2 , 3 . \\end{equation*}" ], "x_min": [ 0.49549999833106995, 0.6904000043869019, 0.25780001282691956, 0.3441999852657318, 0.7124999761581421, 0.703499972820282, 0.3711000084877014, 0.7663999795913696, 0.6640999913215637, 0.3172000050544739, 0.31439998745918274, 0.7559999823570251, 0.4546999931335449, 0.5149000287055969, 0.5922999978065491, 0.4982999861240387, 0.22869999706745148, 0.3434999883174896, 0.2515999972820282, 0.44440001249313354, 0.25360000133514404, 0.3172000050544739, 0.4375, 0.4546999931335449, 0.3959999978542328, 0.420199990272522, 0.414000004529953, 0.35249999165534973 ], "y_min": [ 0.16750000417232513, 0.16750000417232513, 0.23000000417232513, 0.57669997215271, 0.6855000257492065, 0.7002000212669373, 0.7139000296592712, 0.7279999852180481, 0.7397000193595886, 0.7554000020027161, 0.7764000296592712, 0.7724999785423279, 0.7914999723434448, 0.8057000041007996, 0.8051999807357788, 0.8335000276565552, 0.850600004196167, 0.1889999955892563, 0.2515000104904175, 0.302700012922287, 0.385699987411499, 0.423799991607666, 0.46630001068115234, 0.5249000191688538, 0.5503000020980835, 0.6128000020980835, 0.638700008392334, 0.6601999998092651 ], "x_max": [ 0.5432000160217285, 0.7221999764442444, 0.29510000348091125, 0.36559998989105225, 0.7346000075340271, 0.7450000047683716, 0.39250001311302185, 0.7878000140190125, 0.7166000008583069, 0.3815000057220459, 0.399399995803833, 0.7878000140190125, 0.5002999901771545, 0.5557000041007996, 0.6136999726295471, 0.5196999907493591, 0.24320000410079956, 0.6531000137329102, 0.7056000232696533, 0.5557000041007996, 0.7006999850273132, 0.6827999949455261, 0.5598000288009644, 0.5418000221252441, 0.6032999753952026, 0.5791000127792358, 0.5860999822616577, 0.647599995136261 ], "y_max": [ 0.17919999361038208, 0.18019999563694, 0.24220000207424164, 0.5870000123977661, 0.6958000063896179, 0.7085000276565552, 0.7242000102996826, 0.7383000254631042, 0.754800021648407, 0.7720000147819519, 0.7871000170707703, 0.7890999913215637, 0.801800012588501, 0.8144999742507935, 0.815500020980835, 0.8438000082969666, 0.8589000105857849, 0.21729999780654907, 0.2818000018596649, 0.3310000002384186, 0.41449999809265137, 0.45260000228881836, 0.49459999799728394, 0.5410000085830688, 0.5669000148773193, 0.6294000148773193, 0.6557999849319458, 0.676800012588501 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page16
{ "latex": [ "$Y,Y^{-1}$", "$(p^{2})^{1/n}$", "$g_{j}$", "$p$", "$p^{2}=m^{2}$", "$2\\times 2$", "$j,k,l=1,2,3.$", "$\\Gamma \\rightarrow \\Gamma _{0}=Y\\Gamma Y^{-1}$", "\\begin {equation} =\\frac {1-p_{0}^{2}/p^{2}}{n\\left [ 1-\\left ( p_{0}^{2}/p^{2}\\right ) ^{1/n} \\right ] }, \\end {equation}", "\\begin {equation} \\Psi _{0}(p)=\\left ( \\begin {array}{c} \\mathbf {0} \\\\ \\cdot \\\\ \\mathbf {0} \\\\ \\mathbf {g} \\\\ \\mathbf {0} \\\\ \\cdot \\\\ \\cdot \\\\ \\mathbf {0} \\end {array} \\right ) ;\\qquad \\mathbf {g}\\equiv \\left ( \\begin {array}{c} g_{1} \\\\ g_{2} \\\\ \\cdot \\\\ \\cdot \\\\ g_{n} \\end {array} \\right ) ,\\qquad \\mathbf {0}\\equiv \\left ( \\begin {array}{c} 0 \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end {array} \\right ) , \\label {s38} \\end {equation}", "\\begin {equation} \\lbrack \\mathbf {L_{\\omega }},\\Gamma _{0}(p)]=0 \\label {s39} \\end {equation}", "\\begin {equation} \\sigma _{1}=\\left ( \\begin {array}{cc} 0 & 1 \\\\ 1 & 0 \\end {array} \\right ) ,\\qquad \\sigma _{2}=\\left ( \\begin {array}{cc} 0 & -i \\\\ i & 0 \\end {array} \\right ) ,\\qquad \\sigma _{3}=\\left ( \\begin {array}{cc} 1 & 0 \\\\ 0 & -1 \\end {array} \\right ) , \\label {s40} \\end {equation}", "\\begin {equation} \\gamma _{0}=\\left ( \\begin {array}{cc} \\mathbf {1} & \\mathbf {0} \\\\ \\mathbf {0} & \\mathbf {-1} \\end {array} \\right ) ,\\qquad \\gamma _{j}=\\left ( \\begin {array}{cc} \\mathbf {0} & \\sigma _{j} \\\\ -\\sigma _{j} & \\mathbf {0} \\end {array} \\right ) ;\\qquad j=1,2,3, \\label {s41} \\end {equation}", "\\begin {equation} \\left ( \\Gamma (p)-m\\right ) \\Psi (p)=0,\\qquad \\Gamma (p)\\equiv \\sum _{\\lambda =0}^{3}p_{\\lambda }\\gamma _{\\lambda } \\label {s42} \\end {equation}", "\\begin {equation} \\mathbf {L_{\\varphi _{j}}=}\\frac {i}{4}\\epsilon _{jkl}\\gamma _{k}\\gamma _{l}+i \\frac {d}{d\\varphi _{j}}=L_{\\varphi _{j}}+i\\frac {d}{d\\varphi _{j}};\\qquad L_{\\varphi _{j}}=\\frac {1}{2}\\left ( \\begin {array}{cc} \\sigma _{j} & \\mathbf {0} \\\\ \\mathbf {0} & \\sigma _{j} \\end {array} \\right ) , \\label {s43} \\end {equation}", "\\begin {equation} \\mathbf {L_{\\psi _{j}}=}\\frac {i}{2}\\gamma _{0}\\gamma _{j}+i\\frac {d}{d\\psi _{j} }=L_{\\psi _{j}}+i\\frac {d}{d\\psi _{j}};\\qquad L_{\\psi _{j}}=\\frac {i}{2}\\left ( \\begin {array}{cc} \\mathbf {0} & \\sigma _{j} \\\\ \\sigma _{j} & \\mathbf {0} \\end {array} \\right ) , \\label {s44} \\end {equation}", "\\begin {equation} \\mathbf {L_{\\omega }\\rightarrow M_{\\omega }}=Y(p)\\mathbf {L_{\\omega }} Y^{-1}(p). \\label {s45} \\end {equation}" ], "latex_norm": [ "$ Y , Y ^ { - 1 } $", "$ ( p ^ { 2 } ) ^ { 1 \\slash n } $", "$ g _ { j } $", "$ p $", "$ p ^ { 2 } = m ^ { 2 } $", "$ 2 \\times 2 $", "$ j , k , l = 1 , 2 , 3 . $", "$ \\Gamma \\rightarrow \\Gamma _ { 0 } = Y \\Gamma Y ^ { - 1 } $", "\\begin{equation*} = \\frac { 1 - p _ { 0 } ^ { 2 } \\slash p ^ { 2 } } { n [ 1 - { ( p _ { 0 } ^ { 2 } \\slash p ^ { 2 } ) } ^ { 1 \\slash n } ] } , \\end{equation*}", "\\begin{align*} \\Psi _ { 0 } ( p ) = ( \\begin{array}{c} 0 \\\\ \\cdot \\\\ 0 \\\\ g \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end{array} ) ; \\qquad g \\equiv ( \\begin{array}{c} g _ { 1 } \\\\ g _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ g _ { n } \\end{array} ) , \\qquad 0 \\equiv ( \\begin{array}{c} 0 \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end{array} ) , \\end{align*}", "\\begin{equation*} [ L _ { \\omega } , \\Gamma _ { 0 } ( p ) ] = 0 \\end{equation*}", "\\begin{align*} \\sigma _ { 1 } = ( \\begin{array}{cc} 0 & 1 \\\\ 1 & 0 \\end{array} ) , \\qquad \\sigma _ { 2 } = ( \\begin{array}{cc} 0 & - i \\\\ i & 0 \\end{array} ) , \\qquad \\sigma _ { 3 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) , \\end{align*}", "\\begin{align*} \\gamma _ { 0 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) , \\qquad \\gamma _ { j } = ( \\begin{array}{cc} 0 & \\sigma _ { j } \\\\ - \\sigma _ { j } & 0 \\end{array} ) ; \\qquad j = 1 , 2 , 3 , \\end{align*}", "\\begin{equation*} ( \\Gamma ( p ) - m ) \\Psi ( p ) = 0 , \\qquad \\Gamma ( p ) \\equiv \\sum _ { \\lambda = 0 } ^ { 3 } p _ { \\lambda } \\gamma _ { \\lambda } \\end{equation*}", "\\begin{align*} L _ { \\varphi _ { j } } = \\frac { i } { 4 } \\epsilon _ { j k l } \\gamma _ { k } \\gamma _ { l } + i \\frac { d } { d \\varphi _ { j } } = L _ { \\varphi _ { j } } + i \\frac { d } { d \\varphi _ { j } } ; \\qquad L _ { \\varphi _ { j } } = \\frac { 1 } { 2 } ( \\begin{array}{cc} \\sigma _ { j } & 0 \\\\ 0 & \\sigma _ { j } \\end{array} ) , \\end{align*}", "\\begin{align*} L _ { \\psi _ { j } } = \\frac { i } { 2 } \\gamma _ { 0 } \\gamma _ { j } + i \\frac { d } { d \\psi _ { j } } = L _ { \\psi _ { j } } + i \\frac { d } { d \\psi _ { j } } ; \\qquad L _ { \\psi _ { j } } = \\frac { i } { 2 } ( \\begin{array}{cc} 0 & \\sigma _ { j } \\\\ \\sigma _ { j } & 0 \\end{array} ) , \\end{align*}", "\\begin{equation*} L _ { \\omega } \\rightarrow M _ { \\omega } = Y ( p ) L _ { \\omega } Y ^ { - 1 } ( p ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitY , \\mitY ^ { - 1 } $", "$ ( \\mitp ^ { 2 } ) ^ { 1 \\slash \\mitn } $", "$ \\mitg _ { \\mitj } $", "$ \\mitp $", "$ \\mitp ^ { 2 } = \\mitm ^ { 2 } $", "$ 2 \\times 2 $", "$ \\mitj , \\mitk , \\mitl = 1 , 2 , 3 . $", "$ \\mupGamma \\rightarrow \\mupGamma _ { 0 } = \\mitY \\mupGamma \\mitY ^ { - 1 } $", "\\begin{equation*} = \\frac { 1 - \\mitp _ { 0 } ^ { 2 } \\slash \\mitp ^ { 2 } } { \\mitn \\left[ 1 - { \\left( \\mitp _ { 0 } ^ { 2 } \\slash \\mitp ^ { 2 } \\right) } ^ { 1 \\slash \\mitn } \\right] } , \\end{equation*}", "\\begin{align*} \\mupPsi _ { 0 } ( \\mitp ) = \\left( \\begin{array}{c} \\mbfzero \\\\ \\cdot \\\\ \\mbfzero \\\\ \\mbfg \\\\ \\mbfzero \\\\ \\cdot \\\\ \\cdot \\\\ \\mbfzero \\end{array} \\right) ; \\qquad \\mbfg \\equiv \\left( \\begin{array}{c} \\mitg _ { 1 } \\\\ \\mitg _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ \\mitg _ { \\mitn } \\end{array} \\right) , \\qquad \\mbfzero \\equiv \\left( \\begin{array}{c} 0 \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end{array} \\right) , \\end{align*}", "\\begin{equation*} [ \\mbfL _ { \\mbfitomega } , \\mupGamma _ { 0 } ( \\mitp ) ] = 0 \\end{equation*}", "\\begin{align*} \\mitsigma _ { 1 } = \\left( \\begin{array}{cc} 0 & 1 \\\\ 1 & 0 \\end{array} \\right) , \\qquad \\mitsigma _ { 2 } = \\left( \\begin{array}{cc} 0 & - \\miti \\\\ \\miti & 0 \\end{array} \\right) , \\qquad \\mitsigma _ { 3 } = \\left( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} \\right) , \\end{align*}", "\\begin{align*} \\mitgamma _ { 0 } = \\left( \\begin{array}{cc} \\mbfone & \\mbfzero \\\\ \\mbfzero & - \\mbfone \\end{array} \\right) , \\qquad \\mitgamma _ { \\mitj } = \\left( \\begin{array}{cc} \\mbfzero & \\mitsigma _ { \\mitj } \\\\ - \\mitsigma _ { \\mitj } & \\mbfzero \\end{array} \\right) ; \\qquad \\mitj = 1 , 2 , 3 , \\end{align*}", "\\begin{equation*} \\left( \\mupGamma ( \\mitp ) - \\mitm \\right) \\mupPsi ( \\mitp ) = 0 , \\qquad \\mupGamma ( \\mitp ) \\equiv \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitp _ { \\mitlambda } \\mitgamma _ { \\mitlambda } \\end{equation*}", "\\begin{align*} \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } = \\frac { \\miti } { 4 } \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitgamma _ { \\mitk } \\mitgamma _ { \\mitl } + \\miti \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\mitj } } = \\mitL _ { \\mitvarphi _ { \\mitj } } + \\miti \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\mitj } } ; \\qquad \\mitL _ { \\mitvarphi _ { \\mitj } } = \\frac { 1 } { 2 } \\left( \\begin{array}{cc} \\mitsigma _ { \\mitj } & \\mbfzero \\\\ \\mbfzero & \\mitsigma _ { \\mitj } \\end{array} \\right) , \\end{align*}", "\\begin{align*} \\mbfL _ { \\mbfitpsi _ { \\mbfj } } = \\frac { \\miti } { 2 } \\mitgamma _ { 0 } \\mitgamma _ { \\mitj } + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } = \\mitL _ { \\mitpsi _ { \\mitj } } + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } ; \\qquad \\mitL _ { \\mitpsi _ { \\mitj } } = \\frac { \\miti } { 2 } \\left( \\begin{array}{cc} \\mbfzero & \\mitsigma _ { \\mitj } \\\\ \\mitsigma _ { \\mitj } & \\mbfzero \\end{array} \\right) , \\end{align*}", "\\begin{equation*} \\mbfL _ { \\mbfitomega } \\rightarrow \\mbfM _ { \\mbfitomega } = \\mitY ( \\mitp ) \\mbfL _ { \\mbfitomega } \\mitY ^ { - 1 } ( \\mitp ) . \\end{equation*}" ], "x_min": [ 0.48240000009536743, 0.6413000226020813, 0.7436000108718872, 0.3718000054359436, 0.6399000287055969, 0.5957000255584717, 0.25780001282691956, 0.28610000014305115, 0.4147000014781952, 0.2985000014305115, 0.44440001249313354, 0.24529999494552612, 0.25850000977516174, 0.3441999852657318, 0.23569999635219574, 0.24740000069141388, 0.39250001311302185 ], "y_min": [ 0.19629999995231628, 0.388700008392334, 0.3944999873638153, 0.40869998931884766, 0.40380001068115234, 0.6118000149726868, 0.7865999937057495, 0.7993000149726868, 0.1469999998807907, 0.24709999561309814, 0.4438000023365021, 0.5297999978065491, 0.5713000297546387, 0.6312999725341797, 0.7045999765396118, 0.7465999722480774, 0.8217999935150146 ], "x_max": [ 0.5321999788284302, 0.6930999755859375, 0.7588000297546387, 0.3808000087738037, 0.7006999850273132, 0.6330000162124634, 0.36149999499320984, 0.4187999963760376, 0.5777999758720398, 0.6985999941825867, 0.5557000041007996, 0.7089999914169312, 0.6952999830245972, 0.6531000137329102, 0.7188000082969666, 0.7070000171661377, 0.6067000031471252 ], "y_max": [ 0.20900000631809235, 0.40290001034736633, 0.4032999873161316, 0.4165000021457672, 0.4165000021457672, 0.6211000084877014, 0.7978000044822693, 0.8115000128746033, 0.18850000202655792, 0.36480000615119934, 0.45989999175071716, 0.5625, 0.6035000085830688, 0.6722999811172485, 0.7372999787330627, 0.7788000106811523, 0.8389000296592712 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page17
{ "latex": [ "$\\mathbf {L_{\\varphi _{j}}\\ }$", "$\\Gamma _{0},\\Gamma $", "$Y$", "$[\\mathbf {L_{\\psi _{j}}},\\Gamma _{0}/\\sqrt {1+p_{0}/\\sqrt {p^{2}}}]$", "$L_{\\varphi _{j}}$", "$M_{\\psi _{j}}(p)$", "$\\mathbf {M_{\\psi _{j}}}$", "$M_{\\psi _{j}}$", "$L_{\\varphi _{l}}$", "$L_{\\varphi _{j}}$", "$\\kappa $", "$[\\mathbf {L_{\\varphi _{1}}},\\mathbf {L_{\\psi _{2}}}],[\\mathbf {L_{\\varphi _{1}}},\\mathbf {L_{\\psi _{1}}}]$", "$[\\mathbf {L_{\\psi _{1}}},\\mathbf {L_{\\psi _{3}}}],$", "$\\left | \\kappa \\right | \\rightarrow \\infty $", "$\\kappa =0.$", "$\\kappa $", "$\\kappa $", "\\begin {equation} \\mathbf {M_{\\varphi _{j}}=L_{\\varphi _{j}}=}L_{\\varphi _{j}}+i\\frac {d}{ d\\varphi _{j}}, \\label {s46} \\end {equation}", "\\begin {equation} \\mathbf {M_{\\psi _{j}}=}M_{\\psi _{j}}(p)+i\\frac {d}{d\\psi _{j}};\\qquad M_{\\psi _{j}}(p)=\\epsilon _{jkl}\\frac {p_{k}L_{\\varphi _{l}}}{p_{0}+\\sqrt {p^{2}}}. \\label {s47} \\end {equation}", "\\begin {equation} \\mathbf {M_{\\psi _{j}}=}M_{\\psi _{j}}(p)+i\\frac {d}{d\\psi _{j}};\\qquad M_{\\psi _{j}}(p)=\\frac {\\kappa L_{\\varphi _{j}}+\\epsilon _{jkl}p_{k}L_{\\varphi _{l}}}{ p_{0}+\\sqrt {p^{2}-\\kappa ^{2}}}, \\label {s48} \\end {equation}", "\\begin {equation} M_{\\psi _{j}}=iL_{\\varphi _{j}}. \\label {s49} \\end {equation}", "\\begin {equation} \\mathbf {M}_{\\omega }(\\kappa ^{\\prime })=X^{-1}(p)\\mathbf {M}_{\\omega }(\\kappa )X(p). \\label {sa49} \\end {equation}" ], "latex_norm": [ "$ L _ { \\varphi _ { j } } ~ $", "$ \\Gamma _ { 0 } , \\Gamma $", "$ Y $", "$ [ L _ { \\psi _ { j } } , \\Gamma _ { 0 } \\slash \\sqrt { 1 + p _ { 0 } \\slash \\sqrt { p ^ { 2 } } } ] $", "$ L _ { \\varphi _ { j } } $", "$ M _ { \\psi _ { j } } ( p ) $", "$ M _ { \\psi _ { j } } $", "$ M _ { \\psi _ { j } } $", "$ L _ { \\varphi _ { l } } $", "$ L _ { \\varphi _ { j } } $", "$ \\kappa $", "$ [ L _ { \\varphi _ { 1 } } , L _ { \\psi _ { 2 } } ] , [ L _ { \\varphi _ { 1 } } , L _ { \\psi _ { 1 } } ] $", "$ [ L _ { \\psi _ { 1 } } , L _ { \\psi _ { 3 } } ] , $", "$ \\vert \\kappa \\vert \\rightarrow \\infty $", "$ \\kappa = 0 . $", "$ \\kappa $", "$ \\kappa $", "\\begin{equation*} M _ { \\varphi _ { j } } = L _ { \\varphi _ { j } } = L _ { \\varphi _ { j } } + i \\frac { d } { d \\varphi _ { j } } , \\end{equation*}", "\\begin{equation*} M _ { \\psi _ { j } } = M _ { \\psi _ { j } } ( p ) + i \\frac { d } { d \\psi _ { j } } ; \\qquad M _ { \\psi _ { j } } ( p ) = \\epsilon _ { j k l } \\frac { p _ { k } L _ { \\varphi _ { l } } } { p _ { 0 } + \\sqrt { p ^ { 2 } } } . \\end{equation*}", "\\begin{equation*} M _ { \\psi _ { j } } = M _ { \\psi _ { j } } ( p ) + i \\frac { d } { d \\psi _ { j } } ; \\qquad M _ { \\psi _ { j } } ( p ) = \\frac { \\kappa L _ { \\varphi _ { j } } + \\epsilon _ { j k l } p _ { k } L _ { \\varphi _ { l } } } { p _ { 0 } + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } , \\end{equation*}", "\\begin{equation*} M _ { \\psi _ { j } } = i L _ { \\varphi _ { j } } . \\end{equation*}", "\\begin{equation*} M _ { \\omega } ( \\kappa ^ { \\prime } ) = X ^ { - 1 } ( p ) M _ { \\omega } ( \\kappa ) X ( p ) . \\end{equation*}" ], "latex_expand": [ "$ \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } ~ $", "$ \\mupGamma _ { 0 } , \\mupGamma $", "$ \\mitY $", "$ [ \\mbfL _ { \\mbfitpsi _ { \\mbfj } } , \\mupGamma _ { 0 } \\slash \\sqrt { 1 + \\mitp _ { 0 } \\slash \\sqrt { \\mitp ^ { 2 } } } ] $", "$ \\mitL _ { \\mitvarphi _ { \\mitj } } $", "$ \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) $", "$ \\mbfM _ { \\mbfitpsi _ { \\mbfj } } $", "$ \\mitM _ { \\mitpsi _ { \\mitj } } $", "$ \\mitL _ { \\mitvarphi _ { \\mitl } } $", "$ \\mitL _ { \\mitvarphi _ { \\mitj } } $", "$ \\mitkappa $", "$ [ \\mbfL _ { \\mbfitvarphi _ { \\mbfone } } , \\mbfL _ { \\mbfitpsi _ { \\mbftwo } } ] , [ \\mbfL _ { \\mbfitvarphi _ { \\mbfone } } , \\mbfL _ { \\mbfitpsi _ { \\mbfone } } ] $", "$ [ \\mbfL _ { \\mbfitpsi _ { \\mbfone } } , \\mbfL _ { \\mbfitpsi _ { \\mbfthree } } ] , $", "$ \\left\\vert \\mitkappa \\right\\vert \\rightarrow \\infty $", "$ \\mitkappa = 0 . $", "$ \\mitkappa $", "$ \\mitkappa $", "\\begin{equation*} \\mbfM _ { \\mbfitvarphi _ { \\mbfj } } = \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } = \\mitL _ { \\mitvarphi _ { \\mitj } } + \\miti \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\mitj } } , \\end{equation*}", "\\begin{equation*} \\mbfM _ { \\mbfitpsi _ { \\mbfj } } = \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } ; \\qquad \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) = \\mitepsilon _ { \\mitj \\mitk \\mitl } \\frac { \\mitp _ { \\mitk } \\mitL _ { \\mitvarphi _ { \\mitl } } } { \\mitp _ { 0 } + \\sqrt { \\mitp ^ { 2 } } } . \\end{equation*}", "\\begin{equation*} \\mbfM _ { \\mbfitpsi _ { \\mbfj } } = \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } ; \\qquad \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) = \\frac { \\mitkappa \\mitL _ { \\mitvarphi _ { \\mitj } } + \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitp _ { \\mitk } \\mitL _ { \\mitvarphi _ { \\mitl } } } { \\mitp _ { 0 } + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } , \\end{equation*}", "\\begin{equation*} \\mitM _ { \\mitpsi _ { \\mitj } } = \\miti \\mitL _ { \\mitvarphi _ { \\mitj } } . \\end{equation*}", "\\begin{equation*} \\mbfM _ { \\mitomega } ( \\mitkappa ^ { \\prime } ) = \\mitX ^ { - 1 } ( \\mitp ) \\mbfM _ { \\mitomega } ( \\mitkappa ) \\mitX ( \\mitp ) . \\end{equation*}" ], "x_min": [ 0.38839998841285706, 0.588100016117096, 0.7332000136375427, 0.2093999981880188, 0.5770999789237976, 0.390500009059906, 0.4754999876022339, 0.6883000135421753, 0.7566999793052673, 0.33309999108314514, 0.259799987077713, 0.414000004529953, 0.6047000288963318, 0.6545000076293945, 0.5942999720573425, 0.3379000127315521, 0.7214999794960022, 0.40290001034736633, 0.3075000047683716, 0.2694999873638153, 0.4519999921321869, 0.3862999975681305 ], "y_min": [ 0.1543000042438507, 0.1543000042438507, 0.1543000042438507, 0.2720000147819519, 0.3765000104904175, 0.4043000042438507, 0.40529999136924744, 0.461899995803833, 0.461899995803833, 0.5156000256538391, 0.5990999937057495, 0.6772000193595886, 0.6772000193595886, 0.7056000232696533, 0.7573000192642212, 0.7886000275611877, 0.8529999852180481, 0.18850000202655792, 0.30219998955726624, 0.5497999787330627, 0.7285000085830688, 0.8051999807357788 ], "x_max": [ 0.420199990272522, 0.6240000128746033, 0.746999979019165, 0.3815000057220459, 0.6047000288963318, 0.44440001249313354, 0.5087000131607056, 0.72079998254776, 0.7829999923706055, 0.36070001125335693, 0.2702000141143799, 0.5695000290870667, 0.6834999918937683, 0.71670001745224, 0.6399000287055969, 0.3483000099658966, 0.7311999797821045, 0.5935999751091003, 0.6916999816894531, 0.6848000288009644, 0.5473999977111816, 0.6136999726295471 ], "y_max": [ 0.16699999570846558, 0.16500000655651093, 0.163100004196167, 0.2939999997615814, 0.3896999955177307, 0.4180000126361847, 0.4180000126361847, 0.4745999872684479, 0.4740999937057495, 0.5282999873161316, 0.6050000190734863, 0.6904000043869019, 0.6904000043869019, 0.7182999849319458, 0.7656000256538391, 0.7940000295639038, 0.8589000105857849, 0.21969999372959137, 0.3359000086784363, 0.5835000276565552, 0.7445999979972839, 0.8223000168800354 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page19
{ "latex": [ "$M_{\\psi _{j}}(p)$", "$\\omega $", "$\\xi $", "$p\\rightarrow p^{\\prime }$", "$\\Lambda $", "$\\varphi $", "$\\xi $", "$R_{\\varphi _{j}}$", "$K_{\\xi }$", "$\\varphi $", "$\\vec {u},$", "$\\left | \\vec {u}\\right | =1$", "\\begin {equation} M_{\\psi _{j}}(p)=\\sum _{k=1}^{3}c_{jk}(p)L_{\\varphi _{k}}+\\sum _{\\xi }c_{j\\xi }k_{\\xi } \\label {s53} \\end {equation}", "\\begin {equation} \\Psi _{0}^{\\prime }(p^{\\prime })=\\Lambda (\\omega )\\Psi _{0}(p),\\qquad \\Psi _{0}^{\\prime }(p)=\\Lambda (\\xi )\\Psi _{0}(p), \\label {s54} \\end {equation}", "\\begin {equation} \\Lambda (\\omega +d\\omega )=\\Lambda (\\omega )\\Lambda (d\\omega ),\\qquad \\Lambda (\\xi +d\\xi )=\\Lambda (\\xi )\\Lambda (d\\xi ), \\label {s55} \\end {equation}", "\\begin {equation} \\frac {d\\Lambda (\\varphi _{j})}{d\\varphi _{j}}=i\\Lambda (\\varphi _{j})R_{\\varphi _{j}},\\qquad \\frac {d\\Lambda (\\xi )}{d\\xi }=i\\Lambda (\\xi )K_{\\xi }. \\label {s56} \\end {equation}", "\\begin {equation} \\Lambda (\\varphi _{j})=\\exp (i\\varphi _{j}R_{\\varphi _{j}}),\\qquad \\Lambda (\\xi )=\\exp (i\\xi K_{\\xi }). \\label {s57} \\end {equation}", "\\begin {equation} \\Lambda (\\varphi ,\\vec {u})=\\exp \\left [ i\\varphi \\left ( \\vec {u}\\cdot \\vec {R} _{\\varphi }\\right ) \\right ] ;\\qquad \\vec {R}_{\\varphi }=\\left ( R_{\\varphi _{1}},R_{\\varphi _{2}},R_{\\varphi _{3}}\\right ) . \\label {sa57} \\end {equation}", "\\begin {equation} \\frac {d\\Lambda (\\psi _{j})}{d\\psi _{j}}=if_{j}(\\psi _{j})\\Lambda (\\psi _{j})N_{j}, \\label {s58} \\end {equation}", "\\begin {equation} f_{j}(\\psi _{j})=\\frac {1}{p_{0}\\cosh \\psi _{j}+p_{j}\\sinh \\psi _{j}+\\sqrt { p^{2}-\\kappa ^{2}}}, \\label {s59} \\end {equation}", "\\begin {equation} N_{j}=\\kappa R_{\\varphi _{j}}+\\epsilon _{jkl}p_{k}R_{\\varphi _{l}}. \\label {sa59} \\end {equation}", "\\begin {equation} \\Lambda (\\psi _{j})=\\exp \\left ( iF(\\psi _{j})N_{j}\\right ) ;\\qquad F(\\psi _{j})=\\int _{0}^{\\psi _{j}}f_{j}(\\eta )d\\eta . \\label {s60} \\end {equation}" ], "latex_norm": [ "$ M _ { \\psi _ { j } } ( p ) $", "$ \\omega $", "$ \\xi $", "$ p \\rightarrow p ^ { \\prime } $", "$ \\Lambda $", "$ \\varphi $", "$ \\xi $", "$ R _ { \\varphi _ { j } } $", "$ K _ { \\xi } $", "$ \\varphi $", "$ \\vec { u } , $", "$ \\vert \\vec { u } \\vert = 1 $", "\\begin{equation*} M _ { \\psi _ { j } } ( p ) = \\sum _ { k = 1 } ^ { 3 } c _ { j k } ( p ) L _ { \\varphi _ { k } } + \\sum _ { \\xi } c _ { j \\xi } k _ { \\xi } \\end{equation*}", "\\begin{equation*} \\Psi _ { 0 } ^ { \\prime } ( p ^ { \\prime } ) = \\Lambda ( \\omega ) \\Psi _ { 0 } ( p ) , \\qquad \\Psi _ { 0 } ^ { \\prime } ( p ) = \\Lambda ( \\xi ) \\Psi _ { 0 } ( p ) , \\end{equation*}", "\\begin{equation*} \\Lambda ( \\omega + d \\omega ) = \\Lambda ( \\omega ) \\Lambda ( d \\omega ) , \\qquad \\Lambda ( \\xi + d \\xi ) = \\Lambda ( \\xi ) \\Lambda ( d \\xi ) , \\end{equation*}", "\\begin{equation*} \\frac { d \\Lambda ( \\varphi _ { j } ) } { d \\varphi _ { j } } = i \\Lambda ( \\varphi _ { j } ) R _ { \\varphi _ { j } } , \\qquad \\frac { d \\Lambda ( \\xi ) } { d \\xi } = i \\Lambda ( \\xi ) K _ { \\xi } . \\end{equation*}", "\\begin{equation*} \\Lambda ( \\varphi _ { j } ) = \\operatorname { e x p } ( i \\varphi _ { j } R _ { \\varphi _ { j } } ) , \\qquad \\Lambda ( \\xi ) = \\operatorname { e x p } ( i \\xi K _ { \\xi } ) . \\end{equation*}", "\\begin{equation*} \\Lambda ( \\varphi , \\vec { u } ) = \\operatorname { e x p } [ i \\varphi ( \\vec { u } \\cdot \\vec { R } _ { \\varphi } ) ] ; \\qquad \\vec { R } _ { \\varphi } = ( R _ { \\varphi _ { 1 } } , R _ { \\varphi _ { 2 } } , R _ { \\varphi _ { 3 } } ) . \\end{equation*}", "\\begin{equation*} \\frac { d \\Lambda ( \\psi _ { j } ) } { d \\psi _ { j } } = i f _ { j } ( \\psi _ { j } ) \\Lambda ( \\psi _ { j } ) N _ { j } , \\end{equation*}", "\\begin{equation*} f _ { j } ( \\psi _ { j } ) = \\frac { 1 } { p _ { 0 } \\operatorname { c o s h } \\psi _ { j } + p _ { j } \\operatorname { s i n h } \\psi _ { j } + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } , \\end{equation*}", "\\begin{equation*} N _ { j } = \\kappa R _ { \\varphi _ { j } } + \\epsilon _ { j k l } p _ { k } R _ { \\varphi _ { l } } . \\end{equation*}", "\\begin{equation*} \\Lambda ( \\psi _ { j } ) = \\operatorname { e x p } ( i F ( \\psi _ { j } ) N _ { j } ) ; \\qquad F ( \\psi _ { j } ) = \\int _ { 0 } ^ { \\psi _ { j } } f _ { j } ( \\eta ) d \\eta . \\end{equation*}" ], "latex_expand": [ "$ \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) $", "$ \\mitomega $", "$ \\mitxi $", "$ \\mitp \\rightarrow \\mitp ^ { \\prime } $", "$ \\mupLambda $", "$ \\mitvarphi $", "$ \\mitxi $", "$ \\mitR _ { \\mitvarphi _ { \\mitj } } $", "$ \\mitK _ { \\mitxi } $", "$ \\mitvarphi $", "$ \\vec { \\mitu } , $", "$ \\left\\vert \\vec { \\mitu } \\right\\vert = 1 $", "\\begin{equation*} \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) = \\sum _ { \\mitk = 1 } ^ { 3 } \\mitc _ { \\mitj \\mitk } ( \\mitp ) \\mitL _ { \\mitvarphi _ { \\mitk } } + \\sum _ { \\mitxi } \\mitc _ { \\mitj \\mitxi } \\mitk _ { \\mitxi } \\end{equation*}", "\\begin{equation*} \\mupPsi _ { 0 } ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupLambda ( \\mitomega ) \\mupPsi _ { 0 } ( \\mitp ) , \\qquad \\mupPsi _ { 0 } ^ { \\prime } ( \\mitp ) = \\mupLambda ( \\mitxi ) \\mupPsi _ { 0 } ( \\mitp ) , \\end{equation*}", "\\begin{equation*} \\mupLambda ( \\mitomega + \\mitd \\mitomega ) = \\mupLambda ( \\mitomega ) \\mupLambda ( \\mitd \\mitomega ) , \\qquad \\mupLambda ( \\mitxi + \\mitd \\mitxi ) = \\mupLambda ( \\mitxi ) \\mupLambda ( \\mitd \\mitxi ) , \\end{equation*}", "\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitvarphi _ { \\mitj } ) } { \\mitd \\mitvarphi _ { \\mitj } } = \\miti \\mupLambda ( \\mitvarphi _ { \\mitj } ) \\mitR _ { \\mitvarphi _ { \\mitj } } , \\qquad \\frac { \\mitd \\mupLambda ( \\mitxi ) } { \\mitd \\mitxi } = \\miti \\mupLambda ( \\mitxi ) \\mitK _ { \\mitxi } . \\end{equation*}", "\\begin{equation*} \\mupLambda ( \\mitvarphi _ { \\mitj } ) = \\operatorname { e x p } ( \\miti \\mitvarphi _ { \\mitj } \\mitR _ { \\mitvarphi _ { \\mitj } } ) , \\qquad \\mupLambda ( \\mitxi ) = \\operatorname { e x p } ( \\miti \\mitxi \\mitK _ { \\mitxi } ) . \\end{equation*}", "\\begin{equation*} \\mupLambda ( \\mitvarphi , \\vec { \\mitu } ) = \\operatorname { e x p } \\left[ \\miti \\mitvarphi \\left( \\vec { \\mitu } \\cdot \\vec { \\mitR } _ { \\mitvarphi } \\right) \\right] ; \\qquad \\vec { \\mitR } _ { \\mitvarphi } = \\left( \\mitR _ { \\mitvarphi _ { 1 } } , \\mitR _ { \\mitvarphi _ { 2 } } , \\mitR _ { \\mitvarphi _ { 3 } } \\right) . \\end{equation*}", "\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitpsi _ { \\mitj } ) } { \\mitd \\mitpsi _ { \\mitj } } = \\miti \\mitf _ { \\mitj } ( \\mitpsi _ { \\mitj } ) \\mupLambda ( \\mitpsi _ { \\mitj } ) \\mitN _ { \\mitj } , \\end{equation*}", "\\begin{equation*} \\mitf _ { \\mitj } ( \\mitpsi _ { \\mitj } ) = \\frac { 1 } { \\mitp _ { 0 } \\operatorname { c o s h } \\mitpsi _ { \\mitj } + \\mitp _ { \\mitj } \\operatorname { s i n h } \\mitpsi _ { \\mitj } + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } , \\end{equation*}", "\\begin{equation*} \\mitN _ { \\mitj } = \\mitkappa \\mitR _ { \\mitvarphi _ { \\mitj } } + \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitp _ { \\mitk } \\mitR _ { \\mitvarphi _ { \\mitl } } . \\end{equation*}", "\\begin{equation*} \\mupLambda ( \\mitpsi _ { \\mitj } ) = \\operatorname { e x p } \\left( \\miti \\mitF ( \\mitpsi _ { \\mitj } ) \\mitN _ { \\mitj } \\right) ; \\qquad \\mitF ( \\mitpsi _ { \\mitj } ) = \\int _ { 0 } ^ { \\mitpsi _ { \\mitj } } \\mitf _ { \\mitj } ( \\miteta ) \\mitd \\miteta . \\end{equation*}" ], "x_min": [ 0.5127999782562256, 0.45339998602867126, 0.5023999810218811, 0.25920000672340393, 0.7753999829292297, 0.39879998564720154, 0.6129999756813049, 0.5722000002861023, 0.6406000256538391, 0.4408999979496002, 0.7179999947547913, 0.7373999953269958, 0.36899998784065247, 0.33169999718666077, 0.3019999861717224, 0.3345000147819519, 0.33309999108314514, 0.2702000141143799, 0.39809998869895935, 0.33309999108314514, 0.4104999899864197, 0.3075000047683716 ], "y_min": [ 0.15330000221729279, 0.36959999799728394, 0.3666999936103821, 0.4154999852180481, 0.4165000021457672, 0.4683000147342682, 0.4652999937534332, 0.5282999873161316, 0.5282999873161316, 0.5952000021934509, 0.5917999744415283, 0.5913000106811523, 0.20170000195503235, 0.38670000433921814, 0.44040000438690186, 0.48489999771118164, 0.5634999871253967, 0.6255000233650208, 0.6820999979972839, 0.7461000084877014, 0.7875999808311462, 0.8310999870300293 ], "x_max": [ 0.5666999816894531, 0.4645000100135803, 0.510699987411499, 0.3109999895095825, 0.7878000140190125, 0.4099000096321106, 0.621999979019165, 0.6011999845504761, 0.6626999974250793, 0.4519999921321869, 0.7332000136375427, 0.7878000140190125, 0.6309000253677368, 0.6654999852180481, 0.6952000260353088, 0.6654999852180481, 0.6661999821662903, 0.6862000226974487, 0.5985000133514404, 0.6640999913215637, 0.5895000100135803, 0.6923999786376953 ], "y_max": [ 0.16699999570846558, 0.37549999356269836, 0.3774000108242035, 0.42719998955726624, 0.42480000853538513, 0.47609999775886536, 0.47600001096725464, 0.5410000085830688, 0.5404999852180481, 0.6035000085830688, 0.6035000085830688, 0.6039999723434448, 0.24369999766349792, 0.4032999873161316, 0.4560000002384186, 0.5170999765396118, 0.5800999999046326, 0.6509000062942505, 0.7142999768257141, 0.7788000106811523, 0.8036999702453613, 0.864799976348877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page20
{ "latex": [ "$\\vec {u}$", "$\\beta $", "$\\Lambda ,\\Omega $", "$\\Omega $", "$N$", "$\\psi $", "$N$", "$\\mathbf {R}_{\\omega }(\\Gamma _{0}),R_{\\omega }(\\Gamma _{0})$", "$Y(p)$", "$K_{\\xi }(\\Gamma _{0})$", "\\begin {equation} \\Lambda (\\psi ,\\vec {u})=\\exp \\left ( iF(\\psi )N\\right ) ,\\qquad \\tanh \\psi =\\beta , \\label {s61} \\end {equation}", "\\begin {equation} F(\\psi )=\\int _{0}^{\\psi }\\frac {d\\eta }{p_{0}\\cosh \\eta +\\vec {p}\\vec {u}\\sinh \\eta +\\sqrt {p^{2}-\\kappa ^{2}}}, \\label {s62} \\end {equation}", "\\begin {equation} N=\\kappa \\vec {u}\\vec {R}_{\\varphi }+\\left ( \\vec {u}\\times \\vec {p}\\right ) \\cdot \\vec {R}_{\\varphi }. \\label {sa62} \\end {equation}", "\\begin {equation} \\frac {d\\Lambda (t)}{dt}=\\Omega (t)\\Lambda (t), \\label {s63} \\end {equation}", "\\begin {equation} \\Lambda (t)=\\exp \\left ( \\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ) \\label {s64} \\end {equation}", "\\begin {equation} \\left [ \\Omega (t),\\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ] =0. \\label {s65} \\end {equation}", "\\begin {equation} \\frac {d\\Lambda (t)}{dt}=\\frac {d}{dt}\\sum _{j=0}^{\\infty }\\frac {\\left ( \\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ) ^{j}}{j!}=\\Omega (t)\\sum _{j=0}^{\\infty }\\frac {\\left ( \\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ) ^{j}}{j!} \\label {s66} \\end {equation}", "\\begin {equation} =\\Omega (t)\\Lambda (t)=\\Lambda (t)\\Omega (t). \\end {equation}", "\\begin {equation} \\mathbf {R}_{\\omega }(\\Gamma )=Y^{-1}(p)\\mathbf {R}_{\\omega }(\\Gamma _{0})Y(p)=R_{\\omega }(\\Gamma )+i\\frac {d}{d\\omega }, \\label {s67} \\end {equation}", "\\begin {equation} R_{\\omega }(\\Gamma )=Y^{-1}(p)R_{\\omega }(\\Gamma _{0})Y(p)+iY^{-1}(p)\\frac { dY(p)}{d\\omega }, \\end {equation}", "\\begin {equation} K_{\\xi }(\\Gamma )=Y^{-1}(p)K_{\\xi }(\\Gamma _{0})Y(p). \\label {s68} \\end {equation}" ], "latex_norm": [ "$ \\vec { u } $", "$ \\beta $", "$ \\Lambda , \\Omega $", "$ \\Omega $", "$ N $", "$ \\psi $", "$ N $", "$ R _ { \\omega } ( \\Gamma _ { 0 } ) , R _ { \\omega } ( \\Gamma _ { 0 } ) $", "$ Y ( p ) $", "$ K _ { \\xi } ( \\Gamma _ { 0 } ) $", "\\begin{equation*} \\Lambda ( \\psi , \\vec { u } ) = \\operatorname { e x p } ( i F ( \\psi ) N ) , \\qquad \\operatorname { t a n h } \\psi = \\beta , \\end{equation*}", "\\begin{equation*} F ( \\psi ) = \\int _ { 0 } ^ { \\psi } \\frac { d \\eta } { p _ { 0 } \\operatorname { c o s h } \\eta + \\vec { p } \\vec { u } \\operatorname { s i n h } \\eta + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } , \\end{equation*}", "\\begin{equation*} N = \\kappa \\vec { u } \\vec { R } _ { \\varphi } + ( \\vec { u } \\times \\vec { p } ) \\cdot \\vec { R } _ { \\varphi } . \\end{equation*}", "\\begin{equation*} \\frac { d \\Lambda ( t ) } { d t } = \\Omega ( t ) \\Lambda ( t ) , \\end{equation*}", "\\begin{equation*} \\Lambda ( t ) = \\operatorname { e x p } ( \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ) \\end{equation*}", "\\begin{equation*} [ \\Omega ( t ) , \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ] = 0 . \\end{equation*}", "\\begin{equation*} \\frac { d \\Lambda ( t ) } { d t } = \\frac { d } { d t } \\sum _ { j = 0 } ^ { \\infty } \\frac { { ( \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ) } ^ { j } } { j ! } = \\Omega ( t ) \\sum _ { j = 0 } ^ { \\infty } \\frac { { ( \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ) } ^ { j } } { j ! } \\end{equation*}", "\\begin{equation*} = \\Omega ( t ) \\Lambda ( t ) = \\Lambda ( t ) \\Omega ( t ) . \\end{equation*}", "\\begin{equation*} R _ { \\omega } ( \\Gamma ) = Y ^ { - 1 } ( p ) R _ { \\omega } ( \\Gamma _ { 0 } ) Y ( p ) = R _ { \\omega } ( \\Gamma ) + i \\frac { d } { d \\omega } , \\end{equation*}", "\\begin{equation*} R _ { \\omega } ( \\Gamma ) = Y ^ { - 1 } ( p ) R _ { \\omega } ( \\Gamma _ { 0 } ) Y ( p ) + i Y ^ { - 1 } ( p ) \\frac { d Y ( p ) } { d \\omega } , \\end{equation*}", "\\begin{equation*} K _ { \\xi } ( \\Gamma ) = Y ^ { - 1 } ( p ) K _ { \\xi } ( \\Gamma _ { 0 } ) Y ( p ) . \\end{equation*}" ], "latex_expand": [ "$ \\vec { \\mitu } $", "$ \\mitbeta $", "$ \\mupLambda , \\mupOmega $", "$ \\mupOmega $", "$ \\mitN $", "$ \\mitpsi $", "$ \\mitN $", "$ \\mbfR _ { \\mitomega } ( \\mupGamma _ { 0 } ) , \\mitR _ { \\mitomega } ( \\mupGamma _ { 0 } ) $", "$ \\mitY ( \\mitp ) $", "$ \\mitK _ { \\mitxi } ( \\mupGamma _ { 0 } ) $", "\\begin{equation*} \\mupLambda ( \\mitpsi , \\vec { \\mitu } ) = \\operatorname { e x p } \\left( \\miti \\mitF ( \\mitpsi ) \\mitN \\right) , \\qquad \\operatorname { t a n h } \\mitpsi = \\mitbeta , \\end{equation*}", "\\begin{equation*} \\mitF ( \\mitpsi ) = \\int _ { 0 } ^ { \\mitpsi } \\frac { \\mitd \\miteta } { \\mitp _ { 0 } \\operatorname { c o s h } \\miteta + \\vec { \\mitp } \\vec { \\mitu } \\operatorname { s i n h } \\miteta + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } , \\end{equation*}", "\\begin{equation*} \\mitN = \\mitkappa \\vec { \\mitu } \\vec { \\mitR } _ { \\mitvarphi } + \\left( \\vec { \\mitu } \\times \\vec { \\mitp } \\right) \\cdot \\vec { \\mitR } _ { \\mitvarphi } . \\end{equation*}", "\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitt ) } { \\mitd \\mitt } = \\mupOmega ( \\mitt ) \\mupLambda ( \\mitt ) , \\end{equation*}", "\\begin{equation*} \\mupLambda ( \\mitt ) = \\operatorname { e x p } \\left( \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right) \\end{equation*}", "\\begin{equation*} \\left[ \\mupOmega ( \\mitt ) , \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right] = 0 . \\end{equation*}", "\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitt ) } { \\mitd \\mitt } = \\frac { \\mitd } { \\mitd \\mitt } \\sum _ { \\mitj = 0 } ^ { \\infty } \\frac { { \\left( \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right) } ^ { \\mitj } } { \\mitj ! } = \\mupOmega ( \\mitt ) \\sum _ { \\mitj = 0 } ^ { \\infty } \\frac { { \\left( \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right) } ^ { \\mitj } } { \\mitj ! } \\end{equation*}", "\\begin{equation*} = \\mupOmega ( \\mitt ) \\mupLambda ( \\mitt ) = \\mupLambda ( \\mitt ) \\mupOmega ( \\mitt ) . \\end{equation*}", "\\begin{equation*} \\mbfR _ { \\mitomega } ( \\mupGamma ) = \\mitY ^ { - 1 } ( \\mitp ) \\mbfR _ { \\mitomega } ( \\mupGamma _ { 0 } ) \\mitY ( \\mitp ) = \\mitR _ { \\mitomega } ( \\mupGamma ) + \\miti \\frac { \\mitd } { \\mitd \\mitomega } , \\end{equation*}", "\\begin{equation*} \\mitR _ { \\mitomega } ( \\mupGamma ) = \\mitY ^ { - 1 } ( \\mitp ) \\mitR _ { \\mitomega } ( \\mupGamma _ { 0 } ) \\mitY ( \\mitp ) + \\miti \\mitY ^ { - 1 } ( \\mitp ) \\frac { \\mitd \\mitY ( \\mitp ) } { \\mitd \\mitomega } , \\end{equation*}", "\\begin{equation*} \\mitK _ { \\mitxi } ( \\mupGamma ) = \\mitY ^ { - 1 } ( \\mitp ) \\mitK _ { \\mitxi } ( \\mupGamma _ { 0 } ) \\mitY ( \\mitp ) . \\end{equation*}" ], "x_min": [ 0.5078999996185303, 0.6496000289916992, 0.25780001282691956, 0.3449000120162964, 0.7718999981880188, 0.3594000041484833, 0.3898000121116638, 0.2605000138282776, 0.5846999883651733, 0.5453000068664551, 0.3449000120162964, 0.3296000063419342, 0.40290001034736633, 0.43050000071525574, 0.4056999981403351, 0.41260001063346863, 0.2971999943256378, 0.41190001368522644, 0.32899999618530273, 0.326200008392334, 0.39250001311302185 ], "y_min": [ 0.15379999577999115, 0.15379999577999115, 0.3456999957561493, 0.4077000021934509, 0.5820000171661377, 0.5961999893188477, 0.5961999893188477, 0.7827000021934509, 0.7827000021934509, 0.8109999895095825, 0.1738000065088272, 0.20800000429153442, 0.2476000040769577, 0.3061999976634979, 0.3637999892234802, 0.42579999566078186, 0.4878000020980835, 0.5435000061988831, 0.711899995803833, 0.7476000189781189, 0.8446999788284302 ], "x_max": [ 0.5182999968528748, 0.6600000262260437, 0.2896000146865845, 0.3573000133037567, 0.7878000140190125, 0.3711000084877014, 0.4056999981403351, 0.3772999942302704, 0.6198999881744385, 0.5985000133514404, 0.652400016784668, 0.6668000221252441, 0.5964000225067139, 0.5659999847412109, 0.5916000008583069, 0.5846999883651733, 0.7028999924659729, 0.583299994468689, 0.6675999760627747, 0.6711000204086304, 0.6074000000953674 ], "y_max": [ 0.163100004196167, 0.16500000655651093, 0.35690000653266907, 0.4165000021457672, 0.5907999873161316, 0.6068999767303467, 0.6050000190734863, 0.7949000000953674, 0.7949000000953674, 0.8237000107765198, 0.1898999959230423, 0.24410000443458557, 0.2662000060081482, 0.33550000190734863, 0.39750000834465027, 0.45899999141693115, 0.5365999937057495, 0.5595999956130981, 0.7401999831199646, 0.7764000296592712, 0.8622999787330627 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page22
{ "latex": [ "$X_{3}$", "$X_{3}=Z(\\Gamma _{0},X_{1},\\Gamma )^{-1}Z(\\Gamma _{0},X_{2},\\Gamma )$", "$\\mathbf {R}_{\\omega }(\\Gamma ,X_{1}),\\mathbf {R}_{\\omega }(\\Gamma ,X_{2})$", "$W$", "$\\mathbf {R}_{\\omega }$", "$K_{\\xi }.$", "$W(p)$", "\\begin {equation} \\lbrack Z(\\Gamma _{0},X_{1},\\Gamma )^{-1}Z(\\Gamma _{0},X_{2},\\Gamma ),\\Gamma ]=0. \\label {s80} \\end {equation}", "\\begin {equation} Z(\\Gamma ,X_{3},\\Gamma )=Z(\\Gamma _{0},X_{1},\\Gamma )^{-1}Z(\\Gamma _{0},X_{2},\\Gamma ), \\label {s81} \\end {equation}", "\\begin {equation} \\mathbf {R}_{\\omega }(\\Gamma ,X_{1})=Z(\\Gamma ,X_{3},\\Gamma )\\mathbf {R} _{\\omega }(\\Gamma ,X_{2})Z(\\Gamma ,X_{3},\\Gamma )^{-1}, \\label {s82} \\end {equation}", "\\begin {equation} \\left ( \\Phi (p),\\Psi (q)\\right ) =\\left \\{ \\begin {array}{c} 0 \\\\ \\Phi ^{\\dagger }(p)W(p)\\Psi (q) \\end {array} \\right . \\quad \\mathrm {for}\\quad \\begin {array}{c} p\\neq q \\\\ p=q \\end {array} , \\label {s94} \\end {equation}", "\\begin {equation} W^{\\dagger }(p)=W(p), \\label {s95} \\end {equation}", "\\begin {equation} R_{\\omega }^{\\dagger }(p)W(p)-W(p)R_{\\omega }(p)+i\\frac {dW}{d\\omega }=0, \\label {s96} \\end {equation}", "\\begin {equation} K_{\\xi }^{\\dagger }(p)W(p)-W(p)K_{\\xi }(p)=0. \\label {s97} \\end {equation}", "\\begin {equation} \\Phi ^{\\prime \\dagger }(p^{\\prime })W(p^{\\prime })\\Psi ^{\\prime }(p^{\\prime }) \\label {s98} \\end {equation}", "\\begin {equation} =\\Phi ^{\\dagger }(p)\\left ( I-id\\omega R_{\\omega }^{\\dagger }(p)\\right ) \\left ( W(p)+d\\omega \\frac {dW}{d\\omega }\\right ) \\left ( I+id\\omega R_{\\omega }(p)\\right ) \\Psi (p) \\end {equation}", "\\begin {equation} \\Phi ^{\\prime \\dagger }(p^{\\prime })W(p^{\\prime })\\Psi ^{\\prime }(p^{\\prime })=\\Phi ^{\\dagger }(p)W(p)\\Psi (p). \\label {s99} \\end {equation}", "\\begin {equation} R_{\\varphi _{j}}^{\\dagger }(\\Gamma _{0})=R_{\\varphi _{j}}(\\Gamma _{0}). \\label {s102} \\end {equation}" ], "latex_norm": [ "$ X _ { 3 } $", "$ X _ { 3 } = Z ( \\Gamma _ { 0 } , X _ { 1 } , \\Gamma ) ^ { - 1 } Z ( \\Gamma _ { 0 } , X _ { 2 } , \\Gamma ) $", "$ R _ { \\omega } ( \\Gamma , X _ { 1 } ) , R _ { \\omega } ( \\Gamma , X _ { 2 } ) $", "$ W $", "$ R _ { \\omega } $", "$ K _ { \\xi } . $", "$ W ( p ) $", "\\begin{equation*} [ Z ( \\Gamma _ { 0 } , X _ { 1 } , \\Gamma ) ^ { - 1 } Z ( \\Gamma _ { 0 } , X _ { 2 } , \\Gamma ) , \\Gamma ] = 0 . \\end{equation*}", "\\begin{equation*} Z ( \\Gamma , X _ { 3 } , \\Gamma ) = Z ( \\Gamma _ { 0 } , X _ { 1 } , \\Gamma ) ^ { - 1 } Z ( \\Gamma _ { 0 } , X _ { 2 } , \\Gamma ) , \\end{equation*}", "\\begin{equation*} R _ { \\omega } ( \\Gamma , X _ { 1 } ) = Z ( \\Gamma , X _ { 3 } , \\Gamma ) R _ { \\omega } ( \\Gamma , X _ { 2 } ) Z ( \\Gamma , X _ { 3 } , \\Gamma ) ^ { - 1 } , \\end{equation*}", "\\begin{align*} ( \\Phi ( p ) , \\Psi ( q ) ) = \\{ \\begin{array}{c} 0 \\\\ \\Phi ^ { \\dagger } ( p ) W ( p ) \\Psi ( q ) \\end{array} \\quad f o r \\quad \\begin{array}{c} p \\ne q \\\\ p = q \\end{array} , \\end{align*}", "\\begin{equation*} W ^ { \\dagger } ( p ) = W ( p ) , \\end{equation*}", "\\begin{equation*} R _ { \\omega } ^ { \\dagger } ( p ) W ( p ) - W ( p ) R _ { \\omega } ( p ) + i \\frac { d W } { d \\omega } = 0 , \\end{equation*}", "\\begin{equation*} K _ { \\xi } ^ { \\dagger } ( p ) W ( p ) - W ( p ) K _ { \\xi } ( p ) = 0 . \\end{equation*}", "\\begin{equation*} \\Phi ^ { \\prime \\dagger } ( p ^ { \\prime } ) W ( p ^ { \\prime } ) \\Psi ^ { \\prime } ( p ^ { \\prime } ) \\end{equation*}", "\\begin{equation*} = \\Phi ^ { \\dagger } ( p ) ( I - i d \\omega R _ { \\omega } ^ { \\dagger } ( p ) ) ( W ( p ) + d \\omega \\frac { d W } { d \\omega } ) ( I + i d \\omega R _ { \\omega } ( p ) ) \\Psi ( p ) \\end{equation*}", "\\begin{equation*} \\Phi ^ { \\prime \\dagger } ( p ^ { \\prime } ) W ( p ^ { \\prime } ) \\Psi ^ { \\prime } ( p ^ { \\prime } ) = \\Phi ^ { \\dagger } ( p ) W ( p ) \\Psi ( p ) . \\end{equation*}", "\\begin{equation*} R _ { \\varphi _ { j } } ^ { \\dagger } ( \\Gamma _ { 0 } ) = R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitX _ { 3 } $", "$ \\mitX _ { 3 } = \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 1 } , \\mupGamma ) ^ { - 1 } \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 2 } , \\mupGamma ) $", "$ \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 1 } ) , \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 2 } ) $", "$ \\mitW $", "$ \\mbfR _ { \\mitomega } $", "$ \\mitK _ { \\mitxi } . $", "$ \\mitW ( \\mitp ) $", "\\begin{equation*} [ \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 1 } , \\mupGamma ) ^ { - 1 } \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 2 } , \\mupGamma ) , \\mupGamma ] = 0 . \\end{equation*}", "\\begin{equation*} \\mitZ ( \\mupGamma , \\mitX _ { 3 } , \\mupGamma ) = \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 1 } , \\mupGamma ) ^ { - 1 } \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 2 } , \\mupGamma ) , \\end{equation*}", "\\begin{equation*} \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 1 } ) = \\mitZ ( \\mupGamma , \\mitX _ { 3 } , \\mupGamma ) \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 2 } ) \\mitZ ( \\mupGamma , \\mitX _ { 3 } , \\mupGamma ) ^ { - 1 } , \\end{equation*}", "\\begin{align*} \\left( \\mupPhi ( \\mitp ) , \\mupPsi ( \\mitq ) \\right) = \\left\\{ \\begin{array}{c} 0 \\\\ \\mupPhi ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) \\mupPsi ( \\mitq ) \\end{array} \\right. \\quad \\mathrm { f o r } \\quad \\begin{array}{c} \\mitp \\ne \\mitq \\\\ \\mitp = \\mitq \\end{array} , \\end{align*}", "\\begin{equation*} \\mitW ^ { \\dagger } ( \\mitp ) = \\mitW ( \\mitp ) , \\end{equation*}", "\\begin{equation*} \\mitR _ { \\mitomega } ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) - \\mitW ( \\mitp ) \\mitR _ { \\mitomega } ( \\mitp ) + \\miti \\frac { \\mitd \\mitW } { \\mitd \\mitomega } = 0 , \\end{equation*}", "\\begin{equation*} \\mitK _ { \\mitxi } ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) - \\mitW ( \\mitp ) \\mitK _ { \\mitxi } ( \\mitp ) = 0 . \\end{equation*}", "\\begin{equation*} \\mupPhi ^ { \\prime \\dagger } ( \\mitp ^ { \\prime } ) \\mitW ( \\mitp ^ { \\prime } ) \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) \\end{equation*}", "\\begin{equation*} = \\mupPhi ^ { \\dagger } ( \\mitp ) \\left( \\mitI - \\miti \\mitd \\mitomega \\mitR _ { \\mitomega } ^ { \\dagger } ( \\mitp ) \\right) \\left( \\mitW ( \\mitp ) + \\mitd \\mitomega \\frac { \\mitd \\mitW } { \\mitd \\mitomega } \\right) \\left( \\mitI + \\miti \\mitd \\mitomega \\mitR _ { \\mitomega } ( \\mitp ) \\right) \\mupPsi ( \\mitp ) \\end{equation*}", "\\begin{equation*} \\mupPhi ^ { \\prime \\dagger } ( \\mitp ^ { \\prime } ) \\mitW ( \\mitp ^ { \\prime } ) \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupPhi ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) \\mupPsi ( \\mitp ) . \\end{equation*}", "\\begin{equation*} \\mitR _ { \\mitvarphi _ { \\mitj } } ^ { \\dagger } ( \\mupGamma _ { 0 } ) = \\mitR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) . \\end{equation*}" ], "x_min": [ 0.5335000157356262, 0.349700003862381, 0.3614000082015991, 0.33719998598098755, 0.7630000114440918, 0.2418999969959259, 0.5860000252723694, 0.3677000105381012, 0.34279999136924744, 0.3151000142097473, 0.2833000123500824, 0.44020000100135803, 0.3573000133037567, 0.38769999146461487, 0.42989999055862427, 0.2639999985694885, 0.3587000072002411, 0.42570000886917114 ], "y_min": [ 0.1889999955892563, 0.20170000195503235, 0.302700012922287, 0.45019999146461487, 0.7505000233650208, 0.7645999789237976, 0.7782999873161316, 0.163100004196167, 0.22269999980926514, 0.2728999853134155, 0.40619999170303345, 0.4691999852657318, 0.4950999915599823, 0.5268999934196472, 0.6064000129699707, 0.6317999958992004, 0.6913999915122986, 0.8442000150680542 ], "x_max": [ 0.5555999875068665, 0.5929999947547913, 0.5224000215530396, 0.35589998960494995, 0.7878999710083008, 0.2689000070095062, 0.6261000037193298, 0.6316999793052673, 0.6545000076293945, 0.6820999979972839, 0.6593000292778015, 0.5562999844551086, 0.6399999856948853, 0.6122999787330627, 0.5702000260353088, 0.7311999797821045, 0.6406999826431274, 0.5742999911308289 ], "y_max": [ 0.1996999979019165, 0.21490000188350677, 0.3149000108242035, 0.45899999141693115, 0.7612000107765198, 0.7767999768257141, 0.7904999852180481, 0.18019999563694, 0.23980000615119934, 0.28999999165534973, 0.4388999938964844, 0.4867999851703644, 0.5234000086784363, 0.5479000210762024, 0.6240000128746033, 0.6644999980926514, 0.7089999914169312, 0.8641999959945679 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page24
{ "latex": [ "$K_{\\xi },W,Z,Z^{-1}$", "$\\Lambda $", "$x-$", "$p_{\\alpha }\\rightarrow i\\partial _{\\alpha }$", "\\begin {equation} =\\frac {1}{(2\\pi )^{4}}\\int D(p)\\exp (-ipx)\\tilde {\\Psi }(y)\\exp (ipy)d^{4}yd^{4}p=\\frac {1}{(2\\pi )^{4}}\\int \\tilde {D}(x-y)\\tilde {\\Psi } (y)d^{4}y. \\end {equation}", "\\begin {equation} \\Gamma _{0}(p)\\rightarrow \\tilde {\\Gamma }_{0}(z)=Q_{0}\\frac {1}{(2\\pi )^{4}} \\int (p^{2})^{1/n}\\exp (-ipz)d^{4}p;\\quad pz\\equiv p_{0}z_{0}-\\vec {p}\\vec {z}, \\label {s83} \\end {equation}", "\\begin {equation} \\Gamma (p)\\rightarrow \\tilde {\\Gamma }(z)=\\sum _{\\lambda =0}^{3}Q_{\\lambda } \\frac {1}{(2\\pi )^{4}}\\int p_{\\lambda }^{2/n}\\exp (-ipz)d^{4}p, \\label {s84} \\end {equation}", "\\begin {equation} \\mathbf {R}_{\\varphi _{j}}(\\Gamma _{0})\\rightarrow \\mathbf {\\tilde {R}} _{\\varphi _{j}}(\\Gamma _{0})=R_{\\varphi _{j}}(\\Gamma _{0})+i\\frac {d}{d\\tilde { \\varphi }_{j}};\\qquad \\frac {d}{d\\tilde {\\varphi }_{j}}=-\\epsilon _{jkl}x_{k} \\frac {\\partial }{\\partial x_{l}}, \\label {s85} \\end {equation}", "\\begin {equation} \\mathbf {R}_{\\psi _{j}}(\\Gamma _{0})\\rightarrow \\mathbf {\\tilde {R}}_{\\psi _{j}}(z) \\label {s86} \\end {equation}", "\\begin {equation} =\\frac {1}{(2\\pi )^{4}}\\int \\frac {\\kappa R_{\\varphi _{j}}(\\Gamma _{0})+\\epsilon _{jkl}p_{k}R_{\\varphi _{l}}(\\Gamma _{0})}{p_{0}+\\sqrt { p^{2}-\\kappa ^{2}}}\\exp (-ipz)d^{4}p+i\\frac {d}{d\\tilde {\\psi }_{j}}; \\end {equation}", "\\begin {equation} \\frac {d}{d\\tilde {\\psi }_{j}}=-x_{0}\\frac {\\partial }{\\partial x_{j}}-x_{j} \\frac {\\partial }{\\partial x_{0}} \\end {equation}", "\\begin {equation} \\mathbf {R}_{\\omega }(\\Gamma )\\rightarrow \\mathbf {\\tilde {R}}_{\\omega }(z) \\label {s87} \\end {equation}", "\\begin {equation} =\\frac {1}{(2\\pi )^{4}}\\int Z(\\Gamma _{0},X,\\Gamma )^{-1}\\mathbf {R}_{\\omega }(\\Gamma _{0})Z(\\Gamma _{0},X,\\Gamma )\\exp (-ipz)d^{4}p. \\end {equation}", "\\begin {equation} \\left ( \\Gamma _{0}(p)-\\mu \\right ) G_{0}(p)=I,\\qquad \\left ( \\Gamma (p)-\\mu \\right ) G(p)=I \\label {s88} \\end {equation}", "\\begin {equation} G_{0}(p)=\\frac {(\\Gamma _{0}-\\alpha \\mu )(\\Gamma _{0}-\\alpha ^{2}\\mu )...(\\Gamma _{0}-\\alpha ^{n-1}\\mu )}{p^{2}-m^{2}}, \\label {s89} \\end {equation}", "\\begin {equation} G(p)=\\frac {(\\Gamma -\\alpha \\mu )(\\Gamma -\\alpha ^{2}\\mu )...(\\Gamma -\\alpha ^{n-1}\\mu )}{p^{2}-m^{2}} \\label {sa89} \\end {equation}", "\\begin {equation} G(p)=Z(\\Gamma _{0},X,\\Gamma )^{-1}G_{0}(p)Z(\\Gamma _{0},X,\\Gamma ). \\label {s90} \\end {equation}", "\\begin {equation} \\tilde {G}_{0}(x)=\\frac {1}{(2\\pi )^{4}}\\int G_{0}(p)\\exp (-ipx)d^{4}p, \\label {sa90} \\end {equation}", "\\begin {equation} \\tilde {G}(x)=\\frac {1}{(2\\pi )^{4}}\\int G(p)\\exp (-ipx)d^{4}p \\label {s91} \\end {equation}" ], "latex_norm": [ "$ K _ { \\xi } , W , Z , Z ^ { - 1 } $", "$ \\Lambda $", "$ x - $", "$ p _ { \\alpha } \\rightarrow i \\partial _ { \\alpha } $", "\\begin{equation*} = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int D ( p ) \\operatorname { e x p } ( - i p x ) \\widetilde { \\Psi } ( y ) \\operatorname { e x p } ( i p y ) d ^ { 4 } y d ^ { 4 } p = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int \\widetilde { D } ( x - y ) \\widetilde { \\Psi } ( y ) d ^ { 4 } y . \\end{equation*}", "\\begin{equation*} \\Gamma _ { 0 } ( p ) \\rightarrow \\widetilde { \\Gamma } _ { 0 } ( z ) = Q _ { 0 } \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int ( p ^ { 2 } ) ^ { 1 \\slash n } \\operatorname { e x p } ( - i p z ) d ^ { 4 } p ; \\quad p z \\equiv p _ { 0 } z _ { 0 } - \\vec { p } \\vec { z } , \\end{equation*}", "\\begin{equation*} \\Gamma ( p ) \\rightarrow \\widetilde { \\Gamma } ( z ) = \\sum _ { \\lambda = 0 } ^ { 3 } Q _ { \\lambda } \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int p _ { \\lambda } ^ { 2 \\slash n } \\operatorname { e x p } ( - i p z ) d ^ { 4 } p , \\end{equation*}", "\\begin{equation*} R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) \\rightarrow \\widetilde { R } _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) = R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) + i \\frac { d } { d \\widetilde { \\varphi } _ { j } } ; \\qquad \\frac { d } { d \\widetilde { \\varphi } _ { j } } = - \\epsilon _ { j k l } x _ { k } \\frac { \\partial } { \\partial x _ { l } } , \\end{equation*}", "\\begin{equation*} R _ { \\psi _ { j } } ( \\Gamma _ { 0 } ) \\rightarrow \\widetilde { R } _ { \\psi _ { j } } ( z ) \\end{equation*}", "\\begin{equation*} = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int \\frac { \\kappa R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) + \\epsilon _ { j k l } p _ { k } R _ { \\varphi _ { l } } ( \\Gamma _ { 0 } ) } { p _ { 0 } + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } \\operatorname { e x p } ( - i p z ) d ^ { 4 } p + i \\frac { d } { d \\widetilde { \\psi } _ { j } } ; \\end{equation*}", "\\begin{equation*} \\frac { d } { d \\widetilde { \\psi } _ { j } } = - x _ { 0 } \\frac { \\partial } { \\partial x _ { j } } - x _ { j } \\frac { \\partial } { \\partial x _ { 0 } } \\end{equation*}", "\\begin{equation*} R _ { \\omega } ( \\Gamma ) \\rightarrow \\widetilde { R } _ { \\omega } ( z ) \\end{equation*}", "\\begin{equation*} = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int Z ( \\Gamma _ { 0 } , X , \\Gamma ) ^ { - 1 } R _ { \\omega } ( \\Gamma _ { 0 } ) Z ( \\Gamma _ { 0 } , X , \\Gamma ) \\operatorname { e x p } ( - i p z ) d ^ { 4 } p . \\end{equation*}", "\\begin{equation*} ( \\Gamma _ { 0 } ( p ) - \\mu ) G _ { 0 } ( p ) = I , \\qquad ( \\Gamma ( p ) - \\mu ) G ( p ) = I \\end{equation*}", "\\begin{equation*} G _ { 0 } ( p ) = \\frac { ( \\Gamma _ { 0 } - \\alpha \\mu ) ( \\Gamma _ { 0 } - \\alpha ^ { 2 } \\mu ) . . . ( \\Gamma _ { 0 } - \\alpha ^ { n - 1 } \\mu ) } { p ^ { 2 } - m ^ { 2 } } , \\end{equation*}", "\\begin{equation*} G ( p ) = \\frac { ( \\Gamma - \\alpha \\mu ) ( \\Gamma - \\alpha ^ { 2 } \\mu ) . . . ( \\Gamma - \\alpha ^ { n - 1 } \\mu ) } { p ^ { 2 } - m ^ { 2 } } \\end{equation*}", "\\begin{equation*} G ( p ) = Z ( \\Gamma _ { 0 } , X , \\Gamma ) ^ { - 1 } G _ { 0 } ( p ) Z ( \\Gamma _ { 0 } , X , \\Gamma ) . \\end{equation*}", "\\begin{equation*} \\widetilde { G } _ { 0 } ( x ) = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int G _ { 0 } ( p ) \\operatorname { e x p } ( - i p x ) d ^ { 4 } p , \\end{equation*}", "\\begin{equation*} \\widetilde { G } ( x ) = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int G ( p ) \\operatorname { e x p } ( - i p x ) d ^ { 4 } p \\end{equation*}" ], "latex_expand": [ "$ \\mitK _ { \\mitxi } , \\mitW , \\mitZ , \\mitZ ^ { - 1 } $", "$ \\mupLambda $", "$ \\mitx - $", "$ \\mitp _ { \\mitalpha } \\rightarrow \\miti \\mitpartial _ { \\mitalpha } $", "\\begin{equation*} = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitD ( \\mitp ) \\operatorname { e x p } ( - \\miti \\mitp \\mitx ) \\tilde { \\mupPsi } ( \\mity ) \\operatorname { e x p } ( \\miti \\mitp \\mity ) \\mitd ^ { 4 } \\mity \\mitd ^ { 4 } \\mitp = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\tilde { \\mitD } ( \\mitx - \\mity ) \\tilde { \\mupPsi } ( \\mity ) \\mitd ^ { 4 } \\mity . \\end{equation*}", "\\begin{equation*} \\mupGamma _ { 0 } ( \\mitp ) \\rightarrow \\tilde { \\mupGamma } _ { 0 } ( \\mitz ) = \\mitQ _ { 0 } \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int ( \\mitp ^ { 2 } ) ^ { 1 \\slash \\mitn } \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp ; \\quad \\mitp \\mitz \\equiv \\mitp _ { 0 } \\mitz _ { 0 } - \\vec { \\mitp } \\vec { \\mitz } , \\end{equation*}", "\\begin{equation*} \\mupGamma ( \\mitp ) \\rightarrow \\tilde { \\mupGamma } ( \\mitz ) = \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitQ _ { \\mitlambda } \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitp _ { \\mitlambda } ^ { 2 \\slash \\mitn } \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp , \\end{equation*}", "\\begin{equation*} \\mbfR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) \\rightarrow \\tilde { \\mbfR } _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) = \\mitR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) + \\miti \\frac { \\mitd } { \\mitd \\tilde { \\mitvarphi } _ { \\mitj } } ; \\qquad \\frac { \\mitd } { \\mitd \\tilde { \\mitvarphi } _ { \\mitj } } = - \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitx _ { \\mitk } \\frac { \\mitpartial } { \\mitpartial \\mitx _ { \\mitl } } , \\end{equation*}", "\\begin{equation*} \\mbfR _ { \\mitpsi _ { \\mitj } } ( \\mupGamma _ { 0 } ) \\rightarrow \\tilde { \\mbfR } _ { \\mitpsi _ { \\mitj } } ( \\mitz ) \\end{equation*}", "\\begin{equation*} = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\frac { \\mitkappa \\mitR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) + \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitp _ { \\mitk } \\mitR _ { \\mitvarphi _ { \\mitl } } ( \\mupGamma _ { 0 } ) } { \\mitp _ { 0 } + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp + \\miti \\frac { \\mitd } { \\mitd \\tilde { \\mitpsi } _ { \\mitj } } ; \\end{equation*}", "\\begin{equation*} \\frac { \\mitd } { \\mitd \\tilde { \\mitpsi } _ { \\mitj } } = - \\mitx _ { 0 } \\frac { \\mitpartial } { \\mitpartial \\mitx _ { \\mitj } } - \\mitx _ { \\mitj } \\frac { \\mitpartial } { \\mitpartial \\mitx _ { 0 } } \\end{equation*}", "\\begin{equation*} \\mbfR _ { \\mitomega } ( \\mupGamma ) \\rightarrow \\tilde { \\mbfR } _ { \\mitomega } ( \\mitz ) \\end{equation*}", "\\begin{equation*} = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) ^ { - 1 } \\mbfR _ { \\mitomega } ( \\mupGamma _ { 0 } ) \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp . \\end{equation*}", "\\begin{equation*} \\left( \\mupGamma _ { 0 } ( \\mitp ) - \\mitmu \\right) \\mitG _ { 0 } ( \\mitp ) = \\mitI , \\qquad \\left( \\mupGamma ( \\mitp ) - \\mitmu \\right) \\mitG ( \\mitp ) = \\mitI \\end{equation*}", "\\begin{equation*} \\mitG _ { 0 } ( \\mitp ) = \\frac { ( \\mupGamma _ { 0 } - \\mitalpha \\mitmu ) ( \\mupGamma _ { 0 } - \\mitalpha ^ { 2 } \\mitmu ) . . . ( \\mupGamma _ { 0 } - \\mitalpha ^ { \\mitn - 1 } \\mitmu ) } { \\mitp ^ { 2 } - \\mitm ^ { 2 } } , \\end{equation*}", "\\begin{equation*} \\mitG ( \\mitp ) = \\frac { ( \\mupGamma - \\mitalpha \\mitmu ) ( \\mupGamma - \\mitalpha ^ { 2 } \\mitmu ) . . . ( \\mupGamma - \\mitalpha ^ { \\mitn - 1 } \\mitmu ) } { \\mitp ^ { 2 } - \\mitm ^ { 2 } } \\end{equation*}", "\\begin{equation*} \\mitG ( \\mitp ) = \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) ^ { - 1 } \\mitG _ { 0 } ( \\mitp ) \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) . \\end{equation*}", "\\begin{equation*} \\tilde { \\mitG } _ { 0 } ( \\mitx ) = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitG _ { 0 } ( \\mitp ) \\operatorname { e x p } ( - \\miti \\mitp \\mitx ) \\mitd ^ { 4 } \\mitp , \\end{equation*}", "\\begin{equation*} \\tilde { \\mitG } ( \\mitx ) = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitG ( \\mitp ) \\operatorname { e x p } ( - \\miti \\mitp \\mitx ) \\mitd ^ { 4 } \\mitp \\end{equation*}" ], "x_min": [ 0.2093999981880188, 0.5446000099182129, 0.6115999817848206, 0.6462000012397766, 0.2134999930858612, 0.22110000252723694, 0.31439998745918274, 0.23569999635219574, 0.4284999966621399, 0.274399995803833, 0.4077000021934509, 0.43880000710487366, 0.28130000829696655, 0.3248000144958496, 0.32829999923706055, 0.34689998626708984, 0.3544999957084656, 0.35659998655319214, 0.3677000105381012 ], "y_min": [ 0.5131999850273132, 0.5145999789237976, 0.5156000256538391, 0.5288000106811523, 0.1469999998807907, 0.2061000019311905, 0.24660000205039978, 0.2915000021457672, 0.32710000872612, 0.35109999775886536, 0.39010000228881836, 0.4390000104904175, 0.46140000224113464, 0.5648999810218811, 0.6157000064849854, 0.6567000150680542, 0.7178000211715698, 0.7695000171661377, 0.8095999956130981 ], "x_max": [ 0.3116999864578247, 0.5562999844551086, 0.6351000070571899, 0.7153000235557556, 0.7809000015258789, 0.7249000072479248, 0.682699978351593, 0.7098000049591064, 0.5716000199317932, 0.7181000113487244, 0.592199981212616, 0.5611000061035156, 0.7139000296592712, 0.6717000007629395, 0.6690000295639038, 0.6531000137329102, 0.6453999876976013, 0.6406000256538391, 0.6316999793052673 ], "y_max": [ 0.5264000296592712, 0.5228999853134155, 0.524399995803833, 0.5394999980926514, 0.17820000648498535, 0.23729999363422394, 0.2870999872684479, 0.323199987411499, 0.34610000252723694, 0.38580000400543213, 0.42329999804496765, 0.4571000039577484, 0.4925999939441681, 0.5805000066757202, 0.6474000215530396, 0.6888999938964844, 0.7348999977111816, 0.8003000020980835, 0.8407999873161316 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003126_page25
{ "latex": [ "$x-$", "$\\tilde {G}_{0},\\tilde {G}$", "$x-$", "$\\mathbf {\\tilde {R}}_{\\varphi _{j}}(\\Gamma _{0}),\\tilde {W}(\\Gamma _{0})$", "$i\\partial _{\\alpha }$", "$p^{2j/n}$", "$Q_{pr}=S^{p}T^{r}$", "$S,T$", "$n\\geq 2$", "$\\{Q_{pr}\\}$", "$n=2$", "$\\{Q_{pr}\\}$", "$SU(n)$", "$x-$", "\\begin {equation} \\int \\tilde {\\Gamma }_{0}(x-y)\\tilde {G}_{0}(y)d^{4}y-\\mu \\tilde {G} _{0}(x)=\\delta ^{4}(x), \\label {s92} \\end {equation}", "\\begin {equation} \\int \\tilde {\\Gamma }(x-y)\\tilde {G}(y)d^{4}y-\\mu \\tilde {G}(x)=\\left [ \\sum _{\\lambda =0}^{3}Q_{\\lambda }(i\\partial _{\\lambda })^{2/n}-\\mu \\right ] \\tilde {G}(x)=\\delta ^{4}(x). \\label {s93} \\end {equation}" ], "latex_norm": [ "$ x - $", "$ \\widetilde { G } _ { 0 } , \\widetilde { G } $", "$ x - $", "$ \\widetilde { R } _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) , \\widetilde { W } ( \\Gamma _ { 0 } ) $", "$ i \\partial _ { \\alpha } $", "$ p ^ { 2 j \\slash n } $", "$ Q _ { p r } = S ^ { p } T ^ { r } $", "$ S , T $", "$ n \\geq 2 $", "$ \\{ Q _ { p r } \\} $", "$ n = 2 $", "$ \\{ Q _ { p r } \\} $", "$ S U ( n ) $", "$ x - $", "\\begin{equation*} \\int \\widetilde { \\Gamma } _ { 0 } ( x - y ) \\widetilde { G } _ { 0 } ( y ) d ^ { 4 } y - \\mu \\widetilde { G } _ { 0 } ( x ) = \\delta ^ { 4 } ( x ) , \\end{equation*}", "\\begin{equation*} \\int \\widetilde { \\Gamma } ( x - y ) \\widetilde { G } ( y ) d ^ { 4 } y - \\mu \\widetilde { G } ( x ) = [ \\sum _ { \\lambda = 0 } ^ { 3 } Q _ { \\lambda } ( i \\partial _ { \\lambda } ) ^ { 2 \\slash n } - \\mu ] \\widetilde { G } ( x ) = \\delta ^ { 4 } ( x ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitx - $", "$ \\tilde { \\mitG } _ { 0 } , \\tilde { \\mitG } $", "$ \\mitx - $", "$ \\tilde { \\mbfR } _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) , \\tilde { \\mitW } ( \\mupGamma _ { 0 } ) $", "$ \\miti \\mitpartial _ { \\mitalpha } $", "$ \\mitp ^ { 2 \\mitj \\slash \\mitn } $", "$ \\mitQ _ { \\mitp \\mitr } = \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } $", "$ \\mitS , \\mitT $", "$ \\mitn \\geq 2 $", "$ \\{ \\mitQ _ { \\mitp \\mitr } \\} $", "$ \\mitn = 2 $", "$ \\{ \\mitQ _ { \\mitp \\mitr } \\} $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitx - $", "\\begin{equation*} \\int \\tilde { \\mupGamma } _ { 0 } ( \\mitx - \\mity ) \\tilde { \\mitG } _ { 0 } ( \\mity ) \\mitd ^ { 4 } \\mity - \\mitmu \\tilde { \\mitG } _ { 0 } ( \\mitx ) = \\mitdelta ^ { 4 } ( \\mitx ) , \\end{equation*}", "\\begin{equation*} \\int \\tilde { \\mupGamma } ( \\mitx - \\mity ) \\tilde { \\mitG } ( \\mity ) \\mitd ^ { 4 } \\mity - \\mitmu \\tilde { \\mitG } ( \\mitx ) = \\left[ \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitQ _ { \\mitlambda } ( \\miti \\mitpartial _ { \\mitlambda } ) ^ { 2 \\slash \\mitn } - \\mitmu \\right] \\tilde { \\mitG } ( \\mitx ) = \\mitdelta ^ { 4 } ( \\mitx ) . \\end{equation*}" ], "x_min": [ 0.47200000286102295, 0.31310001015663147, 0.7642999887466431, 0.5175999999046326, 0.678600013256073, 0.4691999852657318, 0.6924999952316284, 0.4519999921321869, 0.49070000648498535, 0.2093999981880188, 0.484499990940094, 0.2370000034570694, 0.23839999735355377, 0.6550999879837036, 0.3476000130176544, 0.22460000216960907 ], "y_min": [ 0.15530000627040863, 0.27149999141693115, 0.2754000127315521, 0.2992999851703644, 0.30219998955726624, 0.38530001044273376, 0.4668000042438507, 0.48100000619888306, 0.49559998512268066, 0.5083000063896179, 0.5238999724388123, 0.5654000043869019, 0.5795999765396118, 0.7231000065803528, 0.1738000065088272, 0.21140000224113464 ], "x_max": [ 0.49480000138282776, 0.35530000925064087, 0.7878000140190125, 0.6365000009536743, 0.703499972820282, 0.5065000057220459, 0.7878999710083008, 0.48240000009536743, 0.536300003528595, 0.25429999828338623, 0.5253000259399414, 0.28189998865127563, 0.28610000014305115, 0.6779000163078308, 0.6467999815940857, 0.72079998254776 ], "y_max": [ 0.16410000622272491, 0.28519999980926514, 0.28369998931884766, 0.3149000108242035, 0.31290000677108765, 0.398499995470047, 0.47850000858306885, 0.4916999936103821, 0.5054000020027161, 0.5214999914169312, 0.5321999788284302, 0.5781000256538391, 0.5917999744415283, 0.7318999767303467, 0.20409999787807465, 0.25189998745918274 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0003194_page01
{ "latex": [ "$\\emptyset $", "$S^1$", "$S^1$", "$S^1$" ], "latex_norm": [ "$ \\emptyset $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $" ], "latex_expand": [ "$ \\varnothing $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $" ], "x_min": [ 0.6474999785423279, 0.32409998774528503, 0.5224999785423279, 0.7387999892234802 ], "y_min": [ 0.3330000042915344, 0.5288000106811523, 0.5770999789237976, 0.6416000127792358 ], "x_max": [ 0.6599000096321106, 0.3447999954223633, 0.5432000160217285, 0.7595000267028809 ], "y_max": [ 0.3472000062465668, 0.5404999852180481, 0.5888000130653381, 0.6528000235557556 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0003194_page02
{ "latex": [ "$S^1$", "$S^1$", "$S^1$", "$S^1$", "$S^1$", "$S^1$", "$S^1$", "$S^1$", "$S^1$" ], "latex_norm": [ "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $" ], "latex_expand": [ "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $" ], "x_min": [ 0.4706000089645386, 0.46720001101493835, 0.3573000133037567, 0.29989999532699585, 0.49070000648498535, 0.2418999969959259, 0.46160000562667847, 0.5867000222206116, 0.699400007724762 ], "y_min": [ 0.15620000660419464, 0.19869999587535858, 0.22020000219345093, 0.4115999937057495, 0.5396000146865845, 0.5609999895095825, 0.5824999809265137, 0.6460000276565552, 0.6890000104904175 ], "x_max": [ 0.4927000105381012, 0.4885999858379364, 0.37940001487731934, 0.32199999690055847, 0.5120999813079834, 0.26330000162124634, 0.4830000102519989, 0.6080999970436096, 0.72079998254776 ], "y_max": [ 0.1678999960422516, 0.21089999377727509, 0.23190000653266907, 0.423799991607666, 0.551800012588501, 0.572700023651123, 0.5942000150680542, 0.6582000255584717, 0.7006999850273132 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003194_page03
{ "latex": [ "$S^1$", "$S^1$", "$S^1$", "$S^1$", "$S^1$", "${\\hat Q}_i$", "$\\hat H$", "$N=2$", "$\\hq _i \\ket {\\Psi }=0$", "${\\hat H}\\ket {\\Psi }=0$", "$\\hq _i (i=1, 2)$", "$S^1$", "${\\bf 2.2}$", "\\begin {equation} [{\\hat Q}_i, {\\hat H} ]=0,\\quad \\{{\\hat Q}_i, {\\hat Q}_j\\}=\\delta _{ij} \\hat H, \\qquad i=1,\\cdots N. \\label {susy} \\end {equation}" ], "latex_norm": [ "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ \\hat { Q } _ { i } $", "$ \\hat { H } $", "$ N = 2 $", "$ \\hat { Q } _ { i } \\vert \\Psi \\rangle = 0 $", "$ \\hat { H } \\vert \\Psi \\rangle = 0 $", "$ \\hat { Q } _ { i } ( i = 1 , 2 ) $", "$ S ^ { 1 } $", "$ 2 . 2 $", "\\begin{equation*} [ \\hat { Q } _ { i } , \\hat { H } ] = 0 , \\quad \\{ \\hat { Q } _ { i } , \\hat { Q } _ { j } \\} = \\delta _ { i j } \\hat { H } , \\qquad i = 1 , \\cdots N . \\end{equation*}" ], "latex_expand": [ "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitQ } _ { \\miti } $", "$ \\hat { \\mitH } $", "$ \\mitN = 2 $", "$ \\hat { \\mitQ } _ { \\miti } \\vert \\mupPsi \\rangle = 0 $", "$ \\hat { \\mitH } \\vert \\mupPsi \\rangle = 0 $", "$ \\hat { \\mitQ } _ { \\miti } ( \\miti = 1 , 2 ) $", "$ \\mitS ^ { 1 } $", "$ 2 . 2 $", "\\begin{equation*} [ \\hat { \\mitQ } _ { \\miti } , \\hat { \\mitH } ] = 0 , \\quad \\{ \\hat { \\mitQ } _ { \\miti } , \\hat { \\mitQ } _ { \\mitj } \\} = \\mitdelta _ { \\miti \\mitj } \\hat { \\mitH } , \\qquad \\miti = 1 , \\cdots \\mitN . \\end{equation*}" ], "x_min": [ 0.14720000326633453, 0.5985000133514404, 0.3779999911785126, 0.760200023651123, 0.7214999794960022, 0.5404000282287598, 0.120899997651577, 0.120899997651577, 0.7732999920845032, 0.31380000710487366, 0.120899997651577, 0.3628000020980835, 0.6337000131607056, 0.29649999737739563 ], "y_min": [ 0.2915000021457672, 0.2915000021457672, 0.3555000126361847, 0.48190000653266907, 0.5654000043869019, 0.5845000147819519, 0.6060000061988831, 0.6743000149726868, 0.6919000148773193, 0.7768999934196472, 0.79830002784729, 0.8217999935150146, 0.8241999745368958, 0.6348000168800354 ], "x_max": [ 0.16859999299049377, 0.6205999851226807, 0.399399995803833, 0.7906000018119812, 0.742900013923645, 0.5625, 0.1388999968767166, 0.17550000548362732, 0.863099992275238, 0.39739999175071716, 0.21969999372959137, 0.3849000036716461, 0.6620000004768372, 0.7105000019073486 ], "y_max": [ 0.30320000648498535, 0.30320000648498535, 0.36719998717308044, 0.49950000643730164, 0.5770999789237976, 0.6015999913215637, 0.619700014591217, 0.6845999956130981, 0.7095000147819519, 0.7950000166893005, 0.8159000277519226, 0.8339999914169312, 0.8339999914169312, 0.6563000082969666 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003194_page04
{ "latex": [ "$S^1$", "$S^1$", "$S^1$", "${\\bf 2.2}$", "$S^1$", "$S^1$", "$S^1$", "$\\hg $", "$\\hat W$", "$\\hg , \\hw $", "$\\hwd $", "$\\alpha $", "$\\hw (\\hwd )$", "$\\hg $", "$\\hg $", "$\\alpha $", "${\\cal H}_{\\alpha }$", "$\\hg , \\hw $", "$\\ket {n+\\alpha } (n=0,\\pm 1, \\pm 2, \\cdots )$", "${\\cal H}_{\\alpha }$", "${\\bf 1}_{\\alpha }$", "${\\cal H}_{\\alpha }$", "$\\hw \\ket {n+\\alpha }=\\ket {n+1+\\alpha }$", "${\\cal H}_{\\alpha }$", "${\\cal H}_{\\alpha }$", "${\\cal H}_{\\beta }$", "\\begin {equation} [\\hat G, \\hat W]=\\hbar ~{\\hat W}. \\label {comm} \\end {equation}", "\\begin {equation} {\\hg } \\ket {\\alpha }=\\hbar ~\\alpha \\ket {\\alpha }\\qquad {\\rm with} \\qquad \\norm {\\alpha }{\\alpha }=1, \\end {equation}", "\\begin {equation} {\\hg }{\\hw }\\ket {\\alpha }=\\hbar ~(\\alpha +1)\\hw \\ket {\\alpha },\\qquad {\\hg }{\\hwd }\\ket {\\alpha }=\\hbar ~(\\alpha -1)\\hwd \\ket {\\alpha }. \\end {equation}", "\\begin {equation} \\ket {n+\\alpha }\\equiv {\\hw }^n \\ket {\\alpha }, \\qquad n={\\rm integer}, \\end {equation}", "\\begin {equation} \\hg \\ket {n+\\alpha }=\\hbar ~(n+\\alpha )\\ket {n+\\alpha }. \\label {irred} \\end {equation}", "\\begin {equation} \\norm {m+\\alpha }{n+\\alpha }=\\delta _{mn}, \\quad \\sum _{n=-\\infty }^{+\\infty }\\ket {n+\\alpha }\\bra {n+\\alpha }={\\bf 1}_{\\alpha }, \\label {irred2} \\end {equation}" ], "latex_norm": [ "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ 2 . 2 $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ \\hat { G } $", "$ \\hat { W } $", "$ \\hat { G } , \\hat { W } $", "$ \\hat { W } ^ { \\dagger } $", "$ \\alpha $", "$ \\hat { W } ( \\hat { W } ^ { \\dagger } ) $", "$ \\hat { G } $", "$ \\hat { G } $", "$ \\alpha $", "$ H _ { \\alpha } $", "$ \\hat { G } , \\hat { W } $", "$ \\vert n + \\alpha \\rangle ( n = 0 , \\pm 1 , \\pm 2 , \\cdots ) $", "$ H _ { \\alpha } $", "$ 1 _ { \\alpha } $", "$ H _ { \\alpha } $", "$ \\hat { W } \\vert n + \\alpha \\rangle = \\vert n + 1 + \\alpha \\rangle $", "$ H _ { \\alpha } $", "$ H _ { \\alpha } $", "$ H _ { \\beta } $", "\\begin{equation*} [ \\hat { G } , \\hat { W } ] = \\hbar ~ \\hat { W } . \\end{equation*}", "\\begin{equation*} \\hat { G } \\vert \\alpha \\rangle = \\hbar ~ \\alpha \\vert \\alpha \\rangle \\qquad w i t h \\qquad \\langle \\alpha \\vert \\alpha \\rangle = 1 , \\end{equation*}", "\\begin{equation*} \\hat { G } \\hat { W } \\vert \\alpha \\rangle = \\hbar ~ ( \\alpha + 1 ) \\hat { W } \\vert \\alpha \\rangle , \\qquad \\hat { G } \\hat { W } ^ { \\dagger } \\vert \\alpha \\rangle = \\hbar ~ ( \\alpha - 1 ) \\hat { W } ^ { \\dagger } \\vert \\alpha \\rangle . \\end{equation*}", "\\begin{equation*} \\vert n + \\alpha \\rangle \\equiv \\hat { W } ^ { n } \\vert \\alpha \\rangle , \\qquad n = i n t e g e r , \\end{equation*}", "\\begin{equation*} \\hat { G } \\vert n + \\alpha \\rangle = \\hbar ~ ( n + \\alpha ) \\vert n + \\alpha \\rangle . \\end{equation*}", "\\begin{equation*} \\langle m + \\alpha \\vert n + \\alpha \\rangle = \\delta _ { m n } , \\quad \\sum _ { n = - \\infty } ^ { + \\infty } \\vert n + \\alpha \\rangle \\langle n + \\alpha \\vert = 1 _ { \\alpha } , \\end{equation*}" ], "latex_expand": [ "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ 2 . 2 $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitG } $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitG } , \\hat { \\mitW } $", "$ \\hat { \\mitW } ^ { \\dagger } $", "$ \\mitalpha $", "$ \\hat { \\mitW } ( \\hat { \\mitW } ^ { \\dagger } ) $", "$ \\hat { \\mitG } $", "$ \\hat { \\mitG } $", "$ \\mitalpha $", "$ \\mitH _ { \\mitalpha } $", "$ \\hat { \\mitG } , \\hat { \\mitW } $", "$ \\vert \\mitn + \\mitalpha \\rangle ( \\mitn = 0 , \\pm 1 , \\pm 2 , \\cdots ) $", "$ \\mitH _ { \\mitalpha } $", "$ 1 _ { \\mitalpha } $", "$ \\mitH _ { \\mitalpha } $", "$ \\hat { \\mitW } \\vert \\mitn + \\mitalpha \\rangle = \\vert \\mitn + 1 + \\mitalpha \\rangle $", "$ \\mitH _ { \\mitalpha } $", "$ \\mitH _ { \\mitalpha } $", "$ \\mitH _ { \\mitbeta } $", "\\begin{equation*} [ \\hat { \\mitG } , \\hat { \\mitW } ] = \\hslash ~ \\hat { \\mitW } . \\end{equation*}", "\\begin{equation*} \\hat { \\mitG } \\vert \\mitalpha \\rangle = \\hslash ~ \\mitalpha \\vert \\mitalpha \\rangle \\qquad \\mathrm { w i t h } \\qquad \\langle \\mitalpha \\vert \\mitalpha \\rangle = 1 , \\end{equation*}", "\\begin{equation*} \\hat { \\mitG } \\hat { \\mitW } \\vert \\mitalpha \\rangle = \\hslash ~ ( \\mitalpha + 1 ) \\hat { \\mitW } \\vert \\mitalpha \\rangle , \\qquad \\hat { \\mitG } \\hat { \\mitW } ^ { \\dagger } \\vert \\mitalpha \\rangle = \\hslash ~ ( \\mitalpha - 1 ) \\hat { \\mitW } ^ { \\dagger } \\vert \\mitalpha \\rangle . \\end{equation*}", "\\begin{equation*} \\vert \\mitn + \\mitalpha \\rangle \\equiv \\hat { \\mitW } ^ { \\mitn } \\vert \\mitalpha \\rangle , \\qquad \\mitn = \\mathrm { i n t e g e r } , \\end{equation*}", "\\begin{equation*} \\hat { \\mitG } \\vert \\mitn + \\mitalpha \\rangle = \\hslash ~ ( \\mitn + \\mitalpha ) \\vert \\mitn + \\mitalpha \\rangle . \\end{equation*}", "\\begin{equation*} \\langle \\mitm + \\mitalpha \\vert \\mitn + \\mitalpha \\rangle = \\mitdelta _ { \\mitm \\mitn } , \\quad \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\vert \\mitn + \\mitalpha \\rangle \\langle \\mitn + \\mitalpha \\vert = 1 _ { \\mitalpha } , \\end{equation*}" ], "x_min": [ 0.47269999980926514, 0.7635999917984009, 0.23770000040531158, 0.414000004529953, 0.120899997651577, 0.3248000144958496, 0.399399995803833, 0.7422000169754028, 0.1996999979019165, 0.250900000333786, 0.349700003862381, 0.29919999837875366, 0.6557999849319458, 0.24529999494552612, 0.321399986743927, 0.1996999979019165, 0.47679999470710754, 0.71670001745224, 0.6517000198364258, 0.6351000070571899, 0.17759999632835388, 0.42570000886917114, 0.6205999851226807, 0.5777000188827515, 0.7450000047683716, 0.8216999769210815, 0.43950000405311584, 0.33719998598098755, 0.25429999828338623, 0.35249999165534973, 0.3772999942302704, 0.2827000021934509 ], "y_min": [ 0.09719999879598618, 0.1298999935388565, 0.1729000061750412, 0.19629999995231628, 0.21529999375343323, 0.23680000007152557, 0.25780001282691956, 0.25589999556541443, 0.2768999934196472, 0.34470000863075256, 0.34470000863075256, 0.4408999979496002, 0.4336000084877014, 0.45509999990463257, 0.5903000235557556, 0.6654999852180481, 0.6621000170707703, 0.6582000255584717, 0.6820999979972839, 0.7045999765396118, 0.7865999937057495, 0.7860999703407288, 0.7827000021934509, 0.8076000213623047, 0.8291000127792358, 0.8291000127792358, 0.3075999915599823, 0.39649999141693115, 0.48579999804496765, 0.5532000064849854, 0.6211000084877014, 0.7275000214576721 ], "x_max": [ 0.4982999861240387, 0.7857000231742859, 0.2590999901294708, 0.4422999918460846, 0.14229999482631683, 0.34619998931884766, 0.42149999737739563, 0.7580999732017517, 0.22179999947547913, 0.2971999943256378, 0.37869998812675476, 0.3122999966144562, 0.7214999794960022, 0.2612000107765198, 0.33799999952316284, 0.21279999613761902, 0.5044000148773193, 0.7630000114440918, 0.8784000277519226, 0.6626999974250793, 0.19900000095367432, 0.45329999923706055, 0.8271999955177307, 0.6047000288963318, 0.772599995136261, 0.8486999869346619, 0.5673999786376953, 0.6661999821662903, 0.7526000142097473, 0.6510000228881836, 0.6302000284194946, 0.72079998254776 ], "y_max": [ 0.11180000007152557, 0.1421000063419342, 0.18459999561309814, 0.2061000019311905, 0.22699999809265137, 0.2485000044107437, 0.27000001072883606, 0.2700999975204468, 0.29109999537467957, 0.361299991607666, 0.3589000105857849, 0.44769999384880066, 0.451200008392334, 0.4693000018596649, 0.6044999957084656, 0.6722999811172485, 0.6743000149726868, 0.6753000020980835, 0.6972000002861023, 0.7167999744415283, 0.798799991607666, 0.798799991607666, 0.8003000020980835, 0.8198000192642212, 0.8413000106811523, 0.8432999849319458, 0.3285999894142151, 0.41749998927116394, 0.5062999725341797, 0.5741999745368958, 0.6420999765396118, 0.7695000171661377 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page05
{ "latex": [ "$\\alpha - \\beta ={\\rm integer}$", "$\\cal H$", "$\\alpha $", "$\\cal H$", "${\\cal H}_{\\alpha }$", "${\\cal H}_{\\alpha } (0 \\leq \\alpha < 1)$", "$\\alpha $", "$\\hg $", "$\\hw $", "$S^1$", "${\\cal H}_{\\alpha }$", "$\\hw $", "$\\theta $", "$\\kappa (\\theta )$", "$\\abs {\\kappa (\\theta )}=1$", "$\\kappa (\\theta +2\\pi )=\\kappa (\\theta )$", "${\\bf 1}_{\\alpha }$", "${\\cal H}_{\\alpha }$", "$\\hw $", "$\\hg $", "$\\hw $", "$S^1$", "$\\ket {\\psi }$", "$\\psi (\\theta )$", "$S^1$", "$\\ket {\\psi }$", "$\\hw $", "$\\hg $", "\\begin {equation} \\hw \\ket {\\theta }= \\e ^{i\\theta }\\ket {\\theta }. \\label {eigen} \\end {equation}", "\\begin {equation} \\ket {\\theta } = \\kappa (\\theta )\\sum _{n=-\\infty }^{+\\infty } \\e ^{-i n \\theta }\\ket {n+\\alpha }, \\end {equation}", "\\begin {eqnarray} \\ket {\\theta +2\\pi n}&=&\\ket {\\theta }, \\qquad n={\\rm integer}, \\\\ \\norm {\\theta }{\\theta ^{\\prime }}&=&2\\pi \\sum _{n=-\\infty }^{{}n=+\\infty } \\delta (\\theta -\\theta ^{\\prime }+2\\pi n), \\\\ \\int _0^{2\\pi }{{d\\theta }\\over {2\\pi }}\\ket {\\theta }\\bra {\\theta }&=& \\sum _{n=-\\infty }^{{}+\\infty }\\ket {n+\\alpha }\\bra {n+\\alpha }={\\bf 1}_{\\alpha }, \\\\ {\\rm exp}(-i\\lambda {\\hg \\over \\hbar })\\ket {\\theta }&=& \\e ^{-i\\lambda \\alpha }\\kappa (\\theta )\\kappa ^*(\\theta +\\lambda ) \\ket {\\theta +\\lambda }, \\end {eqnarray}", "\\begin {equation} \\psi (\\theta )\\equiv \\norm {\\theta }{\\psi }. \\end {equation}", "\\begin {equation} \\bra {\\theta }{\\rm exp}(i\\lambda {\\hg \\over \\hbar })\\ket {\\psi } =\\e ^{i\\lambda \\alpha }\\kappa ^*(\\theta )\\kappa (\\theta +\\lambda ) \\norm {\\theta +\\lambda }{\\psi }, \\end {equation}", "\\begin {equation} \\bra {\\theta }{\\hg }\\ket {\\psi }= \\Bigl [-i\\hbar ~{\\del \\over {\\del \\theta }}-i\\hbar ~\\kappa ^*(\\theta ) {{\\del \\kappa (\\theta )}\\over {\\del \\theta }}+\\hbar ~\\alpha \\Bigr ]\\psi (\\theta ). \\label {repreg} \\end {equation}" ], "latex_norm": [ "$ \\alpha - \\beta = i n t e g e r $", "$ H $", "$ \\alpha $", "$ H $", "$ H _ { \\alpha } $", "$ H _ { \\alpha } ( 0 \\leq \\alpha < 1 ) $", "$ \\alpha $", "$ \\hat { G } $", "$ \\hat { W } $", "$ S ^ { 1 } $", "$ H _ { \\alpha } $", "$ \\hat { W } $", "$ \\theta $", "$ \\kappa ( \\theta ) $", "$ \\vert \\kappa ( \\theta ) \\vert = 1 $", "$ \\kappa ( \\theta + 2 \\pi ) = \\kappa ( \\theta ) $", "$ 1 _ { \\alpha } $", "$ H _ { \\alpha } $", "$ \\hat { W } $", "$ \\hat { G } $", "$ \\hat { W } $", "$ S ^ { 1 } $", "$ \\vert \\psi \\rangle $", "$ \\psi ( \\theta ) $", "$ S ^ { 1 } $", "$ \\vert \\psi \\rangle $", "$ \\hat { W } $", "$ \\hat { G } $", "\\begin{equation*} \\hat { W } \\vert \\theta \\rangle = e ^ { i \\theta } \\vert \\theta \\rangle . \\end{equation*}", "\\begin{equation*} \\vert \\theta \\rangle = \\kappa ( \\theta ) \\sum _ { n = - \\infty } ^ { + \\infty } e ^ { - i n \\theta } \\vert n + \\alpha \\rangle , \\end{equation*}", "\\begin{align*} \\vert \\theta + 2 \\pi n \\rangle & = & \\vert \\theta \\rangle , \\qquad n = i n t e g e r , \\\\ \\langle \\theta \\vert \\theta ^ { \\prime } \\rangle & = & 2 \\pi \\sum _ { n = - \\infty } ^ { n = + \\infty } \\delta ( \\theta - \\theta ^ { \\prime } + 2 \\pi n ) , \\\\ \\int _ { 0 } ^ { 2 \\pi } \\frac { d \\theta } { 2 \\pi } \\vert \\theta \\rangle \\langle \\theta \\vert & = & \\sum _ { n = - \\infty } ^ { + \\infty } \\vert n + \\alpha \\rangle \\langle n + \\alpha \\vert = 1 _ { \\alpha } , \\\\ e x p ( - i \\lambda \\frac { \\hat { G } } { \\hbar } ) \\vert \\theta \\rangle & = & e ^ { - i \\lambda \\alpha } \\kappa ( \\theta ) \\kappa ^ { \\ast } ( \\theta + \\lambda ) \\vert \\theta + \\lambda \\rangle , \\end{align*}", "\\begin{equation*} \\psi ( \\theta ) \\equiv \\langle \\theta \\vert \\psi \\rangle . \\end{equation*}", "\\begin{equation*} \\langle \\theta \\vert e x p ( i \\lambda \\frac { \\hat { G } } { \\hbar } ) \\vert \\psi \\rangle = e ^ { i \\lambda \\alpha } \\kappa ^ { \\ast } ( \\theta ) \\kappa ( \\theta + \\lambda ) \\langle \\theta + \\lambda \\vert \\psi \\rangle , \\end{equation*}", "\\begin{equation*} \\langle \\theta \\vert \\hat { G } \\vert \\psi \\rangle = [ - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } - i \\hbar ~ \\kappa ^ { \\ast } ( \\theta ) \\frac { \\partial \\kappa ( \\theta ) } { \\partial \\theta } + \\hbar ~ \\alpha ] \\psi ( \\theta ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitalpha - \\mitbeta = \\mathrm { i n t e g e r } $", "$ \\mitH $", "$ \\mitalpha $", "$ \\mitH $", "$ \\mitH _ { \\mitalpha } $", "$ \\mitH _ { \\mitalpha } ( 0 \\leq \\mitalpha < 1 ) $", "$ \\mitalpha $", "$ \\hat { \\mitG } $", "$ \\hat { \\mitW } $", "$ \\mitS ^ { 1 } $", "$ \\mitH _ { \\mitalpha } $", "$ \\hat { \\mitW } $", "$ \\mittheta $", "$ \\mitkappa ( \\mittheta ) $", "$ \\left\\vert \\mitkappa ( \\mittheta ) \\right\\vert = 1 $", "$ \\mitkappa ( \\mittheta + 2 \\mitpi ) = \\mitkappa ( \\mittheta ) $", "$ 1 _ { \\mitalpha } $", "$ \\mitH _ { \\mitalpha } $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitG } $", "$ \\hat { \\mitW } $", "$ \\mitS ^ { 1 } $", "$ \\vert \\mitpsi \\rangle $", "$ \\mitpsi ( \\mittheta ) $", "$ \\mitS ^ { 1 } $", "$ \\vert \\mitpsi \\rangle $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitG } $", "\\begin{equation*} \\hat { \\mitW } \\vert \\mittheta \\rangle = \\mathrm { e } ^ { \\miti \\mittheta } \\vert \\mittheta \\rangle . \\end{equation*}", "\\begin{equation*} \\vert \\mittheta \\rangle = \\mitkappa ( \\mittheta ) \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\mathrm { e } ^ { - \\miti \\mitn \\mittheta } \\vert \\mitn + \\mitalpha \\rangle , \\end{equation*}", "\\begin{align*} \\displaystyle \\vert \\mittheta + 2 \\mitpi \\mitn \\rangle & = & \\displaystyle \\vert \\mittheta \\rangle , \\qquad \\mitn = \\mathrm { i n t e g e r } , \\\\ \\displaystyle \\langle \\mittheta \\vert \\mittheta ^ { \\prime } \\rangle & = & \\displaystyle 2 \\mitpi \\sum _ { \\mitn = - \\infty } ^ { \\mitn = + \\infty } \\mitdelta ( \\mittheta - \\mittheta ^ { \\prime } + 2 \\mitpi \\mitn ) , \\\\ \\displaystyle \\int _ { 0 } ^ { 2 \\mitpi } \\frac { \\mitd \\mittheta } { 2 \\mitpi } \\vert \\mittheta \\rangle \\langle \\mittheta \\vert & = & \\displaystyle \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\vert \\mitn + \\mitalpha \\rangle \\langle \\mitn + \\mitalpha \\vert = 1 _ { \\mitalpha } , \\\\ \\displaystyle \\mathrm { e x p } ( - \\miti \\mitlambda \\frac { \\hat { \\mitG } } { \\hslash } ) \\vert \\mittheta \\rangle & = & \\displaystyle \\mathrm { e } ^ { - \\miti \\mitlambda \\mitalpha } \\mitkappa ( \\mittheta ) \\mitkappa ^ { \\ast } ( \\mittheta + \\mitlambda ) \\vert \\mittheta + \\mitlambda \\rangle , \\end{align*}", "\\begin{equation*} \\mitpsi ( \\mittheta ) \\equiv \\langle \\mittheta \\vert \\mitpsi \\rangle . \\end{equation*}", "\\begin{equation*} \\langle \\mittheta \\vert \\mathrm { e x p } ( \\miti \\mitlambda \\frac { \\hat { \\mitG } } { \\hslash } ) \\vert \\mitpsi \\rangle = \\mathrm { e } ^ { \\miti \\mitlambda \\mitalpha } \\mitkappa ^ { \\ast } ( \\mittheta ) \\mitkappa ( \\mittheta + \\mitlambda ) \\langle \\mittheta + \\mitlambda \\vert \\mitpsi \\rangle , \\end{equation*}", "\\begin{equation*} \\langle \\mittheta \\vert \\hat { \\mitG } \\vert \\mitpsi \\rangle = \\Big [ - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } - \\miti \\hslash ~ \\mitkappa ^ { \\ast } ( \\mittheta ) \\frac { \\mitpartial \\mitkappa ( \\mittheta ) } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha \\Big ] \\mitpsi ( \\mittheta ) . \\end{equation*}" ], "x_min": [ 0.5286999940872192, 0.3476000130176544, 0.738099992275238, 0.8458999991416931, 0.33379998803138733, 0.6647999882698059, 0.5583999752998352, 0.42500001192092896, 0.8549000024795532, 0.1485999971628189, 0.4519999921321869, 0.5404000282287598, 0.17829999327659607, 0.40700000524520874, 0.120899997651577, 0.24950000643730164, 0.17759999632835388, 0.42640000581741333, 0.5529000163078308, 0.44780001044273376, 0.51419997215271, 0.23499999940395355, 0.2321999967098236, 0.6820999979972839, 0.7547000050544739, 0.49140000343322754, 0.257099986076355, 0.5149000287055969, 0.4415999948978424, 0.3772999942302704, 0.3019999861717224, 0.44440001249313354, 0.3034000098705292, 0.2985000014305115 ], "y_min": [ 0.10109999775886536, 0.1225999966263771, 0.12600000202655792, 0.1225999966263771, 0.1436000019311905, 0.16410000622272491, 0.21140000224113464, 0.24660000205039978, 0.24660000205039978, 0.2915000021457672, 0.2930000126361847, 0.2890999913215637, 0.4390000104904175, 0.43799999356269836, 0.4595000147819519, 0.4595000147819519, 0.6445000171661377, 0.6439999938011169, 0.6615999937057495, 0.6830999851226807, 0.6830999851226807, 0.7064999938011169, 0.7285000085830688, 0.7285000085830688, 0.7279999852180481, 0.7954000234603882, 0.8690999746322632, 0.8690999746322632, 0.3407999873161316, 0.388700008392334, 0.48539999127388, 0.7588000297546387, 0.8198000192642212, 0.8955000042915344 ], "x_max": [ 0.6675999760627747, 0.36559998989105225, 0.7512000203132629, 0.8632000088691711, 0.3614000082015991, 0.7926999926567078, 0.5715000033378601, 0.4408999979496002, 0.8769999742507935, 0.17000000178813934, 0.4790000021457672, 0.5618000030517578, 0.18870000541210175, 0.44359999895095825, 0.20520000159740448, 0.3953000009059906, 0.19900000095367432, 0.45399999618530273, 0.5742999911308289, 0.46369999647140503, 0.536300003528595, 0.257099986076355, 0.259799987077713, 0.72079998254776, 0.7760999798774719, 0.5184000134468079, 0.2791999876499176, 0.5307999849319458, 0.5652999877929688, 0.6261000037193298, 0.7001000046730042, 0.5626000165939331, 0.7001000046730042, 0.7089999914169312 ], "y_max": [ 0.11429999768733978, 0.13289999961853027, 0.13279999792575836, 0.13289999961853027, 0.15629999339580536, 0.17919999361038208, 0.21819999814033508, 0.26080000400543213, 0.26080000400543213, 0.30320000648498535, 0.30570000410079956, 0.30329999327659607, 0.44929999113082886, 0.4530999958515167, 0.4740999937057495, 0.4740999937057495, 0.6567000150680542, 0.6567000150680542, 0.6758000254631042, 0.6973000168800354, 0.6973000168800354, 0.7186999917030334, 0.7430999875068665, 0.7430999875068665, 0.7397000193595886, 0.8100000023841858, 0.8833000063896179, 0.8833000063896179, 0.3617999851703644, 0.43070000410079956, 0.6337000131607056, 0.7768999934196472, 0.8564000129699707, 0.9291999936103821 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page06
{ "latex": [ "$S^1$", "$S^1$", "$\\psi (\\theta +2\\pi n) =\\psi (\\theta )$", "$S^1$", "$\\alpha $", "$\\kappa (\\theta )$", "$\\kappa (\\theta )=\\omega (\\theta )\\kappa ^{\\prime }(\\theta )$", "$\\omega (\\theta )$", "$\\abs {\\omega (\\theta )}=1$", "$\\omega (\\theta +2\\pi )=\\omega (\\theta )$", "$\\ket {\\theta }=\\omega (\\theta )\\ket {\\theta }^{\\prime }$", "$\\psi ^{\\prime }(\\theta )$", "$\\hw $", "$\\hg $", "$\\alpha $", "$A(\\theta )$", "$A(\\theta +2\\pi )=A(\\theta )$", "$A^{\\prime }(\\theta )=\\alpha $", "$A^{\\prime }(\\theta )=\\alpha $", "$A^{\\prime }(\\theta )=\\beta $", "$\\beta -\\alpha $", "$A_{\\alpha }\\equiv \\alpha (0\\leq \\alpha < 1)$", "$\\kappa (\\theta )=1$", "$S^1$", "$0\\leq \\alpha <1$", "$ \\psi (\\theta )\\rightarrow \\psi ^{\\prime }(\\theta )=\\e ^{in\\theta }\\psi (\\theta ), $", "$A(\\theta )$", "$A(\\theta )-n\\hbar $", "$n=$", "$n$", "$\\alpha =0$", "$S^1$", "${\\bf R}^2$", "\\begin {equation} \\bra {\\theta }{\\hw }\\ket {\\psi }=\\e ^{i\\theta }\\psi (\\theta ). \\label {reprew} \\end {equation}", "\\begin {equation} \\norm {\\chi }{\\psi }=\\int _0^{2\\pi }{{d\\theta }\\over {2\\pi }} \\chi ^*(\\theta )\\psi (\\theta ). \\end {equation}", "\\begin {equation} \\psi ^{\\prime }(\\theta )=\\omega (\\theta )\\psi (\\theta ). \\label {gtrf1} \\end {equation}", "\\begin {equation} '\\bra {\\theta }{\\hg }\\ket {\\psi }= \\Bigl [-i\\hbar ~{\\del \\over {\\del \\theta }}+A^{\\prime }(\\theta )\\Bigr ] \\psi (\\theta ), \\label {newrepreg} \\end {equation}", "\\begin {equation} A^{\\prime }(\\theta ) \\equiv A(\\theta )+i\\hbar ~\\omega ^*(\\theta ) {{\\del \\omega (\\theta )}\\over {\\del \\theta }}, \\quad A(\\theta )\\equiv -i\\hbar ~\\kappa ^*({\\theta }) {{\\del \\kappa (\\theta )}\\over {\\del \\theta }}+\\hbar ~\\alpha . \\label {gtrf2} \\end {equation}" ], "latex_norm": [ "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ \\psi ( \\theta + 2 \\pi n ) = \\psi ( \\theta ) $", "$ S ^ { 1 } $", "$ \\alpha $", "$ \\kappa ( \\theta ) $", "$ \\kappa ( \\theta ) = \\omega ( \\theta ) \\kappa ^ { \\prime } ( \\theta ) $", "$ \\omega ( \\theta ) $", "$ \\vert \\omega ( \\theta ) \\vert = 1 $", "$ \\omega ( \\theta + 2 \\pi ) = \\omega ( \\theta ) $", "$ \\vert \\theta \\rangle = \\omega ( \\theta ) \\vert \\theta \\rangle ^ { \\prime } $", "$ \\psi ^ { \\prime } ( \\theta ) $", "$ \\hat { W } $", "$ \\hat { G } $", "$ \\alpha $", "$ A ( \\theta ) $", "$ A ( \\theta + 2 \\pi ) = A ( \\theta ) $", "$ A ^ { \\prime } ( \\theta ) = \\alpha $", "$ A ^ { \\prime } ( \\theta ) = \\alpha $", "$ A ^ { \\prime } ( \\theta ) = \\beta $", "$ \\beta - \\alpha $", "$ A _ { \\alpha } \\equiv \\alpha ( 0 \\leq \\alpha < 1 ) $", "$ \\kappa ( \\theta ) = 1 $", "$ S ^ { 1 } $", "$ 0 \\leq \\alpha < 1 $", "$ \\psi ( \\theta ) \\rightarrow \\psi ^ { \\prime } ( \\theta ) = { e } ^ { i n \\theta } \\psi ( \\theta ) , $", "$ A ( \\theta ) $", "$ A ( \\theta ) - n \\hbar $", "$ n = $", "$ n $", "$ \\alpha = 0 $", "$ S ^ { 1 } $", "$ R ^ { 2 } $", "\\begin{equation*} \\langle \\theta \\vert \\hat { W } \\vert \\psi \\rangle = e ^ { i \\theta } \\psi ( \\theta ) . \\end{equation*}", "\\begin{equation*} \\langle \\chi \\vert \\psi \\rangle = \\int _ { 0 } ^ { 2 \\pi } \\frac { d \\theta } { 2 \\pi } \\chi ^ { \\ast } ( \\theta ) \\psi ( \\theta ) . \\end{equation*}", "\\begin{equation*} \\psi ^ { \\prime } ( \\theta ) = \\omega ( \\theta ) \\psi ( \\theta ) . \\end{equation*}", "\\begin{equation*} { } ^ { \\prime } \\langle \\theta \\vert \\hat { G } \\vert \\psi \\rangle = [ - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } + A ^ { \\prime } ( \\theta ) ] \\psi ( \\theta ) , \\end{equation*}", "\\begin{equation*} A ^ { \\prime } ( \\theta ) \\equiv A ( \\theta ) + i \\hbar ~ \\omega ^ { \\ast } ( \\theta ) \\frac { \\partial \\omega ( \\theta ) } { \\partial \\theta } , \\quad A ( \\theta ) \\equiv - i \\hbar ~ \\kappa ^ { \\ast } ( \\theta ) \\frac { \\partial \\kappa ( \\theta ) } { \\partial \\theta } + \\hbar ~ \\alpha . \\end{equation*}" ], "latex_expand": [ "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitpsi ( \\mittheta + 2 \\mitpi \\mitn ) = \\mitpsi ( \\mittheta ) $", "$ \\mitS ^ { 1 } $", "$ \\mitalpha $", "$ \\mitkappa ( \\mittheta ) $", "$ \\mitkappa ( \\mittheta ) = \\mitomega ( \\mittheta ) \\mitkappa ^ { \\prime } ( \\mittheta ) $", "$ \\mitomega ( \\mittheta ) $", "$ \\left\\vert \\mitomega ( \\mittheta ) \\right\\vert = 1 $", "$ \\mitomega ( \\mittheta + 2 \\mitpi ) = \\mitomega ( \\mittheta ) $", "$ \\vert \\mittheta \\rangle = \\mitomega ( \\mittheta ) \\vert \\mittheta \\rangle ^ { \\prime } $", "$ \\mitpsi ^ { \\prime } ( \\mittheta ) $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitG } $", "$ \\mitalpha $", "$ \\mitA ( \\mittheta ) $", "$ \\mitA ( \\mittheta + 2 \\mitpi ) = \\mitA ( \\mittheta ) $", "$ \\mitA ^ { \\prime } ( \\mittheta ) = \\mitalpha $", "$ \\mitA ^ { \\prime } ( \\mittheta ) = \\mitalpha $", "$ \\mitA ^ { \\prime } ( \\mittheta ) = \\mitbeta $", "$ \\mitbeta - \\mitalpha $", "$ \\mitA _ { \\mitalpha } \\equiv \\mitalpha ( 0 \\leq \\mitalpha < 1 ) $", "$ \\mitkappa ( \\mittheta ) = 1 $", "$ \\mitS ^ { 1 } $", "$ 0 \\leq \\mitalpha < 1 $", "$ \\mitpsi ( \\mittheta ) \\rightarrow \\mitpsi ^ { \\prime } ( \\mittheta ) = { \\mathrm { e } } ^ { \\miti \\mitn \\mittheta } \\mitpsi ( \\mittheta ) , $", "$ \\mitA ( \\mittheta ) $", "$ \\mitA ( \\mittheta ) - \\mitn \\hslash $", "$ \\mitn = $", "$ \\mitn $", "$ \\mitalpha = 0 $", "$ \\mitS ^ { 1 } $", "$ \\mitR ^ { 2 } $", "\\begin{equation*} \\langle \\mittheta \\vert \\hat { \\mitW } \\vert \\mitpsi \\rangle = \\mathrm { e } ^ { \\miti \\mittheta } \\mitpsi ( \\mittheta ) . \\end{equation*}", "\\begin{equation*} \\langle \\mitchi \\vert \\mitpsi \\rangle = \\int _ { 0 } ^ { 2 \\mitpi } \\frac { \\mitd \\mittheta } { 2 \\mitpi } \\mitchi ^ { \\ast } ( \\mittheta ) \\mitpsi ( \\mittheta ) . \\end{equation*}", "\\begin{equation*} \\mitpsi ^ { \\prime } ( \\mittheta ) = \\mitomega ( \\mittheta ) \\mitpsi ( \\mittheta ) . \\end{equation*}", "\\begin{equation*} { } ^ { \\prime } \\langle \\mittheta \\vert \\hat { \\mitG } \\vert \\mitpsi \\rangle = \\Big [ - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } + \\mitA ^ { \\prime } ( \\mittheta ) \\Big ] \\mitpsi ( \\mittheta ) , \\end{equation*}", "\\begin{equation*} \\mitA ^ { \\prime } ( \\mittheta ) \\equiv \\mitA ( \\mittheta ) + \\miti \\hslash ~ \\mitomega ^ { \\ast } ( \\mittheta ) \\frac { \\mitpartial \\mitomega ( \\mittheta ) } { \\mitpartial \\mittheta } , \\quad \\mitA ( \\mittheta ) \\equiv - \\miti \\hslash ~ \\mitkappa ^ { \\ast } ( \\mittheta ) \\frac { \\mitpartial \\mitkappa ( \\mittheta ) } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha . \\end{equation*}" ], "x_min": [ 0.3124000132083893, 0.4830999970436096, 0.46299999952316284, 0.656499981880188, 0.6848999857902527, 0.19629999995231628, 0.7276999950408936, 0.17759999632835388, 0.34209999442100525, 0.47200000286102295, 0.7623000144958496, 0.45680001378059387, 0.420199990272522, 0.6848999857902527, 0.8708000183105469, 0.14720000326633453, 0.20589999854564667, 0.704200029373169, 0.5673999786376953, 0.703499972820282, 0.6455000042915344, 0.120899997651577, 0.49140000343322754, 0.6690000295639038, 0.3898000121116638, 0.4271000027656555, 0.120899997651577, 0.2046000063419342, 0.44780001044273376, 0.5529000163078308, 0.5583999752998352, 0.8306999802589417, 0.30959999561309814, 0.420199990272522, 0.38909998536109924, 0.42640000581741333, 0.35659998655319214, 0.23149999976158142 ], "y_min": [ 0.14990000426769257, 0.24410000443458557, 0.2660999894142151, 0.3075999915599823, 0.3345000147819519, 0.35109999775886536, 0.35109999775886536, 0.3725999891757965, 0.3725999891757965, 0.3725999891757965, 0.3725999891757965, 0.3935999870300293, 0.46140000224113464, 0.46140000224113464, 0.6122999787330627, 0.6503999829292297, 0.6718999743461609, 0.6718999743461609, 0.6929000020027161, 0.6929000020027161, 0.7153000235557556, 0.7567999958992004, 0.7567999958992004, 0.7778000235557556, 0.8012999892234802, 0.8198000192642212, 0.8417999744415283, 0.8417999744415283, 0.8467000126838684, 0.8467000126838684, 0.885699987411499, 0.8833000063896179, 0.8978999853134155, 0.1151999980211258, 0.17579999566078186, 0.4253000020980835, 0.48969998955726624, 0.5595999956130981 ], "x_max": [ 0.3345000147819519, 0.5044999718666077, 0.6219000220298767, 0.6779000163078308, 0.6980000138282776, 0.23360000550746918, 0.8784000277519226, 0.21559999883174896, 0.4277999997138977, 0.6205999851226807, 0.8784000277519226, 0.5002999901771545, 0.4415999948978424, 0.7008000016212463, 0.883899986743927, 0.18729999661445618, 0.352400004863739, 0.7885000109672546, 0.6559000015258789, 0.7919999957084656, 0.6980000138282776, 0.28610000014305115, 0.5640000104904175, 0.6904000043869019, 0.49000000953674316, 0.6413000226020813, 0.16099999845027924, 0.2874999940395355, 0.48100000619888306, 0.5652999877929688, 0.600600004196167, 0.849399983882904, 0.33239999413490295, 0.5867999792098999, 0.6177999973297119, 0.5805000066757202, 0.6468999981880188, 0.7753999829292297 ], "y_max": [ 0.1615999937057495, 0.2558000087738037, 0.2806999981403351, 0.3197999894618988, 0.34130001068115234, 0.36570000648498535, 0.36570000648498535, 0.3871999979019165, 0.3871999979019165, 0.3871999979019165, 0.3871999979019165, 0.40869998931884766, 0.475600004196167, 0.475600004196167, 0.6190999746322632, 0.6654999852180481, 0.6865000128746033, 0.6865000128746033, 0.7080000042915344, 0.7080000042915344, 0.7285000085830688, 0.7718999981880188, 0.7718999981880188, 0.7894999980926514, 0.8130000233650208, 0.8353999853134155, 0.8568999767303467, 0.8568999767303467, 0.8535000085830688, 0.8535000085830688, 0.8939999938011169, 0.8939999938011169, 0.9082000255584717, 0.13619999587535858, 0.2094999998807907, 0.4438999891281128, 0.5228999853134155, 0.5938000082969666 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page07
{ "latex": [ "$\\psi ^{\\prime }(\\theta )$", "$0\\leq A(\\theta ) < \\hbar $", "$0\\leq \\alpha <1$", "$\\e ^{in\\theta }$", "$n=$", "$S^1$", "$\\alpha $", "$e\\Phi /2\\pi \\hbar ~c$", "$S^1$", "$S^1$", "$\\hg $", "$\\hw $", "$S^1$", "${\\hq }_i(i=1, 2)$", "${\\hq }_i(i=1,2)$", "$V(\\hw ,\\hwd )$", "$\\hw $", "$\\hwd $", "$m$", "$R$", "$S^1$", "$\\hxi , \\hxib $", "\\begin {eqnarray} \\hq &\\equiv &{1\\over {\\sqrt 2}}\\Bigl ({\\hat Q}_1+i{\\hat Q}_2\\Bigr ) \\\\ &=&\\Bigl ({1\\over {\\sqrt {2m}R}}\\hg +i V(\\hw ,\\hwd )\\Bigr )\\hxi \\equiv {\\hat q}~\\hxi , \\\\ \\hqb &\\equiv &{1\\over {\\sqrt 2}}\\Bigl ({\\hat Q}_1-i{\\hat Q}_2\\Bigr ) \\\\ &=&\\Bigl ({1\\over {\\sqrt {2m}R}}\\hg -iV(\\hw ,\\hwd )\\Bigr )\\hxib \\equiv {\\hat q}^{\\dagger }~\\hxib . \\end {eqnarray}", "\\begin {equation} \\{\\hxi ,\\hxib \\}=1,\\qquad \\hxi ^2=\\hxib ^2=0. \\label {anticomm} \\end {equation}", "\\begin {eqnarray} \\hat H &=& \\{{\\hat Q},{\\hat {\\bar Q}}\\} \\\\ &=& {1\\over {2m R^2}}\\hg ^2+V^2(\\hw ,\\hwd )\\\\ &-&{i\\over {{\\sqrt {2m}R}}} \\Bigl (\\hg V(\\hw ,\\hwd )-V(\\hw ,\\hwd )\\hg \\Bigr )\\Bigl [\\hxi , \\hxib \\Bigr ], \\end {eqnarray}" ], "latex_norm": [ "$ \\psi ^ { \\prime } ( \\theta ) $", "$ 0 \\leq A ( \\theta ) < \\hbar $", "$ 0 \\leq \\alpha < 1 $", "$ { e } ^ { i n \\theta } $", "$ n = $", "$ S ^ { 1 } $", "$ \\alpha $", "$ e \\Phi \\slash 2 \\pi \\hbar ~ c $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ \\hat { G } $", "$ \\hat { W } $", "$ S ^ { 1 } $", "$ \\hat { Q } _ { i } ( i = 1 , 2 ) $", "$ \\hat { Q } _ { i } ( i = 1 , 2 ) $", "$ V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) $", "$ \\hat { W } $", "$ \\hat { W } ^ { \\dagger } $", "$ m $", "$ R $", "$ S ^ { 1 } $", "$ \\hat { \\xi } , \\hat { \\bar { \\xi } } $", "\\begin{align*} \\hat { Q } & \\equiv & \\frac { 1 } { \\sqrt { 2 } } ( \\hat { Q } _ { 1 } + i \\hat { Q } _ { 2 } ) \\\\ & = & ( \\frac { 1 } { \\sqrt { 2 m } R } \\hat { G } + i V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) ) \\hat { \\xi } \\equiv \\hat { q } ~ \\hat { \\xi } , \\\\ \\hat { \\bar { Q } } & \\equiv & \\frac { 1 } { \\sqrt { 2 } } ( \\hat { Q } _ { 1 } - i \\hat { Q } _ { 2 } ) \\\\ & = & ( \\frac { 1 } { \\sqrt { 2 m } R } \\hat { G } - i V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) ) \\hat { \\bar { \\xi } } \\equiv \\hat { q } ^ { \\dagger } ~ \\hat { \\bar { \\xi } } . \\end{align*}", "\\begin{equation*} \\{ \\hat { \\xi } , \\hat { \\bar { \\xi } } \\} = 1 , \\qquad \\hat { \\xi } ^ { 2 } = \\hat { \\bar { \\xi } } ^ { 2 } = 0 . \\end{equation*}", "\\begin{align*} \\hat { H } & = & \\{ \\hat { Q } , \\hat { \\bar { Q } } \\} \\\\ & = & \\frac { 1 } { 2 m R ^ { 2 } } \\hat { G } ^ { 2 } + V ^ { 2 } ( \\hat { W } , \\hat { W } ^ { \\dagger } ) \\\\ & - & \\frac { i } { \\sqrt { 2 m } R } ( \\hat { G } V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) - V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) \\hat { G } ) [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] , \\end{align*}" ], "latex_expand": [ "$ \\mitpsi ^ { \\prime } ( \\mittheta ) $", "$ 0 \\leq \\mitA ( \\mittheta ) < \\hslash $", "$ 0 \\leq \\mitalpha < 1 $", "$ { \\mathrm { e } } ^ { \\miti \\mitn \\mittheta } $", "$ \\mitn = $", "$ \\mitS ^ { 1 } $", "$ \\mitalpha $", "$ \\mite \\mupPhi \\slash 2 \\mitpi \\hslash ~ \\mitc $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitG } $", "$ \\hat { \\mitW } $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitQ } _ { \\miti } ( \\miti = 1 , 2 ) $", "$ \\hat { \\mitQ } _ { \\miti } ( \\miti = 1 , 2 ) $", "$ \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitW } ^ { \\dagger } $", "$ \\mitm $", "$ \\mitR $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } $", "\\begin{align*} \\displaystyle \\hat { \\mitQ } & \\displaystyle \\equiv & \\displaystyle \\frac { 1 } { \\sqrt { 2 } } \\Big ( \\hat { \\mitQ } _ { 1 } + \\miti \\hat { \\mitQ } _ { 2 } \\Big ) \\\\ & = & \\displaystyle \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } \\hat { \\mitG } + \\miti \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\Big ) \\hat { \\mitxi } \\equiv \\hat { \\mitq } ~ \\hat { \\mitxi } , \\\\ \\displaystyle \\hat { \\bar { \\mitQ } } & \\displaystyle \\equiv & \\displaystyle \\frac { 1 } { \\sqrt { 2 } } \\Big ( \\hat { \\mitQ } _ { 1 } - \\miti \\hat { \\mitQ } _ { 2 } \\Big ) \\\\ & = & \\displaystyle \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } \\hat { \\mitG } - \\miti \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\Big ) \\hat { \\bar { \\mitxi } } \\equiv \\hat { \\mitq } ^ { \\dagger } ~ \\hat { \\bar { \\mitxi } } . \\end{align*}", "\\begin{equation*} \\{ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\} = 1 , \\qquad \\hat { \\mitxi } ^ { 2 } = \\hat { \\bar { \\mitxi } } ^ { 2 } = 0 . \\end{equation*}", "\\begin{align*} \\displaystyle \\hat { \\mitH } & = & \\displaystyle \\{ \\hat { \\mitQ } , \\hat { \\bar { \\mitQ } } \\} \\\\ & = & \\displaystyle \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } \\hat { \\mitG } ^ { 2 } + \\mitV ^ { 2 } ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\\\ & \\displaystyle - & \\displaystyle \\frac { \\miti } { \\sqrt { 2 \\mitm } \\mitR } \\Big ( \\hat { \\mitG } \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) - \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\hat { \\mitG } \\Big ) \\Big [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\Big ] , \\end{align*}" ], "x_min": [ 0.4968999922275543, 0.7519000172615051, 0.24050000309944153, 0.7635999917984009, 0.8479999899864197, 0.7649999856948853, 0.43050000071525574, 0.16030000150203705, 0.3206999897956848, 0.120899997651577, 0.6087999939918518, 0.6717000007629395, 0.5425000190734863, 0.20659999549388885, 0.4699000120162964, 0.120899997651577, 0.14509999752044678, 0.21559999883174896, 0.31310001015663147, 0.37940001487731934, 0.8562999963760376, 0.4422999918460846, 0.3199999928474426, 0.38420000672340393, 0.28060001134872437 ], "y_min": [ 0.10010000318288803, 0.12160000205039978, 0.14399999380111694, 0.14159999787807465, 0.14749999344348907, 0.1851000040769577, 0.21140000224113464, 0.2280000001192093, 0.22750000655651093, 0.3418000042438507, 0.3393999934196472, 0.3393999934196472, 0.3628000020980835, 0.42480000853538513, 0.4672999978065491, 0.6557999849319458, 0.6772000193595886, 0.6772000193595886, 0.6845999956130981, 0.6807000041007996, 0.6791999936103821, 0.6963000297546387, 0.4912000000476837, 0.7261000275611877, 0.798799991607666 ], "x_max": [ 0.5404000282287598, 0.8708000183105469, 0.3359000086784363, 0.7940000295639038, 0.883899986743927, 0.7864000201225281, 0.44359999895095825, 0.23909999430179596, 0.34209999442100525, 0.14229999482631683, 0.6247000098228455, 0.6930999755859375, 0.5638999938964844, 0.305400013923645, 0.5687000155448914, 0.21070000529289246, 0.1671999990940094, 0.24459999799728394, 0.3310999870300293, 0.3953000009059906, 0.8784000277519226, 0.4706000089645386, 0.6841999888420105, 0.6226000189781189, 0.7235999703407288 ], "y_max": [ 0.1151999980211258, 0.13619999587535858, 0.15569999814033508, 0.15379999577999115, 0.15379999577999115, 0.19679999351501465, 0.21819999814033508, 0.2425999939441681, 0.23919999599456787, 0.35350000858306885, 0.35359999537467957, 0.35359999537467957, 0.375, 0.4424000084400177, 0.48489999771118164, 0.6733999848365784, 0.6909000277519226, 0.6909000277519226, 0.6909000277519226, 0.6913999915122986, 0.6913999915122986, 0.7153000235557556, 0.6420999765396118, 0.7515000104904175, 0.8938999772071838 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003194_page08
{ "latex": [ "$\\theta $", "$P_{\\theta }$", "$i\\hbar $", "$\\e ^{i\\theta }$", "$P_{\\theta }$", "$\\hw $", "$\\hg $", "$\\hw $", "$\\e ^{i\\theta }$", "$\\hg $", "$P_{\\theta }$", "$\\hxi , \\hxib $", "$V(\\e ^{i\\theta },\\e ^{-i\\theta })$", "$2\\theta $", "$g_N$", "$S^1$", "$\\hw $", "$\\hg =-i\\hbar ~\\del /\\del \\theta +\\hbar ~\\alpha $", "$\\alpha $", "\\begin {equation} \\{P_{\\theta }, \\e ^{i\\theta }\\}_P=-i \\e ^{i\\theta }. \\end {equation}", "\\begin {equation} \\hat H\\rightarrow H_{cl}={P_{\\theta }^2\\over {2mR^2}}+ V^2(\\e ^{i\\theta },\\e ^{-i\\theta }). \\end {equation}", "\\begin {equation} V(\\e ^{i\\theta },\\e ^{-i\\theta })=\\sqrt {{{mg_NR}\\over 2}}\\sin \\theta , \\label {poten1} \\end {equation}", "\\begin {equation} V(\\hw ,\\hwd )=\\sqrt {{mg_NR}\\over {2}}\\Bigl ({{\\hw -\\hwd }\\over {2i}}\\Bigr ). \\end {equation}", "\\begin {equation} \\hat H= {1\\over {2mR^2}}\\hg ^2+{{mg_NR}\\over 2}\\sin ^2\\theta -{\\hbar \\over 2}\\sqrt {{g_N\\over R}}\\cos \\theta \\Bigl [\\hxi , \\hxib \\Bigr ] \\label {hamilton2} \\end {equation}", "\\begin {equation} \\hq \\ket {\\Psi }=0\\qquad {\\rm and}\\qquad \\hqb \\ket {\\Psi }=0. \\label {ground1} \\end {equation}", "\\begin {equation} \\hxi =\\left (\\begin {array}{cc} 0&0\\\\ 1&0\\end {array}\\right ),\\qquad \\hxib =\\left (\\begin {array}{cc} 0&1\\\\ 0&0\\end {array}\\right ) \\label {supercharge2} \\end {equation}" ], "latex_norm": [ "$ \\theta $", "$ P _ { \\theta } $", "$ i \\hbar $", "$ { e } ^ { i \\theta } $", "$ P _ { \\theta } $", "$ \\hat { W } $", "$ \\hat { G } $", "$ \\hat { W } $", "$ { e } ^ { i \\theta } $", "$ \\hat { G } $", "$ P _ { \\theta } $", "$ \\hat { \\xi } , \\hat { \\bar { \\xi } } $", "$ V ( { e } ^ { i \\theta } , e ^ { - i \\theta } ) $", "$ 2 \\theta $", "$ g _ { N } $", "$ S ^ { 1 } $", "$ \\hat { W } $", "$ \\hat { G } = - i \\hbar ~ \\partial \\slash \\partial \\theta + \\hbar ~ \\alpha $", "$ \\alpha $", "\\begin{equation*} \\{ P _ { \\theta } , e ^ { i \\theta } \\} _ { P } = - i e ^ { i \\theta } . \\end{equation*}", "\\begin{equation*} \\hat { H } \\rightarrow H _ { c l } = \\frac { P _ { \\theta } ^ { 2 } } { 2 m R ^ { 2 } } + V ^ { 2 } ( e ^ { i \\theta } , e ^ { - i \\theta } ) . \\end{equation*}", "\\begin{equation*} V ( e ^ { i \\theta } , e ^ { - i \\theta } ) = \\sqrt { \\frac { m g _ { N } R } { 2 } } \\operatorname { s i n } \\theta , \\end{equation*}", "\\begin{equation*} V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) = \\sqrt { \\frac { m g _ { N } R } { 2 } } ( \\frac { \\hat { W } - \\hat { W } ^ { \\dagger } } { 2 i } ) . \\end{equation*}", "\\begin{equation*} \\hat { H } = \\frac { 1 } { 2 m R ^ { 2 } } \\hat { G } ^ { 2 } + \\frac { m g _ { N } R } { 2 } { \\operatorname { s i n } } ^ { 2 } \\theta - \\frac { \\hbar } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\operatorname { c o s } \\theta [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] \\end{equation*}", "\\begin{equation*} \\hat { Q } \\vert \\Psi \\rangle = 0 \\qquad a n d \\qquad \\hat { \\bar { Q } } \\vert \\Psi \\rangle = 0 . \\end{equation*}", "\\begin{align*} \\hat { \\xi } = ( \\begin{array}{cc} 0 & 0 \\\\ 1 & 0 \\end{array} ) , \\qquad \\hat { \\bar { \\xi } } = ( \\begin{array}{cc} 0 & 1 \\\\ 0 & 0 \\end{array} ) \\end{align*}" ], "latex_expand": [ "$ \\mittheta $", "$ \\mitP _ { \\mittheta } $", "$ \\miti \\hslash $", "$ { \\mathrm { e } } ^ { \\miti \\mittheta } $", "$ \\mitP _ { \\mittheta } $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitG } $", "$ \\hat { \\mitW } $", "$ { \\mathrm { e } } ^ { \\miti \\mittheta } $", "$ \\hat { \\mitG } $", "$ \\mitP _ { \\mittheta } $", "$ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } $", "$ \\mitV ( { \\mathrm { e } } ^ { \\miti \\mittheta } , \\mathrm { e } ^ { - \\miti \\mittheta } ) $", "$ 2 \\mittheta $", "$ \\mitg _ { \\mitN } $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitG } = - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mittheta + \\hslash ~ \\mitalpha $", "$ \\mitalpha $", "\\begin{equation*} \\{ \\mitP _ { \\mittheta } , \\mathrm { e } ^ { \\miti \\mittheta } \\} _ { \\mitP } = - \\miti \\mathrm { e } ^ { \\miti \\mittheta } . \\end{equation*}", "\\begin{equation*} \\hat { \\mitH } \\rightarrow \\mitH _ { \\mitc \\mitl } = \\frac { \\mitP _ { \\mittheta } ^ { 2 } } { 2 \\mitm \\mitR ^ { 2 } } + \\mitV ^ { 2 } ( \\mathrm { e } ^ { \\miti \\mittheta } , \\mathrm { e } ^ { - \\miti \\mittheta } ) . \\end{equation*}", "\\begin{equation*} \\mitV ( \\mathrm { e } ^ { \\miti \\mittheta } , \\mathrm { e } ^ { - \\miti \\mittheta } ) = \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\operatorname { s i n } \\mittheta , \\end{equation*}", "\\begin{equation*} \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) = \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\Big ( \\frac { \\hat { \\mitW } - \\hat { \\mitW } ^ { \\dagger } } { 2 \\miti } \\Big ) . \\end{equation*}", "\\begin{equation*} \\hat { \\mitH } = \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } \\hat { \\mitG } ^ { 2 } + \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\operatorname { s i n } } ^ { 2 } \\mittheta - \\frac { \\hslash } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\operatorname { c o s } \\mittheta \\Big [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\Big ] \\end{equation*}", "\\begin{equation*} \\hat { \\mitQ } \\vert \\mupPsi \\rangle = 0 \\qquad \\mathrm { a n d } \\qquad \\hat { \\bar { \\mitQ } } \\vert \\mupPsi \\rangle = 0 . \\end{equation*}", "\\begin{align*} \\hat { \\mitxi } = \\left( \\begin{array}{cc} 0 & 0 \\\\ 1 & 0 \\end{array} \\right) , \\qquad \\hat { \\bar { \\mitxi } } = \\left( \\begin{array}{cc} 0 & 1 \\\\ 0 & 0 \\end{array} \\right) \\end{align*}" ], "x_min": [ 0.6820999979972839, 0.22390000522136688, 0.8306999802589417, 0.5508000254631042, 0.6158000230789185, 0.6869000196456909, 0.7512000203132629, 0.18870000541210175, 0.2467000037431717, 0.3158000111579895, 0.3677000105381012, 0.5169000029563904, 0.2321999967098236, 0.7131999731063843, 0.802299976348877, 0.8562999963760376, 0.1768999993801117, 0.6039999723434448, 0.8176000118255615, 0.42289999127388, 0.3573000133037567, 0.37869998812675476, 0.3537999987602234, 0.29089999198913574, 0.3634999990463257, 0.3587000072002411 ], "y_min": [ 0.1436000019311905, 0.16500000655651093, 0.2328999936580658, 0.2533999979496002, 0.25540000200271606, 0.2515000104904175, 0.2515000104904175, 0.29440000653266907, 0.29589998722076416, 0.29440000653266907, 0.29789999127388, 0.31349998712539673, 0.3910999894142151, 0.4706999957561493, 0.4745999872684479, 0.5932999849319458, 0.6875, 0.6875, 0.6948000192642212, 0.19339999556541443, 0.34279999136924744, 0.41749998927116394, 0.5454000234603882, 0.63919997215271, 0.801800012588501, 0.8901000022888184 ], "x_max": [ 0.6924999952316284, 0.24529999494552612, 0.8458999991416931, 0.5728999972343445, 0.6371999979019165, 0.708299994468689, 0.7670999765396118, 0.21080000698566437, 0.2687999904155731, 0.33169999718666077, 0.38909998536109924, 0.545199990272522, 0.326200008392334, 0.7332000136375427, 0.8258000016212463, 0.8784000277519226, 0.19830000400543213, 0.7739999890327454, 0.8306999802589417, 0.583899974822998, 0.6496000289916992, 0.6247000098228455, 0.652999997138977, 0.7159000039100647, 0.6434000134468079, 0.6448000073432922 ], "y_max": [ 0.15389999747276306, 0.1776999980211258, 0.24410000443458557, 0.2655999958515167, 0.26759999990463257, 0.26570001244544983, 0.26570001244544983, 0.30809998512268066, 0.30809998512268066, 0.30809998512268066, 0.31060001254081726, 0.3321000039577484, 0.4066999852657318, 0.4814000129699707, 0.4839000105857849, 0.6050000190734863, 0.701200008392334, 0.7050999999046326, 0.7010999917984009, 0.2134000062942505, 0.3774999976158142, 0.4571000039577484, 0.5849999785423279, 0.6733999848365784, 0.8246999979019165, 0.9291999936103821 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page09
{ "latex": [ "$2\\times 2$", "${\\hat S}^{F}\\equiv \\sigma ^3/2$", "${\\hat S}^F$", "$\\ket {+}$", "$\\ket {-}$", "$+1/2$", "$-1/2$", "$\\hw $", "${\\hat H}$", "$\\pm 1/2$", "$I_0(2z)$", "${\\hat f}=\\half +\\half [\\hxi , \\hxib ]$", "$0, 1$", "$0, 1$", "$$ \\Bigl [\\hxi , \\hxib \\Bigr ]=-\\left (\\begin {array}{cc} 1&0\\\\ 0&-1\\end {array}\\right )\\equiv -\\sigma ^3. $$", "\\begin {eqnarray} \\hat H&=& \\Bigl ({1\\over {2mR^2}}\\hg ^2+{{mg_NR}\\over 2}\\sin ^2\\theta \\Bigr ) {\\bf 1}_{2\\times 2}+{\\hbar \\over 2}\\sqrt {{g_N\\over R}}\\sigma ^3\\cos \\theta \\\\ &=&\\left (\\begin {array}{cc} {\\hat q}^{\\dagger }{\\hat q}&0\\\\ 0&{\\hat q}{\\hat q}^{\\dagger }\\end {array}\\right )\\equiv \\left (\\begin {array}{cc} {\\hat H}_{+}&0\\\\ 0&{\\hat H}_{-}\\end {array}\\right ). \\end {eqnarray}", "\\begin {equation} \\ket {\\Psi }={\\ket {+}\\choose \\ket {-}}. \\label {spinor} \\end {equation}", "\\begin {equation} \\Psi (\\theta )={\\psi _{+\\half }(\\theta )\\choose \\psi _{-\\half }(\\theta )}. \\end {equation}", "\\begin {eqnarray} {\\hat q}~\\psi _{+\\half }(\\theta )= \\Bigl ({1\\over {\\sqrt {2m}R}}(-i\\hbar ~{\\del \\over {\\del \\theta }}+\\hbar ~\\alpha ) + i\\sqrt {{mg_NR\\over 2}}\\sin \\theta \\Bigr )~\\psi _{+\\half }(\\theta )=0, \\\\ {\\hat q}^{\\dagger }\\psi _{-\\half }(\\theta )= \\Bigl ({1\\over {\\sqrt {2m}R}}(-i\\hbar ~{\\del \\over {\\del \\theta }}+\\hbar ~\\alpha ) - i\\sqrt {{mg_NR\\over 2}}\\sin \\theta \\Bigr )~\\psi _{-\\half }(\\theta )=0. \\end {eqnarray}", "\\begin {equation} \\psi _{+\\half }(\\theta ) ={1\\over \\sqrt {I_0(2z)}}{\\rm exp}(-i\\alpha \\theta -{z\\over {\\hbar }}\\cos \\theta ), \\quad \\psi _{-\\half }(\\theta ) ={1\\over \\sqrt {I_0(2z)}}{\\rm exp}(-i\\alpha \\theta +{z\\over {\\hbar }}\\cos \\theta ), \\label {ground3} \\end {equation}", "$$ {{mR^2}\\over \\hbar }\\sqrt {{g_N\\over R}} \\equiv {mR^2\\over \\hbar }\\omega \\equiv {z\\over {\\hbar }}~~. $$" ], "latex_norm": [ "$ 2 \\times 2 $", "$ \\hat { S } ^ { F } \\equiv \\sigma ^ { 3 } \\slash 2 $", "$ \\hat { S } ^ { F } $", "$ \\vert + \\rangle $", "$ \\vert - \\rangle $", "$ + 1 \\slash 2 $", "$ - 1 \\slash 2 $", "$ \\hat { W } $", "$ \\hat { H } $", "$ \\pm 1 \\slash 2 $", "$ I _ { 0 } ( 2 z ) $", "$ \\hat { f } = \\frac { 1 } { 2 } + \\frac { 1 } { 2 } [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] $", "$ 0 , 1 $", "$ 0 , 1 $", "\\begin{align*} [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] = - ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) \\equiv - \\sigma ^ { 3 } . \\end{align*}", "\\begin{align*} \\hat { H } & = & ( \\frac { 1 } { 2 m R ^ { 2 } } \\hat { G } ^ { 2 } + \\frac { m g _ { N } R } { 2 } { \\operatorname { s i n } } ^ { 2 } \\theta ) 1 _ { 2 \\times 2 } + \\frac { \\hbar } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\sigma ^ { 3 } \\operatorname { c o s } \\theta \\\\ & = & \\\\ & \\\\ & \\\\ & \\end{align*}", "\\begin{equation*} \\vert \\Psi \\rangle = { \\vert + \\rangle \\atopwithdelims ( ) \\vert - \\rangle } . \\end{equation*}", "\\begin{equation*} \\Psi ( \\theta ) = { \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) \\atopwithdelims ( ) \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) } . \\end{equation*}", "\\begin{align*} \\hat { q } ~ \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) = ( \\frac { 1 } { \\sqrt { 2 m } R } ( - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } + \\hbar ~ \\alpha ) + i \\sqrt { \\frac { m g _ { N } R } { 2 } } \\operatorname { s i n } \\theta ) ~ \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) = 0 , \\\\ \\hat { q } ^ { \\dagger } \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) = ( \\frac { 1 } { \\sqrt { 2 m } R } ( - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } + \\hbar ~ \\alpha ) - i \\sqrt { \\frac { m g _ { N } R } { 2 } } \\operatorname { s i n } \\theta ) ~ \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) = 0 . \\end{align*}", "\\begin{equation*} \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) = \\frac { 1 } { \\sqrt { I _ { 0 } ( 2 z ) } } e x p ( - i \\alpha \\theta - \\frac { z } { \\hbar } \\operatorname { c o s } \\theta ) , \\quad \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) = \\frac { 1 } { \\sqrt { I _ { 0 } ( 2 z ) } } e x p ( - i \\alpha \\theta + \\frac { z } { \\hbar } \\operatorname { c o s } \\theta ) , \\end{equation*}", "\\begin{equation*} \\frac { m R ^ { 2 } } { \\hbar } \\sqrt { \\frac { g _ { N } } { R } } \\equiv \\frac { m R ^ { 2 } } { \\hbar } \\omega \\equiv \\frac { z } { \\hbar } ~ ~ . \\end{equation*}" ], "latex_expand": [ "$ 2 \\times 2 $", "$ \\hat { \\mitS } ^ { \\mitF } \\equiv \\mitsigma ^ { 3 } \\slash 2 $", "$ \\hat { \\mitS } ^ { \\mitF } $", "$ \\vert + \\rangle $", "$ \\vert - \\rangle $", "$ + 1 \\slash 2 $", "$ - 1 \\slash 2 $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitH } $", "$ \\pm 1 \\slash 2 $", "$ \\mitI _ { 0 } ( 2 \\mitz ) $", "$ \\hat { \\mitf } = \\frac { 1 } { 2 } + \\frac { 1 } { 2 } [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } ] $", "$ 0 , 1 $", "$ 0 , 1 $", "\\begin{align*} \\Big [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\Big ] = - \\left( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} \\right) \\equiv - \\mitsigma ^ { 3 } . \\end{align*}", "\\begin{align*} \\displaystyle \\hat { \\mitH } & = & \\displaystyle \\Big ( \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } \\hat { \\mitG } ^ { 2 } + \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\operatorname { s i n } } ^ { 2 } \\mittheta \\Big ) 1 _ { 2 \\times 2 } + \\frac { \\hslash } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\mitsigma ^ { 3 } \\operatorname { c o s } \\mittheta \\\\ & = & \\\\ & \\\\ & \\\\ & \\end{align*}", "\\begin{equation*} \\vert \\mupPsi \\rangle = { \\vert + \\rangle \\atopwithdelims ( ) \\vert - \\rangle } . \\end{equation*}", "\\begin{equation*} \\mupPsi ( \\mittheta ) = { \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) \\atopwithdelims ( ) \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) } . \\end{equation*}", "\\begin{align*} \\displaystyle \\hat { \\mitq } ~ \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) = \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } ( - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha ) + \\miti \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\operatorname { s i n } \\mittheta \\Big ) ~ \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) = 0 , \\\\ \\displaystyle \\hat { \\mitq } ^ { \\dagger } \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) = \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } ( - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha ) - \\miti \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\operatorname { s i n } \\mittheta \\Big ) ~ \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) = 0 . \\end{align*}", "\\begin{equation*} \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) = \\frac { 1 } { \\sqrt { \\mitI _ { 0 } ( 2 \\mitz ) } } \\mathrm { e x p } ( - \\miti \\mitalpha \\mittheta - \\frac { \\mitz } { \\hslash } \\operatorname { c o s } \\mittheta ) , \\quad \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) = \\frac { 1 } { \\sqrt { \\mitI _ { 0 } ( 2 \\mitz ) } } \\mathrm { e x p } ( - \\miti \\mitalpha \\mittheta + \\frac { \\mitz } { \\hslash } \\operatorname { c o s } \\mittheta ) , \\end{equation*}", "\\begin{equation*} \\frac { \\mitm \\mitR ^ { 2 } } { \\hslash } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\equiv \\frac { \\mitm \\mitR ^ { 2 } } { \\hslash } \\mitomega \\equiv \\frac { \\mitz } { \\hslash } ~ ~ . \\end{equation*}" ], "x_min": [ 0.5562999844551086, 0.6462000012397766, 0.5770999789237976, 0.854200005531311, 0.16169999539852142, 0.35519999265670776, 0.4499000012874603, 0.17900000512599945, 0.2777999937534332, 0.7609000205993652, 0.17759999632835388, 0.7263000011444092, 0.23569999635219574, 0.5853000283241272, 0.37599998712539673, 0.26260000467300415, 0.44369998574256897, 0.4223000109195709, 0.19830000400543213, 0.1354999989271164, 0.3862999975681305 ], "y_min": [ 0.29589998722076416, 0.31299999356269836, 0.3345000147819519, 0.33739998936653137, 0.35839998722076416, 0.35839998722076416, 0.35839998722076416, 0.43849998712539673, 0.5234000086784363, 0.5264000296592712, 0.7523999810218811, 0.8945000171661377, 0.9140999913215637, 0.9140999913215637, 0.12839999794960022, 0.20409999787807465, 0.3910999894142151, 0.46630001068115234, 0.5752000212669373, 0.6958000063896179, 0.8012999892234802 ], "x_max": [ 0.6011999845504761, 0.7422999739646912, 0.6026999950408936, 0.8831999897956848, 0.1906999945640564, 0.4007999897003174, 0.49549999833106995, 0.20110000669956207, 0.29580000042915344, 0.8065000176429749, 0.22939999401569366, 0.8341000080108643, 0.2599000036716461, 0.6101999878883362, 0.6281999945640564, 0.7415000200271606, 0.5633000135421753, 0.5839999914169312, 0.7718999981880188, 0.8327999711036682, 0.6184999942779541 ], "y_max": [ 0.30709999799728394, 0.33059999346733093, 0.34869998693466187, 0.35199999809265137, 0.37299999594688416, 0.37299999594688416, 0.37299999594688416, 0.4526999890804291, 0.5375999808311462, 0.5410000085830688, 0.7674999833106995, 0.9121000170707703, 0.9243999719619751, 0.9243999719619751, 0.16500000655651093, 0.2847000062465668, 0.43070000410079956, 0.5092999935150146, 0.663100004196167, 0.7383000254631042, 0.8335000276565552 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page10
{ "latex": [ "$\\Psi (\\theta +2\\pi )=\\Psi (\\theta )$", "$\\psi _{\\pm \\half }(\\theta +2\\pi ) =\\psi _{\\pm \\half }(\\theta )$", "$\\alpha $", "$\\alpha ={\\rm integer}$", "$0\\leq \\alpha <1$", "$0\\leq \\alpha <1$", "$0< \\alpha < 1$", "$\\alpha $", "${\\rm Tr}(-1)^{{\\hat f}}=n_B^{E=0}-n_F^{E=0}$", "$n_B^{E=0}=n_F^{E=0}=1$", "$\\alpha ={\\rm integer}$", "$n_B^{E=0}=n_F^{E=0}=0$", "$\\alpha =$", "$\\alpha $", "$S^1$", "$S^1$", "$\\alpha $", "$\\alpha $", "$\\alpha $", "$0\\leq \\alpha < 1$", "$\\e ^{in\\theta }(n={\\rm integer})$", "$\\alpha ={\\rm integer}$", "$0< \\alpha < 1$", "$2\\pi $", "\\begin {equation} \\psi _{\\pm \\half }(\\theta +2\\pi )=\\e ^{-i2\\pi \\alpha }\\psi _{\\pm \\half }(\\theta ). \\label {boundary} \\end {equation}", "\\begin {equation} \\psi _{\\pm \\half }(\\theta )\\longrightarrow \\psi _{\\pm \\half }^{\\prime }(\\theta )=\\e ^{-i\\alpha \\theta }\\psi _{\\pm \\half }(\\theta ). \\label {gaugetrf} \\end {equation}" ], "latex_norm": [ "$ \\Psi ( \\theta + 2 \\pi ) = \\Psi ( \\theta ) $", "$ \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta + 2 \\pi ) = \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) $", "$ \\alpha $", "$ \\alpha = i n t e g e r $", "$ 0 \\leq \\alpha < 1 $", "$ 0 \\leq \\alpha < 1 $", "$ 0 < \\alpha < 1 $", "$ \\alpha $", "$ T r ( - 1 ) ^ { \\hat { f } } = n _ { B } ^ { E = 0 } - n _ { F } ^ { E = 0 } $", "$ n _ { B } ^ { E = 0 } = n _ { F } ^ { E = 0 } = 1 $", "$ \\alpha = i n t e g e r $", "$ n _ { B } ^ { E = 0 } = n _ { F } ^ { E = 0 } = 0 $", "$ \\alpha = $", "$ \\alpha $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ \\alpha $", "$ \\alpha $", "$ \\alpha $", "$ 0 \\leq \\alpha < 1 $", "$ { e } ^ { i n \\theta } ( n = i n t e g e r ) $", "$ \\alpha = i n t e g e r $", "$ 0 < \\alpha < 1 $", "$ 2 \\pi $", "\\begin{equation*} \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta + 2 \\pi ) = e ^ { - i 2 \\pi \\alpha } \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) . \\end{equation*}", "\\begin{equation*} \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) \\longrightarrow \\psi _ { \\pm \\frac { 1 } { 2 } } ^ { \\prime } ( \\theta ) = e ^ { - i \\alpha \\theta } \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) . \\end{equation*}" ], "latex_expand": [ "$ \\mupPsi ( \\mittheta + 2 \\mitpi ) = \\mupPsi ( \\mittheta ) $", "$ \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta + 2 \\mitpi ) = \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) $", "$ \\mitalpha $", "$ \\mitalpha = \\mathrm { i n t e g e r } $", "$ 0 \\leq \\mitalpha < 1 $", "$ 0 \\leq \\mitalpha < 1 $", "$ 0 < \\mitalpha < 1 $", "$ \\mitalpha $", "$ \\mathrm { T r } ( - 1 ) ^ { \\hat { \\mitf } } = \\mitn _ { \\mitB } ^ { \\mitE = 0 } - \\mitn _ { \\mitF } ^ { \\mitE = 0 } $", "$ \\mitn _ { \\mitB } ^ { \\mitE = 0 } = \\mitn _ { \\mitF } ^ { \\mitE = 0 } = 1 $", "$ \\mitalpha = \\mathrm { i n t e g e r } $", "$ \\mitn _ { \\mitB } ^ { \\mitE = 0 } = \\mitn _ { \\mitF } ^ { \\mitE = 0 } = 0 $", "$ \\mitalpha = $", "$ \\mitalpha $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitalpha $", "$ \\mitalpha $", "$ \\mitalpha $", "$ 0 \\leq \\mitalpha < 1 $", "$ { \\mathrm { e } } ^ { \\miti \\mitn \\mittheta } ( \\mitn = \\mathrm { i n t e g e r } ) $", "$ \\mitalpha = \\mathrm { i n t e g e r } $", "$ 0 < \\mitalpha < 1 $", "$ 2 \\mitpi $", "\\begin{equation*} \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta + 2 \\mitpi ) = \\mathrm { e } ^ { - \\miti 2 \\mitpi \\mitalpha } \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) . \\end{equation*}", "\\begin{equation*} \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) \\longrightarrow \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ^ { \\prime } ( \\mittheta ) = \\mathrm { e } ^ { - \\miti \\mitalpha \\mittheta } \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) . \\end{equation*}" ], "x_min": [ 0.6399000287055969, 0.120899997651577, 0.16099999845027924, 0.3019999861717224, 0.8500000238418579, 0.120899997651577, 0.28610000014305115, 0.2184000015258789, 0.5446000099182129, 0.36899998784065247, 0.5515000224113464, 0.7366999983787537, 0.15070000290870667, 0.3711000084877014, 0.8562999963760376, 0.7713000178337097, 0.7968000173568726, 0.20180000364780426, 0.5680999755859375, 0.630299985408783, 0.7353000044822693, 0.41670000553131104, 0.3849000036716461, 0.8003000020980835, 0.3779999911785126, 0.3537999987602234 ], "y_min": [ 0.12160000205039978, 0.14259999990463257, 0.23489999771118164, 0.2524000108242035, 0.25290000438690186, 0.274399995803833, 0.2953999936580658, 0.3197999894618988, 0.31200000643730164, 0.3353999853134155, 0.3379000127315521, 0.3353999853134155, 0.36230000853538513, 0.44780001044273376, 0.46389999985694885, 0.5062999725341797, 0.5541999936103821, 0.5756999850273132, 0.5967000126838684, 0.6812000274658203, 0.6996999979019165, 0.8086000084877014, 0.8300999999046326, 0.8999000191688538, 0.17090000212192535, 0.6416000127792358 ], "x_max": [ 0.8051000237464905, 0.31029999256134033, 0.17409999668598175, 0.4036000072956085, 0.8873000144958496, 0.17000000178813934, 0.3772999942302704, 0.23149999976158142, 0.7491999864578247, 0.5162000060081482, 0.6496000289916992, 0.8831999897956848, 0.18459999561309814, 0.38420000672340393, 0.8784000277519226, 0.7926999926567078, 0.8098999857902527, 0.21490000188350677, 0.5812000036239624, 0.71670001745224, 0.8784000277519226, 0.5148000121116638, 0.48030000925064087, 0.8197000026702881, 0.6288999915122986, 0.652999997138977 ], "y_max": [ 0.13619999587535858, 0.16120000183582306, 0.24120000004768372, 0.2655999958515167, 0.26460000872612, 0.28610000014305115, 0.30570000410079956, 0.32659998536109924, 0.33009999990463257, 0.351500004529953, 0.350600004196167, 0.351500004529953, 0.36910000443458557, 0.4546000063419342, 0.475600004196167, 0.5180000066757202, 0.5609999895095825, 0.5820000171661377, 0.6035000085830688, 0.6929000020027161, 0.7157999873161316, 0.8213000297546387, 0.840399980545044, 0.9082000255584717, 0.19429999589920044, 0.6660000085830688 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0003194_page11
{ "latex": [ "${{mg_N R}\\over 2}\\sin ^2\\theta $", "$(\\pm 1/2)$", "$ \\cos \\theta _{cl}(\\tau )=\\pm \\tanh (\\omega (\\tau -\\tau _0)) $", "$-2z/\\hbar $", "${\\rm exp}(-2z/\\hbar )\\times \\cos {2\\pi \\alpha }$", "$z$", "$E_0\\sim {1\\over {2mR^2}}(\\alpha ^2+O(z^2))$", "$E_0\\sim {1\\over {2mR^2}}(\\alpha ^2+O(z^2))$", "$\\hbar =1$", "$\\alpha $", "$R\\rightarrow \\infty $", "$R$", "$S^1$", "$R$", "$S^1$", "$R\\rightarrow \\infty $", "$x\\equiv R\\theta $", "$\\hg =-i\\hbar ~\\del /\\del \\theta +\\hbar ~\\alpha $", "$\\hw $", "$R\\rightarrow \\infty $", "$S^1$", "$\\omega =\\sqrt {g_N/R}$", "$\\cos {2\\pi \\alpha }$", "$K(\\theta _f,t;\\theta _i,0) =\\bra {\\theta _f}{\\exp (-i{\\hat H}t/\\hbar )\\ket {\\theta _i}}= \\sum _{n=-\\infty }^{+\\infty }\\int _{n-winding} {\\cal D}\\theta \\exp (iS_{eff}/\\hbar )$", "$S_{eff}=\\int dt {{mR^2}\\over 2}({{d\\theta }\\over {dt}})^2 -{{mg_NR}\\over 2}\\sin ^2\\theta +\\half \\sqrt {g_N\\over R}\\cos \\theta [\\xi , \\xi ^*]+i\\xi ^*{{d\\xi }\\over {dt}} -\\alpha {d\\theta \\over {dt}}$", "$\\alpha {\\dot \\theta }$", "\\begin {equation} \\hat H= \\Bigl ({-\\hbar ^2\\over {2m}}\\Bigl ({\\del \\over {\\del x}} +i{\\alpha \\over R}\\Bigr )^2 +{{mg_NR}\\over 2}\\sin ^2({x\\over R})\\Bigr ){\\bf 1}_{2\\times 2} +{\\hbar \\over 2}\\sqrt {{g_N\\over R}}\\sigma ^3\\cos ({x\\over R}). \\label {hamilton4} \\end {equation}", "\\begin {equation} {\\hat H}={-\\hbar ^2\\over {2m}}{\\del ^2\\over {\\del x^2}}{\\bf 1}_{2\\times 2}. \\end {equation}", "\\begin {equation} {m\\over \\hbar }\\sqrt {g_N\\over R}\\equiv {{m\\omega }\\over \\hbar }=\\Bigl ({\\rm strength~of~oscillator} \\Bigr )^2 ={\\rm const}. \\label {relation} \\end {equation}", "\\begin {equation} \\hat H = \\Bigl ({-{\\hbar }^2\\over {2m}}{\\del ^2\\over {\\del x^2}} +{{m\\omega ^2}\\over 2} x^2\\Bigr ){\\bf 1}_{2\\times 2} +{{\\hbar ~\\omega }\\over 2}\\sigma ^3 + O({1\\over R^2}). \\label {harmo} \\end {equation}" ], "latex_norm": [ "$ \\frac { m g _ { N } R } { 2 } { s i n } ^ { 2 } \\theta $", "$ ( \\pm 1 \\slash 2 ) $", "$ c o s \\theta _ { c l } ( \\tau ) = \\pm \\operatorname { t a n h } ( \\omega ( \\tau - \\tau _ { 0 } ) ) $", "$ - 2 z \\slash \\hbar $", "$ e x p ( - 2 z \\slash \\hbar ) \\times \\operatorname { c o s } 2 \\pi \\alpha $", "$ z $", "$ E _ { 0 } \\sim \\frac { 1 } { 2 m R ^ { 2 } } ( \\alpha ^ { 2 } + O ( z ^ { 2 } ) ) $", "$ E _ { 0 } \\sim \\frac { 1 } { 2 m R ^ { 2 } } ( \\alpha ^ { 2 } + O ( z ^ { 2 } ) ) $", "$ \\hbar = 1 $", "$ \\alpha $", "$ R \\rightarrow \\infty $", "$ R $", "$ S ^ { 1 } $", "$ R $", "$ S ^ { 1 } $", "$ R \\rightarrow \\infty $", "$ x \\equiv R \\theta $", "$ \\hat { G } = - i \\hbar ~ \\partial \\slash \\partial \\theta + \\hbar ~ \\alpha $", "$ \\hat { W } $", "$ R \\rightarrow \\infty $", "$ S ^ { 1 } $", "$ \\omega = \\sqrt { g _ { N } \\slash R } $", "$ c o s 2 \\pi \\alpha $", "$ K ( \\theta _ { f } , t ; \\theta _ { i } , 0 ) = \\langle \\theta _ { f } \\vert e x p ( - i \\hat { H } t \\slash \\hbar ) \\vert \\theta _ { i } \\rangle = \\sum _ { n = - \\infty } ^ { + \\infty } \\int _ { n - w i n d i n g } D \\theta \\operatorname { e x p } ( i S _ { e f f } \\slash \\hbar ) $", "$ S _ { e f f } = \\int d t \\frac { m R ^ { 2 } } { 2 } ( \\frac { d \\theta } { d t } ) ^ { 2 } - \\frac { m g _ { N } R } { 2 } { s i n } ^ { 2 } \\theta + \\frac { 1 } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\operatorname { c o s } \\theta [ \\xi , \\xi ^ { \\ast } ] + i \\xi ^ { \\ast } \\frac { d \\xi } { d t } - \\alpha \\frac { d \\theta } { d t } $", "$ \\alpha \\dot { \\theta } $", "\\begin{equation*} \\hat { H } = ( \\frac { - \\hbar ^ { 2 } } { 2 m } ( \\frac { \\partial } { \\partial x } + i \\frac { \\alpha } { R } ) ^ { 2 } + \\frac { m g _ { N } R } { 2 } { \\operatorname { s i n } } ^ { 2 } ( \\frac { x } { R } ) ) 1 _ { 2 \\times 2 } + \\frac { \\hbar } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\sigma ^ { 3 } \\operatorname { c o s } ( \\frac { x } { R } ) . \\end{equation*}", "\\begin{equation*} \\hat { H } = \\frac { - \\hbar ^ { 2 } } { 2 m } \\frac { \\partial ^ { 2 } } { \\partial x ^ { 2 } } 1 _ { 2 \\times 2 } . \\end{equation*}", "\\begin{equation*} \\frac { m } { \\hbar } \\sqrt { \\frac { g _ { N } } { R } } \\equiv \\frac { m \\omega } { \\hbar } = ( s t r e n g t h ~ o f ~ o s c i l l a t o r ) ^ { 2 } = c o n s t . \\end{equation*}", "\\begin{equation*} \\hat { H } = ( \\frac { - \\hbar ^ { 2 } } { 2 m } \\frac { \\partial ^ { 2 } } { \\partial x ^ { 2 } } + \\frac { m \\omega ^ { 2 } } { 2 } x ^ { 2 } ) 1 _ { 2 \\times 2 } + \\frac { \\hbar ~ \\omega } { 2 } \\sigma ^ { 3 } + O ( \\frac { 1 } { R ^ { 2 } } ) . \\end{equation*}" ], "latex_expand": [ "$ \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\mathrm { s i n } } ^ { 2 } \\mittheta $", "$ ( \\pm 1 \\slash 2 ) $", "$ \\mathrm { c o s } \\mittheta _ { \\mitc \\mitl } ( \\mittau ) = \\pm \\operatorname { t a n h } ( \\mitomega ( \\mittau - \\mittau _ { 0 } ) ) $", "$ - 2 \\mitz \\slash \\hslash $", "$ \\mathrm { e x p } ( - 2 \\mitz \\slash \\hslash ) \\times \\operatorname { c o s } 2 \\mitpi \\mitalpha $", "$ \\mitz $", "$ \\mitE _ { 0 } \\sim \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } ( \\mitalpha ^ { 2 } + \\mitO ( \\mitz ^ { 2 } ) ) $", "$ \\mitE _ { 0 } \\sim \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } ( \\mitalpha ^ { 2 } + \\mitO ( \\mitz ^ { 2 } ) ) $", "$ \\hslash = 1 $", "$ \\mitalpha $", "$ \\mitR \\rightarrow \\infty $", "$ \\mitR $", "$ \\mitS ^ { 1 } $", "$ \\mitR $", "$ \\mitS ^ { 1 } $", "$ \\mitR \\rightarrow \\infty $", "$ \\mitx \\equiv \\mitR \\mittheta $", "$ \\hat { \\mitG } = - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mittheta + \\hslash ~ \\mitalpha $", "$ \\hat { \\mitW } $", "$ \\mitR \\rightarrow \\infty $", "$ \\mitS ^ { 1 } $", "$ \\mitomega = \\sqrt { \\mitg _ { \\mitN } \\slash \\mitR } $", "$ \\mathrm { c o s } 2 \\mitpi \\mitalpha $", "$ \\mitK ( \\mittheta _ { \\mitf } , \\mitt ; \\mittheta _ { \\miti } , 0 ) = \\langle \\mittheta _ { \\mitf } \\vert \\mathrm { e x p } ( - \\miti \\hat { \\mitH } \\mitt \\slash \\hslash ) \\vert \\mittheta _ { \\miti } \\rangle = \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\int \\nolimits _ { \\mitn - \\mitw \\miti \\mitn \\mitd \\miti \\mitn \\mitg } \\mitD \\mittheta \\operatorname { e x p } ( \\miti \\mitS _ { \\mite \\mitf \\mitf } \\slash \\hslash ) $", "$ \\mitS _ { \\mite \\mitf \\mitf } = \\int \\nolimits \\mitd \\mitt \\frac { \\mitm \\mitR ^ { 2 } } { 2 } ( \\frac { \\mitd \\mittheta } { \\mitd \\mitt } ) ^ { 2 } - \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\mathrm { s i n } } ^ { 2 } \\mittheta + \\frac { 1 } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\operatorname { c o s } \\mittheta [ \\mitxi , \\mitxi ^ { \\ast } ] + \\miti \\mitxi ^ { \\ast } \\frac { \\mitd \\mitxi } { \\mitd \\mitt } - \\mitalpha \\frac { \\mitd \\mittheta } { \\mitd \\mitt } $", "$ \\mitalpha \\dot { \\mittheta } $", "\\begin{equation*} \\hat { \\mitH } = \\Big ( \\frac { - \\hslash ^ { 2 } } { 2 \\mitm } \\Big ( \\frac { \\mitpartial } { \\mitpartial \\mitx } + \\miti \\frac { \\mitalpha } { \\mitR } \\Big ) ^ { 2 } + \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\operatorname { s i n } } ^ { 2 } ( \\frac { \\mitx } { \\mitR } ) \\Big ) 1 _ { 2 \\times 2 } + \\frac { \\hslash } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\mitsigma ^ { 3 } \\operatorname { c o s } ( \\frac { \\mitx } { \\mitR } ) . \\end{equation*}", "\\begin{equation*} \\hat { \\mitH } = \\frac { - \\hslash ^ { 2 } } { 2 \\mitm } \\frac { \\mitpartial ^ { 2 } } { \\mitpartial \\mitx ^ { 2 } } 1 _ { 2 \\times 2 } . \\end{equation*}", "\\begin{equation*} \\frac { \\mitm } { \\hslash } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\equiv \\frac { \\mitm \\mitomega } { \\hslash } = \\Big ( \\mathrm { s t r e n g t h } ~ \\mathrm { o f } ~ \\mathrm { o s c i l l a t o r } \\Big ) ^ { 2 } = \\mathrm { c o n s t } . \\end{equation*}", "\\begin{equation*} \\hat { \\mitH } = \\Big ( \\frac { - \\hslash ^ { 2 } } { 2 \\mitm } \\frac { \\mitpartial ^ { 2 } } { \\mitpartial \\mitx ^ { 2 } } + \\frac { \\mitm \\mitomega ^ { 2 } } { 2 } \\mitx ^ { 2 } \\Big ) 1 _ { 2 \\times 2 } + \\frac { \\hslash ~ \\mitomega } { 2 } \\mitsigma ^ { 3 } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) . \\end{equation*}" ], "x_min": [ 0.7885000109672546, 0.5425000190734863, 0.5356000065803528, 0.3939000070095062, 0.6032999753952026, 0.4553999900817871, 0.8348000049591064, 0.120899997651577, 0.4408999979496002, 0.6365000009536743, 0.4699000120162964, 0.8679999709129333, 0.1437000036239624, 0.19900000095367432, 0.8245000243186951, 0.5162000060081482, 0.6144000291824341, 0.6392999887466431, 0.120899997651577, 0.3124000132083893, 0.3393000066280365, 0.28130000829696655, 0.30889999866485596, 0.23770000040531158, 0.32199999690055847, 0.26260000467300415, 0.2184000015258789, 0.42289999127388, 0.2840000092983246, 0.29159998893737793 ], "y_min": [ 0.09809999912977219, 0.16410000622272491, 0.18549999594688416, 0.20649999380111694, 0.2705000042915344, 0.2964000105857849, 0.31200000643730164, 0.3334999978542328, 0.3345000147819519, 0.33889999985694885, 0.37790000438690186, 0.37790000438690186, 0.3978999853134155, 0.399399995803833, 0.3978999853134155, 0.42089998722076416, 0.4629000127315521, 0.48100000619888306, 0.5019999742507935, 0.5820000171661377, 0.6021000146865845, 0.8241999745368958, 0.861299991607666, 0.8715999722480774, 0.8901000022888184, 0.9071999788284302, 0.5303000211715698, 0.6137999892234802, 0.6904000043869019, 0.7567999958992004 ], "x_max": [ 0.883899986743927, 0.6032999753952026, 0.8009999990463257, 0.44780001044273376, 0.7912999987602234, 0.4657999873161316, 0.8866000175476074, 0.2694999873638153, 0.48510000109672546, 0.6496000289916992, 0.536899983882904, 0.8831999897956848, 0.16509999334812164, 0.2142000049352646, 0.8458999991416931, 0.5867000222206116, 0.6834999918937683, 0.8238000273704529, 0.14229999482631683, 0.37869998812675476, 0.3614000082015991, 0.3862999975681305, 0.3634999990463257, 0.7975000143051147, 0.84170001745224, 0.2825999855995178, 0.7885000109672546, 0.5831999778747559, 0.7235000133514404, 0.7152000069618225 ], "y_max": [ 0.11670000106096268, 0.17919999361038208, 0.20010000467300415, 0.2215999960899353, 0.2856000065803528, 0.30320000648498535, 0.3296000063419342, 0.350600004196167, 0.3456999957561493, 0.3456999957561493, 0.3882000148296356, 0.3882000148296356, 0.40959998965263367, 0.4097000062465668, 0.40959998965263367, 0.4311999976634979, 0.47360000014305115, 0.4986000061035156, 0.5162000060081482, 0.5922999978065491, 0.6137999892234802, 0.8467000126838684, 0.8695999979972839, 0.8896999955177307, 0.9067000150680542, 0.9189000129699707, 0.5669000148773193, 0.6499000191688538, 0.7235999703407288, 0.79339998960495 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page12
{ "latex": [ "$\\hq , \\hqb $", "$W({\\hat x})\\equiv m{\\omega } {\\hat x}$", "${\\hat p}\\equiv -i{\\hbar }~\\del /\\del x$", "$[{\\hat p},{\\hat x}]=-i\\hbar $", "$({\\hat x})$", "$(\\hxi , \\hxib )$", "$R\\rightarrow \\infty $", "$\\hq _{susy}\\ket {\\Psi }=0$", "$\\hqb _{susy}\\ket {\\Psi }=0$", "${\\psi }_{-\\half }^{h.o}(x)$", "${\\psi }_{+\\half }^{h.o}(x)$", "$R\\rightarrow \\infty $", "$I_0(z)\\sim \\e ^z/\\sqrt {2\\pi z}$", "$z$", "${\\tilde \\psi }_{\\pm \\half }(x)dx\\equiv \\psi _{\\pm \\half }(\\theta ){{d\\theta }\\over {\\sqrt {2\\pi R}}}$", "${\\rm Tr}(-1)^{{\\hat f}}=1$", "$N$", "${\\hat V}_a\\equiv {\\hat V}_a(\\theta _1, \\cdots , \\theta _N)$", "$\\hg _a=-i\\hbar ~\\del /\\del \\theta _a+\\hbar ~\\alpha _a$", "$\\hw $", "\\begin {eqnarray} \\hq &=&{1\\over {\\sqrt {2m}}}\\Bigl ({\\hat p} + i W({\\hat x})\\Bigr )\\hxi +O({1\\over R^2})\\equiv \\hq _{susy}+O({1\\over R^2}),\\\\ \\hqb &=&{1\\over {\\sqrt {2m}}}\\Bigl ({\\hat p} - i W({\\hat x})\\Bigr )\\hxib +O({1\\over R^2})\\equiv \\hqb _{susy}+O({1\\over R^2}), \\end {eqnarray}", "\\begin {equation} {\\psi }_{+\\half }^{h.o}(x)\\sim {\\rm exp}(+{{m\\omega }\\over {2\\hbar }} x^2), \\qquad {\\psi }_{-\\half }^{h.o}(x)= \\Bigl ({{m\\omega }\\over {\\pi \\hbar }}\\Bigr )^{1/4} {\\rm exp}(-{{m\\omega }\\over {2\\hbar }} x^2). \\label {harmosol} \\end {equation}", "\\begin {equation} {\\tilde \\psi }_{+\\half }\\sim {\\rm exp}(+{{m\\omega }\\over {2\\hbar }} x^2),\\qquad {\\tilde \\psi }_{-\\half }(x)= \\Bigl ({{m\\omega }\\over {\\pi \\hbar }}\\Bigr )^{1/4} {\\rm exp}(-{{m\\omega }\\over {2\\hbar }} x^2), \\end {equation}", "\\begin {eqnarray} \\hq &=&\\sum _{a=1}^{{}N} \\Bigl ({1\\over {\\sqrt {2m}R_a}}\\hg _a +i {\\hat V}_a\\Bigr )\\hxi _a \\equiv \\sum _{a=1}^{{}N}{\\hat q}_a~\\hxi _a, \\\\ \\hqb &=&\\sum _{a=1}^{{}N} \\Bigl ({1\\over {\\sqrt {2m}R_a}}\\hg _a-i{\\hat V}_a\\Bigr )\\hxib \\equiv \\sum _{a=1}^{{}N}{\\hat q}_a^{\\dagger }~\\hxib _a, \\end {eqnarray}", "\\begin {equation} [\\hg _a, \\hw _b]=\\hbar ~\\delta _{ab}\\hw _b, \\quad \\{\\hxi _a, \\hxib _b\\}=\\delta _{ab}, \\quad \\{\\hxi _a, \\hxi _b\\}=0, \\quad \\{\\hxib _a, \\hxib _b\\}=0. \\quad \\end {equation}" ], "latex_norm": [ "$ \\hat { Q } , \\hat { \\bar { Q } } $", "$ W ( \\hat { x } ) \\equiv m \\omega \\hat { x } $", "$ \\hat { p } \\equiv - i \\hbar ~ \\partial \\slash \\partial x $", "$ [ \\hat { p } , \\hat { x } ] = - i \\hbar $", "$ ( \\hat { x } ) $", "$ ( \\hat { \\xi } , \\hat { \\bar { \\xi } } ) $", "$ R \\rightarrow \\infty $", "$ \\hat { Q } _ { s u s y } \\vert \\Psi \\rangle = 0 $", "$ \\hat { \\bar { Q } } _ { s u s y } \\vert \\Psi \\rangle = 0 $", "$ \\psi _ { - \\frac { 1 } { 2 } } ^ { h . o } ( x ) $", "$ \\psi _ { + \\frac { 1 } { 2 } } ^ { h . o } ( x ) $", "$ R \\rightarrow \\infty $", "$ I _ { 0 } ( z ) \\sim { e } ^ { z } \\slash \\sqrt { 2 \\pi z } $", "$ z $", "$ \\widetilde { \\psi } _ { \\pm \\frac { 1 } { 2 } } ( x ) d x \\equiv \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) \\frac { d \\theta } { \\sqrt { 2 \\pi R } } $", "$ T r ( - 1 ) ^ { \\hat { f } } = 1 $", "$ N $", "$ \\hat { V } _ { a } \\equiv \\hat { V } _ { a } ( \\theta _ { 1 } , \\cdots , \\theta _ { N } ) $", "$ \\hat { G } _ { a } = - i \\hbar ~ \\partial \\slash \\partial \\theta _ { a } + \\hbar ~ \\alpha _ { a } $", "$ \\hat { W } $", "\\begin{align*} \\hat { Q } & = & \\frac { 1 } { \\sqrt { 2 m } } ( \\hat { p } + i W ( \\hat { x } ) ) \\hat { \\xi } + O ( \\frac { 1 } { R ^ { 2 } } ) \\equiv \\hat { Q } _ { s u s y } + O ( \\frac { 1 } { R ^ { 2 } } ) , \\\\ \\hat { \\bar { Q } } & = & \\frac { 1 } { \\sqrt { 2 m } } ( \\hat { p } - i W ( \\hat { x } ) ) \\hat { \\bar { \\xi } } + O ( \\frac { 1 } { R ^ { 2 } } ) \\equiv \\hat { \\bar { Q } } _ { s u s y } + O ( \\frac { 1 } { R ^ { 2 } } ) , \\end{align*}", "\\begin{equation*} \\psi _ { + \\frac { 1 } { 2 } } ^ { h . o } ( x ) \\sim e x p ( + \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) , \\qquad \\psi _ { - \\frac { 1 } { 2 } } ^ { h . o } ( x ) = ( \\frac { m \\omega } { \\pi \\hbar } ) ^ { 1 \\slash 4 } e x p ( - \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) . \\end{equation*}", "\\begin{equation*} \\widetilde { \\psi } _ { + \\frac { 1 } { 2 } } \\sim e x p ( + \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) , \\qquad \\widetilde { \\psi } _ { - \\frac { 1 } { 2 } } ( x ) = ( \\frac { m \\omega } { \\pi \\hbar } ) ^ { 1 \\slash 4 } e x p ( - \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) , \\end{equation*}", "\\begin{align*} \\hat { Q } & = & \\sum _ { a = 1 } ^ { N } ( \\frac { 1 } { \\sqrt { 2 m } R _ { a } } \\hat { G } _ { a } + i \\hat { V } _ { a } ) \\hat { \\xi } _ { a } \\equiv \\sum _ { a = 1 } ^ { N } \\hat { q } _ { a } ~ \\hat { \\xi } _ { a } , \\\\ \\hat { \\bar { Q } } & = & \\sum _ { a = 1 } ^ { N } ( \\frac { 1 } { \\sqrt { 2 m } R _ { a } } \\hat { G } _ { a } - i \\hat { V } _ { a } ) \\hat { \\bar { \\xi } } \\equiv \\sum _ { a = 1 } ^ { N } \\hat { q } _ { a } ^ { \\dagger } ~ \\hat { \\bar { \\xi } } _ { a } , \\end{align*}", "\\begin{equation*} [ \\hat { G } _ { a } , \\hat { W } _ { b } ] = \\hbar ~ \\delta _ { a b } \\hat { W } _ { b } , \\quad \\{ \\hat { \\xi } _ { a } , \\hat { \\bar { \\xi } } _ { b } \\} = \\delta _ { a b } , \\quad \\{ \\hat { \\xi } _ { a } , \\hat { \\xi } _ { b } \\} = 0 , \\quad \\{ \\hat { \\bar { \\xi } } _ { a } , \\hat { \\bar { \\xi } } _ { b } \\} = 0 . \\quad \\end{equation*}" ], "latex_expand": [ "$ \\hat { \\mitQ } , \\hat { \\bar { \\mitQ } } $", "$ \\mitW ( \\hat { \\mitx } ) \\equiv \\mitm \\mitomega \\hat { \\mitx } $", "$ \\hat { \\mitp } \\equiv - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mitx $", "$ [ \\hat { \\mitp } , \\hat { \\mitx } ] = - \\miti \\hslash $", "$ ( \\hat { \\mitx } ) $", "$ ( \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } ) $", "$ \\mitR \\rightarrow \\infty $", "$ \\hat { \\mitQ } _ { \\mits \\mitu \\mits \\mity } \\vert \\mupPsi \\rangle = 0 $", "$ \\hat { \\bar { \\mitQ } } _ { \\mits \\mitu \\mits \\mity } \\vert \\mupPsi \\rangle = 0 $", "$ \\mitpsi _ { - \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) $", "$ \\mitpsi _ { + \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) $", "$ \\mitR \\rightarrow \\infty $", "$ \\mitI _ { 0 } ( \\mitz ) \\sim { \\mathrm { e } } ^ { \\mitz } \\slash \\sqrt { 2 \\mitpi \\mitz } $", "$ \\mitz $", "$ \\tilde { \\mitpsi } _ { \\pm \\frac { 1 } { 2 } } ( \\mitx ) \\mitd \\mitx \\equiv \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) \\frac { \\mitd \\mittheta } { \\sqrt { 2 \\mitpi \\mitR } } $", "$ \\mathrm { T r } ( - 1 ) ^ { \\hat { \\mitf } } = 1 $", "$ \\mitN $", "$ \\hat { \\mitV } _ { \\mita } \\equiv \\hat { \\mitV } _ { \\mita } ( \\mittheta _ { 1 } , \\cdots , \\mittheta _ { \\mitN } ) $", "$ \\hat { \\mitG } _ { \\mita } = - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mittheta _ { \\mita } + \\hslash ~ \\mitalpha _ { \\mita } $", "$ \\hat { \\mitW } $", "\\begin{align*} \\displaystyle \\hat { \\mitQ } & = & \\displaystyle \\frac { 1 } { \\sqrt { 2 \\mitm } } \\Big ( \\hat { \\mitp } + \\miti \\mitW ( \\hat { \\mitx } ) \\Big ) \\hat { \\mitxi } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) \\equiv \\hat { \\mitQ } _ { \\mits \\mitu \\mits \\mity } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) , \\\\ \\displaystyle \\hat { \\bar { \\mitQ } } & = & \\displaystyle \\frac { 1 } { \\sqrt { 2 \\mitm } } \\Big ( \\hat { \\mitp } - \\miti \\mitW ( \\hat { \\mitx } ) \\Big ) \\hat { \\bar { \\mitxi } } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) \\equiv \\hat { \\bar { \\mitQ } } _ { \\mits \\mitu \\mits \\mity } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) , \\end{align*}", "\\begin{equation*} \\mitpsi _ { + \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) \\sim \\mathrm { e x p } ( + \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) , \\qquad \\mitpsi _ { - \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) = \\Big ( \\frac { \\mitm \\mitomega } { \\mitpi \\hslash } \\Big ) ^ { 1 \\slash 4 } \\mathrm { e x p } ( - \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) . \\end{equation*}", "\\begin{equation*} \\tilde { \\mitpsi } _ { + \\frac { 1 } { 2 } } \\sim \\mathrm { e x p } ( + \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) , \\qquad \\tilde { \\mitpsi } _ { - \\frac { 1 } { 2 } } ( \\mitx ) = \\Big ( \\frac { \\mitm \\mitomega } { \\mitpi \\hslash } \\Big ) ^ { 1 \\slash 4 } \\mathrm { e x p } ( - \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) , \\end{equation*}", "\\begin{align*} \\displaystyle \\hat { \\mitQ } & = & \\displaystyle \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } \\hat { \\mitG } _ { \\mita } + \\miti \\hat { \\mitV } _ { \\mita } \\Big ) \\hat { \\mitxi } _ { \\mita } \\equiv \\sum _ { \\mita = 1 } ^ { \\mitN } \\hat { \\mitq } _ { \\mita } ~ \\hat { \\mitxi } _ { \\mita } , \\\\ \\displaystyle \\hat { \\bar { \\mitQ } } & = & \\displaystyle \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } \\hat { \\mitG } _ { \\mita } - \\miti \\hat { \\mitV } _ { \\mita } \\Big ) \\hat { \\bar { \\mitxi } } \\equiv \\sum _ { \\mita = 1 } ^ { \\mitN } \\hat { \\mitq } _ { \\mita } ^ { \\dagger } ~ \\hat { \\bar { \\mitxi } } _ { \\mita } , \\end{align*}", "\\begin{equation*} [ \\hat { \\mitG } _ { \\mita } , \\hat { \\mitW } _ { \\mitb } ] = \\hslash ~ \\mitdelta _ { \\mita \\mitb } \\hat { \\mitW } _ { \\mitb } , \\quad \\{ \\hat { \\mitxi } _ { \\mita } , \\hat { \\bar { \\mitxi } } _ { \\mitb } \\} = \\mitdelta _ { \\mita \\mitb } , \\quad \\{ \\hat { \\mitxi } _ { \\mita } , \\hat { \\mitxi } _ { \\mitb } \\} = 0 , \\quad \\{ \\hat { \\bar { \\mitxi } } _ { \\mita } , \\hat { \\bar { \\mitxi } } _ { \\mitb } \\} = 0 . \\quad \\end{equation*}" ], "x_min": [ 0.16030000150203705, 0.32690000534057617, 0.4968999922275543, 0.5300999879837036, 0.815500020980835, 0.19210000336170197, 0.588100016117096, 0.4754999876022339, 0.6288999915122986, 0.7117999792098999, 0.15960000455379486, 0.22599999606609344, 0.7063000202178955, 0.16859999299049377, 0.5286999940872192, 0.4699000120162964, 0.5127999782562256, 0.17759999632835388, 0.38839998841285706, 0.6488999724388123, 0.2639999985694885, 0.23499999940395355, 0.2467000037431717, 0.31310001015663147, 0.21220000088214874 ], "y_min": [ 0.09669999778270721, 0.2134000062942505, 0.2134000062942505, 0.2563000023365021, 0.27730000019073486, 0.2939000129699707, 0.29980000853538513, 0.33889999985694885, 0.336899995803833, 0.45410001277923584, 0.47510001063346863, 0.5625, 0.5595999956130981, 0.5874000191688538, 0.6542999744415283, 0.6758000254631042, 0.70169997215271, 0.8471999764442444, 0.8471999764442444, 0.8471999764442444, 0.1264999955892563, 0.3882000148296356, 0.6079000234603882, 0.7480000257492065, 0.8988999724388123 ], "x_max": [ 0.20110000669956207, 0.44920000433921814, 0.6226999759674072, 0.6365000009536743, 0.8424999713897705, 0.2363000065088272, 0.6550999879837036, 0.5860999822616577, 0.7394999861717224, 0.7732999920845032, 0.22179999947547913, 0.29580000042915344, 0.8528000116348267, 0.17900000512599945, 0.7457000017166138, 0.5763000249862671, 0.5307999849319458, 0.3441999852657318, 0.5860999822616577, 0.6710000038146973, 0.7401999831199646, 0.7720000147819519, 0.7573999762535095, 0.6883999705314636, 0.7940999865531921 ], "y_max": [ 0.11569999903440475, 0.22849999368190765, 0.22849999368190765, 0.27090001106262207, 0.2924000024795532, 0.313400000333786, 0.3100999891757965, 0.3569999933242798, 0.3578999936580658, 0.47510001063346863, 0.4966000020503998, 0.5727999806404114, 0.576200008392334, 0.5942000150680542, 0.6753000020980835, 0.6944000124931335, 0.7120000123977661, 0.864799976348877, 0.864799976348877, 0.8614000082015991, 0.2046000063419342, 0.41940000653266907, 0.6391000151634216, 0.8378000259399414, 0.9218000173568726 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003194_page13
{ "latex": [ "$T^N=S^1\\otimes \\cdots \\otimes S^1$", "$\\alpha _a (a=1, \\cdots , N)$", "$S^1$", "$\\hq \\ket {-}=\\hqb \\ket {+}=0$", "$\\Psi ^{\\pm }(\\cdots , \\theta _a+2\\pi , \\cdots ) =\\Psi ^{\\pm }(\\cdots , \\theta _a, \\cdots )~(a=1,\\cdots , N)$", "$\\Psi ^{\\pm }(\\cdots , \\theta _a+2\\pi , \\cdots ) =\\Psi ^{\\pm }(\\cdots , \\theta _a, \\cdots )~(a=1,\\cdots , N)$", "$\\alpha _a (a=1, \\cdots , N)$", "$S^1$", "$S^1$", "$\\alpha $", "$\\alpha $", "\\begin {equation} {\\hat H}=\\sum _{a=1}^N{1\\over {2 m R_a^2}}\\hg _a\\hg _a + {\\hat V}_a{\\hat V}_a -\\sum _{a, b=1}^N{i\\over {{\\sqrt {2m}R_a}}} [\\hg _a, {\\hat V}_b][\\hxi _a, \\hxib _b]. \\label {torus} \\end {equation}", "\\begin {equation} \\ket {-}\\equiv \\ket {0},\\quad \\ket {+}\\equiv \\prod _{a=1}^N\\hxib _a~\\ket {0}\\quad {\\rm with}\\quad \\hxi _a \\ket {0}=0~~(a=1, \\cdots , N). \\end {equation}", "\\begin {eqnarray} \\Psi ^{+}(\\theta _1,\\cdots , \\theta _N)&=& {\\rm exp}\\sum _{a=1}^{N}\\Bigl (-i\\alpha _a\\theta _a +{{\\sqrt {2m}R_a}\\over \\hbar }\\int ^{\\theta _a}d{\\bar \\theta }_a~ V_a({\\bar \\theta }_1,\\cdots , {\\bar \\theta }_a, \\cdots , {\\bar \\theta }_N)\\Bigr ) \\ket {+}, \\\\ \\Psi ^{-}(\\theta _1, \\cdots , \\theta _N)&=& {\\rm exp}\\sum _{a=1}^{N}\\Bigl (-i\\alpha _a\\theta _a -{{\\sqrt {2m}R_a}\\over \\hbar }\\int ^{\\theta _a}d{\\bar \\theta }_a~ V_a({\\bar \\theta }_1,\\cdots , {\\bar \\theta }_a, \\cdots , {\\bar \\theta }_N)\\Bigr ) \\ket {-}. \\end {eqnarray}" ], "latex_norm": [ "$ T ^ { N } = S ^ { 1 } \\otimes \\cdots \\otimes S ^ { 1 } $", "$ \\alpha _ { a } ( a = 1 , \\cdots , N ) $", "$ S ^ { 1 } $", "$ \\hat { Q } \\vert - \\rangle = \\hat { \\bar { Q } } \\vert + \\rangle = 0 $", "$ \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } + 2 \\pi , \\cdots ) = \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } , \\cdots ) ~ ( a = 1 , \\cdots , N ) $", "$ \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } + 2 \\pi , \\cdots ) = \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } , \\cdots ) ~ ( a = 1 , \\cdots , N ) $", "$ \\alpha _ { a } ( a = 1 , \\cdots , N ) $", "$ S ^ { 1 } $", "$ S ^ { 1 } $", "$ \\alpha $", "$ \\alpha $", "\\begin{equation*} \\hat { H } = \\sum _ { a = 1 } ^ { N } \\frac { 1 } { 2 m R _ { a } ^ { 2 } } \\hat { G } _ { a } \\hat { G } _ { a } + \\hat { V } _ { a } \\hat { V } _ { a } - \\sum _ { a , b = 1 } ^ { N } \\frac { i } { \\sqrt { 2 m } R _ { a } } [ \\hat { G } _ { a } , \\hat { V } _ { b } ] [ \\hat { \\xi } _ { a } , \\hat { \\bar { \\xi } } _ { b } ] . \\end{equation*}", "\\begin{equation*} \\vert - \\rangle \\equiv \\vert 0 \\rangle , \\quad \\vert + \\rangle \\equiv \\prod _ { a = 1 } ^ { N } \\hat { \\bar { \\xi } } _ { a } ~ \\vert 0 \\rangle \\quad w i t h \\quad \\hat { \\xi } _ { a } \\vert 0 \\rangle = 0 ~ ~ ( a = 1 , \\cdots , N ) . \\end{equation*}", "\\begin{align*} \\Psi ^ { + } ( \\theta _ { 1 } , \\cdots , \\theta _ { N } ) & = & e x p \\sum _ { a = 1 } ^ { N } ( - i \\alpha _ { a } \\theta _ { a } + \\frac { \\sqrt { 2 m } R _ { a } } { \\hbar } \\int ^ { \\theta _ { a } } d \\bar { \\theta } _ { a } ~ V _ { a } ( \\bar { \\theta } _ { 1 } , \\cdots , \\bar { \\theta } _ { a } , \\cdots , \\bar { \\theta } _ { N } ) ) \\vert + \\rangle , \\\\ \\Psi ^ { - } ( \\theta _ { 1 } , \\cdots , \\theta _ { N } ) & = & e x p \\sum _ { a = 1 } ^ { N } ( - i \\alpha _ { a } \\theta _ { a } - \\frac { \\sqrt { 2 m } R _ { a } } { \\hbar } \\int ^ { \\theta _ { a } } d \\bar { \\theta } _ { a } ~ V _ { a } ( \\bar { \\theta } _ { 1 } , \\cdots , \\bar { \\theta } _ { a } , \\cdots , \\bar { \\theta } _ { N } ) ) \\vert - \\rangle . \\end{align*}" ], "latex_expand": [ "$ \\mitT ^ { \\mitN } = \\mitS ^ { 1 } \\otimes \\cdots \\otimes \\mitS ^ { 1 } $", "$ \\mitalpha _ { \\mita } ( \\mita = 1 , \\cdots , \\mitN ) $", "$ \\mitS ^ { 1 } $", "$ \\hat { \\mitQ } \\vert - \\rangle = \\hat { \\bar { \\mitQ } } \\vert + \\rangle = 0 $", "$ \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } + 2 \\mitpi , \\cdots ) = \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } , \\cdots ) ~ ( \\mita = 1 , \\cdots , \\mitN ) $", "$ \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } + 2 \\mitpi , \\cdots ) = \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } , \\cdots ) ~ ( \\mita = 1 , \\cdots , \\mitN ) $", "$ \\mitalpha _ { \\mita } ( \\mita = 1 , \\cdots , \\mitN ) $", "$ \\mitS ^ { 1 } $", "$ \\mitS ^ { 1 } $", "$ \\mitalpha $", "$ \\mitalpha $", "\\begin{equation*} \\hat { \\mitH } = \\sum _ { \\mita = 1 } ^ { \\mitN } \\frac { 1 } { 2 \\mitm \\mitR _ { \\mita } ^ { 2 } } \\hat { \\mitG } _ { \\mita } \\hat { \\mitG } _ { \\mita } + \\hat { \\mitV } _ { \\mita } \\hat { \\mitV } _ { \\mita } - \\sum _ { \\mita , \\mitb = 1 } ^ { \\mitN } \\frac { \\miti } { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } [ \\hat { \\mitG } _ { \\mita } , \\hat { \\mitV } _ { \\mitb } ] [ \\hat { \\mitxi } _ { \\mita } , \\hat { \\bar { \\mitxi } } _ { \\mitb } ] . \\end{equation*}", "\\begin{equation*} \\vert - \\rangle \\equiv \\vert 0 \\rangle , \\quad \\vert + \\rangle \\equiv \\prod _ { \\mita = 1 } ^ { \\mitN } \\hat { \\bar { \\mitxi } } _ { \\mita } ~ \\vert 0 \\rangle \\quad \\mathrm { w i t h } \\quad \\hat { \\mitxi } _ { \\mita } \\vert 0 \\rangle = 0 ~ ~ ( \\mita = 1 , \\cdots , \\mitN ) . \\end{equation*}", "\\begin{align*} \\displaystyle \\mupPsi ^ { + } ( \\mittheta _ { 1 } , \\cdots , \\mittheta _ { \\mitN } ) & = & \\displaystyle \\mathrm { e x p } \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( - \\miti \\mitalpha _ { \\mita } \\mittheta _ { \\mita } + \\frac { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } { \\hslash } \\int ^ { \\mittheta _ { \\mita } } \\mitd \\bar { \\mittheta } _ { \\mita } ~ \\mitV _ { \\mita } ( \\bar { \\mittheta } _ { 1 } , \\cdots , \\bar { \\mittheta } _ { \\mita } , \\cdots , \\bar { \\mittheta } _ { \\mitN } ) \\Big ) \\vert + \\rangle , \\\\ \\displaystyle \\mupPsi ^ { - } ( \\mittheta _ { 1 } , \\cdots , \\mittheta _ { \\mitN } ) & = & \\displaystyle \\mathrm { e x p } \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( - \\miti \\mitalpha _ { \\mita } \\mittheta _ { \\mita } - \\frac { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } { \\hslash } \\int ^ { \\mittheta _ { \\mita } } \\mitd \\bar { \\mittheta } _ { \\mita } ~ \\mitV _ { \\mita } ( \\bar { \\mittheta } _ { 1 } , \\cdots , \\bar { \\mittheta } _ { \\mita } , \\cdots , \\bar { \\mittheta } _ { \\mitN } ) \\Big ) \\vert - \\rangle . \\end{align*}" ], "x_min": [ 0.120899997651577, 0.4050000011920929, 0.7580999732017517, 0.17759999632835388, 0.6945000290870667, 0.120899997651577, 0.5942999720573425, 0.8029999732971191, 0.32409998774528503, 0.16590000689029694, 0.5169000029563904, 0.25429999828338623, 0.23360000550746918, 0.15070000290870667 ], "y_min": [ 0.20509999990463257, 0.2061000019311905, 0.22709999978542328, 0.37450000643730164, 0.5659000277519226, 0.586899995803833, 0.6298999786376953, 0.7124000191688538, 0.7973999977111816, 0.8661999702453613, 0.8877000212669373, 0.12600000202655792, 0.31790000200271606, 0.4668000042438507 ], "x_max": [ 0.29440000653266907, 0.5522000193595886, 0.7795000076293945, 0.3310000002384186, 0.888700008392334, 0.3869999945163727, 0.7401000261306763, 0.8251000046730042, 0.34619998931884766, 0.17900000512599945, 0.5299999713897705, 0.7526000142097473, 0.7732999920845032, 0.854200005531311 ], "y_max": [ 0.21879999339580536, 0.22120000422000885, 0.23880000412464142, 0.39399999380111694, 0.5805000066757202, 0.6019999980926514, 0.6449999809265137, 0.7240999937057495, 0.8090999722480774, 0.8730000257492065, 0.8945000171661377, 0.1703999936580658, 0.35989999771118164, 0.5562000274658203 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003194_page14
{ "latex": [ "$S^1$", "$V(\\hw ,\\hwd )$", "$\\hw $", "$\\hwd $", "${\\rm exp}(\\int ^{\\theta }d{\\bar \\theta } V(\\e ^{i{\\bar \\theta }},\\e ^{-i{\\bar \\theta }}))$", "$\\alpha $", "$\\hg ^2$", "$\\alpha $", "$(m+\\alpha )^2$", "$\\e ^{im\\theta }$", "$R\\rightarrow \\infty $", "$\\omega =\\sqrt {g_N/R}$", "$\\alpha $", "$[{\\hat p}, {\\hat x}]=-i\\hbar $", "$({\\hat x})$", "$(\\hxi , \\hxib )$", "\\begin {equation} \\psi _{\\pm \\half }({\\theta })={\\rm exp}\\Bigl (-i\\alpha \\theta \\mp {{\\sqrt {2m}R}\\over \\hbar }\\int ^{\\theta }d{\\bar \\theta }~V(\\e ^{i{\\bar \\theta }}, \\e ^{-i{\\bar \\theta }}) \\Bigr ), \\label {closed} \\end {equation}" ], "latex_norm": [ "$ S ^ { 1 } $", "$ V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) $", "$ \\hat { W } $", "$ \\hat { W } ^ { \\dagger } $", "$ e x p ( \\int ^ { \\theta } d \\bar { \\theta } V ( e ^ { i \\bar { \\theta } } , e ^ { - i \\bar { \\theta } } ) ) $", "$ \\alpha $", "$ \\hat { G } ^ { 2 } $", "$ \\alpha $", "$ ( m + \\alpha ) ^ { 2 } $", "$ { e } ^ { i m \\theta } $", "$ R \\rightarrow \\infty $", "$ \\omega = \\sqrt { g _ { N } \\slash R } $", "$ \\alpha $", "$ [ \\hat { p } , \\hat { x } ] = - i \\hbar $", "$ ( \\hat { x } ) $", "$ ( \\hat { \\xi } , \\hat { \\bar { \\xi } } ) $", "\\begin{equation*} \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) = e x p ( - i \\alpha \\theta \\mp \\frac { \\sqrt { 2 m } R } { \\hbar } \\int ^ { \\theta } d \\bar { \\theta } ~ V ( e ^ { i \\bar { \\theta } } , e ^ { - i \\bar { \\theta } } ) ) , \\end{equation*}" ], "latex_expand": [ "$ \\mitS ^ { 1 } $", "$ \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) $", "$ \\hat { \\mitW } $", "$ \\hat { \\mitW } ^ { \\dagger } $", "$ \\mathrm { e x p } ( \\int \\nolimits ^ { \\mittheta } \\mitd \\bar { \\mittheta } \\mitV ( \\mathrm { e } ^ { \\miti \\bar { \\mittheta } } , \\mathrm { e } ^ { - \\miti \\bar { \\mittheta } } ) ) $", "$ \\mitalpha $", "$ \\hat { \\mitG } ^ { 2 } $", "$ \\mitalpha $", "$ ( \\mitm + \\mitalpha ) ^ { 2 } $", "$ { \\mathrm { e } } ^ { \\miti \\mitm \\mittheta } $", "$ \\mitR \\rightarrow \\infty $", "$ \\mitomega = \\sqrt { \\mitg _ { \\mitN } \\slash \\mitR } $", "$ \\mitalpha $", "$ [ \\hat { \\mitp } , \\hat { \\mitx } ] = - \\miti \\hslash $", "$ ( \\hat { \\mitx } ) $", "$ ( \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } ) $", "\\begin{equation*} \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) = \\mathrm { e x p } \\Big ( - \\miti \\mitalpha \\mittheta \\mp \\frac { \\sqrt { 2 \\mitm } \\mitR } { \\hslash } \\int ^ { \\mittheta } \\mitd \\bar { \\mittheta } ~ \\mitV ( \\mathrm { e } ^ { \\miti \\bar { \\mittheta } } , \\mathrm { e } ^ { - \\miti \\bar { \\mittheta } } ) \\Big ) , \\end{equation*}" ], "x_min": [ 0.46860000491142273, 0.45680001378059387, 0.656499981880188, 0.72079998254776, 0.4332999885082245, 0.14239999651908875, 0.5293999910354614, 0.8708000183105469, 0.1582999974489212, 0.28610000014305115, 0.4546999931335449, 0.4083999991416931, 0.36559998989105225, 0.33660000562667847, 0.8568999767303467, 0.23839999735355377, 0.2874999940395355 ], "y_min": [ 0.1851000040769577, 0.20409999787807465, 0.24660000205039978, 0.24660000205039978, 0.37599998712539673, 0.44679999351501465, 0.5673999786376953, 0.5746999979019165, 0.5907999873161316, 0.6327999830245972, 0.6987000107765198, 0.73580002784729, 0.8306000232696533, 0.8682000041007996, 0.8895999789237976, 0.9061999917030334, 0.3125 ], "x_max": [ 0.49000000953674316, 0.5465999841690063, 0.678600013256073, 0.7498000264167786, 0.6157000064849854, 0.15549999475479126, 0.553600013256073, 0.883899986743927, 0.2378000020980835, 0.3206999897956848, 0.5217000246047974, 0.5127999782562256, 0.37869998812675476, 0.4375, 0.8831999897956848, 0.28189998865127563, 0.7160000205039978 ], "y_max": [ 0.19679999351501465, 0.22169999778270721, 0.26080000400543213, 0.26080000400543213, 0.39309999346733093, 0.4535999894142151, 0.58160001039505, 0.5814999938011169, 0.6064000129699707, 0.6455000042915344, 0.7089999914169312, 0.7583000063896179, 0.836899995803833, 0.8833000063896179, 0.90420001745224, 0.9257000088691711, 0.34860000014305115 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003194_page15
{ "latex": [ "$N$", "$T^N$", "$\\ket {-}$", "$\\ket {+}$", "$\\alpha _a \\neq {\\rm integer}(a=1, \\cdots , N)$", "$\\alpha _a \\neq {\\rm integer}(a=1, \\cdots , N)$", "$S^1$", "${\\rm Tr}(-1)^{{\\hat f}}=1$", "$S^1$", "$0 < \\alpha < 1$", "$\\e ^{-i2\\pi \\alpha }$", "$S^1$", "$\\alpha =1/2$", "$U(1)_R$", "$U(1)_R$", "$\\e ^{-i2\\pi \\alpha }$", "$U(1)_R$" ], "latex_norm": [ "$ N $", "$ T ^ { N } $", "$ \\vert - \\rangle $", "$ \\vert + \\rangle $", "$ \\alpha _ { a } \\ne i n t e g e r ( a = 1 , \\cdots , N ) $", "$ \\alpha _ { a } \\ne i n t e g e r ( a = 1 , \\cdots , N ) $", "$ S ^ { 1 } $", "$ T r ( - 1 ) ^ { \\hat { f } } = 1 $", "$ S ^ { 1 } $", "$ 0 < \\alpha < 1 $", "$ { e } ^ { - i 2 \\pi \\alpha } $", "$ S ^ { 1 } $", "$ \\alpha = 1 \\slash 2 $", "$ U ( 1 ) _ { R } $", "$ U ( 1 ) _ { R } $", "$ { e } ^ { - i 2 \\pi \\alpha } $", "$ U ( 1 ) _ { R } $" ], "latex_expand": [ "$ \\mitN $", "$ \\mitT ^ { \\mitN } $", "$ \\vert - \\rangle $", "$ \\vert + \\rangle $", "$ \\mitalpha _ { \\mita } \\ne \\mathrm { i n t e g e r } ( \\mita = 1 , \\cdots , \\mitN ) $", "$ \\mitalpha _ { \\mita } \\ne \\mathrm { i n t e g e r } ( \\mita = 1 , \\cdots , \\mitN ) $", "$ \\mitS ^ { 1 } $", "$ \\mathrm { T r } ( - 1 ) ^ { \\hat { \\mitf } } = 1 $", "$ \\mitS ^ { 1 } $", "$ 0 < \\mitalpha < 1 $", "$ { \\mathrm { e } } ^ { - \\miti 2 \\mitpi \\mitalpha } $", "$ \\mitS ^ { 1 } $", "$ \\mitalpha = 1 \\slash 2 $", "$ \\mitU ( 1 ) _ { \\mitR } $", "$ \\mitU ( 1 ) _ { \\mitR } $", "$ { \\mathrm { e } } ^ { - \\miti 2 \\mitpi \\mitalpha } $", "$ \\mitU ( 1 ) _ { \\mitR } $" ], "x_min": [ 0.4133000075817108, 0.6481999754905701, 0.3682999908924103, 0.44510000944137573, 0.738099992275238, 0.120899997651577, 0.17350000143051147, 0.7346000075340271, 0.6538000106811523, 0.120899997651577, 0.26260000467300415, 0.15129999816417694, 0.18729999661445618, 0.5245000123977661, 0.120899997651577, 0.29789999127388, 0.3801000118255615 ], "y_min": [ 0.10109999775886536, 0.14159999787807465, 0.16410000622272491, 0.16410000622272491, 0.20649999380111694, 0.2280000001192093, 0.24899999797344208, 0.5015000104904175, 0.61080002784729, 0.6342999935150146, 0.6317999958992004, 0.6747999787330627, 0.739300012588501, 0.8246999979019165, 0.8457000255584717, 0.8661999702453613, 0.9096999764442444 ], "x_max": [ 0.43130001425743103, 0.6765000224113464, 0.39800000190734863, 0.4740999937057495, 0.8894000053405762, 0.20110000669956207, 0.1949000060558319, 0.84170001745224, 0.6751999855041504, 0.22390000522136688, 0.31369999051094055, 0.17270000278949738, 0.2606000006198883, 0.5777000188827515, 0.17339999973773956, 0.3490000069141388, 0.4325999915599823 ], "y_max": [ 0.11140000075101852, 0.15379999577999115, 0.17919999361038208, 0.17919999361038208, 0.2215999960899353, 0.24310000240802765, 0.260699987411499, 0.5200999975204468, 0.6225000023841858, 0.644599974155426, 0.6439999938011169, 0.6865000128746033, 0.7538999915122986, 0.8392999768257141, 0.8603000044822693, 0.8784000277519226, 0.9243000149726868 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003194_page16
{ "latex": [ "$U(1)_R$", "$\\phi $", "$S^1$" ], "latex_norm": [ "$ U ( 1 ) _ { R } $", "$ \\phi $", "$ S ^ { 1 } $" ], "latex_expand": [ "$ \\mitU ( 1 ) _ { \\mitR } $", "$ \\mitphi $", "$ \\mitS ^ { 1 } $" ], "x_min": [ 0.37940001487731934, 0.47200000286102295, 0.48579999804496765 ], "y_min": [ 0.12160000205039978, 0.30219998955726624, 0.36469998955726624 ], "x_max": [ 0.4318999946117401, 0.4837000072002411, 0.5072000026702881 ], "y_max": [ 0.13619999587535858, 0.31540000438690186, 0.3763999938964844 ], "expr_type": [ "embedded", "embedded", "embedded" ] }
0003204_page01
{ "latex": [ "$B$", "$\\Phi $" ], "latex_norm": [ "$ B $", "$ \\Phi $" ], "latex_expand": [ "$ \\mitB $", "$ \\mupPhi $" ], "x_min": [ 0.2653999924659729, 0.36070001125335693 ], "y_min": [ 0.5985999703407288, 0.6470000147819519 ], "x_max": [ 0.28060001134872437, 0.37450000643730164 ], "y_max": [ 0.6079000234603882, 0.6563000082969666 ], "expr_type": [ "embedded", "embedded" ] }
0003204_page02
{ "latex": [ "$SO(d,d,Z)$", "$d$", "$B$", "$B$", "$B$", "$\\Phi $", "$\\Phi $", "$B$", "$\\Phi $", "$\\Phi $", "$p$", "\\begin {equation} S = \\frac {1}{4\\pi \\al }\\int _{\\Sigma }d^2\\sigma (g_{\\mu \\nu }\\partial _aX^{\\mu } \\partial ^aX^{\\nu } - 2\\pi \\al B_{\\mu \\nu }\\e ^{ab}\\partial _aX^{\\mu }\\partial _b X^{\\nu })+\\oint _{\\partial \\Sigma }d\\tau A_i(X)\\partial _{\\tau }X^i, \\end {equation}" ], "latex_norm": [ "$ S O ( d , d , Z ) $", "$ d $", "$ B $", "$ B $", "$ B $", "$ \\Phi $", "$ \\Phi $", "$ B $", "$ \\Phi $", "$ \\Phi $", "$ p $", "\\begin{equation*} S = \\frac { 1 } { 4 \\pi \\alpha ^ { \\prime } } \\int _ { \\Sigma } d ^ { 2 } \\sigma ( g _ { \\mu \\nu } \\partial _ { a } X ^ { \\mu } \\partial ^ { a } X ^ { \\nu } - 2 \\pi \\alpha ^ { \\prime } B _ { \\mu \\nu } \\epsilon ^ { a b } \\partial _ { a } X ^ { \\mu } \\partial _ { b } X ^ { \\nu } ) + \\oint _ { \\partial \\Sigma } d \\tau A _ { i } ( X ) \\partial _ { \\tau } X ^ { i } , \\end{equation*}" ], "latex_expand": [ "$ \\mitS \\mitO ( \\mitd , \\mitd , \\mitZ ) $", "$ \\mitd $", "$ \\mitB $", "$ \\mitB $", "$ \\mitB $", "$ \\mupPhi $", "$ \\mupPhi $", "$ \\mitB $", "$ \\mupPhi $", "$ \\mupPhi $", "$ \\mitp $", "\\begin{equation*} \\mitS = \\frac { 1 } { 4 \\mitpi \\mitalpha ^ { \\prime } } \\int _ { \\mupSigma } \\mitd ^ { 2 } \\mitsigma ( \\mitg _ { \\mitmu \\mitnu } \\mitpartial _ { \\mita } \\mitX ^ { \\mitmu } \\mitpartial ^ { \\mita } \\mitX ^ { \\mitnu } - 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB _ { \\mitmu \\mitnu } \\mitepsilon ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX ^ { \\mitmu } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitnu } ) + \\oint _ { \\mitpartial \\mupSigma } \\mitd \\mittau \\mitA _ { \\miti } ( \\mitX ) \\mitpartial _ { \\mittau } \\mitX ^ { \\miti } , \\end{equation*}" ], "x_min": [ 0.6557999849319458, 0.3490000069141388, 0.746399998664856, 0.6517000198364258, 0.8238000273704529, 0.4194999933242798, 0.541100025177002, 0.3359000086784363, 0.7802000045776367, 0.6973000168800354, 0.7670999765396118, 0.17550000548362732 ], "y_min": [ 0.17919999361038208, 0.1973000019788742, 0.24899999797344208, 0.3003000020980835, 0.489300012588501, 0.5404999852180481, 0.6093999743461609, 0.6776999831199646, 0.7289999723434448, 0.7465999722480774, 0.801800012588501, 0.8256999850273132 ], "x_max": [ 0.7531999945640564, 0.36010000109672546, 0.7623000144958496, 0.6682999730110168, 0.840399980545044, 0.4339999854564667, 0.5555999875068665, 0.35249999165534973, 0.794700026512146, 0.7117999792098999, 0.7774999737739563, 0.8410000205039978 ], "y_max": [ 0.19429999589920044, 0.20800000429153442, 0.25929999351501465, 0.31060001254081726, 0.49959999322891235, 0.5508000254631042, 0.619700014591217, 0.6880000233650208, 0.7397000193595886, 0.7569000124931335, 0.8111000061035156, 0.8583999872207642 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003204_page03
{ "latex": [ "$A_i, i = 0,1,\\cdots ,p$", "$p$", "$g_{\\mu \\nu }, B_{\\mu \\nu }, \\mu = 0,1,\\cdots ,9$", "$g_{\\mu \\nu }, B_{\\mu \\nu }, \\mu = 0,1,\\cdots ,9$", "$B_{\\mu \\nu }$", "$p$", "$\\F _{ij} = B_{ij} + F_{ij}$", "$F = dA$", "$X^{\\mu }, \\mu = p+1,\\cdots ,9$", "$X^i$", "$X^i$", "$\\partial _{\\sigma }X^i - 2\\pi \\al \\partial _{\\tau } X^j\\F _j^i = 0$", "$\\sigma = 0, \\pi $", "$X^k$", "$M_{ij} = g_{ij} - (2\\pi \\al )^2(\\F g^{-1}\\F )_{ij}$", "$(M^{-1}\\F )^{ij}$", "$M^{-1ik}\\F _{kl}g^{-1lj}$", "$X^k(\\sigma ,\\tau )$", "$\\tau = -i\\tau '$", "$z = e^{\\tau '+i\\sigma }$", "$M^{-1} - (2\\pi \\al )^2g^{-1}\\F M^{-1}\\F g^{-1} = g^{-1}, M^{-1}\\F g^{-1} = g^{-1}\\F M^{-1}$", "\\begin {equation} S = \\frac {1}{4\\pi \\al }\\int _{\\Sigma }d^2\\sigma (g_{\\mu \\nu }\\partial _aX^{\\mu } \\partial ^aX^{\\nu } - 2\\pi \\al \\F _{ij}\\e ^{ab}\\partial _aX^{i}\\partial _b X^{j}) \\end {equation}", "\\begin {equation} X^k = x_0^k + ( p_0^k\\tau + 2\\pi \\al p_0^j\\F _j^k\\sigma ) + \\sum _{n\\neq 0}\\frac {e^{-in\\tau }}{n}(ia_n^k \\cos n\\sigma + 2\\pi \\al a_n^j\\F _j^k \\sin n\\sigma ). \\label {mod}\\end {equation}", "\\[ [a_m^i, a_n^j] = 2\\al mM^{-1ij}\\delta _{m+n}, \\hspace {1cm} [x_0^i, p_0^j] =i2\\al M^{-1ij}, \\]", "\\begin {equation} [x_0^i, x_0^j] = i2\\pi \\al (M^{-1}\\F )^{ij}, \\hspace {1cm} [p_0^i, p_0^j] = 0, \\label {com}\\end {equation}", "\\begin {equation} X^k(z) = x_0^k - \\frac {i}{2}(p_0^k\\ln z\\bar {z} + 2\\pi \\al p_0^j\\F _j^k \\ln \\frac {z}{\\bar {z}}) + i\\sum _{n\\neq 0} (a_n^k(z^{-n} + \\bar {z}^{-n}) + 2\\pi \\al a_n^j\\F _j^k(z^{-n} - \\bar {z}^{-n})). \\end {equation}", "\\begin {eqnarray} <0|X^i(z)X^j(z')|0> = \\al ( -M^{-1ij}\\ln z\\bar {z} +2\\pi \\al (\\F M^{-1})^{ij} \\ln \\frac {z}{\\bar {z}} \\hspace {3cm} {}\\\\ -\\frac {1}{2}M^{-1ij}(\\ln |1-\\frac {z'}{z}|^2 + \\ln |1-\\frac {\\bar {z}'}{z}|^2) + \\frac {(2\\pi \\al )^2}{2}(\\F M^{-1}\\F )^{ij}(\\ln |1-\\frac {z'}{z}|^2 - \\ln |1-\\frac {\\bar {z}'}{z}|^2) \\\\ - \\frac {2\\pi \\al }{2}(M^{-1}\\F )^{ij}\\ln \\frac {(z-z')(\\bar {z}-z')} {(z-\\bar {z}')(\\bar {z}-\\bar {z}')} + \\frac {2\\pi \\al }{2}(\\F M^{-1})^{ij}(\\ln \\frac {(z-z')(z-\\bar {z}')}{(\\bar {z}-z')(\\bar {z}-\\bar {z}')} - 2\\ln \\frac {z}{\\bar {z}})), \\end {eqnarray}", "\\begin {equation} -\\al (g^{-1ij}(\\ln |z-z'|-\\ln |z-\\bar {z}'|) + M^{-1ij}\\ln |z-z'|^2 -2\\pi \\al (M^{-1}\\F g^{-1})^{ij}\\ln \\frac {z-\\bar {z}'}{\\bar {z}-z'}). \\label {pro}\\end {equation}" ], "latex_norm": [ "$ A _ { i } , i = 0 , 1 , \\cdots , p $", "$ p $", "$ g _ { \\mu \\nu } , B _ { \\mu \\nu } , \\mu = 0 , 1 , \\cdots , 9 $", "$ g _ { \\mu \\nu } , B _ { \\mu \\nu } , \\mu = 0 , 1 , \\cdots , 9 $", "$ B _ { \\mu \\nu } $", "$ p $", "$ F _ { i j } = B _ { i j } + F _ { i j } $", "$ F = d A $", "$ X ^ { \\mu } , \\mu = p + 1 , \\cdots , 9 $", "$ X ^ { i } $", "$ X ^ { i } $", "$ \\partial _ { \\sigma } X ^ { i } - 2 \\pi \\alpha ^ { \\prime } \\partial _ { \\tau } X ^ { j } F _ { j } ^ { i } = 0 $", "$ \\sigma = 0 , \\pi $", "$ X ^ { k } $", "$ M _ { i j } = g _ { i j } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( F g ^ { - 1 } F ) _ { i j } $", "$ ( M ^ { - 1 } F ) ^ { i j } $", "$ M ^ { - 1 i k } F _ { k l } g ^ { - 1 l j } $", "$ X ^ { k } ( \\sigma , \\tau ) $", "$ \\tau = - i \\tau ^ { \\prime } $", "$ z = e ^ { \\tau ^ { \\prime } + i \\sigma } $", "$ M ^ { - 1 } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } g ^ { - 1 } F M ^ { - 1 } F g ^ { - 1 } = g ^ { - 1 } , M ^ { - 1 } F g ^ { - 1 } = g ^ { - 1 } F M ^ { - 1 } $", "\\begin{equation*} S = \\frac { 1 } { 4 \\pi \\alpha ^ { \\prime } } \\int _ { \\Sigma } d ^ { 2 } \\sigma ( g _ { \\mu \\nu } \\partial _ { a } X ^ { \\mu } \\partial ^ { a } X ^ { \\nu } - 2 \\pi \\alpha ^ { \\prime } F _ { i j } \\epsilon ^ { a b } \\partial _ { a } X ^ { i } \\partial _ { b } X ^ { j } ) \\end{equation*}", "\\begin{equation*} X ^ { k } = x _ { 0 } ^ { k } + ( p _ { 0 } ^ { k } \\tau + 2 \\pi \\alpha ^ { \\prime } p _ { 0 } ^ { j } F _ { j } ^ { k } \\sigma ) + \\sum _ { n \\ne 0 } \\frac { e ^ { - i n \\tau } } { n } ( i a _ { n } ^ { k } \\operatorname { c o s } n \\sigma + 2 \\pi \\alpha ^ { \\prime } a _ { n } ^ { j } F _ { j } ^ { k } \\operatorname { s i n } n \\sigma ) . \\end{equation*}", "\\begin{equation*} [ a _ { m } ^ { i } , a _ { n } ^ { j } ] = 2 \\alpha ^ { \\prime } m M ^ { - 1 i j } \\delta _ { m + n } , \\hspace{28.45pt} [ x _ { 0 } ^ { i } , p _ { 0 } ^ { j } ] = i 2 \\alpha ^ { \\prime } M ^ { - 1 i j } , \\end{equation*}", "\\begin{equation*} [ x _ { 0 } ^ { i } , x _ { 0 } ^ { j } ] = i 2 \\pi \\alpha ^ { \\prime } ( M ^ { - 1 } F ) ^ { i j } , \\hspace{28.45pt} [ p _ { 0 } ^ { i } , p _ { 0 } ^ { j } ] = 0 , \\end{equation*}", "\\begin{equation*} X ^ { k } ( z ) = x _ { 0 } ^ { k } - \\frac { i } { 2 } ( p _ { 0 } ^ { k } \\operatorname { l n } z \\bar { z } + 2 \\pi \\alpha ^ { \\prime } p _ { 0 } ^ { j } F _ { j } ^ { k } \\operatorname { l n } \\frac { z } { \\bar { z } } ) + i \\sum _ { n \\ne 0 } ( a _ { n } ^ { k } ( z ^ { - n } + \\bar { z } ^ { - n } ) + 2 \\pi \\alpha ^ { \\prime } a _ { n } ^ { j } F _ { j } ^ { k } ( z ^ { - n } - \\bar { z } ^ { - n } ) ) . \\end{equation*}", "\\begin{align*} < 0 \\vert X ^ { i } ( z ) X ^ { j } ( z ^ { \\prime } ) \\vert 0 > = \\alpha ^ { \\prime } ( - M ^ { - 1 i j } \\operatorname { l n } z \\bar { z } + 2 \\pi \\alpha ^ { \\prime } ( F M ^ { - 1 } ) ^ { i j } \\operatorname { l n } \\frac { z } { \\bar { z } } \\hspace{85.36pt} \\\\ - \\frac { 1 } { 2 } M ^ { - 1 i j } ( \\operatorname { l n } \\vert 1 - \\frac { z ^ { \\prime } } { z } \\vert ^ { 2 } + \\operatorname { l n } \\vert 1 - \\frac { \\bar { z } ^ { \\prime } } { z } \\vert ^ { 2 } ) + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 2 } ( F M ^ { - 1 } F ) ^ { i j } ( \\operatorname { l n } \\vert 1 - \\frac { z ^ { \\prime } } { z } \\vert ^ { 2 } - \\operatorname { l n } \\vert 1 - \\frac { \\bar { z } ^ { \\prime } } { z } \\vert ^ { 2 } ) \\\\ - \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 } ( M ^ { - 1 } F ) ^ { i j } \\operatorname { l n } \\frac { ( z - z ^ { \\prime } ) ( \\bar { z } - z ^ { \\prime } ) } { ( z - \\bar { z } ^ { \\prime } ) ( \\bar { z } - \\bar { z } ^ { \\prime } ) } + \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 } ( F M ^ { - 1 } ) ^ { i j } ( \\operatorname { l n } \\frac { ( z - z ^ { \\prime } ) ( z - \\bar { z } ^ { \\prime } ) } { ( \\bar { z } - z ^ { \\prime } ) ( \\bar { z } - \\bar { z } ^ { \\prime } ) } - 2 \\operatorname { l n } \\frac { z } { \\bar { z } } ) ) , \\end{align*}", "\\begin{equation*} - \\alpha ^ { \\prime } ( g ^ { - 1 i j } ( \\operatorname { l n } \\vert z - z ^ { \\prime } \\vert - \\operatorname { l n } \\vert z - \\bar { z } ^ { \\prime } \\vert ) + M ^ { - 1 i j } \\operatorname { l n } \\vert z - z ^ { \\prime } \\vert ^ { 2 } - 2 \\pi \\alpha ^ { \\prime } ( M ^ { - 1 } F g ^ { - 1 } ) ^ { i j } \\operatorname { l n } \\frac { z - \\bar { z } ^ { \\prime } } { \\bar { z } - z ^ { \\prime } } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitA _ { \\miti } , \\miti = 0 , 1 , \\cdots , \\mitp $", "$ \\mitp $", "$ \\mitg _ { \\mitmu \\mitnu } , \\mitB _ { \\mitmu \\mitnu } , \\mitmu = 0 , 1 , \\cdots , 9 $", "$ \\mitg _ { \\mitmu \\mitnu } , \\mitB _ { \\mitmu \\mitnu } , \\mitmu = 0 , 1 , \\cdots , 9 $", "$ \\mitB _ { \\mitmu \\mitnu } $", "$ \\mitp $", "$ \\mscrF _ { \\miti \\mitj } = \\mitB _ { \\miti \\mitj } + \\mitF _ { \\miti \\mitj } $", "$ \\mitF = \\mitd \\mitA $", "$ \\mitX ^ { \\mitmu } , \\mitmu = \\mitp + 1 , \\cdots , 9 $", "$ \\mitX ^ { \\miti } $", "$ \\mitX ^ { \\miti } $", "$ \\mitpartial _ { \\mitsigma } \\mitX ^ { \\miti } - 2 \\mitpi \\mitalpha ^ { \\prime } \\mitpartial _ { \\mittau } \\mitX ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\miti } = 0 $", "$ \\mitsigma = 0 , \\mitpi $", "$ \\mitX ^ { \\mitk } $", "$ \\mitM _ { \\miti \\mitj } = \\mitg _ { \\miti \\mitj } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mscrF \\mitg ^ { - 1 } \\mscrF ) _ { \\miti \\mitj } $", "$ ( \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } $", "$ \\mitM ^ { - 1 \\miti \\mitk } \\mscrF _ { \\mitk \\mitl } \\mitg ^ { - 1 \\mitl \\mitj } $", "$ \\mitX ^ { \\mitk } ( \\mitsigma , \\mittau ) $", "$ \\mittau = - \\miti \\mittau ^ { \\prime } $", "$ \\mitz = \\mite ^ { \\mittau ^ { \\prime } + \\miti \\mitsigma } $", "$ \\mitM ^ { - 1 } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitg ^ { - 1 } \\mscrF \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = \\mitg ^ { - 1 } , \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = \\mitg ^ { - 1 } \\mscrF \\mitM ^ { - 1 } $", "\\begin{equation*} \\mitS = \\frac { 1 } { 4 \\mitpi \\mitalpha ^ { \\prime } } \\int _ { \\mupSigma } \\mitd ^ { 2 } \\mitsigma ( \\mitg _ { \\mitmu \\mitnu } \\mitpartial _ { \\mita } \\mitX ^ { \\mitmu } \\mitpartial ^ { \\mita } \\mitX ^ { \\mitnu } - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF _ { \\miti \\mitj } \\mitepsilon ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX ^ { \\miti } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitj } ) \\end{equation*}", "\\begin{equation*} \\mitX ^ { \\mitk } = \\mitx _ { 0 } ^ { \\mitk } + ( \\mitp _ { 0 } ^ { \\mitk } \\mittau + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitp _ { 0 } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } \\mitsigma ) + \\sum _ { \\mitn \\ne 0 } \\frac { \\mite ^ { - \\miti \\mitn \\mittau } } { \\mitn } ( \\miti \\mita _ { \\mitn } ^ { \\mitk } \\operatorname { c o s } \\mitn \\mitsigma + 2 \\mitpi \\mitalpha ^ { \\prime } \\mita _ { \\mitn } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } \\operatorname { s i n } \\mitn \\mitsigma ) . \\end{equation*}", "\\begin{equation*} [ \\mita _ { \\mitm } ^ { \\miti } , \\mita _ { \\mitn } ^ { \\mitj } ] = 2 \\mitalpha ^ { \\prime } \\mitm \\mitM ^ { - 1 \\miti \\mitj } \\mitdelta _ { \\mitm + \\mitn } , \\hspace{28.45pt} [ \\mitx _ { 0 } ^ { \\miti } , \\mitp _ { 0 } ^ { \\mitj } ] = \\miti 2 \\mitalpha ^ { \\prime } \\mitM ^ { - 1 \\miti \\mitj } , \\end{equation*}", "\\begin{equation*} [ \\mitx _ { 0 } ^ { \\miti } , \\mitx _ { 0 } ^ { \\mitj } ] = \\miti 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } , \\hspace{28.45pt} [ \\mitp _ { 0 } ^ { \\miti } , \\mitp _ { 0 } ^ { \\mitj } ] = 0 , \\end{equation*}", "\\begin{equation*} \\mitX ^ { \\mitk } ( \\mitz ) = \\mitx _ { 0 } ^ { \\mitk } - \\frac { \\miti } { 2 } ( \\mitp _ { 0 } ^ { \\mitk } \\operatorname { l n } \\mitz \\bar { \\mitz } + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitp _ { 0 } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } \\operatorname { l n } \\frac { \\mitz } { \\bar { \\mitz } } ) + \\miti \\sum _ { \\mitn \\ne 0 } ( \\mita _ { \\mitn } ^ { \\mitk } ( \\mitz ^ { - \\mitn } + \\bar { \\mitz } ^ { - \\mitn } ) + 2 \\mitpi \\mitalpha ^ { \\prime } \\mita _ { \\mitn } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } ( \\mitz ^ { - \\mitn } - \\bar { \\mitz } ^ { - \\mitn } ) ) . \\end{equation*}", "\\begin{align*} \\displaystyle < 0 \\vert \\mitX ^ { \\miti } ( \\mitz ) \\mitX ^ { \\mitj } ( \\mitz ^ { \\prime } ) \\vert 0 > = \\mitalpha ^ { \\prime } ( - \\mitM ^ { - 1 \\miti \\mitj } \\operatorname { l n } \\mitz \\bar { \\mitz } + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mscrF \\mitM ^ { - 1 } ) ^ { \\miti \\mitj } \\operatorname { l n } \\frac { \\mitz } { \\bar { \\mitz } } \\hspace{85.36pt} \\\\ \\displaystyle - \\frac { 1 } { 2 } \\mitM ^ { - 1 \\miti \\mitj } ( \\operatorname { l n } \\vert 1 - \\frac { \\mitz ^ { \\prime } } { \\mitz } \\vert ^ { 2 } + \\operatorname { l n } \\vert 1 - \\frac { \\bar { \\mitz } ^ { \\prime } } { \\mitz } \\vert ^ { 2 } ) + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 2 } ( \\mscrF \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } ( \\operatorname { l n } \\vert 1 - \\frac { \\mitz ^ { \\prime } } { \\mitz } \\vert ^ { 2 } - \\operatorname { l n } \\vert 1 - \\frac { \\bar { \\mitz } ^ { \\prime } } { \\mitz } \\vert ^ { 2 } ) \\\\ \\displaystyle - \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 } ( \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } \\operatorname { l n } \\frac { ( \\mitz - \\mitz ^ { \\prime } ) ( \\bar { \\mitz } - \\mitz ^ { \\prime } ) } { ( \\mitz - \\bar { \\mitz } ^ { \\prime } ) ( \\bar { \\mitz } - \\bar { \\mitz } ^ { \\prime } ) } + \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 } ( \\mscrF \\mitM ^ { - 1 } ) ^ { \\miti \\mitj } ( \\operatorname { l n } \\frac { ( \\mitz - \\mitz ^ { \\prime } ) ( \\mitz - \\bar { \\mitz } ^ { \\prime } ) } { ( \\bar { \\mitz } - \\mitz ^ { \\prime } ) ( \\bar { \\mitz } - \\bar { \\mitz } ^ { \\prime } ) } - 2 \\operatorname { l n } \\frac { \\mitz } { \\bar { \\mitz } } ) ) , \\end{align*}", "\\begin{equation*} - \\mitalpha ^ { \\prime } ( \\mitg ^ { - 1 \\miti \\mitj } ( \\operatorname { l n } \\vert \\mitz - \\mitz ^ { \\prime } \\vert - \\operatorname { l n } \\vert \\mitz - \\bar { \\mitz } ^ { \\prime } \\vert ) + \\mitM ^ { - 1 \\miti \\mitj } \\operatorname { l n } \\vert \\mitz - \\mitz ^ { \\prime } \\vert ^ { 2 } - 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } \\operatorname { l n } \\frac { \\mitz - \\bar { \\mitz } ^ { \\prime } } { \\bar { \\mitz } - \\mitz ^ { \\prime } } ) . \\end{equation*}" ], "x_min": [ 0.17419999837875366, 0.6765999794006348, 0.7892000079154968, 0.11540000140666962, 0.43810001015663147, 0.3483000099658966, 0.5099999904632568, 0.6917999982833862, 0.24330000579357147, 0.33379998803138733, 0.5543000102043152, 0.3828999996185303, 0.6233999729156494, 0.41119998693466187, 0.1728000044822693, 0.47269999980926514, 0.7276999950408936, 0.19349999725818634, 0.11540000140666962, 0.3587000072002411, 0.11540000140666962, 0.27230000495910645, 0.1949000060558319, 0.2777999937534332, 0.32269999384880066, 0.1257999986410141, 0.13539999723434448, 0.13410000503063202 ], "y_min": [ 0.094200000166893, 0.09809999912977219, 0.094200000166893, 0.11129999905824661, 0.12890000641345978, 0.149399995803833, 0.218299999833107, 0.218299999833107, 0.2354000061750412, 0.25099998712539673, 0.25099998712539673, 0.26809999346733093, 0.27000001072883606, 0.3540000021457672, 0.4765999913215637, 0.47609999775886536, 0.47609999775886536, 0.5102999806404114, 0.5288000106811523, 0.5268999934196472, 0.7695000171661377, 0.1703999936580658, 0.2969000041484833, 0.41749998927116394, 0.44679999351501465, 0.5547000169754028, 0.6342999935150146, 0.8130000233650208 ], "x_max": [ 0.3255000114440918, 0.6869999766349792, 0.9046000242233276, 0.19900000095367432, 0.47130000591278076, 0.3587000072002411, 0.6406000256538391, 0.760200023651123, 0.41190001368522644, 0.3580000102519989, 0.578499972820282, 0.5929999947547913, 0.6924999952316284, 0.4381999969482422, 0.4284999966621399, 0.557699978351593, 0.8485999703407288, 0.2660999894142151, 0.19140000641345978, 0.4422999918460846, 0.6593000292778015, 0.7477999925613403, 0.8252000212669373, 0.7366999983787537, 0.6937999725341797, 0.8671000003814697, 0.861299991607666, 0.8521000146865845 ], "y_max": [ 0.10740000009536743, 0.10740000009536743, 0.1088000014424324, 0.125900000333786, 0.14309999346733093, 0.15919999778270721, 0.23250000178813934, 0.22859999537467957, 0.24860000610351562, 0.2632000148296356, 0.2632000148296356, 0.2856999933719635, 0.2827000021934509, 0.3662000000476837, 0.49219998717308044, 0.4916999936103821, 0.4912000000476837, 0.5264000296592712, 0.5410000085830688, 0.5396000146865845, 0.785099983215332, 0.20309999585151672, 0.3393999934196472, 0.43560001254081726, 0.4672999978065491, 0.5952000021934509, 0.7422000169754028, 0.8476999998092651 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003204_page04
{ "latex": [ "$M^{-1} = (g+2\\pi \\al \\F )^{-1}g(g-2\\pi \\al \\F )^{-1}$", "$M^{-1}\\F g^{-1} = (g+2\\pi \\al \\F )^{-1}\\F (g-2\\pi \\al \\F )^{-1}$", "$M^{-1}\\F g^{-1} = (g+2\\pi \\al \\F )^{-1}\\F (g-2\\pi \\al \\F )^{-1}$", "$\\te $", "$G, \\Phi $", "$G$", "$\\Phi $", "$g, B$", "$\\te $", "$(p+1)\\times (p+1)$", "$B_{0i}=0$", "$g_{0i}=0$", "$i=1,\\cdots ,p$", "$p$", "$p$", "$T^p$", "$x^i \\sim x^i + 2\\pi r$", "$i = 1,\\cdots ,p$", "$g_{ij}$", "$SO(p,p,Z)$", "$E = r^2(g + 2\\pi \\al B)/\\al $", "$E' = (aE + b)(cE + d)^{-1}$", "$c^ta + a^tc = 0, d^tb + b^td = 0, c^tb + a^td = 1$", "$a, b, c$", "$d$", "$p\\times p$", "$\\te $", "$\\te ^{0i}$", "$p\\times p$", "$G_{00}=g_{00}$", "$\\Phi _{0i}=0$", "$\\Phi $", "$p\\times p$", "$p\\times p$", "$\\Te = \\te /2\\pi r^2$", "$G$", "$\\Phi $", "$g$", "$B$", "$G$", "$\\te $", "$\\Phi $", "$SO(p)$", "$\\Te $", "$\\Te \\rightarrow \\Te ' = (c + d\\Te )(a + b\\Te )^{-1}$", "$G$", "$\\Phi $", "$E' + E'^t = (E^tc^t + d^t)^{-1} (E + E^t)(cE+ d)^{-1}$", "${\\Te '}^t = -\\Te '$", "$\\Phi '$", "\\begin {equation} \\frac {1}{G + 2\\pi \\al \\Phi } = - \\frac {\\te }{2\\pi \\al } + \\frac {1}{g + 2\\pi \\al B}, \\label {swf}\\end {equation}", "\\begin {eqnarray} G &=& \\frac {\\al }{2r^2} \\frac {1}{1+E^t\\Te }( E + E^t )\\frac {1}{1-\\Te E}, \\\\ \\Phi &=& \\frac {1}{4\\pi r^2} \\frac {1}{1+E^t\\Te }( 2E^t\\Te E + E - E^t ) \\frac {1}{1-\\Te E}. \\end {eqnarray}", "\\begin {equation} 1- \\Te 'E' = \\frac {1}{a^t - \\Te b^t}(1-\\Te E)\\frac {1}{cE + d}. \\label {the}\\end {equation}", "\\begin {equation} G' = ( a + b\\Te ) G ( a + b \\Te )^t. \\label {tg}\\end {equation}", "\\begin {equation} \\Phi ' = \\frac {1}{4\\pi r^2}(a+b\\Te )\\frac {1}{1+E^t\\Te }(2X+Y) \\frac {1}{1-\\Te E}(a+b\\Te )^t, \\end {equation}" ], "latex_norm": [ "$ M ^ { - 1 } = ( g + 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } g ( g - 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } $", "$ M ^ { - 1 } F g ^ { - 1 } = ( g + 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } F ( g - 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } $", "$ M ^ { - 1 } F g ^ { - 1 } = ( g + 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } F ( g - 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } $", "$ \\theta $", "$ G , \\Phi $", "$ G $", "$ \\Phi $", "$ g , B $", "$ \\theta $", "$ ( p + 1 ) \\times ( p + 1 ) $", "$ B _ { 0 i } = 0 $", "$ g _ { 0 i } = 0 $", "$ i = 1 , \\cdots , p $", "$ p $", "$ p $", "$ T ^ { p } $", "$ x ^ { i } \\sim x ^ { i } + 2 \\pi r $", "$ i = 1 , \\cdots , p $", "$ g _ { i j } $", "$ S O ( p , p , Z ) $", "$ E = r ^ { 2 } ( g + 2 \\pi \\alpha ^ { \\prime } B ) \\slash \\alpha ^ { \\prime } $", "$ E ^ { \\prime } = ( a E + b ) ( c E + d ) ^ { - 1 } $", "$ c ^ { t } a + a ^ { t } c = 0 , d ^ { t } b + b ^ { t } d = 0 , c ^ { t } b + a ^ { t } d = 1 $", "$ a , b , c $", "$ d $", "$ p \\times p $", "$ \\theta $", "$ \\theta ^ { 0 i } $", "$ p \\times p $", "$ G _ { 0 0 } = g _ { 0 0 } $", "$ \\Phi _ { 0 i } = 0 $", "$ \\Phi $", "$ p \\times p $", "$ p \\times p $", "$ \\Theta = \\theta \\slash 2 \\pi r ^ { 2 } $", "$ G $", "$ \\Phi $", "$ g $", "$ B $", "$ G $", "$ \\theta $", "$ \\Phi $", "$ S O ( p ) $", "$ \\Theta $", "$ \\Theta \\rightarrow \\Theta ^ { \\prime } = ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } $", "$ G $", "$ \\Phi $", "$ E ^ { \\prime } + E ^ { \\prime t } = ( E ^ { t } c ^ { t } + d ^ { t } ) ^ { - 1 } ( E + E ^ { t } ) ( c E + d ) ^ { - 1 } $", "$ { \\Theta ^ { \\prime } } ^ { t } = - \\Theta ^ { \\prime } $", "$ \\Phi ^ { \\prime } $", "\\begin{equation*} \\frac { 1 } { G + 2 \\pi \\alpha ^ { \\prime } \\Phi } = - \\frac { \\theta } { 2 \\pi \\alpha ^ { \\prime } } + \\frac { 1 } { g + 2 \\pi \\alpha ^ { \\prime } B } , \\end{equation*}", "\\begin{align*} G & = & \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } \\frac { 1 } { 1 + E ^ { t } \\Theta } ( E + E ^ { t } ) \\frac { 1 } { 1 - \\Theta E } , \\\\ \\Phi & = & \\frac { 1 } { 4 \\pi r ^ { 2 } } \\frac { 1 } { 1 + E ^ { t } \\Theta } ( 2 E ^ { t } \\Theta E + E - E ^ { t } ) \\frac { 1 } { 1 - \\Theta E } . \\end{align*}", "\\begin{equation*} 1 - \\Theta ^ { \\prime } E ^ { \\prime } = \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } ( 1 - \\Theta E ) \\frac { 1 } { c E + d } . \\end{equation*}", "\\begin{equation*} G ^ { \\prime } = ( a + b \\Theta ) G ( a + b \\Theta ) ^ { t } . \\end{equation*}", "\\begin{equation*} \\Phi ^ { \\prime } = \\frac { 1 } { 4 \\pi r ^ { 2 } } ( a + b \\Theta ) \\frac { 1 } { 1 + E ^ { t } \\Theta } ( 2 X + Y ) \\frac { 1 } { 1 - \\Theta E } ( a + b \\Theta ) ^ { t } , \\end{equation*}" ], "latex_expand": [ "$ \\mitM ^ { - 1 } = ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } \\mitg ( \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } $", "$ \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } \\mscrF ( \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } $", "$ \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } \\mscrF ( \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } $", "$ \\mittheta $", "$ \\mitG , \\mupPhi $", "$ \\mitG $", "$ \\mupPhi $", "$ \\mitg , \\mitB $", "$ \\mittheta $", "$ ( \\mitp + 1 ) \\times ( \\mitp + 1 ) $", "$ \\mitB _ { 0 \\miti } = 0 $", "$ \\mitg _ { 0 \\miti } = 0 $", "$ \\miti = 1 , \\cdots , \\mitp $", "$ \\mitp $", "$ \\mitp $", "$ \\mitT ^ { \\mitp } $", "$ \\mitx ^ { \\miti } \\sim \\mitx ^ { \\miti } + 2 \\mitpi \\mitr $", "$ \\miti = 1 , \\cdots , \\mitp $", "$ \\mitg _ { \\miti \\mitj } $", "$ \\mitS \\mitO ( \\mitp , \\mitp , \\mitZ ) $", "$ \\mitE = \\mitr ^ { 2 } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB ) \\slash \\mitalpha ^ { \\prime } $", "$ \\mitE ^ { \\prime } = ( \\mita \\mitE + \\mitb ) ( \\mitc \\mitE + \\mitd ) ^ { - 1 } $", "$ \\mitc ^ { \\mitt } \\mita + \\mita ^ { \\mitt } \\mitc = 0 , \\mitd ^ { \\mitt } \\mitb + \\mitb ^ { \\mitt } \\mitd = 0 , \\mitc ^ { \\mitt } \\mitb + \\mita ^ { \\mitt } \\mitd = 1 $", "$ \\mita , \\mitb , \\mitc $", "$ \\mitd $", "$ \\mitp \\times \\mitp $", "$ \\mittheta $", "$ \\mittheta ^ { 0 \\miti } $", "$ \\mitp \\times \\mitp $", "$ \\mitG _ { 0 0 } = \\mitg _ { 0 0 } $", "$ \\mupPhi _ { 0 \\miti } = 0 $", "$ \\mupPhi $", "$ \\mitp \\times \\mitp $", "$ \\mitp \\times \\mitp $", "$ \\mupTheta = \\mittheta \\slash 2 \\mitpi \\mitr ^ { 2 } $", "$ \\mitG $", "$ \\mupPhi $", "$ \\mitg $", "$ \\mitB $", "$ \\mitG $", "$ \\mittheta $", "$ \\mupPhi $", "$ \\mitS \\mitO ( \\mitp ) $", "$ \\mupTheta $", "$ \\mupTheta \\rightarrow \\mupTheta ^ { \\prime } = ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } $", "$ \\mitG $", "$ \\mupPhi $", "$ \\mitE ^ { \\prime } + \\mitE ^ { \\prime \\mitt } = ( \\mitE ^ { \\mitt } \\mitc ^ { \\mitt } + \\mitd ^ { \\mitt } ) ^ { - 1 } ( \\mitE + \\mitE ^ { \\mitt } ) ( \\mitc \\mitE + \\mitd ) ^ { - 1 } $", "$ { \\mupTheta ^ { \\prime } } ^ { \\mitt } = - \\mupTheta ^ { \\prime } $", "$ \\mupPhi ^ { \\prime } $", "\\begin{equation*} \\frac { 1 } { \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } \\mupPhi } = - \\frac { \\mittheta } { 2 \\mitpi \\mitalpha ^ { \\prime } } + \\frac { 1 } { \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB } , \\end{equation*}", "\\begin{align*} \\displaystyle \\mitG & = & \\displaystyle \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\frac { 1 } { 1 + \\mitE ^ { \\mitt } \\mupTheta } ( \\mitE + \\mitE ^ { \\mitt } ) \\frac { 1 } { 1 - \\mupTheta \\mitE } , \\\\ \\displaystyle \\mupPhi & = & \\displaystyle \\frac { 1 } { 4 \\mitpi \\mitr ^ { 2 } } \\frac { 1 } { 1 + \\mitE ^ { \\mitt } \\mupTheta } ( 2 \\mitE ^ { \\mitt } \\mupTheta \\mitE + \\mitE - \\mitE ^ { \\mitt } ) \\frac { 1 } { 1 - \\mupTheta \\mitE } . \\end{align*}", "\\begin{equation*} 1 - \\mupTheta ^ { \\prime } \\mitE ^ { \\prime } = \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } ( 1 - \\mupTheta \\mitE ) \\frac { 1 } { \\mitc \\mitE + \\mitd } . \\end{equation*}", "\\begin{equation*} \\mitG ^ { \\prime } = ( \\mita + \\mitb \\mupTheta ) \\mitG ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } . \\end{equation*}", "\\begin{equation*} \\mupPhi ^ { \\prime } = \\frac { 1 } { 4 \\mitpi \\mitr ^ { 2 } } ( \\mita + \\mitb \\mupTheta ) \\frac { 1 } { 1 + \\mitE ^ { \\mitt } \\mupTheta } ( 2 \\mitX + \\mitY ) \\frac { 1 } { 1 - \\mupTheta \\mitE } ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } , \\end{equation*}" ], "x_min": [ 0.2134999930858612, 0.600600004196167, 0.11540000140666962, 0.7871000170707703, 0.1624000072479248, 0.4699000120162964, 0.7692000269889832, 0.4657999873161316, 0.8223999738693237, 0.41600000858306885, 0.8036999702453613, 0.18310000002384186, 0.3068000078201294, 0.8375999927520752, 0.274399995803833, 0.34139999747276306, 0.5169000029563904, 0.6455000042915344, 0.17759999632835388, 0.33660000562667847, 0.6039999723434448, 0.11540000140666962, 0.38769999146461487, 0.8016999959945679, 0.8914999961853027, 0.14790000021457672, 0.7146000266075134, 0.802299976348877, 0.5867000222206116, 0.7146000266075134, 0.8382999897003174, 0.44440001249313354, 0.7996000051498413, 0.4277999997138977, 0.5425000190734863, 0.7457000017166138, 0.8058000206947327, 0.5543000102043152, 0.6087999939918518, 0.37940001487731934, 0.43950000405311584, 0.6557999849319458, 0.15960000455379486, 0.15760000050067902, 0.5625, 0.18870000541210175, 0.24950000643730164, 0.20110000669956207, 0.5583999752998352, 0.4519999921321869, 0.3544999957084656, 0.29789999127388, 0.34619998931884766, 0.39809998869895935, 0.2694999873638153 ], "y_min": [ 0.09279999881982803, 0.09279999881982803, 0.10989999771118164, 0.163100004196167, 0.18019999563694, 0.25540000200271606, 0.25540000200271606, 0.27250000834465027, 0.27250000834465027, 0.2890999913215637, 0.28999999165534973, 0.3075999915599823, 0.3075999915599823, 0.31049999594688416, 0.32760000228881836, 0.32420000433921814, 0.322299987077713, 0.3246999979019165, 0.3452000021934509, 0.3402999937534332, 0.33980000019073486, 0.35690000653266907, 0.35740000009536743, 0.35839998722076416, 0.35839998722076416, 0.37700000405311584, 0.37549999356269836, 0.3910999894142151, 0.4115999937057495, 0.41019999980926514, 0.41019999980926514, 0.42719998955726624, 0.4287000000476837, 0.4458000063896179, 0.44290000200271606, 0.44429999589920044, 0.44429999589920044, 0.5576000213623047, 0.5536999702453613, 0.5708000063896179, 0.5708000063896179, 0.5708000063896179, 0.5874000191688538, 0.6226000189781189, 0.6211000084877014, 0.6395999789237976, 0.6395999789237976, 0.6553000211715698, 0.7304999828338623, 0.7919999957084656, 0.2046000063419342, 0.47119998931884766, 0.6820999979972839, 0.7621999979019165, 0.8169000148773193 ], "x_max": [ 0.5521000027656555, 0.9018999934196472, 0.19830000400543213, 0.7975000143051147, 0.20180000364780426, 0.48579999804496765, 0.7836999893188477, 0.5009999871253967, 0.8327999711036682, 0.5680000185966492, 0.8755999803543091, 0.24879999458789825, 0.4104999899864197, 0.8479999899864197, 0.2847999930381775, 0.36419999599456787, 0.6337000131607056, 0.742900013923645, 0.1996999979019165, 0.4334000051021576, 0.8003000020980835, 0.3310000002384186, 0.738099992275238, 0.8465999960899353, 0.9018999934196472, 0.1906999945640564, 0.7250000238418579, 0.8251000046730042, 0.6261000037193298, 0.7961000204086304, 0.9018999934196472, 0.45890000462532043, 0.8396999835968018, 0.47269999980926514, 0.6434000134468079, 0.7616000175476074, 0.8202999830245972, 0.5647000074386597, 0.6247000098228455, 0.3953000009059906, 0.44920000433921814, 0.6703000068664551, 0.2142000049352646, 0.17350000143051147, 0.816100001335144, 0.2046000063419342, 0.2639999985694885, 0.5791000127792358, 0.6468999981880188, 0.4713999927043915, 0.6626999974250793, 0.7202000021934509, 0.673799991607666, 0.621999979019165, 0.746999979019165 ], "y_max": [ 0.10840000212192535, 0.10840000212192535, 0.12549999356269836, 0.17339999973773956, 0.19339999556541443, 0.2660999894142151, 0.2660999894142151, 0.2856999933719635, 0.2831999957561493, 0.3037000000476837, 0.30219998955726624, 0.32030001282691956, 0.32030001282691956, 0.32030001282691956, 0.33739998936653137, 0.3345000147819519, 0.33550000190734863, 0.33739998936653137, 0.35589998960494995, 0.3553999960422516, 0.3553999960422516, 0.3725000023841858, 0.3716000020503998, 0.3716000020503998, 0.3686999976634979, 0.388700008392334, 0.3862000107765198, 0.4032999873161316, 0.4228000044822693, 0.42340001463890076, 0.42239999771118164, 0.4375, 0.44040000438690186, 0.45750001072883606, 0.4580000042915344, 0.4546000063419342, 0.4546000063419342, 0.5669000148773193, 0.5644000172615051, 0.5814999938011169, 0.5814999938011169, 0.5814999938011169, 0.6019999980926514, 0.6328999996185303, 0.6362000107765198, 0.6499000191688538, 0.6499000191688538, 0.6708999872207642, 0.744700014591217, 0.8026999831199646, 0.24070000648498535, 0.5449000000953674, 0.7157999873161316, 0.7811999917030334, 0.850600004196167 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003204_page05
{ "latex": [ "$X = (E^ta^t+b^t)(c+d\\Te )(a+b\\Te )^{-1}(aE+b)$", "$Y$", "$Y = E-E^t + 2Y_0$", "$Y_0 = -(E^ta^t + b^t)cE + (E^tc^t+d^t)b$", "$X=(E^ta^t + b^t)\\Te '(aE + b)$", "${\\Te '}^t = - \\Te '$", "$X=( E^t + (1+E^t\\Te )b^t(a^t-\\Te b^t)^{-1})(\\Te +X_0)(E+ (a+b\\Te )^{-1} b(1-\\Te E))$", "$X=( E^t + (1+E^t\\Te )b^t(a^t-\\Te b^t)^{-1})(\\Te +X_0)(E+ (a+b\\Te )^{-1} b(1-\\Te E))$", "$X_0 = -(c^t-\\Te d^t)b\\Te + (a^t - \\Te b^t)c$", "$2X + Y = 2E^t\\Te E + E - E^t + 2Z,$", "$2X + Y = 2E^t\\Te E + E - E^t + 2Z,$", "$Z_0 = (1+ E^t\\Te )b^t(a^t- \\Te b^t)^{-1} (\\Te +X_0)(a+b\\Te )^{-1}b(1-\\Te E)$", "$X_0$", "$E^t(a^tc+(a^t-\\Te b^t)d\\Te (a+b\\Te )^{-1}b\\Te )E$", "$Y_0$", "$b^t(c+d\\Te )(a+b\\Te )^{-1} = (a+b\\Te )^{-1} - d^t$", "$[(1+E^t\\Te ) (b^t(a^t-\\Te b^t)^{-1} - d^tb) + (a+b\\Te )^{-1}b]\\Te E + b^tcE$", "$Y_0$", "$E^t[(\\Te + (a^t-\\Te b^t)c) (a+b\\Te )^{-1}b - (c^t-\\Te d^t)b\\Te (a+b\\Te )^{-1}b(1-\\Te E)]$", "$E^t[(a^tc + \\Te d^ta)(a+b\\Te )^{-1}b -(c^t-\\Te d^t)(1-a(a+b\\Te )^{-1})b(1-\\Te E)]$", "$E^t(a^tc+c^ta)(a+b\\Te )^{-1}b$", "$Z_0=(E^t\\Te +1)b^t (a^t-\\Te b^t)^{-1}(\\Te +X_0)(-E + (a+b\\Te )^{-1}(aE+b))$", "$Z_0=(E^t\\Te +1)b^t (a^t-\\Te b^t)^{-1}(\\Te +X_0)(-E + (a+b\\Te )^{-1}(aE+b))$", "$-E^t(c^t-\\Te d^t)b \\Te E$", "$Z_0$", "$X_0$", "$b$", "\\begin {equation} X = \\frac {1}{2}(E^ta^t+ b^t)((c+d\\Te )\\frac {1}{a+b\\Te }- \\frac {1}{a^t-\\Te b^t}(c^t-\\Te d^t))(aE + b) \\end {equation}", "\\begin {eqnarray} Z &=& E^tX_0E + E^t(\\Te + X_0)\\frac {1}{a + b\\Te } b(1-\\Te E) \\\\ &+& (1 + E^t\\Te )b^t\\frac {1}{a^t -\\Te b^t}(\\Te + X_0)E + Y_0 + Z_0 \\end {eqnarray}", "\\begin {equation} c^t - \\Te d^t = - (a^t - \\Te b^t)(c + d\\Te )\\frac {1}{a + b\\Te } \\label {cd}\\end {equation}", "\\begin {eqnarray} Z &=& E^t(c^tb + (a^t-\\Te b^t)(c + d\\Te )\\frac {1}{a+b\\Te }b + \\Te \\frac {1}{a+b\\Te }b -2\\Te d^tb)\\Te E \\\\ &+& E^t\\Te d^tb + (\\frac {1}{a+b\\Te } - d^tb)\\Te E + d^tb + Z_0 + (1+ E^t\\Te )b^t\\frac {1}{a^t -\\Te b^t}\\Te E, \\end {eqnarray}", "\\begin {eqnarray} Z_0 &=& (E^t\\Te +1)b^t[ \\frac {1}{a^t-\\Te b^t}\\Te \\frac {1}{a+b\\Te }(aE+b) \\\\ &+& ((c+d\\Te )\\frac {1}{a+b\\Te }b\\Te + c)\\frac {1}{a+b\\Te } b(1-\\Te E)]. \\end {eqnarray}", "\\begin {equation} \\frac {1}{a^t - \\Te b^t}\\Te + c = (c + d\\Te )\\frac {1}{a + b\\Te }a, \\label {ab}\\end {equation}" ], "latex_norm": [ "$ X = ( E ^ { t } a ^ { t } + b ^ { t } ) ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } ( a E + b ) $", "$ Y $", "$ Y = E - E ^ { t } + 2 Y _ { 0 } $", "$ Y _ { 0 } = - ( E ^ { t } a ^ { t } + b ^ { t } ) c E + ( E ^ { t } c ^ { t } + d ^ { t } ) b $", "$ X = ( E ^ { t } a ^ { t } + b ^ { t } ) \\Theta ^ { \\prime } ( a E + b ) $", "$ { \\Theta ^ { \\prime } } ^ { t } = - \\Theta ^ { \\prime } $", "$ X = ( E ^ { t } + ( 1 + E ^ { t } \\Theta ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ) ( \\Theta + X _ { 0 } ) ( E + ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) ) $", "$ X = ( E ^ { t } + ( 1 + E ^ { t } \\Theta ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ) ( \\Theta + X _ { 0 } ) ( E + ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) ) $", "$ X _ { 0 } = - ( c ^ { t } - \\Theta d ^ { t } ) b \\Theta + ( a ^ { t } - \\Theta b ^ { t } ) c $", "$ 2 X + Y = 2 E ^ { t } \\Theta E + E - E ^ { t } + 2 Z , $", "$ 2 X + Y = 2 E ^ { t } \\Theta E + E - E ^ { t } + 2 Z , $", "$ Z _ { 0 } = ( 1 + E ^ { t } \\Theta ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ( \\Theta + X _ { 0 } ) ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) $", "$ X _ { 0 } $", "$ E ^ { t } ( a ^ { t } c + ( a ^ { t } - \\Theta b ^ { t } ) d \\Theta ( a + b \\Theta ) ^ { - 1 } b \\Theta ) E $", "$ Y _ { 0 } $", "$ b ^ { t } ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } = ( a + b \\Theta ) ^ { - 1 } - d ^ { t } $", "$ [ ( 1 + E ^ { t } \\Theta ) ( b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } - d ^ { t } b ) + ( a + b \\Theta ) ^ { - 1 } b ] \\Theta E + b ^ { t } c E $", "$ Y _ { 0 } $", "$ E ^ { t } [ ( \\Theta + ( a ^ { t } - \\Theta b ^ { t } ) c ) ( a + b \\Theta ) ^ { - 1 } b - ( c ^ { t } - \\Theta d ^ { t } ) b \\Theta ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) ] $", "$ E ^ { t } [ ( a ^ { t } c + \\Theta d ^ { t } a ) ( a + b \\Theta ) ^ { - 1 } b - ( c ^ { t } - \\Theta d ^ { t } ) ( 1 - a ( a + b \\Theta ) ^ { - 1 } ) b ( 1 - \\Theta E ) ] $", "$ E ^ { t } ( a ^ { t } c + c ^ { t } a ) ( a + b \\Theta ) ^ { - 1 } b $", "$ Z _ { 0 } = ( E ^ { t } \\Theta + 1 ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ( \\Theta + X _ { 0 } ) ( - E + ( a + b \\Theta ) ^ { - 1 } ( a E + b ) ) $", "$ Z _ { 0 } = ( E ^ { t } \\Theta + 1 ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ( \\Theta + X _ { 0 } ) ( - E + ( a + b \\Theta ) ^ { - 1 } ( a E + b ) ) $", "$ - E ^ { t } ( c ^ { t } - \\Theta d ^ { t } ) b \\Theta E $", "$ Z _ { 0 } $", "$ X _ { 0 } $", "$ b $", "\\begin{equation*} X = \\frac { 1 } { 2 } ( E ^ { t } a ^ { t } + b ^ { t } ) ( ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } - \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } ( c ^ { t } - \\Theta d ^ { t } ) ) ( a E + b ) \\end{equation*}", "\\begin{align*} Z & = & E ^ { t } X _ { 0 } E + E ^ { t } ( \\Theta + X _ { 0 } ) \\frac { 1 } { a + b \\Theta } b ( 1 - \\Theta E ) \\\\ & + & ( 1 + E ^ { t } \\Theta ) b ^ { t } \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } ( \\Theta + X _ { 0 } ) E + Y _ { 0 } + Z _ { 0 } \\end{align*}", "\\begin{equation*} c ^ { t } - \\Theta d ^ { t } = - ( a ^ { t } - \\Theta b ^ { t } ) ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } \\end{equation*}", "\\begin{align*} Z & = & E ^ { t } ( c ^ { t } b + ( a ^ { t } - \\Theta b ^ { t } ) ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } b + \\Theta \\frac { 1 } { a + b \\Theta } b - 2 \\Theta d ^ { t } b ) \\Theta E \\\\ & + & E ^ { t } \\Theta d ^ { t } b + ( \\frac { 1 } { a + b \\Theta } - d ^ { t } b ) \\Theta E + d ^ { t } b + Z _ { 0 } + ( 1 + E ^ { t } \\Theta ) b ^ { t } \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } \\Theta E , \\end{align*}", "\\begin{align*} Z _ { 0 } & = & ( E ^ { t } \\Theta + 1 ) b ^ { t } [ \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } \\Theta \\frac { 1 } { a + b \\Theta } ( a E + b ) \\\\ & + & ( ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } b \\Theta + c ) \\frac { 1 } { a + b \\Theta } b ( 1 - \\Theta E ) ] . \\end{align*}", "\\begin{equation*} \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } \\Theta + c = ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } a , \\end{equation*}" ], "latex_expand": [ "$ \\mitX = ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ( \\mita \\mitE + \\mitb ) $", "$ \\mitY $", "$ \\mitY = \\mitE - \\mitE ^ { \\mitt } + 2 \\mitY _ { 0 } $", "$ \\mitY _ { 0 } = - ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) \\mitc \\mitE + ( \\mitE ^ { \\mitt } \\mitc ^ { \\mitt } + \\mitd ^ { \\mitt } ) \\mitb $", "$ \\mitX = ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) \\mupTheta ^ { \\prime } ( \\mita \\mitE + \\mitb ) $", "$ { \\mupTheta ^ { \\prime } } ^ { \\mitt } = - \\mupTheta ^ { \\prime } $", "$ \\mitX = ( \\mitE ^ { \\mitt } + ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ) ( \\mupTheta + \\mitX _ { 0 } ) ( \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) ) $", "$ \\mitX = ( \\mitE ^ { \\mitt } + ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ) ( \\mupTheta + \\mitX _ { 0 } ) ( \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) ) $", "$ \\mitX _ { 0 } = - ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) \\mitb \\mupTheta + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) \\mitc $", "$ 2 \\mitX + \\mitY = 2 \\mitE ^ { \\mitt } \\mupTheta \\mitE + \\mitE - \\mitE ^ { \\mitt } + 2 \\mitZ , $", "$ 2 \\mitX + \\mitY = 2 \\mitE ^ { \\mitt } \\mupTheta \\mitE + \\mitE - \\mitE ^ { \\mitt } + 2 \\mitZ , $", "$ \\mitZ _ { 0 } = ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ( \\mupTheta + \\mitX _ { 0 } ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) $", "$ \\mitX _ { 0 } $", "$ \\mitE ^ { \\mitt } ( \\mita ^ { \\mitt } \\mitc + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) \\mitd \\mupTheta ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb \\mupTheta ) \\mitE $", "$ \\mitY _ { 0 } $", "$ \\mitb ^ { \\mitt } ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } = ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } - \\mitd ^ { \\mitt } $", "$ [ ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) ( \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } - \\mitd ^ { \\mitt } \\mitb ) + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ] \\mupTheta \\mitE + \\mitb ^ { \\mitt } \\mitc \\mitE $", "$ \\mitY _ { 0 } $", "$ \\mitE ^ { \\mitt } [ ( \\mupTheta + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) \\mitc ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb - ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) \\mitb \\mupTheta ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) ] $", "$ \\mitE ^ { \\mitt } [ ( \\mita ^ { \\mitt } \\mitc + \\mupTheta \\mitd ^ { \\mitt } \\mita ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb - ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) ( 1 - \\mita ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ) \\mitb ( 1 - \\mupTheta \\mitE ) ] $", "$ \\mitE ^ { \\mitt } ( \\mita ^ { \\mitt } \\mitc + \\mitc ^ { \\mitt } \\mita ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb $", "$ \\mitZ _ { 0 } = ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ( \\mupTheta + \\mitX _ { 0 } ) ( - \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ( \\mita \\mitE + \\mitb ) ) $", "$ \\mitZ _ { 0 } = ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ( \\mupTheta + \\mitX _ { 0 } ) ( - \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ( \\mita \\mitE + \\mitb ) ) $", "$ - \\mitE ^ { \\mitt } ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) \\mitb \\mupTheta \\mitE $", "$ \\mitZ _ { 0 } $", "$ \\mitX _ { 0 } $", "$ \\mitb $", "\\begin{equation*} \\mitX = \\frac { 1 } { 2 } ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) ( ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } - \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) ) ( \\mita \\mitE + \\mitb ) \\end{equation*}", "\\begin{align*} \\displaystyle \\mitZ & = & \\displaystyle \\mitE ^ { \\mitt } \\mitX _ { 0 } \\mitE + \\mitE ^ { \\mitt } ( \\mupTheta + \\mitX _ { 0 } ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb ( 1 - \\mupTheta \\mitE ) \\\\ & \\displaystyle + & \\displaystyle ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } ( \\mupTheta + \\mitX _ { 0 } ) \\mitE + \\mitY _ { 0 } + \\mitZ _ { 0 } \\end{align*}", "\\begin{equation*} \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } = - ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\end{equation*}", "\\begin{align*} \\displaystyle \\mitZ & = & \\displaystyle \\mitE ^ { \\mitt } ( \\mitc ^ { \\mitt } \\mitb + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb + \\mupTheta \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb - 2 \\mupTheta \\mitd ^ { \\mitt } \\mitb ) \\mupTheta \\mitE \\\\ & \\displaystyle + & \\displaystyle \\mitE ^ { \\mitt } \\mupTheta \\mitd ^ { \\mitt } \\mitb + ( \\frac { 1 } { \\mita + \\mitb \\mupTheta } - \\mitd ^ { \\mitt } \\mitb ) \\mupTheta \\mitE + \\mitd ^ { \\mitt } \\mitb + \\mitZ _ { 0 } + ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } \\mupTheta \\mitE , \\end{align*}", "\\begin{align*} \\displaystyle \\mitZ _ { 0 } & = & \\displaystyle ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } [ \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } \\mupTheta \\frac { 1 } { \\mita + \\mitb \\mupTheta } ( \\mita \\mitE + \\mitb ) \\\\ & \\displaystyle + & \\displaystyle ( ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb \\mupTheta + \\mitc ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb ( 1 - \\mupTheta \\mitE ) ] . \\end{align*}", "\\begin{equation*} \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } \\mupTheta + \\mitc = ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mita , \\end{equation*}" ], "x_min": [ 0.17350000143051147, 0.609499990940094, 0.7360000014305115, 0.16169999539852142, 0.6427000164985657, 0.2093999981880188, 0.5590999722480774, 0.11540000140666962, 0.41600000858306885, 0.7263000011444092, 0.11540000140666962, 0.16030000150203705, 0.15410000085830688, 0.527999997138977, 0.5078999996185303, 0.4332999885082245, 0.3912000060081482, 0.5522000193595886, 0.1437000036239624, 0.2321999967098236, 0.227400004863739, 0.51419997215271, 0.11540000140666962, 0.6654999852180481, 0.34209999442100525, 0.6883000135421753, 0.39250001311302185, 0.22869999706745148, 0.2971999943256378, 0.34139999747276306, 0.18799999356269836, 0.2888999879360199, 0.35659998655319214 ], "y_min": [ 0.09279999881982803, 0.094200000166893, 0.093299999833107, 0.1103999987244606, 0.1103999987244606, 0.19339999556541443, 0.19429999589920044, 0.21140000224113464, 0.211899995803833, 0.2290000021457672, 0.24609999358654022, 0.34619998931884766, 0.43070000410079956, 0.4462999999523163, 0.46480000019073486, 0.4805000126361847, 0.4975999891757965, 0.5160999894142151, 0.5317000150680542, 0.5493000149726868, 0.5663999915122986, 0.6675000190734863, 0.6845999956130981, 0.6851000189781189, 0.7031000256538391, 0.7031000256538391, 0.8036999702453613, 0.149399995803833, 0.26899999380111694, 0.38530001044273376, 0.5898000001907349, 0.725600004196167, 0.8246999979019165 ], "x_max": [ 0.5626000165939331, 0.6254000067710876, 0.9018999934196472, 0.4733999967575073, 0.8810999989509583, 0.29789999127388, 0.9351000189781189, 0.3675999939441681, 0.6930999755859375, 0.9081000089645386, 0.23149999976158142, 0.6751999855041504, 0.17829999327659607, 0.8396999835968018, 0.527899980545044, 0.7802000045776367, 0.896399974822998, 0.5722000002861023, 0.7512000203132629, 0.8278999924659729, 0.43959999084472656, 0.9115999937057495, 0.2888999879360199, 0.8278999924659729, 0.3634999990463257, 0.7131999731063843, 0.4007999897003174, 0.7911999821662903, 0.72079998254776, 0.678600013256073, 0.8292999863624573, 0.7290999889373779, 0.6600000262260437 ], "y_max": [ 0.10840000212192535, 0.10450000315904617, 0.10700000077486038, 0.12549999356269836, 0.12549999356269836, 0.20759999752044678, 0.20990000665187836, 0.22699999809265137, 0.22699999809265137, 0.243599995970726, 0.260699987411499, 0.3617999851703644, 0.44290000200271606, 0.46140000224113464, 0.47749999165534973, 0.49559998512268066, 0.5131999850273132, 0.5288000106811523, 0.5472999811172485, 0.5644000172615051, 0.5814999938011169, 0.6830999851226807, 0.7002000212669373, 0.6996999979019165, 0.7157999873161316, 0.7157999873161316, 0.8140000104904175, 0.1826000064611435, 0.3368000090122223, 0.4189999997615814, 0.6575999855995178, 0.79339998960495, 0.8583999872207642 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003204_page06
{ "latex": [ "$(E^t\\Te +1)b^t(c +d\\Te ) (a+b\\Te )^{-1}b$", "$(E^t\\Te + 1)(a +b\\Te )^{-1}b -E^t\\Te d^tb -d^tb$", "$Z$", "$E$", "$(E^t\\Te +1)(d^tb - 2(a+b\\Te )^{-1}b) \\Te E$", "$SO(p,p,Z)$", "$g_s$", "$g'_s = g_s/\\det (cE+d)^{1/2}$", "$g'_s = g_s/\\det (cE+d)^{1/2}$", "$G_s = g_s(\\det (G+2\\pi \\al \\Phi )/\\det (g+2\\pi \\al B))^{1/2}$", "$G_s = g_s(\\det (G+2\\pi \\al \\Phi )/\\det (g+2\\pi \\al B))^{1/2}$", "$(p+1)\\times (p+1)$", "$G_s = g_s(\\det (1-\\Te E))^{-1/2}$", "$G_{00}=g_{00}, \\Phi _{0i} =B_{0i}=0$", "$SO(p,p,Z)$", "$G_s$", "$g_{YM} =((2\\pi )^{p-2}G_s/(\\al )^{(3-p)/2})^{1/2}$", "$g_{YM} =((2\\pi )^{p-2}G_s/(\\al )^{(3-p)/2})^{1/2}$", "$\\Phi $", "$\\Phi = 0$", "$g$", "$B$", "$E^{-1} \\approx \\Te $", "$\\Phi $", "$p$", "$\\Phi $", "$p$", "$G=g, \\Phi =B, G_s=g_s$", "$\\Phi =0$", "$Tr_{\\te }$", "$S_{WZ}$", "$S_{WZ}=\\int Tr_{\\te }(\\sum C^{(n)})e^{2\\pi \\al F}$", "$n$", "$C^{(n)}$", "$F$", "$B$", "$\\te $", "$\\sqrt {\\det (G+2\\pi \\al (F+\\Phi ))_{ij}} (-(G_{00}- (2\\pi \\al )^2 F_{0i}(G+ 2\\pi \\al (F+\\Phi ))^{-1ij}F_{j0}))^{1/2}$", "\\begin {equation} Z = (E^t\\Te + 1)\\frac {1}{a + b\\Te } b(1 - \\Te E), \\end {equation}", "\\begin {equation} \\Phi ' = (a + b\\Te )\\Phi (a + b\\Te )^t + \\frac {1}{2\\pi r^2}b(a + b\\Te )^t. \\label {phi}\\end {equation}", "\\begin {equation} G_s' = \\sqrt {\\det (a + b\\Te )}G_s, \\label {gs}\\end {equation}", "\\begin {equation} g'_{YM} = g_{YM}(\\det (a + b\\Te ))^{\\frac {1}{4}}. \\label {gym}\\end {equation}", "\\begin {equation} S = - \\frac {1}{G_s(2\\pi )^p\\al ^{\\frac {p+1}{2}}}\\int d^{p+1}\\sigma Tr_{\\te }\\sqrt {-\\det (G + 2\\pi \\al (F + \\Phi ))} + S_{WZ}. \\end {equation}" ], "latex_norm": [ "$ ( E ^ { t } \\Theta + 1 ) b ^ { t } ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } b $", "$ ( E ^ { t } \\Theta + 1 ) ( a + b \\Theta ) ^ { - 1 } b - E ^ { t } \\Theta d ^ { t } b - d ^ { t } b $", "$ Z $", "$ E $", "$ ( E ^ { t } \\Theta + 1 ) ( d ^ { t } b - 2 ( a + b \\Theta ) ^ { - 1 } b ) \\Theta E $", "$ S O ( p , p , Z ) $", "$ g _ { s } $", "$ g _ { s } ^ { \\prime } = g _ { s } \\slash d e t ( c E + d ) ^ { 1 \\slash 2 } $", "$ g _ { s } ^ { \\prime } = g _ { s } \\slash d e t ( c E + d ) ^ { 1 \\slash 2 } $", "$ G _ { s } = g _ { s } ( d e t ( G + 2 \\pi \\alpha ^ { \\prime } \\Phi ) \\slash \\operatorname { d e t } ( g + 2 \\pi \\alpha ^ { \\prime } B ) ) ^ { 1 \\slash 2 } $", "$ G _ { s } = g _ { s } ( d e t ( G + 2 \\pi \\alpha ^ { \\prime } \\Phi ) \\slash \\operatorname { d e t } ( g + 2 \\pi \\alpha ^ { \\prime } B ) ) ^ { 1 \\slash 2 } $", "$ ( p + 1 ) \\times ( p + 1 ) $", "$ G _ { s } = g _ { s } ( d e t ( 1 - \\Theta E ) ) ^ { - 1 \\slash 2 } $", "$ G _ { 0 0 } = g _ { 0 0 } , \\Phi _ { 0 i } = B _ { 0 i } = 0 $", "$ S O ( p , p , Z ) $", "$ G _ { s } $", "$ g _ { Y M } = ( ( 2 \\pi ) ^ { p - 2 } G _ { s } \\slash ( \\alpha ^ { \\prime } ) ^ { ( 3 - p ) \\slash 2 } ) ^ { 1 \\slash 2 } $", "$ g _ { Y M } = ( ( 2 \\pi ) ^ { p - 2 } G _ { s } \\slash ( \\alpha ^ { \\prime } ) ^ { ( 3 - p ) \\slash 2 } ) ^ { 1 \\slash 2 } $", "$ \\Phi $", "$ \\Phi = 0 $", "$ g $", "$ B $", "$ E ^ { - 1 } \\approx \\Theta $", "$ \\Phi $", "$ p $", "$ \\Phi $", "$ p $", "$ G = g , \\Phi = B , G _ { s } = g _ { s } $", "$ \\Phi = 0 $", "$ T r _ { \\theta } $", "$ S _ { W Z } $", "$ S _ { W Z } = \\int T r _ { \\theta } ( \\sum C ^ { ( n ) } ) e ^ { 2 \\pi \\alpha ^ { \\prime } F } $", "$ n $", "$ C ^ { ( n ) } $", "$ F $", "$ B $", "$ \\theta $", "$ \\sqrt { d e t ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) _ { i j } } ( - ( G _ { 0 0 } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } F _ { 0 i } ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) ^ { - 1 i j } F _ { j 0 } ) ) ^ { 1 \\slash 2 } $", "\\begin{equation*} Z = ( E ^ { t } \\Theta + 1 ) \\frac { 1 } { a + b \\Theta } b ( 1 - \\Theta E ) , \\end{equation*}", "\\begin{equation*} \\Phi ^ { \\prime } = ( a + b \\Theta ) \\Phi ( a + b \\Theta ) ^ { t } + \\frac { 1 } { 2 \\pi r ^ { 2 } } b ( a + b \\Theta ) ^ { t } . \\end{equation*}", "\\begin{equation*} G _ { s } ^ { \\prime } = \\sqrt { \\operatorname { d e t } ( a + b \\Theta ) } G _ { s } , \\end{equation*}", "\\begin{equation*} g _ { Y M } ^ { \\prime } = g _ { Y M } ( \\operatorname { d e t } ( a + b \\Theta ) ) ^ { \\frac { 1 } { 4 } } . \\end{equation*}", "\\begin{equation*} S = - \\frac { 1 } { G _ { s } ( 2 \\pi ) ^ { p } \\alpha ^ { \\prime \\frac { p + 1 } { 2 } } } \\int d ^ { p + 1 } \\sigma T r _ { \\theta } \\sqrt { - \\operatorname { d e t } ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) } + S _ { W Z } . \\end{equation*}" ], "latex_expand": [ "$ ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb $", "$ ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb - \\mitE ^ { \\mitt } \\mupTheta \\mitd ^ { \\mitt } \\mitb - \\mitd ^ { \\mitt } \\mitb $", "$ \\mitZ $", "$ \\mitE $", "$ ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) ( \\mitd ^ { \\mitt } \\mitb - 2 ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ) \\mupTheta \\mitE $", "$ \\mitS \\mitO ( \\mitp , \\mitp , \\mitZ ) $", "$ \\mitg _ { \\mits } $", "$ \\mitg _ { \\mits } ^ { \\prime } = \\mitg _ { \\mits } \\slash \\mathrm { d e t } ( \\mitc \\mitE + \\mitd ) ^ { 1 \\slash 2 } $", "$ \\mitg _ { \\mits } ^ { \\prime } = \\mitg _ { \\mits } \\slash \\mathrm { d e t } ( \\mitc \\mitE + \\mitd ) ^ { 1 \\slash 2 } $", "$ \\mitG _ { \\mits } = \\mitg _ { \\mits } ( \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } \\mupPhi ) \\slash \\operatorname { d e t } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB ) ) ^ { 1 \\slash 2 } $", "$ \\mitG _ { \\mits } = \\mitg _ { \\mits } ( \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } \\mupPhi ) \\slash \\operatorname { d e t } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB ) ) ^ { 1 \\slash 2 } $", "$ ( \\mitp + 1 ) \\times ( \\mitp + 1 ) $", "$ \\mitG _ { \\mits } = \\mitg _ { \\mits } ( \\mathrm { d e t } ( 1 - \\mupTheta \\mitE ) ) ^ { - 1 \\slash 2 } $", "$ \\mitG _ { 0 0 } = \\mitg _ { 0 0 } , \\mupPhi _ { 0 \\miti } = \\mitB _ { 0 \\miti } = 0 $", "$ \\mitS \\mitO ( \\mitp , \\mitp , \\mitZ ) $", "$ \\mitG _ { \\mits } $", "$ \\mitg _ { \\mitY \\mitM } = ( ( 2 \\mitpi ) ^ { \\mitp - 2 } \\mitG _ { \\mits } \\slash ( \\mitalpha ^ { \\prime } ) ^ { ( 3 - \\mitp ) \\slash 2 } ) ^ { 1 \\slash 2 } $", "$ \\mitg _ { \\mitY \\mitM } = ( ( 2 \\mitpi ) ^ { \\mitp - 2 } \\mitG _ { \\mits } \\slash ( \\mitalpha ^ { \\prime } ) ^ { ( 3 - \\mitp ) \\slash 2 } ) ^ { 1 \\slash 2 } $", "$ \\mupPhi $", "$ \\mupPhi = 0 $", "$ \\mitg $", "$ \\mitB $", "$ \\mitE ^ { - 1 } \\approx \\mupTheta $", "$ \\mupPhi $", "$ \\mitp $", "$ \\mupPhi $", "$ \\mitp $", "$ \\mitG = \\mitg , \\mupPhi = \\mitB , \\mitG _ { \\mits } = \\mitg _ { \\mits } $", "$ \\mupPhi = 0 $", "$ \\mitT \\mitr _ { \\mittheta } $", "$ \\mitS _ { \\mitW \\mitZ } $", "$ \\mitS _ { \\mitW \\mitZ } = \\int \\nolimits \\mitT \\mitr _ { \\mittheta } ( \\sum \\mitC ^ { ( \\mitn ) } ) \\mite ^ { 2 \\mitpi \\mitalpha ^ { \\prime } \\mitF } $", "$ \\mitn $", "$ \\mitC ^ { ( \\mitn ) } $", "$ \\mitF $", "$ \\mitB $", "$ \\mittheta $", "$ \\sqrt { \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) _ { \\miti \\mitj } } ( - ( \\mitG _ { 0 0 } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitF _ { 0 \\miti } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) ^ { - 1 \\miti \\mitj } \\mitF _ { \\mitj 0 } ) ) ^ { 1 \\slash 2 } $", "\\begin{equation*} \\mitZ = ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb ( 1 - \\mupTheta \\mitE ) , \\end{equation*}", "\\begin{equation*} \\mupPhi ^ { \\prime } = ( \\mita + \\mitb \\mupTheta ) \\mupPhi ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } + \\frac { 1 } { 2 \\mitpi \\mitr ^ { 2 } } \\mitb ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } . \\end{equation*}", "\\begin{equation*} \\mitG _ { \\mits } ^ { \\prime } = \\sqrt { \\operatorname { d e t } ( \\mita + \\mitb \\mupTheta ) } \\mitG _ { \\mits } , \\end{equation*}", "\\begin{equation*} \\mitg _ { \\mitY \\mitM } ^ { \\prime } = \\mitg _ { \\mitY \\mitM } ( \\operatorname { d e t } ( \\mita + \\mitb \\mupTheta ) ) ^ { \\frac { 1 } { 4 } } . \\end{equation*}", "\\begin{equation*} \\mitS = - \\frac { 1 } { \\mitG _ { \\mits } ( 2 \\mitpi ) ^ { \\mitp } \\mitalpha ^ { \\prime \\frac { \\mitp + 1 } { 2 } } } \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\mitT \\mitr _ { \\mittheta } \\sqrt { - \\operatorname { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) } + \\mitS _ { \\mitW \\mitZ } . \\end{equation*}" ], "x_min": [ 0.5023999810218811, 0.4043000042438507, 0.29440000653266907, 0.5631999969482422, 0.14309999346733093, 0.18940000236034393, 0.7214999794960022, 0.8575999736785889, 0.11540000140666962, 0.6018999814987183, 0.11540000140666962, 0.3490000069141388, 0.6848999857902527, 0.16380000114440918, 0.7172999978065491, 0.20180000364780426, 0.8382999897003174, 0.11540000140666962, 0.42289999127388, 0.5078999996185303, 0.23430000245571136, 0.35589998960494995, 0.6474999785423279, 0.18729999661445618, 0.1306000053882599, 0.4499000012874603, 0.5134999752044678, 0.4077000021934509, 0.8514000177383423, 0.5273000001907349, 0.3849000036716461, 0.5839999914169312, 0.29580000042915344, 0.489300012588501, 0.767799973487854, 0.3019999861717224, 0.7084000110626221, 0.4657999873161316, 0.36489999294281006, 0.32199999690055847, 0.4090999960899353, 0.39250001311302185, 0.22460000216960907 ], "y_min": [ 0.09279999881982803, 0.1103999987244606, 0.12890000641345978, 0.12890000641345978, 0.1445000022649765, 0.26510000228881836, 0.2694999873638153, 0.263700008392334, 0.2808000147342682, 0.2808000147342682, 0.29789999127388, 0.2992999851703644, 0.29789999127388, 0.3174000084400177, 0.3163999915122986, 0.3345000147819519, 0.37549999356269836, 0.39259999990463257, 0.47360000014305115, 0.47360000014305115, 0.49459999799728394, 0.49070000648498535, 0.5067999958992004, 0.5253999829292297, 0.6147000193595886, 0.61080002784729, 0.6147000193595886, 0.7020999789237976, 0.7192000150680542, 0.736299991607666, 0.7705000042915344, 0.7851999998092651, 0.8086000084877014, 0.8026999831199646, 0.8051999807357788, 0.8223000168800354, 0.8223000168800354, 0.8359000086784363, 0.17329999804496765, 0.22509999573230743, 0.3441999852657318, 0.4189000129699707, 0.638700008392334 ], "x_max": [ 0.7718999981880188, 0.7174000144004822, 0.30959999561309814, 0.579800009727478, 0.4381999969482422, 0.28619998693466187, 0.7387999892234802, 0.9017999768257141, 0.27230000495910645, 0.9017999768257141, 0.2087000012397766, 0.4747999906539917, 0.9018999934196472, 0.37529999017715454, 0.8141000270843506, 0.22529999911785126, 0.9018999934196472, 0.33379998803138733, 0.4374000132083893, 0.5590000152587891, 0.24469999969005585, 0.3718000054359436, 0.7269999980926514, 0.20250000059604645, 0.14100000262260437, 0.4643999934196472, 0.5238999724388123, 0.6011999845504761, 0.9017999768257141, 0.5583999752998352, 0.4242999851703644, 0.8223999738693237, 0.30820000171661377, 0.5259000062942505, 0.7836999893188477, 0.31790000200271606, 0.7181000113487244, 0.9025999903678894, 0.652400016784668, 0.6980000138282776, 0.6074000000953674, 0.6274999976158142, 0.7954000234603882 ], "y_max": [ 0.10840000212192535, 0.12549999356269836, 0.13920000195503235, 0.13920000195503235, 0.15960000455379486, 0.27970001101493835, 0.2793000042438507, 0.2797999978065491, 0.2969000041484833, 0.2969000041484833, 0.3140000104904175, 0.31439998745918274, 0.31450000405311584, 0.33059999346733093, 0.33149999380111694, 0.3472000062465668, 0.3921000063419342, 0.4092000126838684, 0.48429998755455017, 0.48429998755455017, 0.5038999915122986, 0.5013999938964844, 0.5184999704360962, 0.5357000231742859, 0.6240000128746033, 0.6215000152587891, 0.6240000128746033, 0.7153000235557556, 0.7294999957084656, 0.7490000128746033, 0.7832000255584717, 0.801800012588501, 0.8154000043869019, 0.8154000043869019, 0.815500020980835, 0.8325999975204468, 0.8325999975204468, 0.8583999872207642, 0.2070000022649765, 0.2572999894618988, 0.3700999915599823, 0.4408999979496002, 0.677299976348877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003204_page07
{ "latex": [ "$\\sqrt {\\det (G+2\\pi \\al (F+\\Phi ))_{ij}} (-(G_{00}- (2\\pi \\al )^2 F_{0i}(G+ 2\\pi \\al (F+\\Phi ))^{-1ij}F_{j0}))^{1/2}$", "$i=1,\\cdots ,p$", "$\\Phi _{0i}=G_{0i}=0$", "$p$", "$F_{ij}$", "$F_{ij} \\rightarrow ((a+b\\Te )F(a+b\\Te )^t -\\frac {1}{2\\pi r^2}b (a+b\\Te )^t)_{ij}$", "$F_{ij} \\rightarrow ((a+b\\Te )F(a+b\\Te )^t -\\frac {1}{2\\pi r^2}b (a+b\\Te )^t)_{ij}$", "$F_{0i}$", "$F_{0i} \\rightarrow (F(a+b\\Te )^t)_{0i}$", "$G_{00}=g_{00}$", "$p$", "$Tr_{\\te }$", "$Tr_{\\te } \\rightarrow (\\det (a+b\\Te ))^{-1/2}Tr_{\\te }$", "$D5$", "$C, C_{lm}$", "$C_{jklm}$", "$A = a + b\\Te $", "$A_i^a$", "$A_i^{\\:\\:a}$", "$S_{WZ}$", "$C_{0i}, C_{0ijk}$", "$C_{0ijklm}$", "${}_3C_1, {}_5C_3$", "$3\\cdot {}_5C_1$", "\\begin {eqnarray} S_{WZ} &=& \\int d^6\\sigma Tr_{\\te }\\e ^{ilklm}(\\frac {2\\pi \\al }{24}F_{0i} C_{jklm} + \\frac {(2\\pi \\al )^2}{4}F_{0i}F_{jk}C_{lm} + \\frac {(2\\pi \\al )^3}{8}F_{0i}F_{jk}F_{lm}C \\\\ &+& \\frac {1}{5!}C_{0ijklm}+ \\frac {2\\pi \\al }{12}C_{0ijk}F_{lm} + \\frac {(2\\pi \\al )^2}{8}C_{0i}F_{jk}F_{lm}). \\end {eqnarray}", "\\begin {eqnarray} C &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}C, \\hspace {1cm} C_{ij} \\; \\rightarrow \\; \\frac {1} {\\sqrt {\\det A}}((ACA^t)_{ij} + \\frac {\\al }{r^2}(bA^t)_{[ij]}C), \\\\ C_{ijkl} &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}(A_{[i}^a A_j^b A_k^c A_{l]}^d C_{abcd} + \\frac {6\\al }{r^2}A_{[i}^a A_j^b (bA^t)_{kl]}C_{ab} + 3(\\frac {\\al }{r^2})^2 C(bA^t)_{[ij}(bA^t)_{kl]} ), \\end {eqnarray}", "\\begin {eqnarray} C_{0i} &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}A_i^a C_{0a}, \\hspace {1cm} C_{0ijk} \\;\\rightarrow \\;\\frac {1}{\\sqrt {\\det A}}(A_{[i}^aA_j^b A_{k]}^c C_{0abc} + \\frac {3\\al }{r^2} A_{[i}^a(bA^t)_{jk]}C_{0a} ), \\\\ C_{0ijklm} &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}(A_{[i}^a \\cdots A_{m]}^e C_{0a\\cdots e} + \\frac {10\\al }{r^2}A_{[i}^a A_j^b A_k^c (bA^t)_{lm]} C_{0abc} \\\\ &+& 15(\\frac {\\al }{r^2})^2 A_{[i}^a(bA^t)_{jk}(bA^t)_{lm]}C_{0a} ), \\end {eqnarray}", "\\begin {eqnarray} \\la ^i = \\frac {1}{4!}\\e ^{ijklm}C_{jklm}, \\; \\la ^{ijk} = \\frac {1}{2!} \\e ^{ijklm}C_{lm}, \\; \\la ^{ijklm}=\\e ^{ijklm}C, \\\\ \\la =\\frac {1}{5!}\\e ^{ijklm}C_{0ijklm},\\; \\la ^{ij} = \\frac {1}{3!} \\e ^{ijklm}C_{0klm}, \\; \\la ^{ijkl}=\\e ^{ijklm}C_{0m} \\end {eqnarray}" ], "latex_norm": [ "$ \\sqrt { d e t ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) _ { i j } } ( - ( G _ { 0 0 } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } F _ { 0 i } ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) ^ { - 1 i j } F _ { j 0 } ) ) ^ { 1 \\slash 2 } $", "$ i = 1 , \\cdots , p $", "$ \\Phi _ { 0 i } = G _ { 0 i } = 0 $", "$ p $", "$ F _ { i j } $", "$ F _ { i j } \\rightarrow ( ( a + b \\Theta ) F ( a + b \\Theta ) ^ { t } - \\frac { 1 } { 2 \\pi r ^ { 2 } } b ( a + b \\Theta ) ^ { t } ) _ { i j } $", "$ F _ { i j } \\rightarrow ( ( a + b \\Theta ) F ( a + b \\Theta ) ^ { t } - \\frac { 1 } { 2 \\pi r ^ { 2 } } b ( a + b \\Theta ) ^ { t } ) _ { i j } $", "$ F _ { 0 i } $", "$ F _ { 0 i } \\rightarrow ( F ( a + b \\Theta ) ^ { t } ) _ { 0 i } $", "$ G _ { 0 0 } = g _ { 0 0 } $", "$ p $", "$ T r _ { \\theta } $", "$ T r _ { \\theta } \\rightarrow ( d e t ( a + b \\Theta ) ) ^ { - 1 \\slash 2 } T r _ { \\theta } $", "$ D 5 $", "$ C , C _ { l m } $", "$ C _ { j k l m } $", "$ A = a + b \\Theta $", "$ A _ { i } ^ { a } $", "$ A _ { i } ^ { \\> \\> a } $", "$ S _ { W Z } $", "$ C _ { 0 i } , C _ { 0 i j k } $", "$ C _ { 0 i j k l m } $", "$ { } _ { 3 } C _ { 1 } , { } _ { 5 } C _ { 3 } $", "$ 3 \\cdot { } _ { 5 } C _ { 1 } $", "\\begin{align*} S _ { W Z } & = & \\int d ^ { 6 } \\sigma T r _ { \\theta } \\epsilon ^ { i l k l m } ( \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 4 } F _ { 0 i } C _ { j k l m } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 4 } F _ { 0 i } F _ { j k } C _ { l m } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } } { 8 } F _ { 0 i } F _ { j k } F _ { l m } C \\\\ & + & \\frac { 1 } { 5 ! } C _ { 0 i j k l m } + \\frac { 2 \\pi \\alpha ^ { \\prime } } { 1 2 } C _ { 0 i j k } F _ { l m } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 8 } C _ { 0 i } F _ { j k } F _ { l m } ) . \\end{align*}", "\\begin{align*} C & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } C , \\hspace{28.45pt} C _ { i j } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( ( A C A ^ { t } ) _ { i j } + \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ( b A ^ { t } ) _ { [ i j ] } C ) , \\\\ C _ { i j k l } & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( A _ { [ i } ^ { a } A _ { j } ^ { b } A _ { k } ^ { c } A _ { l ] } ^ { d } C _ { a b c d } + \\frac { 6 \\alpha ^ { \\prime } } { r ^ { 2 } } A _ { [ i } ^ { a } A _ { j } ^ { b } ( b A ^ { t } ) _ { k l ] } C _ { a b } + 3 ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } C ( b A ^ { t } ) _ { [ i j } ( b A ^ { t } ) _ { k l ] } ) , \\end{align*}", "\\begin{align*} C _ { 0 i } & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } A _ { i } ^ { a } C _ { 0 a } , \\hspace{28.45pt} C _ { 0 i j k } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( A _ { [ i } ^ { a } A _ { j } ^ { b } A _ { k ] } ^ { c } C _ { 0 a b c } + \\frac { 3 \\alpha ^ { \\prime } } { r ^ { 2 } } A _ { [ i } ^ { a } ( b A ^ { t } ) _ { j k ] } C _ { 0 a } ) , \\\\ C _ { 0 i j k l m } & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( A _ { [ i } ^ { a } \\cdots A _ { m ] } ^ { e } C _ { 0 a \\cdots e } + \\frac { 1 0 \\alpha ^ { \\prime } } { r ^ { 2 } } A _ { [ i } ^ { a } A _ { j } ^ { b } A _ { k } ^ { c } ( b A ^ { t } ) _ { l m ] } C _ { 0 a b c } \\\\ & + & 1 5 ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } A _ { [ i } ^ { a } ( b A ^ { t } ) _ { j k } ( b A ^ { t } ) _ { l m ] } C _ { 0 a } ) , \\end{align*}", "\\begin{align*} \\lambda ^ { i } = \\frac { 1 } { 4 ! } \\epsilon ^ { i j k l m } C _ { j k l m } , \\; \\lambda ^ { i j k } = \\frac { 1 } { 2 ! } \\epsilon ^ { i j k l m } C _ { l m } , \\; \\lambda ^ { i j k l m } = \\epsilon ^ { i j k l m } C , \\\\ \\lambda = \\frac { 1 } { 5 ! } \\epsilon ^ { i j k l m } C _ { 0 i j k l m } , \\; \\lambda ^ { i j } = \\frac { 1 } { 3 ! } \\epsilon ^ { i j k l m } C _ { 0 k l m } , \\; \\lambda ^ { i j k l } = \\epsilon ^ { i j k l m } C _ { 0 m } \\end{align*}" ], "latex_expand": [ "$ \\sqrt { \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) _ { \\miti \\mitj } } ( - ( \\mitG _ { 0 0 } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitF _ { 0 \\miti } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) ^ { - 1 \\miti \\mitj } \\mitF _ { \\mitj 0 } ) ) ^ { 1 \\slash 2 } $", "$ \\miti = 1 , \\cdots , \\mitp $", "$ \\mupPhi _ { 0 \\miti } = \\mitG _ { 0 \\miti } = 0 $", "$ \\mitp $", "$ \\mitF _ { \\miti \\mitj } $", "$ \\mitF _ { \\miti \\mitj } \\rightarrow ( ( \\mita + \\mitb \\mupTheta ) \\mitF ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } - \\frac { 1 } { 2 \\mitpi \\mitr ^ { 2 } } \\mitb ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } ) _ { \\miti \\mitj } $", "$ \\mitF _ { \\miti \\mitj } \\rightarrow ( ( \\mita + \\mitb \\mupTheta ) \\mitF ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } - \\frac { 1 } { 2 \\mitpi \\mitr ^ { 2 } } \\mitb ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } ) _ { \\miti \\mitj } $", "$ \\mitF _ { 0 \\miti } $", "$ \\mitF _ { 0 \\miti } \\rightarrow ( \\mitF ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } ) _ { 0 \\miti } $", "$ \\mitG _ { 0 0 } = \\mitg _ { 0 0 } $", "$ \\mitp $", "$ \\mitT \\mitr _ { \\mittheta } $", "$ \\mitT \\mitr _ { \\mittheta } \\rightarrow ( \\mathrm { d e t } ( \\mita + \\mitb \\mupTheta ) ) ^ { - 1 \\slash 2 } \\mitT \\mitr _ { \\mittheta } $", "$ \\mitD 5 $", "$ \\mitC , \\mitC _ { \\mitl \\mitm } $", "$ \\mitC _ { \\mitj \\mitk \\mitl \\mitm } $", "$ \\mitA = \\mita + \\mitb \\mupTheta $", "$ \\mitA _ { \\miti } ^ { \\mita } $", "$ \\mitA _ { \\miti } ^ { \\> \\> \\mita } $", "$ \\mitS _ { \\mitW \\mitZ } $", "$ \\mitC _ { 0 \\miti } , \\mitC _ { 0 \\miti \\mitj \\mitk } $", "$ \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } $", "$ { } _ { 3 } \\mitC _ { 1 } , { } _ { 5 } \\mitC _ { 3 } $", "$ 3 \\cdot { } _ { 5 } \\mitC _ { 1 } $", "\\begin{align*} \\displaystyle \\mitS _ { \\mitW \\mitZ } & = & \\displaystyle \\int \\mitd ^ { 6 } \\mitsigma \\mitT \\mitr _ { \\mittheta } \\mitepsilon ^ { \\miti \\mitl \\mitk \\mitl \\mitm } ( \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 4 } \\mitF _ { 0 \\miti } \\mitC _ { \\mitj \\mitk \\mitl \\mitm } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 4 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitC _ { \\mitl \\mitm } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } } { 8 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } \\mitC \\\\ & \\displaystyle + & \\displaystyle \\frac { 1 } { 5 ! } \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } + \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 1 2 } \\mitC _ { 0 \\miti \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 8 } \\mitC _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } ) . \\end{align*}", "\\begin{align*} \\displaystyle \\mitC & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitC , \\hspace{28.45pt} \\mitC _ { \\miti \\mitj } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( ( \\mitA \\mitC \\mitA ^ { \\mitt } ) _ { \\miti \\mitj } + \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ( \\mitb \\mitA ^ { \\mitt } ) _ { [ \\miti \\mitj ] } \\mitC ) , \\\\ \\displaystyle \\mitC _ { \\miti \\mitj \\mitk \\mitl } & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } \\mitA _ { \\mitk } ^ { \\mitc } \\mitA _ { \\mitl ] } ^ { \\mitd } \\mitC _ { \\mita \\mitb \\mitc \\mitd } + \\frac { 6 \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl ] } \\mitC _ { \\mita \\mitb } + 3 ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\mitC ( \\mitb \\mitA ^ { \\mitt } ) _ { [ \\miti \\mitj } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl ] } ) , \\end{align*}", "\\begin{align*} \\displaystyle \\mitC _ { 0 \\miti } & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitA _ { \\miti } ^ { \\mita } \\mitC _ { 0 \\mita } , \\hspace{28.45pt} \\mitC _ { 0 \\miti \\mitj \\mitk } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } \\mitA _ { \\mitk ] } ^ { \\mitc } \\mitC _ { 0 \\mita \\mitb \\mitc } + \\frac { 3 \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } \\mitA _ { [ \\miti } ^ { \\mita } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk ] } \\mitC _ { 0 \\mita } ) , \\\\ \\displaystyle \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( \\mitA _ { [ \\miti } ^ { \\mita } \\cdots \\mitA _ { \\mitm ] } ^ { \\mite } \\mitC _ { 0 \\mita \\cdots \\mite } + \\frac { 1 0 \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } \\mitA _ { \\mitk } ^ { \\mitc } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm ] } \\mitC _ { 0 \\mita \\mitb \\mitc } \\\\ & \\displaystyle + & \\displaystyle 1 5 ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\mitA _ { [ \\miti } ^ { \\mita } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm ] } \\mitC _ { 0 \\mita } ) , \\end{align*}", "\\begin{align*} \\displaystyle \\mitlambda ^ { \\miti } = \\frac { 1 } { 4 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { \\mitj \\mitk \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk } = \\frac { 1 } { 2 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } = \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC , \\\\ \\displaystyle \\mitlambda = \\frac { 1 } { 5 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj } = \\frac { 1 } { 3 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { 0 \\mitk \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl } = \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { 0 \\mitm } \\end{align*}" ], "x_min": [ 0.11810000240802765, 0.39879998564720154, 0.772599995136261, 0.5515000224113464, 0.5300999879837036, 0.7131999731063843, 0.11540000140666962, 0.7450000047683716, 0.14030000567436218, 0.8188999891281128, 0.11540000140666962, 0.4788999855518341, 0.6198999881744385, 0.4512999951839447, 0.6378999948501587, 0.7394999861717224, 0.1720999926328659, 0.3151000142097473, 0.4361000061035156, 0.3573000133037567, 0.8245000243186951, 0.15410000085830688, 0.2224999964237213, 0.3359000086784363, 0.1582999974489212, 0.14509999752044678, 0.13410000503063202, 0.2460000067949295 ], "y_min": [ 0.09269999712705612, 0.09470000118017197, 0.094200000166893, 0.1151999980211258, 0.12890000641345978, 0.12700000405311584, 0.14399999380111694, 0.1459999978542328, 0.1615999937057495, 0.18019999563694, 0.218299999833107, 0.21439999341964722, 0.211899995803833, 0.2660999894142151, 0.39259999990463257, 0.39259999990463257, 0.5234000086784363, 0.5234000086784363, 0.5234000086784363, 0.5404999852180481, 0.5404999852180481, 0.5580999851226807, 0.7246000170707703, 0.7246000170707703, 0.2930000126361847, 0.43549999594688416, 0.5859000086784363, 0.7681000232696533 ], "x_max": [ 0.3310000002384186, 0.49900001287460327, 0.8963000178337097, 0.5619000196456909, 0.5550000071525574, 0.9074000120162964, 0.3206999897956848, 0.7713000178337097, 0.32339999079704285, 0.9017999768257141, 0.1257999986410141, 0.510699987411499, 0.8679999709129333, 0.4788999855518341, 0.6931999921798706, 0.7864999771118164, 0.27160000801086426, 0.3393000066280365, 0.46650001406669617, 0.39739999175071716, 0.9018999934196472, 0.21220000088214874, 0.29159998893737793, 0.390500009059906, 0.8590999841690063, 0.8720999956130981, 0.8812000155448914, 0.7386999726295471 ], "y_max": [ 0.10830000042915344, 0.10740000009536743, 0.10689999908208847, 0.12449999898672104, 0.14309999346733093, 0.14409999549388885, 0.16110000014305115, 0.1581999957561493, 0.17720000445842743, 0.19339999556541443, 0.22759999334812164, 0.22709999978542328, 0.22849999368190765, 0.27639999985694885, 0.4058000147342682, 0.4068000018596649, 0.535099983215332, 0.5375999808311462, 0.5375999808311462, 0.5532000064849854, 0.5551000237464905, 0.5723000168800354, 0.7378000020980835, 0.7372999787330627, 0.3677000105381012, 0.5145999789237976, 0.6996999979019165, 0.8384000062942505 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003204_page08
{ "latex": [ "$B =(A^{-1})^t$", "$B_a^i$", "$B_{\\:\\:a}^i$", "$B$", "$\\Phi $", "\\begin {eqnarray} S_{WZ} &=& \\int d^6\\sigma Tr_{\\te }(2\\pi \\al F_{0i}\\la ^i + \\frac {(2\\pi \\al )^2}{2}F_{0i}F_{jk}\\la ^{ijk} + \\frac {(2\\pi \\al )^3}{8} F_{0i}F_{jk}F_{lm}\\la ^{ijklm} \\\\ &+& \\la + \\frac {2\\pi \\al }{2}F_{ij}\\la ^{ij} + \\frac {(2\\pi \\al )^2}{8} F_{ij}F_{kl}\\la ^{ijkl} ). \\end {eqnarray}", "\\begin {eqnarray} \\la ^i &\\rightarrow & \\sqrt {\\det A}(B_a^{i}\\la ^a + \\frac {\\al }{2r^2} B_a^iB_b^jB_c^k\\la ^{abc}(bA^t)_{jk}) + \\frac {1}{8} (\\frac {\\al }{r^2})^2 \\frac {1}{\\sqrt {\\det A}}\\la ^{ijklm}(bA^t)_{jk}(bA^t)_{lm}, \\\\ \\la ^{ijk} &\\rightarrow & \\sqrt {\\det A}B_a^i B_b^j B_c^k \\la ^{abc} + \\frac {\\al }{2r^2} \\frac {1}{\\sqrt {\\det A}}\\la ^{ijklm}(bA^t)_{lm}, \\; \\la ^{ijklm} \\rightarrow \\frac {1}{\\sqrt {\\det A}}\\la ^{ijklm}, \\end {eqnarray}", "\\begin {eqnarray} \\la &\\rightarrow & \\sqrt {\\det A}(\\la + \\frac {\\al }{2r^2}B_a^i B_b^j (bA^t)_{ij}\\la ^{ab} + \\frac {1}{8} (\\frac {\\al }{r^2})^2B_a^i B_b^j B_c^k B_d^l (bA^t)_{ij}(bA^t)_{kl}\\la ^{abcd}), \\\\ \\la ^{ij} &\\rightarrow & \\sqrt {\\det A}(B_a^i B_b^j \\la ^{ab} + \\frac {\\al }{2r^2}B_a^i B_b^j B_c^k B_d^l(bA^t)_{kl}\\la ^{abcd}),\\; \\la ^{ijkl} \\rightarrow \\sqrt {\\det A}B_a^i B_b^j B_c^k B_d^l\\la ^{abcd}, \\end {eqnarray}" ], "latex_norm": [ "$ B = ( A ^ { - 1 } ) ^ { t } $", "$ B _ { a } ^ { i } $", "$ B _ { \\> \\> a } ^ { i } $", "$ B $", "$ \\Phi $", "\\begin{align*} S _ { W Z } & = & \\int d ^ { 6 } \\sigma T r _ { \\theta } ( 2 \\pi \\alpha ^ { \\prime } F _ { 0 i } \\lambda ^ { i } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 2 } F _ { 0 i } F _ { j k } \\lambda ^ { i j k } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } } { 8 } F _ { 0 i } F _ { j k } F _ { l m } \\lambda ^ { i j k l m } \\\\ & + & \\lambda + \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 } F _ { i j } \\lambda ^ { i j } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 8 } F _ { i j } F _ { k l } \\lambda ^ { i j k l } ) . \\end{align*}", "\\begin{align*} \\lambda ^ { i } & \\rightarrow & \\sqrt { \\operatorname { d e t } A } ( B _ { a } ^ { i } \\lambda ^ { a } + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } \\lambda ^ { a b c } ( b A ^ { t } ) _ { j k } ) + \\frac { 1 } { 8 } ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } \\lambda ^ { i j k l m } ( b A ^ { t } ) _ { j k } ( b A ^ { t } ) _ { l m } , \\\\ \\lambda ^ { i j k } & \\rightarrow & \\sqrt { \\operatorname { d e t } A } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } \\lambda ^ { a b c } + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } \\lambda ^ { i j k l m } ( b A ^ { t } ) _ { l m } , \\; \\lambda ^ { i j k l m } \\rightarrow \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } \\lambda ^ { i j k l m } , \\end{align*}", "\\begin{align*} \\lambda & \\rightarrow & \\sqrt { \\operatorname { d e t } A } ( \\lambda + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } B _ { a } ^ { i } B _ { b } ^ { j } ( b A ^ { t } ) _ { i j } \\lambda ^ { a b } + \\frac { 1 } { 8 } ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } B _ { d } ^ { l } ( b A ^ { t } ) _ { i j } ( b A ^ { t } ) _ { k l } \\lambda ^ { a b c d } ) , \\\\ \\lambda ^ { i j } & \\rightarrow & \\sqrt { \\operatorname { d e t } A } ( B _ { a } ^ { i } B _ { b } ^ { j } \\lambda ^ { a b } + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } B _ { d } ^ { l } ( b A ^ { t } ) _ { k l } \\lambda ^ { a b c d } ) , \\; \\lambda ^ { i j k l } \\rightarrow \\sqrt { \\operatorname { d e t } A } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } B _ { d } ^ { l } \\lambda ^ { a b c d } , \\end{align*}" ], "latex_expand": [ "$ \\mitB = ( \\mitA ^ { - 1 } ) ^ { \\mitt } $", "$ \\mitB _ { \\mita } ^ { \\miti } $", "$ \\mitB _ { \\> \\> \\mita } ^ { \\miti } $", "$ \\mitB $", "$ \\mupPhi $", "\\begin{align*} \\displaystyle \\mitS _ { \\mitW \\mitZ } & = & \\displaystyle \\int \\mitd ^ { 6 } \\mitsigma \\mitT \\mitr _ { \\mittheta } ( 2 \\mitpi \\mitalpha ^ { \\prime } \\mitF _ { 0 \\miti } \\mitlambda ^ { \\miti } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 2 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitlambda ^ { \\miti \\mitj \\mitk } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } } { 8 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\\\ & \\displaystyle + & \\displaystyle \\mitlambda + \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 } \\mitF _ { \\miti \\mitj } \\mitlambda ^ { \\miti \\mitj } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 8 } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitk \\mitl } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl } ) . \\end{align*}", "\\begin{align*} \\displaystyle \\mitlambda ^ { \\miti } & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } ( \\mitB _ { \\mita } ^ { \\miti } \\mitlambda ^ { \\mita } + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitlambda ^ { \\mita \\mitb \\mitc } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk } ) + \\frac { 1 } { 8 } ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm } , \\\\ \\displaystyle \\mitlambda ^ { \\miti \\mitj \\mitk } & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitlambda ^ { \\mita \\mitb \\mitc } + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\rightarrow \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } , \\end{align*}", "\\begin{align*} \\displaystyle \\mitlambda & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } ( \\mitlambda + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\miti \\mitj } \\mitlambda ^ { \\mita \\mitb } + \\frac { 1 } { 8 } ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitB _ { \\mitd } ^ { \\mitl } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\miti \\mitj } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl } \\mitlambda ^ { \\mita \\mitb \\mitc \\mitd } ) , \\\\ \\displaystyle \\mitlambda ^ { \\miti \\mitj } & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } ( \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitlambda ^ { \\mita \\mitb } + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitB _ { \\mitd } ^ { \\mitl } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl } \\mitlambda ^ { \\mita \\mitb \\mitc \\mitd } ) , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl } \\rightarrow \\sqrt { \\operatorname { d e t } \\mitA } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitB _ { \\mitd } ^ { \\mitl } \\mitlambda ^ { \\mita \\mitb \\mitc \\mitd } , \\end{align*}" ], "x_min": [ 0.47620001435279846, 0.6704000234603882, 0.7304999828338623, 0.22179999947547913, 0.37389999628067017, 0.18039999902248383, 0.13269999623298645, 0.12849999964237213 ], "y_min": [ 0.31839999556541443, 0.31839999556541443, 0.31839999556541443, 0.7372999787330627, 0.8403000235557556, 0.1225999966263771, 0.2304999977350235, 0.38089999556541443 ], "x_max": [ 0.5742999911308289, 0.694599986076355, 0.7609000205993652, 0.23839999735355377, 0.38839998841285706, 0.8375999927520752, 0.8817999958992004, 0.8894000053405762 ], "y_max": [ 0.33399999141693115, 0.33399999141693115, 0.33399999141693115, 0.7476000189781189, 0.850600004196167, 0.19280000030994415, 0.30559998750686646, 0.4510999917984009 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003204_page09
{ "latex": [ "$p$", "$(p+1)$", "$p$", "$p$" ], "latex_norm": [ "$ p $", "$ ( p + 1 ) $", "$ p $", "$ p $" ], "latex_expand": [ "$ \\mitp $", "$ ( \\mitp + 1 ) $", "$ \\mitp $", "$ \\mitp $" ], "x_min": [ 0.553600013256073, 0.19349999725818634, 0.7630000114440918, 0.6413000226020813 ], "y_min": [ 0.218299999833107, 0.23100000619888306, 0.3384000062942505, 0.3555000126361847 ], "x_max": [ 0.5640000104904175, 0.25290000438690186, 0.7734000086784363, 0.6517000198364258 ], "y_max": [ 0.22759999334812164, 0.24560000002384186, 0.34769999980926514, 0.36480000615119934 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0003221_page01
{ "latex": [ "${}^1$", "${}^1$", "${}^1$", "${}^2$", "${}^3$", "${}^1$", "${}^2$", "${}^3$" ], "latex_norm": [ "$ { } ^ { 1 } $", "$ { } ^ { 1 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $" ], "latex_expand": [ "$ { } ^ { 1 } $", "$ { } ^ { 1 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $" ], "x_min": [ 0.3393000066280365, 0.4505999982357025, 0.5825999975204468, 0.6765999794006348, 0.807200014591217, 0.3634999990463257, 0.4650999903678894, 0.20659999549388885 ], "y_min": [ 0.31929999589920044, 0.31929999589920044, 0.31929999589920044, 0.31929999589920044, 0.31929999589920044, 0.3617999851703644, 0.426800012588501, 0.5088000297546387 ], "x_max": [ 0.3476000130176544, 0.45890000462532043, 0.5909000039100647, 0.6855999827384949, 0.815500020980835, 0.3718000054359436, 0.4733999967575073, 0.21490000188350677 ], "y_max": [ 0.3310000002384186, 0.3310000002384186, 0.3310000002384186, 0.3310000002384186, 0.3310000002384186, 0.3734999895095825, 0.43849998712539673, 0.5205000042915344 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003221_page02
{ "latex": [ "$\\pm $", "$D=11$", "\\begin {equation} \\label {SBI} S^{(p)}_{{\\rm BI}} = -\\int d^{p+1}\\sigma e^{-\\phi } \\sqrt {|{\\rm det}\\, G_{ij}|} \\, f(T,\\partial T,..)\\,, \\end {equation}" ], "latex_norm": [ "$ \\pm $", "$ D = 1 1 $", "\\begin{equation*} S _ { B I } ^ { ( p ) } = - \\int d ^ { p + 1 } \\sigma e ^ { - \\phi } \\sqrt { \\vert d e t \\, G _ { i j } \\vert } \\, f ( T , \\partial T , . . ) \\, , \\end{equation*}" ], "latex_expand": [ "$ \\pm $", "$ \\mitD = 1 1 $", "\\begin{equation*} \\mitS _ { \\mathrm { B I } } ^ { ( \\mitp ) } = - \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\mite ^ { - \\mitphi } \\sqrt { \\vert \\mathrm { d e t } \\, \\mitG _ { \\miti \\mitj } \\vert } \\, \\mitf ( \\mitT , \\mitpartial \\mitT , . . ) \\, , \\end{equation*}" ], "x_min": [ 0.15479999780654907, 0.7387999892234802, 0.31790000200271606 ], "y_min": [ 0.5634999871253967, 0.7109000086784363, 0.7817000150680542 ], "x_max": [ 0.17069999873638153, 0.8016999959945679, 0.6952000260353088 ], "y_max": [ 0.5733000040054321, 0.7211999893188477, 0.817300021648407 ], "expr_type": [ "embedded", "embedded", "isolated" ] }
0003221_page03
{ "latex": [ "$g$", "${\\cal F}$", "$F_{ij}=2\\partial _{[i}V_{j]}$", "$B$", "$f$", "$S$", "$\\partial T$", "$(\\partial T)^4$", "$C$", "$C$", "$p$", "$\\delta $", "$dT$", "$f$", "$\\kappa $", "\\begin {equation} G_{ij} = g_{ij} + {\\cal F}_{ij}\\,. \\end {equation}", "\\begin {equation} \\label {nonBPS} S_{\\rm BI}^{(p)} = -\\int d^{p+1}\\sigma \\sqrt { |{\\rm det}\\, ({G}_{ij} + \\partial _iT\\partial _jT)|}\\,g(T)\\,. \\end {equation}", "\\begin {equation} \\label {SWZ} S^{(p)}_{\\rm WZ} = \\int d^{p+1}\\sigma \\,\\, C\\wedge dT\\wedge e^{\\cal F}\\,. \\end {equation}" ], "latex_norm": [ "$ g $", "$ F $", "$ F _ { i j } = 2 \\partial _ { [ i } V _ { j ] } $", "$ B $", "$ f $", "$ S $", "$ \\partial T $", "$ ( \\partial T ) ^ { 4 } $", "$ C $", "$ C $", "$ p $", "$ \\delta $", "$ d T $", "$ f $", "$ \\kappa $", "\\begin{equation*} G _ { i j } = g _ { i j } + F _ { i j } \\, . \\end{equation*}", "\\begin{equation*} S _ { B I } ^ { ( p ) } = - \\int d ^ { p + 1 } \\sigma \\sqrt { \\vert d e t \\, ( G _ { i j } + \\partial _ { i } T \\partial _ { j } T ) \\vert } \\, g ( T ) \\, . \\end{equation*}", "\\begin{equation*} S _ { W Z } ^ { ( p ) } = \\int d ^ { p + 1 } \\sigma \\, \\, C \\wedge d T \\wedge e ^ { F } \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitg $", "$ \\mitF $", "$ \\mitF _ { \\miti \\mitj } = 2 \\mitpartial _ { [ \\miti } \\mitV _ { \\mitj ] } $", "$ \\mitB $", "$ \\mitf $", "$ \\mitS $", "$ \\mitpartial \\mitT $", "$ ( \\mitpartial \\mitT ) ^ { 4 } $", "$ \\mitC $", "$ \\mitC $", "$ \\mitp $", "$ \\mitdelta $", "$ \\mitd \\mitT $", "$ \\mitf $", "$ \\mitkappa $", "\\begin{equation*} \\mitG _ { \\miti \\mitj } = \\mitg _ { \\miti \\mitj } + \\mitF _ { \\miti \\mitj } \\, . \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mathrm { B I } } ^ { ( \\mitp ) } = - \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\sqrt { \\vert \\mathrm { d e t } \\, ( \\mitG _ { \\miti \\mitj } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT ) \\vert } \\, \\mitg ( \\mitT ) \\, . \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mathrm { W Z } } ^ { ( \\mitp ) } = \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\, \\, \\mitC \\wedge \\mitd \\mitT \\wedge \\mite ^ { \\mitF } \\, . \\end{equation*}" ], "x_min": [ 0.17000000178813934, 0.7623000144958496, 0.29030001163482666, 0.6295999884605408, 0.8804000020027161, 0.8148000240325928, 0.8341000080108643, 0.7318999767303467, 0.24879999458789825, 0.8769999742507935, 0.15889999270439148, 0.7235999703407288, 0.120899997651577, 0.7283999919891357, 0.257099986076355, 0.43880000710487366, 0.31029999256134033, 0.37869998812675476 ], "y_min": [ 0.18070000410079956, 0.17679999768733978, 0.19380000233650208, 0.19380000233650208, 0.19380000233650208, 0.35109999775886536, 0.41940000653266907, 0.4350999891757965, 0.6265000104904175, 0.6435999870300293, 0.6646000146865845, 0.6606000065803528, 0.6776999831199646, 0.7583000063896179, 0.7964000105857849, 0.14890000224113464, 0.2827000021934509, 0.576200008392334 ], "x_max": [ 0.181099995970726, 0.7789000272750854, 0.4043000042438507, 0.6462000012397766, 0.892799973487854, 0.8285999894142151, 0.8604000210762024, 0.781000018119812, 0.2646999955177307, 0.8928999900817871, 0.16930000483989716, 0.733299970626831, 0.14579999446868896, 0.7401000261306763, 0.2687999904155731, 0.5770000219345093, 0.7056000232696533, 0.6378999948501587 ], "y_max": [ 0.1899999976158142, 0.1875, 0.20890000462532043, 0.2045000046491623, 0.2070000022649765, 0.3614000082015991, 0.4300999939441681, 0.4507000148296356, 0.6367999911308289, 0.6542999744415283, 0.6739000082015991, 0.6712999939918518, 0.6883999705314636, 0.7714999914169312, 0.8032000064849854, 0.1665000021457672, 0.3183000087738037, 0.6114000082015991 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003221_page04
{ "latex": [ "$\\kappa $", "$\\theta $", "$\\theta =\\theta _L+\\theta _R$", "$\\Gamma _{11}$", "$\\sigma _3$", "$\\theta $", "$(\\theta _{1R}\\ \\theta _{2R})$", "${\\cal P}_{(p)}$", "$\\Gamma _{11}$", "$p=4k+1$", "$\\unitmatrixDT $", "$p=4k+3$", "$p$", "${\\cal P}_{(p)}$", "$i\\sigma _2$", "$p=4k$", "$\\sigma _1$", "$p=4k+2$", "${G} = {g} + {\\cal F}$", "$\\Gamma $", "$i,j=0,\\ldots ,p$", "$\\mu ,\\nu =0,\\ldots ,D-1$", "\\begin {eqnarray} g_{ij}&=&\\eta _{\\mu \\nu }\\Pi ^\\mu _i\\Pi ^\\nu _j\\,;\\qquad \\Pi ^\\mu _i = \\partial _iX^\\mu - \\bar \\theta \\Gamma ^\\mu \\partial _i\\theta \\,, \\\\ {\\cal F}_{ij}&=&\\partial _iV_j-\\partial _jV_i -\\left \\{\\bar \\theta \\Gamma _{11}\\Gamma _\\mu \\partial _i\\theta \\left (\\partial _jX^\\mu - \\half \\bar \\theta \\Gamma ^\\mu \\partial _j\\theta \\right ) -(i\\leftrightarrow j)\\right \\}\\,, \\\\ C_{i_1\\ldots i_p} &=& \\partial _{[i_1} X^{\\mu _1} \\cdots \\partial _{i_{p-1}}X^{\\mu _{p-1}}\\,\\bar \\theta {\\cal P}_{(p)} \\Gamma _{\\mu _1\\ldots \\mu _{p-1}} \\partial _{i_p]}\\theta + \\ldots \\,. \\end {eqnarray}", "\\begin {equation} {\\cal L}_{\\rm BI} = -\\sqrt { |{\\rm det}\\, {G}^{(p)}_{10\\,ij}|}\\,, \\end {equation}", "\\begin {equation} \\theta _R \\to \\left (\\theta _1 \\atop 0\\right )\\,,\\quad \\theta _L \\to \\left ( 0 \\atop \\theta _2\\right )\\,. \\end {equation}", "\\begin {equation} \\Gamma ^\\mu \\to \\left ( \\begin {array}{cc} 0&\\gamma ^\\mu \\\\ \\gamma ^\\mu & 0 \\end {array} \\right ) \\,,\\quad (\\mu = 0,\\ldots ,8),\\quad \\Gamma ^9 \\to \\left ( \\begin {array}{cc} 0& \\unitmatrixDT \\\\ -\\unitmatrixDT & 0 \\end {array} \\right ) \\,,\\quad \\Gamma ^{11} = \\left ( \\begin {array}{cc} \\unitmatrixDT &0\\\\ 0 &-\\unitmatrixDT \\end {array} \\right ) \\,. \\end {equation}" ], "latex_norm": [ "$ \\kappa $", "$ \\theta $", "$ \\theta = \\theta _ { L } + \\theta _ { R } $", "$ \\Gamma _ { 1 1 } $", "$ \\sigma _ { 3 } $", "$ \\theta $", "$ ( \\theta _ { 1 R } ~ \\theta _ { 2 R } ) $", "$ P _ { ( p ) } $", "$ \\Gamma _ { 1 1 } $", "$ p = 4 k + 1 $", "$ 1 $", "$ p = 4 k + 3 $", "$ p $", "$ P _ { ( p ) } $", "$ i \\sigma _ { 2 } $", "$ p = 4 k $", "$ \\sigma _ { 1 } $", "$ p = 4 k + 2 $", "$ G = g + F $", "$ \\Gamma $", "$ i , j = 0 , \\ldots , p $", "$ \\mu , \\nu = 0 , \\ldots , D - 1 $", "\\begin{align*} g _ { i j } & = & \\eta _ { \\mu \\nu } \\Pi _ { i } ^ { \\mu } \\Pi _ { j } ^ { \\nu } \\, ; \\qquad \\Pi _ { i } ^ { \\mu } = \\partial _ { i } X ^ { \\mu } - \\bar { \\theta } \\Gamma ^ { \\mu } \\partial _ { i } \\theta \\, , \\\\ F _ { i j } & = & \\partial _ { i } V _ { j } - \\partial _ { j } V _ { i } - \\{ \\bar { \\theta } \\Gamma _ { 1 1 } \\Gamma _ { \\mu } \\partial _ { i } \\theta ( \\partial _ { j } X ^ { \\mu } - \\frac { 1 } { 2 } \\bar { \\theta } \\Gamma ^ { \\mu } \\partial _ { j } \\theta ) - ( i \\leftrightarrow j ) \\} \\, , \\\\ C _ { i _ { 1 } \\ldots i _ { p } } & = & \\partial _ { [ i _ { 1 } } X ^ { \\mu _ { 1 } } \\cdots \\partial _ { i _ { p - 1 } } X ^ { \\mu _ { p - 1 } } \\, \\bar { \\theta } P _ { ( p ) } \\Gamma _ { \\mu _ { 1 } \\ldots \\mu _ { p - 1 } } \\partial _ { i _ { p } ] } \\theta + \\ldots \\, . \\end{align*}", "\\begin{equation*} L _ { B I } = - \\sqrt { \\vert d e t \\, G _ { 1 0 \\, i j } ^ { ( p ) } \\vert } \\, , \\end{equation*}", "\\begin{equation*} \\theta _ { R } \\rightarrow ( { \\theta _ { 1 } \\atop 0 } ) \\, , \\quad \\theta _ { L } \\rightarrow ( { 0 \\atop \\theta _ { 2 } } ) \\, . \\end{equation*}", "\\begin{equation*} \\Gamma ^ { \\mu } \\rightarrow ( \\begin{array}{cc} 0 & \\gamma ^ { \\mu } \\\\ \\gamma ^ { \\mu } & 0 \\end{array} ) \\, , \\quad ( \\mu = 0 , \\ldots , 8 ) , \\quad \\Gamma ^ { 9 } \\rightarrow ( \\begin{array}{cc} 0 & 1 \\\\ - 1 & 0 \\end{array} ) \\, , \\quad \\Gamma ^ { 1 1 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitkappa $", "$ \\mittheta $", "$ \\mittheta = \\mittheta _ { \\mitL } + \\mittheta _ { \\mitR } $", "$ \\mupGamma _ { 1 1 } $", "$ \\mitsigma _ { 3 } $", "$ \\mittheta $", "$ ( \\mittheta _ { 1 \\mitR } ~ \\mittheta _ { 2 \\mitR } ) $", "$ \\mitP _ { ( \\mitp ) } $", "$ \\mupGamma _ { 1 1 } $", "$ \\mitp = 4 \\mitk + 1 $", "$ \\Bbbone $", "$ \\mitp = 4 \\mitk + 3 $", "$ \\mitp $", "$ \\mitP _ { ( \\mitp ) } $", "$ \\miti \\mitsigma _ { 2 } $", "$ \\mitp = 4 \\mitk $", "$ \\mitsigma _ { 1 } $", "$ \\mitp = 4 \\mitk + 2 $", "$ \\mitG = \\mitg + \\mitF $", "$ \\mupGamma $", "$ \\miti , \\mitj = 0 , \\ldots , \\mitp $", "$ \\mitmu , \\mitnu = 0 , \\ldots , \\mitD - 1 $", "\\begin{align*} \\displaystyle \\mitg _ { \\miti \\mitj } & = & \\displaystyle \\miteta _ { \\mitmu \\mitnu } \\mupPi _ { \\miti } ^ { \\mitmu } \\mupPi _ { \\mitj } ^ { \\mitnu } \\, ; \\qquad \\mupPi _ { \\miti } ^ { \\mitmu } = \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } - \\bar { \\mittheta } \\mupGamma ^ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta \\, , \\\\ \\displaystyle \\mitF _ { \\miti \\mitj } & = & \\displaystyle \\mitpartial _ { \\miti } \\mitV _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitV _ { \\miti } - \\left\\{ \\bar { \\mittheta } \\mupGamma _ { 1 1 } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta \\left( \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - { \\textstyle \\frac { 1 } { 2 } } \\bar { \\mittheta } \\mupGamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta \\right) - ( \\miti \\leftrightarrow \\mitj ) \\right\\} \\, , \\\\ \\displaystyle \\mitC _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp } } & = & \\displaystyle \\mitpartial _ { [ \\miti _ { 1 } } \\mitX ^ { \\mitmu _ { 1 } } \\cdots \\mitpartial _ { \\miti _ { \\mitp - 1 } } \\mitX ^ { \\mitmu _ { \\mitp - 1 } } \\, \\bar { \\mittheta } \\mitP _ { ( \\mitp ) } \\mupGamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitp - 1 } } \\mitpartial _ { \\miti _ { \\mitp } ] } \\mittheta + \\ldots \\, . \\end{align*}", "\\begin{equation*} \\mitL _ { \\mathrm { B I } } = - \\sqrt { \\vert \\mathrm { d e t } \\, \\mitG _ { 1 0 \\, \\miti \\mitj } ^ { ( \\mitp ) } \\vert } \\, , \\end{equation*}", "\\begin{equation*} \\mittheta _ { \\mitR } \\rightarrow \\left( { \\mittheta _ { 1 } \\atop 0 } \\right) \\, , \\quad \\mittheta _ { \\mitL } \\rightarrow \\left( { 0 \\atop \\mittheta _ { 2 } } \\right) \\, . \\end{equation*}", "\\begin{equation*} \\mupGamma ^ { \\mitmu } \\rightarrow \\left( \\begin{array}{cc} 0 & \\mitgamma ^ { \\mitmu } \\\\ \\mitgamma ^ { \\mitmu } & 0 \\end{array} \\right) \\, , \\quad ( \\mitmu = 0 , \\ldots , 8 ) , \\quad \\mupGamma ^ { 9 } \\rightarrow \\left( \\begin{array}{cc} 0 & \\Bbbone \\\\ - \\Bbbone & 0 \\end{array} \\right) \\, , \\quad \\mupGamma ^ { 1 1 } = \\left( \\begin{array}{cc} \\Bbbone & 0 \\\\ 0 & - \\Bbbone \\end{array} \\right) \\, . \\end{equation*}" ], "x_min": [ 0.3124000132083893, 0.6122999787330627, 0.79339998960495, 0.49140000343322754, 0.5555999875068665, 0.673799991607666, 0.8079000115394592, 0.5439000129699707, 0.64410001039505, 0.7096999883651733, 0.8500000238418579, 0.120899997651577, 0.3634999990463257, 0.6122999787330627, 0.7283999919891357, 0.7906000018119812, 0.19699999690055847, 0.25290000438690186, 0.1678999960422516, 0.16099999845027924, 0.42289999127388, 0.7027999758720398, 0.2093999981880188, 0.41119998693466187, 0.3808000087738037, 0.1395999938249588 ], "y_min": [ 0.1729000061750412, 0.3379000127315521, 0.3379000127315521, 0.35499998927116394, 0.3589000105857849, 0.35499998927116394, 0.3544999957084656, 0.3725999891757965, 0.3725999891757965, 0.37209999561309814, 0.37209999561309814, 0.38960000872612, 0.39309999346733093, 0.38960000872612, 0.39010000228881836, 0.38960000872612, 0.41019999980926514, 0.4066999852657318, 0.6478999853134155, 0.7567999958992004, 0.8314999938011169, 0.8310999870300293, 0.2549000084400177, 0.6021000146865845, 0.7103999853134155, 0.7788000106811523 ], "x_max": [ 0.32409998774528503, 0.6226999759674072, 0.8873999714851379, 0.5189999938011169, 0.574999988079071, 0.6841999888420105, 0.8873999714851379, 0.5770999789237976, 0.6717000007629395, 0.8044000267982483, 0.8616999983787537, 0.21279999613761902, 0.37389999628067017, 0.6455000042915344, 0.7547000050544739, 0.8486999869346619, 0.21639999747276306, 0.34549999237060547, 0.2736000120639801, 0.17409999668598175, 0.5202999711036682, 0.8410000205039978, 0.8009999990463257, 0.6011999845504761, 0.6351000070571899, 0.8361999988555908 ], "y_max": [ 0.17970000207424164, 0.3481999933719635, 0.350600004196167, 0.3677000105381012, 0.3677000105381012, 0.36570000648498535, 0.36910000443458557, 0.3871999979019165, 0.384799987077713, 0.38530001044273376, 0.38280001282691956, 0.4027999937534332, 0.40290001034736633, 0.4041999876499176, 0.4018000066280365, 0.4027999937534332, 0.4189999997615814, 0.41990000009536743, 0.6610999703407288, 0.7674999833106995, 0.842199981212616, 0.8422999978065491, 0.3271999955177307, 0.6323999762535095, 0.7484999895095825, 0.8169000148773193 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0003221_page05
{ "latex": [ "$X^9$", "$S$", "$X^9$", "$\\sigma $", "$S$", "$T$", "$T$", "\\begin {eqnarray} {G}^{(p)}_{10\\,ij} &\\to & G^{(p)}_{9\\,ij} - \\partial _iS\\partial _jS + 2\\bar \\theta _2\\partial _i\\theta _2\\partial _jS - 2\\bar \\theta _1\\partial _j\\theta _1\\partial _iS + 2\\bar \\theta _2\\partial _i\\theta _2\\bar \\theta _1\\partial _j\\theta _1\\,, \\end {eqnarray}", "\\begin {eqnarray} G^{(p)}_{9\\,ij} &=& g_{ij} + F_{ij} -2\\bar \\theta _2\\gamma _\\mu \\partial _i\\theta _2\\partial _jX^\\mu -2\\bar \\theta _1\\gamma _\\mu \\partial _j\\theta _1\\partial _iX^\\mu \\\\&& + \\bar \\theta _2\\gamma _\\mu \\partial _i\\theta _2 \\bar \\theta _2\\gamma ^\\mu \\partial _j\\theta _2 + \\bar \\theta _1\\gamma _\\mu \\partial _i\\theta _1 \\bar \\theta _1\\gamma ^\\mu \\partial _j\\theta _1 + 2 \\bar \\theta _2\\gamma _\\mu \\partial _i\\theta _2 \\bar \\theta _1\\gamma ^\\mu \\partial _j\\theta _1 \\,. \\end {eqnarray}", "\\begin {equation} \\theta _{1R} \\to \\left (\\theta _1 \\atop 0\\right )\\,,\\quad \\theta _{2R} \\to \\left (\\theta _2 \\atop 0\\right )\\,, \\end {equation}", "\\begin {equation} G^{(p+1)}_{10} \\to \\left (\\begin {array}{cc} G^{(p)}_{9\\,ij} - 2\\bar \\theta _2\\partial _i\\theta _2 \\bar \\theta _1\\partial _j\\theta _1 & \\partial _iS -2\\bar \\theta _2\\partial _i\\theta _2\\\\ -\\partial _jS -2\\bar \\theta _1\\partial _j\\theta _1& -1 \\end {array}\\right )\\,. \\end {equation}", "\\begin {equation} \\label {matrix-id} {\\rm det} \\left (\\begin {array}{cc} A & B \\\\ C & D \\end {array}\\right ) = {\\rm det} \\left (\\begin {array}{cc} A - BD^{-1}C & B \\\\ 0 & D \\end {array}\\right ) \\left (\\begin {array}{cc} \\unitmatrixDT & 0 \\\\ D^{-1} C & \\unitmatrixDT \\end {array}\\right ) = {\\rm det}\\, ( A - BD^{-1}C) {\\rm det}\\, D\\,. \\end {equation}", "\\begin {equation} \\label {LnonBPS} {\\cal L}_{\\rm BI}^{(p)} = -\\sqrt { |{\\rm det}\\, ({G}^{(p)}_{10\\,ij} + \\partial _iT\\partial _jT)|}\\,g(T)\\,. \\end {equation}", "\\begin {equation} G^{(p)}_{9\\,ij} \\to G^{(p)}_{9\\,ij} + \\partial _iT\\partial _jT\\,. \\end {equation}" ], "latex_norm": [ "$ X ^ { 9 } $", "$ S $", "$ X ^ { 9 } $", "$ \\sigma $", "$ S $", "$ T $", "$ T $", "\\begin{align*} G _ { 1 0 \\, i j } ^ { ( p ) } & \\rightarrow & G _ { 9 \\, i j } ^ { ( p ) } - \\partial _ { i } S \\partial _ { j } S + 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\partial _ { j } S - 2 \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } \\partial _ { i } S + 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } \\, , \\end{align*}", "\\begin{align*} G _ { 9 \\, i j } ^ { ( p ) } & = & g _ { i j } + F _ { i j } - 2 \\bar { \\theta } _ { 2 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 2 } \\partial _ { j } X ^ { \\mu } - 2 \\bar { \\theta } _ { 1 } \\gamma _ { \\mu } \\partial _ { j } \\theta _ { 1 } \\partial _ { i } X ^ { \\mu } \\\\ & & + \\bar { \\theta } _ { 2 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 2 } \\gamma ^ { \\mu } \\partial _ { j } \\theta _ { 2 } + \\bar { \\theta } _ { 1 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 1 } \\bar { \\theta } _ { 1 } \\gamma ^ { \\mu } \\partial _ { j } \\theta _ { 1 } + 2 \\bar { \\theta } _ { 2 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 1 } \\gamma ^ { \\mu } \\partial _ { j } \\theta _ { 1 } \\, . \\end{align*}", "\\begin{equation*} \\theta _ { 1 R } \\rightarrow ( { \\theta _ { 1 } \\atop 0 } ) \\, , \\quad \\theta _ { 2 R } \\rightarrow ( { \\theta _ { 2 } \\atop 0 } ) \\, , \\end{equation*}", "\\begin{align*} G _ { 1 0 } ^ { ( p + 1 ) } \\rightarrow ( \\begin{array}{cc} G _ { 9 \\, i j } ^ { ( p ) } - 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } & \\partial _ { i } S - 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\\\ - \\partial _ { j } S - 2 \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } & - 1 \\end{array} ) \\, . \\end{align*}", "\\begin{align*} d e t ( \\begin{array}{cc} A & B \\\\ C & D \\end{array} ) = d e t ( \\begin{array}{cc} A - B D ^ { - 1 } C & B \\\\ 0 & D \\end{array} ) ( \\begin{array}{cc} 1 & 0 \\\\ D ^ { - 1 } C & 1 \\end{array} ) = d e t \\, ( A - B D ^ { - 1 } C ) d e t \\, D \\, . \\end{align*}", "\\begin{equation*} L _ { B I } ^ { ( p ) } = - \\sqrt { \\vert d e t \\, ( G _ { 1 0 \\, i j } ^ { ( p ) } + \\partial _ { i } T \\partial _ { j } T ) \\vert } \\, g ( T ) \\, . \\end{equation*}", "\\begin{equation*} G _ { 9 \\, i j } ^ { ( p ) } \\rightarrow G _ { 9 \\, i j } ^ { ( p ) } + \\partial _ { i } T \\partial _ { j } T \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitX ^ { 9 } $", "$ \\mitS $", "$ \\mitX ^ { 9 } $", "$ \\mitsigma $", "$ \\mitS $", "$ \\mitT $", "$ \\mitT $", "\\begin{align*} \\displaystyle \\mitG _ { 1 0 \\, \\miti \\mitj } ^ { ( \\mitp ) } & \\displaystyle \\rightarrow & \\displaystyle \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } - \\mitpartial _ { \\miti } \\mitS \\mitpartial _ { \\mitj } \\mitS + 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\mitpartial _ { \\mitj } \\mitS - 2 \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\mitpartial _ { \\miti } \\mitS + 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\, , \\end{align*}", "\\begin{align*} \\displaystyle \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } & = & \\displaystyle \\mitg _ { \\miti \\mitj } + \\mitF _ { \\miti \\mitj } - 2 \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { 1 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } \\\\ & & \\displaystyle + \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 2 } \\mitgamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 2 } + \\bar { \\mittheta } _ { 1 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 1 } \\bar { \\mittheta } _ { 1 } \\mitgamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } + 2 \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 1 } \\mitgamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\, . \\end{align*}", "\\begin{equation*} \\mittheta _ { 1 \\mitR } \\rightarrow \\left( { \\mittheta _ { 1 } \\atop 0 } \\right) \\, , \\quad \\mittheta _ { 2 \\mitR } \\rightarrow \\left( { \\mittheta _ { 2 } \\atop 0 } \\right) \\, , \\end{equation*}", "\\begin{align*} \\mitG _ { 1 0 } ^ { ( \\mitp + 1 ) } \\rightarrow \\left( \\begin{array}{cc} \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } - 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } & \\mitpartial _ { \\miti } \\mitS - 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\\\ - \\mitpartial _ { \\mitj } \\mitS - 2 \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } & - 1 \\end{array} \\right) \\, . \\end{align*}", "\\begin{align*} \\mathrm { d e t } \\left( \\begin{array}{cc} \\mitA & \\mitB \\\\ \\mitC & \\mitD \\end{array} \\right) = \\mathrm { d e t } \\left( \\begin{array}{cc} \\mitA - \\mitB \\mitD ^ { - 1 } \\mitC & \\mitB \\\\ 0 & \\mitD \\end{array} \\right) \\left( \\begin{array}{cc} \\Bbbone & 0 \\\\ \\mitD ^ { - 1 } \\mitC & \\Bbbone \\end{array} \\right) = \\mathrm { d e t } \\, ( \\mitA - \\mitB \\mitD ^ { - 1 } \\mitC ) \\mathrm { d e t } \\, \\mitD \\, . \\end{align*}", "\\begin{equation*} \\mitL _ { \\mathrm { B I } } ^ { ( \\mitp ) } = - \\sqrt { \\vert \\mathrm { d e t } \\, ( \\mitG _ { 1 0 \\, \\miti \\mitj } ^ { ( \\mitp ) } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT ) \\vert } \\, \\mitg ( \\mitT ) \\, . \\end{equation*}", "\\begin{equation*} \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } \\rightarrow \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT \\, . \\end{equation*}" ], "x_min": [ 0.7809000015258789, 0.33239999413490295, 0.34279999136924744, 0.677299976348877, 0.7091000080108643, 0.27709999680519104, 0.3379000127315521, 0.20659999549388885, 0.20389999449253082, 0.3711000084877014, 0.2827000021934509, 0.1388999968767166, 0.3393000066280365, 0.40639999508857727 ], "y_min": [ 0.13330000638961792, 0.15189999341964722, 0.31349998712539673, 0.3188000023365021, 0.33250001072883606, 0.6786999702453613, 0.7919999957084656, 0.17630000412464142, 0.2363000065088272, 0.35690000653266907, 0.42719998955726624, 0.524399995803833, 0.6352999806404114, 0.736299991607666 ], "x_max": [ 0.807200014591217, 0.34619998931884766, 0.36980000138282776, 0.6897000074386597, 0.7228999733924866, 0.2922999858856201, 0.352400004863739, 0.807200014591217, 0.8100000023841858, 0.6413000226020813, 0.733299970626831, 0.8769999742507935, 0.6772000193595886, 0.6103000044822693 ], "y_max": [ 0.14499999582767487, 0.16220000386238098, 0.32519999146461487, 0.32510000467300415, 0.34279999136924744, 0.6890000104904175, 0.8026999831199646, 0.2061000019311905, 0.2870999872684479, 0.39500001072883606, 0.4681999981403351, 0.5625, 0.6650999784469604, 0.7597000002861023 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003221_page06
{ "latex": [ "$\\partial T$", "$G_{ij}= \\eta _{\\mu \\nu }\\partial _iX^\\mu \\partial _jX^\\nu +F_{ij}$", "$G^{ij}$", "$\\theta _L\\to \\theta _{2R}$", "$\\theta _R\\to \\theta _{1R}$", "$f$", "$T$", "$(\\partial T)^2$", "$G^{(p)\\,-1}_{10}$", "$(\\partial T)^2$", "$g(T)$", "$g(T)$", "$p$", "\\begin {eqnarray} {\\cal L}^{(p)}_{\\rm BI} &=& g(T)\\,\\sqrt { |{\\rm det}\\, G_{ij} |}\\times \\bigg \\{1+ {1\\over 2}G^{ji}(-2\\bar \\theta _L\\Gamma _\\mu \\partial _i\\theta _L\\partial _jX^\\mu -2\\bar \\theta _R\\Gamma _\\mu \\partial _j\\theta _R\\partial _iX^\\mu +\\partial _i T\\partial _jT) \\\\ &&-{1\\over 2} G^{ki}(-2\\bar \\theta _L\\Gamma _\\mu \\partial _i\\theta _L\\partial _lX^\\mu -2\\bar \\theta _R\\Gamma _\\mu \\partial _l\\theta _R\\partial _iX^\\mu ) G^{lm}\\partial _mT\\partial _kT\\\\ &&+{1\\over 4} G^{ji}(-2\\bar \\theta _L\\Gamma _\\mu \\partial _i\\theta _L\\partial _jX^\\mu -2\\bar \\theta _R\\Gamma _\\mu \\partial _j\\theta _R\\partial _iX^\\mu ) G^{kl}\\partial _lT\\partial _kT + \\ldots \\bigg \\}\\,, \\end {eqnarray}", "\\begin {equation} \\partial _i\\bar \\theta \\partial _j\\theta G^{ij}\\,, \\end {equation}", "\\begin {equation} \\label {LWZIIA} {\\cal L}^{(p)}_{\\rm WZ} = \\epsilon ^{i_1\\ldots i_{p+1}} \\sum _{k=0}^{(p-1)/2} \\,\\,a_{p,k} C_{i_1\\ldots i_{p-2k}}(F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T\\,, \\end {equation}" ], "latex_norm": [ "$ \\partial T $", "$ G _ { i j } = \\eta _ { \\mu \\nu } \\partial _ { i } X ^ { \\mu } \\partial _ { j } X ^ { \\nu } + F _ { i j } $", "$ G ^ { i j } $", "$ \\theta _ { L } \\rightarrow \\theta _ { 2 R } $", "$ \\theta _ { R } \\rightarrow \\theta _ { 1 R } $", "$ f $", "$ T $", "$ ( \\partial T ) ^ { 2 } $", "$ G _ { 1 0 } ^ { ( p ) \\, - 1 } $", "$ ( \\partial T ) ^ { 2 } $", "$ g ( T ) $", "$ g ( T ) $", "$ p $", "\\begin{align*} L _ { B I } ^ { ( p ) } & = & g ( T ) \\, \\sqrt { \\vert d e t \\, G _ { i j } \\vert } \\times \\{ 1 + \\frac { 1 } { 2 } G ^ { j i } ( - 2 \\bar { \\theta } _ { L } \\Gamma _ { \\mu } \\partial _ { i } \\theta _ { L } \\partial _ { j } X ^ { \\mu } - 2 \\bar { \\theta } _ { R } \\Gamma _ { \\mu } \\partial _ { j } \\theta _ { R } \\partial _ { i } X ^ { \\mu } + \\partial _ { i } T \\partial _ { j } T ) \\\\ & & - \\frac { 1 } { 2 } G ^ { k i } ( - 2 \\bar { \\theta } _ { L } \\Gamma _ { \\mu } \\partial _ { i } \\theta _ { L } \\partial _ { l } X ^ { \\mu } - 2 \\bar { \\theta } _ { R } \\Gamma _ { \\mu } \\partial _ { l } \\theta _ { R } \\partial _ { i } X ^ { \\mu } ) G ^ { l m } \\partial _ { m } T \\partial _ { k } T \\\\ & & + \\frac { 1 } { 4 } G ^ { j i } ( - 2 \\bar { \\theta } _ { L } \\Gamma _ { \\mu } \\partial _ { i } \\theta _ { L } \\partial _ { j } X ^ { \\mu } - 2 \\bar { \\theta } _ { R } \\Gamma _ { \\mu } \\partial _ { j } \\theta _ { R } \\partial _ { i } X ^ { \\mu } ) G ^ { k l } \\partial _ { l } T \\partial _ { k } T + \\ldots \\} \\, , \\end{align*}", "\\begin{equation*} \\partial _ { i } \\bar { \\theta } \\partial _ { j } \\theta G ^ { i j } \\, , \\end{equation*}", "\\begin{equation*} L _ { W Z } ^ { ( p ) } = \\epsilon ^ { i _ { 1 } \\ldots i _ { p + 1 } } \\sum _ { k = 0 } ^ { ( p - 1 ) \\slash 2 } \\, \\, a _ { p , k } C _ { i _ { 1 } \\ldots i _ { p - 2 k } } ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\, , \\end{equation*}" ], "latex_expand": [ "$ \\mitpartial \\mitT $", "$ \\mitG _ { \\miti \\mitj } = \\miteta _ { \\mitmu \\mitnu } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitnu } + \\mitF _ { \\miti \\mitj } $", "$ \\mitG ^ { \\miti \\mitj } $", "$ \\mittheta _ { \\mitL } \\rightarrow \\mittheta _ { 2 \\mitR } $", "$ \\mittheta _ { \\mitR } \\rightarrow \\mittheta _ { 1 \\mitR } $", "$ \\mitf $", "$ \\mitT $", "$ ( \\mitpartial \\mitT ) ^ { 2 } $", "$ \\mitG _ { 1 0 } ^ { ( \\mitp ) \\, - 1 } $", "$ ( \\mitpartial \\mitT ) ^ { 2 } $", "$ \\mitg ( \\mitT ) $", "$ \\mitg ( \\mitT ) $", "$ \\mitp $", "\\begin{align*} \\displaystyle \\mitL _ { \\mathrm { B I } } ^ { ( \\mitp ) } & = & \\displaystyle \\mitg ( \\mitT ) \\, \\sqrt { \\vert \\mathrm { d e t } \\, \\mitG _ { \\miti \\mitj } \\vert } \\times \\bigg \\{ 1 + \\frac { 1 } { 2 } \\mitG ^ { \\mitj \\miti } ( - 2 \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { \\mitL } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { \\mitR } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { \\mitR } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT ) \\\\ & & \\displaystyle - \\frac { 1 } { 2 } \\mitG ^ { \\mitk \\miti } ( - 2 \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { \\mitL } \\mitpartial _ { \\mitl } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { \\mitR } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\mitl } \\mittheta _ { \\mitR } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } ) \\mitG ^ { \\mitl \\mitm } \\mitpartial _ { \\mitm } \\mitT \\mitpartial _ { \\mitk } \\mitT \\\\ & & \\displaystyle + \\frac { 1 } { 4 } \\mitG ^ { \\mitj \\miti } ( - 2 \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { \\mitL } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { \\mitR } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { \\mitR } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } ) \\mitG ^ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitT \\mitpartial _ { \\mitk } \\mitT + \\ldots \\bigg \\} \\, , \\end{align*}", "\\begin{equation*} \\mitpartial _ { \\miti } \\bar { \\mittheta } \\mitpartial _ { \\mitj } \\mittheta \\mitG ^ { \\miti \\mitj } \\, , \\end{equation*}", "\\begin{equation*} \\mitL _ { \\mathrm { W Z } } ^ { ( \\mitp ) } = \\mitepsilon ^ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp + 1 } } \\sum _ { \\mitk = 0 } ^ { ( \\mitp - 1 ) \\slash 2 } \\, \\, \\mita _ { \\mitp , \\mitk } \\mitC _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\, , \\end{equation*}" ], "x_min": [ 0.3296000063419342, 0.1768999993801117, 0.43950000405311584, 0.506600022315979, 0.597100019454956, 0.45339998602867126, 0.34689998626708984, 0.40639999508857727, 0.8313999772071838, 0.5957000255584717, 0.5708000063896179, 0.7580999732017517, 0.1996999979019165, 0.13819999992847443, 0.4602999985218048, 0.2702000141143799 ], "y_min": [ 0.1348000019788742, 0.28369998931884766, 0.28220000863075256, 0.35249999165534973, 0.35249999165534973, 0.39890000224113464, 0.4535999894142151, 0.5151000022888184, 0.5121999979019165, 0.5327000021934509, 0.6309000253677368, 0.6478999853134155, 0.8057000041007996, 0.17430000007152557, 0.4203999936580658, 0.8237000107765198 ], "x_max": [ 0.35589998960494995, 0.3910999894142151, 0.46779999136924744, 0.5860999822616577, 0.6779999732971191, 0.4657999873161316, 0.3621000051498413, 0.4555000066757202, 0.8873999714851379, 0.6448000073432922, 0.6108999848365784, 0.7982000112533569, 0.210099995136261, 0.8748999834060669, 0.5529000163078308, 0.7422000169754028 ], "y_max": [ 0.14509999752044678, 0.29829999804496765, 0.29440000653266907, 0.365200012922287, 0.365200012922287, 0.4120999872684479, 0.46389999985694885, 0.5307000279426575, 0.5307999849319458, 0.5478000044822693, 0.6455000042915344, 0.6625000238418579, 0.8149999976158142, 0.2777999937534332, 0.44040000438690186, 0.8730000257492065 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0003221_page07
{ "latex": [ "$C$", "$a_{p,k}$", "$\\theta $", "$D=9$", "$D=9$", "$p+1$", "$b_{p+1,k}$", "$S$", "$s_m$", "$m$", "$+1$", "$m=4l+2$", "$-1$", "$m=4l$", "$a_{p,k}$", "$b_{p+1,k}$", "$\\kappa $", "$a$", "$b$", "\\begin {equation} C_{i_1\\ldots i_{p-2k}}= 2\\partial _{[i_1}X^{\\mu _1}\\cdots \\partial _{i_{p-2k-1}}X^{\\mu _{p-2k-1}}\\, \\bar \\theta _L\\Gamma _{\\mu _1\\ldots \\mu _{p-2k-1}} \\partial _{i_{p-2k}]}\\theta _R\\,. \\end {equation}", "\\begin {eqnarray} {\\cal L}^{(p)}_{\\rm WZ}&\\to & 2\\epsilon ^{i_1\\ldots i_{p+1}} \\sum _{k=0}^{{}(p-1)/2} \\,a_{p,k}\\,\\bigg \\{ \\tilde C_{i_1\\ldots i_{p-2k}} (F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T \\\\ &&\\ + (p-2k-1) \\tilde C_{i_1\\ldots i_{p-2k-1}}\\partial _{i_{p-2k}}S (F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T\\bigg \\} \\,. \\end {eqnarray}", "\\begin {equation} \\tilde C_{i_1\\ldots i_m}= \\partial _{[i_1}X^{\\mu _1}\\cdots \\partial _{i_{m-1}}X^{\\mu _{m-1}}\\, \\bar \\theta _2\\gamma _{\\mu _1\\ldots \\mu _{m-1}} \\partial _{i_{m}]}\\theta _1\\,, \\end {equation}", "\\begin {eqnarray} {\\cal L}^{(p+1)}_{\\rm WZ}&\\to & - 2\\epsilon ^{i_1\\ldots i_{p+1}} \\,s_{p-2k+1} b_{p+1,k}\\bigg \\{ \\sum _{k=0}^{{}(p-1)/2} \\, (p-2k)\\tilde C_{i_1\\ldots i_{p-2k}} (F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T \\\\ &&\\ + \\sum _{k=1}^{{}(p+1)/2}\\,2k \\tilde C_{i_1\\ldots i_{p-2k+1}} (F^k)_{i_{p-2k+2}\\ldots i_{p-1}}\\partial _{i_p}S \\partial _{i_{p+1}}T\\bigg \\} \\,. \\end {eqnarray}", "\\begin {eqnarray} a_{p,k} &=& {(p-1)!\\over 2^k\\, k!\\, (p-2k-1)!}\\, a_{p,0}\\,, \\\\ b_{p+1,k}&=& {(-1)^k p!\\over 2^k\\, k! \\,(p-2k)!}\\, b_{p+1,0}\\,, \\\\ a_{p,0} &=& -s_{p+1}\\, p\\, b_{p+1,0}\\,. \\end {eqnarray}" ], "latex_norm": [ "$ C $", "$ a _ { p , k } $", "$ \\theta $", "$ D = 9 $", "$ D = 9 $", "$ p + 1 $", "$ b _ { p + 1 , k } $", "$ S $", "$ s _ { m } $", "$ m $", "$ + 1 $", "$ m = 4 l + 2 $", "$ - 1 $", "$ m = 4 l $", "$ a _ { p , k } $", "$ b _ { p + 1 , k } $", "$ \\kappa $", "$ a $", "$ b $", "\\begin{equation*} C _ { i _ { 1 } \\ldots i _ { p - 2 k } } = 2 \\partial _ { [ i _ { 1 } } X ^ { \\mu _ { 1 } } \\cdots \\partial _ { i _ { p - 2 k - 1 } } X ^ { \\mu _ { p - 2 k - 1 } } \\, \\bar { \\theta } _ { L } \\Gamma _ { \\mu _ { 1 } \\ldots \\mu _ { p - 2 k - 1 } } \\partial _ { i _ { p - 2 k } ] } \\theta _ { R } \\, . \\end{equation*}", "\\begin{align*} L _ { W Z } ^ { ( p ) } & \\rightarrow & 2 \\epsilon ^ { i _ { 1 } \\ldots i _ { p + 1 } } \\sum _ { k = 0 } ^ { ( p - 1 ) \\slash 2 } \\, a _ { p , k } \\, \\{ \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k } } ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\\\ & & ~ + ( p - 2 k - 1 ) \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k - 1 } } \\partial _ { i _ { p - 2 k } } S ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\} \\, . \\end{align*}", "\\begin{equation*} \\widetilde { C } _ { i _ { 1 } \\ldots i _ { m } } = \\partial _ { [ i _ { 1 } } X ^ { \\mu _ { 1 } } \\cdots \\partial _ { i _ { m - 1 } } X ^ { \\mu _ { m - 1 } } \\, \\bar { \\theta } _ { 2 } \\gamma _ { \\mu _ { 1 } \\ldots \\mu _ { m - 1 } } \\partial _ { i _ { m } ] } \\theta _ { 1 } \\, , \\end{equation*}", "\\begin{align*} L _ { W Z } ^ { ( p + 1 ) } & \\rightarrow & - 2 \\epsilon ^ { i _ { 1 } \\ldots i _ { p + 1 } } \\, s _ { p - 2 k + 1 } b _ { p + 1 , k } \\{ \\sum _ { k = 0 } ^ { ( p - 1 ) \\slash 2 } \\, ( p - 2 k ) \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k } } ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\\\ & & ~ + \\sum _ { k = 1 } ^ { ( p + 1 ) \\slash 2 } \\, 2 k \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k + 1 } } ( F ^ { k } ) _ { i _ { p - 2 k + 2 } \\ldots i _ { p - 1 } } \\partial _ { i _ { p } } S \\partial _ { i _ { p + 1 } } T \\} \\, . \\end{align*}", "\\begin{align*} a _ { p , k } & = & \\frac { ( p - 1 ) ! } { 2 ^ { k } \\, k ! \\, ( p - 2 k - 1 ) ! } \\, a _ { p , 0 } \\, , \\\\ b _ { p + 1 , k } & = & \\frac { ( - 1 ) ^ { k } p ! } { 2 ^ { k } \\, k ! \\, ( p - 2 k ) ! } \\, b _ { p + 1 , 0 } \\, , \\\\ a _ { p , 0 } & = & - s _ { p + 1 } \\, p \\, b _ { p + 1 , 0 } \\, . \\end{align*}" ], "latex_expand": [ "$ \\mitC $", "$ \\mita _ { \\mitp , \\mitk } $", "$ \\mittheta $", "$ \\mitD = 9 $", "$ \\mitD = 9 $", "$ \\mitp + 1 $", "$ \\mitb _ { \\mitp + 1 , \\mitk } $", "$ \\mitS $", "$ \\mits _ { \\mitm } $", "$ \\mitm $", "$ + 1 $", "$ \\mitm = 4 \\mitl + 2 $", "$ - 1 $", "$ \\mitm = 4 \\mitl $", "$ \\mita _ { \\mitp , \\mitk } $", "$ \\mitb _ { \\mitp + 1 , \\mitk } $", "$ \\mitkappa $", "$ \\mita $", "$ \\mitb $", "\\begin{equation*} \\mitC _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } = 2 \\mitpartial _ { [ \\miti _ { 1 } } \\mitX ^ { \\mitmu _ { 1 } } \\cdots \\mitpartial _ { \\miti _ { \\mitp - 2 \\mitk - 1 } } \\mitX ^ { \\mitmu _ { \\mitp - 2 \\mitk - 1 } } \\, \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitp - 2 \\mitk - 1 } } \\mitpartial _ { \\miti _ { \\mitp - 2 \\mitk } ] } \\mittheta _ { \\mitR } \\, . \\end{equation*}", "\\begin{align*} \\displaystyle \\mitL _ { \\mathrm { W Z } } ^ { ( \\mitp ) } & \\displaystyle \\rightarrow & \\displaystyle 2 \\mitepsilon ^ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp + 1 } } \\sum _ { \\mitk = 0 } ^ { ( \\mitp - 1 ) \\slash 2 } \\, \\mita _ { \\mitp , \\mitk } \\, \\bigg \\{ \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\\\ & & \\displaystyle ~ + ( \\mitp - 2 \\mitk - 1 ) \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk - 1 } } \\mitpartial _ { \\miti _ { \\mitp - 2 \\mitk } } \\mitS ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\bigg \\} \\, . \\end{align*}", "\\begin{equation*} \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitm } } = \\mitpartial _ { [ \\miti _ { 1 } } \\mitX ^ { \\mitmu _ { 1 } } \\cdots \\mitpartial _ { \\miti _ { \\mitm - 1 } } \\mitX ^ { \\mitmu _ { \\mitm - 1 } } \\, \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitm - 1 } } \\mitpartial _ { \\miti _ { \\mitm } ] } \\mittheta _ { 1 } \\, , \\end{equation*}", "\\begin{align*} \\displaystyle \\mitL _ { \\mathrm { W Z } } ^ { ( \\mitp + 1 ) } & \\displaystyle \\rightarrow & \\displaystyle - 2 \\mitepsilon ^ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp + 1 } } \\, \\mits _ { \\mitp - 2 \\mitk + 1 } \\mitb _ { \\mitp + 1 , \\mitk } \\bigg \\{ \\sum _ { \\mitk = 0 } ^ { ( \\mitp - 1 ) \\slash 2 } \\, ( \\mitp - 2 \\mitk ) \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\\\ & & \\displaystyle ~ + \\sum _ { \\mitk = 1 } ^ { ( \\mitp + 1 ) \\slash 2 } \\, 2 \\mitk \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk + 1 } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 2 } \\ldots \\miti _ { \\mitp - 1 } } \\mitpartial _ { \\miti _ { \\mitp } } \\mitS \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\bigg \\} \\, . \\end{align*}", "\\begin{align*} \\displaystyle \\mita _ { \\mitp , \\mitk } & = & \\displaystyle \\frac { ( \\mitp - 1 ) ! } { 2 ^ { \\mitk } \\, \\mitk ! \\, ( \\mitp - 2 \\mitk - 1 ) ! } \\, \\mita _ { \\mitp , 0 } \\, , \\\\ \\displaystyle \\mitb _ { \\mitp + 1 , \\mitk } & = & \\displaystyle \\frac { ( - 1 ) ^ { \\mitk } \\mitp ! } { 2 ^ { \\mitk } \\, \\mitk ! \\, ( \\mitp - 2 \\mitk ) ! } \\, \\mitb _ { \\mitp + 1 , 0 } \\, , \\\\ \\displaystyle \\mita _ { \\mitp , 0 } & = & \\displaystyle - \\mits _ { \\mitp + 1 } \\, \\mitp \\, \\mitb _ { \\mitp + 1 , 0 } \\, . \\end{align*}" ], "x_min": [ 0.17970000207424164, 0.5134999752044678, 0.41190001368522644, 0.28610000014305115, 0.5548999905586243, 0.20389999449253082, 0.4194999933242798, 0.7815999984741211, 0.1671999990940094, 0.20389999449253082, 0.4332999885082245, 0.49480000138282776, 0.6392999887466431, 0.7014999985694885, 0.4657999873161316, 0.5376999974250793, 0.5791000127792358, 0.29580000042915344, 0.35659998655319214, 0.23980000615119934, 0.22390000522136688, 0.2922999858856201, 0.1582999974489212, 0.3587000072002411 ], "y_min": [ 0.1348000019788742, 0.1386999934911728, 0.15189999341964722, 0.2240999937057495, 0.39160001277923584, 0.43849998712539673, 0.4546000063419342, 0.45509999990463257, 0.6050000190734863, 0.6050000190734863, 0.6021000146865845, 0.6015999913215637, 0.6021000146865845, 0.6015999913215637, 0.6342999935150146, 0.6304000020027161, 0.7958999872207642, 0.8246999979019165, 0.8208000063896179, 0.19140000641345978, 0.2401999980211258, 0.35740000009536743, 0.49070000648498535, 0.6660000085830688 ], "x_max": [ 0.1956000030040741, 0.5439000129699707, 0.4223000109195709, 0.3393000066280365, 0.6087999939918518, 0.24879999458789825, 0.4657999873161316, 0.7954000234603882, 0.1906999945640564, 0.22190000116825104, 0.45890000462532043, 0.5895000100135803, 0.664900004863739, 0.7616000175476074, 0.49619999527931213, 0.5846999883651733, 0.5907999873161316, 0.3068999946117401, 0.36559998989105225, 0.7760999798774719, 0.789900004863739, 0.7200999855995178, 0.8549000024795532, 0.6517000198364258 ], "y_max": [ 0.14550000429153442, 0.149399995803833, 0.16220000386238098, 0.23440000414848328, 0.4018999934196472, 0.4507000148296356, 0.4691999852657318, 0.46540001034736633, 0.6137999892234802, 0.6118000149726868, 0.6128000020980835, 0.6128000020980835, 0.6128000020980835, 0.6118999719619751, 0.6449999809265137, 0.6449999809265137, 0.8026999831199646, 0.8314999938011169, 0.8314999938011169, 0.21240000426769257, 0.3255999982357025, 0.3788999915122986, 0.5952000021934509, 0.7656000256538391 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0003221_page08
{ "latex": [ "$\\overline {\\rm M5}$", "$D=11$", "$\\overline {\\rm M5}$", "$\\overline {\\rm M5}$", "$i=1,\\ldots ,5$", "${\\cal L}_0$", "\\begin {equation} {\\cal L}_0 = -{\\textstyle {1\\over 24}}\\epsilon ^{ijklm}H_{0ij}H_{klm} -{\\textstyle {1\\over 12}}H_{ijk}H^{ijk}\\,, \\end {equation}" ], "latex_norm": [ "$ \\overline { M 5 } $", "$ D = 1 1 $", "$ \\overline { M 5 } $", "$ \\overline { M 5 } $", "$ i = 1 , \\ldots , 5 $", "$ L _ { 0 } $", "\\begin{equation*} L _ { 0 } = - \\frac { 1 } { 2 4 } \\epsilon ^ { i j k l m } H _ { 0 i j } H _ { k l m } - \\frac { 1 } { 1 2 } H _ { i j k } H ^ { i j k } \\, , \\end{equation*}" ], "latex_expand": [ "$ \\overline { \\mathrm { M } 5 } $", "$ \\mitD = 1 1 $", "$ \\overline { \\mathrm { M } 5 } $", "$ \\overline { \\mathrm { M } 5 } $", "$ \\miti = 1 , \\ldots , 5 $", "$ \\mitL _ { 0 } $", "\\begin{equation*} \\mitL _ { 0 } = - { \\textstyle \\frac { 1 } { 2 4 } } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitH _ { 0 \\miti \\mitj } \\mitH _ { \\mitk \\mitl \\mitm } - { \\textstyle \\frac { 1 } { 1 2 } } \\mitH _ { \\miti \\mitj \\mitk } \\mitH ^ { \\miti \\mitj \\mitk } \\, , \\end{equation*}" ], "x_min": [ 0.1956000030040741, 0.3124000132083893, 0.8644999861717224, 0.8644999861717224, 0.1671999990940094, 0.25780001282691956, 0.3393000066280365 ], "y_min": [ 0.3467000126838684, 0.3955000042915344, 0.5249000191688538, 0.5590999722480774, 0.7651000022888184, 0.8159000277519226, 0.7339000105857849 ], "x_max": [ 0.22390000522136688, 0.37599998712539673, 0.892799973487854, 0.892799973487854, 0.2687999904155731, 0.2799000144004822, 0.6730999946594238 ], "y_max": [ 0.357699990272522, 0.4058000147342682, 0.5358999967575073, 0.5701000094413757, 0.7778000235557556, 0.8285999894142151, 0.7554000020027161 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0003221_page09
{ "latex": [ "${\\cal L}_0$", "${\\cal L}_m$", "${\\cal L} = {\\cal L}_0 + {\\cal L}_m$", "\\begin {equation} {\\cal L}_m = m^2 B^{\\mu \\nu } B_{\\mu \\nu }\\,. \\end {equation}" ], "latex_norm": [ "$ L _ { 0 } $", "$ L _ { m } $", "$ L = L _ { 0 } + L _ { m } $", "\\begin{equation*} L _ { m } = m ^ { 2 } B ^ { \\mu \\nu } B _ { \\mu \\nu } \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitL _ { 0 } $", "$ \\mitL _ { \\mitm } $", "$ \\mitL = \\mitL _ { 0 } + \\mitL _ { \\mitm } $", "\\begin{equation*} \\mitL _ { \\mitm } = \\mitm ^ { 2 } \\mitB ^ { \\mitmu \\mitnu } \\mitB _ { \\mitmu \\mitnu } \\, . \\end{equation*}" ], "x_min": [ 0.8334000110626221, 0.120899997651577, 0.7172999978065491, 0.42989999055862427 ], "y_min": [ 0.17630000412464142, 0.19339999556541443, 0.19339999556541443, 0.14650000631809235 ], "x_max": [ 0.8554999828338623, 0.148499995470047, 0.8292999863624573, 0.5860999822616577 ], "y_max": [ 0.1889999955892563, 0.2061000019311905, 0.2061000019311905, 0.1665000021457672 ], "expr_type": [ "embedded", "embedded", "embedded", "isolated" ] }
0003232_page01
{ "latex": [ "$R^4$", "$C^{{\\mu }{\\nu }}=[X^{\\mu },X^{\\nu }]$", "${\\phi }^4$", "$C^{{\\mu }{\\nu }}$", "$R^4$", "$QR^4$", "$R^4$" ], "latex_norm": [ "$ R ^ { 4 } $", "$ C ^ { \\mu \\nu } = [ X ^ { \\mu } , X ^ { \\nu } ] $", "$ \\phi ^ { 4 } $", "$ C ^ { \\mu \\nu } $", "$ R ^ { 4 } $", "$ Q R ^ { 4 } $", "$ R ^ { 4 } $" ], "latex_expand": [ "$ \\mitR ^ { 4 } $", "$ \\mitC ^ { \\mitmu \\mitnu } = [ \\mitX ^ { \\mitmu } , \\mitX ^ { \\mitnu } ] $", "$ \\mitphi ^ { 4 } $", "$ \\mitC ^ { \\mitmu \\mitnu } $", "$ \\mitR ^ { 4 } $", "$ \\mitQ \\mitR ^ { 4 } $", "$ \\mitR ^ { 4 } $" ], "x_min": [ 0.6614000201225281, 0.4242999851703644, 0.5562999844551086, 0.48170000314712524, 0.34279999136924744, 0.6082000136375427, 0.6164000034332275 ], "y_min": [ 0.3716000020503998, 0.38920000195503235, 0.4359999895095825, 0.45410001277923584, 0.4844000041484833, 0.5005000233650208, 0.5327000021934509 ], "x_max": [ 0.6834999918937683, 0.5590999722480774, 0.5756999850273132, 0.51419997215271, 0.36489999294281006, 0.6455000042915344, 0.6384999752044678 ], "y_max": [ 0.3833000063896179, 0.40290001034736633, 0.45019999146461487, 0.46389999985694885, 0.4961000084877014, 0.5146999955177307, 0.5439000129699707 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0003232_page02
{ "latex": [ "$R^4$", "$R^2$", "$x^{\\mu }$", "$X^{\\mu }$", "$4-$", "$S^4$", "$2-$", "$S^2$", "$CP^2$", "${\\lambda }_p$" ], "latex_norm": [ "$ R ^ { 4 } $", "$ R ^ { 2 } $", "$ x ^ { \\mu } $", "$ X ^ { \\mu } $", "$ 4 - $", "$ S ^ { 4 } $", "$ 2 - $", "$ S ^ { 2 } $", "$ C P ^ { 2 } $", "$ \\lambda _ { p } $" ], "latex_expand": [ "$ \\mitR ^ { 4 } $", "$ \\mitR ^ { 2 } $", "$ \\mitx ^ { \\mitmu } $", "$ \\mitX ^ { \\mitmu } $", "$ 4 - $", "$ \\mitS ^ { 4 } $", "$ 2 - $", "$ \\mitS ^ { 2 } $", "$ \\mitC \\mitP ^ { 2 } $", "$ \\mitlambda _ { \\mitp } $" ], "x_min": [ 0.7760999798774719, 0.1728000044822693, 0.5273000001907349, 0.7982000112533569, 0.7457000017166138, 0.1728000044822693, 0.28540000319480896, 0.38420000672340393, 0.48579999804496765, 0.1728000044822693 ], "y_min": [ 0.490200012922287, 0.5073000192642212, 0.5092999935150146, 0.5088000297546387, 0.5435000061988831, 0.5586000084877014, 0.5605000257492065, 0.5586000084877014, 0.5586000084877014, 0.7660999894142151 ], "x_max": [ 0.7996000051498413, 0.19629999995231628, 0.5486999750137329, 0.8264999985694885, 0.7713000178337097, 0.19419999420642853, 0.3109999895095825, 0.40560001134872437, 0.5252000093460083, 0.19280000030994415 ], "y_max": [ 0.5019000172615051, 0.5189999938011169, 0.51910001039505, 0.51910001039505, 0.5547000169754028, 0.5708000063896179, 0.5716999769210815, 0.5702999830245972, 0.5708000063896179, 0.7803000211715698 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }