image
image | page_id
string | expressions
dict |
---|---|---|
0002194_page22
|
{
"latex": [
"$J_4$",
"$J_5$",
"$J_6$",
"$J_7$",
"$\\partial _j F_{ji}$",
"$F$",
"$B+F$",
"$\\partial _j F_{ji}$",
"$\\hat {T}_4$",
"$b_1$",
"$b_2$",
"$b_3$",
"$O(B^n)$",
"$J_i$",
"$F$",
"$B+F$",
"$J_i (B^n)$",
"$J_i (B)$",
"$J_i (B^2)$",
"$i=1, 2, 3$",
"$J_1 (B^2)$",
"$J_2 (B^2)$",
"$J_3 (B^2)$",
"$J_1 (B)$",
"$J_2 (B)$",
"$J_3 (B)$",
"$O(B, \\zeta ^3, k^5)$",
"\\begin {equation} {\\cal L} = \\sum _{i=1}^{7} b_i J_i, \\end {equation}",
"\\begin {eqnarray} && J_1 = \\partial _n F_{ij} \\partial _n F_{ji} F_{kl} F_{lk}, \\quad J_2 = \\partial _n F_{ij} \\partial _n F_{jk} F_{kl} F_{li}, \\\\ && J_3 = F_{ni} F_{im} \\partial _n F_{kl} \\partial _m F_{lk}, \\quad J_4 = \\partial _n F_{ni} \\partial _m F_{im} F_{kl} F_{lk}, \\\\ && J_5 = -\\partial _n F_{ni} \\partial _m F_{ij} F_{jk} F_{km}, \\quad J_6 = \\partial ^2 F_{ij} F_{ji} F_{kl} F_{lk}, \\\\ && J_7 = \\partial ^2 F_{ij} F_{jk} F_{kl} F_{li}, \\quad \\partial ^2 F_{ij} = \\partial _i \\partial _k F_{kj} - \\partial _j \\partial _k F_{ki}. \\end {eqnarray}",
"\\begin {eqnarray} && J_1 (B) = 2 \\partial _n F_{ij} \\partial _n F_{ji} B_{kl} F_{lk}, \\quad J_1 (B^2) = \\partial _n F_{ij} \\partial _n F_{ji} B_{kl} B_{lk}, \\\\ && J_2 (B) = 2 B_{ij} F_{jk} \\partial _n F_{kl} \\partial _n F_{li}, \\quad J_2 (B^2) = \\partial _n F_{ij} \\partial _n F_{jk} B_{kl} B_{li}, \\\\ && J_3 (B) = 2 B_{ni} F_{im} \\partial _n F_{kl} \\partial _m F_{lk}, \\quad J_3 (B^2) = B_{ni} B_{im} \\partial _n F_{kl} \\partial _m F_{lk}. \\end {eqnarray}",
"\\begin {eqnarray} J_3 (B) &=& 4 B_{ni} \\partial _i A_m \\partial _n \\partial _k A_l \\partial _m \\partial _l A_k + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{ni} \\partial _i \\partial _l A_m \\partial _n \\partial _k A_l \\partial _m A_k \\\\ && + {\\rm ~a~term~with~} \\partial _l A_l + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{nm} \\partial _i A_j \\partial _n \\partial _j A_k \\partial _m \\partial _k A_i \\\\ && + {\\rm ~a~term~with~} \\partial \\cdot A + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative}. \\end {eqnarray}"
],
"latex_norm": [
"$ J _ { 4 } $",
"$ J _ { 5 } $",
"$ J _ { 6 } $",
"$ J _ { 7 } $",
"$ \\partial _ { j } F _ { j i } $",
"$ F $",
"$ B + F $",
"$ \\partial _ { j } F _ { j i } $",
"$ \\hat { T } _ { 4 } $",
"$ b _ { 1 } $",
"$ b _ { 2 } $",
"$ b _ { 3 } $",
"$ O ( B ^ { n } ) $",
"$ J _ { i } $",
"$ F $",
"$ B + F $",
"$ J _ { i } ( B ^ { n } ) $",
"$ J _ { i } ( B ) $",
"$ J _ { i } ( B ^ { 2 } ) $",
"$ i = 1 , 2 , 3 $",
"$ J _ { 1 } ( B ^ { 2 } ) $",
"$ J _ { 2 } ( B ^ { 2 } ) $",
"$ J _ { 3 } ( B ^ { 2 } ) $",
"$ J _ { 1 } ( B ) $",
"$ J _ { 2 } ( B ) $",
"$ J _ { 3 } ( B ) $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 5 } ) $",
"\\begin{equation*} L = \\sum _ { i = 1 } ^ { 7 } b _ { i } J _ { i } , \\end{equation*}",
"\\begin{align*} & & J _ { 1 } = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j i } F _ { k l } F _ { l k } , \\quad J _ { 2 } = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j k } F _ { k l } F _ { l i } , \\\\ & & J _ { 3 } = F _ { n i } F _ { i m } \\partial _ { n } F _ { k l } \\partial _ { m } F _ { l k } , \\quad J _ { 4 } = \\partial _ { n } F _ { n i } \\partial _ { m } F _ { i m } F _ { k l } F _ { l k } , \\\\ & & J _ { 5 } = - \\partial _ { n } F _ { n i } \\partial _ { m } F _ { i j } F _ { j k } F _ { k m } , \\quad J _ { 6 } = \\partial ^ { 2 } F _ { i j } F _ { j i } F _ { k l } F _ { l k } , \\\\ & & J _ { 7 } = \\partial ^ { 2 } F _ { i j } F _ { j k } F _ { k l } F _ { l i } , \\quad \\partial ^ { 2 } F _ { i j } = \\partial _ { i } \\partial _ { k } F _ { k j } - \\partial _ { j } \\partial _ { k } F _ { k i } . \\end{align*}",
"\\begin{align*} & & J _ { 1 } ( B ) = 2 \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j i } B _ { k l } F _ { l k } , \\quad J _ { 1 } ( B ^ { 2 } ) = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j i } B _ { k l } B _ { l k } , \\\\ & & J _ { 2 } ( B ) = 2 B _ { i j } F _ { j k } \\partial _ { n } F _ { k l } \\partial _ { n } F _ { l i } , \\quad J _ { 2 } ( B ^ { 2 } ) = \\partial _ { n } F _ { i j } \\partial _ { n } F _ { j k } B _ { k l } B _ { l i } , \\\\ & & J _ { 3 } ( B ) = 2 B _ { n i } F _ { i m } \\partial _ { n } F _ { k l } \\partial _ { m } F _ { l k } , \\quad J _ { 3 } ( B ^ { 2 } ) = B _ { n i } B _ { i m } \\partial _ { n } F _ { k l } \\partial _ { m } F _ { l k } . \\end{align*}",
"\\begin{align*} J _ { 3 } ( B ) & = & 4 B _ { n i } \\partial _ { i } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } \\partial _ { l } A _ { k } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n i } \\partial _ { i } \\partial _ { l } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } A _ { k } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial _ { l } A _ { l } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n m } \\partial _ { i } A _ { j } \\partial _ { n } \\partial _ { j } A _ { k } \\partial _ { m } \\partial _ { k } A _ { i } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial \\cdot A + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e . \\end{align*}"
],
"latex_expand": [
"$ \\mitJ _ { 4 } $",
"$ \\mitJ _ { 5 } $",
"$ \\mitJ _ { 6 } $",
"$ \\mitJ _ { 7 } $",
"$ \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\miti } $",
"$ \\mitF $",
"$ \\mitB + \\mitF $",
"$ \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\miti } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitb _ { 1 } $",
"$ \\mitb _ { 2 } $",
"$ \\mitb _ { 3 } $",
"$ \\mitO ( \\mitB ^ { \\mitn } ) $",
"$ \\mitJ _ { \\miti } $",
"$ \\mitF $",
"$ \\mitB + \\mitF $",
"$ \\mitJ _ { \\miti } ( \\mitB ^ { \\mitn } ) $",
"$ \\mitJ _ { \\miti } ( \\mitB ) $",
"$ \\mitJ _ { \\miti } ( \\mitB ^ { 2 } ) $",
"$ \\miti = 1 , 2 , 3 $",
"$ \\mitJ _ { 1 } ( \\mitB ^ { 2 } ) $",
"$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $",
"$ \\mitJ _ { 3 } ( \\mitB ^ { 2 } ) $",
"$ \\mitJ _ { 1 } ( \\mitB ) $",
"$ \\mitJ _ { 2 } ( \\mitB ) $",
"$ \\mitJ _ { 3 } ( \\mitB ) $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 5 } ) $",
"\\begin{equation*} \\mitL = \\sum _ { \\miti = 1 } ^ { 7 } \\mitb _ { \\miti } \\mitJ _ { \\miti } , \\end{equation*}",
"\\begin{align*} & & \\displaystyle \\mitJ _ { 1 } = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\miti } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 2 } = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\miti } , \\\\ & & \\displaystyle \\mitJ _ { 3 } = \\mitF _ { \\mitn \\miti } \\mitF _ { \\miti \\mitm } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitm } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 4 } = \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitm } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\\\ & & \\displaystyle \\mitJ _ { 5 } = - \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitm } , \\quad \\mitJ _ { 6 } = \\mitpartial ^ { 2 } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\\\ & & \\displaystyle \\mitJ _ { 7 } = \\mitpartial ^ { 2 } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\miti } , \\quad \\mitpartial ^ { 2 } \\mitF _ { \\miti \\mitj } = \\mitpartial _ { \\miti } \\mitpartial _ { \\mitk } \\mitF _ { \\mitk \\mitj } - \\mitpartial _ { \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitk \\miti } . \\end{align*}",
"\\begin{align*} & & \\displaystyle \\mitJ _ { 1 } ( \\mitB ) = 2 \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\miti } \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 1 } ( \\mitB ^ { 2 } ) = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\miti } \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitl \\mitk } , \\\\ & & \\displaystyle \\mitJ _ { 2 } ( \\mitB ) = 2 \\mitB _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitn } \\mitF _ { \\mitl \\miti } , \\quad \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) = \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\mitk } \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitl \\miti } , \\\\ & & \\displaystyle \\mitJ _ { 3 } ( \\mitB ) = 2 \\mitB _ { \\mitn \\miti } \\mitF _ { \\miti \\mitm } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitm } \\mitF _ { \\mitl \\mitk } , \\quad \\mitJ _ { 3 } ( \\mitB ^ { 2 } ) = \\mitB _ { \\mitn \\miti } \\mitB _ { \\miti \\mitm } \\mitpartial _ { \\mitn } \\mitF _ { \\mitk \\mitl } \\mitpartial _ { \\mitm } \\mitF _ { \\mitl \\mitk } . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitJ _ { 3 } ( \\mitB ) & = & \\displaystyle 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitl } \\mitA _ { \\mitk } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial _ { \\mitl } \\mitA _ { \\mitl } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial \\cdot \\mitA + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}"
],
"x_min": [
0.22599999606609344,
0.257099986076355,
0.2874999940395355,
0.35179999470710754,
0.5231999754905701,
0.4546999931335449,
0.5245000123977661,
0.7179999947547913,
0.6122999787330627,
0.2840000092983246,
0.3151000142097473,
0.3801000118255615,
0.31439998745918274,
0.43950000405311584,
0.5059000253677368,
0.630299985408783,
0.7110999822616577,
0.3296000063419342,
0.42160001397132874,
0.51419997215271,
0.42160001397132874,
0.49140000343322754,
0.5935999751091003,
0.8424000144004822,
0.17069999873638153,
0.1768999993801117,
0.7311999797821045,
0.45750001072883606,
0.3109999895095825,
0.2694999873638153,
0.19699999690055847
],
"y_min": [
0.33889999985694885,
0.33889999985694885,
0.33889999985694885,
0.33889999985694885,
0.3384000062942505,
0.36230000853538513,
0.36230000853538513,
0.36230000853538513,
0.4058000147342682,
0.43309998512268066,
0.43309998512268066,
0.43309998512268066,
0.5029000043869019,
0.5038999915122986,
0.5038999915122986,
0.5038999915122986,
0.5029000043869019,
0.5264000296592712,
0.5259000062942505,
0.5278000235557556,
0.6518999934196472,
0.6518999934196472,
0.6518999934196472,
0.6762999892234802,
0.6996999979019165,
0.7231000065803528,
0.7226999998092651,
0.13570000231266022,
0.21449999511241913,
0.5568000078201294,
0.7768999934196472
],
"x_max": [
0.24469999969005585,
0.2757999897003174,
0.3068999946117401,
0.37119999527931213,
0.5666999816894531,
0.4706000089645386,
0.5819000005722046,
0.7608000040054321,
0.6323000192642212,
0.30059999227523804,
0.33169999718666077,
0.396699994802475,
0.3711000084877014,
0.45680001378059387,
0.5217999815940857,
0.6827999949455261,
0.7692000269889832,
0.3772999942302704,
0.478300005197525,
0.5950999855995178,
0.48030000925064087,
0.5501000285148621,
0.6517000198364258,
0.892799973487854,
0.22110000252723694,
0.2273000031709671,
0.8327999711036682,
0.5645999908447266,
0.7422000169754028,
0.7878000140190125,
0.8266000151634216
],
"y_max": [
0.35109999775886536,
0.35109999775886536,
0.35109999775886536,
0.35109999775886536,
0.3529999852180481,
0.3725999891757965,
0.3734999895095825,
0.3765000104904175,
0.4219000041484833,
0.44530001282691956,
0.44530001282691956,
0.44530001282691956,
0.5174999833106995,
0.5160999894142151,
0.51419997215271,
0.5151000022888184,
0.5174999833106995,
0.5410000085830688,
0.5410000085830688,
0.5404999852180481,
0.6675000190734863,
0.6675000190734863,
0.6675000190734863,
0.6909000277519226,
0.7142999768257141,
0.7382000088691711,
0.7383000254631042,
0.1776999980211258,
0.31869998574256897,
0.6337000131607056,
0.8248000144958496
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page23
|
{
"latex": [
"$J_3 (B)$",
"$\\hat {T}_4$",
"$\\hat {T}_4$",
"$J_3 (B)$",
"$J_3$",
"$J_1$",
"$J_2$",
"$J_1 (B)$",
"$J_2 (B)$",
"$f(F)$",
"$\\alpha '$",
"$f(F)$",
"$J_1$",
"$J_2$",
"$J_1$",
"$J_2$",
"$J_1$",
"$J_2$",
"$J_3$",
"$\\hat {T}_4$",
"$\\hat {T}_4$",
"$J_3$",
"$O(\\partial ^2 F^4)$",
"$\\alpha '$",
"\\begin {eqnarray} J_3 (B) &=& 4 B_{ni} \\partial _i A_m \\partial _n \\partial _k A_l \\partial _m \\partial _l A_k + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{ni} \\partial _i \\partial _l A_m \\partial _n \\partial _k A_l \\partial _m A_k \\\\ && + {\\rm ~a~term~with~} \\partial _l A_l + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} \\\\ &=& -4 B_{nm} \\partial _i A_j \\partial _n \\partial _j A_k \\partial _m \\partial _k A_i \\\\ && + {\\rm ~a~term~with~} \\partial \\cdot A + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative}. \\end {eqnarray}",
"\\begin {equation} \\hat {T}_4 \\sim -\\frac {1}{4} (2 \\pi \\alpha ')^2 J_3 (B). \\label {T_4-J_3} \\end {equation}",
"\\begin {equation} f(B+F) = f(F) + {\\rm total~derivative~using~the~equation~of~motion}, \\label {on-shell-initial} \\end {equation}"
],
"latex_norm": [
"$ J _ { 3 } ( B ) $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { T } _ { 4 } $",
"$ J _ { 3 } ( B ) $",
"$ J _ { 3 } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 1 } ( B ) $",
"$ J _ { 2 } ( B ) $",
"$ f ( F ) $",
"$ \\alpha ^ { \\prime } $",
"$ f ( F ) $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 3 } $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { T } _ { 4 } $",
"$ J _ { 3 } $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ \\alpha ^ { \\prime } $",
"\\begin{align*} J _ { 3 } ( B ) & = & 4 B _ { n i } \\partial _ { i } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } \\partial _ { l } A _ { k } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n i } \\partial _ { i } \\partial _ { l } A _ { m } \\partial _ { n } \\partial _ { k } A _ { l } \\partial _ { m } A _ { k } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial _ { l } A _ { l } + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e \\\\ & = & - 4 B _ { n m } \\partial _ { i } A _ { j } \\partial _ { n } \\partial _ { j } A _ { k } \\partial _ { m } \\partial _ { k } A _ { i } \\\\ & & + ~ a ~ t e r m ~ w i t h ~ \\partial \\cdot A + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e . \\end{align*}",
"\\begin{equation*} \\hat { T } _ { 4 } \\sim - \\frac { 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } J _ { 3 } ( B ) . \\end{equation*}",
"\\begin{equation*} f ( B + F ) = f ( F ) + t o t a l ~ d e r i v a t i v e ~ u s i n g ~ t h e ~ e q u a t i o n ~ o f ~ m o t i o n , \\end{equation*}"
],
"latex_expand": [
"$ \\mitJ _ { 3 } ( \\mitB ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitJ _ { 3 } ( \\mitB ) $",
"$ \\mitJ _ { 3 } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 1 } ( \\mitB ) $",
"$ \\mitJ _ { 2 } ( \\mitB ) $",
"$ \\mitf ( \\mitF ) $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitf ( \\mitF ) $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 3 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitalpha ^ { \\prime } $",
"\\begin{align*} \\displaystyle \\mitJ _ { 3 } ( \\mitB ) & = & \\displaystyle 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitl } \\mitA _ { \\mitk } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\miti } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitm } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial _ { \\mitl } \\mitA _ { \\mitl } + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 4 \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\\\ & & \\displaystyle + ~ \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial \\cdot \\mitA + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}",
"\\begin{equation*} \\hat { \\mitT } _ { 4 } \\sim - \\frac { 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitJ _ { 3 } ( \\mitB ) . \\end{equation*}",
"\\begin{equation*} \\mitf ( \\mitB + \\mitF ) = \\mitf ( \\mitF ) + \\mathrm { t o t a l ~ d e r i v a t i v e } ~ \\mathrm { u s i n g } ~ \\mathrm { t h e } ~ \\mathrm { e q u a t i o n } ~ \\mathrm { o f } ~ \\mathrm { m o t i o n } , \\end{equation*}"
],
"x_min": [
0.5950000286102295,
0.1534000039100647,
0.7063000202178955,
0.7616000175476074,
0.2840000092983246,
0.5037999749183655,
0.5666999816894531,
0.45820000767707825,
0.5515000224113464,
0.5805000066757202,
0.3158000111579895,
0.36559998989105225,
0.5978000164031982,
0.6607000231742859,
0.5099999904632568,
0.5708000063896179,
0.2847000062465668,
0.3490000069141388,
0.20319999754428864,
0.5286999940872192,
0.6101999878883362,
0.6690000295639038,
0.6474999785423279,
0.18729999661445618,
0.25920000672340393,
0.4147000014781952,
0.2003999948501587
],
"y_min": [
0.19140000641345978,
0.211899995803833,
0.211899995803833,
0.21480000019073486,
0.31299999356269836,
0.31299999356269836,
0.31299999356269836,
0.3353999853134155,
0.3353999853134155,
0.3594000041484833,
0.45649999380111694,
0.45649999380111694,
0.48100000619888306,
0.48100000619888306,
0.5278000235557556,
0.5278000235557556,
0.551800012588501,
0.551800012588501,
0.5752000212669373,
0.5713000297546387,
0.5952000021934509,
0.6226000189781189,
0.6445000171661377,
0.739300012588501,
0.093299999833107,
0.263700008392334,
0.39259999990463257
],
"x_max": [
0.6453999876976013,
0.17339999973773956,
0.7263000011444092,
0.8119999766349792,
0.3034000098705292,
0.5231999754905701,
0.5860999822616577,
0.5085999965667725,
0.6018999814987183,
0.6233000159263611,
0.33379998803138733,
0.4090999960899353,
0.6172000169754028,
0.6801000237464905,
0.5293999910354614,
0.5902000069618225,
0.30410000681877136,
0.3684000074863434,
0.22190000116825104,
0.5486999750137329,
0.6302000284194946,
0.6876999735832214,
0.7214000225067139,
0.2053000032901764,
0.8065000176429749,
0.6116999983787537,
0.7718999981880188
],
"y_max": [
0.20600000023841858,
0.22849999368190765,
0.22849999368190765,
0.22990000247955322,
0.3257000148296356,
0.3257000148296356,
0.3257000148296356,
0.3504999876022339,
0.3504999876022339,
0.37400001287460327,
0.4677000045776367,
0.47110000252723694,
0.4936999976634979,
0.4936999976634979,
0.5404999852180481,
0.5404999852180481,
0.5640000104904175,
0.5640000104904175,
0.5874000191688538,
0.5874000191688538,
0.611299991607666,
0.6348000168800354,
0.659600019454956,
0.7505000233650208,
0.16940000653266907,
0.2964000105857849,
0.41119998693466187
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page24
|
{
"latex": [
"$O(\\partial ^2 F^4)$",
"$\\hat {T}_4$",
"$J_3$",
"$\\hat {T}_4$",
"$F^3$",
"$O(D^2 F^4)$",
"$O(\\partial ^2 F^4)$",
"${\\cal L} (B+F)$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$J_1$",
"$J_2$",
"$J_3$",
"$O(\\partial ^2 F^4)$",
"$O(\\partial ^2 F^4)$",
"$\\hat {A}_i$",
"$A_i$",
"$b_3$",
"$+$",
"\\begin {equation} -\\frac {1}{4} J_1 +2 J_2 + J_3. \\label {Okawa-J} \\end {equation}",
"\\begin {equation} -\\frac {1}{4} J_1 -2 J_2 + J_3. \\label {AT-J} \\end {equation}"
],
"latex_norm": [
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ \\hat { T } _ { 4 } $",
"$ J _ { 3 } $",
"$ \\hat { T } _ { 4 } $",
"$ F ^ { 3 } $",
"$ O ( D ^ { 2 } F ^ { 4 } ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ L ( B + F ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 3 } $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ b _ { 3 } $",
"$ + $",
"\\begin{equation*} - \\frac { 1 } { 4 } J _ { 1 } + 2 J _ { 2 } + J _ { 3 } . \\end{equation*}",
"\\begin{equation*} - \\frac { 1 } { 4 } J _ { 1 } - 2 J _ { 2 } + J _ { 3 } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitJ _ { 3 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitF ^ { 3 } $",
"$ \\mitO ( \\mitD ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitb _ { 3 } $",
"$ + $",
"\\begin{equation*} - \\frac { 1 } { 4 } \\mitJ _ { 1 } + 2 \\mitJ _ { 2 } + \\mitJ _ { 3 } . \\end{equation*}",
"\\begin{equation*} - \\frac { 1 } { 4 } \\mitJ _ { 1 } - 2 \\mitJ _ { 2 } + \\mitJ _ { 3 } . \\end{equation*}"
],
"x_min": [
0.527999997138977,
0.2281000018119812,
0.29580000042915344,
0.367000013589859,
0.6633999943733215,
0.1298999935388565,
0.3587000072002411,
0.1298999935388565,
0.26260000467300415,
0.6640999913215637,
0.6952000260353088,
0.7595000267028809,
0.40149998664855957,
0.669700026512146,
0.5446000099182129,
0.6129999756813049,
0.3725000023841858,
0.5196999907493591,
0.4318999946117401,
0.4318999946117401
],
"y_min": [
0.09960000216960907,
0.2621999979019165,
0.2660999894142151,
0.28610000014305115,
0.3353999853134155,
0.3589000105857849,
0.40619999170303345,
0.4302000105381012,
0.42719998955726624,
0.4546000063419342,
0.4546000063419342,
0.4546000063419342,
0.5311999917030334,
0.6518999934196472,
0.6967999935150146,
0.7006999850273132,
0.8125,
0.8140000104904175,
0.48969998955726624,
0.6044999957084656
],
"x_max": [
0.6018999814987183,
0.24809999763965607,
0.31520000100135803,
0.3869999945163727,
0.6869000196456909,
0.210099995136261,
0.4332999885082245,
0.21629999577999115,
0.3075000047683716,
0.6834999918937683,
0.7146000266075134,
0.7789000272750854,
0.47540000081062317,
0.7443000078201294,
0.5652999877929688,
0.6337000131607056,
0.38769999146461487,
0.532800018787384,
0.5845999717712402,
0.5845999717712402
],
"y_max": [
0.1151999980211258,
0.27880001068115234,
0.27880001068115234,
0.30219998955726624,
0.34709998965263367,
0.37400001287460327,
0.4212999939918518,
0.44530001282691956,
0.44530001282691956,
0.4672999978065491,
0.4672999978065491,
0.4672999978065491,
0.5462999939918518,
0.6675000190734863,
0.7134000062942505,
0.7134000062942505,
0.823199987411499,
0.8223000168800354,
0.5218999981880188,
0.6366999745368958
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0002194_page25
|
{
"latex": [
"$\\hat {A}_i$",
"$A_i$",
"$J_1$",
"$J_2$",
"$J_1 (B)$",
"$J_1 (B^2)$",
"$J_2 (B)$",
"$J_2 (B^2)$",
"$J_4$",
"$J_5$",
"$J_6$",
"$J_7$",
"$J_1$",
"$J_2$",
"$\\hat {A}_i$",
"$A_i$",
"$J_2$",
"$O(\\alpha '^3)$",
"$J_3$",
"$\\hat {T}_4$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$O(\\alpha ')$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$\\hat {T}_1$",
"$O(\\alpha '^2)$",
"$O(\\alpha '^3)$",
"$O(\\alpha ')$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$O(\\alpha '^2)$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$B$",
"$\\alpha '^3$",
"$J_2 (B)$",
"$J_2 (B^2)$",
"$B$",
"$B+F$",
"$J_2$",
"$\\hat {F}^2$",
"$O(\\alpha '^3)$",
"$\\hat {A}_i$",
"$J_2 (B)$",
"$J_2 (B^2)$",
"\\begin {eqnarray} J_2 (B) &=& -2 \\partial _n F_{ni} \\partial _j (F B F)_{ji} + {\\rm total~derivative}, \\\\ J_2 (B^2) &=& - \\partial _n F_{ni} \\partial _j (B^2 F + F B^2)_{ji} + {\\rm total~derivative}. \\end {eqnarray}"
],
"latex_norm": [
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 1 } ( B ) $",
"$ J _ { 1 } ( B ^ { 2 } ) $",
"$ J _ { 2 } ( B ) $",
"$ J _ { 2 } ( B ^ { 2 } ) $",
"$ J _ { 4 } $",
"$ J _ { 5 } $",
"$ J _ { 6 } $",
"$ J _ { 7 } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ J _ { 2 } $",
"$ O ( \\alpha ^ { \\prime 3 } ) $",
"$ J _ { 3 } $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ \\hat { T } _ { 1 } $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ O ( \\alpha ^ { \\prime 3 } ) $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ B $",
"$ \\alpha ^ { \\prime 3 } $",
"$ J _ { 2 } ( B ) $",
"$ J _ { 2 } ( B ^ { 2 } ) $",
"$ B $",
"$ B + F $",
"$ J _ { 2 } $",
"$ \\hat { F } ^ { 2 } $",
"$ O ( \\alpha ^ { \\prime 3 } ) $",
"$ \\hat { A } _ { i } $",
"$ J _ { 2 } ( B ) $",
"$ J _ { 2 } ( B ^ { 2 } ) $",
"\\begin{align*} J _ { 2 } ( B ) & = & - 2 \\partial _ { n } F _ { n i } \\partial _ { j } ( F B F ) _ { j i } + t o t a l ~ d e r i v a t i v e , \\\\ J _ { 2 } ( B ^ { 2 } ) & = & - \\partial _ { n } F _ { n i } \\partial _ { j } ( B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + t o t a l ~ d e r i v a t i v e . \\end{align*}"
],
"latex_expand": [
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 1 } ( \\mitB ) $",
"$ \\mitJ _ { 1 } ( \\mitB ^ { 2 } ) $",
"$ \\mitJ _ { 2 } ( \\mitB ) $",
"$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $",
"$ \\mitJ _ { 4 } $",
"$ \\mitJ _ { 5 } $",
"$ \\mitJ _ { 6 } $",
"$ \\mitJ _ { 7 } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $",
"$ \\mitJ _ { 3 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\hat { \\mitT } _ { 1 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitB $",
"$ \\mitalpha ^ { \\prime 3 } $",
"$ \\mitJ _ { 2 } ( \\mitB ) $",
"$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $",
"$ \\mitB $",
"$ \\mitB + \\mitF $",
"$ \\mitJ _ { 2 } $",
"$ \\hat { \\mitF } ^ { 2 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitJ _ { 2 } ( \\mitB ) $",
"$ \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) $",
"\\begin{align*} \\displaystyle \\mitJ _ { 2 } ( \\mitB ) & = & \\displaystyle - 2 \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitj } ( \\mitF \\mitB \\mitF ) _ { \\mitj \\miti } + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\\\ \\displaystyle \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) & = & \\displaystyle - \\mitpartial _ { \\mitn } \\mitF _ { \\mitn \\miti } \\mitpartial _ { \\mitj } ( \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}"
],
"x_min": [
0.5439000129699707,
0.6087999939918518,
0.6668999791145325,
0.7318999767303467,
0.2736999988555908,
0.3352000117301941,
0.4043000042438507,
0.49619999527931213,
0.23080000281333923,
0.2646999955177307,
0.29919999837875366,
0.3682999908924103,
0.396699994802475,
0.46369999647140503,
0.6827999949455261,
0.7346000075340271,
0.49549999833106995,
0.6323000192642212,
0.2231999933719635,
0.3490000069141388,
0.588100016117096,
0.2888999879360199,
0.420199990272522,
0.7008000016212463,
0.5273000001907349,
0.33719998598098755,
0.7649999856948853,
0.1306000053882599,
0.3407000005245209,
0.4643999934196472,
0.6557999849319458,
0.1306000053882599,
0.7366999983787537,
0.8292999863624573,
0.420199990272522,
0.6468999981880188,
0.8202999830245972,
0.3359000086784363,
0.4830999970436096,
0.8285999894142151,
0.5030999779701233,
0.5978000164031982,
0.26809999346733093
],
"y_min": [
0.17720000445842743,
0.18119999766349792,
0.2280000001192093,
0.2280000001192093,
0.25099998712539673,
0.25,
0.25099998712539673,
0.25049999356269836,
0.298799991607666,
0.298799991607666,
0.298799991607666,
0.298799991607666,
0.322299987077713,
0.322299987077713,
0.3422999978065491,
0.34619998931884766,
0.46389999985694885,
0.46239998936653137,
0.48730000853538513,
0.4839000105857849,
0.4839000105857849,
0.5102999806404114,
0.5073000192642212,
0.5073000192642212,
0.5332000255584717,
0.5800999999046326,
0.5806000232696533,
0.6015999913215637,
0.6035000085830688,
0.6015999913215637,
0.6050000190734863,
0.6273999810218811,
0.6279000043869019,
0.6273999810218811,
0.6523000001907349,
0.6523000001907349,
0.6523000001907349,
0.6723999977111816,
0.6743000149726868,
0.6723999977111816,
0.6987000107765198,
0.698199987411499,
0.7305999994277954
],
"x_max": [
0.5645999908447266,
0.6294999718666077,
0.6862999796867371,
0.7512999773025513,
0.32409998774528503,
0.39329999685287476,
0.4546999931335449,
0.5548999905586243,
0.2502000033855438,
0.2840999960899353,
0.31859999895095825,
0.38769999146461487,
0.4153999984264374,
0.4830999970436096,
0.703499972820282,
0.7559999823570251,
0.5149000287055969,
0.6883000135421753,
0.2425999939441681,
0.36899998784065247,
0.6337000131607056,
0.33799999952316284,
0.4650999903678894,
0.72079998254776,
0.5825999975204468,
0.39320001006126404,
0.8133999705314636,
0.17550000548362732,
0.3959999978542328,
0.5092999935150146,
0.6723999977111816,
0.15549999475479126,
0.7871000170707703,
0.8873999714851379,
0.4368000030517578,
0.699400007724762,
0.8396999835968018,
0.36010000109672546,
0.5390999913215637,
0.8493000268936157,
0.5534999966621399,
0.6559000015258789,
0.755299985408783
],
"y_max": [
0.19329999387264252,
0.19339999556541443,
0.24070000648498535,
0.24070000648498535,
0.2655999958515167,
0.2655999958515167,
0.2655999958515167,
0.2655999958515167,
0.31150001287460327,
0.31150001287460327,
0.31150001287460327,
0.31150001287460327,
0.33500000834465027,
0.33500000834465027,
0.35839998722076416,
0.35839998722076416,
0.4765999913215637,
0.47749999165534973,
0.5,
0.5,
0.5015000104904175,
0.5249000191688538,
0.5249000191688538,
0.5234000086784363,
0.54830002784729,
0.5957000255584717,
0.5957000255584717,
0.6191999912261963,
0.6190999746322632,
0.6191999912261963,
0.6157000064849854,
0.6391000151634216,
0.6424999833106995,
0.6424999833106995,
0.6625999808311462,
0.6635000109672546,
0.6650000214576721,
0.6861000061035156,
0.6898999810218811,
0.6884999871253967,
0.7132999897003174,
0.7132999897003174,
0.7806000113487244
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0002194_page26
|
{
"latex": [
"$c_2 (2 \\pi \\alpha ')^3 ( J_2 (B) + J_2 (B^2) )$",
"$\\hat {F}^2$",
"$\\hat {D} \\hat {F}$",
"$\\hat {F}$",
"$O(\\alpha '^3)$",
"$G_{ij}$",
"$\\alpha '$",
"$O(B)$",
"\\begin {eqnarray} \\hat {A}_i &=& A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) \\\\ && -\\frac {1}{4} c_2 (2 \\pi \\alpha ')^3 \\partial _j ( 2 F B F + B^2 F + F B^2 )_{ji} + O(\\alpha '^4) \\end {eqnarray}",
"\\begin {eqnarray} {\\cal L}(B+F) &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ {\\rm Tr} (B+F)^2 + (2 \\pi \\alpha ')^2 \\left [ \\frac {1}{2} {\\rm Tr} (B+F)^4 -\\frac {1}{8} [ {\\rm Tr} (B+F)^2 ]^2 \\right ] \\\\ && \\qquad \\qquad + c_2 (2 \\pi \\alpha ')^3 \\partial _n (B+F)_{ij} \\partial _n (B+F)_{jk} (B+F)_{kl} (B+F)_{li} \\\\ && \\qquad \\qquad + ~O(\\alpha '^4) \\Biggr ], \\end {eqnarray}",
"\\begin {eqnarray} \\hat {{\\cal L}}(\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ {\\rm Tr} ( G^{-1} \\hat {F} \\ast G^{-1} \\hat {F} ) \\\\ && \\qquad \\quad + (2 \\pi \\alpha ')^2 \\biggl [ \\frac {1}{2} {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ && \\qquad \\quad + c_2 (2 \\pi \\alpha ')^3 ( \\hat {D}_n \\hat {F}_{ij} \\ast \\hat {D}_n \\hat {F}_{jk} \\ast \\hat {F}_{kl} \\ast \\hat {F}_{li} )_{G, \\rm ~arbitrary} + ~O(\\alpha '^4) \\Biggr ], \\end {eqnarray}",
"\\begin {equation} B_{ij} = -\\frac {1}{(2 \\pi \\alpha ')^2} ( g \\theta g )_{ij} + O( \\theta ^2 ), \\end {equation}",
"\\begin {equation} \\hat {A}_i \\to \\tilde {A}_i \\to A_i, \\end {equation}",
"\\begin {eqnarray} \\hat {A}_i &=& \\tilde {A}_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} \\tilde {A}_k (\\partial _l \\tilde {A}_i + \\tilde {F}_{li}) + O(\\alpha '^4), \\\\ \\tilde {A}_i &=& A_i -\\frac {1}{4} c_2 (2 \\pi \\alpha ')^3 \\partial _j ( 2 F B F + B^2 F + F B^2 )_{ji} + O(\\alpha '^4). \\end {eqnarray}"
],
"latex_norm": [
"$ c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } ( J _ { 2 } ( B ) + J _ { 2 } ( B ^ { 2 } ) ) $",
"$ \\hat { F } ^ { 2 } $",
"$ \\hat { D } \\hat { F } $",
"$ \\hat { F } $",
"$ O ( \\alpha ^ { \\prime 3 } ) $",
"$ G _ { i j } $",
"$ \\alpha ^ { \\prime } $",
"$ O ( B ) $",
"\\begin{align*} \\hat { A } _ { i } & = & A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) \\\\ & & - \\frac { 1 } { 4 } c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { j } ( 2 F B F + B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + O ( \\alpha ^ { \\prime 4 } ) \\end{align*}",
"\\begin{align*} L ( B + F ) & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( B + F ) ^ { 4 } - \\frac { 1 } { 8 } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } ] \\\\ & & \\qquad \\qquad + c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { n } ( B + F ) _ { i j } \\partial _ { n } ( B + F ) _ { j k } ( B + F ) _ { k l } ( B + F ) _ { l i } \\\\ & & \\qquad \\qquad + ~ O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}",
"\\begin{align*} \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) \\\\ & & \\qquad \\quad + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & & \\qquad \\quad + c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } ( \\hat { D } _ { n } \\hat { F } _ { i j } \\ast \\hat { D } _ { n } \\hat { F } _ { j k } \\ast \\hat { F } _ { k l } \\ast \\hat { F } _ { l i } ) _ { G , ~ a r b i t r a r y } + ~ O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}",
"\\begin{equation*} B _ { i j } = - \\frac { 1 } { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } ( g \\theta g ) _ { i j } + O ( \\theta ^ { 2 } ) , \\end{equation*}",
"\\begin{equation*} \\hat { A } _ { i } \\rightarrow \\widetilde { A } _ { i } \\rightarrow A _ { i } , \\end{equation*}",
"\\begin{align*} \\hat { A } _ { i } & = & \\widetilde { A } _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\widetilde { A } _ { k } ( \\partial _ { l } \\widetilde { A } _ { i } + \\widetilde { F } _ { l i } ) + O ( \\alpha ^ { \\prime 4 } ) , \\\\ \\widetilde { A } _ { i } & = & A _ { i } - \\frac { 1 } { 4 } c _ { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { j } ( 2 F B F + B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + O ( \\alpha ^ { \\prime 4 } ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } ( \\mitJ _ { 2 } ( \\mitB ) + \\mitJ _ { 2 } ( \\mitB ^ { 2 } ) ) $",
"$ \\hat { \\mitF } ^ { 2 } $",
"$ \\hat { \\mitD } \\hat { \\mitF } $",
"$ \\hat { \\mitF } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $",
"$ \\mitG _ { \\miti \\mitj } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitO ( \\mitB ) $",
"\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) \\\\ & & \\displaystyle - \\frac { 1 } { 4 } \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitj } ( 2 \\mitF \\mitB \\mitF + \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\end{align*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } - \\frac { 1 } { 8 } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } \\right] \\\\ & & \\displaystyle \\qquad \\qquad + \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitn } ( \\mitB + \\mitF ) _ { \\miti \\mitj } \\mitpartial _ { \\mitn } ( \\mitB + \\mitF ) _ { \\mitj \\mitk } ( \\mitB + \\mitF ) _ { \\mitk \\mitl } ( \\mitB + \\mitF ) _ { \\mitl \\miti } \\\\ & & \\displaystyle \\qquad \\qquad + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}",
"\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) \\\\ & & \\displaystyle \\qquad \\quad + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\bigg [ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & & \\displaystyle \\qquad \\quad + \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } ( \\hat { \\mitD } _ { \\mitn } \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitD } _ { \\mitn } \\hat { \\mitF } _ { \\mitj \\mitk } \\ast \\hat { \\mitF } _ { \\mitk \\mitl } \\ast \\hat { \\mitF } _ { \\mitl \\miti } ) _ { \\mitG , ~ \\mathrm { a r b i t r a r y } } + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}",
"\\begin{equation*} \\mitB _ { \\miti \\mitj } = - \\frac { 1 } { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } ( \\mitg \\mittheta \\mitg ) _ { \\miti \\mitj } + \\mitO ( \\mittheta ^ { 2 } ) , \\end{equation*}",
"\\begin{equation*} \\hat { \\mitA } _ { \\miti } \\rightarrow \\tilde { \\mitA } _ { \\miti } \\rightarrow \\mitA _ { \\miti } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\tilde { \\mitA } _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\tilde { \\mitA } _ { \\mitk } ( \\mitpartial _ { \\mitl } \\tilde { \\mitA } _ { \\miti } + \\tilde { \\mitF } _ { \\mitl \\miti } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\\\ \\displaystyle \\tilde { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } - \\frac { 1 } { 4 } \\mitc _ { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitj } ( 2 \\mitF \\mitB \\mitF + \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{align*}"
],
"x_min": [
0.21979999542236328,
0.5479999780654907,
0.3912000060081482,
0.4837999939918518,
0.5784000158309937,
0.8396999835968018,
0.3815000057220459,
0.527999997138977,
0.2639999985694885,
0.16660000383853912,
0.17970000207424164,
0.37389999628067017,
0.44510000944137573,
0.250900000333786
],
"y_min": [
0.20309999585151672,
0.2011999934911728,
0.5092999935150146,
0.5092999935150146,
0.5116999745368958,
0.5131999850273132,
0.5595999956130981,
0.5590999722480774,
0.12349999696016312,
0.24819999933242798,
0.3804999887943268,
0.5946999788284302,
0.7026000022888184,
0.7621999979019165
],
"x_max": [
0.4512999951839447,
0.5722000002861023,
0.4237000048160553,
0.49970000982284546,
0.6344000101089478,
0.8679999709129333,
0.3995000123977661,
0.574999988079071,
0.7595000267028809,
0.8569999933242798,
0.8438000082969666,
0.6482999920845032,
0.5770999789237976,
0.7727000117301941
],
"y_max": [
0.21870000660419464,
0.21490000188350677,
0.5235000252723694,
0.5235000252723694,
0.5267999768257141,
0.527400016784668,
0.5702999830245972,
0.5741999745368958,
0.19419999420642853,
0.3495999872684479,
0.49709999561309814,
0.6308000087738037,
0.722599983215332,
0.8328999876976013
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page27
|
{
"latex": [
"$\\hat {A}_i$",
"$\\tilde {A}_i$",
"$\\tilde {A}_i$",
"$A_i$",
"$\\tilde {A}_i$",
"$A_i$",
"$B$",
"$B$",
"$\\tilde {A}_i$",
"$B+F$",
"$B$",
"$A_i$",
"$\\hat {A}_i$",
"$\\delta \\theta ^{ij}$",
"$(g^{-1})^{ij}$",
"$J_i$",
"$J_3$",
"$J_3$",
"$\\hat {T}_4$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$J_3$",
"$O(\\alpha '^2)$",
"$O(\\alpha ')$",
"$\\hat {T}_4$",
"$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$",
"$G_s$",
"$\\hat {J}_i$",
"$J_i$",
"\\begin {equation} \\hat {{\\cal L}}_1 (\\hat {F}) = \\frac {\\sqrt {\\det G}}{G_s} \\left [ \\hat {T}_3 + (2 \\pi \\alpha ')^2 \\left ( -\\frac {1}{4} \\hat {J}_1 + 2 \\hat {J}_2 + \\hat {J}_3 \\right ) + O(\\alpha '^4) \\right ], \\end {equation}",
"\\begin {equation} \\hat {{\\cal L}}_2 (\\hat {F}) = \\frac {\\sqrt {\\det G}}{G_s} \\left [ \\hat {T}_1 + (2 \\pi \\alpha ')^2 \\left ( \\hat {J}_5 -\\frac {1}{8} \\hat {J}_6 + \\frac {1}{2} \\hat {J}_7 \\right ) + O(\\alpha '^4) \\right ], \\end {equation}"
],
"latex_norm": [
"$ \\hat { A } _ { i } $",
"$ \\widetilde { A } _ { i } $",
"$ \\widetilde { A } _ { i } $",
"$ A _ { i } $",
"$ \\widetilde { A } _ { i } $",
"$ A _ { i } $",
"$ B $",
"$ B $",
"$ \\widetilde { A } _ { i } $",
"$ B + F $",
"$ B $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ \\delta \\theta ^ { i j } $",
"$ ( g ^ { - 1 } ) ^ { i j } $",
"$ J _ { i } $",
"$ J _ { 3 } $",
"$ J _ { 3 } $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ J _ { 3 } $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $",
"$ G _ { s } $",
"$ \\hat { J } _ { i } $",
"$ J _ { i } $",
"\\begin{equation*} \\hat { L } _ { 1 } ( \\hat { F } ) = \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\hat { T } _ { 3 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( - \\frac { 1 } { 4 } \\hat { J } _ { 1 } + 2 \\hat { J } _ { 2 } + \\hat { J } _ { 3 } ) + O ( \\alpha ^ { \\prime 4 } ) ] , \\end{equation*}",
"\\begin{equation*} \\hat { L } _ { 2 } ( \\hat { F } ) = \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\hat { T } _ { 1 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( \\hat { J } _ { 5 } - \\frac { 1 } { 8 } \\hat { J } _ { 6 } + \\frac { 1 } { 2 } \\hat { J } _ { 7 } ) + O ( \\alpha ^ { \\prime 4 } ) ] , \\end{equation*}"
],
"latex_expand": [
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\tilde { \\mitA } _ { \\miti } $",
"$ \\tilde { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\tilde { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\tilde { \\mitA } _ { \\miti } $",
"$ \\mitB + \\mitF $",
"$ \\mitB $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitdelta \\mittheta ^ { \\miti \\mitj } $",
"$ ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } $",
"$ \\mitJ _ { \\miti } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitJ _ { 3 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitJ _ { 3 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitG _ { \\mits } $",
"$ \\hat { \\mitJ } _ { \\miti } $",
"$ \\mitJ _ { \\miti } $",
"\\begin{equation*} \\hat { \\mitL } _ { 1 } ( \\hat { \\mitF } ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\left[ \\hat { \\mitT } _ { 3 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 1 } + 2 \\hat { \\mitJ } _ { 2 } + \\hat { \\mitJ } _ { 3 } \\right) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] , \\end{equation*}",
"\\begin{equation*} \\hat { \\mitL } _ { 2 } ( \\hat { \\mitF } ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\left[ \\hat { \\mitT } _ { 1 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 8 } \\hat { \\mitJ } _ { 6 } + \\frac { 1 } { 2 } \\hat { \\mitJ } _ { 7 } \\right) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] , \\end{equation*}"
],
"x_min": [
0.6406000256538391,
0.22599999606609344,
0.6869000196456909,
0.31380000710487366,
0.832099974155426,
0.1306000053882599,
0.5349000096321106,
0.6406000256538391,
0.5631999969482422,
0.19769999384880066,
0.41670000553131104,
0.6869000196456909,
0.7401999831199646,
0.48030000925064087,
0.6184999942779541,
0.5002999901771545,
0.5964000225067139,
0.4691999852657318,
0.3573000133037567,
0.4056999981403351,
0.6247000098228455,
0.47200000286102295,
0.2556999921798706,
0.3594000041484833,
0.1906999945640564,
0.2425999939441681,
0.38769999146461487,
0.7885000109672546,
0.24330000579357147,
0.24879999458789825
],
"y_min": [
0.09769999980926514,
0.12160000205039978,
0.12160000205039978,
0.14839999377727509,
0.14499999582767487,
0.17190000414848328,
0.17190000414848328,
0.21879999339580536,
0.23929999768733978,
0.2660999894142151,
0.2660999894142151,
0.36039999127388,
0.3564000129699707,
0.3822999894618988,
0.3822999894618988,
0.4311999976634979,
0.4311999976634979,
0.4546000063419342,
0.4745999872684479,
0.4745999872684479,
0.4779999852180481,
0.5005000233650208,
0.524399995803833,
0.5214999914169312,
0.7060999870300293,
0.7333999872207642,
0.7294999957084656,
0.7333999872207642,
0.5976999998092651,
0.6592000126838684
],
"x_max": [
0.661300003528595,
0.2467000037431717,
0.7075999975204468,
0.3352000117301941,
0.8528000116348267,
0.15129999816417694,
0.5515000224113464,
0.6571999788284302,
0.583899974822998,
0.24950000643730164,
0.4332999885082245,
0.7075999975204468,
0.7609000205993652,
0.5120999813079834,
0.6758999824523926,
0.5169000029563904,
0.6158000230789185,
0.4885999858379364,
0.3772999942302704,
0.4505999982357025,
0.64410001039505,
0.527999997138977,
0.30480000376701355,
0.37940001487731934,
0.3427000045776367,
0.2653999924659729,
0.4043000042438507,
0.8058000206947327,
0.7796000242233276,
0.7739999890327454
],
"y_max": [
0.11379999667406082,
0.1371999979019165,
0.1371999979019165,
0.16060000658035278,
0.16060000658035278,
0.18459999561309814,
0.18219999969005585,
0.22949999570846558,
0.2549000084400177,
0.27730000019073486,
0.27639999985694885,
0.37310001254081726,
0.37299999594688416,
0.3944999873638153,
0.3978999853134155,
0.4438999891281128,
0.4438999891281128,
0.4672999978065491,
0.49070000648498535,
0.49219998717308044,
0.49070000648498535,
0.5156000256538391,
0.5394999980926514,
0.538100004196167,
0.7236999869346619,
0.7455999851226807,
0.7455999851226807,
0.7455999851226807,
0.6363000273704529,
0.6977999806404114
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0002194_page28
|
{
"latex": [
"${\\cal L} (B+F) \\to \\hat {{\\cal L}} (\\hat {F})$",
"$\\{ \\hat {T}_1, \\hat {T}_4 \\}$",
"$\\alpha '$",
"$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$",
"$G_s$",
"$\\hat {{\\cal L}}' (\\hat {F}) = {\\cal L}' (B+F)$",
"$G_s$",
"${\\cal L}' (F) - {\\cal L} (F)$",
"$O(\\partial ^2 F^4)$",
"$O(\\partial ^2 F^4)$",
"$O(\\partial ^2 F^4)$",
"${\\cal F} (F)$",
"$a=0$",
"$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$",
"$G_s$",
"\\begin {eqnarray} \\hat {{\\cal L}} (\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ a \\hat {T}_1 + b \\hat {T}_4 + a (2 \\pi \\alpha ')^2 \\left ( \\hat {J}_5 -\\frac {1}{8} \\hat {J}_6 + \\frac {1}{2} \\hat {J}_7 \\right ) \\\\ && \\quad - \\frac {1}{4} b (2 \\pi \\alpha ')^2 \\left ( -\\frac {1}{4} \\hat {J}_1 + 2 \\hat {J}_2 + \\hat {J}_3 +2 \\hat {J}_5 -\\frac {1}{4} \\hat {J}_6 + \\hat {J}_7 \\right ) + O(\\alpha '^4) \\Biggr ]. \\end {eqnarray}",
"\\begin {eqnarray} \\hat {{\\cal L}}' (\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ a \\hat {T}_1 + b \\hat {T}_4 \\\\ && + ~O(\\alpha '^2) {\\rm ~terms~different~from~those~of~} \\hat {{\\cal L}} (\\hat {F}) + O(\\alpha '^4) \\Biggr ], \\end {eqnarray}",
"\\begin {equation} {\\cal F} (F) \\equiv -\\frac {1}{4} J_1 + 2 J_2 + J_3 +2 J_5 -\\frac {1}{4} J_6 + J_7, \\label {necessary} \\end {equation}",
"\\begin {equation} -\\frac {1}{4} {\\cal F} (B+F) = \\frac {1}{2} B_{nm} F_{ij} \\partial _n F_{jk} \\partial _m F_{ki} -\\frac {1}{4} {\\cal F} (F) + {\\rm total~derivative}, \\end {equation}"
],
"latex_norm": [
"$ L ( B + F ) \\rightarrow \\hat { L } ( \\hat { F } ) $",
"$ \\{ \\hat { T } _ { 1 } , \\hat { T } _ { 4 } \\} $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $",
"$ G _ { s } $",
"$ \\hat { L } ^ { \\prime } ( \\hat { F } ) = L ^ { \\prime } ( B + F ) $",
"$ G _ { s } $",
"$ L ^ { \\prime } ( F ) - L ( F ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ F ( F ) $",
"$ a = 0 $",
"$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $",
"$ G _ { s } $",
"\\begin{align*} \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ a \\hat { T } _ { 1 } + b \\hat { T } _ { 4 } + a ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( \\hat { J } _ { 5 } - \\frac { 1 } { 8 } \\hat { J } _ { 6 } + \\frac { 1 } { 2 } \\hat { J } _ { 7 } ) \\\\ & & \\quad - \\frac { 1 } { 4 } b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( - \\frac { 1 } { 4 } \\hat { J } _ { 1 } + 2 \\hat { J } _ { 2 } + \\hat { J } _ { 3 } + 2 \\hat { J } _ { 5 } - \\frac { 1 } { 4 } \\hat { J } _ { 6 } + \\hat { J } _ { 7 } ) + O ( \\alpha ^ { \\prime 4 } ) ] . \\end{align*}",
"\\begin{align*} \\hat { L } ^ { \\prime } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ a \\hat { T } _ { 1 } + b \\hat { T } _ { 4 } \\\\ & & + ~ O ( \\alpha ^ { \\prime 2 } ) ~ t e r m s ~ d i f f e r e n t ~ f r o m ~ t h o s e ~ o f ~ \\hat { L } ( \\hat { F } ) + O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}",
"\\begin{equation*} F ( F ) \\equiv - \\frac { 1 } { 4 } J _ { 1 } + 2 J _ { 2 } + J _ { 3 } + 2 J _ { 5 } - \\frac { 1 } { 4 } J _ { 6 } + J _ { 7 } , \\end{equation*}",
"\\begin{equation*} - \\frac { 1 } { 4 } F ( B + F ) = \\frac { 1 } { 2 } B _ { n m } F _ { i j } \\partial _ { n } F _ { j k } \\partial _ { m } F _ { k i } - \\frac { 1 } { 4 } F ( F ) + t o t a l ~ d e r i v a t i v e , \\end{equation*}"
],
"latex_expand": [
"$ \\mitL ( \\mitB + \\mitF ) \\rightarrow \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\{ \\hat { \\mitT } _ { 1 } , \\hat { \\mitT } _ { 4 } \\} $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitG _ { \\mits } $",
"$ \\hat { \\mitL } ^ { \\prime } ( \\hat { \\mitF } ) = \\mitL ^ { \\prime } ( \\mitB + \\mitF ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitL ^ { \\prime } ( \\mitF ) - \\mitL ( \\mitF ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitF ( \\mitF ) $",
"$ \\mita = 0 $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitG _ { \\mits } $",
"\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mita \\hat { \\mitT } _ { 1 } + \\mitb \\hat { \\mitT } _ { 4 } + \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 8 } \\hat { \\mitJ } _ { 6 } + \\frac { 1 } { 2 } \\hat { \\mitJ } _ { 7 } \\right) \\\\ & & \\displaystyle \\quad - \\frac { 1 } { 4 } \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left( - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 1 } + 2 \\hat { \\mitJ } _ { 2 } + \\hat { \\mitJ } _ { 3 } + 2 \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 6 } + \\hat { \\mitJ } _ { 7 } \\right) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] . \\end{align*}",
"\\begin{align*} \\displaystyle \\hat { \\mitL } ^ { \\prime } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mita \\hat { \\mitT } _ { 1 } + \\mitb \\hat { \\mitT } _ { 4 } \\\\ & & \\displaystyle + ~ \\mitO ( \\mitalpha ^ { \\prime 2 } ) ~ \\mathrm { t e r m s } ~ \\mathrm { d i f f e r e n t } ~ \\mathrm { f r o m } ~ \\mathrm { t h o s e } ~ \\mathrm { o f } ~ \\hat { \\mitL } ( \\hat { \\mitF } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}",
"\\begin{equation*} \\mitF ( \\mitF ) \\equiv - \\frac { 1 } { 4 } \\mitJ _ { 1 } + 2 \\mitJ _ { 2 } + \\mitJ _ { 3 } + 2 \\mitJ _ { 5 } - \\frac { 1 } { 4 } \\mitJ _ { 6 } + \\mitJ _ { 7 } , \\end{equation*}",
"\\begin{equation*} - \\frac { 1 } { 4 } \\mitF ( \\mitB + \\mitF ) = \\frac { 1 } { 2 } \\mitB _ { \\mitn \\mitm } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\mitF _ { \\mitj \\mitk } \\mitpartial _ { \\mitm } \\mitF _ { \\mitk \\miti } - \\frac { 1 } { 4 } \\mitF ( \\mitF ) + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\end{equation*}"
],
"x_min": [
0.2184000015258789,
0.1306000053882599,
0.4036000072956085,
0.6365000009536743,
0.6917999982833862,
0.29919999837875366,
0.3682999908924103,
0.6198999881744385,
0.24050000309944153,
0.1298999935388565,
0.36899998784065247,
0.1306000053882599,
0.23770000040531158,
0.3801000118255615,
0.4796000123023987,
0.1899999976158142,
0.21770000457763672,
0.321399986743927,
0.19900000095367432
],
"y_min": [
0.09769999980926514,
0.1445000022649765,
0.28610000014305115,
0.2831999957561493,
0.31049999594688416,
0.44679999351501465,
0.4740999937057495,
0.4731000065803528,
0.4966000020503998,
0.5435000061988831,
0.5669000148773193,
0.6596999764442444,
0.7080000042915344,
0.7035999894142151,
0.7310000061988831,
0.1703999936580658,
0.35409998893737793,
0.5903000235557556,
0.7529000043869019
],
"x_max": [
0.3828999996185303,
0.19830000400543213,
0.42089998722076416,
0.79339998960495,
0.7153000235557556,
0.4657999873161316,
0.3917999863624573,
0.7325000166893005,
0.31439998745918274,
0.2045000046491623,
0.44359999895095825,
0.17829999327659607,
0.29510000348091125,
0.5501000285148621,
0.5030999779701233,
0.8334000110626221,
0.8058000206947327,
0.7014999985694885,
0.7649999856948853
],
"y_max": [
0.1152999997138977,
0.16210000216960907,
0.29679998755455017,
0.30079999566078186,
0.32269999384880066,
0.4648999869823456,
0.4867999851703644,
0.48820000886917114,
0.5116999745368958,
0.5590999722480774,
0.5824999809265137,
0.6743000149726868,
0.7178000211715698,
0.7211999893188477,
0.7437000274658203,
0.2558000087738037,
0.43549999594688416,
0.6225000023841858,
0.785099983215332
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page29
|
{
"latex": [
"${\\cal F} (F)$",
"$O(\\partial ^2 F^4)$",
"$\\alpha '$",
"$\\hat {{\\cal L}} (\\hat {F}) = {\\cal L} (B+F)$",
"$G_s$",
"$J_3$",
"${\\cal L} (B+F)$",
"${\\hat {\\cal L}} (\\hat {F})$",
"$J_i$",
"$J_3$",
"$\\alpha '^3$",
"$J_2$",
"$J_1$",
"$J_2$",
"$J_3$",
"$b (2 \\pi \\alpha ')^3 \\hat {J_2}$",
"$J_4$",
"$J_5$",
"$J_6$",
"$J_7$",
"$O(\\alpha '^3)$",
"\\begin {eqnarray} \\hat {{\\cal L}}(\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ {\\rm Tr} ( G^{-1} \\hat {F} \\ast G^{-1} \\hat {F} ) + b (2 \\pi \\alpha ') \\hat {T}_4 \\\\ && \\qquad \\qquad + (2 \\pi \\alpha ')^2 \\biggl [ \\frac {1}{2} {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ && \\qquad \\qquad - \\frac {1}{4} b (2 \\pi \\alpha ')^3 \\left ( -\\frac {1}{4} \\hat {J}_1 + 2 \\hat {J}_2 + \\hat {J}_3 +2 \\hat {J}_5 -\\frac {1}{4} \\hat {J}_6 + \\hat {J}_7 \\right ) \\\\ && \\qquad \\qquad + ~O(\\alpha '^4) \\Biggr ], \\end {eqnarray}",
"\\begin {eqnarray} \\hat {A}_i &=& A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) \\\\ && -\\frac {1}{4} b (2 \\pi \\alpha ')^3 \\partial _j ( 2 F B F + B^2 F + F B^2 )_{ji} + O(\\alpha '^4). \\end {eqnarray}"
],
"latex_norm": [
"$ F ( F ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { L } ( \\hat { F } ) = L ( B + F ) $",
"$ G _ { s } $",
"$ J _ { 3 } $",
"$ L ( B + F ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ J _ { i } $",
"$ J _ { 3 } $",
"$ \\alpha ^ { \\prime 3 } $",
"$ J _ { 2 } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 3 } $",
"$ b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\hat { J _ { 2 } } $",
"$ J _ { 4 } $",
"$ J _ { 5 } $",
"$ J _ { 6 } $",
"$ J _ { 7 } $",
"$ O ( \\alpha ^ { \\prime 3 } ) $",
"\\begin{align*} \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) + b ( 2 \\pi \\alpha ^ { \\prime } ) \\hat { T } _ { 4 } \\\\ & & \\qquad \\qquad + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & & \\qquad \\qquad - \\frac { 1 } { 4 } b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } ( - \\frac { 1 } { 4 } \\hat { J } _ { 1 } + 2 \\hat { J } _ { 2 } + \\hat { J } _ { 3 } + 2 \\hat { J } _ { 5 } - \\frac { 1 } { 4 } \\hat { J } _ { 6 } + \\hat { J } _ { 7 } ) \\\\ & & \\qquad \\qquad + ~ O ( \\alpha ^ { \\prime 4 } ) ] , \\end{align*}",
"\\begin{align*} \\hat { A } _ { i } & = & A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) \\\\ & & - \\frac { 1 } { 4 } b ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } \\partial _ { j } ( 2 F B F + B ^ { 2 } F + F B ^ { 2 } ) _ { j i } + O ( \\alpha ^ { \\prime 4 } ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitF ( \\mitF ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) = \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitJ _ { \\miti } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitalpha ^ { \\prime 3 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\hat { \\mitJ _ { 2 } } $",
"$ \\mitJ _ { 4 } $",
"$ \\mitJ _ { 5 } $",
"$ \\mitJ _ { 6 } $",
"$ \\mitJ _ { 7 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $",
"\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) + \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\hat { \\mitT } _ { 4 } \\\\ & & \\displaystyle \\qquad \\qquad + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\bigg [ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & & \\displaystyle \\qquad \\qquad - \\frac { 1 } { 4 } \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\left( - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 1 } + 2 \\hat { \\mitJ } _ { 2 } + \\hat { \\mitJ } _ { 3 } + 2 \\hat { \\mitJ } _ { 5 } - \\frac { 1 } { 4 } \\hat { \\mitJ } _ { 6 } + \\hat { \\mitJ } _ { 7 } \\right) \\\\ & & \\displaystyle \\qquad \\qquad + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] , \\end{align*}",
"\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) \\\\ & & \\displaystyle - \\frac { 1 } { 4 } \\mitb ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } \\mitpartial _ { \\mitj } ( 2 \\mitF \\mitB \\mitF + \\mitB ^ { 2 } \\mitF + \\mitF \\mitB ^ { 2 } ) _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{align*}"
],
"x_min": [
0.29580000042915344,
0.1298999935388565,
0.7297999858856201,
0.19280000030994415,
0.274399995803833,
0.802299976348877,
0.16930000483989716,
0.4180999994277954,
0.4982999861240387,
0.5992000102996826,
0.3912000060081482,
0.1298999935388565,
0.3476000130176544,
0.3772999942302704,
0.4368000030517578,
0.5245000123977661,
0.527999997138977,
0.5583999752998352,
0.588100016117096,
0.6503000259399414,
0.30410000681877136,
0.19349999725818634,
0.2653999924659729
],
"y_min": [
0.10010000318288803,
0.1469999998807907,
0.17139999568462372,
0.19189999997615814,
0.21879999339580536,
0.24269999563694,
0.45750001072883606,
0.45509999990463257,
0.48240000009536743,
0.48240000009536743,
0.5044000148773193,
0.5292999744415283,
0.6000999808311462,
0.6000999808311462,
0.6000999808311462,
0.6201000213623047,
0.7559000253677368,
0.7559000253677368,
0.7559000253677368,
0.7559000253677368,
0.801800012588501,
0.2892000079154968,
0.6718999743461609
],
"x_max": [
0.3434999883174896,
0.2045000046491623,
0.7470999956130981,
0.3544999957084656,
0.2971999943256378,
0.8216999769210815,
0.2563999891281128,
0.46299999952316284,
0.5156000256538391,
0.6186000108718872,
0.41609999537467957,
0.1492999941110611,
0.367000013589859,
0.396699994802475,
0.4562000036239624,
0.614300012588501,
0.5473999977111816,
0.5777999758720398,
0.6075000166893005,
0.6690000295639038,
0.3594000041484833,
0.8299999833106995,
0.7580999732017517
],
"y_max": [
0.1151999980211258,
0.16210000216960907,
0.18209999799728394,
0.2094999998807907,
0.23149999976158142,
0.2549000084400177,
0.4726000130176544,
0.47269999980926514,
0.49459999799728394,
0.49459999799728394,
0.5160999894142151,
0.5419999957084656,
0.6128000020980835,
0.6128000020980835,
0.6128000020980835,
0.6377000212669373,
0.7685999870300293,
0.7685999870300293,
0.7685999870300293,
0.7685999870300293,
0.8169000148773193,
0.4399999976158142,
0.7461000084877014
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0002194_page30
|
{
"latex": [
"$O(\\alpha '^3)$",
"$J_1$",
"$J_2$",
"$J_3$",
"$\\alpha '^3$",
"$\\alpha '$",
"$O(B) \\sim O(\\theta )$",
"$\\delta \\hat {A} (\\theta )$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"${\\cal L} (B+F)$",
"$B$",
"$\\alpha '$",
"$\\hat {A}_i$",
"$A_i$",
"$B$",
"$g_{ij}$",
"$\\hat {A}_i$",
"$A_i$"
],
"latex_norm": [
"$ O ( \\alpha ^ { \\prime 3 } ) $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 3 } $",
"$ \\alpha ^ { \\prime 3 } $",
"$ \\alpha ^ { \\prime } $",
"$ O ( B ) \\sim O ( \\theta ) $",
"$ \\delta \\hat { A } ( \\theta ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ L ( B + F ) $",
"$ B $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ B $",
"$ g _ { i j } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $"
],
"latex_expand": [
"$ \\mitO ( \\mitalpha ^ { \\prime 3 } ) $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 3 } $",
"$ \\mitalpha ^ { \\prime 3 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitO ( \\mitB ) \\sim \\mitO ( \\mittheta ) $",
"$ \\mitdelta \\hat { \\mitA } ( \\mittheta ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitB $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitB $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $"
],
"x_min": [
0.3199999928474426,
0.6654999852180481,
0.6952000260353088,
0.7559999823570251,
0.5935999751091003,
0.6758999824523926,
0.49070000648498535,
0.1534000039100647,
0.37040001153945923,
0.7450000047683716,
0.3359000086784363,
0.16380000114440918,
0.1306000053882599,
0.3303000032901764,
0.8701000213623047,
0.19349999725818634,
0.704200029373169,
0.7588000297546387
],
"y_min": [
0.09960000216960907,
0.14839999377727509,
0.14839999377727509,
0.14839999377727509,
0.1703999936580658,
0.19480000436306,
0.26510000228881836,
0.28610000014305115,
0.43700000643730164,
0.4399000108242035,
0.4643999934196472,
0.48730000853538513,
0.5311999917030334,
0.5351999998092651,
0.6762999892234802,
0.7509999871253967,
0.7437000274658203,
0.7470999956130981
],
"x_max": [
0.37599998712539673,
0.6848999857902527,
0.7146000266075134,
0.7753999829292297,
0.6184999942779541,
0.6938999891281128,
0.6096000075340271,
0.20319999754428864,
0.41530001163482666,
0.8327999711036682,
0.35249999165534973,
0.1817999929189682,
0.15129999816417694,
0.3517000079154968,
0.8866999745368958,
0.21559999883174896,
0.7249000072479248,
0.7795000076293945
],
"y_max": [
0.1151999980211258,
0.16060000658035278,
0.16060000658035278,
0.16060000658035278,
0.18209999799728394,
0.20550000667572021,
0.2802000045776367,
0.3037000000476837,
0.4546000063419342,
0.4544999897480011,
0.474700003862381,
0.49799999594688416,
0.5472999811172485,
0.5473999977111816,
0.6869999766349792,
0.7616999745368958,
0.7598000168800354,
0.7598000168800354
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0002194_page31
|
{
"latex": [
"$\\hat {A}_i$",
"$A_i$",
"$g_{ij}$",
"$g_{ij}$",
"$\\hat {A}_i$",
"$A_i$",
"$\\alpha '$",
"$\\alpha '$",
"$\\alpha '$",
"$J_1$",
"$J_2$",
"$J_3$",
"$2n$",
"$\\alpha '$",
"$(2n+2)$"
],
"latex_norm": [
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ g _ { i j } $",
"$ g _ { i j } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ \\alpha ^ { \\prime } $",
"$ \\alpha ^ { \\prime } $",
"$ \\alpha ^ { \\prime } $",
"$ J _ { 1 } $",
"$ J _ { 2 } $",
"$ J _ { 3 } $",
"$ 2 n $",
"$ \\alpha ^ { \\prime } $",
"$ ( 2 n + 2 ) $"
],
"latex_expand": [
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitJ _ { 1 } $",
"$ \\mitJ _ { 2 } $",
"$ \\mitJ _ { 3 } $",
"$ 2 \\mitn $",
"$ \\mitalpha ^ { \\prime } $",
"$ ( 2 \\mitn + 2 ) $"
],
"x_min": [
0.7843999862670898,
0.8355000019073486,
0.574999988079071,
0.46790000796318054,
0.19280000030994415,
0.24400000274181366,
0.7139000296592712,
0.5605000257492065,
0.5286999940872192,
0.5307999849319458,
0.5619000196456909,
0.6254000067710876,
0.6723999977111816,
0.21289999783039093,
0.24400000274181366
],
"y_min": [
0.12110000103712082,
0.125,
0.19920000433921814,
0.3402999937534332,
0.3564000129699707,
0.36039999127388,
0.43070000410079956,
0.47749999165534973,
0.5717999935150146,
0.6195999979972839,
0.6195999979972839,
0.6195999979972839,
0.6909000277519226,
0.7134000062942505,
0.736299991607666
],
"x_max": [
0.8051000237464905,
0.8568999767303467,
0.597100019454956,
0.49000000953674316,
0.2134999930858612,
0.2646999955177307,
0.7318999767303467,
0.5777999758720398,
0.5460000038146973,
0.5501999855041504,
0.5813000202178955,
0.6448000073432922,
0.6945000290870667,
0.23019999265670776,
0.31310001015663147
],
"y_max": [
0.1371999979019165,
0.1371999979019165,
0.20990000665187836,
0.35100001096725464,
0.37299999594688416,
0.37310001254081726,
0.4413999915122986,
0.4887000024318695,
0.5830000042915344,
0.6323000192642212,
0.6323000192642212,
0.6323000192642212,
0.7006999850273132,
0.7240999937057495,
0.7513999938964844
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0002194_page32
|
{
"latex": [
"$g_s$",
"$g_s$",
"$\\alpha '$",
"$g_s$"
],
"latex_norm": [
"$ g _ { s } $",
"$ g _ { s } $",
"$ \\alpha ^ { \\prime } $",
"$ g _ { s } $"
],
"latex_expand": [
"$ \\mitg _ { \\mits } $",
"$ \\mitg _ { \\mits } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitg _ { \\mits } $"
],
"x_min": [
0.6827999949455261,
0.8755999803543091,
0.8755999803543091,
0.16859999299049377
],
"y_min": [
0.29350000619888306,
0.31690001487731934,
0.3833000063896179,
0.41110000014305115
],
"x_max": [
0.7001000046730042,
0.8928999900817871,
0.8928999900817871,
0.1859000027179718
],
"y_max": [
0.3027999997138977,
0.32670000195503235,
0.3944999873638153,
0.4203999936580658
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0002194_page33
|
{
"latex": [
"$O(\\alpha '^0)$",
"$G_s$",
"$O(\\alpha '^0)$",
"$G_s$",
"$t$",
"$A_i$",
"$\\hat {A}_i$",
"$t \\ne 1$",
"$t \\ne 1$",
"${\\bf A}_i$",
"${\\bf \\hat {A}}_i$",
"${\\cal L} (B+F)$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"${\\bf A}_i$",
"${\\bf \\hat {A}}_i$",
"$\\alpha '$",
"$F^4$",
"$\\alpha '$",
"${\\bf \\hat {A}}_i$",
"\\begin {equation} {\\bf A}_i = \\frac {A_i}{\\sqrt {g_s}}, \\quad {\\bf \\hat {A}}_i = \\frac {\\hat {A}_i}{\\sqrt {G_s}}. \\end {equation}",
"\\begin {eqnarray} {\\bf F}_{ij} &\\equiv & \\partial _i {\\bf A}_j - \\partial _j {\\bf A}_i, \\\\ {\\bf \\hat {F}}_{ij} &\\equiv & \\partial _i {\\bf \\hat {A}}_j - \\partial _j {\\bf \\hat {A}}_i -i \\sqrt {G_s} {\\bf \\hat {A}}_i \\ast {\\bf \\hat {A}}_j +i \\sqrt {G_s} {\\bf \\hat {A}}_j \\ast {\\bf \\hat {A}}_i, \\end {eqnarray}",
"\\begin {eqnarray} {\\cal L} (B+F) &=& \\sqrt {\\det g} \\, {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 + O(\\alpha ') \\\\ &=& \\sqrt {\\det g} \\, {\\rm Tr} \\, {\\bf F}^2 + {\\rm total~derivative} + O(\\alpha '), \\\\ \\hat {{\\cal L}} (\\hat {F}) &=& \\sqrt {\\det G} \\, {\\rm Tr} ( G^{-1} {\\bf \\hat {F}} \\ast G^{-1} {\\bf \\hat {F}} ) + O(\\alpha '). \\end {eqnarray}",
"\\begin {equation} {\\bf \\hat {A}}_i = {\\bf A}_i + O(\\alpha '). \\end {equation}",
"\\begin {eqnarray} && \\sqrt {\\det G} \\, {\\rm Tr } (G^{-1} {\\bf \\hat {F}} \\ast G^{-1} {\\bf \\hat {F}}) \\\\ &=& \\sqrt {\\det g} \\Biggl [ ( \\partial _i {\\bf \\hat {A}}_j - \\partial _j {\\bf \\hat {A}}_i ) ( \\partial _j {\\bf \\hat {A}}_i - \\partial _i {\\bf \\hat {A}}_j ) -4 (2 \\pi \\alpha ')^2 \\sqrt {G_s} B_{kl} \\partial _k {\\bf \\hat {A}}_i \\partial _l {\\bf \\hat {A}}_j \\partial _j {\\bf \\hat {A}}_i \\\\ && +2 (2 \\pi \\alpha ')^2 (B^2)_{ij} ( \\partial _j {\\bf \\hat {A}}_k - \\partial _k {\\bf \\hat {A}}_j ) ( \\partial _k {\\bf \\hat {A}}_i - \\partial _i {\\bf \\hat {A}}_k ) \\\\ && -\\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 ( \\partial _i {\\bf \\hat {A}}_j - \\partial _j {\\bf \\hat {A}}_i ) ( \\partial _j {\\bf \\hat {A}}_i - \\partial _i {\\bf \\hat {A}}_j ) + O(\\alpha '^4) \\Biggr ]. \\end {eqnarray}"
],
"latex_norm": [
"$ O ( \\alpha ^ { \\prime 0 } ) $",
"$ G _ { s } $",
"$ O ( \\alpha ^ { \\prime 0 } ) $",
"$ G _ { s } $",
"$ t $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ t \\ne 1 $",
"$ t \\ne 1 $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ L ( B + F ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ \\alpha ^ { \\prime } $",
"$ F ^ { 4 } $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { A } _ { i } $",
"\\begin{equation*} A _ { i } = \\frac { A _ { i } } { \\sqrt { g _ { s } } } , \\quad \\hat { A } _ { i } = \\frac { \\hat { A } _ { i } } { \\sqrt { G _ { s } } } . \\end{equation*}",
"\\begin{align*} F _ { i j } & \\equiv & \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } , \\\\ \\hat { F } _ { i j } & \\equiv & \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } - i \\sqrt { G _ { s } } \\hat { A } _ { i } \\ast \\hat { A } _ { j } + i \\sqrt { G _ { s } } \\hat { A } _ { j } \\ast \\hat { A } _ { i } , \\end{align*}",
"\\begin{align*} L ( B + F ) & = & \\sqrt { \\operatorname { d e t } g } \\, T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } + O ( \\alpha ^ { \\prime } ) \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, T r \\, F ^ { 2 } + t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime } ) , \\\\ \\hat { L } ( \\hat { F } ) & = & \\sqrt { \\operatorname { d e t } G } \\, T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) + O ( \\alpha ^ { \\prime } ) . \\end{align*}",
"\\begin{equation*} \\hat { A } _ { i } = A _ { i } + O ( \\alpha ^ { \\prime } ) . \\end{equation*}",
"\\begin{align*} & & \\sqrt { \\operatorname { d e t } G } \\, T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) \\\\ & = & \\sqrt { \\operatorname { d e t } g } [ ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) - 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\sqrt { G _ { s } } B _ { k l } \\partial _ { k } \\hat { A } _ { i } \\partial _ { l } \\hat { A } _ { j } \\partial _ { j } \\hat { A } _ { i } \\\\ & & + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( B ^ { 2 } ) _ { i j } ( \\partial _ { j } \\hat { A } _ { k } - \\partial _ { k } \\hat { A } _ { j } ) ( \\partial _ { k } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { k } ) \\\\ & & - \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) + O ( \\alpha ^ { \\prime 4 } ) ] . \\end{align*}"
],
"latex_expand": [
"$ \\mitO ( \\mitalpha ^ { \\prime 0 } ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 0 } ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitt $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitt \\ne 1 $",
"$ \\mitt \\ne 1 $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitF ^ { 4 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"\\begin{equation*} \\mitA _ { \\miti } = \\frac { \\mitA _ { \\miti } } { \\sqrt { \\mitg _ { \\mits } } } , \\quad \\hat { \\mitA } _ { \\miti } = \\frac { \\hat { \\mitA } _ { \\miti } } { \\sqrt { \\mitG _ { \\mits } } } . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitF _ { \\miti \\mitj } & \\displaystyle \\equiv & \\displaystyle \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } , \\\\ \\displaystyle \\hat { \\mitF } _ { \\miti \\mitj } & \\displaystyle \\equiv & \\displaystyle \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\miti \\sqrt { \\mitG _ { \\mits } } \\hat { \\mitA } _ { \\miti } \\ast \\hat { \\mitA } _ { \\mitj } + \\miti \\sqrt { \\mitG _ { \\mits } } \\hat { \\mitA } _ { \\mitj } \\ast \\hat { \\mitA } _ { \\miti } , \\end{align*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime } ) \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mathrm { T r } \\, \\mitF ^ { 2 } + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime } ) , \\\\ \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitG } \\, \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) + \\mitO ( \\mitalpha ^ { \\prime } ) . \\end{align*}",
"\\begin{equation*} \\hat { \\mitA } _ { \\miti } = \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) . \\end{equation*}",
"\\begin{align*} & & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitG } \\, \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\Bigg [ ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) - 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\sqrt { \\mitG _ { \\mits } } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } \\mitpartial _ { \\mitl } \\hat { \\mitA } _ { \\mitj } \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } \\\\ & & \\displaystyle + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitB ^ { 2 } ) _ { \\miti \\mitj } ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\mitk } - \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\mitj } ) ( \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitk } ) \\\\ & & \\displaystyle - \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] . \\end{align*}"
],
"x_min": [
0.5113999843597412,
0.6628000140190125,
0.46369999647140503,
0.588100016117096,
0.8016999959945679,
0.5950000286102295,
0.6571999788284302,
0.8644999861717224,
0.1306000053882599,
0.5224999785423279,
0.5902000069618225,
0.35109999775886536,
0.5273000001907349,
0.6614000201225281,
0.7318999767303467,
0.2639999985694885,
0.6254000067710876,
0.1298999935388565,
0.5942999720573425,
0.4043000042438507,
0.2791999876499176,
0.2702000141143799,
0.4368000030517578,
0.20319999754428864
],
"y_min": [
0.09719999879598618,
0.09910000115633011,
0.1371999979019165,
0.1386999934911728,
0.1395999938249588,
0.16259999573230743,
0.15870000422000885,
0.16210000216960907,
0.1860000044107437,
0.2328999936580658,
0.22949999570846558,
0.41019999980926514,
0.40720000863075256,
0.5508000254631042,
0.5473999977111816,
0.5737000107765198,
0.6269999742507935,
0.6747999787330627,
0.6718999743461609,
0.2563000023365021,
0.3395000100135803,
0.43549999594688416,
0.5907999873161316,
0.7037000060081482
],
"x_max": [
0.5777000188827515,
0.691100001335144,
0.5196999907493591,
0.6115999817848206,
0.8093000054359436,
0.6164000034332275,
0.6779000163078308,
0.8984000086784363,
0.14030000567436218,
0.5460000038146973,
0.6136999726295471,
0.4361000061035156,
0.5728999972343445,
0.6841999888420105,
0.7547000050544739,
0.28200000524520874,
0.6488999724388123,
0.14790000021457672,
0.6171000003814697,
0.6212999820709229,
0.7436000108718872,
0.7498000264167786,
0.5895000100135803,
0.836899995803833
],
"y_max": [
0.11580000072717667,
0.11420000344514847,
0.15279999375343323,
0.15139999985694885,
0.149399995803833,
0.17479999363422394,
0.17479999363422394,
0.1753000020980835,
0.19920000433921814,
0.24560000002384186,
0.24560000002384186,
0.42480000853538513,
0.42480000853538513,
0.5634999871253967,
0.5634999871253967,
0.5843999981880188,
0.638700008392334,
0.6859999895095825,
0.6880000233650208,
0.2978000044822693,
0.39149999618530273,
0.5306000113487244,
0.6118000149726868,
0.833899974822998
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page34
|
{
"latex": [
"$\\hat {{\\cal L}} (\\hat {F})$",
"${\\cal L} (B+F)$",
"$O(B,\\zeta ^3,k^3)$",
"${\\cal L} (B+F)$",
"$t$",
"$O(B)$",
"$O(B^2)$",
"$O(\\alpha '^2)$",
"$B$",
"\\begin {eqnarray} && \\frac {\\sqrt {\\det g}}{g_s} {\\rm Tr} (B+F)^4 = \\sqrt {\\det g} \\, g_s {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^4 \\\\ &=& \\sqrt {\\det g} \\, \\left [ g_s {\\rm Tr} \\, {\\bf F}^4 + 4 \\sqrt {g_s} \\, {\\rm Tr} B {\\bf F}^3 + O(B^2) \\right ], \\\\ && \\frac {\\sqrt {\\det g}}{g_s} [{\\rm Tr} (B+F)^2]^2 = \\sqrt {\\det g} \\, g_s \\left [ {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 \\right ]^2 \\\\ &=& \\sqrt {\\det g} \\, \\left [ g_s ( {\\rm Tr} \\, {\\bf F}^2 )^2 + 4 \\sqrt {g_s} \\, {\\rm Tr} B {\\bf F} \\, {\\rm Tr} \\, {\\bf F}^2 + O(B^2) \\right ]. \\end {eqnarray}",
"\\begin {eqnarray} {\\cal L} (B+F) &=& \\sqrt {\\det g} \\left [ {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 + (2 \\pi \\alpha ')^2 \\sqrt {G_s \\, g_s} \\left [ \\frac {1}{2} {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^4 \\right . \\right . \\\\ && \\qquad \\qquad \\left . \\left . -\\frac {1}{8} \\left ( {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 \\right )^2 \\right ] + O(\\alpha '^4) + {\\rm derivative~corrections} \\right ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ {\\rm Tr} (B+F)^2 + \\sqrt {t} \\, (2 \\pi \\alpha ')^2 \\left [ \\frac {1}{2} {\\rm Tr} (B+F)^4 \\right . \\\\ && \\qquad \\qquad \\left . -\\frac {1}{8} [ {\\rm Tr} (B+F)^2 ]^2 \\right ] + ~O(\\alpha '^4) + {\\rm derivative~corrections} \\Biggr ], \\end {eqnarray}",
"\\begin {eqnarray} && \\sqrt {\\det g} \\, (2 \\pi \\alpha ')^2 \\sqrt {G_s \\, g_s} \\left [ \\frac {1}{2} {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^4 -\\frac {1}{8} \\left ( {\\rm Tr} \\left ( \\frac {B}{\\sqrt {g_s}} + {\\bf F} \\right )^2 \\right )^2 \\right ] \\\\ &=& \\sqrt {\\det g} \\, (2 \\pi \\alpha ')^2 \\Biggl [ \\sqrt {t} \\, g_s \\left [ \\frac {1}{2} {\\rm Tr} \\, {\\bf F}^4 -\\frac {1}{8} ( {\\rm Tr} \\, {\\bf F}^2 )^2 \\right ] \\\\ && + \\sqrt {t \\, g_s} \\left ( 2 {\\rm Tr} B {\\bf F}^3 -\\frac {1}{2} {\\rm Tr} B {\\bf F} \\, {\\rm Tr} \\, {\\bf F}^2 \\right ) \\\\ && + \\sqrt {t} \\left ( 2 {\\rm Tr} B^2 {\\bf F}^2 -\\frac {1}{4} {\\rm Tr} B^2 \\, {\\rm Tr} \\, {\\bf F}^2 \\right ) + {\\rm total~derivative} + {\\rm const.} \\Biggr ]. \\end {eqnarray}"
],
"latex_norm": [
"$ \\hat { L } ( \\hat { F } ) $",
"$ L ( B + F ) $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $",
"$ L ( B + F ) $",
"$ t $",
"$ O ( B ) $",
"$ O ( B ^ { 2 } ) $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ B $",
"\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } T r ( B + F ) ^ { 4 } = \\sqrt { \\operatorname { d e t } g } \\, g _ { s } T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 4 } \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, [ g _ { s } T r \\, F ^ { 4 } + 4 \\sqrt { g _ { s } } \\, T r B F ^ { 3 } + O ( B ^ { 2 } ) ] , \\\\ & & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } = \\sqrt { \\operatorname { d e t } g } \\, g _ { s } { [ T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } ] } ^ { 2 } \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, [ g _ { s } ( T r \\, F ^ { 2 } ) ^ { 2 } + 4 \\sqrt { g _ { s } } \\, T r B F \\, T r \\, F ^ { 2 } + O ( B ^ { 2 } ) ] . \\end{align*}",
"\\begin{align*} L ( B + F ) & = & \\sqrt { \\operatorname { d e t } g } [ T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\sqrt { G _ { s } \\, g _ { s } } [ \\frac { 1 } { 2 } T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 4 } \\\\ & & \\qquad \\qquad - \\frac { 1 } { 8 } { ( T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } ) } ^ { 2 } ] + O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + \\sqrt { t } \\, ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( B + F ) ^ { 4 } \\\\ & & \\qquad \\qquad - \\frac { 1 } { 8 } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } ] + ~ O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ] , \\end{align*}",
"\\begin{align*} & & \\sqrt { \\operatorname { d e t } g } \\, ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\sqrt { G _ { s } \\, g _ { s } } [ \\frac { 1 } { 2 } T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 4 } - \\frac { 1 } { 8 } { ( T r { ( \\frac { B } { \\sqrt { g _ { s } } } + F ) } ^ { 2 } ) } ^ { 2 } ] \\\\ & = & \\sqrt { \\operatorname { d e t } g } \\, ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\sqrt { t } \\, g _ { s } [ \\frac { 1 } { 2 } T r \\, F ^ { 4 } - \\frac { 1 } { 8 } ( T r \\, F ^ { 2 } ) ^ { 2 } ] \\\\ & & + \\sqrt { t \\, g _ { s } } ( 2 T r B F ^ { 3 } - \\frac { 1 } { 2 } T r B F \\, T r \\, F ^ { 2 } ) \\\\ & & + \\sqrt { t } ( 2 T r B ^ { 2 } F ^ { 2 } - \\frac { 1 } { 4 } T r B ^ { 2 } \\, T r \\, F ^ { 2 } ) + t o t a l ~ d e r i v a t i v e + c o n s t . ] . \\end{align*}"
],
"latex_expand": [
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitt $",
"$ \\mitO ( \\mitB ) $",
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitB $",
"\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } = \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mitg _ { \\mits } \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 4 } \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\left[ \\mitg _ { \\mits } \\mathrm { T r } \\, \\mitF ^ { 4 } + 4 \\sqrt { \\mitg _ { \\mits } } \\, \\mathrm { T r } \\mitB \\mitF ^ { 3 } + \\mitO ( \\mitB ^ { 2 } ) \\right] , \\\\ & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } = \\sqrt { \\operatorname { d e t } \\mitg } \\, \\mitg _ { \\mits } { \\left[ \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } \\right] } ^ { 2 } \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, \\left[ \\mitg _ { \\mits } ( \\mathrm { T r } \\, \\mitF ^ { 2 } ) ^ { 2 } + 4 \\sqrt { \\mitg _ { \\mits } } \\, \\mathrm { T r } \\mitB \\mitF \\, \\mathrm { T r } \\, \\mitF ^ { 2 } + \\mitO ( \\mitB ^ { 2 } ) \\right] . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\left[ \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\sqrt { \\mitG _ { \\mits } \\, \\mitg _ { \\mits } } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 4 } \\right. \\right. \\\\ & & \\displaystyle \\qquad \\qquad \\left. \\left. - \\frac { 1 } { 8 } { \\left( \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } \\right) } ^ { 2 } \\right] + \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } \\right] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + \\sqrt { \\mitt } \\, ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } \\right. \\\\ & & \\displaystyle \\qquad \\qquad \\left. - \\frac { 1 } { 8 } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } \\right] + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } \\Bigg ] , \\end{align*}",
"\\begin{align*} & & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\sqrt { \\mitG _ { \\mits } \\, \\mitg _ { \\mits } } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 4 } - \\frac { 1 } { 8 } { \\left( \\mathrm { T r } { \\left( \\frac { \\mitB } { \\sqrt { \\mitg _ { \\mits } } } + \\mitF \\right) } ^ { 2 } \\right) } ^ { 2 } \\right] \\\\ & = & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitg } \\, ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\Bigg [ \\sqrt { \\mitt } \\, \\mitg _ { \\mits } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } \\, \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } \\, \\mitF ^ { 2 } ) ^ { 2 } \\right] \\\\ & & \\displaystyle + \\sqrt { \\mitt \\, \\mitg _ { \\mits } } \\left( 2 \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB \\mitF \\, \\mathrm { T r } \\, \\mitF ^ { 2 } \\right) \\\\ & & \\displaystyle + \\sqrt { \\mitt } \\left( 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitB ^ { 2 } \\, \\mathrm { T r } \\, \\mitF ^ { 2 } \\right) + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mathrm { c o n s t } . \\Bigg ] . \\end{align*}"
],
"x_min": [
0.487199991941452,
0.579800009727478,
0.2937000095844269,
0.7595000267028809,
0.259799987077713,
0.47200000286102295,
0.274399995803833,
0.4325999915599823,
0.22179999947547913,
0.2736999988555908,
0.14249999821186066,
0.21289999783039093
],
"y_min": [
0.2870999872684479,
0.2896000146865845,
0.3125,
0.31349998712539673,
0.5605000257492065,
0.5586000084877014,
0.6050000190734863,
0.6050000190734863,
0.6304000020027161,
0.12160000205039978,
0.3628000020980835,
0.6561999917030334
],
"x_max": [
0.5321000218391418,
0.6668999791145325,
0.3953000009059906,
0.8485999703407288,
0.26739999651908875,
0.5189999938011169,
0.3296999931335449,
0.4885999858379364,
0.23839999735355377,
0.7630000114440918,
0.8769000172615051,
0.817300021648407
],
"y_max": [
0.30469998717308044,
0.30469998717308044,
0.3280999958515167,
0.3280999958515167,
0.5698000192642212,
0.5737000107765198,
0.6205999851226807,
0.6205999851226807,
0.6406999826431274,
0.273499995470047,
0.5493000149726868,
0.8295000195503235
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page35
|
{
"latex": [
"$O(B^2)$",
"${\\rm Tr} B^2 {\\rm Tr} F^2$",
"$t$",
"${\\rm Tr} B^2 F^2$",
"${\\rm Tr} B^2 F^2$",
"$t$",
"$O(\\alpha '^2)$",
"$G_s$",
"$\\alpha '^2$",
"$O(\\alpha '^2)$",
"$G_s$",
"$\\hat {A}_i$",
"$A_i$",
"$c$",
"$c$",
"$\\alpha '^4$",
"$\\ast $",
"$\\hat {F}^4$",
"$O(\\alpha '^4)$",
"$\\ast $",
"$\\hat {F}^4$",
"$\\alpha '$",
"\\begin {equation} t=1. \\end {equation}",
"\\begin {eqnarray} G_s &=& g_s \\left [ 1 +\\frac {c-1}{4} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 + O(\\alpha '^4) \\right ], \\\\ \\hat {A}_i &=& A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) + \\frac {c}{8} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 A_i + O(\\alpha '^4), \\end {eqnarray}",
"\\begin {eqnarray} (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} &=& (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} G^{-1} \\hat {F} G^{-1} \\hat {F} G^{-1} \\hat {F} ) + O(\\alpha '^6), \\\\ (2 \\pi \\alpha ')^2 ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} &=& (2 \\pi \\alpha ')^2 [ {\\rm Tr} ( G^{-1} \\hat {F} G^{-1} \\hat {F} ) ]^2 + O(\\alpha '^6), \\end {eqnarray}",
"\\begin {eqnarray} && \\frac {\\sqrt {\\det G}}{G_s} \\biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} F^4 -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} F^2 )^2 \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B F^5 -\\frac {1}{4} {\\rm Tr} BF {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} BF^3 {\\rm Tr} F^2 +\\frac {1}{16} {\\rm Tr} BF ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B^2 F^4 + \\frac {c-1}{8} {\\rm Tr} B^2 {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} B^2 F^2 {\\rm Tr} F^2 +\\frac {1-c}{32} {\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + {\\rm ~total~derivative} + O(\\alpha '^6) \\Biggr ]. \\end {eqnarray}"
],
"latex_norm": [
"$ O ( B ^ { 2 } ) $",
"$ T r B ^ { 2 } T r F ^ { 2 } $",
"$ t $",
"$ T r B ^ { 2 } F ^ { 2 } $",
"$ T r B ^ { 2 } F ^ { 2 } $",
"$ t $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ G _ { s } $",
"$ \\alpha ^ { \\prime 2 } $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ G _ { s } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ c $",
"$ c $",
"$ \\alpha ^ { \\prime 4 } $",
"$ \\ast $",
"$ \\hat { F } ^ { 4 } $",
"$ O ( \\alpha ^ { \\prime 4 } ) $",
"$ \\ast $",
"$ \\hat { F } ^ { 4 } $",
"$ \\alpha ^ { \\prime } $",
"\\begin{equation*} t = 1 . \\end{equation*}",
"\\begin{align*} G _ { s } & = & g _ { s } [ 1 + \\frac { c - 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } + O ( \\alpha ^ { \\prime 4 } ) ] , \\\\ \\hat { A } _ { i } & = & A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) + \\frac { c } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } A _ { i } + O ( \\alpha ^ { \\prime 4 } ) , \\end{align*}",
"\\begin{align*} ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } & = & ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } ) + O ( \\alpha ^ { \\prime 6 } ) , \\\\ ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } & = & ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ T r ( G ^ { - 1 } \\hat { F } G ^ { - 1 } \\hat { F } ) ] ^ { 2 } + O ( \\alpha ^ { \\prime 6 } ) , \\end{align*}",
"\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B F ^ { 5 } - \\frac { 1 } { 4 } T r B F T r F ^ { 4 } - \\frac { 1 } { 2 } T r B F ^ { 3 } T r F ^ { 2 } + \\frac { 1 } { 1 6 } T r B F ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B ^ { 2 } F ^ { 4 } + \\frac { c - 1 } { 8 } T r B ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 2 } T r B ^ { 2 } F ^ { 2 } T r F ^ { 2 } + \\frac { 1 - c } { 3 2 } T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ~ t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 6 } ) ] . \\end{align*}"
],
"latex_expand": [
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"$ \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } $",
"$ \\mitt $",
"$ \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } $",
"$ \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } $",
"$ \\mitt $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitalpha ^ { \\prime 2 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitG _ { \\mits } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitc $",
"$ \\mitc $",
"$ \\mitalpha ^ { \\prime 4 } $",
"$ \\ast $",
"$ \\hat { \\mitF } ^ { 4 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 4 } ) $",
"$ \\ast $",
"$ \\hat { \\mitF } ^ { 4 } $",
"$ \\mitalpha ^ { \\prime } $",
"\\begin{equation*} \\mitt = 1 . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitG _ { \\mits } & = & \\displaystyle \\mitg _ { \\mits } \\left[ 1 + \\frac { \\mitc - 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] , \\\\ \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) + \\frac { \\mitc } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\end{align*}",
"\\begin{align*} \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } & = & \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } ) + \\mitO ( \\mitalpha ^ { \\prime 6 } ) , \\\\ \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } & = & \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\mitG ^ { - 1 } \\hat { \\mitF } ) ] ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime 6 } ) , \\end{align*}",
"\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB \\mitF ^ { 5 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 } { 1 6 } \\mathrm { T r } \\mitB \\mitF ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 4 } + \\frac { \\mitc - 1 } { 8 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 - \\mitc } { 3 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ~ \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 6 } ) \\Bigg ] . \\end{align*}"
],
"x_min": [
0.1720999926328659,
0.8051000237464905,
0.4242999851703644,
0.6661999821662903,
0.5486999750137329,
0.4740999937057495,
0.5099999904632568,
0.6621000170707703,
0.8093000054359436,
0.37389999628067017,
0.5099999904632568,
0.19280000030994415,
0.24400000274181366,
0.18799999356269836,
0.8562999963760376,
0.36010000109672546,
0.8824999928474426,
0.49070000648498535,
0.7781999707221985,
0.37599998712539673,
0.5548999905586243,
0.1306000053882599,
0.487199991941452,
0.21080000698566437,
0.1768999993801117,
0.16519999504089355
],
"y_min": [
0.09960000216960907,
0.09960000216960907,
0.149399995803833,
0.1469999998807907,
0.19380000233650208,
0.22020000219345093,
0.2930000126361847,
0.29490000009536743,
0.3330000042915344,
0.3564000129699707,
0.3578999936580658,
0.37790000438690186,
0.38179999589920044,
0.490200012922287,
0.490200012922287,
0.5088000297546387,
0.5371000170707703,
0.5536999702453613,
0.5562000274658203,
0.7060999870300293,
0.6991999745368958,
0.725600004196167,
0.25200000405311584,
0.4043000042438507,
0.609499990940094,
0.7494999766349792
],
"x_max": [
0.227400004863739,
0.8935999870300293,
0.4318999946117401,
0.7346000075340271,
0.6164000034332275,
0.48170000314712524,
0.5763000249862671,
0.6897000074386597,
0.8349000215530396,
0.42989999055862427,
0.532800018787384,
0.2134999930858612,
0.2646999955177307,
0.19699999690055847,
0.8652999997138977,
0.38499999046325684,
0.8928999900817871,
0.51419997215271,
0.8342000246047974,
0.3864000141620636,
0.5784000158309937,
0.14790000021457672,
0.5389999747276306,
0.8126999735832214,
0.8431000113487244,
0.7727000117301941
],
"y_max": [
0.1151999980211258,
0.11180000007152557,
0.15870000422000885,
0.15870000422000885,
0.20550000667572021,
0.22949999570846558,
0.311599999666214,
0.3100000023841858,
0.34470000863075256,
0.3720000088214874,
0.37059998512268066,
0.39399999380111694,
0.39399999380111694,
0.4970000088214874,
0.4970000088214874,
0.5205000042915344,
0.5443999767303467,
0.5679000020027161,
0.5713000297546387,
0.7128999829292297,
0.7128999829292297,
0.7368000149726868,
0.2646999955177307,
0.4790000021457672,
0.6600000262260437,
0.8270999789237976
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page36
|
{
"latex": [
"$O(B F^5)$",
"$O(BF^5)$",
"$O(BF^5)$",
"${\\cal L}(B+F)$",
"$F^6$",
"$F^6$",
"$O(\\alpha '^2)$",
"$G_s$",
"$B$",
"$O(B^2)$",
"\\begin {eqnarray} && \\frac {\\sqrt {\\det G}}{G_s} \\biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} F^4 -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} F^2 )^2 \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B F^5 -\\frac {1}{4} {\\rm Tr} BF {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} BF^3 {\\rm Tr} F^2 +\\frac {1}{16} {\\rm Tr} BF ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + (2 \\pi \\alpha ')^4 \\biggl [ 2 {\\rm Tr} B^2 F^4 + \\frac {c-1}{8} {\\rm Tr} B^2 {\\rm Tr} F^4 -\\frac {1}{2} {\\rm Tr} B^2 F^2 {\\rm Tr} F^2 +\\frac {1-c}{32} {\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2 \\biggr ] \\\\ && + {\\rm ~total~derivative} + O(\\alpha '^6) \\Biggr ]. \\end {eqnarray}",
"\\begin {eqnarray} {\\rm Tr} (B+F)^6 &=& {\\rm Tr} F^6 + 6 {\\rm Tr} B F^5 + O(B^2), \\\\ {\\rm Tr} (B+F)^2 {\\rm Tr} (B+F)^4 &=& {\\rm Tr} F^2 {\\rm Tr} F^4 \\\\ && + 2 {\\rm Tr} B F {\\rm Tr} F^4 + 4 {\\rm Tr} F^2 {\\rm Tr} B F^3 + O(B^2), \\\\ \\left [ {\\rm Tr} (B+F)^2 \\right ]^3 &=& ( {\\rm Tr} F^2 )^3 + 6 {\\rm Tr} B F ( {\\rm Tr} F^2 )^2 + O(B^2). \\end {eqnarray}",
"\\begin {equation} \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\left [ \\frac {1}{3} {\\rm Tr} (B+F)^6 - \\frac {1}{8} {\\rm Tr} (B+F)^2 {\\rm Tr} (B+F)^4 + \\frac {1}{96} \\left [ {\\rm Tr} (B+F)^2 \\right ]^3 \\right ]. \\label {(B+F)^6} \\end {equation}",
"\\begin {eqnarray} && \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\left [ 2 {\\rm Tr} B^2 F^4 - \\frac {1}{8} {\\rm Tr} B^2 {\\rm Tr} F^4 - \\frac {1}{2} {\\rm Tr} F^2 {\\rm Tr} B^2 F^2 + \\frac {1}{32} {\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2 \\right . \\\\ && \\qquad \\qquad \\qquad \\qquad + 2 {\\rm Tr} B F B F^3 + {\\rm Tr} B F^2 B F^2 - {\\rm Tr} B F {\\rm Tr} B F^3 \\\\ && \\qquad \\qquad \\qquad \\qquad \\left . - \\frac {1}{4} {\\rm Tr} F^2 {\\rm Tr} B F B F + \\frac {1}{8} {\\rm Tr} F^2 ( {\\rm Tr} B F )^2 \\right ], \\end {eqnarray}"
],
"latex_norm": [
"$ O ( B F ^ { 5 } ) $",
"$ O ( B F ^ { 5 } ) $",
"$ O ( B F ^ { 5 } ) $",
"$ L ( B + F ) $",
"$ F ^ { 6 } $",
"$ F ^ { 6 } $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ G _ { s } $",
"$ B $",
"$ O ( B ^ { 2 } ) $",
"\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B F ^ { 5 } - \\frac { 1 } { 4 } T r B F T r F ^ { 4 } - \\frac { 1 } { 2 } T r B F ^ { 3 } T r F ^ { 2 } + \\frac { 1 } { 1 6 } T r B F ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } [ 2 T r B ^ { 2 } F ^ { 4 } + \\frac { c - 1 } { 8 } T r B ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 2 } T r B ^ { 2 } F ^ { 2 } T r F ^ { 2 } + \\frac { 1 - c } { 3 2 } T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ & & + ~ t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 6 } ) ] . \\end{align*}",
"\\begin{align*} T r ( B + F ) ^ { 6 } & = & T r F ^ { 6 } + 6 T r B F ^ { 5 } + O ( B ^ { 2 } ) , \\\\ T r ( B + F ) ^ { 2 } T r ( B + F ) ^ { 4 } & = & T r F ^ { 2 } T r F ^ { 4 } \\\\ & & + 2 T r B F T r F ^ { 4 } + 4 T r F ^ { 2 } T r B F ^ { 3 } + O ( B ^ { 2 } ) , \\\\ { [ T r ( B + F ) ^ { 2 } ] } ^ { 3 } & = & ( T r F ^ { 2 } ) ^ { 3 } + 6 T r B F ( T r F ^ { 2 } ) ^ { 2 } + O ( B ^ { 2 } ) . \\end{align*}",
"\\begin{equation*} \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ \\frac { 1 } { 3 } T r ( B + F ) ^ { 6 } - \\frac { 1 } { 8 } T r ( B + F ) ^ { 2 } T r ( B + F ) ^ { 4 } + \\frac { 1 } { 9 6 } { [ T r ( B + F ) ^ { 2 } ] } ^ { 3 } ] . \\end{equation*}",
"\\begin{align*} & & \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ 2 T r B ^ { 2 } F ^ { 4 } - \\frac { 1 } { 8 } T r B ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 2 } T r F ^ { 2 } T r B ^ { 2 } F ^ { 2 } + \\frac { 1 } { 3 2 } T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & \\qquad \\qquad \\qquad \\qquad + 2 T r B F B F ^ { 3 } + T r B F ^ { 2 } B F ^ { 2 } - T r B F T r B F ^ { 3 } \\\\ & & \\qquad \\qquad \\qquad \\qquad - \\frac { 1 } { 4 } T r F ^ { 2 } T r B F B F + \\frac { 1 } { 8 } T r F ^ { 2 } ( T r B F ) ^ { 2 } ] , \\end{align*}"
],
"latex_expand": [
"$ \\mitO ( \\mitB \\mitF ^ { 5 } ) $",
"$ \\mitO ( \\mitB \\mitF ^ { 5 } ) $",
"$ \\mitO ( \\mitB \\mitF ^ { 5 } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitF ^ { 6 } $",
"$ \\mitF ^ { 6 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitB $",
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB \\mitF ^ { 5 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 } { 1 6 } \\mathrm { T r } \\mitB \\mitF ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\bigg [ 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 4 } + \\frac { \\mitc - 1 } { 8 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } + \\frac { 1 - \\mitc } { 3 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\bigg ] \\\\ & & \\displaystyle + ~ \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 6 } ) \\Bigg ] . \\end{align*}",
"\\begin{align*} \\displaystyle \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 6 } & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 6 } + 6 \\mathrm { T r } \\mitB \\mitF ^ { 5 } + \\mitO ( \\mitB ^ { 2 } ) , \\\\ \\displaystyle \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } \\\\ & & \\displaystyle + 2 \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 4 } + 4 \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } + \\mitO ( \\mitB ^ { 2 } ) , \\\\ \\displaystyle { \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\right] } ^ { 3 } & = & \\displaystyle ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 3 } + 6 \\mathrm { T r } \\mitB \\mitF ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } + \\mitO ( \\mitB ^ { 2 } ) . \\end{align*}",
"\\begin{equation*} \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\frac { 1 } { 3 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 6 } - \\frac { 1 } { 8 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } + \\frac { 1 } { 9 6 } { \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\right] } ^ { 3 } \\right] . \\end{equation*}",
"\\begin{align*} & & \\displaystyle \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ 2 \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 4 } - \\frac { 1 } { 8 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 2 } \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } + \\frac { 1 } { 3 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\right. \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\qquad + 2 \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF ^ { 3 } + \\mathrm { T r } \\mitB \\mitF ^ { 2 } \\mitB \\mitF ^ { 2 } - \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitB \\mitF ^ { 3 } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\qquad \\left. - \\frac { 1 } { 4 } \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF + \\frac { 1 } { 8 } \\mathrm { T r } \\mitF ^ { 2 } ( \\mathrm { T r } \\mitB \\mitF ) ^ { 2 } \\right] , \\end{align*}"
],
"x_min": [
0.42640000581741333,
0.8223999738693237,
0.43050000071525574,
0.20800000429153442,
0.8141000270843506,
0.5224999785423279,
0.35589998960494995,
0.49000000953674316,
0.5446000099182129,
0.3711000084877014,
0.20069999992847443,
0.20800000429153442,
0.15070000290870667,
0.18449999392032623
],
"y_min": [
0.21580000221729279,
0.23929999768733978,
0.41940000653266907,
0.44339999556541443,
0.5443999767303467,
0.5913000106811523,
0.638700008392334,
0.6401000022888184,
0.6636000275611877,
0.7095000147819519,
0.0934000015258789,
0.29260000586509705,
0.46970000863075256,
0.7372999787330627
],
"x_max": [
0.4968999922275543,
0.8928999900817871,
0.5009999871253967,
0.2937000095844269,
0.8382999897003174,
0.5467000007629395,
0.41190001368522644,
0.5134999752044678,
0.5612000226974487,
0.42640000581741333,
0.8679999709129333,
0.8119999766349792,
0.8313999772071838,
0.8521000146865845
],
"y_max": [
0.23090000450611115,
0.2549000084400177,
0.4350000023841858,
0.4584999978542328,
0.5561000108718872,
0.6035000085830688,
0.6538000106811523,
0.6528000235557556,
0.6739000082015991,
0.7246000170707703,
0.20399999618530273,
0.4002000093460083,
0.5073000192642212,
0.8353999853134155
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0002194_page37
|
{
"latex": [
"$O(B^2)$",
"$\\alpha '^4$",
"$\\hat {F}^2$",
"${\\rm Tr} B^2 {\\rm Tr} F^4$",
"${\\rm Tr} B^2 ( {\\rm Tr} F^2 )^2$",
"$c$",
"$O(B^2)$",
"$\\alpha '^4$",
"$\\hat {A}_i$",
"$\\alpha '^4$",
"$O(\\theta ^2)$",
"$c$",
"${\\rm Tr} B^2 = B_{ij} B_{ji}$",
"\\begin {eqnarray} \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\left [ {\\rm Tr} B F^2 B F^2 + 2 A_k B_{kl} \\partial _l F_{ij} (FBF)_{ji} + A_k B_{kl} \\partial _l F_{ij} A_n B_{nm} \\partial _m F_{ji} \\right . \\\\ \\left . + 2 B_{kl} B_{nm} A_n ( \\partial _m A_i + F_{mi} ) \\partial _l A_j \\partial _k F_{ji} + O(B^3) + {\\rm total~derivative} \\right ]. \\end {eqnarray}",
"\\begin {equation} c=0. \\end {equation}",
"\\begin {eqnarray} && \\frac {(2 \\pi \\alpha ')^4 \\sqrt {\\det g}}{g_s} \\biggl [ 2 {\\rm Tr} B F B F^3 - {\\rm Tr} B F {\\rm Tr} B F^3 - \\frac {1}{4} {\\rm Tr} F^2 {\\rm Tr} B F B F + \\frac {1}{8} {\\rm Tr} F^2 ( {\\rm Tr} B F )^2 \\\\ && \\qquad \\qquad \\qquad \\quad - 2 A_k B_{kl} \\partial _l F_{ij} (FBF)_{ji} - A_k B_{kl} \\partial _l F_{ij} A_n B_{nm} \\partial _m F_{ji} \\\\ && \\qquad \\qquad \\qquad \\quad - 2 B_{kl} B_{nm} A_n ( \\partial _m A_i + F_{mi} ) \\partial _l A_j \\partial _k F_{ji} \\biggr ], \\end {eqnarray}"
],
"latex_norm": [
"$ O ( B ^ { 2 } ) $",
"$ \\alpha ^ { \\prime 4 } $",
"$ \\hat { F } ^ { 2 } $",
"$ T r B ^ { 2 } T r F ^ { 4 } $",
"$ T r B ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } $",
"$ c $",
"$ O ( B ^ { 2 } ) $",
"$ \\alpha ^ { \\prime 4 } $",
"$ \\hat { A } _ { i } $",
"$ \\alpha ^ { \\prime 4 } $",
"$ O ( \\theta ^ { 2 } ) $",
"$ c $",
"$ T r B ^ { 2 } = B _ { i j } B _ { j i } $",
"\\begin{align*} \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r B F ^ { 2 } B F ^ { 2 } + 2 A _ { k } B _ { k l } \\partial _ { l } F _ { i j } ( F B F ) _ { j i } + A _ { k } B _ { k l } \\partial _ { l } F _ { i j } A _ { n } B _ { n m } \\partial _ { m } F _ { j i } \\\\ + 2 B _ { k l } B _ { n m } A _ { n } ( \\partial _ { m } A _ { i } + F _ { m i } ) \\partial _ { l } A _ { j } \\partial _ { k } F _ { j i } + O ( B ^ { 3 } ) + t o t a l ~ d e r i v a t i v e ] . \\end{align*}",
"\\begin{equation*} c = 0 . \\end{equation*}",
"\\begin{align*} & & \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ 2 T r B F B F ^ { 3 } - T r B F T r B F ^ { 3 } - \\frac { 1 } { 4 } T r F ^ { 2 } T r B F B F + \\frac { 1 } { 8 } T r F ^ { 2 } ( T r B F ) ^ { 2 } \\\\ & & \\qquad \\qquad \\qquad \\quad - 2 A _ { k } B _ { k l } \\partial _ { l } F _ { i j } ( F B F ) _ { j i } - A _ { k } B _ { k l } \\partial _ { l } F _ { i j } A _ { n } B _ { n m } \\partial _ { m } F _ { j i } \\\\ & & \\qquad \\qquad \\qquad \\quad - 2 B _ { k l } B _ { n m } A _ { n } ( \\partial _ { m } A _ { i } + F _ { m i } ) \\partial _ { l } A _ { j } \\partial _ { k } F _ { j i } ] , \\end{align*}"
],
"latex_expand": [
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"$ \\mitalpha ^ { \\prime 4 } $",
"$ \\hat { \\mitF } ^ { 2 } $",
"$ \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } $",
"$ \\mathrm { T r } \\mitB ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } $",
"$ \\mitc $",
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"$ \\mitalpha ^ { \\prime 4 } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitalpha ^ { \\prime 4 } $",
"$ \\mitO ( \\mittheta ^ { 2 } ) $",
"$ \\mitc $",
"$ \\mathrm { T r } \\mitB ^ { 2 } = \\mitB _ { \\miti \\mitj } \\mitB _ { \\mitj \\miti } $",
"\\begin{align*} \\displaystyle \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\mathrm { T r } \\mitB \\mitF ^ { 2 } \\mitB \\mitF ^ { 2 } + 2 \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } ( \\mitF \\mitB \\mitF ) _ { \\mitj \\miti } + \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } \\mitA _ { \\mitn } \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\mitm } \\mitF _ { \\mitj \\miti } \\right. \\\\ \\displaystyle \\left. + 2 \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitn \\mitm } \\mitA _ { \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\miti } + \\mitF _ { \\mitm \\miti } ) \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitj \\miti } + \\mitO ( \\mitB ^ { 3 } ) + \\mathrm { t o t a l ~ d e r i v a t i v e } \\right] . \\end{align*}",
"\\begin{equation*} \\mitc = 0 . \\end{equation*}",
"\\begin{align*} & & \\displaystyle \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 4 } \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\bigg [ 2 \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF ^ { 3 } - \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 4 } \\mathrm { T r } \\mitF ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mitB \\mitF + \\frac { 1 } { 8 } \\mathrm { T r } \\mitF ^ { 2 } ( \\mathrm { T r } \\mitB \\mitF ) ^ { 2 } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\quad - 2 \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } ( \\mitF \\mitB \\mitF ) _ { \\mitj \\miti } - \\mitA _ { \\mitk } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } \\mitA _ { \\mitn } \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\mitm } \\mitF _ { \\mitj \\miti } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad \\quad - 2 \\mitB _ { \\mitk \\mitl } \\mitB _ { \\mitn \\mitm } \\mitA _ { \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\miti } + \\mitF _ { \\mitm \\miti } ) \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitj \\miti } \\bigg ] , \\end{align*}"
],
"x_min": [
0.7954000234603882,
0.2791999876499176,
0.6952000260353088,
0.5113999843597412,
0.6413000226020813,
0.5902000069618225,
0.42570000886917114,
0.6087999939918518,
0.7968000173568726,
0.1298999935388565,
0.7124999761581421,
0.883899986743927,
0.1298999935388565,
0.16169999539852142,
0.48649999499320984,
0.18240000307559967
],
"y_min": [
0.09960000216960907,
0.12300000339746475,
0.12110000103712082,
0.2328999936580658,
0.2328999936580658,
0.26170000433921814,
0.3319999873638153,
0.3319999873638153,
0.486299991607666,
0.5121999979019165,
0.5121999979019165,
0.5410000085830688,
0.5830000042915344,
0.1469999998807907,
0.2930000126361847,
0.37599998712539673
],
"x_max": [
0.8507000207901001,
0.30410000681877136,
0.7193999886512756,
0.5999000072479248,
0.7526000142097473,
0.5992000102996826,
0.48100000619888306,
0.6337000131607056,
0.8174999952316284,
0.15549999475479126,
0.7616000175476074,
0.8928999900817871,
0.2556999921798706,
0.8278999924659729,
0.5396999716758728,
0.8741999864578247
],
"y_max": [
0.1151999980211258,
0.13519999384880066,
0.13529999554157257,
0.24459999799728394,
0.24799999594688416,
0.2680000066757202,
0.34709998965263367,
0.34369999170303345,
0.5023999810218811,
0.524399995803833,
0.5278000235557556,
0.5478000044822693,
0.5990999937057495,
0.2168000042438507,
0.3061999976634979,
0.4722000062465668
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page01
|
{
"latex": [
"$OSp(8/4,\\mathbb {R})$",
"$AdS_4$",
"$^\\dagger $",
"$^\\ddagger $",
"$^\\dagger $",
"$^\\ddagger $",
"$OSp(8/4,\\mathbb {R})$",
"$N=8$",
"$AdS_4$"
],
"latex_norm": [
"$ O S p ( 8 \\slash 4 , R ) $",
"$ A d S _ { 4 } $",
"$ { } ^ { \\dagger } $",
"$ { } ^ { \\ddagger } $",
"$ { } ^ { \\dagger } $",
"$ { } ^ { \\ddagger } $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ N = 8 $",
"$ A d S _ { 4 } $"
],
"latex_expand": [
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitA \\mitd \\mitS _ { 4 } $",
"$ { } ^ { \\dagger } $",
"$ { } ^ { \\ddagger } $",
"$ { } ^ { \\dagger } $",
"$ { } ^ { \\ddagger } $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitN = 8 $",
"$ \\mitA \\mitd \\mitS _ { 4 } $"
],
"x_min": [
0.5259000062942505,
0.5321000218391418,
0.44780001044273376,
0.6890000104904175,
0.22599999606609344,
0.1768999993801117,
0.4104999899864197,
0.6704000234603882,
0.7415000200271606
],
"y_min": [
0.2549000084400177,
0.27639999985694885,
0.38040000200271606,
0.38040000200271606,
0.4927000105381012,
0.5170999765396118,
0.7020999789237976,
0.7026000022888184,
0.7714999914169312
],
"x_max": [
0.6772000193595886,
0.597100019454956,
0.45680001378059387,
0.6973000168800354,
0.23360000550746918,
0.18449999392032623,
0.5099999904632568,
0.72079998254776,
0.7843000292778015
],
"y_max": [
0.2759000062942505,
0.2944999933242798,
0.3955000042915344,
0.3955000042915344,
0.5048999786376953,
0.5292999744415283,
0.7153000235557556,
0.7124000191688538,
0.7827000021934509
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003051_page02
|
{
"latex": [
"$\\theta $",
"$N=1$",
"$U(1)$",
"$N$",
"$d=4$",
"$d=3$",
"$SO(N)$",
"$USp(2N)$",
"$d=4$",
"$N\\geq 2$",
"$SU(N)$",
"$G/H$",
"$G$",
"$H$",
"$H$",
"$G$",
"$CFT_d$",
"$AdS_{d+1}$",
"$d$",
"$AdS_{d+1}$"
],
"latex_norm": [
"$ \\theta $",
"$ N = 1 $",
"$ U ( 1 ) $",
"$ N $",
"$ d = 4 $",
"$ d = 3 $",
"$ S O ( N ) $",
"$ U S p ( 2 N ) $",
"$ d = 4 $",
"$ N \\geq 2 $",
"$ S U ( N ) $",
"$ G \\slash H $",
"$ G $",
"$ H $",
"$ H $",
"$ G $",
"$ C F T _ { d } $",
"$ A d S _ { d + 1 } $",
"$ d $",
"$ A d S _ { d + 1 } $"
],
"latex_expand": [
"$ \\mittheta $",
"$ \\mitN = 1 $",
"$ \\mitU ( 1 ) $",
"$ \\mitN $",
"$ \\mitd = 4 $",
"$ \\mitd = 3 $",
"$ \\mitS \\mitO ( \\mitN ) $",
"$ \\mitU \\mitS \\mitp ( 2 \\mitN ) $",
"$ \\mitd = 4 $",
"$ \\mitN \\geq 2 $",
"$ \\mitS \\mitU ( \\mitN ) $",
"$ \\mitG \\slash \\mitH $",
"$ \\mitG $",
"$ \\mitH $",
"$ \\mitH $",
"$ \\mitG $",
"$ \\mitC \\mitF \\mitT _ { \\mitd } $",
"$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $",
"$ \\mitd $",
"$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $"
],
"x_min": [
0.5853000283241272,
0.6841999888420105,
0.6682999730110168,
0.2281000018119812,
0.5023999810218811,
0.7789000272750854,
0.5715000033378601,
0.6800000071525574,
0.24740000069141388,
0.3303000032901764,
0.6018999814987183,
0.6531000137329102,
0.7580999732017517,
0.5985000133514404,
0.2937000095844269,
0.4097999930381775,
0.32760000228881836,
0.6730999946594238,
0.44510000944137573,
0.49619999527931213
],
"y_min": [
0.3955000042915344,
0.42969998717308044,
0.4805000126361847,
0.4984999895095825,
0.4984999895095825,
0.5497999787330627,
0.5663999915122986,
0.5663999915122986,
0.5845000147819519,
0.5845000147819519,
0.5835000276565552,
0.600600004196167,
0.6015999913215637,
0.6187000274658203,
0.635699987411499,
0.635699987411499,
0.7387999892234802,
0.7387999892234802,
0.7900000214576721,
0.8070999979972839
],
"x_max": [
0.5957000255584717,
0.7387999892234802,
0.7098000049591064,
0.2468000054359436,
0.5541999936103821,
0.8266000151634216,
0.6344000101089478,
0.7621999979019165,
0.29440000653266907,
0.3849000036716461,
0.6640999913215637,
0.6966000199317932,
0.7739999890327454,
0.6172000169754028,
0.3124000132083893,
0.42570000886917114,
0.37869998812675476,
0.7366999983787537,
0.4562000036239624,
0.5598000288009644
],
"y_max": [
0.4058000147342682,
0.44040000438690186,
0.4950999915599823,
0.5088000297546387,
0.5088000297546387,
0.5605000257492065,
0.5809999704360962,
0.5809999704360962,
0.5947999954223633,
0.5967000126838684,
0.5981000065803528,
0.6151999831199646,
0.6118999719619751,
0.6290000081062317,
0.6460000276565552,
0.6460000276565552,
0.7515000104904175,
0.7524999976158142,
0.8007000088691711,
0.8208000063896179
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003051_page03
|
{
"latex": [
"$d=4$",
"$N=1$",
"$N$",
"$AdS_5/CFT_4$",
"$CFT_d$",
"$AdS_{d+1}$",
"$AdS_d$",
"$d=4,6$",
"$d=3$",
"$d=3$",
"$N=8$",
"$OSp(8/4,\\mathbb {R})$",
"$(2,0)$",
"$d=6$",
"$AdS_7\\times S^4$",
"$AdS_4\\times S_7$",
"$d=3$",
"$N=8$",
"$AdS_4$",
"$AdS$",
"$AdS_4$",
"$N=8$",
"$SO(8)$",
"$OSp(8/4,\\mathbb {R})$",
"$OSp(8/4,\\mathbb {R})$",
"$N=8$",
"$S-$",
"$Q-$",
"$SO(8)$",
"$N=8$"
],
"latex_norm": [
"$ d = 4 $",
"$ N = 1 $",
"$ N $",
"$ A d S _ { 5 } \\slash C F T _ { 4 } $",
"$ C F T _ { d } $",
"$ A d S _ { d + 1 } $",
"$ A d S _ { d } $",
"$ d = 4 , 6 $",
"$ d = 3 $",
"$ d = 3 $",
"$ N = 8 $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ ( 2 , 0 ) $",
"$ d = 6 $",
"$ A d S _ { 7 } \\times S ^ { 4 } $",
"$ A d S _ { 4 } \\times S _ { 7 } $",
"$ d = 3 $",
"$ N = 8 $",
"$ A d S _ { 4 } $",
"$ A d S $",
"$ A d S _ { 4 } $",
"$ N = 8 $",
"$ S O ( 8 ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ N = 8 $",
"$ S - $",
"$ Q - $",
"$ S O ( 8 ) $",
"$ N = 8 $"
],
"latex_expand": [
"$ \\mitd = 4 $",
"$ \\mitN = 1 $",
"$ \\mitN $",
"$ \\mitA \\mitd \\mitS _ { 5 } \\slash \\mitC \\mitF \\mitT _ { 4 } $",
"$ \\mitC \\mitF \\mitT _ { \\mitd } $",
"$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $",
"$ \\mitA \\mitd \\mitS _ { \\mitd } $",
"$ \\mitd = 4 , 6 $",
"$ \\mitd = 3 $",
"$ \\mitd = 3 $",
"$ \\mitN = 8 $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ ( 2 , 0 ) $",
"$ \\mitd = 6 $",
"$ \\mitA \\mitd \\mitS _ { 7 } \\times \\mitS ^ { 4 } $",
"$ \\mitA \\mitd \\mitS _ { 4 } \\times \\mitS _ { 7 } $",
"$ \\mitd = 3 $",
"$ \\mitN = 8 $",
"$ \\mitA \\mitd \\mitS _ { 4 } $",
"$ \\mitA \\mitd \\mitS $",
"$ \\mitA \\mitd \\mitS _ { 4 } $",
"$ \\mitN = 8 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitN = 8 $",
"$ \\mitS - $",
"$ \\mitQ - $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitN = 8 $"
],
"x_min": [
0.7332000136375427,
0.5992000102996826,
0.2549999952316284,
0.7200999855995178,
0.4271000027656555,
0.2646999955177307,
0.5245000123977661,
0.7580999732017517,
0.789900004863739,
0.1728000044822693,
0.19210000336170197,
0.5030999779701233,
0.6399000287055969,
0.7739999890327454,
0.48240000009536743,
0.20589999854564667,
0.23149999976158142,
0.28610000014305115,
0.1949000060558319,
0.37459999322891235,
0.7249000072479248,
0.6365000009536743,
0.7718999981880188,
0.5708000063896179,
0.2515999972820282,
0.4284999966621399,
0.6987000107765198,
0.1728000044822693,
0.3345000147819519,
0.5605000257492065
],
"y_min": [
0.19290000200271606,
0.20999999344348907,
0.22709999978542328,
0.22609999775886536,
0.2612000107765198,
0.2782999873161316,
0.3472000062465668,
0.3984000086784363,
0.41600000858306885,
0.43309998512268066,
0.43309998512268066,
0.44920000433921814,
0.46630001068115234,
0.4672999978065491,
0.4828999936580658,
0.5015000104904175,
0.5702999830245972,
0.5702999830245972,
0.5874000191688538,
0.5874000191688538,
0.6215999722480774,
0.63919997215271,
0.6381999850273132,
0.6894999742507935,
0.7064999938011169,
0.7074999809265137,
0.7246000170707703,
0.7592999935150146,
0.7925000190734863,
0.8446999788284302
],
"x_max": [
0.7835999727249146,
0.6545000076293945,
0.27300000190734863,
0.8264999985694885,
0.4781999886035919,
0.32899999618530273,
0.5701000094413757,
0.8264999985694885,
0.8271999955177307,
0.18320000171661377,
0.2563999891281128,
0.6101999878883362,
0.6840999722480774,
0.8209999799728394,
0.5695000290870667,
0.29440000653266907,
0.2791999876499176,
0.34139999747276306,
0.24050000309944153,
0.4133000075817108,
0.7698000073432922,
0.695900022983551,
0.8264999985694885,
0.6779000163078308,
0.3587000072002411,
0.49000000953674316,
0.7283999919891357,
0.2046000063419342,
0.38909998536109924,
0.6198999881744385
],
"y_max": [
0.20319999754428864,
0.22030000388622284,
0.23739999532699585,
0.24120000004768372,
0.27390000224113464,
0.2919999957084656,
0.35989999771118164,
0.4115999937057495,
0.4262999892234802,
0.44339999556541443,
0.44339999556541443,
0.46380001306533813,
0.4814000129699707,
0.47760000824928284,
0.49709999561309814,
0.51419997215271,
0.5806000232696533,
0.5806000232696533,
0.6000999808311462,
0.5976999998092651,
0.6342999935150146,
0.6495000123977661,
0.6528000235557556,
0.7045999765396118,
0.7215999960899353,
0.7178000211715698,
0.736299991607666,
0.7720000147819519,
0.8070999979972839,
0.8550000190734863
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003051_page04
|
{
"latex": [
"$AdS_4$",
"$OSp(8/4,\\mathbb {R})$",
"$OSp(8/4,\\mathbb {R})$",
"$OSp(8/4,\\mathbb {R})$",
"$N=8$",
"$Q^i_\\alpha $",
"$N=8$",
"$\\alpha =1,2$",
"$SO(8)$",
"$i=1,\\ldots ,8$",
"$S^i_\\alpha $",
"$P_\\mu $",
"$\\mu =0,1,2$",
"$K_\\mu $",
"$M_{\\alpha \\beta } = M_{\\beta \\alpha }$",
"$SO(2,1)\\sim SL(2,\\mathbb {R})$",
"$SO(2,1)\\sim SL(2,\\mathbb {R})$",
"$D$",
"$T^{ij}=-T^{ji}$",
"$SO(8)$",
"$Q^i_\\alpha $",
"$SO(8)$",
"$8_v$",
"$8_s$",
"$8_c$",
"$SO(8)$",
"$N$",
"$8_v$",
"$i$",
"\\begin {eqnarray} && \\{Q^i_\\alpha , Q^j_\\beta \\} = 2\\delta ^{ij} \\Gamma ^\\mu _{\\alpha \\beta } P_\\mu \\;, \\qquad \\{S^i_\\alpha , S^j_\\beta \\} = 2\\delta ^{ij} \\Gamma ^\\mu _{\\alpha \\beta } K_\\mu \\;, \\\\ && \\{Q^i_\\alpha , S^j_\\beta \\} = \\delta ^{ij} M_{\\alpha \\beta } + 2\\epsilon _{\\alpha \\beta } (T^{ij} + \\delta ^{ij} D) \\;, \\\\ && [D,Q^i_\\alpha ] = {i\\over 2}Q^i_\\alpha \\;, \\qquad [D,S^i_\\alpha ] = -{i\\over 2}S^i_\\alpha \\;,\\\\ && [M_{\\alpha \\beta }, Q^i_\\gamma ] = i(\\epsilon _{\\gamma \\alpha } Q^i_\\beta + \\epsilon _{\\gamma \\beta } Q^i_\\alpha )\\;,\\qquad [M_{\\alpha \\beta }, S^i_\\gamma ] = i(\\epsilon _{\\gamma \\alpha } S^i_\\beta + \\epsilon _{\\gamma \\beta } S^i_\\alpha )\\;,\\\\ && [T^{ij}, Q^k_\\alpha ] = i(\\delta ^{ki} Q^j_\\alpha - \\delta ^{kj} Q^i_\\alpha )\\;,\\qquad [T^{ij}, S^k_\\alpha ] = i(\\delta ^{ki} S^j_\\alpha - \\delta ^{kj} S^i_\\alpha )\\;,\\\\ && [T^{ij}, T^{kl}] = i(\\delta ^{ik} T^{jl} + \\delta ^{jl} T^{ik} - \\delta ^{jk} T^{il} - \\delta ^{il} T^{jk})\\;. \\end {eqnarray}"
],
"latex_norm": [
"$ A d S _ { 4 } $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ N = 8 $",
"$ Q _ { \\alpha } ^ { i } $",
"$ N = 8 $",
"$ \\alpha = 1 , 2 $",
"$ S O ( 8 ) $",
"$ i = 1 , \\ldots , 8 $",
"$ S _ { \\alpha } ^ { i } $",
"$ P _ { \\mu } $",
"$ \\mu = 0 , 1 , 2 $",
"$ K _ { \\mu } $",
"$ M _ { \\alpha \\beta } = M _ { \\beta \\alpha } $",
"$ S O ( 2 , 1 ) \\sim S L ( 2 , R ) $",
"$ S O ( 2 , 1 ) \\sim S L ( 2 , R ) $",
"$ D $",
"$ T ^ { i j } = - T ^ { j i } $",
"$ S O ( 8 ) $",
"$ Q _ { \\alpha } ^ { i } $",
"$ S O ( 8 ) $",
"$ 8 _ { v } $",
"$ 8 _ { s } $",
"$ 8 _ { c } $",
"$ S O ( 8 ) $",
"$ N $",
"$ 8 _ { v } $",
"$ i $",
"\\begin{align*} & & \\{ Q _ { \\alpha } ^ { i } , Q _ { \\beta } ^ { j } \\} = 2 \\delta ^ { i j } \\Gamma _ { \\alpha \\beta } ^ { \\mu } P _ { \\mu } \\; , \\qquad \\{ S _ { \\alpha } ^ { i } , S _ { \\beta } ^ { j } \\} = 2 \\delta ^ { i j } \\Gamma _ { \\alpha \\beta } ^ { \\mu } K _ { \\mu } \\; , \\\\ & & \\{ Q _ { \\alpha } ^ { i } , S _ { \\beta } ^ { j } \\} = \\delta ^ { i j } M _ { \\alpha \\beta } + 2 \\epsilon _ { \\alpha \\beta } ( T ^ { i j } + \\delta ^ { i j } D ) \\; , \\\\ & & [ D , Q _ { \\alpha } ^ { i } ] = \\frac { i } { 2 } Q _ { \\alpha } ^ { i } \\; , \\qquad [ D , S _ { \\alpha } ^ { i } ] = - \\frac { i } { 2 } S _ { \\alpha } ^ { i } \\; , \\\\ & & [ M _ { \\alpha \\beta } , Q _ { \\gamma } ^ { i } ] = i ( \\epsilon _ { \\gamma \\alpha } Q _ { \\beta } ^ { i } + \\epsilon _ { \\gamma \\beta } Q _ { \\alpha } ^ { i } ) \\; , \\qquad [ M _ { \\alpha \\beta } , S _ { \\gamma } ^ { i } ] = i ( \\epsilon _ { \\gamma \\alpha } S _ { \\beta } ^ { i } + \\epsilon _ { \\gamma \\beta } S _ { \\alpha } ^ { i } ) \\; , \\\\ & & [ T ^ { i j } , Q _ { \\alpha } ^ { k } ] = i ( \\delta ^ { k i } Q _ { \\alpha } ^ { j } - \\delta ^ { k j } Q _ { \\alpha } ^ { i } ) \\; , \\qquad [ T ^ { i j } , S _ { \\alpha } ^ { k } ] = i ( \\delta ^ { k i } S _ { \\alpha } ^ { j } - \\delta ^ { k j } S _ { \\alpha } ^ { i } ) \\; , \\\\ & & [ T ^ { i j } , T ^ { k l } ] = i ( \\delta ^ { i k } T ^ { j l } + \\delta ^ { j l } T ^ { i k } - \\delta ^ { j k } T ^ { i l } - \\delta ^ { i l } T ^ { j k } ) \\; . \\end{align*}"
],
"latex_expand": [
"$ \\mitA \\mitd \\mitS _ { 4 } $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitN = 8 $",
"$ \\mitQ _ { \\mitalpha } ^ { \\miti } $",
"$ \\mitN = 8 $",
"$ \\mitalpha = 1 , 2 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\miti = 1 , \\ldots , 8 $",
"$ \\mitS _ { \\mitalpha } ^ { \\miti } $",
"$ \\mitP _ { \\mitmu } $",
"$ \\mitmu = 0 , 1 , 2 $",
"$ \\mitK _ { \\mitmu } $",
"$ \\mitM _ { \\mitalpha \\mitbeta } = \\mitM _ { \\mitbeta \\mitalpha } $",
"$ \\mitS \\mitO ( 2 , 1 ) \\sim \\mitS \\mitL ( 2 , \\BbbR ) $",
"$ \\mitS \\mitO ( 2 , 1 ) \\sim \\mitS \\mitL ( 2 , \\BbbR ) $",
"$ \\mitD $",
"$ \\mitT ^ { \\miti \\mitj } = - \\mitT ^ { \\mitj \\miti } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitQ _ { \\mitalpha } ^ { \\miti } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ 8 _ { \\mitv } $",
"$ 8 _ { \\mits } $",
"$ 8 _ { \\mitc } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitN $",
"$ 8 _ { \\mitv } $",
"$ \\miti $",
"\\begin{align*} & & \\displaystyle \\{ \\mitQ _ { \\mitalpha } ^ { \\miti } , \\mitQ _ { \\mitbeta } ^ { \\mitj } \\} = 2 \\mitdelta ^ { \\miti \\mitj } \\mupGamma _ { \\mitalpha \\mitbeta } ^ { \\mitmu } \\mitP _ { \\mitmu } \\; , \\qquad \\{ \\mitS _ { \\mitalpha } ^ { \\miti } , \\mitS _ { \\mitbeta } ^ { \\mitj } \\} = 2 \\mitdelta ^ { \\miti \\mitj } \\mupGamma _ { \\mitalpha \\mitbeta } ^ { \\mitmu } \\mitK _ { \\mitmu } \\; , \\\\ & & \\displaystyle \\{ \\mitQ _ { \\mitalpha } ^ { \\miti } , \\mitS _ { \\mitbeta } ^ { \\mitj } \\} = \\mitdelta ^ { \\miti \\mitj } \\mitM _ { \\mitalpha \\mitbeta } + 2 \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitT ^ { \\miti \\mitj } + \\mitdelta ^ { \\miti \\mitj } \\mitD ) \\; , \\\\ & & \\displaystyle [ \\mitD , \\mitQ _ { \\mitalpha } ^ { \\miti } ] = \\frac { \\miti } { 2 } \\mitQ _ { \\mitalpha } ^ { \\miti } \\; , \\qquad [ \\mitD , \\mitS _ { \\mitalpha } ^ { \\miti } ] = - \\frac { \\miti } { 2 } \\mitS _ { \\mitalpha } ^ { \\miti } \\; , \\\\ & & \\displaystyle [ \\mitM _ { \\mitalpha \\mitbeta } , \\mitQ _ { \\mitgamma } ^ { \\miti } ] = \\miti ( \\mitepsilon _ { \\mitgamma \\mitalpha } \\mitQ _ { \\mitbeta } ^ { \\miti } + \\mitepsilon _ { \\mitgamma \\mitbeta } \\mitQ _ { \\mitalpha } ^ { \\miti } ) \\; , \\qquad [ \\mitM _ { \\mitalpha \\mitbeta } , \\mitS _ { \\mitgamma } ^ { \\miti } ] = \\miti ( \\mitepsilon _ { \\mitgamma \\mitalpha } \\mitS _ { \\mitbeta } ^ { \\miti } + \\mitepsilon _ { \\mitgamma \\mitbeta } \\mitS _ { \\mitalpha } ^ { \\miti } ) \\; , \\\\ & & \\displaystyle [ \\mitT ^ { \\miti \\mitj } , \\mitQ _ { \\mitalpha } ^ { \\mitk } ] = \\miti ( \\mitdelta ^ { \\mitk \\miti } \\mitQ _ { \\mitalpha } ^ { \\mitj } - \\mitdelta ^ { \\mitk \\mitj } \\mitQ _ { \\mitalpha } ^ { \\miti } ) \\; , \\qquad [ \\mitT ^ { \\miti \\mitj } , \\mitS _ { \\mitalpha } ^ { \\mitk } ] = \\miti ( \\mitdelta ^ { \\mitk \\miti } \\mitS _ { \\mitalpha } ^ { \\mitj } - \\mitdelta ^ { \\mitk \\mitj } \\mitS _ { \\mitalpha } ^ { \\miti } ) \\; , \\\\ & & \\displaystyle [ \\mitT ^ { \\miti \\mitj } , \\mitT ^ { \\mitk \\mitl } ] = \\miti ( \\mitdelta ^ { \\miti \\mitk } \\mitT ^ { \\mitj \\mitl } + \\mitdelta ^ { \\mitj \\mitl } \\mitT ^ { \\miti \\mitk } - \\mitdelta ^ { \\mitj \\mitk } \\mitT ^ { \\miti \\mitl } - \\mitdelta ^ { \\miti \\mitl } \\mitT ^ { \\mitj \\mitk } ) \\; . \\end{align*}"
],
"x_min": [
0.47130000591278076,
0.6578999757766724,
0.5286999940872192,
0.36070001125335693,
0.5321000218391418,
0.5016999840736389,
0.5543000102043152,
0.4885999858379364,
0.6399000287055969,
0.1728000044822693,
0.28130000829696655,
0.5659999847412109,
0.600600004196167,
0.1728000044822693,
0.39320001006126404,
0.7290999889373779,
0.1728000044822693,
0.259799987077713,
0.3912000060081482,
0.5149000287055969,
0.7394999861717224,
0.20319999754428864,
0.5562999844551086,
0.583299994468689,
0.6378999948501587,
0.3765999972820282,
0.1728000044822693,
0.4339999854564667,
0.5009999871253967,
0.23010000586509705
],
"y_min": [
0.24410000443458557,
0.3716000020503998,
0.42480000853538513,
0.44190001487731934,
0.44290000200271606,
0.6577000021934509,
0.6592000126838684,
0.6772000193595886,
0.6758000254631042,
0.6937999725341797,
0.6919000148773193,
0.6934000253677368,
0.6942999958992004,
0.7109000086784363,
0.7109000086784363,
0.7099999785423279,
0.7271000146865845,
0.7279999852180481,
0.7261000275611877,
0.7271000146865845,
0.760699987411499,
0.7890999913215637,
0.7900000214576721,
0.7900000214576721,
0.7900000214576721,
0.8032000064849854,
0.8324999809265137,
0.8471999764442444,
0.8467000126838684,
0.49900001287460327
],
"x_max": [
0.5169000029563904,
0.8091999888420105,
0.6365000009536743,
0.4684999883174896,
0.592199981212616,
0.527999997138977,
0.6089000105857849,
0.5625,
0.6945000290870667,
0.2702000141143799,
0.30410000681877136,
0.5888000130653381,
0.6862999796867371,
0.19910000264644623,
0.5016999840736389,
0.8292999863624573,
0.24809999763965607,
0.27709999680519104,
0.48660001158714294,
0.5695000290870667,
0.7657999992370605,
0.24950000643730164,
0.5728999972343445,
0.5992000102996826,
0.6531000137329102,
0.42289999127388,
0.18870000541210175,
0.4505999982357025,
0.5072000026702881,
0.802299976348877
],
"y_max": [
0.25679999589920044,
0.39259999990463257,
0.43939998745918274,
0.4569999873638153,
0.45320001244544983,
0.67330002784729,
0.6699000000953674,
0.6894000172615051,
0.6904000043869019,
0.7064999938011169,
0.7074999809265137,
0.7080000042915344,
0.7064999938011169,
0.7250999808311462,
0.7250999808311462,
0.7246000170707703,
0.7416999936103821,
0.7383000254631042,
0.739300012588501,
0.7416999936103821,
0.7763000130653381,
0.8012999892234802,
0.8003000020980835,
0.8003000020980835,
0.8003000020980835,
0.8154000043869019,
0.8407999873161316,
0.8569999933242798,
0.8550000190734863,
0.6499000191688538
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003051_page05
|
{
"latex": [
"$SO(8)$",
"$[SO(2)]^4\\sim [U(1)]^4$",
"$SO(8)$",
"$Q^i_\\alpha $",
"$U(1)$",
"$H_1 = 2iT^{12}$",
"$H_2 = 2iT^{34}$",
"$\\underline {i}=5,6,7,8$",
"$8_v$",
"$SO(8)$",
"$SO(4)$",
"$SO(4)\\sim SU(2)\\times SU(2)$",
"$Q^{\\underline {i}} \\ \\rightarrow \\^^MQ^{\\underline {a}\\underline {a}'}= Q^{\\underline {i}} (\\sigma ^{\\underline {i}})^{\\underline {a}\\underline {a}'}$",
"$SU(2)$",
"$t$",
"\\begin {equation}\\label {2.2} Q^{\\pm \\pm }_\\alpha = {1\\over 2}(Q^1_\\alpha \\pm Q^2_\\alpha ) \\end {equation}",
"\\begin {equation}\\label {2.3} [H_1, Q^{\\pm \\pm }_\\alpha ] = \\pm 2i Q^{\\pm \\pm }_\\alpha \\;. \\end {equation}",
"\\begin {equation}\\label {2.4} \\{Q^{++}_\\alpha , S^{--}_\\beta \\} = {1\\over 2} M_{\\alpha \\beta } + \\epsilon _{\\alpha \\beta } (D-{1\\over 2}H_1) \\; . \\end {equation}",
"\\begin {equation}\\label {2.5} Q^{(\\pm \\pm )}_\\alpha = {1\\over 2}(Q^3_\\alpha \\pm Q^4_\\alpha ) \\end {equation}",
"\\begin {equation}\\label {2.6} [H_2, Q^{(\\pm \\pm )}_\\alpha ] = \\pm 2i Q^{(\\pm \\pm )}_\\alpha \\end {equation}",
"\\begin {equation}\\label {2.7} \\{Q^{(++)}_\\alpha , S^{(--)}_\\beta \\} = {1\\over 2} M_{\\alpha \\beta } + \\epsilon _{\\alpha \\beta } (D - {1\\over 2}H_2) \\; . \\end {equation}",
"\\begin {equation}\\label {2.8} \\{Q^{\\underline {a}\\underline {a}'}_\\alpha , S^{\\underline {b}\\underline {b}'}_\\beta \\} = {1\\over 2} \\epsilon ^{\\underline {a}\\underline {b}} \\epsilon ^{\\underline {a}'\\underline {b}'} M_{\\alpha \\beta } -{1\\over 2} \\epsilon _{\\alpha \\beta } (t^{\\underline {a}\\underline {b}} \\epsilon ^{\\underline {a}'\\underline {b}'} + \\epsilon ^{\\underline {a}\\underline {b}} t^{\\underline {a}'\\underline {b}'} -2 \\epsilon ^{\\underline {a}\\underline {b}} \\epsilon ^{\\underline {a}'\\underline {b}'} D) \\end {equation}",
"\\begin {equation}\\label {2.9} [t^{\\underline {a}\\underline {b}} ,Q^{\\underline {c}\\underline {c}'}] = i (\\epsilon ^{\\underline {c}\\underline {a}}Q^{\\underline {b}\\underline {c}'} +\\epsilon ^{\\underline {c}\\underline {b}}Q^{\\underline {a}\\underline {c}'})\\;, \\qquad [t^{\\underline {a}'\\underline {b}'} , Q^{\\underline {c}\\underline {c}'}] = i(\\epsilon ^{\\underline {c}'\\underline {a}'}Q^{\\underline {c}\\underline {b}'} +\\epsilon ^{\\underline {c}'\\underline {b}'}Q^{\\underline {c}\\underline {a}'})\\;. \\end {equation}"
],
"latex_norm": [
"$ S O ( 8 ) $",
"$ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $",
"$ S O ( 8 ) $",
"$ Q _ { \\alpha } ^ { i } $",
"$ U ( 1 ) $",
"$ H _ { 1 } = 2 i T ^ { 1 2 } $",
"$ H _ { 2 } = 2 i T ^ { 3 4 } $",
"$ \\underline { i } = 5 , 6 , 7 , 8 $",
"$ 8 _ { v } $",
"$ S O ( 8 ) $",
"$ S O ( 4 ) $",
"$ S O ( 4 ) \\sim S U ( 2 ) \\times S U ( 2 ) $",
"$ Q ^ { \\underline { i } } ~ \\rightarrow ~ Q ^ { \\underline { a } \\underline { a } ^ { \\prime } } = Q ^ { \\underline { i } } ( \\sigma ^ { \\underline { i } } ) ^ { \\underline { a } \\underline { a } ^ { \\prime } } $",
"$ S U ( 2 ) $",
"$ t $",
"\\begin{equation*} Q _ { \\alpha } ^ { \\pm \\pm } = \\frac { 1 } { 2 } ( Q _ { \\alpha } ^ { 1 } \\pm Q _ { \\alpha } ^ { 2 } ) \\end{equation*}",
"\\begin{equation*} [ H _ { 1 } , Q _ { \\alpha } ^ { \\pm \\pm } ] = \\pm 2 i Q _ { \\alpha } ^ { \\pm \\pm } \\; . \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\alpha } ^ { + + } , S _ { \\beta } ^ { - - } \\} = \\frac { 1 } { 2 } M _ { \\alpha \\beta } + \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 1 } ) \\; . \\end{equation*}",
"\\begin{equation*} Q _ { \\alpha } ^ { ( \\pm \\pm ) } = \\frac { 1 } { 2 } ( Q _ { \\alpha } ^ { 3 } \\pm Q _ { \\alpha } ^ { 4 } ) \\end{equation*}",
"\\begin{equation*} [ H _ { 2 } , Q _ { \\alpha } ^ { ( \\pm \\pm ) } ] = \\pm 2 i Q _ { \\alpha } ^ { ( \\pm \\pm ) } \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\alpha } ^ { ( + + ) } , S _ { \\beta } ^ { ( - - ) } \\} = \\frac { 1 } { 2 } M _ { \\alpha \\beta } + \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 2 } ) \\; . \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\alpha } ^ { \\underline { a } \\underline { a } ^ { \\prime } } , S _ { \\beta } ^ { \\underline { b } \\underline { b } ^ { \\prime } } \\} = \\frac { 1 } { 2 } \\epsilon ^ { \\underline { a } \\underline { b } } \\epsilon ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } M _ { \\alpha \\beta } - \\frac { 1 } { 2 } \\epsilon _ { \\alpha \\beta } ( t ^ { \\underline { a } \\underline { b } } \\epsilon ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } + \\epsilon ^ { \\underline { a } \\underline { b } } t ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } - 2 \\epsilon ^ { \\underline { a } \\underline { b } } \\epsilon ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } D ) \\end{equation*}",
"\\begin{equation*} [ t ^ { \\underline { a } \\underline { b } } , Q ^ { \\underline { c } \\underline { c } ^ { \\prime } } ] = i ( \\epsilon ^ { \\underline { c } \\underline { a } } Q ^ { \\underline { b } \\underline { c } ^ { \\prime } } + \\epsilon ^ { \\underline { c } \\underline { b } } Q ^ { \\underline { a } \\underline { c } ^ { \\prime } } ) \\; , \\qquad [ t ^ { \\underline { a } ^ { \\prime } \\underline { b } ^ { \\prime } } , Q ^ { \\underline { c } \\underline { c } ^ { \\prime } } ] = i ( \\epsilon ^ { \\underline { c } ^ { \\prime } \\underline { a } ^ { \\prime } } Q ^ { \\underline { c } \\underline { b } ^ { \\prime } } + \\epsilon ^ { \\underline { c } ^ { \\prime } \\underline { b } ^ { \\prime } } Q ^ { \\underline { c } \\underline { a } ^ { \\prime } } ) \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitS \\mitO ( 8 ) $",
"$ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitQ _ { \\mitalpha } ^ { \\miti } $",
"$ \\mitU ( 1 ) $",
"$ \\mitH _ { 1 } = 2 \\miti \\mitT ^ { 1 2 } $",
"$ \\mitH _ { 2 } = 2 \\miti \\mitT ^ { 3 4 } $",
"$ \\underline { \\miti } = 5 , 6 , 7 , 8 $",
"$ 8 _ { \\mitv } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitS \\mitO ( 4 ) $",
"$ \\mitS \\mitO ( 4 ) \\sim \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) $",
"$ \\mitQ ^ { \\underline { \\miti } } ~ \\rightarrow ~ \\mitQ ^ { \\underline { \\mita } \\underline { \\mita } ^ { \\prime } } = \\mitQ ^ { \\underline { \\miti } } ( \\mitsigma ^ { \\underline { \\miti } } ) ^ { \\underline { \\mita } \\underline { \\mita } ^ { \\prime } } $",
"$ \\mitS \\mitU ( 2 ) $",
"$ \\mitt $",
"\\begin{equation*} \\mitQ _ { \\mitalpha } ^ { \\pm \\pm } = \\frac { 1 } { 2 } ( \\mitQ _ { \\mitalpha } ^ { 1 } \\pm \\mitQ _ { \\mitalpha } ^ { 2 } ) \\end{equation*}",
"\\begin{equation*} [ \\mitH _ { 1 } , \\mitQ _ { \\mitalpha } ^ { \\pm \\pm } ] = \\pm 2 \\miti \\mitQ _ { \\mitalpha } ^ { \\pm \\pm } \\; . \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { + + } , \\mitS _ { \\mitbeta } ^ { - - } \\} = \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } + \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 1 } ) \\; . \\end{equation*}",
"\\begin{equation*} \\mitQ _ { \\mitalpha } ^ { ( \\pm \\pm ) } = \\frac { 1 } { 2 } ( \\mitQ _ { \\mitalpha } ^ { 3 } \\pm \\mitQ _ { \\mitalpha } ^ { 4 } ) \\end{equation*}",
"\\begin{equation*} [ \\mitH _ { 2 } , \\mitQ _ { \\mitalpha } ^ { ( \\pm \\pm ) } ] = \\pm 2 \\miti \\mitQ _ { \\mitalpha } ^ { ( \\pm \\pm ) } \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { ( + + ) } , \\mitS _ { \\mitbeta } ^ { ( - - ) } \\} = \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } + \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 2 } ) \\; . \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { \\underline { \\mita } \\underline { \\mita } ^ { \\prime } } , \\mitS _ { \\mitbeta } ^ { \\underline { \\mitb } \\underline { \\mitb } ^ { \\prime } } \\} = \\frac { 1 } { 2 } \\mitepsilon ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitepsilon ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } \\mitM _ { \\mitalpha \\mitbeta } - \\frac { 1 } { 2 } \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitt ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitepsilon ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } + \\mitepsilon ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitt ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } - 2 \\mitepsilon ^ { \\underline { \\mita } \\underline { \\mitb } } \\mitepsilon ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } \\mitD ) \\end{equation*}",
"\\begin{equation*} [ \\mitt ^ { \\underline { \\mita } \\underline { \\mitb } } , \\mitQ ^ { \\underline { \\mitc } \\underline { \\mitc } ^ { \\prime } } ] = \\miti ( \\mitepsilon ^ { \\underline { \\mitc } \\underline { \\mita } } \\mitQ ^ { \\underline { \\mitb } \\underline { \\mitc } ^ { \\prime } } + \\mitepsilon ^ { \\underline { \\mitc } \\underline { \\mitb } } \\mitQ ^ { \\underline { \\mita } \\underline { \\mitc } ^ { \\prime } } ) \\; , \\qquad [ \\mitt ^ { \\underline { \\mita } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } , \\mitQ ^ { \\underline { \\mitc } \\underline { \\mitc } ^ { \\prime } } ] = \\miti ( \\mitepsilon ^ { \\underline { \\mitc } ^ { \\prime } \\underline { \\mita } ^ { \\prime } } \\mitQ ^ { \\underline { \\mitc } \\underline { \\mitb } ^ { \\prime } } + \\mitepsilon ^ { \\underline { \\mitc } ^ { \\prime } \\underline { \\mitb } ^ { \\prime } } \\mitQ ^ { \\underline { \\mitc } \\underline { \\mita } ^ { \\prime } } ) \\; . \\end{equation*}"
],
"x_min": [
0.2281000018119812,
0.3677000105381012,
0.7117999792098999,
0.1728000044822693,
0.6647999882698059,
0.5404000282287598,
0.30480000376701355,
0.2827000021934509,
0.4560999870300293,
0.506600022315979,
0.6468999981880188,
0.1728000044822693,
0.4043000042438507,
0.2694999873638153,
0.4311999976634979,
0.414000004529953,
0.4036000072956085,
0.3296000063419342,
0.4090999960899353,
0.39809998869895935,
0.31859999895095825,
0.210099995136261,
0.18240000307559967
],
"y_min": [
0.20900000631809235,
0.2084999978542328,
0.20900000631809235,
0.225600004196167,
0.22609999775886536,
0.3158999979496002,
0.5346999764442444,
0.6650000214576721,
0.6650000214576721,
0.6636000275611877,
0.6636000275611877,
0.6807000041007996,
0.6963000297546387,
0.7851999998092651,
0.7871000170707703,
0.26899999380111694,
0.34380000829696655,
0.42239999771118164,
0.4878000020980835,
0.5609999895095825,
0.6064000129699707,
0.7378000020980835,
0.8276000022888184
],
"x_max": [
0.2827000021934509,
0.5307999849319458,
0.7663999795913696,
0.19840000569820404,
0.7063000202178955,
0.6371999979019165,
0.40220001339912415,
0.38839998841285706,
0.4747999906539917,
0.5612000226974487,
0.7014999985694885,
0.3862999975681305,
0.6068000197410583,
0.32409998774528503,
0.43880000710487366,
0.5874999761581421,
0.5978000164031982,
0.6717000007629395,
0.5928999781608582,
0.6033999919891357,
0.6827999949455261,
0.7560999989509583,
0.794700026512146
],
"y_max": [
0.2240999937057495,
0.2240999937057495,
0.2240999937057495,
0.24070000648498535,
0.24120000004768372,
0.33009999990463257,
0.5489000082015991,
0.6776999831199646,
0.6772000193595886,
0.6786999702453613,
0.6786999702453613,
0.6958000063896179,
0.7128999829292297,
0.7997999787330627,
0.7964000105857849,
0.3012000024318695,
0.3628000020980835,
0.4546000063419342,
0.5199999809265137,
0.5814999938011169,
0.6391000151634216,
0.7705000042915344,
0.8485999703407288
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page06
|
{
"latex": [
"${\\underline {1}}\\equiv {[+]}\\;, \\^^M{\\underline {2}}\\equiv {[-]}$",
"${\\underline {1}'}\\equiv {\\{+\\}}\\;, \\ {\\underline {2}'}\\equiv {\\{-\\}}$",
"$SO(2)$",
"$SO(8)$",
"$28-4 = 24$",
"$28-4 = 24$",
"$SO(8)$",
"$T^{[++]}, \\ T^{\\{++\\}}, \\ T^{++(--)}, \\ T^{(++)[-]\\{-\\}}$",
"$SO(8)$",
"$[SO(2)]^4$",
"$8_v$",
"$Q^i$",
"$28$",
"$SO(8)$",
"$T^{ij}$",
"$8_s$",
"$\\phi ^a$",
"$a=1,\\ldots ,8$",
"$8_c$",
"$\\psi ^{\\dot a}$",
"$\\dot a=1,\\ldots ,8$",
"$SO(8)\\^^M\\rightarrow \\ SO(2)\\times SO(6)\\sim U(1)\\times SU(4) \\ \\rightarrow \\ [SO(2)]^2\\times SO(4)\\sim [U(1)]^2\\times SU(2)\\times SU(2) \\^^M\\rightarrow \\ [SO(2)]^4 \\sim [U(1)]^4$",
"$SO(8)\\^^M\\rightarrow \\ SO(2)\\times SO(6)\\sim U(1)\\times SU(4) \\ \\rightarrow \\ [SO(2)]^2\\times SO(4)\\sim [U(1)]^2\\times SU(2)\\times SU(2) \\^^M\\rightarrow \\ [SO(2)]^4 \\sim [U(1)]^4$",
"$SO(8)\\^^M\\rightarrow \\ SO(2)\\times SO(6)\\sim U(1)\\times SU(4) \\ \\rightarrow \\ [SO(2)]^2\\times SO(4)\\sim [U(1)]^2\\times SU(2)\\times SU(2) \\^^M\\rightarrow \\ [SO(2)]^4 \\sim [U(1)]^4$",
"$OSp(8/4,\\mathbb {R})$",
"$OSp(8/4,\\mathbb {R})$",
"$\\ell $",
"$J$",
"$d_1,d_2,d_3,d_4$",
"$SO(8)$",
"\\begin {equation}\\label {2.10} H_3 = t^{\\underline {1}\\underline {2}}\\;, \\qquad H_4 = t^{\\underline {1}'\\underline {2}'}\\;, \\end {equation}",
"\\begin {equation}\\label {2.11} [H_3, Q^{[\\pm ]\\{\\pm \\}}] = [H_4, Q^{[\\pm ]\\{\\pm \\}}] = \\pm i Q^{[\\pm ]\\{\\pm \\}}\\;. \\end {equation}",
"\\begin {equation}\\label {2.12} \\{Q^{[+]\\{+\\}}_\\alpha , S^{[-]\\{-\\}}_\\beta \\} = {1\\over 2} M_{\\alpha \\beta } + \\epsilon _{\\alpha \\beta } (D - {1\\over 2}H_3 - {1\\over 2}H_4) \\; , \\end {equation}",
"\\begin {equation}\\label {2.13} \\{Q^{[+]\\{-\\}}_\\alpha , S^{[-]\\{+\\}}_\\beta \\} = -{1\\over 2} M_{\\alpha \\beta } - \\epsilon _{\\alpha \\beta } (D - {1\\over 2}H_3 + {1\\over 2}H_4) \\; . \\end {equation}",
"\\begin {equation}\\label {2.14} \\{{\\cal T}\\}_+ = \\left \\{ \\begin {array}{l} T^{++(++)}\\;, \\ T^{++(--)}\\;, \\ T^{++[\\pm ]\\{\\pm \\}}\\;; \\\\ T^{(++)[\\pm ]\\{\\pm \\}}\\;; \\\\ T^{[++]} \\equiv T^{[+]\\{+\\}[+]\\{-\\}}\\;, \\ T^{\\{++\\}} \\equiv T^{[+]\\{+\\}[-]\\{+\\}} \\end {array} \\right . \\end {equation}",
"\\begin {eqnarray} \\phi ^a &\\rightarrow & \\phi ^{+(+)[\\pm ]}, \\ \\phi ^{-(-)[\\pm ]}, \\ \\phi ^{+(-)\\{\\pm \\}}, \\ \\phi ^{-(+)\\{\\pm \\}}\\\\ \\sigma ^{\\dot a} &\\rightarrow & \\sigma ^{+(+)\\{\\pm \\}}, \\ \\sigma ^{-(-)\\{\\pm \\}}, \\ \\sigma ^{+(-)[\\pm ]}, \\^^M\\sigma ^{-(+)[\\pm ]}\\end {eqnarray}",
"\\begin {equation}\\label {555} {\\cal D}(\\ell , J; d_1,d_2,d_3,d_4) \\end {equation}"
],
"latex_norm": [
"$ \\underline { 1 } \\equiv [ + ] \\; , ~ \\underline { 2 } \\equiv [ - ] $",
"$ \\underline { 1 } ^ { \\prime } \\equiv \\{ + \\} \\; , ~ \\underline { 2 } ^ { \\prime } \\equiv \\{ - \\} $",
"$ S O ( 2 ) $",
"$ S O ( 8 ) $",
"$ 2 8 - 4 = 2 4 $",
"$ 2 8 - 4 = 2 4 $",
"$ S O ( 8 ) $",
"$ T ^ { [ + + ] } , ~ T ^ { \\{ + + \\} } , ~ T ^ { + + ( - - ) } , ~ T ^ { ( + + ) [ - ] \\{ - \\} } $",
"$ S O ( 8 ) $",
"$ [ S O ( 2 ) ] ^ { 4 } $",
"$ 8 _ { v } $",
"$ Q ^ { i } $",
"$ 2 8 $",
"$ S O ( 8 ) $",
"$ T ^ { i j } $",
"$ 8 _ { s } $",
"$ \\phi ^ { a } $",
"$ a = 1 , \\ldots , 8 $",
"$ 8 _ { c } $",
"$ \\psi ^ { \\dot { a } } $",
"$ \\dot { a } = 1 , \\ldots , 8 $",
"$ S O ( 8 ) ~ \\rightarrow ~ S O ( 2 ) \\times S O ( 6 ) \\sim U ( 1 ) \\times S U ( 4 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 2 } \\times S O ( 4 ) \\sim [ U ( 1 ) ] ^ { 2 } \\times S U ( 2 ) \\times S U ( 2 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $",
"$ S O ( 8 ) ~ \\rightarrow ~ S O ( 2 ) \\times S O ( 6 ) \\sim U ( 1 ) \\times S U ( 4 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 2 } \\times S O ( 4 ) \\sim [ U ( 1 ) ] ^ { 2 } \\times S U ( 2 ) \\times S U ( 2 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $",
"$ S O ( 8 ) ~ \\rightarrow ~ S O ( 2 ) \\times S O ( 6 ) \\sim U ( 1 ) \\times S U ( 4 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 2 } \\times S O ( 4 ) \\sim [ U ( 1 ) ] ^ { 2 } \\times S U ( 2 ) \\times S U ( 2 ) ~ \\rightarrow ~ [ S O ( 2 ) ] ^ { 4 } \\sim [ U ( 1 ) ] ^ { 4 } $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ l $",
"$ J $",
"$ d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } $",
"$ S O ( 8 ) $",
"\\begin{equation*} H _ { 3 } = t ^ { \\underline { 1 } \\underline { 2 } } \\; , \\qquad H _ { 4 } = t ^ { \\underline { 1 } ^ { \\prime } \\underline { 2 } ^ { \\prime } } \\; , \\end{equation*}",
"\\begin{equation*} [ H _ { 3 } , Q ^ { [ \\pm ] \\{ \\pm \\} } ] = [ H _ { 4 } , Q ^ { [ \\pm ] \\{ \\pm \\} } ] = \\pm i Q ^ { [ \\pm ] \\{ \\pm \\} } \\; . \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\alpha } ^ { [ + ] \\{ + \\} } , S _ { \\beta } ^ { [ - ] \\{ - \\} } \\} = \\frac { 1 } { 2 } M _ { \\alpha \\beta } + \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 3 } - \\frac { 1 } { 2 } H _ { 4 } ) \\; , \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\alpha } ^ { [ + ] \\{ - \\} } , S _ { \\beta } ^ { [ - ] \\{ + \\} } \\} = - \\frac { 1 } { 2 } M _ { \\alpha \\beta } - \\epsilon _ { \\alpha \\beta } ( D - \\frac { 1 } { 2 } H _ { 3 } + \\frac { 1 } { 2 } H _ { 4 } ) \\; . \\end{equation*}",
"\\begin{align*} \\{ T \\} _ { + } = \\{ \\begin{array}{l} T ^ { + + ( + + ) } \\; , ~ T ^ { + + ( - - ) } \\; , ~ T ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ T ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ T ^ { [ + + ] } \\equiv T ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ T ^ { \\{ + + \\} } \\equiv T ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\end{align*}",
"\\begin{align*} \\phi ^ { a } & \\rightarrow & \\phi ^ { + ( + ) [ \\pm ] } , ~ \\phi ^ { - ( - ) [ \\pm ] } , ~ \\phi ^ { + ( - ) \\{ \\pm \\} } , ~ \\phi ^ { - ( + ) \\{ \\pm \\} } \\\\ \\sigma ^ { \\dot { a } } & \\rightarrow & \\sigma ^ { + ( + ) \\{ \\pm \\} } , ~ \\sigma ^ { - ( - ) \\{ \\pm \\} } , ~ \\sigma ^ { + ( - ) [ \\pm ] } , ~ \\sigma ^ { - ( + ) [ \\pm ] } \\end{align*}",
"\\begin{equation*} D ( l , J ; d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } ) \\end{equation*}"
],
"latex_expand": [
"$ \\underline { 1 } \\equiv [ + ] \\; , ~ \\underline { 2 } \\equiv [ - ] $",
"$ \\underline { 1 } ^ { \\prime } \\equiv \\{ + \\} \\; , ~ \\underline { 2 } ^ { \\prime } \\equiv \\{ - \\} $",
"$ \\mitS \\mitO ( 2 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"$ 2 8 - 4 = 2 4 $",
"$ 2 8 - 4 = 2 4 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitT ^ { [ + + ] } , ~ \\mitT ^ { \\{ + + \\} } , ~ \\mitT ^ { + + ( - - ) } , ~ \\mitT ^ { ( + + ) [ - ] \\{ - \\} } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } $",
"$ 8 _ { \\mitv } $",
"$ \\mitQ ^ { \\miti } $",
"$ 2 8 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitT ^ { \\miti \\mitj } $",
"$ 8 _ { \\mits } $",
"$ \\mitphi ^ { \\mita } $",
"$ \\mita = 1 , \\ldots , 8 $",
"$ 8 _ { \\mitc } $",
"$ \\mitpsi ^ { \\dot { \\mita } } $",
"$ \\dot { \\mita } = 1 , \\ldots , 8 $",
"$ \\mitS \\mitO ( 8 ) ~ \\rightarrow ~ \\mitS \\mitO ( 2 ) \\times \\mitS \\mitO ( 6 ) \\sim \\mitU ( 1 ) \\times \\mitS \\mitU ( 4 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 2 } \\times \\mitS \\mitO ( 4 ) \\sim [ \\mitU ( 1 ) ] ^ { 2 } \\times \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitS \\mitO ( 8 ) ~ \\rightarrow ~ \\mitS \\mitO ( 2 ) \\times \\mitS \\mitO ( 6 ) \\sim \\mitU ( 1 ) \\times \\mitS \\mitU ( 4 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 2 } \\times \\mitS \\mitO ( 4 ) \\sim [ \\mitU ( 1 ) ] ^ { 2 } \\times \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitS \\mitO ( 8 ) ~ \\rightarrow ~ \\mitS \\mitO ( 2 ) \\times \\mitS \\mitO ( 6 ) \\sim \\mitU ( 1 ) \\times \\mitS \\mitU ( 4 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 2 } \\times \\mitS \\mitO ( 4 ) \\sim [ \\mitU ( 1 ) ] ^ { 2 } \\times \\mitS \\mitU ( 2 ) \\times \\mitS \\mitU ( 2 ) ~ \\rightarrow ~ [ \\mitS \\mitO ( 2 ) ] ^ { 4 } \\sim [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\ell $",
"$ \\mitJ $",
"$ \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } $",
"$ \\mitS \\mitO ( 8 ) $",
"\\begin{equation*} \\mitH _ { 3 } = \\mitt ^ { \\underline { 1 } \\underline { 2 } } \\; , \\qquad \\mitH _ { 4 } = \\mitt ^ { \\underline { 1 } ^ { \\prime } \\underline { 2 } ^ { \\prime } } \\; , \\end{equation*}",
"\\begin{equation*} [ \\mitH _ { 3 } , \\mitQ ^ { [ \\pm ] \\{ \\pm \\} } ] = [ \\mitH _ { 4 } , \\mitQ ^ { [ \\pm ] \\{ \\pm \\} } ] = \\pm \\miti \\mitQ ^ { [ \\pm ] \\{ \\pm \\} } \\; . \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { [ + ] \\{ + \\} } , \\mitS _ { \\mitbeta } ^ { [ - ] \\{ - \\} } \\} = \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } + \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 3 } - \\frac { 1 } { 2 } \\mitH _ { 4 } ) \\; , \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitalpha } ^ { [ + ] \\{ - \\} } , \\mitS _ { \\mitbeta } ^ { [ - ] \\{ + \\} } \\} = - \\frac { 1 } { 2 } \\mitM _ { \\mitalpha \\mitbeta } - \\mitepsilon _ { \\mitalpha \\mitbeta } ( \\mitD - \\frac { 1 } { 2 } \\mitH _ { 3 } + \\frac { 1 } { 2 } \\mitH _ { 4 } ) \\; . \\end{equation*}",
"\\begin{align*} \\{ \\mitT \\} _ { + } = \\left\\{ \\begin{array}{l} \\mitT ^ { + + ( + + ) } \\; , ~ \\mitT ^ { + + ( - - ) } \\; , ~ \\mitT ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitT ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitT ^ { [ + + ] } \\equiv \\mitT ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ \\mitT ^ { \\{ + + \\} } \\equiv \\mitT ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\right. \\end{align*}",
"\\begin{align*} \\displaystyle \\mitphi ^ { \\mita } & \\displaystyle \\rightarrow & \\displaystyle \\mitphi ^ { + ( + ) [ \\pm ] } , ~ \\mitphi ^ { - ( - ) [ \\pm ] } , ~ \\mitphi ^ { + ( - ) \\{ \\pm \\} } , ~ \\mitphi ^ { - ( + ) \\{ \\pm \\} } \\\\ \\displaystyle \\mitsigma ^ { \\dot { \\mita } } & \\displaystyle \\rightarrow & \\displaystyle \\mitsigma ^ { + ( + ) \\{ \\pm \\} } , ~ \\mitsigma ^ { - ( - ) \\{ \\pm \\} } , ~ \\mitsigma ^ { + ( - ) [ \\pm ] } , ~ \\mitsigma ^ { - ( + ) [ \\pm ] } \\end{align*}",
"\\begin{equation*} \\mitD ( \\ell , \\mitJ ; \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } ) \\end{equation*}"
],
"x_min": [
0.31929999589920044,
0.510699987411499,
0.3483000099658966,
0.6108999848365784,
0.7491000294685364,
0.1728000044822693,
0.19280000030994415,
0.597100019454956,
0.19419999420642853,
0.5529000163078308,
0.29510000348091125,
0.5929999947547913,
0.7649999856948853,
0.1728000044822693,
0.3255000114440918,
0.43880000710487366,
0.4691999852657318,
0.49970000982284546,
0.6496000289916992,
0.6793000102043152,
0.7124999761581421,
0.6324999928474426,
0.17249999940395355,
0.17249999940395355,
0.6765999794006348,
0.7186999917030334,
0.2281000018119812,
0.4796000123023987,
0.6952000260353088,
0.5224999785423279,
0.38769999146461487,
0.321399986743927,
0.2750999927520752,
0.2687999904155731,
0.25290000438690186,
0.3034000098705292,
0.4147000014781952
],
"y_min": [
0.21480000019073486,
0.21480000019073486,
0.3765000104904175,
0.3765000104904175,
0.37790000438690186,
0.39500001072883606,
0.5199999809265137,
0.5181000232696533,
0.5541999936103821,
0.5536999702453613,
0.5727999806404114,
0.5702999830245972,
0.5727999806404114,
0.5884000062942505,
0.5878999829292297,
0.6068999767303467,
0.6064000129699707,
0.6068999767303467,
0.6068999767303467,
0.6044999957084656,
0.6068999767303467,
0.683899998664856,
0.6988999843597412,
0.7159000039100647,
0.7354000210762024,
0.7523999810218811,
0.8276000022888184,
0.8276000022888184,
0.8276000022888184,
0.8438000082969666,
0.18070000410079956,
0.2378000020980835,
0.29589998722076416,
0.336899995803833,
0.43459999561309814,
0.6273999810218811,
0.7949000000953674
],
"x_max": [
0.46650001406669617,
0.6862000226974487,
0.40290001034736633,
0.6654999852180481,
0.8306000232696533,
0.19280000030994415,
0.24740000069141388,
0.8970000147819519,
0.24879999458789825,
0.6262000203132629,
0.31380000710487366,
0.6144000291824341,
0.7850000262260437,
0.227400004863739,
0.35249999165534973,
0.45680001378059387,
0.48919999599456787,
0.600600004196167,
0.6668999791145325,
0.7013999819755554,
0.8133999705314636,
0.8284000158309937,
0.8284000158309937,
0.3384000062942505,
0.7836999893188477,
0.8258000016212463,
0.2371000051498413,
0.4927000105381012,
0.794700026512146,
0.5770999789237976,
0.6101999878883362,
0.6808000206947327,
0.7235999703407288,
0.7325000166893005,
0.7455999851226807,
0.695900022983551,
0.5867999792098999
],
"y_max": [
0.22990000247955322,
0.22990000247955322,
0.39160001277923584,
0.39160001277923584,
0.38909998536109924,
0.40619999170303345,
0.534600019454956,
0.5336999893188477,
0.5687999725341797,
0.5687999725341797,
0.5845000147819519,
0.5853999853134155,
0.5825999975204468,
0.6035000085830688,
0.5996000170707703,
0.6190999746322632,
0.6195999979972839,
0.6195999979972839,
0.6190999746322632,
0.6195999979972839,
0.6195999979972839,
0.6966000199317932,
0.7125999927520752,
0.7305999994277954,
0.75,
0.7670000195503235,
0.8378999829292297,
0.8378999829292297,
0.8407999873161316,
0.8589000105857849,
0.20020000636577606,
0.2583000063896179,
0.3280999958515167,
0.36959999799728394,
0.49079999327659607,
0.6757000088691711,
0.8130000233650208
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page07
|
{
"latex": [
"$q_1,q_2,q_3,q_4$",
"$H_1,\\ldots ,H_4$",
"$|\\ell , J, q_i\\rangle $",
"$[d_1,d_2,d_3,d_4]$",
"$U(1)$",
"$(q_1,q_2,q_3,q_4)$",
"$8_v: \\ [1,0,0,0] \\ \\leftrightarrow (2,0,0,0)$",
"$8_v: \\ [1,0,0,0] \\ \\leftrightarrow (2,0,0,0)$",
"$28: \\ [0,1,0,0] \\ \\leftrightarrow (2,2,0,0)$",
"$8_s: \\ [0,0,1,0] \\^^M\\leftrightarrow (1,1,1,0)$",
"$8_c: \\ [0,0,0,1] \\ \\leftrightarrow (1,1,0,1)$",
"$K_\\mu $",
"$SO(8)$",
"$|\\ell , J, q_i\\rangle $",
"$SO(8)$",
"$|\\ell , J, q_i\\rangle $",
"$D,\\ M^2,\\ H_i$",
"$\\ell $",
"$J$",
"$q_i$",
"$Q^i_\\alpha $",
"$Q$",
"$Q$",
"$P_\\mu $",
"$SO(8)$",
"$\\{{\\cal T}\\}_+$",
"$4= {1\\over 2}\\;8$",
"\\begin {equation}\\label {172} d_1 = {1\\over 2} (q_1-q_2)\\;, \\ d_2 = {1\\over 2} (q_2-q_3-q_4)\\;, \\^^Md_3 = q_3\\;, \\ d_4=q_4\\;. \\end {equation}",
"\\begin {equation}\\label {173} q_1-q_2 =2n \\geq 0 \\;, \\quad q_2 - q_3 - q_4 =2k \\geq 0 \\;, \\quad q_3 \\geq 0\\;, \\quad q_4 \\geq 0\\;. \\end {equation}",
"\\begin {equation}\\label {2.15} S^i_\\alpha |\\ell , J, q_i\\rangle = 0 \\end {equation}",
"\\begin {equation}\\label {2.16} \\{{\\cal T}\\}_+ |\\ell , J, q_i\\rangle = 0\\;. \\end {equation}",
"\\begin {eqnarray} \\mbox {type I 1/2 BPS:} &&Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = Q^{[+]\\{+\\}}|\\ell , J, q_i\\rangle = \\\\ && Q^{[+]\\{-\\}}|\\ell , J, q_i\\rangle = 0 \\end {eqnarray}"
],
"latex_norm": [
"$ q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } $",
"$ H _ { 1 } , \\ldots , H _ { 4 } $",
"$ \\vert l , J , q _ { i } \\rangle $",
"$ [ d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } ] $",
"$ U ( 1 ) $",
"$ ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) $",
"$ 8 _ { v } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $",
"$ 8 _ { v } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $",
"$ 2 8 : ~ [ 0 , 1 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 2 , 0 , 0 ) $",
"$ 8 _ { s } : ~ [ 0 , 0 , 1 , 0 ] ~ \\leftrightarrow ( 1 , 1 , 1 , 0 ) $",
"$ 8 _ { c } : ~ [ 0 , 0 , 0 , 1 ] ~ \\leftrightarrow ( 1 , 1 , 0 , 1 ) $",
"$ K _ { \\mu } $",
"$ S O ( 8 ) $",
"$ \\vert l , J , q _ { i } \\rangle $",
"$ S O ( 8 ) $",
"$ \\vert l , J , q _ { i } \\rangle $",
"$ D , ~ M ^ { 2 } , ~ H _ { i } $",
"$ l $",
"$ J $",
"$ q _ { i } $",
"$ Q _ { \\alpha } ^ { i } $",
"$ Q $",
"$ Q $",
"$ P _ { \\mu } $",
"$ S O ( 8 ) $",
"$ \\{ T \\} _ { + } $",
"$ 4 = \\frac { 1 } { 2 } \\; 8 $",
"\\begin{equation*} d _ { 1 } = \\frac { 1 } { 2 } ( q _ { 1 } - q _ { 2 } ) \\; , ~ d _ { 2 } = \\frac { 1 } { 2 } ( q _ { 2 } - q _ { 3 } - q _ { 4 } ) \\; , ~ d _ { 3 } = q _ { 3 } \\; , ~ d _ { 4 } = q _ { 4 } \\; . \\end{equation*}",
"\\begin{equation*} q _ { 1 } - q _ { 2 } = 2 n \\geq 0 \\; , \\quad q _ { 2 } - q _ { 3 } - q _ { 4 } = 2 k \\geq 0 \\; , \\quad q _ { 3 } \\geq 0 \\; , \\quad q _ { 4 } \\geq 0 \\; . \\end{equation*}",
"\\begin{equation*} S _ { \\alpha } ^ { i } \\vert l , J , q _ { i } \\rangle = 0 \\end{equation*}",
"\\begin{equation*} \\{ T \\} _ { + } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{align*} t y p e ~ I ~ 1 \\slash 2 ~ B P S : & & Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = Q ^ { [ + ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = \\\\ & & Q ^ { [ + ] \\{ - \\} } \\vert l , J , q _ { i } \\rangle = 0 \\end{align*}"
],
"latex_expand": [
"$ \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } $",
"$ \\mitH _ { 1 } , \\ldots , \\mitH _ { 4 } $",
"$ \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle $",
"$ [ \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } ] $",
"$ \\mitU ( 1 ) $",
"$ ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) $",
"$ 8 _ { \\mitv } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $",
"$ 8 _ { \\mitv } : ~ [ 1 , 0 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 0 , 0 , 0 ) $",
"$ 2 8 : ~ [ 0 , 1 , 0 , 0 ] ~ \\leftrightarrow ( 2 , 2 , 0 , 0 ) $",
"$ 8 _ { \\mits } : ~ [ 0 , 0 , 1 , 0 ] ~ \\leftrightarrow ( 1 , 1 , 1 , 0 ) $",
"$ 8 _ { \\mitc } : ~ [ 0 , 0 , 0 , 1 ] ~ \\leftrightarrow ( 1 , 1 , 0 , 1 ) $",
"$ \\mitK _ { \\mitmu } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle $",
"$ \\mitD , ~ \\mitM ^ { 2 } , ~ \\mitH _ { \\miti } $",
"$ \\ell $",
"$ \\mitJ $",
"$ \\mitq _ { \\miti } $",
"$ \\mitQ _ { \\mitalpha } ^ { \\miti } $",
"$ \\mitQ $",
"$ \\mitQ $",
"$ \\mitP _ { \\mitmu } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\{ \\mitT \\} _ { + } $",
"$ 4 = \\frac { 1 } { 2 } \\; 8 $",
"\\begin{equation*} \\mitd _ { 1 } = \\frac { 1 } { 2 } ( \\mitq _ { 1 } - \\mitq _ { 2 } ) \\; , ~ \\mitd _ { 2 } = \\frac { 1 } { 2 } ( \\mitq _ { 2 } - \\mitq _ { 3 } - \\mitq _ { 4 } ) \\; , ~ \\mitd _ { 3 } = \\mitq _ { 3 } \\; , ~ \\mitd _ { 4 } = \\mitq _ { 4 } \\; . \\end{equation*}",
"\\begin{equation*} \\mitq _ { 1 } - \\mitq _ { 2 } = 2 \\mitn \\geq 0 \\; , \\quad \\mitq _ { 2 } - \\mitq _ { 3 } - \\mitq _ { 4 } = 2 \\mitk \\geq 0 \\; , \\quad \\mitq _ { 3 } \\geq 0 \\; , \\quad \\mitq _ { 4 } \\geq 0 \\; . \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitalpha } ^ { \\miti } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\end{equation*}",
"\\begin{equation*} \\{ \\mitT \\} _ { + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mathrm { t y p e } ~ \\mathrm { I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : & & \\displaystyle \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { [ + ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\\\ & & \\displaystyle \\mitQ ^ { [ + ] \\{ - \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\end{align*}"
],
"x_min": [
0.5695000290870667,
0.1728000044822693,
0.6448000073432922,
0.2281000018119812,
0.5009999871253967,
0.6177999973297119,
0.6807000041007996,
0.1728000044822693,
0.2702000141143799,
0.5543000102043152,
0.1728000044822693,
0.4375,
0.5964000225067139,
0.4223000109195709,
0.6966000199317932,
0.7616000175476074,
0.5321000218391418,
0.8119999766349792,
0.2142000049352646,
0.34139999747276306,
0.4706000089645386,
0.33169999718666077,
0.7968000173568726,
0.4361000061035156,
0.7249000072479248,
0.2888999879360199,
0.18039999902248383,
0.24879999458789825,
0.2087000012397766,
0.43810001015663147,
0.4194999933242798,
0.20319999754428864
],
"y_min": [
0.16210000216960907,
0.17579999566078186,
0.17479999363422394,
0.19189999997615814,
0.19189999997615814,
0.19189999997615814,
0.2831999957561493,
0.3003000020980835,
0.3003000020980835,
0.3003000020980835,
0.3174000084400177,
0.4779999852180481,
0.4771000146865845,
0.5360999703407288,
0.5360999703407288,
0.5536999702453613,
0.5702999830245972,
0.5713000297546387,
0.5889000296592712,
0.5922999978065491,
0.6215999722480774,
0.6401000022888184,
0.6571999788284302,
0.6919000148773193,
0.7080000042915344,
0.7250999808311462,
0.7583000063896179,
0.218299999833107,
0.36329999566078186,
0.4408999979496002,
0.5083000063896179,
0.7856000065803528
],
"x_max": [
0.6628000140190125,
0.2653999924659729,
0.7091000080108643,
0.33869999647140503,
0.5418000221252441,
0.7263000011444092,
0.836899995803833,
0.25429999828338623,
0.5382999777793884,
0.8210999965667725,
0.4325999915599823,
0.46380001306533813,
0.6510000228881836,
0.48660001158714294,
0.7512000203132629,
0.8266000151634216,
0.631600022315979,
0.8209999799728394,
0.2273000031709671,
0.35659998655319214,
0.4968999922275543,
0.3476000130176544,
0.8126999735832214,
0.45890000462532043,
0.7795000076293945,
0.33730000257492065,
0.24400000274181366,
0.7526000142097473,
0.7573999762535095,
0.5631999969482422,
0.5819000005722046,
0.789900004863739
],
"y_max": [
0.17190000414848328,
0.1889999955892563,
0.18940000236034393,
0.2070000022649765,
0.20649999380111694,
0.2070000022649765,
0.2978000044822693,
0.3149000108242035,
0.3149000108242035,
0.3149000108242035,
0.3319999873638153,
0.49219998717308044,
0.49219998717308044,
0.5511999726295471,
0.5511999726295471,
0.5683000087738037,
0.5849000215530396,
0.5820000171661377,
0.5992000102996826,
0.6021000146865845,
0.6366999745368958,
0.6532999873161316,
0.6704000234603882,
0.7060999870300293,
0.722599983215332,
0.7397000193595886,
0.7753999829292297,
0.25049999356269836,
0.3799000084400177,
0.4603999853134155,
0.5264000296592712,
0.8343999981880188
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page08
|
{
"latex": [
"$2\\ell \\equiv m$",
"$q_3=m$",
"$q_4=n$",
"$m,n$",
"\\begin {eqnarray} \\mbox {type II 1/2 BPS:} &&Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = Q^{[+]\\{+\\}}|\\ell , J, q_i\\rangle = \\\\ && Q^{[-]\\{+\\}}|\\ell , J, q_i\\rangle = 0\\;. \\end {eqnarray}",
"\\begin {equation}\\label {2.18} \\mbox {type I 1/2 BPS:} \\qquad q_1=q_2=q_3 = 2\\ell \\;, \\quad q_4=0\\;, \\quad J=0\\;; \\end {equation}",
"\\begin {equation}\\label {2.18''} \\mbox {type II 1/2 BPS:} \\qquad q_1=q_2=q_4 = 2\\ell \\;, \\quad q_3=0\\;, \\quad J=0\\;, \\end {equation}",
"\\begin {equation}\\label {2.18'} \\mbox {type I 1/2 BPS:} \\qquad {\\cal D}(m/2, 0; 0,0,m,0)\\;; \\end {equation}",
"\\begin {equation}\\label {2.18'''} \\mbox {type II 1/2 BPS:} \\qquad {\\cal D}(m/2, 0; 0,0,0,m)\\;. \\end {equation}",
"\\begin {equation}\\label {2.19} \\mbox {3/8 BPS:} \\qquad Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = Q^{[+]\\{+\\}}|\\ell , J, q_i\\rangle = 0\\;. \\end {equation}",
"\\begin {equation}\\label {2.20} q_1=q_2 = q_3+q_4= 2\\ell \\;, \\quad J=0\\;. \\end {equation}",
"\\begin {equation}\\label {2.21} \\mbox {3/8 BPS:} \\qquad {\\cal D}(1/2(m+n), 0; 0,0,m,n)\\;. \\end {equation}",
"\\begin {equation}\\label {2.22} \\mbox {1/4 BPS:} \\qquad Q^{++}|\\ell , J, q_i\\rangle = Q^{(++)}|\\ell , J, q_i\\rangle = 0\\;. \\end {equation}",
"\\begin {equation}\\label {2.23} q_1=q_2 = 2\\ell \\;, \\quad J=0\\;, \\end {equation}"
],
"latex_norm": [
"$ 2 l \\equiv m $",
"$ q _ { 3 } = m $",
"$ q _ { 4 } = n $",
"$ m , n $",
"\\begin{align*} t y p e ~ I I ~ 1 \\slash 2 ~ B P S : & & Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = Q ^ { [ + ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = \\\\ & & Q ^ { [ - ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{align*}",
"\\begin{equation*} t y p e ~ I ~ 1 \\slash 2 ~ B P S : \\qquad q _ { 1 } = q _ { 2 } = q _ { 3 } = 2 l \\; , \\quad q _ { 4 } = 0 \\; , \\quad J = 0 \\; ; \\end{equation*}",
"\\begin{equation*} t y p e ~ I I ~ 1 \\slash 2 ~ B P S : \\qquad q _ { 1 } = q _ { 2 } = q _ { 4 } = 2 l \\; , \\quad q _ { 3 } = 0 \\; , \\quad J = 0 \\; , \\end{equation*}",
"\\begin{equation*} t y p e ~ I ~ 1 \\slash 2 ~ B P S : \\qquad D ( m \\slash 2 , 0 ; 0 , 0 , m , 0 ) \\; ; \\end{equation*}",
"\\begin{equation*} t y p e ~ I I ~ 1 \\slash 2 ~ B P S : \\qquad D ( m \\slash 2 , 0 ; 0 , 0 , 0 , m ) \\; . \\end{equation*}",
"\\begin{equation*} 3 \\slash 8 ~ B P S : \\qquad Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = Q ^ { [ + ] \\{ + \\} } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{equation*} q _ { 1 } = q _ { 2 } = q _ { 3 } + q _ { 4 } = 2 l \\; , \\quad J = 0 \\; . \\end{equation*}",
"\\begin{equation*} 3 \\slash 8 ~ B P S : \\qquad D ( 1 \\slash 2 ( m + n ) , 0 ; 0 , 0 , m , n ) \\; . \\end{equation*}",
"\\begin{equation*} 1 \\slash 4 ~ B P S : \\qquad Q ^ { + + } \\vert l , J , q _ { i } \\rangle = Q ^ { ( + + ) } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{equation*} q _ { 1 } = q _ { 2 } = 2 l \\; , \\quad J = 0 \\; , \\end{equation*}"
],
"latex_expand": [
"$ 2 \\ell \\equiv \\mitm $",
"$ \\mitq _ { 3 } = \\mitm $",
"$ \\mitq _ { 4 } = \\mitn $",
"$ \\mitm , \\mitn $",
"\\begin{align*} \\displaystyle \\mathrm { t y p e } ~ \\mathrm { I I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : & & \\displaystyle \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { [ + ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\\\ & & \\displaystyle \\mitQ ^ { [ - ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{align*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitq _ { 3 } = 2 \\ell \\; , \\quad \\mitq _ { 4 } = 0 \\; , \\quad \\mitJ = 0 \\; ; \\end{equation*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitq _ { 4 } = 2 \\ell \\; , \\quad \\mitq _ { 3 } = 0 \\; , \\quad \\mitJ = 0 \\; , \\end{equation*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitD ( \\mitm \\slash 2 , 0 ; 0 , 0 , \\mitm , 0 ) \\; ; \\end{equation*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } ~ 1 \\slash 2 ~ \\mathrm { B P S } : \\qquad \\mitD ( \\mitm \\slash 2 , 0 ; 0 , 0 , 0 , \\mitm ) \\; . \\end{equation*}",
"\\begin{equation*} 3 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { [ + ] \\{ + \\} } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{equation*} \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitq _ { 3 } + \\mitq _ { 4 } = 2 \\ell \\; , \\quad \\mitJ = 0 \\; . \\end{equation*}",
"\\begin{equation*} 3 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitD ( 1 \\slash 2 ( \\mitm + \\mitn ) , 0 ; 0 , 0 , \\mitm , \\mitn ) \\; . \\end{equation*}",
"\\begin{equation*} 1 \\slash 4 ~ \\mathrm { B P S } : \\qquad \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = \\mitQ ^ { ( + + ) } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{equation*} \\mitq _ { 1 } = \\mitq _ { 2 } = 2 \\ell \\; , \\quad \\mitJ = 0 \\; , \\end{equation*}"
],
"x_min": [
0.22939999401569366,
0.2556999921798706,
0.32690000534057617,
0.4408999979496002,
0.19900000095367432,
0.24459999799728394,
0.2231999933719635,
0.31929999589920044,
0.3165000081062317,
0.20110000669956207,
0.3580000102519989,
0.31859999895095825,
0.29440000653266907,
0.39809998869895935
],
"y_min": [
0.3540000021457672,
0.6425999999046326,
0.6425999999046326,
0.6425999999046326,
0.17970000207424164,
0.2969000041484833,
0.326200008392334,
0.39649999141693115,
0.4253000020980835,
0.5278000235557556,
0.6064000129699707,
0.6812000274658203,
0.7544000148773193,
0.8159000277519226
],
"x_max": [
0.2922999858856201,
0.3165000081062317,
0.3822000026702881,
0.4788999855518341,
0.7940000295639038,
0.7531999945640564,
0.7394000291824341,
0.6794000267982483,
0.6841999888420105,
0.7649999856948853,
0.6434000134468079,
0.6834999918937683,
0.7070000171661377,
0.5999000072479248
],
"y_max": [
0.36469998955726624,
0.652400016784668,
0.652400016784668,
0.6518999934196472,
0.22849999368190765,
0.3149999976158142,
0.3443000018596649,
0.4146000146865845,
0.44339999556541443,
0.54830002784729,
0.6230000257492065,
0.6992999911308289,
0.7749000191688538,
0.8324999809265137
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page09
|
{
"latex": [
"$q_3$",
"$q_4$",
"$q_1=q_2 = m+n+2k$",
"$q_3=m$",
"$q_4=n$",
"$m,n,k$",
"$Q^i$",
"$q_2,q_3$",
"$q_4$",
"$q_1 = m+n+2k+2l$",
"$q_2=m+n+2k$",
"$q_3=m$",
"$q_4=n$",
"$m,n,k,l$",
"$OSp(8/4,\\mathbb {R})$",
"$OSp(8/4,\\mathbb {R})$",
"$OSp(8/4,\\mathbb {R})$",
"$m=1$",
"${\\cal D}(1/2, 0; 0,0,1,0)$",
"${\\cal D}(1/2, 0; 0,0,0,1)$",
"$8_v$",
"$SO(8)$",
"$N=8$",
"$N=8$",
"${\\cal D}(1/2, 0; 0,0,1,0)$",
"\\begin {equation}\\label {2.24} \\mbox {1/4 BPS:} \\qquad {\\cal D}(1/2(m+n)+k, 0; 0,k,m,n)\\;. \\end {equation}",
"\\begin {equation}\\label {2.25} \\mbox {1/8 BPS:} \\qquad Q^{++}|\\ell , J, q_i\\rangle = 0\\;. \\end {equation}",
"\\begin {equation}\\label {2.26} q_1 = 2\\ell \\;, \\quad J=0\\;, \\end {equation}",
"\\begin {equation}\\label {2.27} \\mbox {1/8 BPS:} \\qquad {\\cal D}(1/2(m+n)+k+l, 0; l,k,m,n)\\;. \\end {equation}"
],
"latex_norm": [
"$ q _ { 3 } $",
"$ q _ { 4 } $",
"$ q _ { 1 } = q _ { 2 } = m + n + 2 k $",
"$ q _ { 3 } = m $",
"$ q _ { 4 } = n $",
"$ m , n , k $",
"$ Q ^ { i } $",
"$ q _ { 2 } , q _ { 3 } $",
"$ q _ { 4 } $",
"$ q _ { 1 } = m + n + 2 k + 2 l $",
"$ q _ { 2 } = m + n + 2 k $",
"$ q _ { 3 } = m $",
"$ q _ { 4 } = n $",
"$ m , n , k , l $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ m = 1 $",
"$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $",
"$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 0 , 1 ) $",
"$ 8 _ { v } $",
"$ S O ( 8 ) $",
"$ N = 8 $",
"$ N = 8 $",
"$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $",
"\\begin{equation*} 1 \\slash 4 ~ B P S : \\qquad D ( 1 \\slash 2 ( m + n ) + k , 0 ; 0 , k , m , n ) \\; . \\end{equation*}",
"\\begin{equation*} 1 \\slash 8 ~ B P S : \\qquad Q ^ { + + } \\vert l , J , q _ { i } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{equation*} q _ { 1 } = 2 l \\; , \\quad J = 0 \\; , \\end{equation*}",
"\\begin{equation*} 1 \\slash 8 ~ B P S : \\qquad D ( 1 \\slash 2 ( m + n ) + k + l , 0 ; l , k , m , n ) \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitq _ { 3 } $",
"$ \\mitq _ { 4 } $",
"$ \\mitq _ { 1 } = \\mitq _ { 2 } = \\mitm + \\mitn + 2 \\mitk $",
"$ \\mitq _ { 3 } = \\mitm $",
"$ \\mitq _ { 4 } = \\mitn $",
"$ \\mitm , \\mitn , \\mitk $",
"$ \\mitQ ^ { \\miti } $",
"$ \\mitq _ { 2 } , \\mitq _ { 3 } $",
"$ \\mitq _ { 4 } $",
"$ \\mitq _ { 1 } = \\mitm + \\mitn + 2 \\mitk + 2 \\mitl $",
"$ \\mitq _ { 2 } = \\mitm + \\mitn + 2 \\mitk $",
"$ \\mitq _ { 3 } = \\mitm $",
"$ \\mitq _ { 4 } = \\mitn $",
"$ \\mitm , \\mitn , \\mitk , \\mitl $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitm = 1 $",
"$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $",
"$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 0 , 1 ) $",
"$ 8 _ { \\mitv } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitN = 8 $",
"$ \\mitN = 8 $",
"$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $",
"\\begin{equation*} 1 \\slash 4 ~ \\mathrm { B P S } : \\qquad \\mitD ( 1 \\slash 2 ( \\mitm + \\mitn ) + \\mitk , 0 ; 0 , \\mitk , \\mitm , \\mitn ) \\; . \\end{equation*}",
"\\begin{equation*} 1 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitQ ^ { + + } \\vert \\ell , \\mitJ , \\mitq _ { \\miti } \\rangle = 0 \\; . \\end{equation*}",
"\\begin{equation*} \\mitq _ { 1 } = 2 \\ell \\; , \\quad \\mitJ = 0 \\; , \\end{equation*}",
"\\begin{equation*} 1 \\slash 8 ~ \\mathrm { B P S } : \\qquad \\mitD ( 1 \\slash 2 ( \\mitm + \\mitn ) + \\mitk + \\mitl , 0 ; \\mitl , \\mitk , \\mitm , \\mitn ) \\; . \\end{equation*}"
],
"x_min": [
0.1728000044822693,
0.23770000040531158,
0.6205999851226807,
0.1728000044822693,
0.25290000438690186,
0.3801000118255615,
0.6807000041007996,
0.1728000044822693,
0.25850000977516174,
0.5009999871253967,
0.6848999857902527,
0.1728000044822693,
0.24529999494552612,
0.3634999990463257,
0.19699999690055847,
0.47749999165534973,
0.4187999963760376,
0.46650001406669617,
0.7146000266075134,
0.19699999690055847,
0.5701000094413757,
0.6171000003814697,
0.3580000102519989,
0.6434000134468079,
0.6717000007629395,
0.29989999532699585,
0.36489999294281006,
0.420199990272522,
0.28679999709129333
],
"y_min": [
0.16210000216960907,
0.16210000216960907,
0.1581999957561493,
0.17919999361038208,
0.17919999361038208,
0.1753000020980835,
0.2709999978542328,
0.3978999853134155,
0.3984000086784363,
0.3944999873638153,
0.3944999873638153,
0.4154999852180481,
0.4154999852180481,
0.4115999937057495,
0.49070000648498535,
0.5590999722480774,
0.6553000211715698,
0.673799991607666,
0.6723999977111816,
0.6894999742507935,
0.7768999934196472,
0.7753999829292297,
0.7935000061988831,
0.8276000022888184,
0.8438000082969666,
0.22020000219345093,
0.298799991607666,
0.3662000000476837,
0.4390000104904175
],
"x_max": [
0.19009999930858612,
0.25429999828338623,
0.8209999799728394,
0.23909999430179596,
0.31369999051094055,
0.4381999969482422,
0.7020999789237976,
0.21559999883174896,
0.2750999927520752,
0.673799991607666,
0.8209999799728394,
0.23360000550746918,
0.30059999227523804,
0.4368000030517578,
0.30480000376701355,
0.5845999717712402,
0.5259000062942505,
0.5203999876976013,
0.8687000274658203,
0.35179999470710754,
0.5888000130653381,
0.6717000007629395,
0.4153999984264374,
0.6980000138282776,
0.8264999985694885,
0.7013999819755554,
0.6371999979019165,
0.578499972820282,
0.7146000266075134
],
"y_max": [
0.17190000414848328,
0.17190000414848328,
0.17190000414848328,
0.1889999955892563,
0.1889999955892563,
0.1889999955892563,
0.2856000065803528,
0.4077000021934509,
0.4077000021934509,
0.4077000021934509,
0.4077000021934509,
0.42480000853538513,
0.42480000853538513,
0.42480000853538513,
0.505299985408783,
0.5741999745368958,
0.6699000000953674,
0.6836000084877014,
0.6869999766349792,
0.7041000127792358,
0.7886000275611877,
0.7900000214576721,
0.8037999868392944,
0.8378999829292297,
0.8589000105857849,
0.23829999566078186,
0.31779998540878296,
0.38280001282691956,
0.4571000039577484
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page10
|
{
"latex": [
"$8_s$",
"$SO(8)$",
"$\\Phi _a(x^\\mu , \\theta ^\\alpha _i)$",
"$8_s$",
"$a$",
"$\\Phi _a$",
"$N=8$",
"$SO(8)$",
"$\\psi _{\\alpha \\; ia} \\ \\rightarrow \\^^M8_v \\otimes 8_s = 8_c \\oplus 56_s$",
"$56_s$",
"$\\psi _{\\alpha \\; ia}$",
"$D^i_\\alpha $",
"$SO(8)$",
"$\\gamma ^i_{a\\dot b}$",
"$\\tilde \\gamma ^i_{\\dot a b} = (\\gamma ^{iT})_{\\dot a b}$",
"$\\partial _{\\alpha \\beta }= \\partial _{\\beta \\alpha } = (\\Gamma ^\\mu )_{\\alpha \\beta }\\partial _\\mu $",
"$\\gamma _{ij\\ldots }$",
"$SO(8)$",
"$8_s$",
"$8_c$",
"$SO(8)$",
"$OSp(N/4)$",
"\\begin {equation}\\label {2} \\Phi _a(x^\\mu , \\theta ^\\alpha _i) = \\phi _a(x) + \\theta ^\\alpha _i \\psi _{\\alpha \\; ia}(x) + \\ldots \\;, \\end {equation}",
"\\begin {equation}\\label {3} \\mbox {type I:}\\qquad D^i_\\alpha \\Phi _a = {1\\over 8}\\gamma ^i_{a\\dot b}\\tilde \\gamma ^j_{\\dot b c} D^j_\\alpha \\Phi _c\\;. \\end {equation}",
"\\begin {equation}\\label {4} \\{D^i_\\alpha ,D^j_\\beta \\}= 2i\\delta ^{ij}(\\Gamma ^\\mu )_{\\alpha \\beta }\\partial _\\mu \\;. \\end {equation}",
"\\begin {equation}\\label {5} \\gamma ^i_{a\\dot b}\\tilde \\gamma ^j_{\\dot b c} + \\gamma ^j_{a\\dot b}\\tilde \\gamma ^i_{\\dot b c} = 2\\delta ^{ij} \\delta _{ac}\\;, \\qquad \\tilde \\gamma ^i_{\\dot ab}\\gamma ^j_{b\\dot c} + \\tilde \\gamma ^j_{\\dot ab}\\gamma ^i_{b\\dot c} = 2\\delta ^{ij} \\delta _{\\dot a\\dot c}\\;. \\end {equation}",
"\\begin {eqnarray} \\Phi _a(x^\\mu , \\theta ^\\alpha _i)&=&\\phi _a(x) + \\theta ^\\alpha _i (\\gamma _i)_{a\\dot b}\\; \\psi _{\\alpha \\; \\dot b}(x) \\\\ && +\\theta ^{\\alpha }_i\\theta ^{\\beta }_j (\\gamma _{ij})_{ab} \\; i\\partial _{\\alpha \\beta } \\phi _b \\\\ && +\\theta ^{\\alpha }_i\\theta ^\\beta _i\\theta ^{\\gamma }_k (\\gamma _{ijk})_{a\\dot b} \\; i\\partial _{(\\alpha \\beta } \\psi _{\\gamma )\\dot b} \\\\ && +\\theta ^{\\alpha }_i\\theta ^\\beta _i\\theta ^\\gamma _k\\theta ^{\\delta }_l (\\gamma _{ijkl})_{ab}\\; \\partial _{(\\alpha \\beta } \\partial _{\\gamma \\delta )} \\phi _b \\end {eqnarray}",
"\\begin {equation}\\label {7} \\square \\phi _a = 0\\;, \\qquad \\partial ^{\\alpha \\beta }\\psi _{\\beta \\; \\dot a} = 0\\;. \\end {equation}"
],
"latex_norm": [
"$ 8 _ { s } $",
"$ S O ( 8 ) $",
"$ \\Phi _ { a } ( x ^ { \\mu } , \\theta _ { i } ^ { \\alpha } ) $",
"$ 8 _ { s } $",
"$ a $",
"$ \\Phi _ { a } $",
"$ N = 8 $",
"$ S O ( 8 ) $",
"$ \\psi _ { \\alpha \\; i a } ~ \\rightarrow ~ 8 _ { v } \\otimes 8 _ { s } = 8 _ { c } \\oplus 5 6 _ { s } $",
"$ 5 6 _ { s } $",
"$ \\psi _ { \\alpha \\; i a } $",
"$ D _ { \\alpha } ^ { i } $",
"$ S O ( 8 ) $",
"$ \\gamma _ { a \\dot { b } } ^ { i } $",
"$ \\widetilde { \\gamma } _ { \\dot { a } b } ^ { i } = ( \\gamma ^ { i T } ) _ { \\dot { a } b } $",
"$ \\partial _ { \\alpha \\beta } = \\partial _ { \\beta \\alpha } = ( \\Gamma ^ { \\mu } ) _ { \\alpha \\beta } \\partial _ { \\mu } $",
"$ \\gamma _ { i j \\ldots } $",
"$ S O ( 8 ) $",
"$ 8 _ { s } $",
"$ 8 _ { c } $",
"$ S O ( 8 ) $",
"$ O S p ( N \\slash 4 ) $",
"\\begin{equation*} \\Phi _ { a } ( x ^ { \\mu } , \\theta _ { i } ^ { \\alpha } ) = \\phi _ { a } ( x ) + \\theta _ { i } ^ { \\alpha } \\psi _ { \\alpha \\; i a } ( x ) + \\ldots \\; , \\end{equation*}",
"\\begin{equation*} t y p e ~ I : \\qquad D _ { \\alpha } ^ { i } \\Phi _ { a } = \\frac { 1 } { 8 } \\gamma _ { a \\dot { b } } ^ { i } \\widetilde { \\gamma } _ { \\dot { b } c } ^ { j } D _ { \\alpha } ^ { j } \\Phi _ { c } \\; . \\end{equation*}",
"\\begin{equation*} \\{ D _ { \\alpha } ^ { i } , D _ { \\beta } ^ { j } \\} = 2 i \\delta ^ { i j } ( \\Gamma ^ { \\mu } ) _ { \\alpha \\beta } \\partial _ { \\mu } \\; . \\end{equation*}",
"\\begin{equation*} \\gamma _ { a \\dot { b } } ^ { i } \\widetilde { \\gamma } _ { \\dot { b } c } ^ { j } + \\gamma _ { a \\dot { b } } ^ { j } \\widetilde { \\gamma } _ { \\dot { b } c } ^ { i } = 2 \\delta ^ { i j } \\delta _ { a c } \\; , \\qquad \\widetilde { \\gamma } _ { \\dot { a } b } ^ { i } \\gamma _ { b \\dot { c } } ^ { j } + \\widetilde { \\gamma } _ { \\dot { a } b } ^ { j } \\gamma _ { b \\dot { c } } ^ { i } = 2 \\delta ^ { i j } \\delta _ { \\dot { a } \\dot { c } } \\; . \\end{equation*}",
"\\begin{align*} \\Phi _ { a } ( x ^ { \\mu } , \\theta _ { i } ^ { \\alpha } ) & = & \\phi _ { a } ( x ) + \\theta _ { i } ^ { \\alpha } ( \\gamma _ { i } ) _ { a \\dot { b } } \\; \\psi _ { \\alpha \\; \\dot { b } } ( x ) \\\\ & & + \\theta _ { i } ^ { \\alpha } \\theta _ { j } ^ { \\beta } ( \\gamma _ { i j } ) _ { a b } \\; i \\partial _ { \\alpha \\beta } \\phi _ { b } \\\\ & & + \\theta _ { i } ^ { \\alpha } \\theta _ { i } ^ { \\beta } \\theta _ { k } ^ { \\gamma } ( \\gamma _ { i j k } ) _ { a \\dot { b } } \\; i \\partial _ { ( \\alpha \\beta } \\psi _ { \\gamma ) \\dot { b } } \\\\ & & + \\theta _ { i } ^ { \\alpha } \\theta _ { i } ^ { \\beta } \\theta _ { k } ^ { \\gamma } \\theta _ { l } ^ { \\delta } ( \\gamma _ { i j k l } ) _ { a b } \\; \\partial _ { ( \\alpha \\beta } \\partial _ { \\gamma \\delta ) } \\phi _ { b } \\end{align*}",
"\\begin{equation*} \\square \\phi _ { a } = 0 \\; , \\qquad \\partial ^ { \\alpha \\beta } \\psi _ { \\beta \\; \\dot { a } } = 0 \\; . \\end{equation*}"
],
"latex_expand": [
"$ 8 _ { \\mits } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mupPhi _ { \\mita } ( \\mitx ^ { \\mitmu } , \\mittheta _ { \\miti } ^ { \\mitalpha } ) $",
"$ 8 _ { \\mits } $",
"$ \\mita $",
"$ \\mupPhi _ { \\mita } $",
"$ \\mitN = 8 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitpsi _ { \\mitalpha \\; \\miti \\mita } ~ \\rightarrow ~ 8 _ { \\mitv } \\otimes 8 _ { \\mits } = 8 _ { \\mitc } \\oplus 5 6 _ { \\mits } $",
"$ 5 6 _ { \\mits } $",
"$ \\mitpsi _ { \\mitalpha \\; \\miti \\mita } $",
"$ \\mitD _ { \\mitalpha } ^ { \\miti } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\miti } $",
"$ \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\miti } = ( \\mitgamma ^ { \\miti \\mitT } ) _ { \\dot { \\mita } \\mitb } $",
"$ \\mitpartial _ { \\mitalpha \\mitbeta } = \\mitpartial _ { \\mitbeta \\mitalpha } = ( \\mupGamma ^ { \\mitmu } ) _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitmu } $",
"$ \\mitgamma _ { \\miti \\mitj \\ldots } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ 8 _ { \\mits } $",
"$ 8 _ { \\mitc } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitO \\mitS \\mitp ( \\mitN \\slash 4 ) $",
"\\begin{equation*} \\mupPhi _ { \\mita } ( \\mitx ^ { \\mitmu } , \\mittheta _ { \\miti } ^ { \\mitalpha } ) = \\mitphi _ { \\mita } ( \\mitx ) + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mitpsi _ { \\mitalpha \\; \\miti \\mita } ( \\mitx ) + \\ldots \\; , \\end{equation*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } : \\qquad \\mitD _ { \\mitalpha } ^ { \\miti } \\mupPhi _ { \\mita } = \\frac { 1 } { 8 } \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\miti } \\tilde { \\mitgamma } _ { \\dot { \\mitb } \\mitc } ^ { \\mitj } \\mitD _ { \\mitalpha } ^ { \\mitj } \\mupPhi _ { \\mitc } \\; . \\end{equation*}",
"\\begin{equation*} \\{ \\mitD _ { \\mitalpha } ^ { \\miti } , \\mitD _ { \\mitbeta } ^ { \\mitj } \\} = 2 \\miti \\mitdelta ^ { \\miti \\mitj } ( \\mupGamma ^ { \\mitmu } ) _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitmu } \\; . \\end{equation*}",
"\\begin{equation*} \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\miti } \\tilde { \\mitgamma } _ { \\dot { \\mitb } \\mitc } ^ { \\mitj } + \\mitgamma _ { \\mita \\dot { \\mitb } } ^ { \\mitj } \\tilde { \\mitgamma } _ { \\dot { \\mitb } \\mitc } ^ { \\miti } = 2 \\mitdelta ^ { \\miti \\mitj } \\mitdelta _ { \\mita \\mitc } \\; , \\qquad \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\miti } \\mitgamma _ { \\mitb \\dot { \\mitc } } ^ { \\mitj } + \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\mitj } \\mitgamma _ { \\mitb \\dot { \\mitc } } ^ { \\miti } = 2 \\mitdelta ^ { \\miti \\mitj } \\mitdelta _ { \\dot { \\mita } \\dot { \\mitc } } \\; . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mupPhi _ { \\mita } ( \\mitx ^ { \\mitmu } , \\mittheta _ { \\miti } ^ { \\mitalpha } ) & = & \\displaystyle \\mitphi _ { \\mita } ( \\mitx ) + \\mittheta _ { \\miti } ^ { \\mitalpha } ( \\mitgamma _ { \\miti } ) _ { \\mita \\dot { \\mitb } } \\; \\mitpsi _ { \\mitalpha \\; \\dot { \\mitb } } ( \\mitx ) \\\\ & & \\displaystyle + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mittheta _ { \\mitj } ^ { \\mitbeta } ( \\mitgamma _ { \\miti \\mitj } ) _ { \\mita \\mitb } \\; \\miti \\mitpartial _ { \\mitalpha \\mitbeta } \\mitphi _ { \\mitb } \\\\ & & \\displaystyle + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mittheta _ { \\miti } ^ { \\mitbeta } \\mittheta _ { \\mitk } ^ { \\mitgamma } ( \\mitgamma _ { \\miti \\mitj \\mitk } ) _ { \\mita \\dot { \\mitb } } \\; \\miti \\mitpartial _ { ( \\mitalpha \\mitbeta } \\mitpsi _ { \\mitgamma ) \\dot { \\mitb } } \\\\ & & \\displaystyle + \\mittheta _ { \\miti } ^ { \\mitalpha } \\mittheta _ { \\miti } ^ { \\mitbeta } \\mittheta _ { \\mitk } ^ { \\mitgamma } \\mittheta _ { \\mitl } ^ { \\mitdelta } ( \\mitgamma _ { \\miti \\mitj \\mitk \\mitl } ) _ { \\mita \\mitb } \\; \\mitpartial _ { ( \\mitalpha \\mitbeta } \\mitpartial _ { \\mitgamma \\mitdelta ) } \\mitphi _ { \\mitb } \\end{align*}",
"\\begin{equation*} \\square \\mitphi _ { \\mita } = 0 \\; , \\qquad \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitpsi _ { \\mitbeta \\; \\dot { \\mita } } = 0 \\; . \\end{equation*}"
],
"x_min": [
0.5009999871253967,
0.5432000160217285,
0.1728000044822693,
0.446399986743927,
0.5231999754905701,
0.33169999718666077,
0.6316999793052673,
0.33309999108314514,
0.40220001339912415,
0.20659999549388885,
0.30550000071525574,
0.22050000727176666,
0.21220000088214874,
0.4174000024795532,
0.48579999804496765,
0.23010000586509705,
0.46860000491142273,
0.2053000032901764,
0.6365000009536743,
0.1728000044822693,
0.274399995803833,
0.46299999952316284,
0.33169999718666077,
0.3531000018119812,
0.3828999996185303,
0.2653999924659729,
0.30410000681877136,
0.3808000087738037
],
"y_min": [
0.15919999778270721,
0.15770000219345093,
0.17479999363422394,
0.17630000412464142,
0.17919999361038208,
0.19290000200271606,
0.19290000200271606,
0.2890999913215637,
0.2896000146865845,
0.3246999979019165,
0.32420000433921814,
0.3959999978542328,
0.45750001072883606,
0.45649999380111694,
0.45649999380111694,
0.6869999766349792,
0.6913999915122986,
0.7041000127792358,
0.7817000150680542,
0.798799991607666,
0.7973999977111816,
0.8256999850273132,
0.25440001487731934,
0.34860000014305115,
0.4253000020980835,
0.5,
0.5776000022888184,
0.7333999872207642
],
"x_max": [
0.5189999938011169,
0.5978000164031982,
0.2599000036716461,
0.4643999934196472,
0.5343000292778015,
0.3544999957084656,
0.6862999796867371,
0.38769999146461487,
0.64410001039505,
0.23420000076293945,
0.3449000120162964,
0.2475000023841858,
0.2667999863624573,
0.4429999887943268,
0.5942999720573425,
0.4221999943256378,
0.5031999945640564,
0.2599000036716461,
0.6545000076293945,
0.19009999930858612,
0.32899999618530273,
0.5404000282287598,
0.6661999821662903,
0.6481999754905701,
0.6186000108718872,
0.7360000014305115,
0.694599986076355,
0.6205999851226807
],
"y_max": [
0.17090000212192535,
0.17229999601840973,
0.18940000236034393,
0.18799999356269836,
0.1860000044107437,
0.20559999346733093,
0.20319999754428864,
0.3037000000476837,
0.3027999997138977,
0.33640000224113464,
0.33739998936653137,
0.4115999937057495,
0.47209998965263367,
0.4745999872684479,
0.47209998965263367,
0.7020999789237976,
0.7020999789237976,
0.7186999917030334,
0.7939000129699707,
0.8109999895095825,
0.8125,
0.8378999829292297,
0.27250000834465027,
0.3813000023365021,
0.44780001044273376,
0.5234000086784363,
0.6766999959945679,
0.7538999915122986
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page11
|
{
"latex": [
"$\\phi _a$",
"$\\psi _{\\alpha \\; \\dot a}$",
"$1/2$",
"$1$",
"$\\Phi _a$",
"$1/2$",
"${\\cal D}(1/2, 0; 0,0,1,0)$",
"$\\Sigma _{\\dot a}$",
"$8_c$",
"$\\sigma _{\\dot a}(x)$",
"$\\chi _{\\alpha \\;a}(x)$",
"$8_c$",
"$8_s$",
"$28-4 = 24$",
"$SO(8)$",
"$8_s,8_c,8_v$",
"$Spin(8)/U(4)$",
"$U(4)$",
"\\begin {equation}\\label {3'} \\mbox {type II:}\\qquad D^i_\\alpha \\Sigma _{\\dot a} = {1\\over 8}\\tilde \\gamma ^i_{\\dot a b}\\gamma ^j_{b\\dot c} D^j_\\alpha \\Sigma _{\\dot c}\\;. \\end {equation}",
"\\begin {equation}\\label {8} {SO(8)\\over [SO(2)]^4} \\ \\sim \\ {Spin(8)\\over [U(1)]^4}\\;. \\end {equation}",
"\\begin {equation}\\label {9} u_a^A\\;, \\ w^{\\dot A}_{\\dot a}\\;, \\ v^I_i \\end {equation}"
],
"latex_norm": [
"$ \\phi _ { a } $",
"$ \\psi _ { \\alpha \\; \\dot { a } } $",
"$ 1 \\slash 2 $",
"$ 1 $",
"$ \\Phi _ { a } $",
"$ 1 \\slash 2 $",
"$ D ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $",
"$ \\Sigma _ { \\dot { a } } $",
"$ 8 _ { c } $",
"$ \\sigma _ { \\dot { a } } ( x ) $",
"$ \\chi _ { \\alpha \\; a } ( x ) $",
"$ 8 _ { c } $",
"$ 8 _ { s } $",
"$ 2 8 - 4 = 2 4 $",
"$ S O ( 8 ) $",
"$ 8 _ { s } , 8 _ { c } , 8 _ { v } $",
"$ S p i n ( 8 ) \\slash U ( 4 ) $",
"$ U ( 4 ) $",
"\\begin{equation*} t y p e ~ I I : \\qquad D _ { \\alpha } ^ { i } \\Sigma _ { \\dot { a } } = \\frac { 1 } { 8 } \\widetilde { \\gamma } _ { \\dot { a } b } ^ { i } \\gamma _ { b \\dot { c } } ^ { j } D _ { \\alpha } ^ { j } \\Sigma _ { \\dot { c } } \\; . \\end{equation*}",
"\\begin{equation*} \\frac { S O ( 8 ) } { [ S O ( 2 ) ] ^ { 4 } } ~ \\sim ~ \\frac { S p i n ( 8 ) } { [ U ( 1 ) ] ^ { 4 } } \\; . \\end{equation*}",
"\\begin{equation*} u _ { a } ^ { A } \\; , ~ w _ { \\dot { a } } ^ { \\dot { A } } \\; , ~ v _ { i } ^ { I } \\end{equation*}"
],
"latex_expand": [
"$ \\mitphi _ { \\mita } $",
"$ \\mitpsi _ { \\mitalpha \\; \\dot { \\mita } } $",
"$ 1 \\slash 2 $",
"$ 1 $",
"$ \\mupPhi _ { \\mita } $",
"$ 1 \\slash 2 $",
"$ \\mitD ( 1 \\slash 2 , 0 ; 0 , 0 , 1 , 0 ) $",
"$ \\mupSigma _ { \\dot { \\mita } } $",
"$ 8 _ { \\mitc } $",
"$ \\mitsigma _ { \\dot { \\mita } } ( \\mitx ) $",
"$ \\mitchi _ { \\mitalpha \\; \\mita } ( \\mitx ) $",
"$ 8 _ { \\mitc } $",
"$ 8 _ { \\mits } $",
"$ 2 8 - 4 = 2 4 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ 8 _ { \\mits } , 8 _ { \\mitc } , 8 _ { \\mitv } $",
"$ \\mitS \\mitp \\miti \\mitn ( 8 ) \\slash \\mitU ( 4 ) $",
"$ \\mitU ( 4 ) $",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } : \\qquad \\mitD _ { \\mitalpha } ^ { \\miti } \\mupSigma _ { \\dot { \\mita } } = \\frac { 1 } { 8 } \\tilde { \\mitgamma } _ { \\dot { \\mita } \\mitb } ^ { \\miti } \\mitgamma _ { \\mitb \\dot { \\mitc } } ^ { \\mitj } \\mitD _ { \\mitalpha } ^ { \\mitj } \\mupSigma _ { \\dot { \\mitc } } \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitS \\mitO ( 8 ) } { [ \\mitS \\mitO ( 2 ) ] ^ { 4 } } ~ \\sim ~ \\frac { \\mitS \\mitp \\miti \\mitn ( 8 ) } { [ \\mitU ( 1 ) ] ^ { 4 } } \\; . \\end{equation*}",
"\\begin{equation*} \\mitu _ { \\mita } ^ { \\mitA } \\; , ~ \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } \\; , ~ \\mitv _ { \\miti } ^ { \\mitI } \\end{equation*}"
],
"x_min": [
0.5839999914169312,
0.6545000076293945,
0.274399995803833,
0.349700003862381,
0.7670999765396118,
0.2646999955177307,
0.6661999821662903,
0.4277999997138977,
0.5583999752998352,
0.6600000262260437,
0.1728000044822693,
0.29649999737739563,
0.3580000102519989,
0.25780001282691956,
0.6682999730110168,
0.6288999915122986,
0.541100025177002,
0.7214999794960022,
0.349700003862381,
0.4000999927520752,
0.44510000944137573
],
"y_min": [
0.1753000020980835,
0.1753000020980835,
0.19189999997615814,
0.19339999556541443,
0.19290000200271606,
0.20900000631809235,
0.20900000631809235,
0.24410000443458557,
0.2451000064611435,
0.30959999561309814,
0.32710000872612,
0.3285999894142151,
0.3285999894142151,
0.5957000255584717,
0.6460000276565552,
0.6646000146865845,
0.7710000276565552,
0.7851999998092651,
0.26899999380111694,
0.5429999828338623,
0.7070000171661377
],
"x_max": [
0.6047000288963318,
0.6891000270843506,
0.30410000681877136,
0.36010000109672546,
0.7906000018119812,
0.29440000653266907,
0.8209999799728394,
0.4505999982357025,
0.5756999850273132,
0.7063000202178955,
0.23360000550746918,
0.31380000710487366,
0.37599998712539673,
0.36489999294281006,
0.7221999764442444,
0.699400007724762,
0.6413000226020813,
0.7560999989509583,
0.652400016784668,
0.6011999845504761,
0.5570999979972839
],
"y_max": [
0.1889999955892563,
0.1889999955892563,
0.20649999380111694,
0.20319999754428864,
0.20559999346733093,
0.2240999937057495,
0.2240999937057495,
0.25679999589920044,
0.25679999589920044,
0.3246999979019165,
0.3416999876499176,
0.3402999937534332,
0.3402999937534332,
0.6068999767303467,
0.6606000065803528,
0.676800012588501,
0.7832000255584717,
0.7973999977111816,
0.30169999599456787,
0.5806000232696533,
0.7294999957084656
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page12
|
{
"latex": [
"$A$",
"$\\dot A$",
"$I$",
"$8_s$",
"$8_c$",
"$8_v$",
"$U(1)$",
"$[U(1)]^4$",
"$8\\times 8$",
"$SO(8)\\sim Spin(8)$",
"$SO(8)$",
"$SO(8)$",
"$u,w$",
"$[U(1)]^4$",
"$U(1)$",
"$[U(1)]^4$",
"$SO(8)\\sim Spin(8)$",
"$SO(8)$",
"$SO(8)$",
"\\begin {equation}\\label {10} u_a^A u_a^B = \\delta ^{AB}\\;, \\quad w^{\\dot A}_{\\dot a} w^{\\dot B}_{\\dot a} = \\delta ^{\\dot A\\dot B}\\;, \\quad v^I_i v^J_i = \\delta ^{IJ} \\end {equation}",
"\\begin {equation}\\label {11} u_a^A (\\gamma ^I)_{A\\dot A} w^{\\dot A}_{\\dot a} = v^I_i (\\gamma ^i)_{a\\dot a}\\;. \\end {equation}",
"\\begin {eqnarray} \\phi ^{+(+)[+]}(u,w) &=&\\phi _a u^{+(+)[+]}_a \\\\ && + \\phi _{abc} u^{+(+)[+]}_a u^{+(+)[+]}_b u^{-(-)[-]}_c \\\\ && + \\phi _{a\\dot b\\dot c} u^{+(+)[+]}_a w^{+(+)\\{+\\}}_{\\dot b} w^{-(-)\\{-\\}}_{\\dot c} + \\ldots \\;. \\end {eqnarray}",
"\\begin {equation}\\label {14} D^{IJ} = u^A_a (\\gamma ^{IJ})^{AB}{\\partial \\over \\partial u^B_a} + w^{\\dot A}_{\\dot a} (\\gamma ^{IJ})^{\\dot A\\dot B}{\\partial \\over \\partial w^{\\dot B}_{\\dot a}} + v^{[I}_i {\\partial \\over \\partial v^{J]}_{i}}\\;. \\end {equation}"
],
"latex_norm": [
"$ A $",
"$ \\dot { A } $",
"$ I $",
"$ 8 _ { s } $",
"$ 8 _ { c } $",
"$ 8 _ { v } $",
"$ U ( 1 ) $",
"$ [ U ( 1 ) ] ^ { 4 } $",
"$ 8 \\times 8 $",
"$ S O ( 8 ) \\sim S p i n ( 8 ) $",
"$ S O ( 8 ) $",
"$ S O ( 8 ) $",
"$ u , w $",
"$ [ U ( 1 ) ] ^ { 4 } $",
"$ U ( 1 ) $",
"$ [ U ( 1 ) ] ^ { 4 } $",
"$ S O ( 8 ) \\sim S p i n ( 8 ) $",
"$ S O ( 8 ) $",
"$ S O ( 8 ) $",
"\\begin{equation*} u _ { a } ^ { A } u _ { a } ^ { B } = \\delta ^ { A B } \\; , \\quad w _ { \\dot { a } } ^ { \\dot { A } } w _ { \\dot { a } } ^ { \\dot { B } } = \\delta ^ { \\dot { A } \\dot { B } } \\; , \\quad v _ { i } ^ { I } v _ { i } ^ { J } = \\delta ^ { I J } \\end{equation*}",
"\\begin{equation*} u _ { a } ^ { A } ( \\gamma ^ { I } ) _ { A \\dot { A } } w _ { \\dot { a } } ^ { \\dot { A } } = v _ { i } ^ { I } ( \\gamma ^ { i } ) _ { a \\dot { a } } \\; . \\end{equation*}",
"\\begin{align*} \\phi ^ { + ( + ) [ + ] } ( u , w ) & = & \\phi _ { a } u _ { a } ^ { + ( + ) [ + ] } \\\\ & & + \\phi _ { a b c } u _ { a } ^ { + ( + ) [ + ] } u _ { b } ^ { + ( + ) [ + ] } u _ { c } ^ { - ( - ) [ - ] } \\\\ & & + \\phi _ { a \\dot { b } \\dot { c } } u _ { a } ^ { + ( + ) [ + ] } w _ { \\dot { b } } ^ { + ( + ) \\{ + \\} } w _ { \\dot { c } } ^ { - ( - ) \\{ - \\} } + \\ldots \\; . \\end{align*}",
"\\begin{equation*} D ^ { I J } = u _ { a } ^ { A } ( \\gamma ^ { I J } ) ^ { A B } \\frac { \\partial } { \\partial u _ { a } ^ { B } } + w _ { \\dot { a } } ^ { \\dot { A } } ( \\gamma ^ { I J } ) ^ { \\dot { A } \\dot { B } } \\frac { \\partial } { \\partial w _ { \\dot { a } } ^ { \\dot { B } } } + v _ { i } ^ { [ I } \\frac { \\partial } { \\partial v _ { i } ^ { J ] } } \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitA $",
"$ \\dot { \\mitA } $",
"$ \\mitI $",
"$ 8 _ { \\mits } $",
"$ 8 _ { \\mitc } $",
"$ 8 _ { \\mitv } $",
"$ \\mitU ( 1 ) $",
"$ [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ 8 \\times 8 $",
"$ \\mitS \\mitO ( 8 ) \\sim \\mitS \\mitp \\miti \\mitn ( 8 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitu , \\mitw $",
"$ [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitU ( 1 ) $",
"$ [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitS \\mitO ( 8 ) \\sim \\mitS \\mitp \\miti \\mitn ( 8 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"\\begin{equation*} \\mitu _ { \\mita } ^ { \\mitA } \\mitu _ { \\mita } ^ { \\mitB } = \\mitdelta ^ { \\mitA \\mitB } \\; , \\quad \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitB } } = \\mitdelta ^ { \\dot { \\mitA } \\dot { \\mitB } } \\; , \\quad \\mitv _ { \\miti } ^ { \\mitI } \\mitv _ { \\miti } ^ { \\mitJ } = \\mitdelta ^ { \\mitI \\mitJ } \\end{equation*}",
"\\begin{equation*} \\mitu _ { \\mita } ^ { \\mitA } ( \\mitgamma ^ { \\mitI } ) _ { \\mitA \\dot { \\mitA } } \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } = \\mitv _ { \\miti } ^ { \\mitI } ( \\mitgamma ^ { \\miti } ) _ { \\mita \\dot { \\mita } } \\; . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitphi ^ { + ( + ) [ + ] } ( \\mitu , \\mitw ) & = & \\displaystyle \\mitphi _ { \\mita } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\\\ & & \\displaystyle + \\mitphi _ { \\mita \\mitb \\mitc } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\mitu _ { \\mitb } ^ { + ( + ) [ + ] } \\mitu _ { \\mitc } ^ { - ( - ) [ - ] } \\\\ & & \\displaystyle + \\mitphi _ { \\mita \\dot { \\mitb } \\dot { \\mitc } } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\mitw _ { \\dot { \\mitb } } ^ { + ( + ) \\{ + \\} } \\mitw _ { \\dot { \\mitc } } ^ { - ( - ) \\{ - \\} } + \\ldots \\; . \\end{align*}",
"\\begin{equation*} \\mitD ^ { \\mitI \\mitJ } = \\mitu _ { \\mita } ^ { \\mitA } ( \\mitgamma ^ { \\mitI \\mitJ } ) ^ { \\mitA \\mitB } \\frac { \\mitpartial } { \\mitpartial \\mitu _ { \\mita } ^ { \\mitB } } + \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitA } } ( \\mitgamma ^ { \\mitI \\mitJ } ) ^ { \\dot { \\mitA } \\dot { \\mitB } } \\frac { \\mitpartial } { \\mitpartial \\mitw _ { \\dot { \\mita } } ^ { \\dot { \\mitB } } } + \\mitv _ { \\miti } ^ { [ \\mitI } \\frac { \\mitpartial } { \\mitpartial \\mitv _ { \\miti } ^ { \\mitJ ] } } \\; . \\end{equation*}"
],
"x_min": [
0.22869999706745148,
0.25429999828338623,
0.3124000132083893,
0.6068000197410583,
0.6358000040054321,
0.6952000260353088,
0.4097999930381775,
0.1728000044822693,
0.5825999975204468,
0.5612000226974487,
0.7339000105857849,
0.2777999937534332,
0.4505999982357025,
0.33719998598098755,
0.33379998803138733,
0.6654999852180481,
0.5791000127792358,
0.7063000202178955,
0.1728000044822693,
0.3109999895095825,
0.3946000039577484,
0.25220000743865967,
0.27639999985694885
],
"y_min": [
0.15870000422000885,
0.15530000627040863,
0.15870000422000885,
0.15919999778270721,
0.15919999778270721,
0.15919999778270721,
0.17479999363422394,
0.19140000641345978,
0.19339999556541443,
0.20900000631809235,
0.22609999775886536,
0.39890000224113464,
0.4722000062465668,
0.5185999870300293,
0.5360999703407288,
0.663100004196167,
0.6807000041007996,
0.698199987411499,
0.8467000126838684,
0.25540000200271606,
0.35109999775886536,
0.5845000147819519,
0.7675999999046326
],
"x_max": [
0.24390000104904175,
0.2694999873638153,
0.32280001044273376,
0.6248000264167786,
0.6531000137329102,
0.7139000296592712,
0.4505999982357025,
0.2321999967098236,
0.6281999945640564,
0.7091000080108643,
0.7885000109672546,
0.33239999413490295,
0.48579999804496765,
0.39730000495910645,
0.37529999017715454,
0.725600004196167,
0.7360000014305115,
0.7609000205993652,
0.2190999984741211,
0.6904000043869019,
0.6068000197410583,
0.7462999820709229,
0.7249000072479248
],
"y_max": [
0.16899999976158142,
0.16899999976158142,
0.16899999976158142,
0.17090000212192535,
0.17090000212192535,
0.17090000212192535,
0.18940000236034393,
0.2070000022649765,
0.2046000063419342,
0.2240999937057495,
0.24120000004768372,
0.41350001096725464,
0.4814999997615814,
0.5336999893188477,
0.5507000088691711,
0.6786999702453613,
0.6958000063896179,
0.7128000259399414,
0.8589000105857849,
0.2773999869823456,
0.3736000061035156,
0.6611999869346619,
0.807200014591217
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page13
|
{
"latex": [
"$SO(8)$",
"$[U(1)]^4$",
"$A,\\dot A, I$",
"$U(1)$",
"$[U(1)]^4$",
"$SO(8)$",
"$SO(8)$",
"$8_s$",
"$SO(8)$",
"$SO(8)$",
"$i$",
"$a$",
"$U(1)$",
"$D^i_\\alpha \\ \\rightarrow \\ D^I_\\alpha = v^I_iD^i_\\alpha $",
"$\\Phi _a \\ \\rightarrow \\ \\Phi ^A = u^A_a\\Phi _a$",
"\\begin {equation}\\label {151} H_n f^{(q_1,q_2,q_3,q_4)} (u,w) = q_n f^{(q_1,q_2,q_3,q_4)} (u,w)\\;, \\quad n=1,2,3,4\\;. \\end {equation}",
"\\begin {equation}\\label {16} \\{{\\cal D}\\}_+ = \\left \\{ \\begin {array}{l} D^{++(++)}\\;, \\ D^{++(--)}\\;, \\ D^{++[\\pm ]\\{\\pm \\}}\\;; \\\\ D^{(++)[\\pm ]\\{\\pm \\}}\\;; \\\\ D^{[++]} \\equiv D^{[+]\\{+\\}[+]\\{-\\}}\\;, \\ D^{\\{++\\}} \\equiv D^{[+]\\{+\\}[-]\\{+\\}} \\end {array} \\right . \\end {equation}",
"\\begin {equation}\\label {17} \\{{\\cal D}\\}_+\\phi ^{+(+)[+]}(u,w) = 0 \\ \\Rightarrow \\^^M\\phi ^{+(+)[+]}(u,w) = \\phi _a u^{+(+)[+]}_a \\;, \\end {equation}",
"\\begin {equation}\\label {171} \\{{\\cal D}\\}_+ f^{(q_1,q_2,q_3,q_4)} (u,w) = 0\\;. \\end {equation}",
"\\begin {eqnarray} && f^{(q_1,q_2,q_3,q_4)} (u,w) = f^{(2d_1+2d_2+d_3+d_4,2d_2+d_3+d_4,d_3,d_4)} (u,w) = \\\\ &&f_{a\\ldots b\\ldots c\\ldots \\dot d\\ldots } (u^{+(+)[+]}_a)^{d_2+d_3} (u^{+(+)[-]}_b)^{d_2} (u^{+(-)\\{-\\}}_c)^{d_1} (w^{+(+)\\{+\\}}_{\\dot d})^{d_1+d_4} \\;. \\end {eqnarray}"
],
"latex_norm": [
"$ S O ( 8 ) $",
"$ [ U ( 1 ) ] ^ { 4 } $",
"$ A , \\dot { A } , I $",
"$ U ( 1 ) $",
"$ [ U ( 1 ) ] ^ { 4 } $",
"$ S O ( 8 ) $",
"$ S O ( 8 ) $",
"$ 8 _ { s } $",
"$ S O ( 8 ) $",
"$ S O ( 8 ) $",
"$ i $",
"$ a $",
"$ U ( 1 ) $",
"$ D _ { \\alpha } ^ { i } ~ \\rightarrow ~ D _ { \\alpha } ^ { I } = v _ { i } ^ { I } D _ { \\alpha } ^ { i } $",
"$ \\Phi _ { a } ~ \\rightarrow ~ \\Phi ^ { A } = u _ { a } ^ { A } \\Phi _ { a } $",
"\\begin{equation*} H _ { n } f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) = q _ { n } f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) \\; , \\quad n = 1 , 2 , 3 , 4 \\; . \\end{equation*}",
"\\begin{align*} \\{ D \\} _ { + } = \\{ \\begin{array}{l} D ^ { + + ( + + ) } \\; , ~ D ^ { + + ( - - ) } \\; , ~ D ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ D ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ D ^ { [ + + ] } \\equiv D ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ D ^ { \\{ + + \\} } \\equiv D ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\end{align*}",
"\\begin{equation*} \\{ D \\} _ { + } \\phi ^ { + ( + ) [ + ] } ( u , w ) = 0 ~ \\Rightarrow ~ \\phi ^ { + ( + ) [ + ] } ( u , w ) = \\phi _ { a } u _ { a } ^ { + ( + ) [ + ] } \\; , \\end{equation*}",
"\\begin{equation*} \\{ D \\} _ { + } f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) = 0 \\; . \\end{equation*}",
"\\begin{align*} & & f ^ { ( q _ { 1 } , q _ { 2 } , q _ { 3 } , q _ { 4 } ) } ( u , w ) = f ^ { ( 2 d _ { 1 } + 2 d _ { 2 } + d _ { 3 } + d _ { 4 } , 2 d _ { 2 } + d _ { 3 } + d _ { 4 } , d _ { 3 } , d _ { 4 } ) } ( u , w ) = \\\\ & & f _ { a \\ldots b \\ldots c \\ldots \\dot { d } \\ldots } ( u _ { a } ^ { + ( + ) [ + ] } ) ^ { d _ { 2 } + d _ { 3 } } ( u _ { b } ^ { + ( + ) [ - ] } ) ^ { d _ { 2 } } ( u _ { c } ^ { + ( - ) \\{ - \\} } ) ^ { d _ { 1 } } ( w _ { \\dot { d } } ^ { + ( + ) \\{ + \\} } ) ^ { d _ { 1 } + d _ { 4 } } \\; . \\end{align*}"
],
"latex_expand": [
"$ \\mitS \\mitO ( 8 ) $",
"$ [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitA , \\dot { \\mitA } , \\mitI $",
"$ \\mitU ( 1 ) $",
"$ [ \\mitU ( 1 ) ] ^ { 4 } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"$ 8 _ { \\mits } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\miti $",
"$ \\mita $",
"$ \\mitU ( 1 ) $",
"$ \\mitD _ { \\mitalpha } ^ { \\miti } ~ \\rightarrow ~ \\mitD _ { \\mitalpha } ^ { \\mitI } = \\mitv _ { \\miti } ^ { \\mitI } \\mitD _ { \\mitalpha } ^ { \\miti } $",
"$ \\mupPhi _ { \\mita } ~ \\rightarrow ~ \\mupPhi ^ { \\mitA } = \\mitu _ { \\mita } ^ { \\mitA } \\mupPhi _ { \\mita } $",
"\\begin{equation*} \\mitH _ { \\mitn } \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) = \\mitq _ { \\mitn } \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) \\; , \\quad \\mitn = 1 , 2 , 3 , 4 \\; . \\end{equation*}",
"\\begin{align*} \\{ \\mitD \\} _ { + } = \\left\\{ \\begin{array}{l} \\mitD ^ { + + ( + + ) } \\; , ~ \\mitD ^ { + + ( - - ) } \\; , ~ \\mitD ^ { + + [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitD ^ { ( + + ) [ \\pm ] \\{ \\pm \\} } \\; ; \\\\ \\mitD ^ { [ + + ] } \\equiv \\mitD ^ { [ + ] \\{ + \\} [ + ] \\{ - \\} } \\; , ~ \\mitD ^ { \\{ + + \\} } \\equiv \\mitD ^ { [ + ] \\{ + \\} [ - ] \\{ + \\} } \\end{array} \\right. \\end{align*}",
"\\begin{equation*} \\{ \\mitD \\} _ { + } \\mitphi ^ { + ( + ) [ + ] } ( \\mitu , \\mitw ) = 0 ~ \\Rightarrow ~ \\mitphi ^ { + ( + ) [ + ] } ( \\mitu , \\mitw ) = \\mitphi _ { \\mita } \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\; , \\end{equation*}",
"\\begin{equation*} \\{ \\mitD \\} _ { + } \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) = 0 \\; . \\end{equation*}",
"\\begin{align*} & & \\displaystyle \\mitf ^ { ( \\mitq _ { 1 } , \\mitq _ { 2 } , \\mitq _ { 3 } , \\mitq _ { 4 } ) } ( \\mitu , \\mitw ) = \\mitf ^ { ( 2 \\mitd _ { 1 } + 2 \\mitd _ { 2 } + \\mitd _ { 3 } + \\mitd _ { 4 } , 2 \\mitd _ { 2 } + \\mitd _ { 3 } + \\mitd _ { 4 } , \\mitd _ { 3 } , \\mitd _ { 4 } ) } ( \\mitu , \\mitw ) = \\\\ & & \\displaystyle \\mitf _ { \\mita \\ldots \\mitb \\ldots \\mitc \\ldots \\dot { \\mitd } \\ldots } ( \\mitu _ { \\mita } ^ { + ( + ) [ + ] } ) ^ { \\mitd _ { 2 } + \\mitd _ { 3 } } ( \\mitu _ { \\mitb } ^ { + ( + ) [ - ] } ) ^ { \\mitd _ { 2 } } ( \\mitu _ { \\mitc } ^ { + ( - ) \\{ - \\} } ) ^ { \\mitd _ { 1 } } ( \\mitw _ { \\dot { \\mitd } } ^ { + ( + ) \\{ + \\} } ) ^ { \\mitd _ { 1 } + \\mitd _ { 4 } } \\; . \\end{align*}"
],
"x_min": [
0.5770999789237976,
0.7663999795913696,
0.32409998774528503,
0.1728000044822693,
0.24950000643730164,
0.4657999873161316,
0.72079998254776,
0.4519999921321869,
0.656499981880188,
0.6427000164985657,
0.46720001101493835,
0.5175999999046326,
0.5742999911308289,
0.4361000061035156,
0.6531000137329102,
0.250900000333786,
0.24740000069141388,
0.25780001282691956,
0.3822000026702881,
0.24529999494552612
],
"y_min": [
0.17479999363422394,
0.17430000007152557,
0.18950000405311584,
0.20900000631809235,
0.28610000014305115,
0.39890000224113464,
0.4507000148296356,
0.5297999978065491,
0.6060000061988831,
0.8095999956130981,
0.8281000256538391,
0.8314999938011169,
0.82669997215271,
0.8428000211715698,
0.8428000211715698,
0.23389999568462372,
0.31200000643730164,
0.4927000105381012,
0.5702999830245972,
0.6615999937057495
],
"x_max": [
0.6316999793052673,
0.8258000016212463,
0.3822000026702881,
0.21359999477863312,
0.30959999561309814,
0.5196999907493591,
0.7753999829292297,
0.4699999988079071,
0.7110999822616577,
0.6973000168800354,
0.4747999906539917,
0.5286999940872192,
0.6151000261306763,
0.6075000166893005,
0.8209999799728394,
0.7512000203132629,
0.7505000233650208,
0.7401999831199646,
0.6191999912261963,
0.7871000170707703
],
"y_max": [
0.18940000236034393,
0.18940000236034393,
0.2061000019311905,
0.2240999937057495,
0.30169999599456787,
0.414000004529953,
0.4652999937534332,
0.5414999723434448,
0.6211000084877014,
0.8241999745368958,
0.8378999829292297,
0.8378000259399414,
0.8417999744415283,
0.8589000105857849,
0.8589000105857849,
0.25440001487731934,
0.36820000410079956,
0.5131999850273132,
0.5907999873161316,
0.7153000235557556
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page14
|
{
"latex": [
"$\\Phi ^{+(+)[+]}$",
"$\\Phi ^{+(+)[+]}$",
"$\\Phi ^{+(+)[+]}$",
"$\\Phi ^{+(+)[+]}$",
"$\\{{\\cal D}\\}_+$",
"$D^{++(++)} = \\partial ^{++(++)}_{u,w} + i\\theta ^{++}\\Gamma ^\\mu \\theta ^{(++)}\\partial _\\mu $",
"$D^{++[+]\\{\\pm \\}} = \\partial ^{++[+]\\{\\pm \\}}_{u,w} + i\\theta ^{++}\\Gamma ^\\mu \\theta ^{[+]\\{\\pm \\}}\\partial _\\mu $",
"$D^{++[+]\\{\\pm \\}} = \\partial ^{++[+]\\{\\pm \\}}_{u,w} + i\\theta ^{++}\\Gamma ^\\mu \\theta ^{[+]\\{\\pm \\}}\\partial _\\mu $",
"$\\Phi ^{+(+)[+]}\\;$",
"$\\Phi ^{+(+)[+]}$",
"\\begin {equation}\\label {18} D^{++}\\Phi ^{+(+)[+]} = D^{(++)}\\Phi ^{+(+)[+]} = D^{[+]\\{\\pm \\}}\\Phi ^{+(+)[+]} = 0\\;. \\end {equation}",
"\\begin {equation}\\label {19} \\mbox {type I:}\\qquad \\Phi ^{+(+)[+]} = \\Phi ^{+(+)[+]} (x_A,\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[+]\\{\\pm \\}}, u,w) \\end {equation}",
"\\begin {equation}\\label {191} x_{A\\alpha \\beta } = x_{\\alpha \\beta } + i\\theta ^{++}_{(\\alpha }\\theta ^{--}_{\\beta )} + i\\theta ^{(++)}_{(\\alpha }\\theta ^{(--)}_{\\beta )} + i\\theta ^{[+]\\{+\\}}_{(\\alpha }\\theta ^{[-]\\{-\\}}_{\\beta )} + i\\theta ^{[+]\\{-\\}}_{(\\alpha }\\theta ^{[-]\\{+\\}}_{\\beta )}\\;. \\end {equation}",
"\\begin {equation}\\label {20} \\{{\\cal D}\\}_+\\Phi ^{+(+)[+]} (x,\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[+]\\{\\pm \\}}, u,w) = 0\\;. \\end {equation}",
"\\begin {eqnarray} \\Phi ^{+(+)[+]} &=& u^{+(+)[+]}_a \\phi _a(x) \\\\ &&+(\\theta ^{[+]\\{-\\}\\alpha }w^{+(+)\\{+\\}}_{\\dot a} - \\theta ^{[+]\\{+\\}\\alpha }w^{+(+)\\{-\\}}_{\\dot a} \\\\ &&\\phantom {+(} - \\theta ^{++\\alpha } w^{-(+)[+]}_{\\dot a} - \\theta ^{(++)\\alpha } w^{+(-)[+]}_{\\dot a})\\psi _{\\dot a\\;\\alpha }(x) \\\\ && + \\mbox { derivative terms}\\end {eqnarray}"
],
"latex_norm": [
"$ \\Phi ^ { + ( + ) [ + ] } $",
"$ \\Phi ^ { + ( + ) [ + ] } $",
"$ \\Phi ^ { + ( + ) [ + ] } $",
"$ \\Phi ^ { + ( + ) [ + ] } $",
"$ \\{ D \\} _ { + } $",
"$ D ^ { + + ( + + ) } = \\partial _ { u , w } ^ { + + ( + + ) } + i \\theta ^ { + + } \\Gamma ^ { \\mu } \\theta ^ { ( + + ) } \\partial _ { \\mu } $",
"$ D ^ { + + [ + ] \\{ \\pm \\} } = \\partial _ { u , w } ^ { + + [ + ] \\{ \\pm \\} } + i \\theta ^ { + + } \\Gamma ^ { \\mu } \\theta ^ { [ + ] \\{ \\pm \\} } \\partial _ { \\mu } $",
"$ D ^ { + + [ + ] \\{ \\pm \\} } = \\partial _ { u , w } ^ { + + [ + ] \\{ \\pm \\} } + i \\theta ^ { + + } \\Gamma ^ { \\mu } \\theta ^ { [ + ] \\{ \\pm \\} } \\partial _ { \\mu } $",
"$ \\Phi ^ { + ( + ) [ + ] } \\; $",
"$ \\Phi ^ { + ( + ) [ + ] } $",
"\\begin{equation*} D ^ { + + } \\Phi ^ { + ( + ) [ + ] } = D ^ { ( + + ) } \\Phi ^ { + ( + ) [ + ] } = D ^ { [ + ] \\{ \\pm \\} } \\Phi ^ { + ( + ) [ + ] } = 0 \\; . \\end{equation*}",
"\\begin{equation*} t y p e ~ I : \\qquad \\Phi ^ { + ( + ) [ + ] } = \\Phi ^ { + ( + ) [ + ] } ( x _ { A } , \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ \\pm \\} } , u , w ) \\end{equation*}",
"\\begin{equation*} x _ { A \\alpha \\beta } = x _ { \\alpha \\beta } + i \\theta _ { ( \\alpha } ^ { + + } \\theta _ { \\beta ) } ^ { - - } + i \\theta _ { ( \\alpha } ^ { ( + + ) } \\theta _ { \\beta ) } ^ { ( - - ) } + i \\theta _ { ( \\alpha } ^ { [ + ] \\{ + \\} } \\theta _ { \\beta ) } ^ { [ - ] \\{ - \\} } + i \\theta _ { ( \\alpha } ^ { [ + ] \\{ - \\} } \\theta _ { \\beta ) } ^ { [ - ] \\{ + \\} } \\; . \\end{equation*}",
"\\begin{equation*} \\{ D \\} _ { + } \\Phi ^ { + ( + ) [ + ] } ( x , \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ \\pm \\} } , u , w ) = 0 \\; . \\end{equation*}",
"\\begin{align*} \\Phi ^ { + ( + ) [ + ] } & = & u _ { a } ^ { + ( + ) [ + ] } \\phi _ { a } ( x ) \\\\ & & + ( \\theta ^ { [ + ] \\{ - \\} \\alpha } w _ { \\dot { a } } ^ { + ( + ) \\{ + \\} } - \\theta ^ { [ + ] \\{ + \\} \\alpha } w _ { \\dot { a } } ^ { + ( + ) \\{ - \\} } \\\\ & & - \\theta ^ { + + \\alpha } w _ { \\dot { a } } ^ { - ( + ) [ + ] } - \\theta ^ { ( + + ) \\alpha } w _ { \\dot { a } } ^ { + ( - ) [ + ] } ) \\psi _ { \\dot { a } \\; \\alpha } ( x ) \\\\ & & + ~ d e r i v a t i v e ~ t e r m s \\end{align*}"
],
"latex_expand": [
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"$ \\{ \\mitD \\} _ { + } $",
"$ \\mitD ^ { + + ( + + ) } = \\mitpartial _ { \\mitu , \\mitw } ^ { + + ( + + ) } + \\miti \\mittheta ^ { + + } \\mupGamma ^ { \\mitmu } \\mittheta ^ { ( + + ) } \\mitpartial _ { \\mitmu } $",
"$ \\mitD ^ { + + [ + ] \\{ \\pm \\} } = \\mitpartial _ { \\mitu , \\mitw } ^ { + + [ + ] \\{ \\pm \\} } + \\miti \\mittheta ^ { + + } \\mupGamma ^ { \\mitmu } \\mittheta ^ { [ + ] \\{ \\pm \\} } \\mitpartial _ { \\mitmu } $",
"$ \\mitD ^ { + + [ + ] \\{ \\pm \\} } = \\mitpartial _ { \\mitu , \\mitw } ^ { + + [ + ] \\{ \\pm \\} } + \\miti \\mittheta ^ { + + } \\mupGamma ^ { \\mitmu } \\mittheta ^ { [ + ] \\{ \\pm \\} } \\mitpartial _ { \\mitmu } $",
"$ \\mupPhi ^ { + ( + ) [ + ] } \\; $",
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"\\begin{equation*} \\mitD ^ { + + } \\mupPhi ^ { + ( + ) [ + ] } = \\mitD ^ { ( + + ) } \\mupPhi ^ { + ( + ) [ + ] } = \\mitD ^ { [ + ] \\{ \\pm \\} } \\mupPhi ^ { + ( + ) [ + ] } = 0 \\; . \\end{equation*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I } : \\qquad \\mupPhi ^ { + ( + ) [ + ] } = \\mupPhi ^ { + ( + ) [ + ] } ( \\mitx _ { \\mitA } , \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ \\pm \\} } , \\mitu , \\mitw ) \\end{equation*}",
"\\begin{equation*} \\mitx _ { \\mitA \\mitalpha \\mitbeta } = \\mitx _ { \\mitalpha \\mitbeta } + \\miti \\mittheta _ { ( \\mitalpha } ^ { + + } \\mittheta _ { \\mitbeta ) } ^ { - - } + \\miti \\mittheta _ { ( \\mitalpha } ^ { ( + + ) } \\mittheta _ { \\mitbeta ) } ^ { ( - - ) } + \\miti \\mittheta _ { ( \\mitalpha } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitbeta ) } ^ { [ - ] \\{ - \\} } + \\miti \\mittheta _ { ( \\mitalpha } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitbeta ) } ^ { [ - ] \\{ + \\} } \\; . \\end{equation*}",
"\\begin{equation*} \\{ \\mitD \\} _ { + } \\mupPhi ^ { + ( + ) [ + ] } ( \\mitx , \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ \\pm \\} } , \\mitu , \\mitw ) = 0 \\; . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mupPhi ^ { + ( + ) [ + ] } & = & \\displaystyle \\mitu _ { \\mita } ^ { + ( + ) [ + ] } \\mitphi _ { \\mita } ( \\mitx ) \\\\ & & \\displaystyle + ( \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { + ( + ) \\{ + \\} } - \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { + ( + ) \\{ - \\} } \\\\ & & \\displaystyle - \\mittheta ^ { + + \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { - ( + ) [ + ] } - \\mittheta ^ { ( + + ) \\mitalpha } \\mitw _ { \\dot { \\mita } } ^ { + ( - ) [ + ] } ) \\mitpsi _ { \\dot { \\mita } \\; \\mitalpha } ( \\mitx ) \\\\ & & \\displaystyle + ~ \\mathrm { d e r i v a t i v e ~ t e r m s } \\end{align*}"
],
"x_min": [
0.1728000044822693,
0.7533000111579895,
0.22869999706745148,
0.31929999589920044,
0.6455000042915344,
0.2777999937534332,
0.6122999787330627,
0.1728000044822693,
0.4194999933242798,
0.6723999977111816,
0.27090001106262207,
0.250900000333786,
0.18240000307559967,
0.30410000681877136,
0.2556999921798706
],
"y_min": [
0.17329999804496765,
0.23579999804496765,
0.30469998717308044,
0.45019999146461487,
0.6689000129699707,
0.6845999956130981,
0.6845999956130981,
0.7016000151634216,
0.7207000255584717,
0.7207000255584717,
0.20010000467300415,
0.3490999937057495,
0.41019999980926514,
0.5464000105857849,
0.7656000256538391
],
"x_max": [
0.24050000309944153,
0.8209999799728394,
0.2964000105857849,
0.3869999945163727,
0.6938999891281128,
0.6021999716758728,
0.8264999985694885,
0.3131999969482422,
0.4927999973297119,
0.7401000261306763,
0.7305999994277954,
0.7505999803543091,
0.789900004863739,
0.6973000168800354,
0.742900013923645
],
"y_max": [
0.1860000044107437,
0.2485000044107437,
0.3174000084400177,
0.4629000127315521,
0.6840000152587891,
0.7002000212669373,
0.7035999894142151,
0.7202000021934509,
0.7333999872207642,
0.7333999872207642,
0.22059999406337738,
0.36959999799728394,
0.43560001254081726,
0.5669000148773193,
0.8574000000953674
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page15
|
{
"latex": [
"$\\theta $",
"$8_s$",
"$SO(8)$",
"$\\theta $",
"$\\theta ^{[+]\\{-\\}}$",
"$\\{{\\cal D}\\}_+$",
"$SO(8)$",
"$\\theta ^{[+]\\{-\\}}$",
"$\\theta $",
"$\\theta ^{[+]\\{-\\}\\alpha }\\psi ^{+(+)\\{+\\}}_\\alpha (x,u,w)$",
"$\\{{\\cal D}\\}_+ \\psi ^{+(+)\\{+\\}}_\\alpha =0$",
"$(1,1,0,1)\\ \\leftrightarrow \\^^M[0,0,0,1]$",
"$8_c$",
"$D^{\\{++\\}}\\psi ^{+(+)\\{-\\}}_\\alpha = \\psi ^{+(+)\\{+\\}}_\\alpha $",
"$8_c$",
"$\\theta $",
"$SO(8)$",
"$\\Phi ^{+(+)[+]}$",
"$A^{(1,1,-1,2)}=0$",
"$B_{(\\alpha \\beta )}^{(1,1,-1,0)} = i\\partial _{\\alpha \\beta }\\phi _a u_a^{+(+)[-]}$",
"\\begin {equation}\\label {211} \\theta ^{[+]\\{-\\}}\\ \\stackrel {D^{\\{++\\}}}{\\rightarrow } \\^^M\\theta ^{[+]\\{+\\}}\\ \\stackrel {D^{(++)[-]\\{-\\}}}{\\rightarrow } \\^^M\\theta ^{(++)}\\ \\stackrel {D^{++(--)}}{\\rightarrow } \\ \\theta ^{++}\\;. \\end {equation}",
"\\begin {equation}\\label {212} \\theta ^{[+]\\{-\\}\\alpha }\\theta ^{[+]\\{-\\}}_\\alpha A^{(1,1,-1,2)}\\;, \\qquad \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } B_{(\\alpha \\beta )}^{(1,1,-1,0)} \\end {equation}",
"\\begin {equation}\\label {212'} \\mbox {type II:}\\qquad \\Sigma ^{+(+)\\{+\\}}(\\theta ^{++},\\theta ^{(++)},\\theta ^{[\\pm ]\\{+\\}}) \\end {equation}"
],
"latex_norm": [
"$ \\theta $",
"$ 8 _ { s } $",
"$ S O ( 8 ) $",
"$ \\theta $",
"$ \\theta ^ { [ + ] \\{ - \\} } $",
"$ \\{ D \\} _ { + } $",
"$ S O ( 8 ) $",
"$ \\theta ^ { [ + ] \\{ - \\} } $",
"$ \\theta $",
"$ \\theta ^ { [ + ] \\{ - \\} \\alpha } \\psi _ { \\alpha } ^ { + ( + ) \\{ + \\} } ( x , u , w ) $",
"$ \\{ D \\} _ { + } \\psi _ { \\alpha } ^ { + ( + ) \\{ + \\} } = 0 $",
"$ ( 1 , 1 , 0 , 1 ) ~ \\leftrightarrow ~ [ 0 , 0 , 0 , 1 ] $",
"$ 8 _ { c } $",
"$ D ^ { \\{ + + \\} } \\psi _ { \\alpha } ^ { + ( + ) \\{ - \\} } = \\psi _ { \\alpha } ^ { + ( + ) \\{ + \\} } $",
"$ 8 _ { c } $",
"$ \\theta $",
"$ S O ( 8 ) $",
"$ \\Phi ^ { + ( + ) [ + ] } $",
"$ A ^ { ( 1 , 1 , - 1 , 2 ) } = 0 $",
"$ B _ { ( \\alpha \\beta ) } ^ { ( 1 , 1 , - 1 , 0 ) } = i \\partial _ { \\alpha \\beta } \\phi _ { a } u _ { a } ^ { + ( + ) [ - ] } $",
"\\begin{equation*} \\theta ^ { [ + ] \\{ - \\} } ~ \\overset { D ^ { \\{ + + \\} } } { \\rightarrow } ~ \\theta ^ { [ + ] \\{ + \\} } ~ \\overset { D ^ { ( + + ) [ - ] \\{ - \\} } } { \\rightarrow } ~ \\theta ^ { ( + + ) } ~ \\overset { D ^ { + + ( - - ) } } { \\rightarrow } ~ \\theta ^ { + + } \\; . \\end{equation*}",
"\\begin{equation*} \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta _ { \\alpha } ^ { [ + ] \\{ - \\} } A ^ { ( 1 , 1 , - 1 , 2 ) } \\; , \\qquad \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } B _ { ( \\alpha \\beta ) } ^ { ( 1 , 1 , - 1 , 0 ) } \\end{equation*}",
"\\begin{equation*} t y p e ~ I I : \\qquad \\Sigma ^ { + ( + ) \\{ + \\} } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ \\pm ] \\{ + \\} } ) \\end{equation*}"
],
"latex_expand": [
"$ \\mittheta $",
"$ 8 _ { \\mits } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mittheta $",
"$ \\mittheta ^ { [ + ] \\{ - \\} } $",
"$ \\{ \\mitD \\} _ { + } $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mittheta ^ { [ + ] \\{ - \\} } $",
"$ \\mittheta $",
"$ \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ + \\} } ( \\mitx , \\mitu , \\mitw ) $",
"$ \\{ \\mitD \\} _ { + } \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ + \\} } = 0 $",
"$ ( 1 , 1 , 0 , 1 ) ~ \\leftrightarrow ~ [ 0 , 0 , 0 , 1 ] $",
"$ 8 _ { \\mitc } $",
"$ \\mitD ^ { \\{ + + \\} } \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ - \\} } = \\mitpsi _ { \\mitalpha } ^ { + ( + ) \\{ + \\} } $",
"$ 8 _ { \\mitc } $",
"$ \\mittheta $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"$ \\mitA ^ { ( 1 , 1 , - 1 , 2 ) } = 0 $",
"$ \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { ( 1 , 1 , - 1 , 0 ) } = \\miti \\mitpartial _ { \\mitalpha \\mitbeta } \\mitphi _ { \\mita } \\mitu _ { \\mita } ^ { + ( + ) [ - ] } $",
"\\begin{equation*} \\mittheta ^ { [ + ] \\{ - \\} } ~ \\overset { \\mitD ^ { \\{ + + \\} } } { \\rightarrow } ~ \\mittheta ^ { [ + ] \\{ + \\} } ~ \\overset { \\mitD ^ { ( + + ) [ - ] \\{ - \\} } } { \\rightarrow } ~ \\mittheta ^ { ( + + ) } ~ \\overset { \\mitD ^ { + + ( - - ) } } { \\rightarrow } ~ \\mittheta ^ { + + } \\; . \\end{equation*}",
"\\begin{equation*} \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta _ { \\mitalpha } ^ { [ + ] \\{ - \\} } \\mitA ^ { ( 1 , 1 , - 1 , 2 ) } \\; , \\qquad \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { ( 1 , 1 , - 1 , 0 ) } \\end{equation*}",
"\\begin{equation*} \\mathrm { t y p e } ~ \\mathrm { I I } : \\qquad \\mupSigma ^ { + ( + ) \\{ + \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ \\pm ] \\{ + \\} } ) \\end{equation*}"
],
"x_min": [
0.5770999789237976,
0.6434000134468079,
0.2750999927520752,
0.7975000143051147,
0.36070001125335693,
0.6690000295639038,
0.28200000524520874,
0.3449000120162964,
0.48100000619888306,
0.31310001015663147,
0.2142000049352646,
0.3379000127315521,
0.6633999943733215,
0.1728000044822693,
0.49140000343322754,
0.46299999952316284,
0.6295999884605408,
0.7588000297546387,
0.3109999895095825,
0.46720001101493835,
0.27160000801086426,
0.2702000141143799,
0.32829999923706055
],
"y_min": [
0.20999999344348907,
0.22750000655651093,
0.2777999937534332,
0.2782999873161316,
0.29350000619888306,
0.31200000643730164,
0.32910001277923584,
0.38670000433921814,
0.44040000438690186,
0.45509999990463257,
0.4740999937057495,
0.4950999915599823,
0.4966000020503998,
0.5259000062942505,
0.54830002784729,
0.5814999938011169,
0.6689000129699707,
0.70169997215271,
0.7188000082969666,
0.7163000106811523,
0.35109999775886536,
0.6176999807357788,
0.7943999767303467
],
"x_max": [
0.5867999792098999,
0.6614000201225281,
0.3296999931335449,
0.807200014591217,
0.41600000858306885,
0.7174000144004822,
0.33660000562667847,
0.4002000093460083,
0.49140000343322754,
0.5203999876976013,
0.3752000033855438,
0.5479999780654907,
0.6807000041007996,
0.3995000123977661,
0.5087000131607056,
0.4733999967575073,
0.6841999888420105,
0.8264999985694885,
0.42570000886917114,
0.6931999921798706,
0.7304999828338623,
0.7311999797821045,
0.6732000112533569
],
"y_max": [
0.22030000388622284,
0.23970000445842743,
0.2924000024795532,
0.289000004529953,
0.3061999976634979,
0.32659998536109924,
0.3441999852657318,
0.39989998936653137,
0.4510999917984009,
0.47369998693466187,
0.4927000105381012,
0.5097000002861023,
0.5083000063896179,
0.5435000061988831,
0.5600000023841858,
0.592199981212616,
0.6834999918937683,
0.7143999934196472,
0.7319999933242798,
0.7383000254631042,
0.37310001254081726,
0.6431000232696533,
0.8148999810218811
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page16
|
{
"latex": [
"$8_c$",
"$8_s$",
"$OSp(8/4,\\mathbb {R})$",
"$p$",
"$(\\Phi ^{+(+)[+]})^p$",
"$p\\geq 4$",
"$\\theta $",
"\\begin {eqnarray} (\\Phi ^{+(+)[+]})^p &=& \\phi ^{[0,0,p,0]} \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha }\\psi ^{[0,0,p-1,1]}_\\alpha + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 A^{[0,0,p-2,2]} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } B_{(\\alpha \\beta )}^{[0,1,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha }\\chi ^{[0,1,p-3,1]}_\\alpha + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\rho _{(\\alpha \\beta \\gamma )}^{[1,0,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2(\\theta ^{[+]\\{+\\}})^2 C^{[0,2,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } D^{[1,0,p-3,1]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\theta ^{++\\delta } E^{[0,0,p-2,0]}_{(\\alpha \\beta \\gamma \\delta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\sigma ^{[1,1,p-4,0]}_{\\alpha } + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 \\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } \\theta ^{++\\gamma } \\omega ^{[0,0,p-3,1]}_{(\\alpha \\beta \\gamma )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 F^{[2,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\theta ^{++\\beta } G^{[0,1,p-4,0]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 \\theta ^{++\\alpha }\\tau _\\alpha ^{[1,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 (\\theta ^{++})^2 H^{[0,0,p-4,0]} + \\ldots \\\\ &+& \\mbox { derivative terms} \\end {eqnarray}"
],
"latex_norm": [
"$ 8 _ { c } $",
"$ 8 _ { s } $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ p $",
"$ ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } $",
"$ p \\geq 4 $",
"$ \\theta $",
"\\begin{align*} ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } & = & \\phi ^ { [ 0 , 0 , p , 0 ] } \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\psi _ { \\alpha } ^ { [ 0 , 0 , p - 1 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } A ^ { [ 0 , 0 , p - 2 , 2 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } B _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\chi _ { \\alpha } ^ { [ 0 , 1 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\rho _ { ( \\alpha \\beta \\gamma ) } ^ { [ 1 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } C ^ { [ 0 , 2 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } D _ { ( \\alpha \\beta ) } ^ { [ 1 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\theta ^ { + + \\delta } E _ { ( \\alpha \\beta \\gamma \\delta ) } ^ { [ 0 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\sigma _ { \\alpha } ^ { [ 1 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } \\theta ^ { + + \\gamma } \\omega _ { ( \\alpha \\beta \\gamma ) } ^ { [ 0 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } F ^ { [ 2 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\theta ^ { + + \\beta } G _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } \\theta ^ { + + \\alpha } \\tau _ { \\alpha } ^ { [ 1 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } ( \\theta ^ { + + } ) ^ { 2 } H ^ { [ 0 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ~ d e r i v a t i v e ~ t e r m s \\end{align*}"
],
"latex_expand": [
"$ 8 _ { \\mitc } $",
"$ 8 _ { \\mits } $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitp $",
"$ ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } $",
"$ \\mitp \\geq 4 $",
"$ \\mittheta $",
"\\begin{align*} \\displaystyle ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } & = & \\displaystyle \\mitphi ^ { [ 0 , 0 , \\mitp , 0 ] } \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { [ 0 , 0 , \\mitp - 1 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mitA ^ { [ 0 , 0 , \\mitp - 2 , 2 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mitchi _ { \\mitalpha } ^ { [ 0 , 1 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mitrho _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 1 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mitC ^ { [ 0 , 2 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mitD _ { ( \\mitalpha \\mitbeta ) } ^ { [ 1 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mittheta ^ { + + \\mitdelta } \\mitE _ { ( \\mitalpha \\mitbeta \\mitgamma \\mitdelta ) } ^ { [ 0 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mitsigma _ { \\mitalpha } ^ { [ 1 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mittheta ^ { + + \\mitgamma } \\mitomega _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 0 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mitF ^ { [ 2 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mittheta ^ { + + \\mitbeta } \\mitG _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mittheta ^ { + + \\mitalpha } \\mittau _ { \\mitalpha } ^ { [ 1 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } ( \\mittheta ^ { + + } ) ^ { 2 } \\mitH ^ { [ 0 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ~ \\mathrm { d e r i v a t i v e ~ t e r m s } \\end{align*}"
],
"x_min": [
0.40149998664855957,
0.5120999813079834,
0.2231999933719635,
0.7540000081062317,
0.48170000314712524,
0.414000004529953,
0.5073000192642212,
0.22179999947547913
],
"y_min": [
0.15919999778270721,
0.15919999778270721,
0.399399995803833,
0.48969998955726624,
0.5005000233650208,
0.5893999934196472,
0.5889000296592712,
0.6288999915122986
],
"x_max": [
0.4187999963760376,
0.5293999910354614,
0.3303000032901764,
0.7644000053405762,
0.5728999972343445,
0.4650999903678894,
0.5177000164985657,
0.7110999822616577
],
"y_max": [
0.17090000212192535,
0.17090000212192535,
0.414000004529953,
0.49900001287460327,
0.5170999765396118,
0.6021000146865845,
0.5992000102996826,
0.8589000105857849
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003051_page17
|
{
"latex": [
"$SO(8)$",
"$p/2$",
"$\\theta $",
"$-1/2$",
"$(\\Phi ^{+(+)[+]})^p$",
"$p=1$",
"$p=2,3$",
"$p=2$",
"$\\partial ^{\\alpha \\beta } E^{[0,0,0,0]}_{(\\alpha \\beta \\gamma \\delta )} =\\partial ^{\\alpha \\beta } \\rho ^{[1,0,0,0]}_{(\\alpha \\beta \\gamma )} =\\partial ^{\\alpha \\beta } B^{[0,1,0,0]}_{(\\alpha \\beta )} = 0$",
"$SO(8)$",
"$OSp(8/4,\\mathbb {R})$",
"$\\Phi ^{+(+)[+]}$",
"$\\theta ^{--}$",
"$8_v$",
"$\\theta $",
"$SO(8)$",
"\\begin {eqnarray} (\\Phi ^{+(+)[+]})^p &=& \\phi ^{[0,0,p,0]} \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha }\\psi ^{[0,0,p-1,1]}_\\alpha + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 A^{[0,0,p-2,2]} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } B_{(\\alpha \\beta )}^{[0,1,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha }\\chi ^{[0,1,p-3,1]}_\\alpha + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\rho _{(\\alpha \\beta \\gamma )}^{[1,0,p-2,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2(\\theta ^{[+]\\{+\\}})^2 C^{[0,2,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2\\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } D^{[1,0,p-3,1]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& \\theta ^{[+]\\{-\\}\\alpha } \\theta ^{[+]\\{+\\}\\beta } \\theta ^{(++)\\gamma } \\theta ^{++\\delta } E^{[0,0,p-2,0]}_{(\\alpha \\beta \\gamma \\delta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\sigma ^{[1,1,p-4,0]}_{\\alpha } + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 \\theta ^{[+]\\{+\\}\\alpha } \\theta ^{(++)\\beta } \\theta ^{++\\gamma } \\omega ^{[0,0,p-3,1]}_{(\\alpha \\beta \\gamma )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 F^{[2,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 \\theta ^{(++)\\alpha } \\theta ^{++\\beta } G^{[0,1,p-4,0]}_{(\\alpha \\beta )} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 \\theta ^{++\\alpha }\\tau _\\alpha ^{[1,0,p-4,0]} + \\ldots \\\\ &+& (\\theta ^{[+]\\{-\\}})^2 (\\theta ^{[+]\\{+\\}})^2 (\\theta ^{(++)})^2 (\\theta ^{++})^2 H^{[0,0,p-4,0]} + \\ldots \\\\ &+& \\mbox { derivative terms} \\end {eqnarray}",
"\\begin {eqnarray} &&\\Phi ^{+(+)[+]} (\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[+]\\{+\\}}, \\theta ^{[+]\\{-\\}})\\;, \\\\ &&\\Phi ^{+(+)[-]} (\\theta ^{++}, \\theta ^{(++)}, \\theta ^{[-]\\{+\\}}, \\theta ^{[-]\\{-\\}})\\;, \\\\ &&\\Phi ^{+(-)\\{+\\}} (\\theta ^{++}, \\theta ^{(--)}, \\theta ^{[+]\\{+\\}}, \\theta ^{[-]\\{+\\}})\\;, \\\\ &&\\Phi ^{+(-)\\{-\\}} (\\theta ^{++}, \\theta ^{(--)}, \\theta ^{[+]\\{-\\}}, \\theta ^{[-]\\{-\\}})\\;. \\end {eqnarray}"
],
"latex_norm": [
"$ S O ( 8 ) $",
"$ p \\slash 2 $",
"$ \\theta $",
"$ - 1 \\slash 2 $",
"$ ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } $",
"$ p = 1 $",
"$ p = 2 , 3 $",
"$ p = 2 $",
"$ \\partial ^ { \\alpha \\beta } E _ { ( \\alpha \\beta \\gamma \\delta ) } ^ { [ 0 , 0 , 0 , 0 ] } = \\partial ^ { \\alpha \\beta } \\rho _ { ( \\alpha \\beta \\gamma ) } ^ { [ 1 , 0 , 0 , 0 ] } = \\partial ^ { \\alpha \\beta } B _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , 0 , 0 ] } = 0 $",
"$ S O ( 8 ) $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ \\Phi ^ { + ( + ) [ + ] } $",
"$ \\theta ^ { - - } $",
"$ 8 _ { v } $",
"$ \\theta $",
"$ S O ( 8 ) $",
"\\begin{align*} ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p } & = & \\phi ^ { [ 0 , 0 , p , 0 ] } \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\psi _ { \\alpha } ^ { [ 0 , 0 , p - 1 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } A ^ { [ 0 , 0 , p - 2 , 2 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } B _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\chi _ { \\alpha } ^ { [ 0 , 1 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\rho _ { ( \\alpha \\beta \\gamma ) } ^ { [ 1 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } C ^ { [ 0 , 2 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } D _ { ( \\alpha \\beta ) } ^ { [ 1 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & \\theta ^ { [ + ] \\{ - \\} \\alpha } \\theta ^ { [ + ] \\{ + \\} \\beta } \\theta ^ { ( + + ) \\gamma } \\theta ^ { + + \\delta } E _ { ( \\alpha \\beta \\gamma \\delta ) } ^ { [ 0 , 0 , p - 2 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\sigma _ { \\alpha } ^ { [ 1 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\theta ^ { [ + ] \\{ + \\} \\alpha } \\theta ^ { ( + + ) \\beta } \\theta ^ { + + \\gamma } \\omega _ { ( \\alpha \\beta \\gamma ) } ^ { [ 0 , 0 , p - 3 , 1 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } F ^ { [ 2 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\theta ^ { ( + + ) \\alpha } \\theta ^ { + + \\beta } G _ { ( \\alpha \\beta ) } ^ { [ 0 , 1 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } \\theta ^ { + + \\alpha } \\tau _ { \\alpha } ^ { [ 1 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ( \\theta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\theta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\theta ^ { ( + + ) } ) ^ { 2 } ( \\theta ^ { + + } ) ^ { 2 } H ^ { [ 0 , 0 , p - 4 , 0 ] } + \\ldots \\\\ & + & ~ d e r i v a t i v e ~ t e r m s \\end{align*}",
"\\begin{align*} & & \\Phi ^ { + ( + ) [ + ] } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ + \\} } , \\theta ^ { [ + ] \\{ - \\} } ) \\; , \\\\ & & \\Phi ^ { + ( + ) [ - ] } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ - ] \\{ + \\} } , \\theta ^ { [ - ] \\{ - \\} } ) \\; , \\\\ & & \\Phi ^ { + ( - ) \\{ + \\} } ( \\theta ^ { + + } , \\theta ^ { ( - - ) } , \\theta ^ { [ + ] \\{ + \\} } , \\theta ^ { [ - ] \\{ + \\} } ) \\; , \\\\ & & \\Phi ^ { + ( - ) \\{ - \\} } ( \\theta ^ { + + } , \\theta ^ { ( - - ) } , \\theta ^ { [ + ] \\{ - \\} } , \\theta ^ { [ - ] \\{ - \\} } ) \\; . \\end{align*}"
],
"latex_expand": [
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitp \\slash 2 $",
"$ \\mittheta $",
"$ - 1 \\slash 2 $",
"$ ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } $",
"$ \\mitp = 1 $",
"$ \\mitp = 2 , 3 $",
"$ \\mitp = 2 $",
"$ \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitE _ { ( \\mitalpha \\mitbeta \\mitgamma \\mitdelta ) } ^ { [ 0 , 0 , 0 , 0 ] } = \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitrho _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 1 , 0 , 0 , 0 ] } = \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , 0 , 0 ] } = 0 $",
"$ \\mitS \\mitO ( 8 ) $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mupPhi ^ { + ( + ) [ + ] } $",
"$ \\mittheta ^ { - - } $",
"$ 8 _ { \\mitv } $",
"$ \\mittheta $",
"$ \\mitS \\mitO ( 8 ) $",
"\\begin{align*} \\displaystyle ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp } & = & \\displaystyle \\mitphi ^ { [ 0 , 0 , \\mitp , 0 ] } \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { [ 0 , 0 , \\mitp - 1 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mitA ^ { [ 0 , 0 , \\mitp - 2 , 2 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mitB _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mitchi _ { \\mitalpha } ^ { [ 0 , 1 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mitrho _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 1 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mitC ^ { [ 0 , 2 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mitD _ { ( \\mitalpha \\mitbeta ) } ^ { [ 1 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle \\mittheta ^ { [ + ] \\{ - \\} \\mitalpha } \\mittheta ^ { [ + ] \\{ + \\} \\mitbeta } \\mittheta ^ { ( + + ) \\mitgamma } \\mittheta ^ { + + \\mitdelta } \\mitE _ { ( \\mitalpha \\mitbeta \\mitgamma \\mitdelta ) } ^ { [ 0 , 0 , \\mitp - 2 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mitsigma _ { \\mitalpha } ^ { [ 1 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } \\mittheta ^ { [ + ] \\{ + \\} \\mitalpha } \\mittheta ^ { ( + + ) \\mitbeta } \\mittheta ^ { + + \\mitgamma } \\mitomega _ { ( \\mitalpha \\mitbeta \\mitgamma ) } ^ { [ 0 , 0 , \\mitp - 3 , 1 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mitF ^ { [ 2 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } \\mittheta ^ { ( + + ) \\mitalpha } \\mittheta ^ { + + \\mitbeta } \\mitG _ { ( \\mitalpha \\mitbeta ) } ^ { [ 0 , 1 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } \\mittheta ^ { + + \\mitalpha } \\mittau _ { \\mitalpha } ^ { [ 1 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ( \\mittheta ^ { [ + ] \\{ - \\} } ) ^ { 2 } ( \\mittheta ^ { [ + ] \\{ + \\} } ) ^ { 2 } ( \\mittheta ^ { ( + + ) } ) ^ { 2 } ( \\mittheta ^ { + + } ) ^ { 2 } \\mitH ^ { [ 0 , 0 , \\mitp - 4 , 0 ] } + \\ldots \\\\ & \\displaystyle + & \\displaystyle ~ \\mathrm { d e r i v a t i v e ~ t e r m s } \\end{align*}",
"\\begin{align*} & & \\displaystyle \\mupPhi ^ { + ( + ) [ + ] } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ + \\} } , \\mittheta ^ { [ + ] \\{ - \\} } ) \\; , \\\\ & & \\displaystyle \\mupPhi ^ { + ( + ) [ - ] } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ - ] \\{ + \\} } , \\mittheta ^ { [ - ] \\{ - \\} } ) \\; , \\\\ & & \\displaystyle \\mupPhi ^ { + ( - ) \\{ + \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( - - ) } , \\mittheta ^ { [ + ] \\{ + \\} } , \\mittheta ^ { [ - ] \\{ + \\} } ) \\; , \\\\ & & \\displaystyle \\mupPhi ^ { + ( - ) \\{ - \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( - - ) } , \\mittheta ^ { [ + ] \\{ - \\} } , \\mittheta ^ { [ - ] \\{ - \\} } ) \\; . \\end{align*}"
],
"x_min": [
0.7186999917030334,
0.1728000044822693,
0.32829999923706055,
0.36489999294281006,
0.3158000111579895,
0.4194999933242798,
0.574999988079071,
0.20319999754428864,
0.1956000030040741,
0.46160000562667847,
0.2874999940395355,
0.36899998784065247,
0.23639999330043793,
0.3359000086784363,
0.4927000105381012,
0.24529999494552612,
0.32409998774528503,
0.3580000102519989
],
"y_min": [
0.3188000023365021,
0.4219000041484833,
0.42239999771118164,
0.4219000041484833,
0.43700000643730164,
0.4745999872684479,
0.4745999872684479,
0.5092999935150146,
0.5228999853134155,
0.5454000234603882,
0.5967000126838684,
0.6636000275611877,
0.7163000106811523,
0.7182999849319458,
0.7172999978065491,
0.7339000105857849,
0.14830000698566437,
0.774399995803833
],
"x_max": [
0.7732999920845032,
0.20250000059604645,
0.33869999647140503,
0.4104999899864197,
0.40700000524520874,
0.4699000120162964,
0.64410001039505,
0.250900000333786,
0.5728999972343445,
0.5162000060081482,
0.3946000039577484,
0.4366999864578247,
0.2696000039577484,
0.3546000123023987,
0.5030999779701233,
0.29919999837875366,
0.7732999920845032,
0.6744999885559082
],
"y_max": [
0.33340001106262207,
0.43650001287460327,
0.43309998512268066,
0.43650001287460327,
0.4535999894142151,
0.48730000853538513,
0.48730000853538513,
0.5214999914169312,
0.5443999767303467,
0.5600000023841858,
0.6118000149726868,
0.676800012588501,
0.7279999852180481,
0.7300000190734863,
0.7279999852180481,
0.7490000128746033,
0.28679999709129333,
0.8647000193595886
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0003051_page18
|
{
"latex": [
"$SO(8)$",
"$[r+2s,q,p,r]$",
"$\\ell = {1\\over 2}(p+2q+3r+4s)$",
"$1/2$",
"$J_{top}=2$",
"$q=r=s=0$",
"$J_{top}=3$",
"$r=s=0$",
"$J_{top}=7/2$",
"$r\\neq 0$",
"$s\\neq 0$",
"$\\ell [J_{top}] = {1\\over 2}(p+2q+3r+4s)+J_{top}$",
"$\\theta $",
"$-1/2$",
"$J=5/2$",
"$\\theta $",
"$OSp(8/4,\\mathbb {R})$",
"$1/8$",
"$1/4$",
"$1/2$",
"$\\Phi $",
"$\\Sigma $",
"$d_1-d_4 = 2s$",
"\\begin {eqnarray} &&(\\Phi ^{+(+)[+]})^{p+q+r+s}(\\Phi ^{+(+)[-]})^{q+r+s} (\\Phi ^{+(-)\\{+\\}})^{r+s}(\\Phi ^{+(-)\\{-\\}})^{s}\\\\ &&\\ =\\phi ^{[r+2s,q,p,r]} +\\ldots \\\\ &&\\ +\\theta ^{[+]\\{-\\}}_{\\alpha _1} \\theta ^{[+]\\{+\\}}_{\\alpha _2} \\theta ^{(++)}_{\\alpha _3} \\theta ^{++}_{\\alpha _4} A^{[r+2s,q,p-2,r](\\alpha _1\\ldots \\alpha _4)} +\\ldots \\\\ &&\\ +\\theta ^{[+]\\{-\\}}_{\\alpha _1} \\theta ^{[+]\\{+\\}}_{\\alpha _2} \\theta ^{(++)}_{\\alpha _3} \\theta ^{++}_{\\alpha _4} \\theta ^{[-]\\{+\\}}_{\\alpha _5} \\theta ^{[-]\\{-\\}}_{\\alpha _6} B^{[r+2s,q-1,p,r](\\alpha _1\\ldots \\alpha _6)} +\\ldots \\\\ &&\\ +\\theta ^{[+]\\{-\\}}_{\\alpha _1} \\theta ^{[+]\\{+\\}}_{\\alpha _2} \\theta ^{(++)}_{\\alpha _3} \\theta ^{++}_{\\alpha _4} \\theta ^{[-]\\{+\\}}_{\\alpha _5} \\theta ^{[-]\\{-\\}}_{\\alpha _6} \\theta ^{(--)}_{\\alpha _7} \\chi ^{[r+2s-1,q,p,r](\\alpha _1\\ldots \\alpha _7)} +\\ldots \\end {eqnarray}",
"\\begin {eqnarray} {1\\over 8} \\mbox { BPS:} && {\\cal D}(d_1+d_2 + {1\\over 2}(d_3+d_4), 0; d_1,d_2,d_3,d_4)\\;, \\quad d_1-d_4 = 2s \\geq 0\\;; \\\\ {1\\over 4} \\mbox { BPS:} && {\\cal D}(d_2 + {1\\over 2}d_3, 0; 0,d_2,d_3,0)\\;; \\\\ {1\\over 2} \\mbox { BPS:} && {\\cal D}({1\\over 2}d_3, 0; 0,0,d_3,0)\\;. \\end {eqnarray}",
"\\begin {equation}\\label {009} [\\Phi ^{+(+)[+]}(\\theta ^{++},\\theta ^{(++)},\\theta ^{[+]\\{\\pm \\}})]^{p+q} [\\Sigma ^{+(+)\\{+\\}}(\\theta ^{++},\\theta ^{(++)},\\theta ^{[\\pm ]\\{+\\}})]^{q}\\;, \\end {equation}",
"\\begin {equation}\\label {00777} [\\Phi ^{+(+)[+]}]^{m+k}[\\Phi ^{+(+)[-]}]^{k} [\\Sigma ^{+(+)\\{+\\}}]^{n} \\end {equation}"
],
"latex_norm": [
"$ S O ( 8 ) $",
"$ [ r + 2 s , q , p , r ] $",
"$ l = \\frac { 1 } { 2 } ( p + 2 q + 3 r + 4 s ) $",
"$ 1 \\slash 2 $",
"$ J _ { t o p } = 2 $",
"$ q = r = s = 0 $",
"$ J _ { t o p } = 3 $",
"$ r = s = 0 $",
"$ J _ { t o p } = 7 \\slash 2 $",
"$ r \\ne 0 $",
"$ s \\ne 0 $",
"$ l [ J _ { t o p } ] = \\frac { 1 } { 2 } ( p + 2 q + 3 r + 4 s ) + J _ { t o p } $",
"$ \\theta $",
"$ - 1 \\slash 2 $",
"$ J = 5 \\slash 2 $",
"$ \\theta $",
"$ O S p ( 8 \\slash 4 , R ) $",
"$ 1 \\slash 8 $",
"$ 1 \\slash 4 $",
"$ 1 \\slash 2 $",
"$ \\Phi $",
"$ \\Sigma $",
"$ d _ { 1 } - d _ { 4 } = 2 s $",
"\\begin{align*} & & ( \\Phi ^ { + ( + ) [ + ] } ) ^ { p + q + r + s } ( \\Phi ^ { + ( + ) [ - ] } ) ^ { q + r + s } ( \\Phi ^ { + ( - ) \\{ + \\} } ) ^ { r + s } ( \\Phi ^ { + ( - ) \\{ - \\} } ) ^ { s } \\\\ & & ~ = \\phi ^ { [ r + 2 s , q , p , r ] } + \\ldots \\\\ & & ~ + \\theta _ { \\alpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\theta _ { \\alpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\theta _ { \\alpha _ { 3 } } ^ { ( + + ) } \\theta _ { \\alpha _ { 4 } } ^ { + + } A ^ { [ r + 2 s , q , p - 2 , r ] ( \\alpha _ { 1 } \\ldots \\alpha _ { 4 } ) } + \\ldots \\\\ & & ~ + \\theta _ { \\alpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\theta _ { \\alpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\theta _ { \\alpha _ { 3 } } ^ { ( + + ) } \\theta _ { \\alpha _ { 4 } } ^ { + + } \\theta _ { \\alpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\theta _ { \\alpha _ { 6 } } ^ { [ - ] \\{ - \\} } B ^ { [ r + 2 s , q - 1 , p , r ] ( \\alpha _ { 1 } \\ldots \\alpha _ { 6 } ) } + \\ldots \\\\ & & ~ + \\theta _ { \\alpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\theta _ { \\alpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\theta _ { \\alpha _ { 3 } } ^ { ( + + ) } \\theta _ { \\alpha _ { 4 } } ^ { + + } \\theta _ { \\alpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\theta _ { \\alpha _ { 6 } } ^ { [ - ] \\{ - \\} } \\theta _ { \\alpha _ { 7 } } ^ { ( - - ) } \\chi ^ { [ r + 2 s - 1 , q , p , r ] ( \\alpha _ { 1 } \\ldots \\alpha _ { 7 } ) } + \\ldots \\end{align*}",
"\\begin{align*} \\frac { 1 } { 8 } ~ B P S : & & D ( d _ { 1 } + d _ { 2 } + \\frac { 1 } { 2 } ( d _ { 3 } + d _ { 4 } ) , 0 ; d _ { 1 } , d _ { 2 } , d _ { 3 } , d _ { 4 } ) \\; , \\quad d _ { 1 } - d _ { 4 } = 2 s \\geq 0 \\; ; \\\\ \\frac { 1 } { 4 } ~ B P S : & & D ( d _ { 2 } + \\frac { 1 } { 2 } d _ { 3 } , 0 ; 0 , d _ { 2 } , d _ { 3 } , 0 ) \\; ; \\\\ \\frac { 1 } { 2 } ~ B P S : & & D ( \\frac { 1 } { 2 } d _ { 3 } , 0 ; 0 , 0 , d _ { 3 } , 0 ) \\; . \\end{align*}",
"\\begin{equation*} [ \\Phi ^ { + ( + ) [ + ] } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ + ] \\{ \\pm \\} } ) ] ^ { p + q } [ \\Sigma ^ { + ( + ) \\{ + \\} } ( \\theta ^ { + + } , \\theta ^ { ( + + ) } , \\theta ^ { [ \\pm ] \\{ + \\} } ) ] ^ { q } \\; , \\end{equation*}",
"\\begin{equation*} [ \\Phi ^ { + ( + ) [ + ] } ] ^ { m + k } [ \\Phi ^ { + ( + ) [ - ] } ] ^ { k } [ \\Sigma ^ { + ( + ) \\{ + \\} } ] ^ { n } \\end{equation*}"
],
"latex_expand": [
"$ \\mitS \\mitO ( 8 ) $",
"$ [ \\mitr + 2 \\mits , \\mitq , \\mitp , \\mitr ] $",
"$ \\ell = \\frac { 1 } { 2 } ( \\mitp + 2 \\mitq + 3 \\mitr + 4 \\mits ) $",
"$ 1 \\slash 2 $",
"$ \\mitJ _ { \\mitt \\mito \\mitp } = 2 $",
"$ \\mitq = \\mitr = \\mits = 0 $",
"$ \\mitJ _ { \\mitt \\mito \\mitp } = 3 $",
"$ \\mitr = \\mits = 0 $",
"$ \\mitJ _ { \\mitt \\mito \\mitp } = 7 \\slash 2 $",
"$ \\mitr \\ne 0 $",
"$ \\mits \\ne 0 $",
"$ \\ell [ \\mitJ _ { \\mitt \\mito \\mitp } ] = \\frac { 1 } { 2 } ( \\mitp + 2 \\mitq + 3 \\mitr + 4 \\mits ) + \\mitJ _ { \\mitt \\mito \\mitp } $",
"$ \\mittheta $",
"$ - 1 \\slash 2 $",
"$ \\mitJ = 5 \\slash 2 $",
"$ \\mittheta $",
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ 1 \\slash 8 $",
"$ 1 \\slash 4 $",
"$ 1 \\slash 2 $",
"$ \\mupPhi $",
"$ \\mupSigma $",
"$ \\mitd _ { 1 } - \\mitd _ { 4 } = 2 \\mits $",
"\\begin{align*} & & \\displaystyle ( \\mupPhi ^ { + ( + ) [ + ] } ) ^ { \\mitp + \\mitq + \\mitr + \\mits } ( \\mupPhi ^ { + ( + ) [ - ] } ) ^ { \\mitq + \\mitr + \\mits } ( \\mupPhi ^ { + ( - ) \\{ + \\} } ) ^ { \\mitr + \\mits } ( \\mupPhi ^ { + ( - ) \\{ - \\} } ) ^ { \\mits } \\\\ & & \\displaystyle ~ = \\mitphi ^ { [ \\mitr + 2 \\mits , \\mitq , \\mitp , \\mitr ] } + \\ldots \\\\ & & \\displaystyle ~ + \\mittheta _ { \\mitalpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 3 } } ^ { ( + + ) } \\mittheta _ { \\mitalpha _ { 4 } } ^ { + + } \\mitA ^ { [ \\mitr + 2 \\mits , \\mitq , \\mitp - 2 , \\mitr ] ( \\mitalpha _ { 1 } \\ldots \\mitalpha _ { 4 } ) } + \\ldots \\\\ & & \\displaystyle ~ + \\mittheta _ { \\mitalpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 3 } } ^ { ( + + ) } \\mittheta _ { \\mitalpha _ { 4 } } ^ { + + } \\mittheta _ { \\mitalpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 6 } } ^ { [ - ] \\{ - \\} } \\mitB ^ { [ \\mitr + 2 \\mits , \\mitq - 1 , \\mitp , \\mitr ] ( \\mitalpha _ { 1 } \\ldots \\mitalpha _ { 6 } ) } + \\ldots \\\\ & & \\displaystyle ~ + \\mittheta _ { \\mitalpha _ { 1 } } ^ { [ + ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 2 } } ^ { [ + ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 3 } } ^ { ( + + ) } \\mittheta _ { \\mitalpha _ { 4 } } ^ { + + } \\mittheta _ { \\mitalpha _ { 5 } } ^ { [ - ] \\{ + \\} } \\mittheta _ { \\mitalpha _ { 6 } } ^ { [ - ] \\{ - \\} } \\mittheta _ { \\mitalpha _ { 7 } } ^ { ( - - ) } \\mitchi ^ { [ \\mitr + 2 \\mits - 1 , \\mitq , \\mitp , \\mitr ] ( \\mitalpha _ { 1 } \\ldots \\mitalpha _ { 7 } ) } + \\ldots \\end{align*}",
"\\begin{align*} \\displaystyle \\frac { 1 } { 8 } ~ \\mathrm { B P S } : & & \\displaystyle \\mitD ( \\mitd _ { 1 } + \\mitd _ { 2 } + \\frac { 1 } { 2 } ( \\mitd _ { 3 } + \\mitd _ { 4 } ) , 0 ; \\mitd _ { 1 } , \\mitd _ { 2 } , \\mitd _ { 3 } , \\mitd _ { 4 } ) \\; , \\quad \\mitd _ { 1 } - \\mitd _ { 4 } = 2 \\mits \\geq 0 \\; ; \\\\ \\displaystyle \\frac { 1 } { 4 } ~ \\mathrm { B P S } : & & \\displaystyle \\mitD ( \\mitd _ { 2 } + \\frac { 1 } { 2 } \\mitd _ { 3 } , 0 ; 0 , \\mitd _ { 2 } , \\mitd _ { 3 } , 0 ) \\; ; \\\\ \\displaystyle \\frac { 1 } { 2 } ~ \\mathrm { B P S } : & & \\displaystyle \\mitD ( \\frac { 1 } { 2 } \\mitd _ { 3 } , 0 ; 0 , 0 , \\mitd _ { 3 } , 0 ) \\; . \\end{align*}",
"\\begin{equation*} [ \\mupPhi ^ { + ( + ) [ + ] } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ + ] \\{ \\pm \\} } ) ] ^ { \\mitp + \\mitq } [ \\mupSigma ^ { + ( + ) \\{ + \\} } ( \\mittheta ^ { + + } , \\mittheta ^ { ( + + ) } , \\mittheta ^ { [ \\pm ] \\{ + \\} } ) ] ^ { \\mitq } \\; , \\end{equation*}",
"\\begin{equation*} [ \\mupPhi ^ { + ( + ) [ + ] } ] ^ { \\mitm + \\mitk } [ \\mupPhi ^ { + ( + ) [ - ] } ] ^ { \\mitk } [ \\mupSigma ^ { + ( + ) \\{ + \\} } ] ^ { \\mitn } \\end{equation*}"
],
"x_min": [
0.7276999950408936,
0.1728000044822693,
0.5396999716758728,
0.6779999732971191,
0.609499990940094,
0.7020999789237976,
0.1728000044822693,
0.26739999651908875,
0.3849000036716461,
0.5555999875068665,
0.6351000070571899,
0.33169999718666077,
0.7526000142097473,
0.2667999863624573,
0.7103999853134155,
0.5266000032424927,
0.28060001134872437,
0.5425000190734863,
0.5839999914169312,
0.64410001039505,
0.33379998803138733,
0.39739999175071716,
0.2667999863624573,
0.22599999606609344,
0.18870000541210175,
0.21220000088214874,
0.3537999987602234
],
"y_min": [
0.30219998955726624,
0.3188000023365021,
0.31790000200271606,
0.33640000224113464,
0.3544999957084656,
0.35499998927116394,
0.3716000020503998,
0.37209999561309814,
0.37059998512268066,
0.3716000020503998,
0.3716000020503998,
0.38670000433921814,
0.388700008392334,
0.4047999978065491,
0.4047999978065491,
0.4399000108242035,
0.49070000648498535,
0.49070000648498535,
0.49070000648498535,
0.49070000648498535,
0.7354000210762024,
0.7354000210762024,
0.8446999788284302,
0.17870000004768372,
0.5166000127792358,
0.6996999979019165,
0.7973999977111816
],
"x_max": [
0.7815999984741211,
0.2847999930381775,
0.7193999886512756,
0.7077000141143799,
0.6772000193595886,
0.8209999799728394,
0.2418999969959259,
0.3531000018119812,
0.4740000069141388,
0.6032999753952026,
0.6827999949455261,
0.6420000195503235,
0.7623000144958496,
0.3124000132083893,
0.7829999923706055,
0.5370000004768372,
0.38769999146461487,
0.5722000002861023,
0.6144000291824341,
0.6744999885559082,
0.3483000099658966,
0.41190001368522644,
0.37389999628067017,
0.8065000176429749,
0.807200014591217,
0.7512000203132629,
0.6474999785423279
],
"y_max": [
0.31679999828338623,
0.33390000462532043,
0.33550000190734863,
0.35100001096725464,
0.3686999976634979,
0.3677000105381012,
0.38580000400543213,
0.38190001249313354,
0.385699987411499,
0.384799987077713,
0.384799987077713,
0.40380001068115234,
0.39899998903274536,
0.41990000009536743,
0.41990000009536743,
0.4505999982357025,
0.505299985408783,
0.505299985408783,
0.505299985408783,
0.505299985408783,
0.7457000017166138,
0.7457000017166138,
0.8574000000953674,
0.29440000653266907,
0.6201000213623047,
0.7202000021934509,
0.8179000020027161
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003051_page19
|
{
"latex": [
"$OSp(8/4,\\mathbb {R})$",
"$N=1$",
"$AdS_4$",
"$AdS_4\\times S^7$",
"$M^4\\times T^7$",
"$AdS_4$",
"$N=8$",
"$E_{7(7)}$",
"$N=8$"
],
"latex_norm": [
"$ O S p ( 8 \\slash 4 , R ) $",
"$ N = 1 $",
"$ A d S _ { 4 } $",
"$ A d S _ { 4 } \\times S ^ { 7 } $",
"$ M ^ { 4 } \\times T ^ { 7 } $",
"$ A d S _ { 4 } $",
"$ N = 8 $",
"$ E _ { 7 ( 7 ) } $",
"$ N = 8 $"
],
"latex_expand": [
"$ \\mitO \\mitS \\mitp ( 8 \\slash 4 , \\BbbR ) $",
"$ \\mitN = 1 $",
"$ \\mitA \\mitd \\mitS _ { 4 } $",
"$ \\mitA \\mitd \\mitS _ { 4 } \\times \\mitS ^ { 7 } $",
"$ \\mitM ^ { 4 } \\times \\mitT ^ { 7 } $",
"$ \\mitA \\mitd \\mitS _ { 4 } $",
"$ \\mitN = 8 $",
"$ \\mitE _ { 7 ( 7 ) } $",
"$ \\mitN = 8 $"
],
"x_min": [
0.7387999892234802,
0.47130000591278076,
0.6980000138282776,
0.5638999938964844,
0.5895000100135803,
0.6531000137329102,
0.23980000615119934,
0.33169999718666077,
0.4934000074863434
],
"y_min": [
0.1889999955892563,
0.2754000127315521,
0.30959999561309814,
0.35989999771118164,
0.41110000014305115,
0.42969998717308044,
0.447299987077713,
0.4814000129699707,
0.4814000129699707
],
"x_max": [
0.8458999991416931,
0.5307000279426575,
0.7436000108718872,
0.6557999849319458,
0.6654999852180481,
0.6987000107765198,
0.2971999943256378,
0.373199999332428,
0.5479999780654907
],
"y_max": [
0.20360000431537628,
0.2856999933719635,
0.322299987077713,
0.374099999666214,
0.4242999851703644,
0.4424000084400177,
0.4575999975204468,
0.4959999918937683,
0.4916999936103821
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003051_page20
|
{
"latex": [
"$N$",
"$_4$"
],
"latex_norm": [
"$ N $",
"$ { } _ { 4 } $"
],
"latex_expand": [
"$ \\mitN $",
"$ { } _ { 4 } $"
],
"x_min": [
0.4311999976634979,
0.5909000039100647
],
"y_min": [
0.5160999894142151,
0.5214999914169312
],
"x_max": [
0.4499000012874603,
0.5992000102996826
],
"y_max": [
0.5264000296592712,
0.5282999873161316
],
"expr_type": [
"embedded",
"embedded"
]
}
|
|
0003060_page01
|
{
"latex": [
"$\\mathcal {J}_{mn}$",
"$d$",
"$d-d_{k}$",
"$d_{k}$",
"$d_{k}=2$",
"$d_{k}$",
"$(d-d_{k})$",
"$\\mathcal {J}$",
"$\\mathcal {J}$",
"$H=dB$",
"$F_{(2)}$",
"\\begin {eqnarray} 0&=& R_{\\mu \\nu } \\,-\\, 2\\nabla _{\\mu }\\nabla _{\\nu }\\phi \\,+\\, \\textstyle {\\frac {1}{4}} {H_{\\mu }}^{\\kappa \\rho }H_{\\nu \\kappa \\rho } \\,-\\, \\textstyle {\\frac {1}{2}}e^{2\\phi } \\left [ F_{(2)\\mu \\kappa }{F_{(2)\\nu }}^{\\kappa } \\,-\\, \\textstyle {\\frac {1}{4}}g_{\\mu \\nu }F_{(2)}^{2} \\right ] \\; ,\\\\ && \\\\ 0 &=& R \\,+\\, 4\\left (\\partial \\phi \\right )^{2} \\,-\\, 4 \\nabla ^{2}\\phi \\,+\\, \\textstyle {\\frac {1}{2\\cdot 3!}}H^{2} \\; , \\\\ && \\\\ 0 &=& \\nabla _{\\mu }\\left ( e^{-2\\phi }H^{\\mu \\kappa \\rho }\\right ) \\;=\\; \\nabla _{\\mu }F_{(2)}^{\\mu \\nu } \\; , \\end {eqnarray}"
],
"latex_norm": [
"$ J _ { m n } $",
"$ d $",
"$ d - d _ { k } $",
"$ d _ { k } $",
"$ d _ { k } = 2 $",
"$ d _ { k } $",
"$ ( d - d _ { k } ) $",
"$ J $",
"$ J $",
"$ H = d B $",
"$ F _ { ( 2 ) } $",
"\\begin{align*} 0 & = & R _ { \\mu \\nu } \\, - \\, 2 \\nabla _ { \\mu } \\nabla _ { \\nu } \\phi \\, + \\, \\frac { 1 } { 4 } { H _ { \\mu } } ^ { \\kappa \\rho } H _ { \\nu \\kappa \\rho } \\, - \\, \\frac { 1 } { 2 } e ^ { 2 \\phi } [ F _ { ( 2 ) \\mu \\kappa } { F _ { ( 2 ) \\nu } } ^ { \\kappa } \\, - \\, \\frac { 1 } { 4 } g _ { \\mu \\nu } F _ { ( 2 ) } ^ { 2 } ] \\; , \\\\ 0 & = & R \\, + \\, 4 { ( \\partial \\phi ) } ^ { 2 } \\, - \\, 4 \\nabla ^ { 2 } \\phi \\, + \\, \\frac { 1 } { 2 \\cdot 3 ! } H ^ { 2 } \\; , \\\\ 0 & = & \\nabla _ { \\mu } ( e ^ { - 2 \\phi } H ^ { \\mu \\kappa \\rho } ) \\; = \\; \\nabla _ { \\mu } F _ { ( 2 ) } ^ { \\mu \\nu } \\; , \\end{align*}"
],
"latex_expand": [
"$ \\mscrJ _ { \\mitm \\mitn } $",
"$ \\mitd $",
"$ \\mitd - \\mitd _ { \\mitk } $",
"$ \\mitd _ { \\mitk } $",
"$ \\mitd _ { \\mitk } = 2 $",
"$ \\mitd _ { \\mitk } $",
"$ ( \\mitd - \\mitd _ { \\mitk } ) $",
"$ \\mscrJ $",
"$ \\mscrJ $",
"$ \\mitH = \\mitd \\mitB $",
"$ \\mitF _ { ( 2 ) } $",
"\\begin{align*} \\displaystyle 0 & = & \\displaystyle \\mitR _ { \\mitmu \\mitnu } \\, - \\, 2 \\nabla _ { \\mitmu } \\nabla _ { \\mitnu } \\mitphi \\, + \\, \\textstyle \\frac { 1 } { 4 } { \\mitH _ { \\mitmu } } ^ { \\mitkappa \\mitrho } \\mitH _ { \\mitnu \\mitkappa \\mitrho } \\, - \\, \\textstyle \\frac { 1 } { 2 } \\mite ^ { 2 \\mitphi } \\left[ \\mitF _ { ( 2 ) \\mitmu \\mitkappa } { \\mitF _ { ( 2 ) \\mitnu } } ^ { \\mitkappa } \\, - \\, \\textstyle \\frac { 1 } { 4 } \\mitg _ { \\mitmu \\mitnu } \\mitF _ { ( 2 ) } ^ { 2 } \\right] \\; , \\\\ \\displaystyle 0 & = & \\displaystyle \\mitR \\, + \\, 4 { \\left( \\mitpartial \\mitphi \\right) } ^ { 2 } \\, - \\, 4 \\nabla ^ { 2 } \\mitphi \\, + \\, \\textstyle \\frac { 1 } { 2 \\cdot 3 ! } \\mitH ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle \\nabla _ { \\mitmu } \\left( \\mite ^ { - 2 \\mitphi } \\mitH ^ { \\mitmu \\mitkappa \\mitrho } \\right) \\; = \\; \\nabla _ { \\mitmu } \\mitF _ { ( 2 ) } ^ { \\mitmu \\mitnu } \\; , \\end{align*}"
],
"x_min": [
0.37869998812675476,
0.13609999418258667,
0.7311999797821045,
0.8410999774932861,
0.6571999788284302,
0.5645999908447266,
0.13609999418258667,
0.15960000455379486,
0.2667999863624573,
0.6032999753952026,
0.6807000041007996,
0.20730000734329224
],
"y_min": [
0.5273000001907349,
0.5590999722480774,
0.5590999722480774,
0.5590999722480774,
0.5913000106811523,
0.6557999849319458,
0.6714000105857849,
0.7041000127792358,
0.7202000021934509,
0.7523999810218811,
0.7523999810218811,
0.7811999917030334
],
"x_max": [
0.4138999879360199,
0.14579999446868896,
0.7789000272750854,
0.8597999811172485,
0.7159000039100647,
0.583299994468689,
0.20239999890327454,
0.1762000024318695,
0.2827000021934509,
0.6690000295639038,
0.7117999792098999,
0.8029999732971191
],
"y_max": [
0.5385000109672546,
0.5688999891281128,
0.5708000063896179,
0.5708000063896179,
0.6029999852180481,
0.6675000190734863,
0.6845999956130981,
0.7148000001907349,
0.73089998960495,
0.7616999745368958,
0.7670000195503235,
0.8916000127792358
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003060_page02
|
{
"latex": [
"$dH=dF_{(2)}=0$",
"$\\overline {g}_{ij}$",
"$R(\\overline {g})_{ij}\\equiv \\lambda \\overline {g}_{ij}$",
"$h_{mn}$",
"$d_{k}$",
"$D\\equiv d-1-d_{k}$",
"$d$",
"$\\mathcal {J}$",
"$\\overline {\\nabla }$",
"$\\sigma $",
"$\\aleph $",
"$M=e^{-2\\psi }N$",
"$e^{2\\psi }d\\sigma =dt$",
"$t$",
"$\\lambda =0$",
"$M=e^{\\alpha t}$",
"$\\eta =e^{\\beta t}$",
"$h_{mn}$",
"\\begin {equation} ds^{2}\\;=\\; N^{2}(\\sigma )d\\sigma ^{2} \\,-\\,\\eta ^{2}(\\sigma )\\overline {g}_{ij}dx^{i}dx^{j} \\,-\\, R^{2}(\\sigma )h_{mn}dy^{m}dy^{n} \\; , \\label {eq:AnsatzG} \\end {equation}",
"\\begin {equation} B \\;=\\; f(\\sigma )\\, \\mathcal {J} \\;=\\; \\textstyle {\\frac {1}{2}} f(\\sigma ) \\mathcal {J}_{mn} dy^{m}\\wedge dy^{n} \\; , \\end {equation}",
"\\begin {equation} {\\mathcal {J}^{m}}_{p}{\\mathcal {J}^{p}}_{n} \\;=\\; -{\\delta ^{m}}_{n} \\hspace {.5cm},\\hspace {.5cm} \\overline {\\nabla }_{m}\\, \\mathcal {J}_{np}\\;=\\; 0 \\; , \\label {eq:KDef} \\end {equation}",
"\\begin {equation} \\dot {f} \\;=\\; \\aleph \\, Ne^{2\\phi }\\eta ^{-D}R^{4-d_{k}} \\; , \\end {equation}",
"\\begin {equation} \\psi \\;=\\; \\phi \\,+\\, \\textstyle {\\frac {1}{2}}\\log \\left ( N\\right ) \\,-\\, \\textstyle {\\frac {D}{2}}\\log \\left ( \\eta \\right ) \\,-\\, \\textstyle {\\frac {d_{k}}{2}}\\log \\left ( R\\right ) \\; , \\end {equation}",
"\\begin {eqnarray} 0 &=& \\left (\\log R\\right )^{\\prime \\prime } \\,+\\, \\textstyle {\\frac {\\aleph ^{2}}{2}}R^{4} \\; ,\\\\ 0 &=& \\left (\\log \\eta \\right )^{\\prime \\prime } \\,-\\, \\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left (\\log M\\right )^{\\prime \\prime } \\,-\\, D\\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left [ \\left (\\log M\\right )^{\\prime }\\right ]^{2} \\,-\\, D \\left [ \\left (\\log \\eta \\right )^{\\prime }\\right ]^{2} \\,-\\, d_{k}\\left [ \\left (\\log R\\right )^{\\prime }\\right ]^{2} \\,-\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{4}}R^{4} \\; , \\end {eqnarray}",
"\\begin {equation} R(t)\\;=\\; R_{0}\\, \\cosh ^{-1/2}\\left ( \\aleph R_{0}^{2}t\\right ) \\; , \\end {equation}"
],
"latex_norm": [
"$ d H = d F _ { ( 2 ) } = 0 $",
"$ \\overline { g } _ { i j } $",
"$ R ( \\overline { g } ) _ { i j } \\equiv \\lambda \\overline { g } _ { i j } $",
"$ h _ { m n } $",
"$ d _ { k } $",
"$ D \\equiv d - 1 - d _ { k } $",
"$ d $",
"$ J $",
"$ \\overline { \\nabla } $",
"$ \\sigma $",
"$ \\aleph $",
"$ M = e ^ { - 2 \\psi } N $",
"$ e ^ { 2 \\psi } d \\sigma = d t $",
"$ t $",
"$ \\lambda = 0 $",
"$ M = e ^ { \\alpha t } $",
"$ \\eta = e ^ { \\beta t } $",
"$ h _ { m n } $",
"\\begin{equation*} d s ^ { 2 } \\; = \\; N ^ { 2 } ( \\sigma ) d \\sigma ^ { 2 } \\, - \\, \\eta ^ { 2 } ( \\sigma ) \\overline { g } _ { i j } d x ^ { i } d x ^ { j } \\, - \\, R ^ { 2 } ( \\sigma ) h _ { m n } d y ^ { m } d y ^ { n } \\; , \\end{equation*}",
"\\begin{equation*} B \\; = \\; f ( \\sigma ) \\, J \\; = \\; \\frac { 1 } { 2 } f ( \\sigma ) J _ { m n } d y ^ { m } \\wedge d y ^ { n } \\; , \\end{equation*}",
"\\begin{equation*} { J ^ { m } } _ { p } { J ^ { p } } _ { n } \\; = \\; - { \\delta ^ { m } } _ { n } \\hspace{14.23pt} , \\hspace{14.23pt} \\overline { \\nabla } _ { m } \\, J _ { n p } \\; = \\; 0 \\; , \\end{equation*}",
"\\begin{equation*} \\dot { f } \\; = \\; \\aleph \\, N e ^ { 2 \\phi } \\eta ^ { - D } R ^ { 4 - d _ { k } } \\; , \\end{equation*}",
"\\begin{equation*} \\psi \\; = \\; \\phi \\, + \\, \\frac { 1 } { 2 } \\operatorname { l o g } ( N ) \\, - \\, \\frac { D } { 2 } \\operatorname { l o g } ( \\eta ) \\, - \\, \\frac { d _ { k } } { 2 } \\operatorname { l o g } ( R ) \\; , \\end{equation*}",
"\\begin{align*} 0 & = & { ( \\operatorname { l o g } R ) } ^ { \\prime \\prime } \\, + \\, \\frac { \\aleph ^ { 2 } } { 2 } R ^ { 4 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } \\eta ) } ^ { \\prime \\prime } \\, - \\, \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } M ) } ^ { \\prime \\prime } \\, - \\, D \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { [ { ( \\operatorname { l o g } M ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, D { [ { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, d _ { k } { [ { ( \\operatorname { l o g } R ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 4 } R ^ { 4 } \\; , \\end{align*}",
"\\begin{equation*} R ( t ) \\; = \\; R _ { 0 } \\, { \\operatorname { c o s h } } ^ { - 1 \\slash 2 } ( \\aleph R _ { 0 } ^ { 2 } t ) \\; , \\end{equation*}"
],
"latex_expand": [
"$ \\mitd \\mitH = \\mitd \\mitF _ { ( 2 ) } = 0 $",
"$ \\overline { \\mitg } _ { \\miti \\mitj } $",
"$ \\mitR ( \\overline { \\mitg } ) _ { \\miti \\mitj } \\equiv \\mitlambda \\overline { \\mitg } _ { \\miti \\mitj } $",
"$ \\Planckconst _ { \\mitm \\mitn } $",
"$ \\mitd _ { \\mitk } $",
"$ \\mitD \\equiv \\mitd - 1 - \\mitd _ { \\mitk } $",
"$ \\mitd $",
"$ \\mscrJ $",
"$ \\overline { \\nabla } $",
"$ \\mitsigma $",
"$ \\aleph $",
"$ \\mitM = \\mite ^ { - 2 \\mitpsi } \\mitN $",
"$ \\mite ^ { 2 \\mitpsi } \\mitd \\mitsigma = \\mitd \\mitt $",
"$ \\mitt $",
"$ \\mitlambda = 0 $",
"$ \\mitM = \\mite ^ { \\mitalpha \\mitt } $",
"$ \\miteta = \\mite ^ { \\mitbeta \\mitt } $",
"$ \\Planckconst _ { \\mitm \\mitn } $",
"\\begin{equation*} \\mitd \\mits ^ { 2 } \\; = \\; \\mitN ^ { 2 } ( \\mitsigma ) \\mitd \\mitsigma ^ { 2 } \\, - \\, \\miteta ^ { 2 } ( \\mitsigma ) \\overline { \\mitg } _ { \\miti \\mitj } \\mitd \\mitx ^ { \\miti } \\mitd \\mitx ^ { \\mitj } \\, - \\, \\mitR ^ { 2 } ( \\mitsigma ) \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\end{equation*}",
"\\begin{equation*} \\mitB \\; = \\; \\mitf ( \\mitsigma ) \\, \\mscrJ \\; = \\; \\textstyle \\frac { 1 } { 2 } \\mitf ( \\mitsigma ) \\mscrJ _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\wedge \\mitd \\mity ^ { \\mitn } \\; , \\end{equation*}",
"\\begin{equation*} { \\mscrJ ^ { \\mitm } } _ { \\mitp } { \\mscrJ ^ { \\mitp } } _ { \\mitn } \\; = \\; - { \\mitdelta ^ { \\mitm } } _ { \\mitn } \\hspace{14.23pt} , \\hspace{14.23pt} \\overline { \\nabla } _ { \\mitm } \\, \\mscrJ _ { \\mitn \\mitp } \\; = \\; 0 \\; , \\end{equation*}",
"\\begin{equation*} \\dot { \\mitf } \\; = \\; \\aleph \\, \\mitN \\mite ^ { 2 \\mitphi } \\miteta ^ { - \\mitD } \\mitR ^ { 4 - \\mitd _ { \\mitk } } \\; , \\end{equation*}",
"\\begin{equation*} \\mitpsi \\; = \\; \\mitphi \\, + \\, \\textstyle \\frac { 1 } { 2 } \\operatorname { l o g } \\left( \\mitN \\right) \\, - \\, \\textstyle \\frac { \\mitD } { 2 } \\operatorname { l o g } \\left( \\miteta \\right) \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } } { 2 } \\operatorname { l o g } \\left( \\mitR \\right) \\; , \\end{equation*}",
"\\begin{align*} \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime \\prime } \\, + \\, \\textstyle \\frac { \\aleph ^ { 2 } } { 2 } \\mitR ^ { 4 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime \\prime } \\, - \\, \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime \\prime } \\, - \\, \\mitD \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left[ { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitD { \\left[ { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitd _ { \\mitk } { \\left[ { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 4 } \\mitR ^ { 4 } \\; , \\end{align*}",
"\\begin{equation*} \\mitR ( \\mitt ) \\; = \\; \\mitR _ { 0 } \\, { \\operatorname { c o s h } } ^ { - 1 \\slash 2 } \\left( \\aleph \\mitR _ { 0 } ^ { 2 } \\mitt \\right) \\; , \\end{equation*}"
],
"x_min": [
0.37940001487731934,
0.18870000541210175,
0.5175999999046326,
0.6704000234603882,
0.7892000079154968,
0.5016999840736389,
0.7027999758720398,
0.18799999356269836,
0.18870000541210175,
0.18240000307559967,
0.18870000541210175,
0.23430000245571136,
0.5548999905586243,
0.5625,
0.5605000257492065,
0.6158000230789185,
0.6952000260353088,
0.7746999859809875,
0.27230000495910645,
0.3483000099658966,
0.3441999852657318,
0.4083999991416931,
0.3172000050544739,
0.2502000033855438,
0.3856000006198883
],
"y_min": [
0.13429999351501465,
0.2632000148296356,
0.26170000433921814,
0.2621999979019165,
0.2782999873161316,
0.29440000653266907,
0.29440000653266907,
0.43309998512268066,
0.5054000020027161,
0.5268999934196472,
0.5981000065803528,
0.6538000106811523,
0.6538000106811523,
0.7925000190734863,
0.8076000213623047,
0.8062000274658203,
0.8051999807357788,
0.8637999892234802,
0.22750000655651093,
0.3984000086784363,
0.47269999980926514,
0.5625,
0.6205999851226807,
0.6942999958992004,
0.8295999765396118
],
"x_max": [
0.5044999718666077,
0.21080000698566437,
0.6247000098228455,
0.7035999894142151,
0.8079000115394592,
0.6351000070571899,
0.7131999731063843,
0.2046000063419342,
0.20389999449253082,
0.1941000074148178,
0.2003999948501587,
0.33379998803138733,
0.6434000134468079,
0.5694000124931335,
0.605400025844574,
0.6841999888420105,
0.7526000142097473,
0.8036999702453613,
0.7408999800682068,
0.6647999882698059,
0.6690000295639038,
0.6047000288963318,
0.695900022983551,
0.7630000114440918,
0.6274999976158142
],
"y_max": [
0.14890000224113464,
0.2768999934196472,
0.2768000066280365,
0.27390000224113464,
0.28999999165534973,
0.3061000108718872,
0.3041999936103821,
0.44429999589920044,
0.5163999795913696,
0.5332000255584717,
0.6074000000953674,
0.6654999852180481,
0.6654999852180481,
0.8008000254631042,
0.8173999786376953,
0.8169000148773193,
0.8198000192642212,
0.8730999827384949,
0.2475000023841858,
0.41839998960494995,
0.4916999936103821,
0.5810999870300293,
0.6410999894142151,
0.7832000255584717,
0.850600004196167
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003060_page03
|
{
"latex": [
"$g_{s}^{2}= e^{2\\phi }=M^{-1}\\eta ^{D}R^{d_{k}}$",
"$g_{s}^{2}= e^{2\\phi }=M^{-1}\\eta ^{D}R^{d_{k}}$",
"$H=\\aleph R^{4}dt\\wedge \\mathcal {J}$",
"$\\beta =0$",
"$\\alpha =1$",
"$\\tau $",
"$R$",
"$f$",
"$SL(2,\\mathbb {R})/U(1)$",
"$d_{k}=6$",
"$SL(2,\\mathbb {R})$",
"$d_{k}=4$",
"$R=R_{0}e^{\\alpha t}$",
"$M$",
"$\\eta $",
"$M=\\eta ^{D+2}$",
"\\begin {equation} \\alpha ^{2}\\,-\\, D\\beta ^{2} \\;=\\; \\frac {d_{k}\\aleph ^{2}R_{0}^{4}}{4} \\; . \\end {equation}",
"\\begin {eqnarray} ds^{2} &=& d\\tau ^{2}\\,-\\, d\\vec {x}_{(D)} \\,-\\, 2R^{2}_{0} B(\\tau )^{-1} \\,h_{mn}dy^{m}dy^{n} \\; , \\\\ e^{2\\phi } &=& \\left ( \\sqrt {2}R_{0} \\right )^{d_{k}} \\tau ^{-1}B(\\tau )^{-d_{k}/2} \\; ,\\\\ H &=& 8R_{0}^{2} d_{k}^{-1/2} \\tau ^{-1}B(\\tau )^{-2} \\, d\\tau \\wedge \\mathcal {J} \\; , \\\\ B(\\tau ) &=& \\tau ^{2/\\sqrt {d_{k}}}\\,+\\, \\tau ^{-2/\\sqrt {d_{k}}} \\; . \\end {eqnarray}",
"\\begin {equation} F_{(2)} \\;=\\; \\aleph \\mathcal {J} \\;=\\; \\textstyle {\\frac {1}{2}} \\aleph \\mathcal {J}_{mn} dy^{m}\\wedge dy^{n} \\; . \\label {eq:F2Ansatz} \\end {equation}",
"\\begin {eqnarray} 0 &=& \\left (\\log R\\right )^{\\prime \\prime } \\,+\\, \\textstyle {\\frac {(d_{k}-4)\\aleph ^{2}}{8}} M\\eta ^{D}R^{d_{k}-4} \\; ,\\\\ 0 &=& \\left (\\log \\eta \\right )^{\\prime \\prime } \\,+\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{8}} M\\eta ^{D}R^{d_{k}-4} \\,-\\, \\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left (\\log M\\right )^{\\prime \\prime } \\,-\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{8}} M\\eta ^{D}R^{d_{k}-4} \\,-\\, D\\lambda \\, \\eta ^{-2}M^{2} \\; , \\\\ 0 &=& \\left [ \\left (\\log M\\right )^{\\prime }\\right ]^{2} \\,-\\, D \\left [ \\left (\\log \\eta \\right )^{\\prime }\\right ]^{2} \\,-\\, d_{k}\\left [ \\left (\\log R\\right )^{\\prime }\\right ]^{2} \\,-\\, \\textstyle {\\frac {d_{k}\\aleph ^{2}}{4}}M\\eta ^{D}R^{d_{k}-4} \\,-\\, D\\lambda M^{2}\\eta ^{-2} \\; , \\end {eqnarray}",
"\\begin {equation} \\lambda \\;=\\; \\frac {\\aleph ^{2}}{4}\\left ( D+3 \\right ) \\; . \\end {equation}"
],
"latex_norm": [
"$ g _ { s } ^ { 2 } = e ^ { 2 \\phi } = M ^ { - 1 } \\eta ^ { D } R ^ { d _ { k } } $",
"$ g _ { s } ^ { 2 } = e ^ { 2 \\phi } = M ^ { - 1 } \\eta ^ { D } R ^ { d _ { k } } $",
"$ H = \\aleph R ^ { 4 } d t \\wedge J $",
"$ \\beta = 0 $",
"$ \\alpha = 1 $",
"$ \\tau $",
"$ R $",
"$ f $",
"$ S L ( 2 , R ) \\slash U ( 1 ) $",
"$ d _ { k } = 6 $",
"$ S L ( 2 , R ) $",
"$ d _ { k } = 4 $",
"$ R = R _ { 0 } e ^ { \\alpha t } $",
"$ M $",
"$ \\eta $",
"$ M = \\eta ^ { D + 2 } $",
"\\begin{equation*} \\alpha ^ { 2 } \\, - \\, D \\beta ^ { 2 } \\; = \\; \\frac { d _ { k } \\aleph ^ { 2 } R _ { 0 } ^ { 4 } } { 4 } \\; . \\end{equation*}",
"\\begin{align*} d s ^ { 2 } & = & d \\tau ^ { 2 } \\, - \\, d \\vec { x } _ { ( D ) } \\, - \\, 2 R _ { 0 } ^ { 2 } B ( \\tau ) ^ { - 1 } \\, h _ { m n } d y ^ { m } d y ^ { n } \\; , \\\\ e ^ { 2 \\phi } & = & { ( \\sqrt { 2 } R _ { 0 } ) } ^ { d _ { k } } \\tau ^ { - 1 } B ( \\tau ) ^ { - d _ { k } \\slash 2 } \\; , \\\\ H & = & 8 R _ { 0 } ^ { 2 } d _ { k } ^ { - 1 \\slash 2 } \\tau ^ { - 1 } B ( \\tau ) ^ { - 2 } \\, d \\tau \\wedge J \\; , \\\\ B ( \\tau ) & = & \\tau ^ { 2 \\slash \\sqrt { d _ { k } } } \\, + \\, \\tau ^ { - 2 \\slash \\sqrt { d _ { k } } } \\; . \\end{align*}",
"\\begin{equation*} F _ { ( 2 ) } \\; = \\; \\aleph J \\; = \\; \\frac { 1 } { 2 } \\aleph J _ { m n } d y ^ { m } \\wedge d y ^ { n } \\; . \\end{equation*}",
"\\begin{align*} 0 & = & { ( \\operatorname { l o g } R ) } ^ { \\prime \\prime } \\, + \\, \\frac { ( d _ { k } - 4 ) \\aleph ^ { 2 } } { 8 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } \\eta ) } ^ { \\prime \\prime } \\, + \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 8 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\, - \\, \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { ( \\operatorname { l o g } M ) } ^ { \\prime \\prime } \\, - \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 8 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\, - \\, D \\lambda \\, \\eta ^ { - 2 } M ^ { 2 } \\; , \\\\ 0 & = & { [ { ( \\operatorname { l o g } M ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, D { [ { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, d _ { k } { [ { ( \\operatorname { l o g } R ) } ^ { \\prime } ] } ^ { 2 } \\, - \\, \\frac { d _ { k } \\aleph ^ { 2 } } { 4 } M \\eta ^ { D } R ^ { d _ { k } - 4 } \\, - \\, D \\lambda M ^ { 2 } \\eta ^ { - 2 } \\; , \\end{align*}",
"\\begin{equation*} \\lambda \\; = \\; \\frac { \\aleph ^ { 2 } } { 4 } ( D + 3 ) \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitg _ { \\mits } ^ { 2 } = \\mite ^ { 2 \\mitphi } = \\mitM ^ { - 1 } \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } } $",
"$ \\mitg _ { \\mits } ^ { 2 } = \\mite ^ { 2 \\mitphi } = \\mitM ^ { - 1 } \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } } $",
"$ \\mitH = \\aleph \\mitR ^ { 4 } \\mitd \\mitt \\wedge \\mscrJ $",
"$ \\mitbeta = 0 $",
"$ \\mitalpha = 1 $",
"$ \\mittau $",
"$ \\mitR $",
"$ \\mitf $",
"$ \\mitS \\mitL ( 2 , \\BbbR ) \\slash \\mitU ( 1 ) $",
"$ \\mitd _ { \\mitk } = 6 $",
"$ \\mitS \\mitL ( 2 , \\BbbR ) $",
"$ \\mitd _ { \\mitk } = 4 $",
"$ \\mitR = \\mitR _ { 0 } \\mite ^ { \\mitalpha \\mitt } $",
"$ \\mitM $",
"$ \\miteta $",
"$ \\mitM = \\miteta ^ { \\mitD + 2 } $",
"\\begin{equation*} \\mitalpha ^ { 2 } \\, - \\, \\mitD \\mitbeta ^ { 2 } \\; = \\; \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } \\mitR _ { 0 } ^ { 4 } } { 4 } \\; . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitd \\mits ^ { 2 } & = & \\displaystyle \\mitd \\mittau ^ { 2 } \\, - \\, \\mitd \\vec { \\mitx } _ { ( \\mitD ) } \\, - \\, 2 \\mitR _ { 0 } ^ { 2 } \\mitB ( \\mittau ) ^ { - 1 } \\, \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\\\ \\displaystyle \\mite ^ { 2 \\mitphi } & = & \\displaystyle { \\left( \\sqrt { 2 } \\mitR _ { 0 } \\right) } ^ { \\mitd _ { \\mitk } } \\mittau ^ { - 1 } \\mitB ( \\mittau ) ^ { - \\mitd _ { \\mitk } \\slash 2 } \\; , \\\\ \\displaystyle \\mitH & = & \\displaystyle 8 \\mitR _ { 0 } ^ { 2 } \\mitd _ { \\mitk } ^ { - 1 \\slash 2 } \\mittau ^ { - 1 } \\mitB ( \\mittau ) ^ { - 2 } \\, \\mitd \\mittau \\wedge \\mscrJ \\; , \\\\ \\displaystyle \\mitB ( \\mittau ) & = & \\displaystyle \\mittau ^ { 2 \\slash \\sqrt { \\mitd _ { \\mitk } } } \\, + \\, \\mittau ^ { - 2 \\slash \\sqrt { \\mitd _ { \\mitk } } } \\; . \\end{align*}",
"\\begin{equation*} \\mitF _ { ( 2 ) } \\; = \\; \\aleph \\mscrJ \\; = \\; \\textstyle \\frac { 1 } { 2 } \\aleph \\mscrJ _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\wedge \\mitd \\mity ^ { \\mitn } \\; . \\end{equation*}",
"\\begin{align*} \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime \\prime } \\, + \\, \\textstyle \\frac { ( \\mitd _ { \\mitk } - 4 ) \\aleph ^ { 2 } } { 8 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime \\prime } \\, + \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 8 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\, - \\, \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime \\prime } \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 8 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\, - \\, \\mitD \\mitlambda \\, \\miteta ^ { - 2 } \\mitM ^ { 2 } \\; , \\\\ \\displaystyle 0 & = & \\displaystyle { \\left[ { \\left( \\operatorname { l o g } \\mitM \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitD { \\left[ { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\mitd _ { \\mitk } { \\left[ { \\left( \\operatorname { l o g } \\mitR \\right) } ^ { \\prime } \\right] } ^ { 2 } \\, - \\, \\textstyle \\frac { \\mitd _ { \\mitk } \\aleph ^ { 2 } } { 4 } \\mitM \\miteta ^ { \\mitD } \\mitR ^ { \\mitd _ { \\mitk } - 4 } \\, - \\, \\mitD \\mitlambda \\mitM ^ { 2 } \\miteta ^ { - 2 } \\; , \\end{align*}",
"\\begin{equation*} \\mitlambda \\; = \\; \\frac { \\aleph ^ { 2 } } { 4 } \\left( \\mitD + 3 \\right) \\; . \\end{equation*}"
],
"x_min": [
0.7864999771118164,
0.13609999418258667,
0.5501000285148621,
0.40700000524520874,
0.3849000036716461,
0.2888999879360199,
0.6309999823570251,
0.6966000199317932,
0.28679999709129333,
0.5701000094413757,
0.5605000257492065,
0.26190000772476196,
0.20589999854564667,
0.5515000224113464,
0.6164000034332275,
0.13609999418258667,
0.41119998693466187,
0.2985000014305115,
0.3682999908924103,
0.16030000150203705,
0.4332999885082245
],
"y_min": [
0.20360000431537628,
0.21969999372959137,
0.22020000219345093,
0.2538999915122986,
0.2709999978542328,
0.2896000146865845,
0.46970000863075256,
0.46970000863075256,
0.48489999771118164,
0.48579999804496765,
0.5009999871253967,
0.788100004196167,
0.8026999831199646,
0.8047000169754028,
0.8076000213623047,
0.8184000253677368,
0.15770000219345093,
0.3075999915599823,
0.614300012588501,
0.6669999957084656,
0.8428000211715698
],
"x_max": [
0.8784000277519226,
0.2280000001192093,
0.677299976348877,
0.4553999900817871,
0.4339999854564667,
0.2992999851703644,
0.6455000042915344,
0.7077000141143799,
0.4036000072956085,
0.6226000189781189,
0.630299985408783,
0.31859999895095825,
0.2957000136375427,
0.5715000033378601,
0.626800000667572,
0.22110000252723694,
0.605400025844574,
0.7117999792098999,
0.6474999785423279,
0.8528000116348267,
0.5825999975204468
],
"y_max": [
0.21870000660419464,
0.23479999601840973,
0.2328999936580658,
0.2660999894142151,
0.2797999978065491,
0.29589998722076416,
0.4794999957084656,
0.48190000653266907,
0.4986000061035156,
0.4975000023841858,
0.5146999955177307,
0.7997999787330627,
0.8159000277519226,
0.8140000104904175,
0.8163999915122986,
0.8325999975204468,
0.1898999959230423,
0.40610000491142273,
0.6342999935150146,
0.763700008392334,
0.8755000233650208
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003060_page04
|
{
"latex": [
"$\\alpha \\neq 0$",
"$\\alpha =0$",
"$t$",
"$Mdt=d\\tau $",
"$\\tau \\rightarrow \\infty $",
"$d_{k}$",
"$R =\\eta ^{\\alpha }$",
"$M=\\eta ^{\\beta }$",
"$\\beta = D+2+\\alpha (d_{k}-4)$",
"$e^{\\phi }=\\eta ^{2\\alpha -1}$",
"$A$",
"$t$",
"$\\tau $",
"$\\eta = B\\tau $",
"\\begin {equation} \\left (\\log \\eta \\right )^{\\prime } \\;=\\; \\pm \\left [ \\frac {\\aleph ^{2}}{4} \\eta ^{2(D+1)}\\,+\\, \\frac {4\\alpha ^{2}}{D(D+3)+4} \\right ]^{1/2} \\; . \\end {equation}",
"\\begin {equation} \\eta \\;=\\; \\left ( A \\,\\mp \\, \\frac {(D+1)\\aleph ^{2}}{2}t \\right )^{-\\frac {1}{D+1}} \\; , \\end {equation}",
"\\begin {eqnarray} ds^{2} &=& d\\tau ^{2} \\,-\\, \\left ( \\frac {\\aleph ^{2}}{2}\\tau \\right )^{2}d\\Omega ^{2}_{\\lambda } \\,-\\, R_{0}^{2}\\,h_{mn}dy^{m}dy^{n} \\; ,\\\\ e^{\\phi } &=& 4R_{0}^{2}\\aleph ^{-2}\\, \\tau ^{-1} \\; . \\end {eqnarray}",
"\\begin {eqnarray} \\lambda &=& \\frac {\\aleph ^{2}}{16}\\left ( d_{k}(D+3)\\,+\\, (d_{k}-4)^{2} \\right ) \\; , \\\\ && \\\\ \\alpha &=& -2\\frac {d_{k}-4}{d_{k}(D+1)+(d_{k}-4)^{2}} \\; ,\\\\ && \\\\ \\beta &=& \\frac {d_{k}(D+1)(D+2)+D(d_{k}-4)^{2}}{d_{k}(D+1)+(d_{k}-4)^{2}} \\; , \\end {eqnarray}",
"\\begin {equation} \\left (\\log \\eta \\right )^{\\prime } \\;=\\; \\pm B\\, \\eta ^{\\beta -1} \\; , \\end {equation}",
"\\begin {equation} B^{2} \\;=\\; \\frac {\\aleph ^{2}}{16}\\, \\frac {\\left [ d_{k}(D+1) +(d_{k}-4)^{2} \\right ]^{2}}{d_{k}(D+1)+(D-1)(d_{k}-4)^{2}} \\; . \\end {equation}",
"\\begin {equation} \\eta \\;=\\; \\left [ A\\mp (\\beta -1)B\\, t\\right ]^{\\frac {1}{\\beta -1}} \\; , \\end {equation}",
"\\begin {eqnarray} ds^{2} &=& d\\tau ^{2} \\,-\\, B^{2}\\tau ^{2}d\\Omega ^{2}_{\\lambda } \\,-\\, \\left ( B\\tau \\right )^{2\\alpha }h_{mn}dy^{m}dy^{n} \\; ,\\\\ e^{\\phi } &=& \\left ( B\\tau \\right )^{2\\alpha -1} \\; . \\end {eqnarray}"
],
"latex_norm": [
"$ \\alpha \\ne 0 $",
"$ \\alpha = 0 $",
"$ t $",
"$ M d t = d \\tau $",
"$ \\tau \\rightarrow \\infty $",
"$ d _ { k } $",
"$ R = \\eta ^ { \\alpha } $",
"$ M = \\eta ^ { \\beta } $",
"$ \\beta = D + 2 + \\alpha ( d _ { k } - 4 ) $",
"$ e ^ { \\phi } = \\eta ^ { 2 \\alpha - 1 } $",
"$ A $",
"$ t $",
"$ \\tau $",
"$ \\eta = B \\tau $",
"\\begin{equation*} { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } \\; = \\; \\pm { [ \\frac { \\aleph ^ { 2 } } { 4 } \\eta ^ { 2 ( D + 1 ) } \\, + \\, \\frac { 4 \\alpha ^ { 2 } } { D ( D + 3 ) + 4 } ] } ^ { 1 \\slash 2 } \\; . \\end{equation*}",
"\\begin{equation*} \\eta \\; = \\; { ( A \\, \\mp \\, \\frac { ( D + 1 ) \\aleph ^ { 2 } } { 2 } t ) } ^ { - \\frac { 1 } { D + 1 } } \\; , \\end{equation*}",
"\\begin{align*} d s ^ { 2 } & = & d \\tau ^ { 2 } \\, - \\, { ( \\frac { \\aleph ^ { 2 } } { 2 } \\tau ) } ^ { 2 } d \\Omega _ { \\lambda } ^ { 2 } \\, - \\, R _ { 0 } ^ { 2 } \\, h _ { m n } d y ^ { m } d y ^ { n } \\; , \\\\ e ^ { \\phi } & = & 4 R _ { 0 } ^ { 2 } \\aleph ^ { - 2 } \\, \\tau ^ { - 1 } \\; . \\end{align*}",
"\\begin{align*} \\lambda & = & \\frac { \\aleph ^ { 2 } } { 1 6 } ( d _ { k } ( D + 3 ) \\, + \\, ( d _ { k } - 4 ) ^ { 2 } ) \\; , \\\\ \\alpha & = & - 2 \\frac { d _ { k } - 4 } { d _ { k } ( D + 1 ) + ( d _ { k } - 4 ) ^ { 2 } } \\; , \\\\ \\beta & = & \\frac { d _ { k } ( D + 1 ) ( D + 2 ) + D ( d _ { k } - 4 ) ^ { 2 } } { d _ { k } ( D + 1 ) + ( d _ { k } - 4 ) ^ { 2 } } \\; , \\end{align*}",
"\\begin{equation*} { ( \\operatorname { l o g } \\eta ) } ^ { \\prime } \\; = \\; \\pm B \\, \\eta ^ { \\beta - 1 } \\; , \\end{equation*}",
"\\begin{equation*} B ^ { 2 } \\; = \\; \\frac { \\aleph ^ { 2 } } { 1 6 } \\, \\frac { { [ d _ { k } ( D + 1 ) + ( d _ { k } - 4 ) ^ { 2 } ] } ^ { 2 } } { d _ { k } ( D + 1 ) + ( D - 1 ) ( d _ { k } - 4 ) ^ { 2 } } \\; . \\end{equation*}",
"\\begin{equation*} \\eta \\; = \\; { [ A \\mp ( \\beta - 1 ) B \\, t ] } ^ { \\frac { 1 } { \\beta - 1 } } \\; , \\end{equation*}",
"\\begin{align*} d s ^ { 2 } & = & d \\tau ^ { 2 } \\, - \\, B ^ { 2 } \\tau ^ { 2 } d \\Omega _ { \\lambda } ^ { 2 } \\, - \\, { ( B \\tau ) } ^ { 2 \\alpha } h _ { m n } d y ^ { m } d y ^ { n } \\; , \\\\ e ^ { \\phi } & = & { ( B \\tau ) } ^ { 2 \\alpha - 1 } \\; . \\end{align*}"
],
"latex_expand": [
"$ \\mitalpha \\ne 0 $",
"$ \\mitalpha = 0 $",
"$ \\mitt $",
"$ \\mitM \\mitd \\mitt = \\mitd \\mittau $",
"$ \\mittau \\rightarrow \\infty $",
"$ \\mitd _ { \\mitk } $",
"$ \\mitR = \\miteta ^ { \\mitalpha } $",
"$ \\mitM = \\miteta ^ { \\mitbeta } $",
"$ \\mitbeta = \\mitD + 2 + \\mitalpha ( \\mitd _ { \\mitk } - 4 ) $",
"$ \\mite ^ { \\mitphi } = \\miteta ^ { 2 \\mitalpha - 1 } $",
"$ \\mitA $",
"$ \\mitt $",
"$ \\mittau $",
"$ \\miteta = \\mitB \\mittau $",
"\\begin{equation*} { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\; = \\; \\pm { \\left[ \\frac { \\aleph ^ { 2 } } { 4 } \\miteta ^ { 2 ( \\mitD + 1 ) } \\, + \\, \\frac { 4 \\mitalpha ^ { 2 } } { \\mitD ( \\mitD + 3 ) + 4 } \\right] } ^ { 1 \\slash 2 } \\; . \\end{equation*}",
"\\begin{equation*} \\miteta \\; = \\; { \\left( \\mitA \\, \\mp \\, \\frac { ( \\mitD + 1 ) \\aleph ^ { 2 } } { 2 } \\mitt \\right) } ^ { - \\frac { 1 } { \\mitD + 1 } } \\; , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitd \\mits ^ { 2 } & = & \\displaystyle \\mitd \\mittau ^ { 2 } \\, - \\, { \\left( \\frac { \\aleph ^ { 2 } } { 2 } \\mittau \\right) } ^ { 2 } \\mitd \\mupOmega _ { \\mitlambda } ^ { 2 } \\, - \\, \\mitR _ { 0 } ^ { 2 } \\, \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\\\ \\displaystyle \\mite ^ { \\mitphi } & = & \\displaystyle 4 \\mitR _ { 0 } ^ { 2 } \\aleph ^ { - 2 } \\, \\mittau ^ { - 1 } \\; . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitlambda & = & \\displaystyle \\frac { \\aleph ^ { 2 } } { 1 6 } \\left( \\mitd _ { \\mitk } ( \\mitD + 3 ) \\, + \\, ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } \\right) \\; , \\\\ \\displaystyle \\mitalpha & = & \\displaystyle - 2 \\frac { \\mitd _ { \\mitk } - 4 } { \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } \\; , \\\\ \\displaystyle \\mitbeta & = & \\displaystyle \\frac { \\mitd _ { \\mitk } ( \\mitD + 1 ) ( \\mitD + 2 ) + \\mitD ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } { \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } \\; , \\end{align*}",
"\\begin{equation*} { \\left( \\operatorname { l o g } \\miteta \\right) } ^ { \\prime } \\; = \\; \\pm \\mitB \\, \\miteta ^ { \\mitbeta - 1 } \\; , \\end{equation*}",
"\\begin{equation*} \\mitB ^ { 2 } \\; = \\; \\frac { \\aleph ^ { 2 } } { 1 6 } \\, \\frac { { \\left[ \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } \\right] } ^ { 2 } } { \\mitd _ { \\mitk } ( \\mitD + 1 ) + ( \\mitD - 1 ) ( \\mitd _ { \\mitk } - 4 ) ^ { 2 } } \\; . \\end{equation*}",
"\\begin{equation*} \\miteta \\; = \\; { \\left[ \\mitA \\mp ( \\mitbeta - 1 ) \\mitB \\, \\mitt \\right] } ^ { \\frac { 1 } { \\mitbeta - 1 } } \\; , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitd \\mits ^ { 2 } & = & \\displaystyle \\mitd \\mittau ^ { 2 } \\, - \\, \\mitB ^ { 2 } \\mittau ^ { 2 } \\mitd \\mupOmega _ { \\mitlambda } ^ { 2 } \\, - \\, { \\left( \\mitB \\mittau \\right) } ^ { 2 \\mitalpha } \\Planckconst _ { \\mitm \\mitn } \\mitd \\mity ^ { \\mitm } \\mitd \\mity ^ { \\mitn } \\; , \\\\ \\displaystyle \\mite ^ { \\mitphi } & = & \\displaystyle { \\left( \\mitB \\mittau \\right) } ^ { 2 \\mitalpha - 1 } \\; . \\end{align*}"
],
"x_min": [
0.2321999967098236,
0.7512000203132629,
0.29159998893737793,
0.7540000081062317,
0.5149000287055969,
0.4788999855518341,
0.23010000586509705,
0.29989999532699585,
0.2971999943256378,
0.3628000020980835,
0.18870000541210175,
0.5722000002861023,
0.13609999418258667,
0.274399995803833,
0.3124000132083893,
0.37529999017715454,
0.30820000171661377,
0.34279999136924744,
0.4187999963760376,
0.3400000035762787,
0.39809998869895935,
0.3061999976634979
],
"y_min": [
0.20509999990463257,
0.20559999346733093,
0.2768999934196472,
0.2919999957084656,
0.4169999957084656,
0.42969998717308044,
0.4458000063896179,
0.44339999556541443,
0.46140000224113464,
0.6157000064849854,
0.7797999978065491,
0.7807999849319458,
0.8314999938011169,
0.8281000256538391,
0.1543000042438507,
0.2280000001192093,
0.326200008392334,
0.4828999936580658,
0.6553000211715698,
0.6948000192642212,
0.7480000257492065,
0.8471999764442444
],
"x_max": [
0.2799000144004822,
0.7989000082015991,
0.2985000014305115,
0.8389999866485596,
0.5723000168800354,
0.4975999891757965,
0.2888000011444092,
0.3634999990463257,
0.4790000021457672,
0.4505999982357025,
0.20250000059604645,
0.5791000127792358,
0.14650000631809235,
0.3345000147819519,
0.7008000016212463,
0.6378999948501587,
0.7020999789237976,
0.6711000204086304,
0.5916000008583069,
0.6765999794006348,
0.6151000261306763,
0.7042999863624573
],
"y_max": [
0.21729999780654907,
0.21490000188350677,
0.28519999980926514,
0.3012999892234802,
0.42329999804496765,
0.4413999915122986,
0.4580000042915344,
0.4580000042915344,
0.4745999872684479,
0.630299985408783,
0.7896000146865845,
0.7896000146865845,
0.8378000259399414,
0.8403000235557556,
0.193900004029274,
0.2685000002384186,
0.38920000195503235,
0.6093999743461609,
0.6739000082015991,
0.7339000105857849,
0.7699999809265137,
0.8935999870300293
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003060_page05
|
{
"latex": [
"$\\tau $",
"$d_{k}=2$",
"$\\alpha =2d^{-1}$",
"$d=3$",
"$d_{k}=2$",
"$d=3$"
],
"latex_norm": [
"$ \\tau $",
"$ d _ { k } = 2 $",
"$ \\alpha = 2 d ^ { - 1 } $",
"$ d = 3 $",
"$ d _ { k } = 2 $",
"$ d = 3 $"
],
"latex_expand": [
"$ \\mittau $",
"$ \\mitd _ { \\mitk } = 2 $",
"$ \\mitalpha = 2 \\mitd ^ { - 1 } $",
"$ \\mitd = 3 $",
"$ \\mitd _ { \\mitk } = 2 $",
"$ \\mitd = 3 $"
],
"x_min": [
0.2750999927520752,
0.16449999809265137,
0.3869999945163727,
0.8086000084877014,
0.506600022315979,
0.5715000033378601
],
"y_min": [
0.15379999577999115,
0.1665000021457672,
0.16459999978542328,
0.1665000021457672,
0.19869999587535858,
0.19869999587535858
],
"x_max": [
0.28619998693466187,
0.21979999542236328,
0.46369999647140503,
0.8555999994277954,
0.5598000288009644,
0.6164000034332275
],
"y_max": [
0.16009999811649323,
0.17820000648498535,
0.17630000412464142,
0.17630000412464142,
0.21040000021457672,
0.2084999978542328
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003079_page02
|
{
"latex": [
"$SU(2)$",
"$SU(3)_c$",
"$U(1)$"
],
"latex_norm": [
"$ S U ( 2 ) $",
"$ S U ( 3 ) _ { c } $",
"$ U ( 1 ) $"
],
"latex_expand": [
"$ \\mitS \\mitU ( 2 ) $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitc } $",
"$ \\mitU ( 1 ) $"
],
"x_min": [
0.1395999938249588,
0.8065000176429749,
0.8258000016212463
],
"y_min": [
0.30660000443458557,
0.45170000195503235,
0.6929000020027161
],
"x_max": [
0.1906999945640564,
0.8639000058174133,
0.8644999861717224
],
"y_max": [
0.32030001282691956,
0.4648999869823456,
0.70660001039505
],
"expr_type": [
"embedded",
"embedded",
"embedded"
]
}
|
|
0003079_page09
|
{
"latex": [
"$SU(2)$"
],
"latex_norm": [
"$ S U ( 2 ) $"
],
"latex_expand": [
"$ \\mitS \\mitU ( 2 ) $"
],
"x_min": [
0.1996999979019165
],
"y_min": [
0.2709999978542328
],
"x_max": [
0.2500999867916107
],
"y_max": [
0.2847000062465668
],
"expr_type": [
"embedded"
]
}
|
|
0003087_page02
|
{
"latex": [
"$S$"
],
"latex_norm": [
"$ S $"
],
"latex_expand": [
"$ \\mitS $"
],
"x_min": [
0.3682999908924103
],
"y_min": [
0.3174000084400177
],
"x_max": [
0.382099986076355
],
"y_max": [
0.3280999958515167
],
"expr_type": [
"embedded"
]
}
|
|
0003087_page03
|
{
"latex": [
"$D_{\\soft }\\ne 1$",
"$t$",
"$\\psi $",
"$A_\\mu (x)\\to A_\\mu (x) + \\partial _\\mu \\theta (x)$",
"$\\psi (x)\\to \\ee ^{ie\\theta (x)}\\psi (x)$",
"$h^{-1}(x)\\psi (x)$",
"$h^{-1}(x) \\to h^{-1}(x) \\ee ^{-ie\\theta (x)}$",
"$S$",
"\\begin {equation}\\label {2bbad} b(q,s, t):=\\intx \\frac 1{\\sqrt {2E_{\\smash {q}}}}u^{\\dag s}(q)\\psi (x)\\ee ^{iq\\ecd x}\\,, \\end {equation}",
"\\begin {equation}\\label {2bbadr} b(q,s,t)=D_\\soft (q,t)b(q,s)\\,, \\end {equation}",
"\\begin {equation}\\label {2dsoft} D_{\\soft }(q,t)=\\exp \\left \\{-e\\!\\!\\!\\intks \\frac 1{2\\omega _k} \\left ( \\frac {q\\cd a(k)}{q\\cd k}\\ee ^{-itk\\ecd q/E_q}- \\frac {q\\cd \\ad (k)}{q\\cd k}\\ee ^{itk\\ecd q/E_q} \\right )\\right \\}\\,, \\end {equation}",
"\\begin {equation}\\label {4de} u\\cd \\pa h^{-1}(x)=-ieh^{-1}(x)u\\cd A(x)\\,, \\end {equation}"
],
"latex_norm": [
"$ D _ { s o f t } \\ne 1 $",
"$ t $",
"$ \\psi $",
"$ A _ { \\mu } ( x ) \\rightarrow A _ { \\mu } ( x ) + \\partial _ { \\mu } \\theta ( x ) $",
"$ \\psi ( x ) \\rightarrow e ^ { i e \\theta ( x ) } \\psi ( x ) $",
"$ h ^ { - 1 } ( x ) \\psi ( x ) $",
"$ h ^ { - 1 } ( x ) \\rightarrow h ^ { - 1 } ( x ) e ^ { - i e \\theta ( x ) } $",
"$ S $",
"\\begin{equation*} b ( q , s , t ) : = \\intx \\frac { 1 } { \\sqrt { 2 E _ { q } } } u ^ { \\dagger s } ( q ) \\psi ( x ) e ^ { i q \\cdot x } \\, , \\end{equation*}",
"\\begin{equation*} b ( q , s , t ) = D _ { s o f t } ( q , t ) b ( q , s ) \\, , \\end{equation*}",
"\\begin{equation*} D _ { s o f t } ( q , t ) = \\operatorname { e x p } \\{ - e \\! \\! \\! \\int _ { s o f t } \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } ( \\frac { q \\cdot a ( k ) } { q \\cdot k } e ^ { - i t k \\cdot q \\slash E _ { q } } - \\frac { q \\cdot a ^ { \\dagger } ( k ) } { q \\cdot k } e ^ { i t k \\cdot q \\slash E _ { q } } ) \\} \\, , \\end{equation*}",
"\\begin{equation*} u \\cdot \\partial h ^ { - 1 } ( x ) = - i e h ^ { - 1 } ( x ) u \\cdot A ( x ) \\, , \\end{equation*}"
],
"latex_expand": [
"$ \\mitD _ { \\mathrm { s o f t } } \\ne 1 $",
"$ \\mitt $",
"$ \\mitpsi $",
"$ \\mitA _ { \\mitmu } ( \\mitx ) \\rightarrow \\mitA _ { \\mitmu } ( \\mitx ) + \\mitpartial _ { \\mitmu } \\mittheta ( \\mitx ) $",
"$ \\mitpsi ( \\mitx ) \\rightarrow \\mathrm { e } ^ { \\miti \\mite \\mittheta ( \\mitx ) } \\mitpsi ( \\mitx ) $",
"$ \\Planckconst ^ { - 1 } ( \\mitx ) \\mitpsi ( \\mitx ) $",
"$ \\Planckconst ^ { - 1 } ( \\mitx ) \\rightarrow \\Planckconst ^ { - 1 } ( \\mitx ) \\mathrm { e } ^ { - \\miti \\mite \\mittheta ( \\mitx ) } $",
"$ \\mitS $",
"\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitt ) : = \\intx \\frac { 1 } { \\sqrt { 2 \\mitE _ { \\mitq } } } \\mitu ^ { \\dagger \\mits } ( \\mitq ) \\mitpsi ( \\mitx ) \\mathrm { e } ^ { \\miti \\mitq \\cdot \\mitx } \\, , \\end{equation*}",
"\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitt ) = \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) \\mitb ( \\mitq , \\mits ) \\, , \\end{equation*}",
"\\begin{equation*} \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) = \\operatorname { e x p } \\left\\{ - \\mite \\! \\! \\! \\int \\limits _ { \\mathrm { s o f t } } \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\left( \\frac { \\mitq \\cdot \\mita ( \\mitk ) } { \\mitq \\cdot \\mitk } \\mathrm { e } ^ { - \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } - \\frac { \\mitq \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitq \\cdot \\mitk } \\mathrm { e } ^ { \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\right) \\right\\} \\, , \\end{equation*}",
"\\begin{equation*} \\mitu \\cdot \\mitpartial \\Planckconst ^ { - 1 } ( \\mitx ) = - \\miti \\mite \\Planckconst ^ { - 1 } ( \\mitx ) \\mitu \\cdot \\mitA ( \\mitx ) \\, , \\end{equation*}"
],
"x_min": [
0.6488999724388123,
0.5902000069618225,
0.7276999950408936,
0.1251000016927719,
0.39250001311302185,
0.4375,
0.1251000016927719,
0.6668999791145325,
0.3296000063419342,
0.3808000087738037,
0.17829999327659607,
0.35519999265670776
],
"y_min": [
0.41260001063346863,
0.44780001044273376,
0.524399995803833,
0.6610999703407288,
0.6596999764442444,
0.6776999831199646,
0.6937999725341797,
0.8324999809265137,
0.19920000433921814,
0.2768999934196472,
0.33250001072883606,
0.798799991607666
],
"x_max": [
0.7263000011444092,
0.5978000164031982,
0.7415000200271606,
0.3456000089645386,
0.5569999814033508,
0.5349000096321106,
0.32899999618530273,
0.6793000102043152,
0.6682000160217285,
0.6177999973297119,
0.8202999830245972,
0.6427000164985657
],
"y_max": [
0.42579999566078186,
0.4571000039577484,
0.5375999808311462,
0.6766999959945679,
0.6762999892234802,
0.6933000087738037,
0.7103999853134155,
0.8413000106811523,
0.23479999601840973,
0.29499998688697815,
0.38040000200271606,
0.8183000087738037
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003087_page04
|
{
"latex": [
"$u^\\mu =\\gamma (\\eta +v)^\\mu $",
"$\\eta $",
"$v=(0,\\vb )$",
"$\\gamma =(1-|\\vb |^2)^{-1/2}$",
"$K$",
"$\\chi $",
"$\\G ^\\mu =(\\eta +v)^\\mu (\\eta -v)\\cd \\pa -\\pa ^\\mu $",
"$D_\\soft (q,t)$",
"$ V^\\mu =(\\eta +v)^\\mu (\\eta -v)\\cd k-k^\\mu $",
"$\\G ^\\mu $",
"\\begin {equation}\\label {4sol} h^{-1}(x)\\psi (x)=\\ee ^{-ieK(x)}\\ee ^{-ie\\chi (x)}\\psi (x)\\,. \\end {equation}",
"\\begin {equation}\\label {4min} \\chi (x)=\\frac {\\G \\cd A}{\\G \\cd \\pa }\\,, \\end {equation}",
"\\begin {equation}\\label {2bgood} b(q,s,v,t):=\\intx \\frac 1{\\sqrt {2E_{\\smash {q}}}}u^{\\dag s}(q)\\ee ^{-ie\\chi (x)} \\psi (x)\\ee ^{iq\\ecd x}\\,. \\end {equation}",
"\\begin {equation}\\label {3bexp} b(q,s,t,v)\\to h^{-1}_\\soft (q,t,v)D_\\soft (q,t)b(q,s)\\,, \\end {equation}",
"\\begin {equation}\\label {3ddress} h^{-1}_{\\soft }(q,t,v)=\\exp \\left \\{e\\!\\!\\!\\intks \\frac 1{2\\omega _k} \\left ( \\frac {V\\cd a(k)}{V\\cd k}\\ee ^{-itk\\ecd q/E_q}- \\frac {V\\cd \\ad (k)}{V\\cd k}\\ee ^{itk\\ecd q/E_q} \\right )\\right \\}\\,, \\end {equation}",
"\\begin {eqnarray} h^{-1}_\\soft (q,t,v)D_{\\soft }(q,t)&=&\\exp \\Bigg (e\\!\\!\\intks \\frac 1{2\\omega _k} \\bigg [\\bigg ( \\frac {V\\cd a(k)}{V\\cd k}-\\frac {q\\cd a(k)}{q\\cd k}\\bigg )\\ee ^{-itk\\ecd q/E_q}\\\\ &&\\qquad \\qquad \\qquad - \\bigg (\\frac {V\\cd \\ad (k)}{V\\cd k}-\\frac {q\\cd \\ad (k)}{q\\cd k}\\bigg )\\ee ^{itk\\ecd q/E_q} \\bigg ]\\Bigg )\\,. \\end {eqnarray}"
],
"latex_norm": [
"$ u ^ { \\mu } = \\gamma ( \\eta + v ) ^ { \\mu } $",
"$ \\eta $",
"$ v=(0,v ) $",
"$ \\gamma = ( 1 - \\vert v \\vert ^ { 2 } ) ^ { - 1 \\slash 2 } $",
"$ K $",
"$ \\chi $",
"$ G ^ { \\mu } = ( \\eta + v ) ^ { \\mu } ( \\eta - v ) \\cdot \\partial - \\partial ^ { \\mu } $",
"$ D _ { s o f t } ( q , t ) $",
"$ V ^ { \\mu } = ( \\eta + v ) ^ { \\mu } ( \\eta - v ) \\cdot k - k ^ { \\mu } $",
"$ G ^ { \\mu } $",
"\\begin{equation*} h ^ { - 1 } ( x ) \\psi ( x ) = e ^ { - i e K ( x ) } e ^ { - i e \\chi ( x ) } \\psi ( x ) \\, . \\end{equation*}",
"\\begin{equation*} \\chi ( x ) = \\frac { G \\cdot A } { G \\cdot \\partial } \\, , \\end{equation*}",
"\\begin{equation*} b ( q , s , v , t ) : = \\intx \\frac { 1 } { \\sqrt { 2 E _ { q } } } u ^ { \\dagger s } ( q ) e ^ { - i e \\chi ( x ) } \\psi ( x ) e ^ { i q \\cdot x } \\, . \\end{equation*}",
"\\begin{equation*} b ( q , s , t , v ) \\rightarrow h _ { s o f t } ^ { - 1 } ( q , t , v ) D _ { s o f t } ( q , t ) b ( q , s ) \\, , \\end{equation*}",
"\\begin{equation*} h _ { s o f t } ^ { - 1 } ( q , t , v ) = \\operatorname { e x p } \\{ e \\! \\! \\! \\int _ { s o f t } \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } ( \\frac { V \\cdot a ( k ) } { V \\cdot k } e ^ { - i t k \\cdot q \\slash E _ { q } } - \\frac { V \\cdot a ^ { \\dagger } ( k ) } { V \\cdot k } e ^ { i t k \\cdot q \\slash E _ { q } } ) \\} \\, , \\end{equation*}",
"\\begin{align*} h _ { s o f t } ^ { - 1 } ( q , t , v ) D _ { s o f t } ( q , t ) & = & \\operatorname { e x p } ( e \\! \\! \\int _ { s o f t } \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } [ ( \\frac { V \\cdot a ( k ) } { V \\cdot k } - \\frac { q \\cdot a ( k ) } { q \\cdot k } ) e ^ { - i t k \\cdot q \\slash E _ { q } } \\\\ & & \\qquad \\qquad \\qquad - ( \\frac { V \\cdot a ^ { \\dagger } ( k ) } { V \\cdot k } - \\frac { q \\cdot a ^ { \\dagger } ( k ) } { q \\cdot k } ) e ^ { i t k \\cdot q \\slash E _ { q } } ] ) \\, . \\end{align*}"
],
"latex_expand": [
"$ \\mitu ^ { \\mitmu } = \\mitgamma ( \\miteta + \\mitv ) ^ { \\mitmu } $",
"$ \\miteta $",
"$ \\mitv=(0,\\textstyle \\mitv ) $",
"$ \\mitgamma = ( 1 - \\vert \\mitv \\vert ^ { 2 } ) ^ { - 1 \\slash 2 } $",
"$ \\mitK $",
"$ \\mitchi $",
"$ \\mitG ^ { \\mitmu } = ( \\miteta + \\mitv ) ^ { \\mitmu } ( \\miteta - \\mitv ) \\cdot \\mitpartial - \\mitpartial ^ { \\mitmu } $",
"$ \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) $",
"$ \\mitV ^ { \\mitmu } = ( \\miteta + \\mitv ) ^ { \\mitmu } ( \\miteta - \\mitv ) \\cdot \\mitk - \\mitk ^ { \\mitmu } $",
"$ \\mitG ^ { \\mitmu } $",
"\\begin{equation*} \\Planckconst ^ { - 1 } ( \\mitx ) \\mitpsi ( \\mitx ) = \\mathrm { e } ^ { - \\miti \\mite \\mitK ( \\mitx ) } \\mathrm { e } ^ { - \\miti \\mite \\mitchi ( \\mitx ) } \\mitpsi ( \\mitx ) \\, . \\end{equation*}",
"\\begin{equation*} \\mitchi ( \\mitx ) = \\frac { \\mitG \\cdot \\mitA } { \\mitG \\cdot \\mitpartial } \\, , \\end{equation*}",
"\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitv , \\mitt ) : = \\intx \\frac { 1 } { \\sqrt { 2 \\mitE _ { \\mitq } } } \\mitu ^ { \\dagger \\mits } ( \\mitq ) \\mathrm { e } ^ { - \\miti \\mite \\mitchi ( \\mitx ) } \\mitpsi ( \\mitx ) \\mathrm { e } ^ { \\miti \\mitq \\cdot \\mitx } \\, . \\end{equation*}",
"\\begin{equation*} \\mitb ( \\mitq , \\mits , \\mitt , \\mitv ) \\rightarrow \\Planckconst _ { \\mathrm { s o f t } } ^ { - 1 } ( \\mitq , \\mitt , \\mitv ) \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) \\mitb ( \\mitq , \\mits ) \\, , \\end{equation*}",
"\\begin{equation*} \\Planckconst _ { \\mathrm { s o f t } } ^ { - 1 } ( \\mitq , \\mitt , \\mitv ) = \\operatorname { e x p } \\left\\{ \\mite \\! \\! \\! \\int \\limits _ { \\mathrm { s o f t } } \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\left( \\frac { \\mitV \\cdot \\mita ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { - \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } - \\frac { \\mitV \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\right) \\right\\} \\, , \\end{equation*}",
"\\begin{align*} \\displaystyle \\Planckconst _ { \\mathrm { s o f t } } ^ { - 1 } ( \\mitq , \\mitt , \\mitv ) \\mitD _ { \\mathrm { s o f t } } ( \\mitq , \\mitt ) & = & \\displaystyle \\operatorname { e x p } \\Bigg ( \\mite \\! \\! \\int \\limits _ { \\mathrm { s o f t } } \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\bigg [ \\bigg ( \\frac { \\mitV \\cdot \\mita ( \\mitk ) } { \\mitV \\cdot \\mitk } - \\frac { \\mitq \\cdot \\mita ( \\mitk ) } { \\mitq \\cdot \\mitk } \\bigg ) \\mathrm { e } ^ { - \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\\\ & & \\displaystyle \\qquad \\qquad \\qquad - \\bigg ( \\frac { \\mitV \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitV \\cdot \\mitk } - \\frac { \\mitq \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitq \\cdot \\mitk } \\bigg ) \\mathrm { e } ^ { \\miti \\mitt \\mitk \\cdot \\mitq \\slash \\mitE _ { \\mitq } } \\bigg ] \\Bigg ) \\, . \\end{align*}"
],
"x_min": [
0.1817999929189682,
0.6876000165939331,
0.19140000641345978,
0.45820000767707825,
0.16660000383853912,
0.399399995803833,
0.1817999929189682,
0.1817999929189682,
0.18240000307559967,
0.8452000021934509,
0.35109999775886536,
0.4375,
0.2922999858856201,
0.321399986743927,
0.16030000150203705,
0.17000000178813934
],
"y_min": [
0.15770000219345093,
0.16210000216960907,
0.17479999363422394,
0.17329999804496765,
0.34860000014305115,
0.36959999799728394,
0.43799999356269836,
0.6478999853134155,
0.7354000210762024,
0.736299991607666,
0.31150001287460327,
0.38960000872612,
0.4887999892234802,
0.6187000274658203,
0.67330002784729,
0.7768999934196472
],
"x_max": [
0.30970001220703125,
0.6980000138282776,
0.2799000144004822,
0.6177999973297119,
0.18529999256134033,
0.4124999940395355,
0.4327000081539154,
0.26269999146461487,
0.4422000050544739,
0.8687000274658203,
0.6503000259399414,
0.5605000257492065,
0.7089999914169312,
0.6765999794006348,
0.8133999705314636,
0.8292999863624573
],
"y_max": [
0.17229999601840973,
0.17190000414848328,
0.18940000236034393,
0.18940000236034393,
0.3589000105857849,
0.3788999915122986,
0.4530999958515167,
0.6625000238418579,
0.7505000233650208,
0.7480000257492065,
0.3319999873638153,
0.423799991607666,
0.524399995803833,
0.6381999850273132,
0.7215999960899353,
0.8666999936103821
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003087_page05
|
{
"latex": [
"$k$",
"$q^\\mu =m\\gamma (\\eta +v)^\\mu $",
"$B$",
"$\\Haas $",
"$\\Afree $",
"$\\Aas $",
"\\begin {eqnarray} \\frac {V^\\mu }{V\\cd k}-\\frac {q^\\mu }{q\\cd k}&=& \\frac {(\\eta +v)^\\mu (\\eta -v)\\cd k-k^\\mu }{(\\eta +v)\\cd k(\\eta -v)\\cd k}-\\frac {q^\\mu }{q\\cd k}\\\\ &=&\\frac {(\\eta +v)^\\mu }{(\\eta +v)\\cd k}-\\frac {q^\\mu }{q\\cd k}-\\frac {k^\\mu }{V\\cd k}\\,. \\end {eqnarray}",
"\\begin {equation} -e\\intk \\frac 1{2\\omega _k} \\bigg ( \\frac {k\\cd a(k)}{V\\cd k}\\ee ^{-it\\omega _k} -\\frac {k\\cd a^\\dag (k)}{V\\cd k} \\ee ^{it\\omega _k}\\bigg )\\,, \\end {equation}",
"\\begin {eqnarray}\\Aas _\\mu (x)&=&\\exp \\!\\!\\left (i\\!\\!\\int _{-\\infty }^t\\!\\!\\!\\!\\!\\! d\\tau \\,\\Haas (\\tau )\\right )\\Afree _\\mu (x) \\exp \\!\\!\\left (-i\\!\\!\\int _{-\\infty }^t\\!\\!\\!\\!\\!\\!d\\tau \\, \\Haas (\\tau )\\right )\\\\ &=&\\Afree _\\mu (x)-e\\int _{-\\infty }^t\\!\\!d\\tau d^3y\\,D(\\tau -t, \\yb -\\xb )J^\\as _\\mu (\\tau ,\\yb )\\,, \\end {eqnarray}",
"\\begin {equation}\\label {2jas} J^\\mu _{\\as }(t,\\xb )=\\intp \\frac {p^\\mu }{E_p}\\rho (p)\\delta ^3 \\bigl (\\xb -t\\pb /E_p\\bigr )\\,. \\end {equation}"
],
"latex_norm": [
"$ k $",
"$ q ^ { \\mu } = m \\gamma ( \\eta + v ) ^ { \\mu } $",
"$ B $",
"$ H _ { i n t } ^ { a s } $",
"$ A ^ { f } $",
"$ A ^ { a s } $",
"\\begin{align*} \\frac { V ^ { \\mu } } { V \\cdot k } - \\frac { q ^ { \\mu } } { q \\cdot k } & = & \\frac { ( \\eta + v ) ^ { \\mu } ( \\eta - v ) \\cdot k - k ^ { \\mu } } { ( \\eta + v ) \\cdot k ( \\eta - v ) \\cdot k } - \\frac { q ^ { \\mu } } { q \\cdot k } \\\\ & = & \\frac { ( \\eta + v ) ^ { \\mu } } { ( \\eta + v ) \\cdot k } - \\frac { q ^ { \\mu } } { q \\cdot k } - \\frac { k ^ { \\mu } } { V \\cdot k } \\, . \\end{align*}",
"\\begin{equation*} - e \\int \\! \\frac { d ^ { 3 } k } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\omega _ { k } } ( \\frac { k \\cdot a ( k ) } { V \\cdot k } e ^ { - i t \\omega _ { k } } - \\frac { k \\cdot a ^ { \\dagger } ( k ) } { V \\cdot k } e ^ { i t \\omega _ { k } } ) \\, , \\end{equation*}",
"\\begin{align*} A _ { \\mu } ^ { a s } ( x ) & = & \\operatorname { e x p } \\! \\! ( i \\! \\! \\int _ { - \\infty } ^ { t } \\! \\! \\! \\! \\! \\! d \\tau \\, H _ { i n t } ^ { a s } ( \\tau ) ) A _ { \\mu } ^ { f } ( x ) \\operatorname { e x p } \\! \\! ( - i \\! \\! \\int _ { - \\infty } ^ { t } \\! \\! \\! \\! \\! \\! d \\tau \\, H _ { i n t } ^ { a s } ( \\tau ) ) \\\\ & = & Af\\mu(x)-et-\\inftyd\\taud3yD(\\tau-t,y -x )Jas\\mu(\\tau,y ), \\end{align*}",
"\\begin{equation*} J _ { a s } ^ { \\mu } ( t , x ) = \\int \\! \\frac { d ^ { 3 } p } { ( 2 \\pi ) ^ { 3 } } \\; \\frac { p ^ { \\mu } } { E _ { p } } \\rho ( p ) \\delta ^ { 3 } ( x - t p \\slash E _ { p } ) \\, . \\end{equation*}"
],
"latex_expand": [
"$ \\mitk $",
"$ \\mitq ^ { \\mitmu } = \\mitm \\mitgamma ( \\miteta + \\mitv ) ^ { \\mitmu } $",
"$ \\mitB $",
"$ \\mitH _ { \\mathrm { i n t } } ^ { \\mathrm { a s } } $",
"$ \\mitA ^ { \\mathrm { f } } $",
"$ \\mitA ^ { \\mathrm { a s } } $",
"\\begin{align*} \\displaystyle \\frac { \\mitV ^ { \\mitmu } } { \\mitV \\cdot \\mitk } - \\frac { \\mitq ^ { \\mitmu } } { \\mitq \\cdot \\mitk } & = & \\displaystyle \\frac { ( \\miteta + \\mitv ) ^ { \\mitmu } ( \\miteta - \\mitv ) \\cdot \\mitk - \\mitk ^ { \\mitmu } } { ( \\miteta + \\mitv ) \\cdot \\mitk ( \\miteta - \\mitv ) \\cdot \\mitk } - \\frac { \\mitq ^ { \\mitmu } } { \\mitq \\cdot \\mitk } \\\\ & = & \\displaystyle \\frac { ( \\miteta + \\mitv ) ^ { \\mitmu } } { ( \\miteta + \\mitv ) \\cdot \\mitk } - \\frac { \\mitq ^ { \\mitmu } } { \\mitq \\cdot \\mitk } - \\frac { \\mitk ^ { \\mitmu } } { \\mitV \\cdot \\mitk } \\, . \\end{align*}",
"\\begin{equation*} - \\mite \\int \\! \\frac { \\mitd ^ { 3 } \\mitk } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { 1 } { 2 \\mitomega _ { \\mitk } } \\bigg ( \\frac { \\mitk \\cdot \\mita ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { - \\miti \\mitt \\mitomega _ { \\mitk } } - \\frac { \\mitk \\cdot \\mita ^ { \\dagger } ( \\mitk ) } { \\mitV \\cdot \\mitk } \\mathrm { e } ^ { \\miti \\mitt \\mitomega _ { \\mitk } } \\bigg ) \\, , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitA _ { \\mitmu } ^ { \\mathrm { a s } } ( \\mitx ) & = & \\displaystyle \\operatorname { e x p } \\! \\! \\left( \\miti \\! \\! \\int _ { - \\infty } ^ { \\mitt } \\! \\! \\! \\! \\! \\! \\mitd \\mittau \\, \\mitH _ { \\mathrm { i n t } } ^ { \\mathrm { a s } } ( \\mittau ) \\right) \\mitA _ { \\mitmu } ^ { \\mathrm { f } } ( \\mitx ) \\operatorname { e x p } \\! \\! \\left( - \\miti \\! \\! \\int _ { - \\infty } ^ { \\mitt } \\! \\! \\! \\! \\! \\! \\mitd \\mittau \\, \\mitH _ { \\mathrm { i n t } } ^ { \\mathrm { a s } } ( \\mittau ) \\right) \\\\ & = & \\mitA ^ { f } _ { \\mitmu } ( \\mitx ) - \\mite \\mitt-\\infty\\mitd\\mittau\\mitd3\\mity\\mitD(\\mittau-\\mitt,\\displaystyle \\mity -\\displaystyle \\mitx )\\mitJas\\mitmu(\\mittau,\\displaystyle \\mity ), \\end{align*}",
"\\begin{equation*} \\mitJ _ { \\mathrm { a s } } ^ { \\mitmu } ( \\mitt , \\mitx ) = \\int \\! \\frac { \\mitd ^ { 3 } \\mitp } { ( 2 \\mitpi ) ^ { 3 } } \\; \\frac { \\mitp ^ { \\mitmu } } { \\mitE _ { \\mitp } } \\mitrho ( \\mitp ) \\mitdelta ^ { 3 } \\big ( \\mitx - \\mitt \\mitp \\slash \\mitE _ { \\mitp } \\big ) \\, . \\end{equation*}"
],
"x_min": [
0.5044999718666077,
0.5134999752044678,
0.20250000059604645,
0.6129999756813049,
0.8230999708175659,
0.4083999991416931,
0.2840000092983246,
0.28610000014305115,
0.25850000977516174,
0.31929999589920044
],
"y_min": [
0.1581999957561493,
0.2705000042915344,
0.3978999853134155,
0.6625999808311462,
0.6776999831199646,
0.6967999935150146,
0.18160000443458557,
0.3109999895095825,
0.7206000089645386,
0.8237000107765198
],
"x_max": [
0.5156000256538391,
0.6621000170707703,
0.2190999984741211,
0.647599995136261,
0.8445000052452087,
0.4374000132083893,
0.7152000069618225,
0.703499972820282,
0.7394999861717224,
0.6820999979972839
],
"y_max": [
0.1688999980688095,
0.2851000130176544,
0.4081999957561493,
0.6762999892234802,
0.6898999810218811,
0.7074999809265137,
0.2621999979019165,
0.3495999872684479,
0.7907999753952026,
0.8622999787330627
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003087_page06
|
{
"latex": [
"$(\\delta _{ij}-\\partial _{i}\\partial _{j}/\\nabla ^2)\\Aas _{j}$",
"$S$"
],
"latex_norm": [
"$ ( \\delta _ { i j } - \\partial _ { i } \\partial _ { j } \\slash \\nabla ^ { 2 } ) A _ { j } ^ { a s } $",
"$ S $"
],
"latex_expand": [
"$ ( \\mitdelta _ { \\miti \\mitj } - \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } \\slash \\nabla ^ { 2 } ) \\mitA _ { \\mitj } ^ { \\mathrm { a s } } $",
"$ \\mitS $"
],
"x_min": [
0.31310001015663147,
0.553600013256073
],
"y_min": [
0.2084999978542328,
0.6044999957084656
],
"x_max": [
0.46720001101493835,
0.5673999786376953
],
"y_max": [
0.225600004196167,
0.614799976348877
],
"expr_type": [
"embedded",
"embedded"
]
}
|
|
0003126_page01
|
{
"latex": [
"$(\\square ^{1/n})$",
"$n=1$",
"$2$",
"$n>2$",
"$SU(n)$",
"$(s\\geq 1)$",
"$n$",
"$n=2$",
"$n>2$",
"$n=1,2$"
],
"latex_norm": [
"$ ( \\square ^ { 1 \\slash n } ) $",
"$ n = 1 $",
"$ 2 $",
"$ n > 2 $",
"$ S U ( n ) $",
"$ ( s \\geq 1 ) $",
"$ n $",
"$ n = 2 $",
"$ n > 2 $",
"$ n = 1 , 2 $"
],
"latex_expand": [
"$ ( \\square ^ { 1 \\slash \\mitn } ) $",
"$ \\mitn = 1 $",
"$ 2 $",
"$ \\mitn > 2 $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ ( \\mits \\geq 1 ) $",
"$ \\mitn $",
"$ \\mitn = 2 $",
"$ \\mitn > 2 $",
"$ \\mitn = 1 , 2 $"
],
"x_min": [
0.5791000127792358,
0.5162000060081482,
0.5999000072479248,
0.34209999442100525,
0.515500009059906,
0.6793000102043152,
0.7774999737739563,
0.600600004196167,
0.5314000248908997,
0.25290000438690186
],
"y_min": [
0.43070000410079956,
0.44679999351501465,
0.44679999351501465,
0.47269999980926514,
0.4975999891757965,
0.7002000212669373,
0.7890999913215637,
0.8008000254631042,
0.8148999810218811,
0.8291000127792358
],
"x_max": [
0.6247000098228455,
0.5611000061035156,
0.6082000136375427,
0.3815000057220459,
0.5597000122070312,
0.7332000136375427,
0.7878999710083008,
0.64410001039505,
0.5748999714851379,
0.3151000142097473
],
"y_max": [
0.4438999891281128,
0.45410001277923584,
0.45410001277923584,
0.4805000126361847,
0.5088000297546387,
0.7124000191688538,
0.7950000166893005,
0.8090999722480774,
0.8237000107765198,
0.8398000001907349
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003126_page02
|
{
"latex": [
"$SU(n)$",
"$f(\\square )$",
"$n\\times n,$",
"$n\\geq 2$",
"$\\alpha =\\exp (2\\pi i/n)$",
"\\begin {equation} S=\\left ( \\begin {array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & 1 \\\\ 1 & & & & & \\qquad \\\\ \\qquad & 1 & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & 1 & 0 \\end {array} \\right ) , \\label {ga1} \\end {equation}",
"\\begin {equation} T=\\left ( \\begin {array}{cccccc} 1 & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha & & & & \\\\ & & \\alpha ^{2} & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^{n-1} \\end {array} \\right ) \\label {gb1} \\end {equation}"
],
"latex_norm": [
"$ S U ( n ) $",
"$ f ( \\square ) $",
"$ n \\times n , $",
"$ n \\geq 2 $",
"$ \\alpha = e x p ( 2 \\pi i \\slash n ) $",
"\\begin{align*} S = ( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & 1 \\\\ 1 & & & & & \\qquad \\\\ \\qquad & 1 & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & 1 & 0 \\end{array} ) , \\end{align*}",
"\\begin{align*} T = ( \\begin{array}{cccccc} 1 & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha & & & & \\\\ & & \\alpha ^ { 2 } & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^ { n - 1 } \\end{array} ) \\end{align*}"
],
"latex_expand": [
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mitf ( \\square ) $",
"$ \\mitn \\times \\mitn , $",
"$ \\mitn \\geq 2 $",
"$ \\mitalpha = \\mathrm { e x p } ( 2 \\mitpi \\miti \\slash \\mitn ) $",
"\\begin{align*} \\mitS = \\left( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & 1 \\\\ 1 & & & & & \\qquad \\\\ \\qquad & 1 & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & 1 & 0 \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mitT = \\left( \\begin{array}{cccccc} 1 & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\mitalpha & & & & \\\\ & & \\mitalpha ^ { 2 } & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\mitalpha ^ { \\mitn - 1 } \\end{array} \\right) \\end{align*}"
],
"x_min": [
0.4180999994277954,
0.2467000037431717,
0.7408000230789185,
0.3808000087738037,
0.257099986076355,
0.30889999866485596,
0.3109999895095825
],
"y_min": [
0.18160000443458557,
0.3521000146865845,
0.5541999936103821,
0.6079000234603882,
0.8227999806404114,
0.6273999810218811,
0.725600004196167
],
"x_max": [
0.46650001406669617,
0.2833000123500824,
0.7878000140190125,
0.4223000109195709,
0.3718000054359436,
0.6883000135421753,
0.6862999796867371
],
"y_max": [
0.19429999589920044,
0.36480000615119934,
0.5640000104904175,
0.6176999807357788,
0.8349999785423279,
0.7167999744415283,
0.8149999976158142
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0003126_page07
|
{
"latex": [
"$P_{j}^{-}$",
"$P_{j}^{+}$",
"$F_{pr} $",
"$\\alpha ^{p+r}=1$",
"$n$",
"$\\alpha =\\exp (2\\pi i/n)$",
"$\\alpha $",
"$Q_{pr}$",
"$n^{2}$",
"$r\\neq n$",
"$s\\neq n$",
"$Q_{pr}$",
"$Q_{pr}$",
"$A$",
"\\begin {equation} P_{j}^{+}\\circ S^{p}T^{r}=\\alpha ^{j}S^{p}T^{r} \\end {equation}",
"\\begin {equation} \\{S^{p},T^{r}\\}=\\left ( \\sum _{k_{p}=0}^{r}...\\sum _{k_{2}=0}^{k_{3}}\\sum _{k_{1}=0}^{k_{2}}\\alpha ^{k_{1}}\\alpha ^{k_{2}}...\\alpha ^{k_{p}}\\right ) S^{p}T^{r}. \\label {gaa26} \\end {equation}",
"\\begin {equation} \\{S^{p},T^{r}\\}=\\left ( \\sum _{k_{r}=0}^{p}...\\sum _{k_{2}=0}^{k_{3}}\\sum _{k_{1}=0}^{k_{2}}\\alpha ^{k_{1}}\\alpha ^{k_{2}}...\\alpha ^{k_{r}}\\right ) S^{p}T^{r}. \\label {gab26} \\end {equation}",
"\\begin {equation} F_{pr}(\\alpha )=F_{rp}(\\alpha ). \\label {gac26} \\end {equation}",
"\\begin {equation} Q_{pr}=S^{p}T^{r},\\qquad p,r=1,2,...,n \\label {ga27} \\end {equation}",
"\\begin {equation} \\label {gaa27} Q_{rs}Q_{pq}=\\alpha ^{s\\cdot p}Q_{kl};\\ k=\\text {mod}(r+p-1,n)+1,\\ l=\\text {mod }(s+q-1,n)+1, \\end {equation}",
"\\begin {equation} \\label {ga28} Q_{rs}Q_{pq}=\\alpha ^{s\\cdot p-r\\cdot q}Q_{pq}Q_{rs}, \\end {equation}",
"\\begin {equation} \\label {ga29} \\left ( Q_{rs}\\right ) ^n=(-1)^{(n-1)r\\cdot s}I, \\end {equation}",
"\\begin {equation} \\label {ga30} Q_{rs}^{\\dagger }Q_{rs}=Q_{rs}Q_{rs}^{\\dagger }=I, \\end {equation}",
"\\begin {equation} \\label {gaa30} Q_{rs}^{\\dagger }=\\alpha ^{r\\cdot s}Q_{kl};\\qquad k=n-r,\\qquad l=n-s, \\end {equation}",
"\\begin {equation} \\label {ga31} \\det Q_{rs}=(-1)^{(n-1)(r+s)} \\end {equation}",
"\\begin {equation} \\label {ga32} \\text {\\textrm {Tr }}Q_{rs}=0. \\end {equation}",
"\\begin {equation} A=\\sum _{k,l=1}^{n}a_{kl}Q_{kl},\\qquad a_{kl}=\\frac {1}{n}\\text {\\textrm {Tr}} (Q_{kl}^{\\dagger }A). \\label {ga33} \\end {equation}"
],
"latex_norm": [
"$ P _ { j } ^ { - } $",
"$ P _ { j } ^ { + } $",
"$ F _ { p r } $",
"$ \\alpha ^ { p + r } = 1 $",
"$ n $",
"$ \\alpha = e x p ( 2 \\pi i \\slash n ) $",
"$ \\alpha $",
"$ Q _ { p r } $",
"$ n ^ { 2 } $",
"$ r \\ne n $",
"$ s \\ne n $",
"$ Q _ { p r } $",
"$ Q _ { p r } $",
"$ A $",
"\\begin{equation*} P _ { j } ^ { + } \\circ S ^ { p } T ^ { r } = \\alpha ^ { j } S ^ { p } T ^ { r } \\end{equation*}",
"\\begin{equation*} \\{ S ^ { p } , T ^ { r } \\} = ( \\sum _ { k _ { p } = 0 } ^ { r } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } \\alpha ^ { k _ { 1 } } \\alpha ^ { k _ { 2 } } . . . \\alpha ^ { k _ { p } } ) S ^ { p } T ^ { r } . \\end{equation*}",
"\\begin{equation*} \\{ S ^ { p } , T ^ { r } \\} = ( \\sum _ { k _ { r } = 0 } ^ { p } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } \\alpha ^ { k _ { 1 } } \\alpha ^ { k _ { 2 } } . . . \\alpha ^ { k _ { r } } ) S ^ { p } T ^ { r } . \\end{equation*}",
"\\begin{equation*} F _ { p r } ( \\alpha ) = F _ { r p } ( \\alpha ) . \\end{equation*}",
"\\begin{equation*} Q _ { p r } = S ^ { p } T ^ { r } , \\qquad p , r = 1 , 2 , . . . , n \\end{equation*}",
"\\begin{equation*} Q _ { r s } Q _ { p q } = \\alpha ^ { s \\cdot p } Q _ { k l } ; ~ k = m o d ( r + p - 1 , n ) + 1 , ~ l = m o d ~ ( s + q - 1 , n ) + 1 , \\end{equation*}",
"\\begin{equation*} Q _ { r s } Q _ { p q } = \\alpha ^ { s \\cdot p - r \\cdot q } Q _ { p q } Q _ { r s } , \\end{equation*}",
"\\begin{equation*} { ( Q _ { r s } ) } ^ { n } = ( - 1 ) ^ { ( n - 1 ) r \\cdot s } I , \\end{equation*}",
"\\begin{equation*} Q _ { r s } ^ { \\dagger } Q _ { r s } = Q _ { r s } Q _ { r s } ^ { \\dagger } = I , \\end{equation*}",
"\\begin{equation*} Q _ { r s } ^ { \\dagger } = \\alpha ^ { r \\cdot s } Q _ { k l } ; \\qquad k = n - r , \\qquad l = n - s , \\end{equation*}",
"\\begin{equation*} \\operatorname { d e t } Q _ { r s } = ( - 1 ) ^ { ( n - 1 ) ( r + s ) } \\end{equation*}",
"\\begin{equation*} T r \\hspace{3.33pt} Q _ { r s } = 0 . \\end{equation*}",
"\\begin{equation*} A = \\sum _ { k , l = 1 } ^ { n } a _ { k l } Q _ { k l } , \\qquad a _ { k l } = \\frac { 1 } { n } T r ( Q _ { k l } ^ { \\dagger } A ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitP _ { \\mitj } ^ { - } $",
"$ \\mitP _ { \\mitj } ^ { + } $",
"$ \\mitF _ { \\mitp \\mitr } $",
"$ \\mitalpha ^ { \\mitp + \\mitr } = 1 $",
"$ \\mitn $",
"$ \\mitalpha = \\mathrm { e x p } ( 2 \\mitpi \\miti \\slash \\mitn ) $",
"$ \\mitalpha $",
"$ \\mitQ _ { \\mitp \\mitr } $",
"$ \\mitn ^ { 2 } $",
"$ \\mitr \\ne \\mitn $",
"$ \\mits \\ne \\mitn $",
"$ \\mitQ _ { \\mitp \\mitr } $",
"$ \\mitQ _ { \\mitp \\mitr } $",
"$ \\mitA $",
"\\begin{equation*} \\mitP _ { \\mitj } ^ { + } \\vysmwhtcircle \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } = \\mitalpha ^ { \\mitj } \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } \\end{equation*}",
"\\begin{equation*} \\{ \\mitS ^ { \\mitp } , \\mitT ^ { \\mitr } \\} = \\left( \\sum _ { \\mitk _ { \\mitp } = 0 } ^ { \\mitr } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitalpha ^ { \\mitk _ { 1 } } \\mitalpha ^ { \\mitk _ { 2 } } . . . \\mitalpha ^ { \\mitk _ { \\mitp } } \\right) \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } . \\end{equation*}",
"\\begin{equation*} \\{ \\mitS ^ { \\mitp } , \\mitT ^ { \\mitr } \\} = \\left( \\sum _ { \\mitk _ { \\mitr } = 0 } ^ { \\mitp } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitalpha ^ { \\mitk _ { 1 } } \\mitalpha ^ { \\mitk _ { 2 } } . . . \\mitalpha ^ { \\mitk _ { \\mitr } } \\right) \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitp \\mitr } ( \\mitalpha ) = \\mitF _ { \\mitr \\mitp } ( \\mitalpha ) . \\end{equation*}",
"\\begin{equation*} \\mitQ _ { \\mitp \\mitr } = \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } , \\qquad \\mitp , \\mitr = 1 , 2 , . . . , \\mitn \\end{equation*}",
"\\begin{equation*} \\mitQ _ { \\mitr \\mits } \\mitQ _ { \\mitp \\mitq } = \\mitalpha ^ { \\mits \\cdot \\mitp } \\mitQ _ { \\mitk \\mitl } ; ~ \\mitk = \\mathrm { m o d } ( \\mitr + \\mitp - 1 , \\mitn ) + 1 , ~ \\mitl = \\mathrm { m o d } ~ ( \\mits + \\mitq - 1 , \\mitn ) + 1 , \\end{equation*}",
"\\begin{equation*} \\mitQ _ { \\mitr \\mits } \\mitQ _ { \\mitp \\mitq } = \\mitalpha ^ { \\mits \\cdot \\mitp - \\mitr \\cdot \\mitq } \\mitQ _ { \\mitp \\mitq } \\mitQ _ { \\mitr \\mits } , \\end{equation*}",
"\\begin{equation*} { \\left( \\mitQ _ { \\mitr \\mits } \\right) } ^ { \\mitn } = ( - 1 ) ^ { ( \\mitn - 1 ) \\mitr \\cdot \\mits } \\mitI , \\end{equation*}",
"\\begin{equation*} \\mitQ _ { \\mitr \\mits } ^ { \\dagger } \\mitQ _ { \\mitr \\mits } = \\mitQ _ { \\mitr \\mits } \\mitQ _ { \\mitr \\mits } ^ { \\dagger } = \\mitI , \\end{equation*}",
"\\begin{equation*} \\mitQ _ { \\mitr \\mits } ^ { \\dagger } = \\mitalpha ^ { \\mitr \\cdot \\mits } \\mitQ _ { \\mitk \\mitl } ; \\qquad \\mitk = \\mitn - \\mitr , \\qquad \\mitl = \\mitn - \\mits , \\end{equation*}",
"\\begin{equation*} \\operatorname { d e t } \\mitQ _ { \\mitr \\mits } = ( - 1 ) ^ { ( \\mitn - 1 ) ( \\mitr + \\mits ) } \\end{equation*}",
"\\begin{equation*} \\mathrm { T r } \\hspace{3.33pt} \\mitQ _ { \\mitr \\mits } = 0 . \\end{equation*}",
"\\begin{equation*} \\mitA = \\sum _ { \\mitk , \\mitl = 1 } ^ { \\mitn } \\mita _ { \\mitk \\mitl } \\mitQ _ { \\mitk \\mitl } , \\qquad \\mita _ { \\mitk \\mitl } = \\frac { 1 } { \\mitn } \\mathrm { T r } ( \\mitQ _ { \\mitk \\mitl } ^ { \\dagger } \\mitA ) . \\end{equation*}"
],
"x_min": [
0.6115999817848206,
0.7153000235557556,
0.605400025844574,
0.6710000038146973,
0.3116999864578247,
0.36010000109672546,
0.24120000004768372,
0.4325999915599823,
0.5439000129699707,
0.2687999904155731,
0.33660000562667847,
0.5224999785423279,
0.4194999933242798,
0.7483999729156494,
0.420199990272522,
0.31439998745918274,
0.3158000111579895,
0.4361000061035156,
0.37869998812675476,
0.2184000015258789,
0.4007999897003174,
0.4090999960899353,
0.414000004529953,
0.33379998803138733,
0.40700000524520874,
0.4553999900817871,
0.3531000018119812
],
"y_min": [
0.3100999891757965,
0.3100999891757965,
0.4009000062942505,
0.4487000107765198,
0.4672999978065491,
0.4634000062942505,
0.4814000129699707,
0.5038999915122986,
0.5023999810218811,
0.7109000086784363,
0.7109000086784363,
0.7645999789237976,
0.7900000214576721,
0.7900000214576721,
0.1738000065088272,
0.22509999573230743,
0.3456999957561493,
0.42480000853538513,
0.5253999829292297,
0.5756999850273132,
0.5996000170707703,
0.6211000084877014,
0.6425999999046326,
0.663100004196167,
0.6836000084877014,
0.7217000126838684,
0.8241999745368958
],
"x_max": [
0.6358000040054321,
0.7401999831199646,
0.630299985408783,
0.7372999787330627,
0.3221000134944916,
0.47620001435279846,
0.2522999942302704,
0.4602000117301941,
0.5626000165939331,
0.30959999561309814,
0.3774000108242035,
0.5501000285148621,
0.44780001044273376,
0.7615000009536743,
0.579800009727478,
0.6855000257492065,
0.6834999918937683,
0.5640000104904175,
0.6212999820709229,
0.7588000297546387,
0.5964000225067139,
0.5853000283241272,
0.5825999975204468,
0.6633999943733215,
0.5900999903678894,
0.5444999933242798,
0.6467999815940857
],
"y_max": [
0.3257000148296356,
0.3257000148296356,
0.41260001063346863,
0.45899999141693115,
0.4731999933719635,
0.47609999775886536,
0.48730000853538513,
0.5156000256538391,
0.5127000212669373,
0.7215999960899353,
0.7215999960899353,
0.7767999768257141,
0.8016999959945679,
0.79830002784729,
0.19329999387264252,
0.27149999141693115,
0.3882000148296356,
0.4413999915122986,
0.5410000085830688,
0.5917999744415283,
0.6172000169754028,
0.63919997215271,
0.6596999764442444,
0.6807000041007996,
0.70169997215271,
0.7358999848365784,
0.8647000193595886
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page08
|
{
"latex": [
"$Q_{kl}$",
"$a_{rs}\\neq 0$",
"$n\\times n$",
"$n\\geq 2$",
"$n^2$",
"$Q_\\lambda ,Q_\\mu ,Q_\\nu $",
"$n\\geq 3$",
"$\\lambda =1n,\\^^M\\mu =11,\\ \\nu =n1.$",
"$\\{X^{p},Z^{r}\\}=0$",
"$j$",
"\\begin {equation} \\sum _{k,l=1}^{n}a_{kl}Q_{kl}=0, \\end {equation}",
"\\begin {equation} \\text {\\textrm {Tr}}\\sum _{k,l=1}^{n}a_{kl}Q_{rs}^{\\dagger }Q_{kl}=a_{rs}n=0. \\end {equation}",
"\\begin {equation} \\label {ga34} \\{Q_\\lambda ^p,Q_\\mu ^r\\}=\\{Q_\\mu ^p,Q_\\nu ^r\\}=\\{Q_\\nu ^p,Q_\\lambda ^r\\}=0;\\qquad 0<p,r,\\qquad p+r=n \\end {equation}",
"\\begin {equation} \\label {ga35} \\{Q_\\lambda ^p,Q_\\mu ^r,Q_\\nu ^s\\}=0;\\qquad 0<p,r,s,\\qquad p+r+s=n. \\end {equation}",
"\\begin {equation} X=Q_{1n}=S,\\qquad Y=Q_{11},\\qquad Z=Q_{n1}=T, \\label {ga35.1} \\end {equation}",
"\\begin {equation} YX=\\alpha XY,\\qquad ZX=\\alpha XZ,\\qquad ZY=\\alpha YZ. \\label {gaa35} \\end {equation}",
"\\begin {equation} \\{X^{p},Y^{r},Z^{s}\\} \\label {ga36} \\end {equation}",
"\\begin {equation} =\\sum _{j_{p}=0}^{r+s}...\\sum _{j_{2}=0}^{j_{3}} \\sum _{j_{1}=0}^{j_{2}}P_{j_{1}}^{+}\\circ P_{j_{2}}^{+}...P_{j_{p}}^{+}\\circ X^{p}\\sum _{k_{p}=0}^{s}...\\sum _{k_{2}=0}^{k_{3}} \\sum _{k_{1}=0}^{k_{2}}P_{k_{1}}^{+}\\circ P_{k_{2}}^{+}...P_{k_{r}}^{+}\\circ Y^{r}Z^{s}, \\end {equation}",
"\\begin {equation} \\{X^{p},Y^{r},Z^{s}\\} \\end {equation}",
"\\begin {equation} =\\left ( \\sum _{j_{p}=0}^{r+s}...\\sum _{j_{2}=0}^{j_{3}}\\sum _{j_{1}=0}^{j_{2}}\\alpha ^{j_{1}}\\alpha ^{j_{2}}...\\alpha ^{j_{p}}\\right ) \\left ( \\sum _{k_{p}=0}^{s}...\\sum _{k_{2}=0}^{k_{3}}\\sum _{k_{1}=0}^{k_{2}}\\alpha ^{k_{1}}\\alpha ^{k_{2}}...\\alpha ^{k_{r}}\\right ) X^{p}Y^{r}Z^{s}. \\end {equation}"
],
"latex_norm": [
"$ Q _ { k l } $",
"$ a _ { r s } \\ne 0 $",
"$ n \\times n $",
"$ n \\geq 2 $",
"$ n ^ { 2 } $",
"$ Q _ { \\lambda } , Q _ { \\mu } , Q _ { \\nu } $",
"$ n \\geq 3 $",
"$ \\lambda = 1 n , ~ \\mu = 1 1 , ~ \\nu = n 1 . $",
"$ \\{ X ^ { p } , Z ^ { r } \\} = 0 $",
"$ j $",
"\\begin{equation*} \\sum _ { k , l = 1 } ^ { n } a _ { k l } Q _ { k l } = 0 , \\end{equation*}",
"\\begin{equation*} T r \\sum _ { k , l = 1 } ^ { n } a _ { k l } Q _ { r s } ^ { \\dagger } Q _ { k l } = a _ { r s } n = 0 . \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\lambda } ^ { p } , Q _ { \\mu } ^ { r } \\} = \\{ Q _ { \\mu } ^ { p } , Q _ { \\nu } ^ { r } \\} = \\{ Q _ { \\nu } ^ { p } , Q _ { \\lambda } ^ { r } \\} = 0 ; \\qquad 0 < p , r , \\qquad p + r = n \\end{equation*}",
"\\begin{equation*} \\{ Q _ { \\lambda } ^ { p } , Q _ { \\mu } ^ { r } , Q _ { \\nu } ^ { s } \\} = 0 ; \\qquad 0 < p , r , s , \\qquad p + r + s = n . \\end{equation*}",
"\\begin{equation*} X = Q _ { 1 n } = S , \\qquad Y = Q _ { 1 1 } , \\qquad Z = Q _ { n 1 } = T , \\end{equation*}",
"\\begin{equation*} Y X = \\alpha X Y , \\qquad Z X = \\alpha X Z , \\qquad Z Y = \\alpha Y Z . \\end{equation*}",
"\\begin{equation*} \\{ X ^ { p } , Y ^ { r } , Z ^ { s } \\} \\end{equation*}",
"\\begin{equation*} = \\sum _ { j _ { p } = 0 } ^ { r + s } . . . \\sum _ { j _ { 2 } = 0 } ^ { j _ { 3 } } \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } P _ { j _ { 1 } } ^ { + } \\circ P _ { j _ { 2 } } ^ { + } . . . P _ { j _ { p } } ^ { + } \\circ X ^ { p } \\sum _ { k _ { p } = 0 } ^ { s } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } P _ { k _ { 1 } } ^ { + } \\circ P _ { k _ { 2 } } ^ { + } . . . P _ { k _ { r } } ^ { + } \\circ Y ^ { r } Z ^ { s } , \\end{equation*}",
"\\begin{equation*} \\{ X ^ { p } , Y ^ { r } , Z ^ { s } \\} \\end{equation*}",
"\\begin{equation*} = ( \\sum _ { j _ { p } = 0 } ^ { r + s } . . . \\sum _ { j _ { 2 } = 0 } ^ { j _ { 3 } } \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\alpha ^ { j _ { 1 } } \\alpha ^ { j _ { 2 } } . . . \\alpha ^ { j _ { p } } ) ( \\sum _ { k _ { p } = 0 } ^ { s } . . . \\sum _ { k _ { 2 } = 0 } ^ { k _ { 3 } } \\sum _ { k _ { 1 } = 0 } ^ { k _ { 2 } } \\alpha ^ { k _ { 1 } } \\alpha ^ { k _ { 2 } } . . . \\alpha ^ { k _ { r } } ) X ^ { p } Y ^ { r } Z ^ { s } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitQ _ { \\mitk \\mitl } $",
"$ \\mita _ { \\mitr \\mits } \\ne 0 $",
"$ \\mitn \\times \\mitn $",
"$ \\mitn \\geq 2 $",
"$ \\mitn ^ { 2 } $",
"$ \\mitQ _ { \\mitlambda } , \\mitQ _ { \\mitmu } , \\mitQ _ { \\mitnu } $",
"$ \\mitn \\geq 3 $",
"$ \\mitlambda = 1 \\mitn , ~ \\mitmu = 1 1 , ~ \\mitnu = \\mitn 1 . $",
"$ \\{ \\mitX ^ { \\mitp } , \\mitZ ^ { \\mitr } \\} = 0 $",
"$ \\mitj $",
"\\begin{equation*} \\sum _ { \\mitk , \\mitl = 1 } ^ { \\mitn } \\mita _ { \\mitk \\mitl } \\mitQ _ { \\mitk \\mitl } = 0 , \\end{equation*}",
"\\begin{equation*} \\mathrm { T r } \\sum _ { \\mitk , \\mitl = 1 } ^ { \\mitn } \\mita _ { \\mitk \\mitl } \\mitQ _ { \\mitr \\mits } ^ { \\dagger } \\mitQ _ { \\mitk \\mitl } = \\mita _ { \\mitr \\mits } \\mitn = 0 . \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitlambda } ^ { \\mitp } , \\mitQ _ { \\mitmu } ^ { \\mitr } \\} = \\{ \\mitQ _ { \\mitmu } ^ { \\mitp } , \\mitQ _ { \\mitnu } ^ { \\mitr } \\} = \\{ \\mitQ _ { \\mitnu } ^ { \\mitp } , \\mitQ _ { \\mitlambda } ^ { \\mitr } \\} = 0 ; \\qquad 0 < \\mitp , \\mitr , \\qquad \\mitp + \\mitr = \\mitn \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { \\mitlambda } ^ { \\mitp } , \\mitQ _ { \\mitmu } ^ { \\mitr } , \\mitQ _ { \\mitnu } ^ { \\mits } \\} = 0 ; \\qquad 0 < \\mitp , \\mitr , \\mits , \\qquad \\mitp + \\mitr + \\mits = \\mitn . \\end{equation*}",
"\\begin{equation*} \\mitX = \\mitQ _ { 1 \\mitn } = \\mitS , \\qquad \\mitY = \\mitQ _ { 1 1 } , \\qquad \\mitZ = \\mitQ _ { \\mitn 1 } = \\mitT , \\end{equation*}",
"\\begin{equation*} \\mitY \\mitX = \\mitalpha \\mitX \\mitY , \\qquad \\mitZ \\mitX = \\mitalpha \\mitX \\mitZ , \\qquad \\mitZ \\mitY = \\mitalpha \\mitY \\mitZ . \\end{equation*}",
"\\begin{equation*} \\{ \\mitX ^ { \\mitp } , \\mitY ^ { \\mitr } , \\mitZ ^ { \\mits } \\} \\end{equation*}",
"\\begin{equation*} = \\sum _ { \\mitj _ { \\mitp } = 0 } ^ { \\mitr + \\mits } . . . \\sum _ { \\mitj _ { 2 } = 0 } ^ { \\mitj _ { 3 } } \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\mitP _ { \\mitj _ { 1 } } ^ { + } \\vysmwhtcircle \\mitP _ { \\mitj _ { 2 } } ^ { + } . . . \\mitP _ { \\mitj _ { \\mitp } } ^ { + } \\vysmwhtcircle \\mitX ^ { \\mitp } \\sum _ { \\mitk _ { \\mitp } = 0 } ^ { \\mits } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitP _ { \\mitk _ { 1 } } ^ { + } \\vysmwhtcircle \\mitP _ { \\mitk _ { 2 } } ^ { + } . . . \\mitP _ { \\mitk _ { \\mitr } } ^ { + } \\vysmwhtcircle \\mitY ^ { \\mitr } \\mitZ ^ { \\mits } , \\end{equation*}",
"\\begin{equation*} \\{ \\mitX ^ { \\mitp } , \\mitY ^ { \\mitr } , \\mitZ ^ { \\mits } \\} \\end{equation*}",
"\\begin{equation*} = \\left( \\sum _ { \\mitj _ { \\mitp } = 0 } ^ { \\mitr + \\mits } . . . \\sum _ { \\mitj _ { 2 } = 0 } ^ { \\mitj _ { 3 } } \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\mitalpha ^ { \\mitj _ { 1 } } \\mitalpha ^ { \\mitj _ { 2 } } . . . \\mitalpha ^ { \\mitj _ { \\mitp } } \\right) \\left( \\sum _ { \\mitk _ { \\mitp } = 0 } ^ { \\mits } . . . \\sum _ { \\mitk _ { 2 } = 0 } ^ { \\mitk _ { 3 } } \\sum _ { \\mitk _ { 1 } = 0 } ^ { \\mitk _ { 2 } } \\mitalpha ^ { \\mitk _ { 1 } } \\mitalpha ^ { \\mitk _ { 2 } } . . . \\mitalpha ^ { \\mitk _ { \\mitr } } \\right) \\mitX ^ { \\mitp } \\mitY ^ { \\mitr } \\mitZ ^ { \\mits } . \\end{equation*}"
],
"x_min": [
0.3801000118255615,
0.7339000105857849,
0.6966000199317932,
0.38359999656677246,
0.4921000003814697,
0.2093999981880188,
0.3303000032901764,
0.5708000063896179,
0.37040001153945923,
0.506600022315979,
0.4368000030517578,
0.38839998841285706,
0.23430000245571136,
0.3068000078201294,
0.32409998774528503,
0.3255000114440918,
0.4505999982357025,
0.21559999883174896,
0.4505999982357025,
0.2184000015258789
],
"y_min": [
0.16850000619888306,
0.16850000619888306,
0.32760000228881836,
0.36719998717308044,
0.365200012922287,
0.38089999556541443,
0.4336000084877014,
0.49900001287460327,
0.6000999808311462,
0.8281000256538391,
0.19089999794960022,
0.25929999351501465,
0.40230000019073486,
0.4546000063419342,
0.524399995803833,
0.5717999935150146,
0.6538000106811523,
0.673799991607666,
0.7480000257492065,
0.7728999853134155
],
"x_max": [
0.40639999508857727,
0.7878000140190125,
0.7353000044822693,
0.42640000581741333,
0.5108000040054321,
0.29089999198913574,
0.3718000054359436,
0.7573999762535095,
0.47130000591278076,
0.5149000287055969,
0.557699978351593,
0.6115999817848206,
0.7228999733924866,
0.6923999786376953,
0.6730999946594238,
0.6744999885559082,
0.5486999750137329,
0.7767999768257141,
0.5486999750137329,
0.7767999768257141
],
"y_max": [
0.17919999361038208,
0.17919999361038208,
0.33640000224113464,
0.37700000405311584,
0.37549999356269836,
0.39309999346733093,
0.44339999556541443,
0.510200023651123,
0.6128000020980835,
0.8388000130653381,
0.2313999980688095,
0.29980000853538513,
0.4203999936580658,
0.4722000062465668,
0.5386000275611877,
0.5860000252723694,
0.6693999767303467,
0.7177000045776367,
0.7635999917984009,
0.8192999958992004
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page09
|
{
"latex": [
"$Q_{\\lambda }$",
"$a,b,c$",
"$n>2$",
"$Q_{rs}$",
"$X,Y,Z$",
"$XY=YX,$",
"$Y\\sim X^{p},2\\leq p<n$",
"$Q_{rs}$",
"$2\\leq n\\leq 20$",
"$X,Y,Z$",
"$p,r,s\\geq 1$",
"$p+r+s\\leq n$",
"$X^{p}Y^{r}Z^{s}\\sim I$",
"$\\beta _{k}$",
"$\\beta _{k}$",
"$p<n$",
"$\\beta _{k}^{p}=1$",
"$n$",
"$X,Y,Z$",
"$X^{\\prime },Y^{\\prime },Z^{\\prime }$",
"$X,Y,Z$",
"$\\beta _{k}\\neq \\beta _{k}^{\\prime }.$",
"$N$",
"$2\\leq n\\leq 10$",
"$N=4$",
"$U_{l},l=1,2,3$",
"$n^{2}\\times n^{2}$",
"\\begin {equation} (aQ_{\\lambda }+bQ_{\\mu }+cQ_{\\nu })^{n}=(a^{n}+b^{n}+c^{n})I. \\label {ga37} \\end {equation}",
"\\begin {equation} XY=\\beta _{3}YX\\qquad YZ=\\beta _{1}ZY\\qquad ZX=\\beta _{2}XZ \\label {gaa37} \\end {equation}",
"\\begin {equation} \\begin {array}{cccccccccccccccccccc} n: & \\text {{\\footnotesize 2}} & \\text {{\\footnotesize 3}} & \\text { {\\footnotesize 4}} & \\text {{\\footnotesize 5}} & \\text {{\\footnotesize 6}} & \\text {{\\footnotesize 7}} & \\text {{\\footnotesize 8}} & \\text {{\\footnotesize 9} } & \\text {{\\footnotesize 10}} & \\text {{\\footnotesize 11}} & \\text { {\\footnotesize 12}} & \\text {{\\footnotesize 13}} & \\text {{\\footnotesize 14}} & \\text {{\\footnotesize 15}} & \\text {{\\footnotesize 16}} & \\text { {\\footnotesize 17}} & \\text {{\\footnotesize 18}} & \\text {{\\footnotesize 19}} & \\text {{\\footnotesize 20}} \\\\ \\#3: & \\text {{\\footnotesize 1}} & \\text {{\\footnotesize 1}} & \\text { {\\footnotesize 1}} & \\text {{\\footnotesize 4}} & \\text {{\\footnotesize 1}} & \\text {{\\footnotesize 9}} & \\text {{\\footnotesize 4}} & \\text {{\\footnotesize 9} } & \\text {{\\footnotesize 4}} & \\text {{\\footnotesize 25}} & \\text { {\\footnotesize 4}} & \\text {{\\footnotesize 36}} & \\text {{\\footnotesize 9}} & \\text {{\\footnotesize 16}} & \\text {{\\footnotesize 16}} & \\text {{\\footnotesize 64}} & \\text {{\\footnotesize 9}} & \\text {{\\footnotesize 81}} & \\text { {\\footnotesize 16}} \\end {array} \\end {equation}",
"\\begin {equation} \\left ( \\sum _{\\lambda =0}^{N-1}a_{\\lambda }Q_{\\lambda }\\right ) ^{n}=\\sum _{\\lambda =0}^{N-1}a_{\\lambda }^{n}. \\label {ga38} \\end {equation}",
"\\begin {equation} Q_{0}=I\\otimes T=\\left ( \\begin {array}{cccccc} I & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha I & & & & \\\\ & & \\alpha ^{2}I & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^{n-1}I \\end {array} \\right ) , \\label {ga39} \\end {equation}",
"\\begin {equation} Q_{l}=U_{l}\\otimes S=\\left ( \\begin {array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & U_{l} \\\\ U_{l} & & & & & \\qquad \\\\ \\qquad & U_{l} & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & U_{l} & 0 \\end {array} \\right ) \\label {gb39} \\end {equation}"
],
"latex_norm": [
"$ Q _ { \\lambda } $",
"$ a , b , c $",
"$ n > 2 $",
"$ Q _ { r s } $",
"$ X , Y , Z $",
"$ X Y = Y X , $",
"$ Y \\sim X ^ { p } , 2 \\leq p < n $",
"$ Q _ { r s } $",
"$ 2 \\leq n \\leq 2 0 $",
"$ X , Y , Z $",
"$ p , r , s \\geq 1 $",
"$ p + r + s \\leq n $",
"$ X ^ { p } Y ^ { r } Z ^ { s } \\sim I $",
"$ \\beta _ { k } $",
"$ \\beta _ { k } $",
"$ p < n $",
"$ \\beta _ { k } ^ { p } = 1 $",
"$ n $",
"$ X , Y , Z $",
"$ X ^ { \\prime } , Y ^ { \\prime } , Z ^ { \\prime } $",
"$ X , Y , Z $",
"$ \\beta _ { k } \\ne \\beta _ { k } ^ { \\prime } . $",
"$ N $",
"$ 2 \\leq n \\leq 1 0 $",
"$ N = 4 $",
"$ U _ { l } , l = 1 , 2 , 3 $",
"$ n ^ { 2 } \\times n ^ { 2 } $",
"\\begin{equation*} ( a Q _ { \\lambda } + b Q _ { \\mu } + c Q _ { \\nu } ) ^ { n } = ( a ^ { n } + b ^ { n } + c ^ { n } ) I . \\end{equation*}",
"\\begin{equation*} X Y = \\beta _ { 3 } Y X \\qquad Y Z = \\beta _ { 1 } Z Y \\qquad Z X = \\beta _ { 2 } X Z \\end{equation*}",
"\\begin{align*} \\begin{array}{cccccccccccccccccccc} n : & 2 & 3 & ~ 4 & 5 & 6 & 7 & 8 & 9 ~ & 1 0 & 1 1 & ~ 1 2 & 1 3 & 1 4 & 1 5 & 1 6 & ~ 1 7 & 1 8 & 1 9 & 2 0 \\\\ \\# 3 : & 1 & 1 & ~ 1 & 4 & 1 & 9 & 4 & 9 ~ & 4 & 2 5 & ~ 4 & 3 6 & 9 & 1 6 & 1 6 & 6 4 & 9 & 8 1 & ~ 1 6 \\end{array} \\end{align*}",
"\\begin{equation*} { ( \\sum _ { \\lambda = 0 } ^ { N - 1 } a _ { \\lambda } Q _ { \\lambda } ) } ^ { n } = \\sum _ { \\lambda = 0 } ^ { N - 1 } a _ { \\lambda } ^ { n } . \\end{equation*}",
"\\begin{align*} Q _ { 0 } = I \\otimes T = ( \\begin{array}{cccccc} I & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\alpha I & & & & \\\\ & & \\alpha ^ { 2 } I & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\alpha ^ { n - 1 } I \\end{array} ) , \\end{align*}",
"\\begin{align*} Q _ { l } = U _ { l } \\otimes S = ( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & U _ { l } \\\\ U _ { l } & & & & & \\qquad \\\\ \\qquad & U _ { l } & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & U _ { l } & 0 \\end{array} ) \\end{align*}"
],
"latex_expand": [
"$ \\mitQ _ { \\mitlambda } $",
"$ \\mita , \\mitb , \\mitc $",
"$ \\mitn > 2 $",
"$ \\mitQ _ { \\mitr \\mits } $",
"$ \\mitX , \\mitY , \\mitZ $",
"$ \\mitX \\mitY = \\mitY \\mitX , $",
"$ \\mitY \\sim \\mitX ^ { \\mitp } , 2 \\leq \\mitp < \\mitn $",
"$ \\mitQ _ { \\mitr \\mits } $",
"$ 2 \\leq \\mitn \\leq 2 0 $",
"$ \\mitX , \\mitY , \\mitZ $",
"$ \\mitp , \\mitr , \\mits \\geq 1 $",
"$ \\mitp + \\mitr + \\mits \\leq \\mitn $",
"$ \\mitX ^ { \\mitp } \\mitY ^ { \\mitr } \\mitZ ^ { \\mits } \\sim \\mitI $",
"$ \\mitbeta _ { \\mitk } $",
"$ \\mitbeta _ { \\mitk } $",
"$ \\mitp < \\mitn $",
"$ \\mitbeta _ { \\mitk } ^ { \\mitp } = 1 $",
"$ \\mitn $",
"$ \\mitX , \\mitY , \\mitZ $",
"$ \\mitX ^ { \\prime } , \\mitY ^ { \\prime } , \\mitZ ^ { \\prime } $",
"$ \\mitX , \\mitY , \\mitZ $",
"$ \\mitbeta _ { \\mitk } \\ne \\mitbeta _ { \\mitk } ^ { \\prime } . $",
"$ \\mitN $",
"$ 2 \\leq \\mitn \\leq 1 0 $",
"$ \\mitN = 4 $",
"$ \\mitU _ { \\mitl } , \\mitl = 1 , 2 , 3 $",
"$ \\mitn ^ { 2 } \\times \\mitn ^ { 2 } $",
"\\begin{equation*} ( \\mita \\mitQ _ { \\mitlambda } + \\mitb \\mitQ _ { \\mitmu } + \\mitc \\mitQ _ { \\mitnu } ) ^ { \\mitn } = ( \\mita ^ { \\mitn } + \\mitb ^ { \\mitn } + \\mitc ^ { \\mitn } ) \\mitI . \\end{equation*}",
"\\begin{equation*} \\mitX \\mitY = \\mitbeta _ { 3 } \\mitY \\mitX \\qquad \\mitY \\mitZ = \\mitbeta _ { 1 } \\mitZ \\mitY \\qquad \\mitZ \\mitX = \\mitbeta _ { 2 } \\mitX \\mitZ \\end{equation*}",
"\\begin{align*} \\begin{array}{cccccccccccccccccccc} \\mitn : & 2 & 3 & ~ 4 & 5 & 6 & 7 & 8 & 9 ~ & 1 0 & 1 1 & ~ 1 2 & 1 3 & 1 4 & 1 5 & 1 6 & ~ 1 7 & 1 8 & 1 9 & 2 0 \\\\ \\# 3 : & 1 & 1 & ~ 1 & 4 & 1 & 9 & 4 & 9 ~ & 4 & 2 5 & ~ 4 & 3 6 & 9 & 1 6 & 1 6 & 6 4 & 9 & 8 1 & ~ 1 6 \\end{array} \\end{align*}",
"\\begin{equation*} { \\left( \\sum _ { \\mitlambda = 0 } ^ { \\mitN - 1 } \\mita _ { \\mitlambda } \\mitQ _ { \\mitlambda } \\right) } ^ { \\mitn } = \\sum _ { \\mitlambda = 0 } ^ { \\mitN - 1 } \\mita _ { \\mitlambda } ^ { \\mitn } . \\end{equation*}",
"\\begin{align*} \\mitQ _ { 0 } = \\mitI \\otimes \\mitT = \\left( \\begin{array}{cccccc} \\mitI & \\qquad & \\qquad & \\qquad & \\qquad & \\\\ \\qquad & \\mitalpha \\mitI & & & & \\\\ & & \\mitalpha ^ { 2 } \\mitI & & & \\\\ & & & \\cdot & & \\\\ & & & & \\cdot & \\\\ & & & & & \\mitalpha ^ { \\mitn - 1 } \\mitI \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mitQ _ { \\mitl } = \\mitU _ { \\mitl } \\otimes \\mitS = \\left( \\begin{array}{cccccc} 0 & \\qquad & \\qquad & \\qquad & \\qquad & \\mitU _ { \\mitl } \\\\ \\mitU _ { \\mitl } & & & & & \\qquad \\\\ \\qquad & \\mitU _ { \\mitl } & & & & \\\\ & & \\cdot & & & \\\\ & & & \\cdot & & \\\\ & & & & \\mitU _ { \\mitl } & 0 \\end{array} \\right) \\end{align*}"
],
"x_min": [
0.38420000672340393,
0.5508000254631042,
0.3917999863624573,
0.2093999981880188,
0.6517000198364258,
0.2093999981880188,
0.4429999887943268,
0.6385999917984009,
0.699400007724762,
0.3718000054359436,
0.6841999888420105,
0.2093999981880188,
0.3822000026702881,
0.7692000269889832,
0.6385999917984009,
0.6973000168800354,
0.22869999706745148,
0.7656999826431274,
0.40149998664855957,
0.5867000222206116,
0.4643999934196472,
0.4781999886035919,
0.7718999981880188,
0.24120000004768372,
0.373199999332428,
0.2777999937534332,
0.5314000248908997,
0.35249999165534973,
0.32339999079704285,
0.2093999981880188,
0.4050000011920929,
0.24740000069141388,
0.25429999828338623
],
"y_min": [
0.16850000619888306,
0.1826000064611435,
0.23880000412464142,
0.26660001277923584,
0.26660001277923584,
0.28119999170303345,
0.28119999170303345,
0.30959999561309814,
0.3100999891757965,
0.3237000107765198,
0.32420000433921814,
0.3384000062942505,
0.3379000127315521,
0.3521000146865845,
0.4077000021934509,
0.4097000062465668,
0.42089998722076416,
0.43950000405311584,
0.5034000277519226,
0.5023999810218811,
0.5175999999046326,
0.5307999849319458,
0.5458999872207642,
0.625,
0.6244999766349792,
0.6528000235557556,
0.6654999852180481,
0.19920000433921814,
0.3833000063896179,
0.4629000127315521,
0.5756999850273132,
0.6826000213623047,
0.7753999829292297
],
"x_max": [
0.40700000524520874,
0.5895000100135803,
0.4415999948978424,
0.2370000034570694,
0.704200029373169,
0.29580000042915344,
0.5888000130653381,
0.6661999821662903,
0.7878999710083008,
0.42500001192092896,
0.7547000050544739,
0.3158000111579895,
0.48170000314712524,
0.7878999710083008,
0.6565999984741211,
0.7436000108718872,
0.2847000062465668,
0.7760999798774719,
0.45399999618530273,
0.6571999788284302,
0.5175999999046326,
0.541100025177002,
0.7878000140190125,
0.33239999413490295,
0.42500001192092896,
0.36970001459121704,
0.5874000191688538,
0.647599995136261,
0.6765000224113464,
0.7903000116348267,
0.5922999978065491,
0.7070000171661377,
0.699400007724762
],
"y_max": [
0.17919999361038208,
0.19380000233650208,
0.2476000040769577,
0.2777999937534332,
0.2777999937534332,
0.29190000891685486,
0.29190000891685486,
0.32030001282691956,
0.3199000060558319,
0.3343999981880188,
0.3345000147819519,
0.34869998693466187,
0.3467000126838684,
0.3628000020980835,
0.4189000129699707,
0.4189999997615814,
0.4341000020503998,
0.4449000060558319,
0.5141000151634216,
0.5141000151634216,
0.5282999873161316,
0.5435000061988831,
0.5547000169754028,
0.6348000168800354,
0.6333000063896179,
0.6639999747276306,
0.6766999959945679,
0.21529999375343323,
0.3978999853134155,
0.4950999915599823,
0.6172000169754028,
0.7714999914169312,
0.864799976348877
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page10
|
{
"latex": [
"$N=4$",
"$U_{\\lambda }$",
"$N\\geq 3$",
"$N+1$",
"$n=2$",
"$\\sigma _{j}$",
"$\\gamma _{\\mu }$",
"$Q_{rs}$",
"$Q_{nn}=I$",
"$n^{2}-1$",
"$SU(n)$",
"$a_{rs}$",
"$G$",
"$n=2$",
"$a_{rs}$",
"$SU(2)$",
"\\begin {equation} \\sum _{k=0}^{N}p_{k}=n, \\end {equation}",
"\\begin {equation} \\{Q_{0}^{p_{0}},Q_{1}^{p_{1}},...Q_{N}^{p_{N}}\\}= \\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}} \\sum _{j_{0}=0}^{j_{1}}P_{j_{0}}^{-}\\circ P_{j_{1}}^{-}...P_{j_{p_{N}}}^{-}\\circ \\{Q_{0}^{p_{0}},...Q_{N-1}^{p_{N-1}}\\}Q_{N}^{p_{N}} \\end {equation}",
"\\begin {equation} =\\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}} \\sum _{j_{0}=0}^{j_{1}}P_{j_{0}}^{-}\\circ P_{j_{1}}^{-}...P_{j_{p_{N}}}^{-}\\circ \\{(U_{0}\\otimes S)^{p_{0}},...(U_{N-1}\\otimes S)^{p_{N-1}}\\}(I\\otimes T)^{p_{N}} \\end {equation}",
"\\begin {equation} =\\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}}\\sum _{j_{0}=0}^{j_{1}} \\alpha ^{j_{0}}\\alpha ^{j_{1}}...\\alpha ^{j_{p_{N}}}\\{(U_{0}\\otimes S)^{p_{0}},...(U_{N-1}\\otimes S)^{p_{N}-1}\\}(I\\otimes T)^{p_{N}} \\end {equation}",
"\\begin {equation} =\\left ( \\sum _{j_{p_{N}}=0}^{n-p_{N}}...\\sum _{j_{1}=0}^{j_{2}}\\sum _{j_{0}=0}^{j_{1}} \\alpha ^{j_{0}}\\alpha ^{j_{1}}...\\alpha ^{j_{p_{N}}}\\right ) \\{U_{1}^{p_{1}},...U_{N-1}^{p_{N-1}}\\}\\otimes S^{n-p_{N}}T^{p_{N}}, \\end {equation}",
"\\begin {equation} G_{rs}=a_{rs}Q_{rs}+a_{rs}^{\\ast }Q_{rs}^{+}, \\label {ga40} \\end {equation}",
"\\begin {equation} a_{kl}=\\frac {1}{\\sqrt {2}}\\alpha ^{\\lbrack kl+n(k+l-1/4)]/2} \\label {ga41} \\end {equation}",
"\\begin {equation} \\left [ G_{kl},G_{rs}\\right ] =i\\sin \\left ( \\pi (ks-lr)/n\\right ) \\label {ga42} \\end {equation}",
"\\begin {equation} \\cdot \\left \\{ \\mathrm {sg}(k+r,l+s,n)\\left ( G_{k+r,l+s}-(-1)^{n+k+l+r+s}G_{-k-r,-l-s}\\right ) \\right . \\end {equation}",
"\\begin {equation} -\\left . \\mathrm {sg}(k-r,l-s,n)\\left ( G_{k-r,l-s}-(-1)^{n+k+l+r+s}G_{r-k,s-l}\\right ) \\right \\} , \\end {equation}",
"\\begin {equation} \\mathrm {sg}(p,q,n)=(-1)^{p\\cdot m_{q}+q\\cdot m_{p}-n},\\qquad m_{x}=\\frac {x- \\text {mod}(x-1,n)-1}{n}. \\end {equation}"
],
"latex_norm": [
"$ N = 4 $",
"$ U _ { \\lambda } $",
"$ N \\geq 3 $",
"$ N + 1 $",
"$ n = 2 $",
"$ \\sigma _ { j } $",
"$ \\gamma _ { \\mu } $",
"$ Q _ { r s } $",
"$ Q _ { n n } = I $",
"$ n ^ { 2 } - 1 $",
"$ S U ( n ) $",
"$ a _ { r s } $",
"$ G $",
"$ n = 2 $",
"$ a _ { r s } $",
"$ S U ( 2 ) $",
"\\begin{equation*} \\sum _ { k = 0 } ^ { N } p _ { k } = n , \\end{equation*}",
"\\begin{equation*} \\{ Q _ { 0 } ^ { p _ { 0 } } , Q _ { 1 } ^ { p _ { 1 } } , . . . Q _ { N } ^ { p _ { N } } \\} = \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } P _ { j _ { 0 } } ^ { - } \\circ P _ { j _ { 1 } } ^ { - } . . . P _ { j _ { p _ { N } } } ^ { - } \\circ \\{ Q _ { 0 } ^ { p _ { 0 } } , . . . Q _ { N - 1 } ^ { p _ { N - 1 } } \\} Q _ { N } ^ { p _ { N } } \\end{equation*}",
"\\begin{equation*} = \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } P _ { j _ { 0 } } ^ { - } \\circ P _ { j _ { 1 } } ^ { - } . . . P _ { j _ { p _ { N } } } ^ { - } \\circ \\{ ( U _ { 0 } \\otimes S ) ^ { p _ { 0 } } , . . . ( U _ { N - 1 } \\otimes S ) ^ { p _ { N - 1 } } \\} ( I \\otimes T ) ^ { p _ { N } } \\end{equation*}",
"\\begin{equation*} = \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } \\alpha ^ { j _ { 0 } } \\alpha ^ { j _ { 1 } } . . . \\alpha ^ { j _ { p _ { N } } } \\{ ( U _ { 0 } \\otimes S ) ^ { p _ { 0 } } , . . . ( U _ { N - 1 } \\otimes S ) ^ { p _ { N } - 1 } \\} ( I \\otimes T ) ^ { p _ { N } } \\end{equation*}",
"\\begin{equation*} = ( \\sum _ { j _ { p _ { N } } = 0 } ^ { n - p _ { N } } . . . \\sum _ { j _ { 1 } = 0 } ^ { j _ { 2 } } \\sum _ { j _ { 0 } = 0 } ^ { j _ { 1 } } \\alpha ^ { j _ { 0 } } \\alpha ^ { j _ { 1 } } . . . \\alpha ^ { j _ { p _ { N } } } ) \\{ U _ { 1 } ^ { p _ { 1 } } , . . . U _ { N - 1 } ^ { p _ { N - 1 } } \\} \\otimes S ^ { n - p _ { N } } T ^ { p _ { N } } , \\end{equation*}",
"\\begin{equation*} G _ { r s } = a _ { r s } Q _ { r s } + a _ { r s } ^ { \\ast } Q _ { r s } ^ { + } , \\end{equation*}",
"\\begin{equation*} a _ { k l } = \\frac { 1 } { \\sqrt { 2 } } \\alpha ^ { [ k l + n ( k + l - 1 \\slash 4 ) ] \\slash 2 } \\end{equation*}",
"\\begin{equation*} [ G _ { k l } , G _ { r s } ] = i \\operatorname { s i n } ( \\pi ( k s - l r ) \\slash n ) \\end{equation*}",
"\\begin{equation*} \\cdot \\{ s g ( k + r , l + s , n ) ( G _ { k + r , l + s } - ( - 1 ) ^ { n + k + l + r + s } G _ { - k - r , - l - s } ) \\end{equation*}",
"\\begin{equation*} - s g ( k - r , l - s , n ) ( G _ { k - r , l - s } - ( - 1 ) ^ { n + k + l + r + s } G _ { r - k , s - l } ) \\} , \\end{equation*}",
"\\begin{equation*} s g ( p , q , n ) = ( - 1 ) ^ { p \\cdot m _ { q } + q \\cdot m _ { p } - n } , \\qquad m _ { x } = \\frac { x - m o d ( x - 1 , n ) - 1 } { n } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitN = 4 $",
"$ \\mitU _ { \\mitlambda } $",
"$ \\mitN \\geq 3 $",
"$ \\mitN + 1 $",
"$ \\mitn = 2 $",
"$ \\mitsigma _ { \\mitj } $",
"$ \\mitgamma _ { \\mitmu } $",
"$ \\mitQ _ { \\mitr \\mits } $",
"$ \\mitQ _ { \\mitn \\mitn } = \\mitI $",
"$ \\mitn ^ { 2 } - 1 $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mita _ { \\mitr \\mits } $",
"$ \\mitG $",
"$ \\mitn = 2 $",
"$ \\mita _ { \\mitr \\mits } $",
"$ \\mitS \\mitU ( 2 ) $",
"\\begin{equation*} \\sum _ { \\mitk = 0 } ^ { \\mitN } \\mitp _ { \\mitk } = \\mitn , \\end{equation*}",
"\\begin{equation*} \\{ \\mitQ _ { 0 } ^ { \\mitp _ { 0 } } , \\mitQ _ { 1 } ^ { \\mitp _ { 1 } } , . . . \\mitQ _ { \\mitN } ^ { \\mitp _ { \\mitN } } \\} = \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitP _ { \\mitj _ { 0 } } ^ { - } \\vysmwhtcircle \\mitP _ { \\mitj _ { 1 } } ^ { - } . . . \\mitP _ { \\mitj _ { \\mitp _ { \\mitN } } } ^ { - } \\vysmwhtcircle \\{ \\mitQ _ { 0 } ^ { \\mitp _ { 0 } } , . . . \\mitQ _ { \\mitN - 1 } ^ { \\mitp _ { \\mitN - 1 } } \\} \\mitQ _ { \\mitN } ^ { \\mitp _ { \\mitN } } \\end{equation*}",
"\\begin{equation*} = \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitP _ { \\mitj _ { 0 } } ^ { - } \\vysmwhtcircle \\mitP _ { \\mitj _ { 1 } } ^ { - } . . . \\mitP _ { \\mitj _ { \\mitp _ { \\mitN } } } ^ { - } \\vysmwhtcircle \\{ ( \\mitU _ { 0 } \\otimes \\mitS ) ^ { \\mitp _ { 0 } } , . . . ( \\mitU _ { \\mitN - 1 } \\otimes \\mitS ) ^ { \\mitp _ { \\mitN - 1 } } \\} ( \\mitI \\otimes \\mitT ) ^ { \\mitp _ { \\mitN } } \\end{equation*}",
"\\begin{equation*} = \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitalpha ^ { \\mitj _ { 0 } } \\mitalpha ^ { \\mitj _ { 1 } } . . . \\mitalpha ^ { \\mitj _ { \\mitp _ { \\mitN } } } \\{ ( \\mitU _ { 0 } \\otimes \\mitS ) ^ { \\mitp _ { 0 } } , . . . ( \\mitU _ { \\mitN - 1 } \\otimes \\mitS ) ^ { \\mitp _ { \\mitN } - 1 } \\} ( \\mitI \\otimes \\mitT ) ^ { \\mitp _ { \\mitN } } \\end{equation*}",
"\\begin{equation*} = \\left( \\sum _ { \\mitj _ { \\mitp _ { \\mitN } } = 0 } ^ { \\mitn - \\mitp _ { \\mitN } } . . . \\sum _ { \\mitj _ { 1 } = 0 } ^ { \\mitj _ { 2 } } \\sum _ { \\mitj _ { 0 } = 0 } ^ { \\mitj _ { 1 } } \\mitalpha ^ { \\mitj _ { 0 } } \\mitalpha ^ { \\mitj _ { 1 } } . . . \\mitalpha ^ { \\mitj _ { \\mitp _ { \\mitN } } } \\right) \\{ \\mitU _ { 1 } ^ { \\mitp _ { 1 } } , . . . \\mitU _ { \\mitN - 1 } ^ { \\mitp _ { \\mitN - 1 } } \\} \\otimes \\mitS ^ { \\mitn - \\mitp _ { \\mitN } } \\mitT ^ { \\mitp _ { \\mitN } } , \\end{equation*}",
"\\begin{equation*} \\mitG _ { \\mitr \\mits } = \\mita _ { \\mitr \\mits } \\mitQ _ { \\mitr \\mits } + \\mita _ { \\mitr \\mits } ^ { \\ast } \\mitQ _ { \\mitr \\mits } ^ { + } , \\end{equation*}",
"\\begin{equation*} \\mita _ { \\mitk \\mitl } = \\frac { 1 } { \\sqrt { 2 } } \\mitalpha ^ { [ \\mitk \\mitl + \\mitn ( \\mitk + \\mitl - 1 \\slash 4 ) ] \\slash 2 } \\end{equation*}",
"\\begin{equation*} \\left[ \\mitG _ { \\mitk \\mitl } , \\mitG _ { \\mitr \\mits } \\right] = \\miti \\operatorname { s i n } \\left( \\mitpi ( \\mitk \\mits - \\mitl \\mitr ) \\slash \\mitn \\right) \\end{equation*}",
"\\begin{equation*} \\cdot \\left\\{ \\mathrm { s g } ( \\mitk + \\mitr , \\mitl + \\mits , \\mitn ) \\left( \\mitG _ { \\mitk + \\mitr , \\mitl + \\mits } - ( - 1 ) ^ { \\mitn + \\mitk + \\mitl + \\mitr + \\mits } \\mitG _ { - \\mitk - \\mitr , - \\mitl - \\mits } \\right) \\right. \\end{equation*}",
"\\begin{equation*} - \\left. \\mathrm { s g } ( \\mitk - \\mitr , \\mitl - \\mits , \\mitn ) \\left( \\mitG _ { \\mitk - \\mitr , \\mitl - \\mits } - ( - 1 ) ^ { \\mitn + \\mitk + \\mitl + \\mitr + \\mits } \\mitG _ { \\mitr - \\mitk , \\mits - \\mitl } \\right) \\right\\} , \\end{equation*}",
"\\begin{equation*} \\mathrm { s g } ( \\mitp , \\mitq , \\mitn ) = ( - 1 ) ^ { \\mitp \\cdot \\mitm _ { \\mitq } + \\mitq \\cdot \\mitm _ { \\mitp } - \\mitn } , \\qquad \\mitm _ { \\mitx } = \\frac { \\mitx - \\mathrm { m o d } ( \\mitx - 1 , \\mitn ) - 1 } { \\mitn } . \\end{equation*}"
],
"x_min": [
0.39809998869895935,
0.5529000163078308,
0.36070001125335693,
0.5825999975204468,
0.3711000084877014,
0.6931999921798706,
0.27639999985694885,
0.4921000003814697,
0.6593000292778015,
0.3296000063419342,
0.7394999861717224,
0.25780001282691956,
0.31929999589920044,
0.6455000042915344,
0.38769999146461487,
0.5929999947547913,
0.4553999900817871,
0.2231999933719635,
0.2093999981880188,
0.22179999947547913,
0.2515999972820282,
0.4104999899864197,
0.4000999927520752,
0.3808000087738037,
0.27639999985694885,
0.2784999907016754,
0.26330000162124634
],
"y_min": [
0.1543000042438507,
0.1543000042438507,
0.16850000619888306,
0.1826000064611435,
0.49709999561309814,
0.51419997215271,
0.5278000235557556,
0.5390999913215637,
0.5390999913215637,
0.551800012588501,
0.5526999831199646,
0.6050000190734863,
0.8070999979972839,
0.8223000168800354,
0.8389000296592712,
0.8490999937057495,
0.21480000019073486,
0.28220000863075256,
0.33399999141693115,
0.3813000023365021,
0.4287000000476837,
0.57669997215271,
0.6201000213623047,
0.6812000274658203,
0.7035999894142151,
0.725600004196167,
0.7670999765396118
],
"x_max": [
0.44510000944137573,
0.5735999941825867,
0.4083999991416931,
0.6288999915122986,
0.4133000075817108,
0.7098000049591064,
0.29510000348091125,
0.5196999907493591,
0.7214999794960022,
0.3772999942302704,
0.7878999710083008,
0.28130000829696655,
0.33309999108314514,
0.6897000074386597,
0.4104999899864197,
0.6392999887466431,
0.5389999747276306,
0.7767999768257141,
0.7912999987602234,
0.772599995136261,
0.7408999800682068,
0.5867000222206116,
0.5997999906539917,
0.6129999756813049,
0.7159000039100647,
0.7139000296592712,
0.7366999983787537
],
"y_max": [
0.163100004196167,
0.16459999978542328,
0.17880000174045563,
0.1923999935388565,
0.5054000020027161,
0.5230000019073486,
0.5371000170707703,
0.5503000020980835,
0.5503000020980835,
0.5630000233650208,
0.5648999810218811,
0.6122999787330627,
0.8159000277519226,
0.8306000232696533,
0.8461999893188477,
0.8618000149726868,
0.2558000087738037,
0.32659998536109924,
0.37790000438690186,
0.4251999855041504,
0.47510001063346863,
0.5938000082969666,
0.6503999829292297,
0.6973000168800354,
0.7221999764442444,
0.7441999912261963,
0.7964000105857849
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page11
|
{
"latex": [
"$\\square ^{1/n}$",
"$\\mu ,\\ \\pi _{\\lambda }$",
"$n-1$",
"$\\Gamma $",
"$p-$",
"$n^{2}$",
"$\\Psi $",
"$n^{2}$",
"$n^{2}=4$",
"$n>2$",
"$U_{l}$",
"$Q_{l}$",
"$h_{1},h_{2},...h_{n}$",
"$p$",
"$\\pi _{\\lambda }$",
"\\begin {equation} \\left ( Q_{0}\\right ) ^{n}=-\\left ( Q_{l}\\right ) ^{n}=I,\\qquad l=1,2,3, \\label {s1} \\end {equation}",
"\\begin {equation} \\left ( \\Gamma (p)-\\mu I\\right ) \\Psi (p)=0, \\label {s2} \\end {equation}",
"\\begin {equation} \\Gamma (p)=\\sum _{\\lambda =0}^{3}\\pi _{\\lambda }Q_{\\lambda }. \\label {s3} \\end {equation}",
"\\begin {equation} \\mu ^{n}=m^{2},\\qquad \\pi _{\\lambda }^{n}=p_{\\lambda }^{2}, \\label {sa3} \\end {equation}",
"\\begin {equation} \\Gamma (p)^{n}=p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}\\equiv p^{2} \\label {sb3} \\end {equation}",
"\\begin {equation} \\left ( p^{2}-m^{2}\\right ) \\Psi (p)=0. \\label {s4} \\end {equation}",
"\\begin {equation} \\Psi (p)=\\left ( \\begin {array}{c} \\mathbf {h} \\\\ \\frac {U(p)}{\\alpha \\pi _{0}-\\mu }\\mathbf {h} \\\\ \\frac {U^{2}(p)}{(\\alpha \\pi _{0}-\\mu )(\\alpha ^{2}\\pi _{0}-\\mu )}\\mathbf {h} \\\\ \\cdot \\\\ \\cdot \\\\ \\frac {U^{n-1}(p)}{(\\alpha \\pi _{0}-\\mu )...(\\alpha ^{n-1}\\pi _{0}-\\mu )} \\mathbf {h} \\end {array} \\right ) ,\\qquad \\mathbf {h}=\\left ( \\begin {array}{c} h_{1} \\\\ h_{2} \\\\ \\cdot \\\\ \\cdot \\\\ h_{n} \\end {array} \\right ) , \\label {sa4} \\end {equation}",
"\\begin {equation} U(p)=\\sum _{l=1}^{3}\\pi _{l}U_{l},\\qquad \\left ( U_{l}\\right ) ^{n}=-I, \\end {equation}",
"\\begin {equation} \\pi _{0}^{n}-\\pi _{1}^{n}-\\pi _{2}^{n}-\\pi _{3}^{n}=\\mu ^{n}=m^{2}. \\label {sb4} \\end {equation}"
],
"latex_norm": [
"$ \\square ^ { 1 \\slash n } $",
"$ \\mu , ~ \\pi _ { \\lambda } $",
"$ n - 1 $",
"$ \\Gamma $",
"$ p - $",
"$ n ^ { 2 } $",
"$ \\Psi $",
"$ n ^ { 2 } $",
"$ n ^ { 2 } = 4 $",
"$ n > 2 $",
"$ U _ { l } $",
"$ Q _ { l } $",
"$ h _ { 1 } , h _ { 2 } , . . . h _ { n } $",
"$ p $",
"$ \\pi _ { \\lambda } $",
"\\begin{equation*} { ( Q _ { 0 } ) } ^ { n } = - { ( Q _ { l } ) } ^ { n } = I , \\qquad l = 1 , 2 , 3 , \\end{equation*}",
"\\begin{equation*} ( \\Gamma ( p ) - \\mu I ) \\Psi ( p ) = 0 , \\end{equation*}",
"\\begin{equation*} \\Gamma ( p ) = \\sum _ { \\lambda = 0 } ^ { 3 } \\pi _ { \\lambda } Q _ { \\lambda } . \\end{equation*}",
"\\begin{equation*} \\mu ^ { n } = m ^ { 2 } , \\qquad \\pi _ { \\lambda } ^ { n } = p _ { \\lambda } ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\Gamma ( p ) ^ { n } = p _ { 0 } ^ { 2 } - p _ { 1 } ^ { 2 } - p _ { 2 } ^ { 2 } - p _ { 3 } ^ { 2 } \\equiv p ^ { 2 } \\end{equation*}",
"\\begin{equation*} ( p ^ { 2 } - m ^ { 2 } ) \\Psi ( p ) = 0 . \\end{equation*}",
"\\begin{align*} \\Psi ( p ) = ( \\begin{array}{c} h \\\\ \\frac { U ( p ) } { \\alpha \\pi _ { 0 } - \\mu } h \\\\ \\frac { U ^ { 2 } ( p ) } { ( \\alpha \\pi _ { 0 } - \\mu ) ( \\alpha ^ { 2 } \\pi _ { 0 } - \\mu ) } h \\\\ \\cdot \\\\ \\cdot \\\\ \\frac { U ^ { n - 1 } ( p ) } { ( \\alpha \\pi _ { 0 } - \\mu ) . . . ( \\alpha ^ { n - 1 } \\pi _ { 0 } - \\mu ) } h \\end{array} ) , \\qquad h = ( \\begin{array}{c} h _ { 1 } \\\\ h _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ h _ { n } \\end{array} ) , \\end{align*}",
"\\begin{equation*} U ( p ) = \\sum _ { l = 1 } ^ { 3 } \\pi _ { l } U _ { l } , \\qquad { ( U _ { l } ) } ^ { n } = - I , \\end{equation*}",
"\\begin{equation*} \\pi _ { 0 } ^ { n } - \\pi _ { 1 } ^ { n } - \\pi _ { 2 } ^ { n } - \\pi _ { 3 } ^ { n } = \\mu ^ { n } = m ^ { 2 } . \\end{equation*}"
],
"latex_expand": [
"$ \\square ^ { 1 \\slash \\mitn } $",
"$ \\mitmu , ~ \\mitpi _ { \\mitlambda } $",
"$ \\mitn - 1 $",
"$ \\mupGamma $",
"$ \\mitp - $",
"$ \\mitn ^ { 2 } $",
"$ \\mupPsi $",
"$ \\mitn ^ { 2 } $",
"$ \\mitn ^ { 2 } = 4 $",
"$ \\mitn > 2 $",
"$ \\mitU _ { \\mitl } $",
"$ \\mitQ _ { \\mitl } $",
"$ \\Planckconst _ { 1 } , \\Planckconst _ { 2 } , . . . \\Planckconst _ { \\mitn } $",
"$ \\mitp $",
"$ \\mitpi _ { \\mitlambda } $",
"\\begin{equation*} { \\left( \\mitQ _ { 0 } \\right) } ^ { \\mitn } = - { \\left( \\mitQ _ { \\mitl } \\right) } ^ { \\mitn } = \\mitI , \\qquad \\mitl = 1 , 2 , 3 , \\end{equation*}",
"\\begin{equation*} \\left( \\mupGamma ( \\mitp ) - \\mitmu \\mitI \\right) \\mupPsi ( \\mitp ) = 0 , \\end{equation*}",
"\\begin{equation*} \\mupGamma ( \\mitp ) = \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitpi _ { \\mitlambda } \\mitQ _ { \\mitlambda } . \\end{equation*}",
"\\begin{equation*} \\mitmu ^ { \\mitn } = \\mitm ^ { 2 } , \\qquad \\mitpi _ { \\mitlambda } ^ { \\mitn } = \\mitp _ { \\mitlambda } ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\mupGamma ( \\mitp ) ^ { \\mitn } = \\mitp _ { 0 } ^ { 2 } - \\mitp _ { 1 } ^ { 2 } - \\mitp _ { 2 } ^ { 2 } - \\mitp _ { 3 } ^ { 2 } \\equiv \\mitp ^ { 2 } \\end{equation*}",
"\\begin{equation*} \\left( \\mitp ^ { 2 } - \\mitm ^ { 2 } \\right) \\mupPsi ( \\mitp ) = 0 . \\end{equation*}",
"\\begin{align*} \\mupPsi ( \\mitp ) = \\left( \\begin{array}{c} \\mbfh \\\\ \\frac { \\mitU ( \\mitp ) } { \\mitalpha \\mitpi _ { 0 } - \\mitmu } \\mbfh \\\\ \\frac { \\mitU ^ { 2 } ( \\mitp ) } { ( \\mitalpha \\mitpi _ { 0 } - \\mitmu ) ( \\mitalpha ^ { 2 } \\mitpi _ { 0 } - \\mitmu ) } \\mbfh \\\\ \\cdot \\\\ \\cdot \\\\ \\frac { \\mitU ^ { \\mitn - 1 } ( \\mitp ) } { ( \\mitalpha \\mitpi _ { 0 } - \\mitmu ) . . . ( \\mitalpha ^ { \\mitn - 1 } \\mitpi _ { 0 } - \\mitmu ) } \\mbfh \\end{array} \\right) , \\qquad \\mbfh = \\left( \\begin{array}{c} \\Planckconst _ { 1 } \\\\ \\Planckconst _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ \\Planckconst _ { \\mitn } \\end{array} \\right) , \\end{align*}",
"\\begin{equation*} \\mitU ( \\mitp ) = \\sum _ { \\mitl = 1 } ^ { 3 } \\mitpi _ { \\mitl } \\mitU _ { \\mitl } , \\qquad { \\left( \\mitU _ { \\mitl } \\right) } ^ { \\mitn } = - \\mitI , \\end{equation*}",
"\\begin{equation*} \\mitpi _ { 0 } ^ { \\mitn } - \\mitpi _ { 1 } ^ { \\mitn } - \\mitpi _ { 2 } ^ { \\mitn } - \\mitpi _ { 3 } ^ { \\mitn } = \\mitmu ^ { \\mitn } = \\mitm ^ { 2 } . \\end{equation*}"
],
"x_min": [
0.5777000188827515,
0.3199999928474426,
0.2827000021934509,
0.6468999981880188,
0.5465999841690063,
0.515500009059906,
0.7193999886512756,
0.2093999981880188,
0.4781999886035919,
0.24050000309944153,
0.21629999577999115,
0.5078999996185303,
0.39250001311302185,
0.6744999885559082,
0.25220000743865967,
0.3628000020980835,
0.4174000024795532,
0.43540000915527344,
0.41260001063346863,
0.3849000036716461,
0.4235999882221222,
0.2937000095844269,
0.37529999017715454,
0.38359999656677246
],
"y_min": [
0.16850000619888306,
0.3774000108242035,
0.46000000834465027,
0.4595000147819519,
0.4745999872684479,
0.5238999724388123,
0.5253999829292297,
0.538100004196167,
0.538100004196167,
0.5547000169754028,
0.774399995803833,
0.774399995803833,
0.788100004196167,
0.7914999723434448,
0.8057000041007996,
0.23680000007152557,
0.2896000146865845,
0.3257000148296356,
0.3970000147819519,
0.4325999915599823,
0.49410000443458557,
0.6029999852180481,
0.7250999808311462,
0.823199987411499
],
"x_max": [
0.6240000128746033,
0.36079999804496765,
0.32280001044273376,
0.6579999923706055,
0.5687000155448914,
0.5335000157356262,
0.7325000166893005,
0.227400004863739,
0.5273000001907349,
0.28610000014305115,
0.2328999936580658,
0.5266000032424927,
0.47540000081062317,
0.6827999949455261,
0.27090001106262207,
0.631600022315979,
0.5770000219345093,
0.5645999908447266,
0.5839999914169312,
0.6150000095367432,
0.5735999941825867,
0.7027999758720398,
0.621999979019165,
0.6158000230789185
],
"y_max": [
0.18410000205039978,
0.38519999384880066,
0.4693000018596649,
0.4683000147342682,
0.4844000041484833,
0.5342000126838684,
0.5342000126838684,
0.5483999848365784,
0.5483999848365784,
0.5634999871253967,
0.7846999764442444,
0.785099983215332,
0.7993000149726868,
0.7993000149726868,
0.8130000233650208,
0.2533999979496002,
0.3052000105381012,
0.3662000000476837,
0.4140999913215637,
0.4496999979019165,
0.5127000212669373,
0.7064999938011169,
0.7656000256538391,
0.8403000235557556
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page12
|
{
"latex": [
"$x-$",
"$p-$",
"$x-$",
"$\\Gamma $",
"$p_{\\lambda }$",
"$p_{\\lambda }^{\\prime }$",
"$d\\omega $",
"$\\tanh \\psi _{i}=v_{i}/c\\equiv \\beta _{i}$",
"$\\epsilon _{ijk}$",
"\\begin {equation} \\pi _{\\lambda }=(p_{\\lambda })^{2/n}\\rightarrow (i\\partial _{\\lambda })^{2/n}. \\label {s5} \\end {equation}",
"\\begin {equation} \\Gamma (p)\\rightarrow \\Gamma (p^{\\prime })=\\Lambda \\Gamma (p)\\Lambda ^{-1} \\label {s6} \\end {equation}",
"\\begin {equation} \\Psi (p)\\rightarrow \\Psi ^{\\prime }(p^{\\prime })=\\Lambda \\Psi (p) \\label {s7} \\end {equation}",
"\\begin {equation} \\Lambda (d\\omega )=I+id\\omega \\cdot L_{\\omega }, \\label {s8} \\end {equation}",
"\\begin {equation} p_{i}^{\\prime }=p_{i}+\\epsilon _{ijk}p_{j}d\\varphi _{k},\\qquad i=1,2,3 \\label {s9} \\end {equation}",
"\\begin {equation} p_{i}^{\\prime }=p_{i}+p_{0}d\\psi _{i},\\qquad p_{0}^{\\prime }=p_{0}+p_{i}d\\psi _{i},\\qquad i=1,2,3, \\label {s10} \\end {equation}",
"\\begin {equation} p_{1}^{\\prime }=p_{1}\\cos \\varphi _{3}+p_{2}\\sin \\varphi _{3},\\qquad p_{2}^{\\prime }=p_{2}\\cos \\varphi _{3}-p_{1}\\sin \\varphi _{3},\\qquad p_{3}^{\\prime }=p_{3}, \\label {sa10} \\end {equation}",
"\\begin {equation} p_{2}^{\\prime }=p_{2}\\cos \\varphi _{1}+p_{3}\\sin \\varphi _{1},\\qquad p_{3}^{\\prime }=p_{3}\\cos \\varphi _{1}-p_{2}\\sin \\varphi _{1},\\qquad p_{1}^{\\prime }=p_{1}, \\label {sb10} \\end {equation}",
"\\begin {equation} p_{3}^{\\prime }=p_{3}\\cos \\varphi _{2}+p_{1}\\sin \\varphi _{2},\\qquad p_{1}^{\\prime }=p_{1}\\cos \\varphi _{2}-p_{3}\\sin \\varphi _{2},\\qquad p_{2}^{\\prime }=p_{2} \\label {sc10} \\end {equation}",
"\\begin {equation} p_{0}^{\\prime }=p_{0}\\cosh \\psi _{i}+p_{i}\\sinh \\psi _{i},\\qquad i=1,2,3, \\label {sd10} \\end {equation}",
"\\begin {equation} \\cosh \\psi _{i}=\\frac {1}{\\sqrt {1-\\beta _{i}^{2}}},\\qquad \\sinh \\psi _{i}= \\frac {\\beta _{i}}{\\sqrt {1-\\beta _{i}^{2}}}. \\label {se10} \\end {equation}"
],
"latex_norm": [
"$ x - $",
"$ p - $",
"$ x - $",
"$ \\Gamma $",
"$ p _ { \\lambda } $",
"$ p _ { \\lambda } ^ { \\prime } $",
"$ d \\omega $",
"$ t a n h \\psi _ { i } = v _ { i } \\slash c \\equiv \\beta _ { i } $",
"$ \\epsilon _ { i j k } $",
"\\begin{equation*} \\pi _ { \\lambda } = ( p _ { \\lambda } ) ^ { 2 \\slash n } \\rightarrow ( i \\partial _ { \\lambda } ) ^ { 2 \\slash n } . \\end{equation*}",
"\\begin{equation*} \\Gamma ( p ) \\rightarrow \\Gamma ( p ^ { \\prime } ) = \\Lambda \\Gamma ( p ) \\Lambda ^ { - 1 } \\end{equation*}",
"\\begin{equation*} \\Psi ( p ) \\rightarrow \\Psi ^ { \\prime } ( p ^ { \\prime } ) = \\Lambda \\Psi ( p ) \\end{equation*}",
"\\begin{equation*} \\Lambda ( d \\omega ) = I + i d \\omega \\cdot L _ { \\omega } , \\end{equation*}",
"\\begin{equation*} p _ { i } ^ { \\prime } = p _ { i } + \\epsilon _ { i j k } p _ { j } d \\varphi _ { k } , \\qquad i = 1 , 2 , 3 \\end{equation*}",
"\\begin{equation*} p _ { i } ^ { \\prime } = p _ { i } + p _ { 0 } d \\psi _ { i } , \\qquad p _ { 0 } ^ { \\prime } = p _ { 0 } + p _ { i } d \\psi _ { i } , \\qquad i = 1 , 2 , 3 , \\end{equation*}",
"\\begin{equation*} p _ { 1 } ^ { \\prime } = p _ { 1 } \\operatorname { c o s } \\varphi _ { 3 } + p _ { 2 } \\operatorname { s i n } \\varphi _ { 3 } , \\qquad p _ { 2 } ^ { \\prime } = p _ { 2 } \\operatorname { c o s } \\varphi _ { 3 } - p _ { 1 } \\operatorname { s i n } \\varphi _ { 3 } , \\qquad p _ { 3 } ^ { \\prime } = p _ { 3 } , \\end{equation*}",
"\\begin{equation*} p _ { 2 } ^ { \\prime } = p _ { 2 } \\operatorname { c o s } \\varphi _ { 1 } + p _ { 3 } \\operatorname { s i n } \\varphi _ { 1 } , \\qquad p _ { 3 } ^ { \\prime } = p _ { 3 } \\operatorname { c o s } \\varphi _ { 1 } - p _ { 2 } \\operatorname { s i n } \\varphi _ { 1 } , \\qquad p _ { 1 } ^ { \\prime } = p _ { 1 } , \\end{equation*}",
"\\begin{equation*} p _ { 3 } ^ { \\prime } = p _ { 3 } \\operatorname { c o s } \\varphi _ { 2 } + p _ { 1 } \\operatorname { s i n } \\varphi _ { 2 } , \\qquad p _ { 1 } ^ { \\prime } = p _ { 1 } \\operatorname { c o s } \\varphi _ { 2 } - p _ { 3 } \\operatorname { s i n } \\varphi _ { 2 } , \\qquad p _ { 2 } ^ { \\prime } = p _ { 2 } \\end{equation*}",
"\\begin{equation*} p _ { 0 } ^ { \\prime } = p _ { 0 } \\operatorname { c o s h } \\psi _ { i } + p _ { i } \\operatorname { s i n h } \\psi _ { i } , \\qquad i = 1 , 2 , 3 , \\end{equation*}",
"\\begin{equation*} \\operatorname { c o s h } \\psi _ { i } = \\frac { 1 } { \\sqrt { 1 - \\beta _ { i } ^ { 2 } } } , \\qquad \\operatorname { s i n h } \\psi _ { i } = \\frac { \\beta _ { i } } { \\sqrt { 1 - \\beta _ { i } ^ { 2 } } } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitx - $",
"$ \\mitp - $",
"$ \\mitx - $",
"$ \\mupGamma $",
"$ \\mitp _ { \\mitlambda } $",
"$ \\mitp _ { \\mitlambda } ^ { \\prime } $",
"$ \\mitd \\mitomega $",
"$ \\mathrm { t a n h } \\mitpsi _ { \\miti } = \\mitv _ { \\miti } \\slash \\mitc \\equiv \\mitbeta _ { \\miti } $",
"$ \\mitepsilon _ { \\miti \\mitj \\mitk } $",
"\\begin{equation*} \\mitpi _ { \\mitlambda } = ( \\mitp _ { \\mitlambda } ) ^ { 2 \\slash \\mitn } \\rightarrow ( \\miti \\mitpartial _ { \\mitlambda } ) ^ { 2 \\slash \\mitn } . \\end{equation*}",
"\\begin{equation*} \\mupGamma ( \\mitp ) \\rightarrow \\mupGamma ( \\mitp ^ { \\prime } ) = \\mupLambda \\mupGamma ( \\mitp ) \\mupLambda ^ { - 1 } \\end{equation*}",
"\\begin{equation*} \\mupPsi ( \\mitp ) \\rightarrow \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupLambda \\mupPsi ( \\mitp ) \\end{equation*}",
"\\begin{equation*} \\mupLambda ( \\mitd \\mitomega ) = \\mitI + \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } , \\end{equation*}",
"\\begin{equation*} \\mitp _ { \\miti } ^ { \\prime } = \\mitp _ { \\miti } + \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitp _ { \\mitj } \\mitd \\mitvarphi _ { \\mitk } , \\qquad \\miti = 1 , 2 , 3 \\end{equation*}",
"\\begin{equation*} \\mitp _ { \\miti } ^ { \\prime } = \\mitp _ { \\miti } + \\mitp _ { 0 } \\mitd \\mitpsi _ { \\miti } , \\qquad \\mitp _ { 0 } ^ { \\prime } = \\mitp _ { 0 } + \\mitp _ { \\miti } \\mitd \\mitpsi _ { \\miti } , \\qquad \\miti = 1 , 2 , 3 , \\end{equation*}",
"\\begin{equation*} \\mitp _ { 1 } ^ { \\prime } = \\mitp _ { 1 } \\operatorname { c o s } \\mitvarphi _ { 3 } + \\mitp _ { 2 } \\operatorname { s i n } \\mitvarphi _ { 3 } , \\qquad \\mitp _ { 2 } ^ { \\prime } = \\mitp _ { 2 } \\operatorname { c o s } \\mitvarphi _ { 3 } - \\mitp _ { 1 } \\operatorname { s i n } \\mitvarphi _ { 3 } , \\qquad \\mitp _ { 3 } ^ { \\prime } = \\mitp _ { 3 } , \\end{equation*}",
"\\begin{equation*} \\mitp _ { 2 } ^ { \\prime } = \\mitp _ { 2 } \\operatorname { c o s } \\mitvarphi _ { 1 } + \\mitp _ { 3 } \\operatorname { s i n } \\mitvarphi _ { 1 } , \\qquad \\mitp _ { 3 } ^ { \\prime } = \\mitp _ { 3 } \\operatorname { c o s } \\mitvarphi _ { 1 } - \\mitp _ { 2 } \\operatorname { s i n } \\mitvarphi _ { 1 } , \\qquad \\mitp _ { 1 } ^ { \\prime } = \\mitp _ { 1 } , \\end{equation*}",
"\\begin{equation*} \\mitp _ { 3 } ^ { \\prime } = \\mitp _ { 3 } \\operatorname { c o s } \\mitvarphi _ { 2 } + \\mitp _ { 1 } \\operatorname { s i n } \\mitvarphi _ { 2 } , \\qquad \\mitp _ { 1 } ^ { \\prime } = \\mitp _ { 1 } \\operatorname { c o s } \\mitvarphi _ { 2 } - \\mitp _ { 3 } \\operatorname { s i n } \\mitvarphi _ { 2 } , \\qquad \\mitp _ { 2 } ^ { \\prime } = \\mitp _ { 2 } \\end{equation*}",
"\\begin{equation*} \\mitp _ { 0 } ^ { \\prime } = \\mitp _ { 0 } \\operatorname { c o s h } \\mitpsi _ { \\miti } + \\mitp _ { \\miti } \\operatorname { s i n h } \\mitpsi _ { \\miti } , \\qquad \\miti = 1 , 2 , 3 , \\end{equation*}",
"\\begin{equation*} \\operatorname { c o s h } \\mitpsi _ { \\miti } = \\frac { 1 } { \\sqrt { 1 - \\mitbeta _ { \\miti } ^ { 2 } } } , \\qquad \\operatorname { s i n h } \\mitpsi _ { \\miti } = \\frac { \\mitbeta _ { \\miti } } { \\sqrt { 1 - \\mitbeta _ { \\miti } ^ { 2 } } } . \\end{equation*}"
],
"x_min": [
0.2093999981880188,
0.515500009059906,
0.4747999906539917,
0.5383999943733215,
0.7049000263214111,
0.30889999866485596,
0.257099986076355,
0.25780001282691956,
0.31380000710487366,
0.40700000524520874,
0.4036000072956085,
0.41190001368522644,
0.4174000024795532,
0.37389999628067017,
0.3068000078201294,
0.22390000522136688,
0.22390000522136688,
0.227400004863739,
0.34279999136924744,
0.3345000147819519
],
"y_min": [
0.18410000205039978,
0.23440000414848328,
0.2485000044107437,
0.39010000228881836,
0.39309999346733093,
0.4032999873161316,
0.5098000168800354,
0.6244999766349792,
0.6567000150680542,
0.20170000195503235,
0.32420000433921814,
0.364300012588501,
0.4805000126361847,
0.5443999767303467,
0.5952000021934509,
0.7026000022888184,
0.7279999852180481,
0.7490000128746033,
0.7949000000953674,
0.8310999870300293
],
"x_max": [
0.2328999936580658,
0.5375999808311462,
0.4975999891757965,
0.548799991607666,
0.7228999733924866,
0.32690000534057617,
0.27709999680519104,
0.3995000123977661,
0.3400999903678894,
0.5928999781608582,
0.5964000225067139,
0.588100016117096,
0.579800009727478,
0.6261000037193298,
0.6904000043869019,
0.7304999828338623,
0.7304999828338623,
0.7297999858856201,
0.6538000106811523,
0.6628000140190125
],
"y_max": [
0.1923999935388565,
0.24420000612735748,
0.2572999894618988,
0.39890000224113464,
0.4009000062942505,
0.41600000858306885,
0.5185999870300293,
0.6366999745368958,
0.6654999852180481,
0.21979999542236328,
0.34130001068115234,
0.38089999556541443,
0.4961000084877014,
0.5615000128746033,
0.611299991607666,
0.7192000150680542,
0.7440999746322632,
0.7651000022888184,
0.8115000128746033,
0.864799976348877
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page13
|
{
"latex": [
"$p\\rightarrow p^{\\prime }$",
"$f(p)$",
"$d/d\\omega $",
"$\\mathbf {L_{\\omega }}$",
"$\\mathbf {L_{\\omega }}$",
"$n>2$",
"$L_{\\omega } $",
"$L_{\\omega }$",
"$\\frac {d}{d\\omega }\\Gamma (p)$",
"$p_{i}^{2/n-1}p_{j}$",
"$L_{\\omega }\\Gamma -\\Gamma L_{\\omega }$",
"$p_{k}^{2/n}$",
"$n=2,$",
"$n>2$",
"$L_{\\omega }$",
"$L_{\\omega }$",
"$p_{i}$",
"\\begin {equation} f(p)\\rightarrow f(p^{\\prime })=f(p+\\delta p)=f(p)+\\frac {df}{d\\omega }d\\omega , \\label {s11} \\end {equation}",
"\\begin {equation} \\frac {d}{d\\varphi _{i}}=-\\epsilon _{ijk}p_{j}\\frac {\\partial }{\\partial p_{k}} ,\\qquad \\frac {d}{d\\psi _{i}}=p_{0}\\frac {\\partial }{\\partial p_{i}}+p_{i} \\frac {\\partial }{\\partial p_{0}},\\qquad i=1,2,3. \\label {s12} \\end {equation}",
"\\begin {equation} p^{\\prime }=p+\\frac {dp}{d\\omega }d\\omega \\label {s13} \\end {equation}",
"\\begin {equation} \\Gamma (p^{\\prime })=\\Gamma (p)+\\frac {d\\Gamma (p)}{d\\omega }d\\omega =\\left ( I+id\\omega \\cdot L_{\\omega }\\right ) \\Gamma (p)\\left ( I-id\\omega \\cdot L_{\\omega }\\right ) , \\label {s14} \\end {equation}",
"\\begin {equation} \\Psi ^{\\prime }(p^{\\prime })=\\Psi ^{\\prime }(p)+\\frac {d\\Psi ^{\\prime }(p)}{ d\\omega }d\\omega =\\left ( I+id\\omega \\cdot L_{\\omega }\\right ) \\Psi (p). \\label {s15} \\end {equation}",
"\\begin {equation} \\mathbf {L_{\\omega }}=L_{\\omega }+i\\frac {d}{d\\omega }, \\label {s16} \\end {equation}",
"\\begin {equation} \\lbrack \\mathbf {L_{\\omega }},\\Gamma ]=0, \\label {s17} \\end {equation}",
"\\begin {equation} \\Psi ^{\\prime }(p)=\\left ( I+id\\omega \\cdot \\mathbf {L_{\\omega }}\\right ) \\Psi (p). \\label {s18} \\end {equation}",
"\\begin {equation} \\lbrack \\mathbf {L_{\\varphi _{j}}},\\mathbf {L_{\\varphi _{k}}}]=i\\epsilon _{jkl} \\mathbf {L_{\\varphi _{l}},} \\label {s19} \\end {equation}",
"\\begin {equation} \\lbrack \\mathbf {L_{\\psi _{j}}},\\mathbf {L_{\\psi _{k}}}]=-i\\epsilon _{jkl} \\mathbf {L_{\\varphi _{l}},} \\label {s20} \\end {equation}",
"\\begin {equation} \\lbrack \\mathbf {L_{\\varphi _{j}}},\\mathbf {L_{\\psi _{k}}}]=i\\epsilon _{jkl} \\mathbf {L_{\\psi _{l}},\\qquad }j,k,l=1,2,3. \\label {s21} \\end {equation}"
],
"latex_norm": [
"$ p \\rightarrow p ^ { \\prime } $",
"$ f ( p ) $",
"$ d \\slash d \\omega $",
"$ L _ { \\omega } $",
"$ L _ { \\omega } $",
"$ n > 2 $",
"$ L _ { \\omega } $",
"$ L _ { \\omega } $",
"$ \\frac { d } { d \\omega } \\Gamma ( p ) $",
"$ p _ { i } ^ { 2 \\slash n - 1 } p _ { j } $",
"$ L _ { \\omega } \\Gamma - \\Gamma L _ { \\omega } $",
"$ p _ { k } ^ { 2 \\slash n } $",
"$ n = 2 , $",
"$ n > 2 $",
"$ L _ { \\omega } $",
"$ L _ { \\omega } $",
"$ p _ { i } $",
"\\begin{equation*} f ( p ) \\rightarrow f ( p ^ { \\prime } ) = f ( p + \\delta p ) = f ( p ) + \\frac { d f } { d \\omega } d \\omega , \\end{equation*}",
"\\begin{equation*} \\frac { d } { d \\varphi _ { i } } = - \\epsilon _ { i j k } p _ { j } \\frac { \\partial } { \\partial p _ { k } } , \\qquad \\frac { d } { d \\psi _ { i } } = p _ { 0 } \\frac { \\partial } { \\partial p _ { i } } + p _ { i } \\frac { \\partial } { \\partial p _ { 0 } } , \\qquad i = 1 , 2 , 3 . \\end{equation*}",
"\\begin{equation*} p ^ { \\prime } = p + \\frac { d p } { d \\omega } d \\omega \\end{equation*}",
"\\begin{equation*} \\Gamma ( p ^ { \\prime } ) = \\Gamma ( p ) + \\frac { d \\Gamma ( p ) } { d \\omega } d \\omega = ( I + i d \\omega \\cdot L _ { \\omega } ) \\Gamma ( p ) ( I - i d \\omega \\cdot L _ { \\omega } ) , \\end{equation*}",
"\\begin{equation*} \\Psi ^ { \\prime } ( p ^ { \\prime } ) = \\Psi ^ { \\prime } ( p ) + \\frac { d \\Psi ^ { \\prime } ( p ) } { d \\omega } d \\omega = ( I + i d \\omega \\cdot L _ { \\omega } ) \\Psi ( p ) . \\end{equation*}",
"\\begin{equation*} L _ { \\omega } = L _ { \\omega } + i \\frac { d } { d \\omega } , \\end{equation*}",
"\\begin{equation*} [ L _ { \\omega } , \\Gamma ] = 0 , \\end{equation*}",
"\\begin{equation*} \\Psi ^ { \\prime } ( p ) = ( I + i d \\omega \\cdot L _ { \\omega } ) \\Psi ( p ) . \\end{equation*}",
"\\begin{equation*} [ L _ { \\varphi _ { j } } , L _ { \\varphi _ { k } } ] = i \\epsilon _ { j k l } L _ { \\varphi _ { l } } , \\end{equation*}",
"\\begin{equation*} [ L _ { \\psi _ { j } } , L _ { \\psi _ { k } } ] = - i \\epsilon _ { j k l } L _ { \\varphi _ { l } } , \\end{equation*}",
"\\begin{equation*} [ L _ { \\varphi _ { j } } , L _ { \\psi _ { k } } ] = i \\epsilon _ { j k l } L _ { \\psi _ { l } } , \\qquad j , k , l = 1 , 2 , 3 . \\end{equation*}"
],
"latex_expand": [
"$ \\mitp \\rightarrow \\mitp ^ { \\prime } $",
"$ \\mitf ( \\mitp ) $",
"$ \\mitd \\slash \\mitd \\mitomega $",
"$ \\mbfL _ { \\mbfitomega } $",
"$ \\mbfL _ { \\mbfitomega } $",
"$ \\mitn > 2 $",
"$ \\mitL _ { \\mitomega } $",
"$ \\mitL _ { \\mitomega } $",
"$ \\frac { \\mitd } { \\mitd \\mitomega } \\mupGamma ( \\mitp ) $",
"$ \\mitp _ { \\miti } ^ { 2 \\slash \\mitn - 1 } \\mitp _ { \\mitj } $",
"$ \\mitL _ { \\mitomega } \\mupGamma - \\mupGamma \\mitL _ { \\mitomega } $",
"$ \\mitp _ { \\mitk } ^ { 2 \\slash \\mitn } $",
"$ \\mitn = 2 , $",
"$ \\mitn > 2 $",
"$ \\mitL _ { \\mitomega } $",
"$ \\mitL _ { \\mitomega } $",
"$ \\mitp _ { \\miti } $",
"\\begin{equation*} \\mitf ( \\mitp ) \\rightarrow \\mitf ( \\mitp ^ { \\prime } ) = \\mitf ( \\mitp + \\mitdelta \\mitp ) = \\mitf ( \\mitp ) + \\frac { \\mitd \\mitf } { \\mitd \\mitomega } \\mitd \\mitomega , \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\miti } } = - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitp _ { \\mitj } \\frac { \\mitpartial } { \\mitpartial \\mitp _ { \\mitk } } , \\qquad \\frac { \\mitd } { \\mitd \\mitpsi _ { \\miti } } = \\mitp _ { 0 } \\frac { \\mitpartial } { \\mitpartial \\mitp _ { \\miti } } + \\mitp _ { \\miti } \\frac { \\mitpartial } { \\mitpartial \\mitp _ { 0 } } , \\qquad \\miti = 1 , 2 , 3 . \\end{equation*}",
"\\begin{equation*} \\mitp ^ { \\prime } = \\mitp + \\frac { \\mitd \\mitp } { \\mitd \\mitomega } \\mitd \\mitomega \\end{equation*}",
"\\begin{equation*} \\mupGamma ( \\mitp ^ { \\prime } ) = \\mupGamma ( \\mitp ) + \\frac { \\mitd \\mupGamma ( \\mitp ) } { \\mitd \\mitomega } \\mitd \\mitomega = \\left( \\mitI + \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } \\right) \\mupGamma ( \\mitp ) \\left( \\mitI - \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } \\right) , \\end{equation*}",
"\\begin{equation*} \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupPsi ^ { \\prime } ( \\mitp ) + \\frac { \\mitd \\mupPsi ^ { \\prime } ( \\mitp ) } { \\mitd \\mitomega } \\mitd \\mitomega = \\left( \\mitI + \\miti \\mitd \\mitomega \\cdot \\mitL _ { \\mitomega } \\right) \\mupPsi ( \\mitp ) . \\end{equation*}",
"\\begin{equation*} \\mbfL _ { \\mbfitomega } = \\mitL _ { \\mitomega } + \\miti \\frac { \\mitd } { \\mitd \\mitomega } , \\end{equation*}",
"\\begin{equation*} [ \\mbfL _ { \\mbfitomega } , \\mupGamma ] = 0 , \\end{equation*}",
"\\begin{equation*} \\mupPsi ^ { \\prime } ( \\mitp ) = \\left( \\mitI + \\miti \\mitd \\mitomega \\cdot \\mbfL _ { \\mbfitomega } \\right) \\mupPsi ( \\mitp ) . \\end{equation*}",
"\\begin{equation*} [ \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } , \\mbfL _ { \\mbfitvarphi _ { \\mbfk } } ] = \\miti \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mbfL _ { \\mbfitvarphi _ { \\mbfl } } , \\end{equation*}",
"\\begin{equation*} [ \\mbfL _ { \\mbfitpsi _ { \\mbfj } } , \\mbfL _ { \\mbfitpsi _ { \\mbfk } } ] = - \\miti \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mbfL _ { \\mbfitvarphi _ { \\mbfl } } , \\end{equation*}",
"\\begin{equation*} [ \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } , \\mbfL _ { \\mbfitpsi _ { \\mbfk } } ] = \\miti \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mbfL _ { \\mbfitpsi _ { \\mbfl } } , \\qquad \\mitj , \\mitk , \\mitl = 1 , 2 , 3 . \\end{equation*}"
],
"x_min": [
0.49549999833106995,
0.6904000043869019,
0.25780001282691956,
0.3441999852657318,
0.7124999761581421,
0.703499972820282,
0.3711000084877014,
0.7663999795913696,
0.6640999913215637,
0.3172000050544739,
0.31439998745918274,
0.7559999823570251,
0.4546999931335449,
0.5149000287055969,
0.5922999978065491,
0.4982999861240387,
0.22869999706745148,
0.3434999883174896,
0.2515999972820282,
0.44440001249313354,
0.25360000133514404,
0.3172000050544739,
0.4375,
0.4546999931335449,
0.3959999978542328,
0.420199990272522,
0.414000004529953,
0.35249999165534973
],
"y_min": [
0.16750000417232513,
0.16750000417232513,
0.23000000417232513,
0.57669997215271,
0.6855000257492065,
0.7002000212669373,
0.7139000296592712,
0.7279999852180481,
0.7397000193595886,
0.7554000020027161,
0.7764000296592712,
0.7724999785423279,
0.7914999723434448,
0.8057000041007996,
0.8051999807357788,
0.8335000276565552,
0.850600004196167,
0.1889999955892563,
0.2515000104904175,
0.302700012922287,
0.385699987411499,
0.423799991607666,
0.46630001068115234,
0.5249000191688538,
0.5503000020980835,
0.6128000020980835,
0.638700008392334,
0.6601999998092651
],
"x_max": [
0.5432000160217285,
0.7221999764442444,
0.29510000348091125,
0.36559998989105225,
0.7346000075340271,
0.7450000047683716,
0.39250001311302185,
0.7878000140190125,
0.7166000008583069,
0.3815000057220459,
0.399399995803833,
0.7878000140190125,
0.5002999901771545,
0.5557000041007996,
0.6136999726295471,
0.5196999907493591,
0.24320000410079956,
0.6531000137329102,
0.7056000232696533,
0.5557000041007996,
0.7006999850273132,
0.6827999949455261,
0.5598000288009644,
0.5418000221252441,
0.6032999753952026,
0.5791000127792358,
0.5860999822616577,
0.647599995136261
],
"y_max": [
0.17919999361038208,
0.18019999563694,
0.24220000207424164,
0.5870000123977661,
0.6958000063896179,
0.7085000276565552,
0.7242000102996826,
0.7383000254631042,
0.754800021648407,
0.7720000147819519,
0.7871000170707703,
0.7890999913215637,
0.801800012588501,
0.8144999742507935,
0.815500020980835,
0.8438000082969666,
0.8589000105857849,
0.21729999780654907,
0.2818000018596649,
0.3310000002384186,
0.41449999809265137,
0.45260000228881836,
0.49459999799728394,
0.5410000085830688,
0.5669000148773193,
0.6294000148773193,
0.6557999849319458,
0.676800012588501
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page16
|
{
"latex": [
"$Y,Y^{-1}$",
"$(p^{2})^{1/n}$",
"$g_{j}$",
"$p$",
"$p^{2}=m^{2}$",
"$2\\times 2$",
"$j,k,l=1,2,3.$",
"$\\Gamma \\rightarrow \\Gamma _{0}=Y\\Gamma Y^{-1}$",
"\\begin {equation} =\\frac {1-p_{0}^{2}/p^{2}}{n\\left [ 1-\\left ( p_{0}^{2}/p^{2}\\right ) ^{1/n} \\right ] }, \\end {equation}",
"\\begin {equation} \\Psi _{0}(p)=\\left ( \\begin {array}{c} \\mathbf {0} \\\\ \\cdot \\\\ \\mathbf {0} \\\\ \\mathbf {g} \\\\ \\mathbf {0} \\\\ \\cdot \\\\ \\cdot \\\\ \\mathbf {0} \\end {array} \\right ) ;\\qquad \\mathbf {g}\\equiv \\left ( \\begin {array}{c} g_{1} \\\\ g_{2} \\\\ \\cdot \\\\ \\cdot \\\\ g_{n} \\end {array} \\right ) ,\\qquad \\mathbf {0}\\equiv \\left ( \\begin {array}{c} 0 \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end {array} \\right ) , \\label {s38} \\end {equation}",
"\\begin {equation} \\lbrack \\mathbf {L_{\\omega }},\\Gamma _{0}(p)]=0 \\label {s39} \\end {equation}",
"\\begin {equation} \\sigma _{1}=\\left ( \\begin {array}{cc} 0 & 1 \\\\ 1 & 0 \\end {array} \\right ) ,\\qquad \\sigma _{2}=\\left ( \\begin {array}{cc} 0 & -i \\\\ i & 0 \\end {array} \\right ) ,\\qquad \\sigma _{3}=\\left ( \\begin {array}{cc} 1 & 0 \\\\ 0 & -1 \\end {array} \\right ) , \\label {s40} \\end {equation}",
"\\begin {equation} \\gamma _{0}=\\left ( \\begin {array}{cc} \\mathbf {1} & \\mathbf {0} \\\\ \\mathbf {0} & \\mathbf {-1} \\end {array} \\right ) ,\\qquad \\gamma _{j}=\\left ( \\begin {array}{cc} \\mathbf {0} & \\sigma _{j} \\\\ -\\sigma _{j} & \\mathbf {0} \\end {array} \\right ) ;\\qquad j=1,2,3, \\label {s41} \\end {equation}",
"\\begin {equation} \\left ( \\Gamma (p)-m\\right ) \\Psi (p)=0,\\qquad \\Gamma (p)\\equiv \\sum _{\\lambda =0}^{3}p_{\\lambda }\\gamma _{\\lambda } \\label {s42} \\end {equation}",
"\\begin {equation} \\mathbf {L_{\\varphi _{j}}=}\\frac {i}{4}\\epsilon _{jkl}\\gamma _{k}\\gamma _{l}+i \\frac {d}{d\\varphi _{j}}=L_{\\varphi _{j}}+i\\frac {d}{d\\varphi _{j}};\\qquad L_{\\varphi _{j}}=\\frac {1}{2}\\left ( \\begin {array}{cc} \\sigma _{j} & \\mathbf {0} \\\\ \\mathbf {0} & \\sigma _{j} \\end {array} \\right ) , \\label {s43} \\end {equation}",
"\\begin {equation} \\mathbf {L_{\\psi _{j}}=}\\frac {i}{2}\\gamma _{0}\\gamma _{j}+i\\frac {d}{d\\psi _{j} }=L_{\\psi _{j}}+i\\frac {d}{d\\psi _{j}};\\qquad L_{\\psi _{j}}=\\frac {i}{2}\\left ( \\begin {array}{cc} \\mathbf {0} & \\sigma _{j} \\\\ \\sigma _{j} & \\mathbf {0} \\end {array} \\right ) , \\label {s44} \\end {equation}",
"\\begin {equation} \\mathbf {L_{\\omega }\\rightarrow M_{\\omega }}=Y(p)\\mathbf {L_{\\omega }} Y^{-1}(p). \\label {s45} \\end {equation}"
],
"latex_norm": [
"$ Y , Y ^ { - 1 } $",
"$ ( p ^ { 2 } ) ^ { 1 \\slash n } $",
"$ g _ { j } $",
"$ p $",
"$ p ^ { 2 } = m ^ { 2 } $",
"$ 2 \\times 2 $",
"$ j , k , l = 1 , 2 , 3 . $",
"$ \\Gamma \\rightarrow \\Gamma _ { 0 } = Y \\Gamma Y ^ { - 1 } $",
"\\begin{equation*} = \\frac { 1 - p _ { 0 } ^ { 2 } \\slash p ^ { 2 } } { n [ 1 - { ( p _ { 0 } ^ { 2 } \\slash p ^ { 2 } ) } ^ { 1 \\slash n } ] } , \\end{equation*}",
"\\begin{align*} \\Psi _ { 0 } ( p ) = ( \\begin{array}{c} 0 \\\\ \\cdot \\\\ 0 \\\\ g \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end{array} ) ; \\qquad g \\equiv ( \\begin{array}{c} g _ { 1 } \\\\ g _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ g _ { n } \\end{array} ) , \\qquad 0 \\equiv ( \\begin{array}{c} 0 \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end{array} ) , \\end{align*}",
"\\begin{equation*} [ L _ { \\omega } , \\Gamma _ { 0 } ( p ) ] = 0 \\end{equation*}",
"\\begin{align*} \\sigma _ { 1 } = ( \\begin{array}{cc} 0 & 1 \\\\ 1 & 0 \\end{array} ) , \\qquad \\sigma _ { 2 } = ( \\begin{array}{cc} 0 & - i \\\\ i & 0 \\end{array} ) , \\qquad \\sigma _ { 3 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) , \\end{align*}",
"\\begin{align*} \\gamma _ { 0 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) , \\qquad \\gamma _ { j } = ( \\begin{array}{cc} 0 & \\sigma _ { j } \\\\ - \\sigma _ { j } & 0 \\end{array} ) ; \\qquad j = 1 , 2 , 3 , \\end{align*}",
"\\begin{equation*} ( \\Gamma ( p ) - m ) \\Psi ( p ) = 0 , \\qquad \\Gamma ( p ) \\equiv \\sum _ { \\lambda = 0 } ^ { 3 } p _ { \\lambda } \\gamma _ { \\lambda } \\end{equation*}",
"\\begin{align*} L _ { \\varphi _ { j } } = \\frac { i } { 4 } \\epsilon _ { j k l } \\gamma _ { k } \\gamma _ { l } + i \\frac { d } { d \\varphi _ { j } } = L _ { \\varphi _ { j } } + i \\frac { d } { d \\varphi _ { j } } ; \\qquad L _ { \\varphi _ { j } } = \\frac { 1 } { 2 } ( \\begin{array}{cc} \\sigma _ { j } & 0 \\\\ 0 & \\sigma _ { j } \\end{array} ) , \\end{align*}",
"\\begin{align*} L _ { \\psi _ { j } } = \\frac { i } { 2 } \\gamma _ { 0 } \\gamma _ { j } + i \\frac { d } { d \\psi _ { j } } = L _ { \\psi _ { j } } + i \\frac { d } { d \\psi _ { j } } ; \\qquad L _ { \\psi _ { j } } = \\frac { i } { 2 } ( \\begin{array}{cc} 0 & \\sigma _ { j } \\\\ \\sigma _ { j } & 0 \\end{array} ) , \\end{align*}",
"\\begin{equation*} L _ { \\omega } \\rightarrow M _ { \\omega } = Y ( p ) L _ { \\omega } Y ^ { - 1 } ( p ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitY , \\mitY ^ { - 1 } $",
"$ ( \\mitp ^ { 2 } ) ^ { 1 \\slash \\mitn } $",
"$ \\mitg _ { \\mitj } $",
"$ \\mitp $",
"$ \\mitp ^ { 2 } = \\mitm ^ { 2 } $",
"$ 2 \\times 2 $",
"$ \\mitj , \\mitk , \\mitl = 1 , 2 , 3 . $",
"$ \\mupGamma \\rightarrow \\mupGamma _ { 0 } = \\mitY \\mupGamma \\mitY ^ { - 1 } $",
"\\begin{equation*} = \\frac { 1 - \\mitp _ { 0 } ^ { 2 } \\slash \\mitp ^ { 2 } } { \\mitn \\left[ 1 - { \\left( \\mitp _ { 0 } ^ { 2 } \\slash \\mitp ^ { 2 } \\right) } ^ { 1 \\slash \\mitn } \\right] } , \\end{equation*}",
"\\begin{align*} \\mupPsi _ { 0 } ( \\mitp ) = \\left( \\begin{array}{c} \\mbfzero \\\\ \\cdot \\\\ \\mbfzero \\\\ \\mbfg \\\\ \\mbfzero \\\\ \\cdot \\\\ \\cdot \\\\ \\mbfzero \\end{array} \\right) ; \\qquad \\mbfg \\equiv \\left( \\begin{array}{c} \\mitg _ { 1 } \\\\ \\mitg _ { 2 } \\\\ \\cdot \\\\ \\cdot \\\\ \\mitg _ { \\mitn } \\end{array} \\right) , \\qquad \\mbfzero \\equiv \\left( \\begin{array}{c} 0 \\\\ 0 \\\\ \\cdot \\\\ \\cdot \\\\ 0 \\end{array} \\right) , \\end{align*}",
"\\begin{equation*} [ \\mbfL _ { \\mbfitomega } , \\mupGamma _ { 0 } ( \\mitp ) ] = 0 \\end{equation*}",
"\\begin{align*} \\mitsigma _ { 1 } = \\left( \\begin{array}{cc} 0 & 1 \\\\ 1 & 0 \\end{array} \\right) , \\qquad \\mitsigma _ { 2 } = \\left( \\begin{array}{cc} 0 & - \\miti \\\\ \\miti & 0 \\end{array} \\right) , \\qquad \\mitsigma _ { 3 } = \\left( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mitgamma _ { 0 } = \\left( \\begin{array}{cc} \\mbfone & \\mbfzero \\\\ \\mbfzero & - \\mbfone \\end{array} \\right) , \\qquad \\mitgamma _ { \\mitj } = \\left( \\begin{array}{cc} \\mbfzero & \\mitsigma _ { \\mitj } \\\\ - \\mitsigma _ { \\mitj } & \\mbfzero \\end{array} \\right) ; \\qquad \\mitj = 1 , 2 , 3 , \\end{align*}",
"\\begin{equation*} \\left( \\mupGamma ( \\mitp ) - \\mitm \\right) \\mupPsi ( \\mitp ) = 0 , \\qquad \\mupGamma ( \\mitp ) \\equiv \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitp _ { \\mitlambda } \\mitgamma _ { \\mitlambda } \\end{equation*}",
"\\begin{align*} \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } = \\frac { \\miti } { 4 } \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitgamma _ { \\mitk } \\mitgamma _ { \\mitl } + \\miti \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\mitj } } = \\mitL _ { \\mitvarphi _ { \\mitj } } + \\miti \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\mitj } } ; \\qquad \\mitL _ { \\mitvarphi _ { \\mitj } } = \\frac { 1 } { 2 } \\left( \\begin{array}{cc} \\mitsigma _ { \\mitj } & \\mbfzero \\\\ \\mbfzero & \\mitsigma _ { \\mitj } \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mbfL _ { \\mbfitpsi _ { \\mbfj } } = \\frac { \\miti } { 2 } \\mitgamma _ { 0 } \\mitgamma _ { \\mitj } + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } = \\mitL _ { \\mitpsi _ { \\mitj } } + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } ; \\qquad \\mitL _ { \\mitpsi _ { \\mitj } } = \\frac { \\miti } { 2 } \\left( \\begin{array}{cc} \\mbfzero & \\mitsigma _ { \\mitj } \\\\ \\mitsigma _ { \\mitj } & \\mbfzero \\end{array} \\right) , \\end{align*}",
"\\begin{equation*} \\mbfL _ { \\mbfitomega } \\rightarrow \\mbfM _ { \\mbfitomega } = \\mitY ( \\mitp ) \\mbfL _ { \\mbfitomega } \\mitY ^ { - 1 } ( \\mitp ) . \\end{equation*}"
],
"x_min": [
0.48240000009536743,
0.6413000226020813,
0.7436000108718872,
0.3718000054359436,
0.6399000287055969,
0.5957000255584717,
0.25780001282691956,
0.28610000014305115,
0.4147000014781952,
0.2985000014305115,
0.44440001249313354,
0.24529999494552612,
0.25850000977516174,
0.3441999852657318,
0.23569999635219574,
0.24740000069141388,
0.39250001311302185
],
"y_min": [
0.19629999995231628,
0.388700008392334,
0.3944999873638153,
0.40869998931884766,
0.40380001068115234,
0.6118000149726868,
0.7865999937057495,
0.7993000149726868,
0.1469999998807907,
0.24709999561309814,
0.4438000023365021,
0.5297999978065491,
0.5713000297546387,
0.6312999725341797,
0.7045999765396118,
0.7465999722480774,
0.8217999935150146
],
"x_max": [
0.5321999788284302,
0.6930999755859375,
0.7588000297546387,
0.3808000087738037,
0.7006999850273132,
0.6330000162124634,
0.36149999499320984,
0.4187999963760376,
0.5777999758720398,
0.6985999941825867,
0.5557000041007996,
0.7089999914169312,
0.6952999830245972,
0.6531000137329102,
0.7188000082969666,
0.7070000171661377,
0.6067000031471252
],
"y_max": [
0.20900000631809235,
0.40290001034736633,
0.4032999873161316,
0.4165000021457672,
0.4165000021457672,
0.6211000084877014,
0.7978000044822693,
0.8115000128746033,
0.18850000202655792,
0.36480000615119934,
0.45989999175071716,
0.5625,
0.6035000085830688,
0.6722999811172485,
0.7372999787330627,
0.7788000106811523,
0.8389000296592712
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page17
|
{
"latex": [
"$\\mathbf {L_{\\varphi _{j}}\\ }$",
"$\\Gamma _{0},\\Gamma $",
"$Y$",
"$[\\mathbf {L_{\\psi _{j}}},\\Gamma _{0}/\\sqrt {1+p_{0}/\\sqrt {p^{2}}}]$",
"$L_{\\varphi _{j}}$",
"$M_{\\psi _{j}}(p)$",
"$\\mathbf {M_{\\psi _{j}}}$",
"$M_{\\psi _{j}}$",
"$L_{\\varphi _{l}}$",
"$L_{\\varphi _{j}}$",
"$\\kappa $",
"$[\\mathbf {L_{\\varphi _{1}}},\\mathbf {L_{\\psi _{2}}}],[\\mathbf {L_{\\varphi _{1}}},\\mathbf {L_{\\psi _{1}}}]$",
"$[\\mathbf {L_{\\psi _{1}}},\\mathbf {L_{\\psi _{3}}}],$",
"$\\left | \\kappa \\right | \\rightarrow \\infty $",
"$\\kappa =0.$",
"$\\kappa $",
"$\\kappa $",
"\\begin {equation} \\mathbf {M_{\\varphi _{j}}=L_{\\varphi _{j}}=}L_{\\varphi _{j}}+i\\frac {d}{ d\\varphi _{j}}, \\label {s46} \\end {equation}",
"\\begin {equation} \\mathbf {M_{\\psi _{j}}=}M_{\\psi _{j}}(p)+i\\frac {d}{d\\psi _{j}};\\qquad M_{\\psi _{j}}(p)=\\epsilon _{jkl}\\frac {p_{k}L_{\\varphi _{l}}}{p_{0}+\\sqrt {p^{2}}}. \\label {s47} \\end {equation}",
"\\begin {equation} \\mathbf {M_{\\psi _{j}}=}M_{\\psi _{j}}(p)+i\\frac {d}{d\\psi _{j}};\\qquad M_{\\psi _{j}}(p)=\\frac {\\kappa L_{\\varphi _{j}}+\\epsilon _{jkl}p_{k}L_{\\varphi _{l}}}{ p_{0}+\\sqrt {p^{2}-\\kappa ^{2}}}, \\label {s48} \\end {equation}",
"\\begin {equation} M_{\\psi _{j}}=iL_{\\varphi _{j}}. \\label {s49} \\end {equation}",
"\\begin {equation} \\mathbf {M}_{\\omega }(\\kappa ^{\\prime })=X^{-1}(p)\\mathbf {M}_{\\omega }(\\kappa )X(p). \\label {sa49} \\end {equation}"
],
"latex_norm": [
"$ L _ { \\varphi _ { j } } ~ $",
"$ \\Gamma _ { 0 } , \\Gamma $",
"$ Y $",
"$ [ L _ { \\psi _ { j } } , \\Gamma _ { 0 } \\slash \\sqrt { 1 + p _ { 0 } \\slash \\sqrt { p ^ { 2 } } } ] $",
"$ L _ { \\varphi _ { j } } $",
"$ M _ { \\psi _ { j } } ( p ) $",
"$ M _ { \\psi _ { j } } $",
"$ M _ { \\psi _ { j } } $",
"$ L _ { \\varphi _ { l } } $",
"$ L _ { \\varphi _ { j } } $",
"$ \\kappa $",
"$ [ L _ { \\varphi _ { 1 } } , L _ { \\psi _ { 2 } } ] , [ L _ { \\varphi _ { 1 } } , L _ { \\psi _ { 1 } } ] $",
"$ [ L _ { \\psi _ { 1 } } , L _ { \\psi _ { 3 } } ] , $",
"$ \\vert \\kappa \\vert \\rightarrow \\infty $",
"$ \\kappa = 0 . $",
"$ \\kappa $",
"$ \\kappa $",
"\\begin{equation*} M _ { \\varphi _ { j } } = L _ { \\varphi _ { j } } = L _ { \\varphi _ { j } } + i \\frac { d } { d \\varphi _ { j } } , \\end{equation*}",
"\\begin{equation*} M _ { \\psi _ { j } } = M _ { \\psi _ { j } } ( p ) + i \\frac { d } { d \\psi _ { j } } ; \\qquad M _ { \\psi _ { j } } ( p ) = \\epsilon _ { j k l } \\frac { p _ { k } L _ { \\varphi _ { l } } } { p _ { 0 } + \\sqrt { p ^ { 2 } } } . \\end{equation*}",
"\\begin{equation*} M _ { \\psi _ { j } } = M _ { \\psi _ { j } } ( p ) + i \\frac { d } { d \\psi _ { j } } ; \\qquad M _ { \\psi _ { j } } ( p ) = \\frac { \\kappa L _ { \\varphi _ { j } } + \\epsilon _ { j k l } p _ { k } L _ { \\varphi _ { l } } } { p _ { 0 } + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } , \\end{equation*}",
"\\begin{equation*} M _ { \\psi _ { j } } = i L _ { \\varphi _ { j } } . \\end{equation*}",
"\\begin{equation*} M _ { \\omega } ( \\kappa ^ { \\prime } ) = X ^ { - 1 } ( p ) M _ { \\omega } ( \\kappa ) X ( p ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } ~ $",
"$ \\mupGamma _ { 0 } , \\mupGamma $",
"$ \\mitY $",
"$ [ \\mbfL _ { \\mbfitpsi _ { \\mbfj } } , \\mupGamma _ { 0 } \\slash \\sqrt { 1 + \\mitp _ { 0 } \\slash \\sqrt { \\mitp ^ { 2 } } } ] $",
"$ \\mitL _ { \\mitvarphi _ { \\mitj } } $",
"$ \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) $",
"$ \\mbfM _ { \\mbfitpsi _ { \\mbfj } } $",
"$ \\mitM _ { \\mitpsi _ { \\mitj } } $",
"$ \\mitL _ { \\mitvarphi _ { \\mitl } } $",
"$ \\mitL _ { \\mitvarphi _ { \\mitj } } $",
"$ \\mitkappa $",
"$ [ \\mbfL _ { \\mbfitvarphi _ { \\mbfone } } , \\mbfL _ { \\mbfitpsi _ { \\mbftwo } } ] , [ \\mbfL _ { \\mbfitvarphi _ { \\mbfone } } , \\mbfL _ { \\mbfitpsi _ { \\mbfone } } ] $",
"$ [ \\mbfL _ { \\mbfitpsi _ { \\mbfone } } , \\mbfL _ { \\mbfitpsi _ { \\mbfthree } } ] , $",
"$ \\left\\vert \\mitkappa \\right\\vert \\rightarrow \\infty $",
"$ \\mitkappa = 0 . $",
"$ \\mitkappa $",
"$ \\mitkappa $",
"\\begin{equation*} \\mbfM _ { \\mbfitvarphi _ { \\mbfj } } = \\mbfL _ { \\mbfitvarphi _ { \\mbfj } } = \\mitL _ { \\mitvarphi _ { \\mitj } } + \\miti \\frac { \\mitd } { \\mitd \\mitvarphi _ { \\mitj } } , \\end{equation*}",
"\\begin{equation*} \\mbfM _ { \\mbfitpsi _ { \\mbfj } } = \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } ; \\qquad \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) = \\mitepsilon _ { \\mitj \\mitk \\mitl } \\frac { \\mitp _ { \\mitk } \\mitL _ { \\mitvarphi _ { \\mitl } } } { \\mitp _ { 0 } + \\sqrt { \\mitp ^ { 2 } } } . \\end{equation*}",
"\\begin{equation*} \\mbfM _ { \\mbfitpsi _ { \\mbfj } } = \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) + \\miti \\frac { \\mitd } { \\mitd \\mitpsi _ { \\mitj } } ; \\qquad \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) = \\frac { \\mitkappa \\mitL _ { \\mitvarphi _ { \\mitj } } + \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitp _ { \\mitk } \\mitL _ { \\mitvarphi _ { \\mitl } } } { \\mitp _ { 0 } + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } , \\end{equation*}",
"\\begin{equation*} \\mitM _ { \\mitpsi _ { \\mitj } } = \\miti \\mitL _ { \\mitvarphi _ { \\mitj } } . \\end{equation*}",
"\\begin{equation*} \\mbfM _ { \\mitomega } ( \\mitkappa ^ { \\prime } ) = \\mitX ^ { - 1 } ( \\mitp ) \\mbfM _ { \\mitomega } ( \\mitkappa ) \\mitX ( \\mitp ) . \\end{equation*}"
],
"x_min": [
0.38839998841285706,
0.588100016117096,
0.7332000136375427,
0.2093999981880188,
0.5770999789237976,
0.390500009059906,
0.4754999876022339,
0.6883000135421753,
0.7566999793052673,
0.33309999108314514,
0.259799987077713,
0.414000004529953,
0.6047000288963318,
0.6545000076293945,
0.5942999720573425,
0.3379000127315521,
0.7214999794960022,
0.40290001034736633,
0.3075000047683716,
0.2694999873638153,
0.4519999921321869,
0.3862999975681305
],
"y_min": [
0.1543000042438507,
0.1543000042438507,
0.1543000042438507,
0.2720000147819519,
0.3765000104904175,
0.4043000042438507,
0.40529999136924744,
0.461899995803833,
0.461899995803833,
0.5156000256538391,
0.5990999937057495,
0.6772000193595886,
0.6772000193595886,
0.7056000232696533,
0.7573000192642212,
0.7886000275611877,
0.8529999852180481,
0.18850000202655792,
0.30219998955726624,
0.5497999787330627,
0.7285000085830688,
0.8051999807357788
],
"x_max": [
0.420199990272522,
0.6240000128746033,
0.746999979019165,
0.3815000057220459,
0.6047000288963318,
0.44440001249313354,
0.5087000131607056,
0.72079998254776,
0.7829999923706055,
0.36070001125335693,
0.2702000141143799,
0.5695000290870667,
0.6834999918937683,
0.71670001745224,
0.6399000287055969,
0.3483000099658966,
0.7311999797821045,
0.5935999751091003,
0.6916999816894531,
0.6848000288009644,
0.5473999977111816,
0.6136999726295471
],
"y_max": [
0.16699999570846558,
0.16500000655651093,
0.163100004196167,
0.2939999997615814,
0.3896999955177307,
0.4180000126361847,
0.4180000126361847,
0.4745999872684479,
0.4740999937057495,
0.5282999873161316,
0.6050000190734863,
0.6904000043869019,
0.6904000043869019,
0.7182999849319458,
0.7656000256538391,
0.7940000295639038,
0.8589000105857849,
0.21969999372959137,
0.3359000086784363,
0.5835000276565552,
0.7445999979972839,
0.8223000168800354
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page19
|
{
"latex": [
"$M_{\\psi _{j}}(p)$",
"$\\omega $",
"$\\xi $",
"$p\\rightarrow p^{\\prime }$",
"$\\Lambda $",
"$\\varphi $",
"$\\xi $",
"$R_{\\varphi _{j}}$",
"$K_{\\xi }$",
"$\\varphi $",
"$\\vec {u},$",
"$\\left | \\vec {u}\\right | =1$",
"\\begin {equation} M_{\\psi _{j}}(p)=\\sum _{k=1}^{3}c_{jk}(p)L_{\\varphi _{k}}+\\sum _{\\xi }c_{j\\xi }k_{\\xi } \\label {s53} \\end {equation}",
"\\begin {equation} \\Psi _{0}^{\\prime }(p^{\\prime })=\\Lambda (\\omega )\\Psi _{0}(p),\\qquad \\Psi _{0}^{\\prime }(p)=\\Lambda (\\xi )\\Psi _{0}(p), \\label {s54} \\end {equation}",
"\\begin {equation} \\Lambda (\\omega +d\\omega )=\\Lambda (\\omega )\\Lambda (d\\omega ),\\qquad \\Lambda (\\xi +d\\xi )=\\Lambda (\\xi )\\Lambda (d\\xi ), \\label {s55} \\end {equation}",
"\\begin {equation} \\frac {d\\Lambda (\\varphi _{j})}{d\\varphi _{j}}=i\\Lambda (\\varphi _{j})R_{\\varphi _{j}},\\qquad \\frac {d\\Lambda (\\xi )}{d\\xi }=i\\Lambda (\\xi )K_{\\xi }. \\label {s56} \\end {equation}",
"\\begin {equation} \\Lambda (\\varphi _{j})=\\exp (i\\varphi _{j}R_{\\varphi _{j}}),\\qquad \\Lambda (\\xi )=\\exp (i\\xi K_{\\xi }). \\label {s57} \\end {equation}",
"\\begin {equation} \\Lambda (\\varphi ,\\vec {u})=\\exp \\left [ i\\varphi \\left ( \\vec {u}\\cdot \\vec {R} _{\\varphi }\\right ) \\right ] ;\\qquad \\vec {R}_{\\varphi }=\\left ( R_{\\varphi _{1}},R_{\\varphi _{2}},R_{\\varphi _{3}}\\right ) . \\label {sa57} \\end {equation}",
"\\begin {equation} \\frac {d\\Lambda (\\psi _{j})}{d\\psi _{j}}=if_{j}(\\psi _{j})\\Lambda (\\psi _{j})N_{j}, \\label {s58} \\end {equation}",
"\\begin {equation} f_{j}(\\psi _{j})=\\frac {1}{p_{0}\\cosh \\psi _{j}+p_{j}\\sinh \\psi _{j}+\\sqrt { p^{2}-\\kappa ^{2}}}, \\label {s59} \\end {equation}",
"\\begin {equation} N_{j}=\\kappa R_{\\varphi _{j}}+\\epsilon _{jkl}p_{k}R_{\\varphi _{l}}. \\label {sa59} \\end {equation}",
"\\begin {equation} \\Lambda (\\psi _{j})=\\exp \\left ( iF(\\psi _{j})N_{j}\\right ) ;\\qquad F(\\psi _{j})=\\int _{0}^{\\psi _{j}}f_{j}(\\eta )d\\eta . \\label {s60} \\end {equation}"
],
"latex_norm": [
"$ M _ { \\psi _ { j } } ( p ) $",
"$ \\omega $",
"$ \\xi $",
"$ p \\rightarrow p ^ { \\prime } $",
"$ \\Lambda $",
"$ \\varphi $",
"$ \\xi $",
"$ R _ { \\varphi _ { j } } $",
"$ K _ { \\xi } $",
"$ \\varphi $",
"$ \\vec { u } , $",
"$ \\vert \\vec { u } \\vert = 1 $",
"\\begin{equation*} M _ { \\psi _ { j } } ( p ) = \\sum _ { k = 1 } ^ { 3 } c _ { j k } ( p ) L _ { \\varphi _ { k } } + \\sum _ { \\xi } c _ { j \\xi } k _ { \\xi } \\end{equation*}",
"\\begin{equation*} \\Psi _ { 0 } ^ { \\prime } ( p ^ { \\prime } ) = \\Lambda ( \\omega ) \\Psi _ { 0 } ( p ) , \\qquad \\Psi _ { 0 } ^ { \\prime } ( p ) = \\Lambda ( \\xi ) \\Psi _ { 0 } ( p ) , \\end{equation*}",
"\\begin{equation*} \\Lambda ( \\omega + d \\omega ) = \\Lambda ( \\omega ) \\Lambda ( d \\omega ) , \\qquad \\Lambda ( \\xi + d \\xi ) = \\Lambda ( \\xi ) \\Lambda ( d \\xi ) , \\end{equation*}",
"\\begin{equation*} \\frac { d \\Lambda ( \\varphi _ { j } ) } { d \\varphi _ { j } } = i \\Lambda ( \\varphi _ { j } ) R _ { \\varphi _ { j } } , \\qquad \\frac { d \\Lambda ( \\xi ) } { d \\xi } = i \\Lambda ( \\xi ) K _ { \\xi } . \\end{equation*}",
"\\begin{equation*} \\Lambda ( \\varphi _ { j } ) = \\operatorname { e x p } ( i \\varphi _ { j } R _ { \\varphi _ { j } } ) , \\qquad \\Lambda ( \\xi ) = \\operatorname { e x p } ( i \\xi K _ { \\xi } ) . \\end{equation*}",
"\\begin{equation*} \\Lambda ( \\varphi , \\vec { u } ) = \\operatorname { e x p } [ i \\varphi ( \\vec { u } \\cdot \\vec { R } _ { \\varphi } ) ] ; \\qquad \\vec { R } _ { \\varphi } = ( R _ { \\varphi _ { 1 } } , R _ { \\varphi _ { 2 } } , R _ { \\varphi _ { 3 } } ) . \\end{equation*}",
"\\begin{equation*} \\frac { d \\Lambda ( \\psi _ { j } ) } { d \\psi _ { j } } = i f _ { j } ( \\psi _ { j } ) \\Lambda ( \\psi _ { j } ) N _ { j } , \\end{equation*}",
"\\begin{equation*} f _ { j } ( \\psi _ { j } ) = \\frac { 1 } { p _ { 0 } \\operatorname { c o s h } \\psi _ { j } + p _ { j } \\operatorname { s i n h } \\psi _ { j } + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } , \\end{equation*}",
"\\begin{equation*} N _ { j } = \\kappa R _ { \\varphi _ { j } } + \\epsilon _ { j k l } p _ { k } R _ { \\varphi _ { l } } . \\end{equation*}",
"\\begin{equation*} \\Lambda ( \\psi _ { j } ) = \\operatorname { e x p } ( i F ( \\psi _ { j } ) N _ { j } ) ; \\qquad F ( \\psi _ { j } ) = \\int _ { 0 } ^ { \\psi _ { j } } f _ { j } ( \\eta ) d \\eta . \\end{equation*}"
],
"latex_expand": [
"$ \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) $",
"$ \\mitomega $",
"$ \\mitxi $",
"$ \\mitp \\rightarrow \\mitp ^ { \\prime } $",
"$ \\mupLambda $",
"$ \\mitvarphi $",
"$ \\mitxi $",
"$ \\mitR _ { \\mitvarphi _ { \\mitj } } $",
"$ \\mitK _ { \\mitxi } $",
"$ \\mitvarphi $",
"$ \\vec { \\mitu } , $",
"$ \\left\\vert \\vec { \\mitu } \\right\\vert = 1 $",
"\\begin{equation*} \\mitM _ { \\mitpsi _ { \\mitj } } ( \\mitp ) = \\sum _ { \\mitk = 1 } ^ { 3 } \\mitc _ { \\mitj \\mitk } ( \\mitp ) \\mitL _ { \\mitvarphi _ { \\mitk } } + \\sum _ { \\mitxi } \\mitc _ { \\mitj \\mitxi } \\mitk _ { \\mitxi } \\end{equation*}",
"\\begin{equation*} \\mupPsi _ { 0 } ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupLambda ( \\mitomega ) \\mupPsi _ { 0 } ( \\mitp ) , \\qquad \\mupPsi _ { 0 } ^ { \\prime } ( \\mitp ) = \\mupLambda ( \\mitxi ) \\mupPsi _ { 0 } ( \\mitp ) , \\end{equation*}",
"\\begin{equation*} \\mupLambda ( \\mitomega + \\mitd \\mitomega ) = \\mupLambda ( \\mitomega ) \\mupLambda ( \\mitd \\mitomega ) , \\qquad \\mupLambda ( \\mitxi + \\mitd \\mitxi ) = \\mupLambda ( \\mitxi ) \\mupLambda ( \\mitd \\mitxi ) , \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitvarphi _ { \\mitj } ) } { \\mitd \\mitvarphi _ { \\mitj } } = \\miti \\mupLambda ( \\mitvarphi _ { \\mitj } ) \\mitR _ { \\mitvarphi _ { \\mitj } } , \\qquad \\frac { \\mitd \\mupLambda ( \\mitxi ) } { \\mitd \\mitxi } = \\miti \\mupLambda ( \\mitxi ) \\mitK _ { \\mitxi } . \\end{equation*}",
"\\begin{equation*} \\mupLambda ( \\mitvarphi _ { \\mitj } ) = \\operatorname { e x p } ( \\miti \\mitvarphi _ { \\mitj } \\mitR _ { \\mitvarphi _ { \\mitj } } ) , \\qquad \\mupLambda ( \\mitxi ) = \\operatorname { e x p } ( \\miti \\mitxi \\mitK _ { \\mitxi } ) . \\end{equation*}",
"\\begin{equation*} \\mupLambda ( \\mitvarphi , \\vec { \\mitu } ) = \\operatorname { e x p } \\left[ \\miti \\mitvarphi \\left( \\vec { \\mitu } \\cdot \\vec { \\mitR } _ { \\mitvarphi } \\right) \\right] ; \\qquad \\vec { \\mitR } _ { \\mitvarphi } = \\left( \\mitR _ { \\mitvarphi _ { 1 } } , \\mitR _ { \\mitvarphi _ { 2 } } , \\mitR _ { \\mitvarphi _ { 3 } } \\right) . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitpsi _ { \\mitj } ) } { \\mitd \\mitpsi _ { \\mitj } } = \\miti \\mitf _ { \\mitj } ( \\mitpsi _ { \\mitj } ) \\mupLambda ( \\mitpsi _ { \\mitj } ) \\mitN _ { \\mitj } , \\end{equation*}",
"\\begin{equation*} \\mitf _ { \\mitj } ( \\mitpsi _ { \\mitj } ) = \\frac { 1 } { \\mitp _ { 0 } \\operatorname { c o s h } \\mitpsi _ { \\mitj } + \\mitp _ { \\mitj } \\operatorname { s i n h } \\mitpsi _ { \\mitj } + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } , \\end{equation*}",
"\\begin{equation*} \\mitN _ { \\mitj } = \\mitkappa \\mitR _ { \\mitvarphi _ { \\mitj } } + \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitp _ { \\mitk } \\mitR _ { \\mitvarphi _ { \\mitl } } . \\end{equation*}",
"\\begin{equation*} \\mupLambda ( \\mitpsi _ { \\mitj } ) = \\operatorname { e x p } \\left( \\miti \\mitF ( \\mitpsi _ { \\mitj } ) \\mitN _ { \\mitj } \\right) ; \\qquad \\mitF ( \\mitpsi _ { \\mitj } ) = \\int _ { 0 } ^ { \\mitpsi _ { \\mitj } } \\mitf _ { \\mitj } ( \\miteta ) \\mitd \\miteta . \\end{equation*}"
],
"x_min": [
0.5127999782562256,
0.45339998602867126,
0.5023999810218811,
0.25920000672340393,
0.7753999829292297,
0.39879998564720154,
0.6129999756813049,
0.5722000002861023,
0.6406000256538391,
0.4408999979496002,
0.7179999947547913,
0.7373999953269958,
0.36899998784065247,
0.33169999718666077,
0.3019999861717224,
0.3345000147819519,
0.33309999108314514,
0.2702000141143799,
0.39809998869895935,
0.33309999108314514,
0.4104999899864197,
0.3075000047683716
],
"y_min": [
0.15330000221729279,
0.36959999799728394,
0.3666999936103821,
0.4154999852180481,
0.4165000021457672,
0.4683000147342682,
0.4652999937534332,
0.5282999873161316,
0.5282999873161316,
0.5952000021934509,
0.5917999744415283,
0.5913000106811523,
0.20170000195503235,
0.38670000433921814,
0.44040000438690186,
0.48489999771118164,
0.5634999871253967,
0.6255000233650208,
0.6820999979972839,
0.7461000084877014,
0.7875999808311462,
0.8310999870300293
],
"x_max": [
0.5666999816894531,
0.4645000100135803,
0.510699987411499,
0.3109999895095825,
0.7878000140190125,
0.4099000096321106,
0.621999979019165,
0.6011999845504761,
0.6626999974250793,
0.4519999921321869,
0.7332000136375427,
0.7878000140190125,
0.6309000253677368,
0.6654999852180481,
0.6952000260353088,
0.6654999852180481,
0.6661999821662903,
0.6862000226974487,
0.5985000133514404,
0.6640999913215637,
0.5895000100135803,
0.6923999786376953
],
"y_max": [
0.16699999570846558,
0.37549999356269836,
0.3774000108242035,
0.42719998955726624,
0.42480000853538513,
0.47609999775886536,
0.47600001096725464,
0.5410000085830688,
0.5404999852180481,
0.6035000085830688,
0.6035000085830688,
0.6039999723434448,
0.24369999766349792,
0.4032999873161316,
0.4560000002384186,
0.5170999765396118,
0.5800999999046326,
0.6509000062942505,
0.7142999768257141,
0.7788000106811523,
0.8036999702453613,
0.864799976348877
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page20
|
{
"latex": [
"$\\vec {u}$",
"$\\beta $",
"$\\Lambda ,\\Omega $",
"$\\Omega $",
"$N$",
"$\\psi $",
"$N$",
"$\\mathbf {R}_{\\omega }(\\Gamma _{0}),R_{\\omega }(\\Gamma _{0})$",
"$Y(p)$",
"$K_{\\xi }(\\Gamma _{0})$",
"\\begin {equation} \\Lambda (\\psi ,\\vec {u})=\\exp \\left ( iF(\\psi )N\\right ) ,\\qquad \\tanh \\psi =\\beta , \\label {s61} \\end {equation}",
"\\begin {equation} F(\\psi )=\\int _{0}^{\\psi }\\frac {d\\eta }{p_{0}\\cosh \\eta +\\vec {p}\\vec {u}\\sinh \\eta +\\sqrt {p^{2}-\\kappa ^{2}}}, \\label {s62} \\end {equation}",
"\\begin {equation} N=\\kappa \\vec {u}\\vec {R}_{\\varphi }+\\left ( \\vec {u}\\times \\vec {p}\\right ) \\cdot \\vec {R}_{\\varphi }. \\label {sa62} \\end {equation}",
"\\begin {equation} \\frac {d\\Lambda (t)}{dt}=\\Omega (t)\\Lambda (t), \\label {s63} \\end {equation}",
"\\begin {equation} \\Lambda (t)=\\exp \\left ( \\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ) \\label {s64} \\end {equation}",
"\\begin {equation} \\left [ \\Omega (t),\\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ] =0. \\label {s65} \\end {equation}",
"\\begin {equation} \\frac {d\\Lambda (t)}{dt}=\\frac {d}{dt}\\sum _{j=0}^{\\infty }\\frac {\\left ( \\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ) ^{j}}{j!}=\\Omega (t)\\sum _{j=0}^{\\infty }\\frac {\\left ( \\int _{0}^{t}\\Omega (\\eta )d\\eta \\right ) ^{j}}{j!} \\label {s66} \\end {equation}",
"\\begin {equation} =\\Omega (t)\\Lambda (t)=\\Lambda (t)\\Omega (t). \\end {equation}",
"\\begin {equation} \\mathbf {R}_{\\omega }(\\Gamma )=Y^{-1}(p)\\mathbf {R}_{\\omega }(\\Gamma _{0})Y(p)=R_{\\omega }(\\Gamma )+i\\frac {d}{d\\omega }, \\label {s67} \\end {equation}",
"\\begin {equation} R_{\\omega }(\\Gamma )=Y^{-1}(p)R_{\\omega }(\\Gamma _{0})Y(p)+iY^{-1}(p)\\frac { dY(p)}{d\\omega }, \\end {equation}",
"\\begin {equation} K_{\\xi }(\\Gamma )=Y^{-1}(p)K_{\\xi }(\\Gamma _{0})Y(p). \\label {s68} \\end {equation}"
],
"latex_norm": [
"$ \\vec { u } $",
"$ \\beta $",
"$ \\Lambda , \\Omega $",
"$ \\Omega $",
"$ N $",
"$ \\psi $",
"$ N $",
"$ R _ { \\omega } ( \\Gamma _ { 0 } ) , R _ { \\omega } ( \\Gamma _ { 0 } ) $",
"$ Y ( p ) $",
"$ K _ { \\xi } ( \\Gamma _ { 0 } ) $",
"\\begin{equation*} \\Lambda ( \\psi , \\vec { u } ) = \\operatorname { e x p } ( i F ( \\psi ) N ) , \\qquad \\operatorname { t a n h } \\psi = \\beta , \\end{equation*}",
"\\begin{equation*} F ( \\psi ) = \\int _ { 0 } ^ { \\psi } \\frac { d \\eta } { p _ { 0 } \\operatorname { c o s h } \\eta + \\vec { p } \\vec { u } \\operatorname { s i n h } \\eta + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } , \\end{equation*}",
"\\begin{equation*} N = \\kappa \\vec { u } \\vec { R } _ { \\varphi } + ( \\vec { u } \\times \\vec { p } ) \\cdot \\vec { R } _ { \\varphi } . \\end{equation*}",
"\\begin{equation*} \\frac { d \\Lambda ( t ) } { d t } = \\Omega ( t ) \\Lambda ( t ) , \\end{equation*}",
"\\begin{equation*} \\Lambda ( t ) = \\operatorname { e x p } ( \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ) \\end{equation*}",
"\\begin{equation*} [ \\Omega ( t ) , \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ] = 0 . \\end{equation*}",
"\\begin{equation*} \\frac { d \\Lambda ( t ) } { d t } = \\frac { d } { d t } \\sum _ { j = 0 } ^ { \\infty } \\frac { { ( \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ) } ^ { j } } { j ! } = \\Omega ( t ) \\sum _ { j = 0 } ^ { \\infty } \\frac { { ( \\int _ { 0 } ^ { t } \\Omega ( \\eta ) d \\eta ) } ^ { j } } { j ! } \\end{equation*}",
"\\begin{equation*} = \\Omega ( t ) \\Lambda ( t ) = \\Lambda ( t ) \\Omega ( t ) . \\end{equation*}",
"\\begin{equation*} R _ { \\omega } ( \\Gamma ) = Y ^ { - 1 } ( p ) R _ { \\omega } ( \\Gamma _ { 0 } ) Y ( p ) = R _ { \\omega } ( \\Gamma ) + i \\frac { d } { d \\omega } , \\end{equation*}",
"\\begin{equation*} R _ { \\omega } ( \\Gamma ) = Y ^ { - 1 } ( p ) R _ { \\omega } ( \\Gamma _ { 0 } ) Y ( p ) + i Y ^ { - 1 } ( p ) \\frac { d Y ( p ) } { d \\omega } , \\end{equation*}",
"\\begin{equation*} K _ { \\xi } ( \\Gamma ) = Y ^ { - 1 } ( p ) K _ { \\xi } ( \\Gamma _ { 0 } ) Y ( p ) . \\end{equation*}"
],
"latex_expand": [
"$ \\vec { \\mitu } $",
"$ \\mitbeta $",
"$ \\mupLambda , \\mupOmega $",
"$ \\mupOmega $",
"$ \\mitN $",
"$ \\mitpsi $",
"$ \\mitN $",
"$ \\mbfR _ { \\mitomega } ( \\mupGamma _ { 0 } ) , \\mitR _ { \\mitomega } ( \\mupGamma _ { 0 } ) $",
"$ \\mitY ( \\mitp ) $",
"$ \\mitK _ { \\mitxi } ( \\mupGamma _ { 0 } ) $",
"\\begin{equation*} \\mupLambda ( \\mitpsi , \\vec { \\mitu } ) = \\operatorname { e x p } \\left( \\miti \\mitF ( \\mitpsi ) \\mitN \\right) , \\qquad \\operatorname { t a n h } \\mitpsi = \\mitbeta , \\end{equation*}",
"\\begin{equation*} \\mitF ( \\mitpsi ) = \\int _ { 0 } ^ { \\mitpsi } \\frac { \\mitd \\miteta } { \\mitp _ { 0 } \\operatorname { c o s h } \\miteta + \\vec { \\mitp } \\vec { \\mitu } \\operatorname { s i n h } \\miteta + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } , \\end{equation*}",
"\\begin{equation*} \\mitN = \\mitkappa \\vec { \\mitu } \\vec { \\mitR } _ { \\mitvarphi } + \\left( \\vec { \\mitu } \\times \\vec { \\mitp } \\right) \\cdot \\vec { \\mitR } _ { \\mitvarphi } . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitt ) } { \\mitd \\mitt } = \\mupOmega ( \\mitt ) \\mupLambda ( \\mitt ) , \\end{equation*}",
"\\begin{equation*} \\mupLambda ( \\mitt ) = \\operatorname { e x p } \\left( \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right) \\end{equation*}",
"\\begin{equation*} \\left[ \\mupOmega ( \\mitt ) , \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right] = 0 . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd \\mupLambda ( \\mitt ) } { \\mitd \\mitt } = \\frac { \\mitd } { \\mitd \\mitt } \\sum _ { \\mitj = 0 } ^ { \\infty } \\frac { { \\left( \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right) } ^ { \\mitj } } { \\mitj ! } = \\mupOmega ( \\mitt ) \\sum _ { \\mitj = 0 } ^ { \\infty } \\frac { { \\left( \\int _ { 0 } ^ { \\mitt } \\mupOmega ( \\miteta ) \\mitd \\miteta \\right) } ^ { \\mitj } } { \\mitj ! } \\end{equation*}",
"\\begin{equation*} = \\mupOmega ( \\mitt ) \\mupLambda ( \\mitt ) = \\mupLambda ( \\mitt ) \\mupOmega ( \\mitt ) . \\end{equation*}",
"\\begin{equation*} \\mbfR _ { \\mitomega } ( \\mupGamma ) = \\mitY ^ { - 1 } ( \\mitp ) \\mbfR _ { \\mitomega } ( \\mupGamma _ { 0 } ) \\mitY ( \\mitp ) = \\mitR _ { \\mitomega } ( \\mupGamma ) + \\miti \\frac { \\mitd } { \\mitd \\mitomega } , \\end{equation*}",
"\\begin{equation*} \\mitR _ { \\mitomega } ( \\mupGamma ) = \\mitY ^ { - 1 } ( \\mitp ) \\mitR _ { \\mitomega } ( \\mupGamma _ { 0 } ) \\mitY ( \\mitp ) + \\miti \\mitY ^ { - 1 } ( \\mitp ) \\frac { \\mitd \\mitY ( \\mitp ) } { \\mitd \\mitomega } , \\end{equation*}",
"\\begin{equation*} \\mitK _ { \\mitxi } ( \\mupGamma ) = \\mitY ^ { - 1 } ( \\mitp ) \\mitK _ { \\mitxi } ( \\mupGamma _ { 0 } ) \\mitY ( \\mitp ) . \\end{equation*}"
],
"x_min": [
0.5078999996185303,
0.6496000289916992,
0.25780001282691956,
0.3449000120162964,
0.7718999981880188,
0.3594000041484833,
0.3898000121116638,
0.2605000138282776,
0.5846999883651733,
0.5453000068664551,
0.3449000120162964,
0.3296000063419342,
0.40290001034736633,
0.43050000071525574,
0.4056999981403351,
0.41260001063346863,
0.2971999943256378,
0.41190001368522644,
0.32899999618530273,
0.326200008392334,
0.39250001311302185
],
"y_min": [
0.15379999577999115,
0.15379999577999115,
0.3456999957561493,
0.4077000021934509,
0.5820000171661377,
0.5961999893188477,
0.5961999893188477,
0.7827000021934509,
0.7827000021934509,
0.8109999895095825,
0.1738000065088272,
0.20800000429153442,
0.2476000040769577,
0.3061999976634979,
0.3637999892234802,
0.42579999566078186,
0.4878000020980835,
0.5435000061988831,
0.711899995803833,
0.7476000189781189,
0.8446999788284302
],
"x_max": [
0.5182999968528748,
0.6600000262260437,
0.2896000146865845,
0.3573000133037567,
0.7878000140190125,
0.3711000084877014,
0.4056999981403351,
0.3772999942302704,
0.6198999881744385,
0.5985000133514404,
0.652400016784668,
0.6668000221252441,
0.5964000225067139,
0.5659999847412109,
0.5916000008583069,
0.5846999883651733,
0.7028999924659729,
0.583299994468689,
0.6675999760627747,
0.6711000204086304,
0.6074000000953674
],
"y_max": [
0.163100004196167,
0.16500000655651093,
0.35690000653266907,
0.4165000021457672,
0.5907999873161316,
0.6068999767303467,
0.6050000190734863,
0.7949000000953674,
0.7949000000953674,
0.8237000107765198,
0.1898999959230423,
0.24410000443458557,
0.2662000060081482,
0.33550000190734863,
0.39750000834465027,
0.45899999141693115,
0.5365999937057495,
0.5595999956130981,
0.7401999831199646,
0.7764000296592712,
0.8622999787330627
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page22
|
{
"latex": [
"$X_{3}$",
"$X_{3}=Z(\\Gamma _{0},X_{1},\\Gamma )^{-1}Z(\\Gamma _{0},X_{2},\\Gamma )$",
"$\\mathbf {R}_{\\omega }(\\Gamma ,X_{1}),\\mathbf {R}_{\\omega }(\\Gamma ,X_{2})$",
"$W$",
"$\\mathbf {R}_{\\omega }$",
"$K_{\\xi }.$",
"$W(p)$",
"\\begin {equation} \\lbrack Z(\\Gamma _{0},X_{1},\\Gamma )^{-1}Z(\\Gamma _{0},X_{2},\\Gamma ),\\Gamma ]=0. \\label {s80} \\end {equation}",
"\\begin {equation} Z(\\Gamma ,X_{3},\\Gamma )=Z(\\Gamma _{0},X_{1},\\Gamma )^{-1}Z(\\Gamma _{0},X_{2},\\Gamma ), \\label {s81} \\end {equation}",
"\\begin {equation} \\mathbf {R}_{\\omega }(\\Gamma ,X_{1})=Z(\\Gamma ,X_{3},\\Gamma )\\mathbf {R} _{\\omega }(\\Gamma ,X_{2})Z(\\Gamma ,X_{3},\\Gamma )^{-1}, \\label {s82} \\end {equation}",
"\\begin {equation} \\left ( \\Phi (p),\\Psi (q)\\right ) =\\left \\{ \\begin {array}{c} 0 \\\\ \\Phi ^{\\dagger }(p)W(p)\\Psi (q) \\end {array} \\right . \\quad \\mathrm {for}\\quad \\begin {array}{c} p\\neq q \\\\ p=q \\end {array} , \\label {s94} \\end {equation}",
"\\begin {equation} W^{\\dagger }(p)=W(p), \\label {s95} \\end {equation}",
"\\begin {equation} R_{\\omega }^{\\dagger }(p)W(p)-W(p)R_{\\omega }(p)+i\\frac {dW}{d\\omega }=0, \\label {s96} \\end {equation}",
"\\begin {equation} K_{\\xi }^{\\dagger }(p)W(p)-W(p)K_{\\xi }(p)=0. \\label {s97} \\end {equation}",
"\\begin {equation} \\Phi ^{\\prime \\dagger }(p^{\\prime })W(p^{\\prime })\\Psi ^{\\prime }(p^{\\prime }) \\label {s98} \\end {equation}",
"\\begin {equation} =\\Phi ^{\\dagger }(p)\\left ( I-id\\omega R_{\\omega }^{\\dagger }(p)\\right ) \\left ( W(p)+d\\omega \\frac {dW}{d\\omega }\\right ) \\left ( I+id\\omega R_{\\omega }(p)\\right ) \\Psi (p) \\end {equation}",
"\\begin {equation} \\Phi ^{\\prime \\dagger }(p^{\\prime })W(p^{\\prime })\\Psi ^{\\prime }(p^{\\prime })=\\Phi ^{\\dagger }(p)W(p)\\Psi (p). \\label {s99} \\end {equation}",
"\\begin {equation} R_{\\varphi _{j}}^{\\dagger }(\\Gamma _{0})=R_{\\varphi _{j}}(\\Gamma _{0}). \\label {s102} \\end {equation}"
],
"latex_norm": [
"$ X _ { 3 } $",
"$ X _ { 3 } = Z ( \\Gamma _ { 0 } , X _ { 1 } , \\Gamma ) ^ { - 1 } Z ( \\Gamma _ { 0 } , X _ { 2 } , \\Gamma ) $",
"$ R _ { \\omega } ( \\Gamma , X _ { 1 } ) , R _ { \\omega } ( \\Gamma , X _ { 2 } ) $",
"$ W $",
"$ R _ { \\omega } $",
"$ K _ { \\xi } . $",
"$ W ( p ) $",
"\\begin{equation*} [ Z ( \\Gamma _ { 0 } , X _ { 1 } , \\Gamma ) ^ { - 1 } Z ( \\Gamma _ { 0 } , X _ { 2 } , \\Gamma ) , \\Gamma ] = 0 . \\end{equation*}",
"\\begin{equation*} Z ( \\Gamma , X _ { 3 } , \\Gamma ) = Z ( \\Gamma _ { 0 } , X _ { 1 } , \\Gamma ) ^ { - 1 } Z ( \\Gamma _ { 0 } , X _ { 2 } , \\Gamma ) , \\end{equation*}",
"\\begin{equation*} R _ { \\omega } ( \\Gamma , X _ { 1 } ) = Z ( \\Gamma , X _ { 3 } , \\Gamma ) R _ { \\omega } ( \\Gamma , X _ { 2 } ) Z ( \\Gamma , X _ { 3 } , \\Gamma ) ^ { - 1 } , \\end{equation*}",
"\\begin{align*} ( \\Phi ( p ) , \\Psi ( q ) ) = \\{ \\begin{array}{c} 0 \\\\ \\Phi ^ { \\dagger } ( p ) W ( p ) \\Psi ( q ) \\end{array} \\quad f o r \\quad \\begin{array}{c} p \\ne q \\\\ p = q \\end{array} , \\end{align*}",
"\\begin{equation*} W ^ { \\dagger } ( p ) = W ( p ) , \\end{equation*}",
"\\begin{equation*} R _ { \\omega } ^ { \\dagger } ( p ) W ( p ) - W ( p ) R _ { \\omega } ( p ) + i \\frac { d W } { d \\omega } = 0 , \\end{equation*}",
"\\begin{equation*} K _ { \\xi } ^ { \\dagger } ( p ) W ( p ) - W ( p ) K _ { \\xi } ( p ) = 0 . \\end{equation*}",
"\\begin{equation*} \\Phi ^ { \\prime \\dagger } ( p ^ { \\prime } ) W ( p ^ { \\prime } ) \\Psi ^ { \\prime } ( p ^ { \\prime } ) \\end{equation*}",
"\\begin{equation*} = \\Phi ^ { \\dagger } ( p ) ( I - i d \\omega R _ { \\omega } ^ { \\dagger } ( p ) ) ( W ( p ) + d \\omega \\frac { d W } { d \\omega } ) ( I + i d \\omega R _ { \\omega } ( p ) ) \\Psi ( p ) \\end{equation*}",
"\\begin{equation*} \\Phi ^ { \\prime \\dagger } ( p ^ { \\prime } ) W ( p ^ { \\prime } ) \\Psi ^ { \\prime } ( p ^ { \\prime } ) = \\Phi ^ { \\dagger } ( p ) W ( p ) \\Psi ( p ) . \\end{equation*}",
"\\begin{equation*} R _ { \\varphi _ { j } } ^ { \\dagger } ( \\Gamma _ { 0 } ) = R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitX _ { 3 } $",
"$ \\mitX _ { 3 } = \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 1 } , \\mupGamma ) ^ { - 1 } \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 2 } , \\mupGamma ) $",
"$ \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 1 } ) , \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 2 } ) $",
"$ \\mitW $",
"$ \\mbfR _ { \\mitomega } $",
"$ \\mitK _ { \\mitxi } . $",
"$ \\mitW ( \\mitp ) $",
"\\begin{equation*} [ \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 1 } , \\mupGamma ) ^ { - 1 } \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 2 } , \\mupGamma ) , \\mupGamma ] = 0 . \\end{equation*}",
"\\begin{equation*} \\mitZ ( \\mupGamma , \\mitX _ { 3 } , \\mupGamma ) = \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 1 } , \\mupGamma ) ^ { - 1 } \\mitZ ( \\mupGamma _ { 0 } , \\mitX _ { 2 } , \\mupGamma ) , \\end{equation*}",
"\\begin{equation*} \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 1 } ) = \\mitZ ( \\mupGamma , \\mitX _ { 3 } , \\mupGamma ) \\mbfR _ { \\mitomega } ( \\mupGamma , \\mitX _ { 2 } ) \\mitZ ( \\mupGamma , \\mitX _ { 3 } , \\mupGamma ) ^ { - 1 } , \\end{equation*}",
"\\begin{align*} \\left( \\mupPhi ( \\mitp ) , \\mupPsi ( \\mitq ) \\right) = \\left\\{ \\begin{array}{c} 0 \\\\ \\mupPhi ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) \\mupPsi ( \\mitq ) \\end{array} \\right. \\quad \\mathrm { f o r } \\quad \\begin{array}{c} \\mitp \\ne \\mitq \\\\ \\mitp = \\mitq \\end{array} , \\end{align*}",
"\\begin{equation*} \\mitW ^ { \\dagger } ( \\mitp ) = \\mitW ( \\mitp ) , \\end{equation*}",
"\\begin{equation*} \\mitR _ { \\mitomega } ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) - \\mitW ( \\mitp ) \\mitR _ { \\mitomega } ( \\mitp ) + \\miti \\frac { \\mitd \\mitW } { \\mitd \\mitomega } = 0 , \\end{equation*}",
"\\begin{equation*} \\mitK _ { \\mitxi } ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) - \\mitW ( \\mitp ) \\mitK _ { \\mitxi } ( \\mitp ) = 0 . \\end{equation*}",
"\\begin{equation*} \\mupPhi ^ { \\prime \\dagger } ( \\mitp ^ { \\prime } ) \\mitW ( \\mitp ^ { \\prime } ) \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) \\end{equation*}",
"\\begin{equation*} = \\mupPhi ^ { \\dagger } ( \\mitp ) \\left( \\mitI - \\miti \\mitd \\mitomega \\mitR _ { \\mitomega } ^ { \\dagger } ( \\mitp ) \\right) \\left( \\mitW ( \\mitp ) + \\mitd \\mitomega \\frac { \\mitd \\mitW } { \\mitd \\mitomega } \\right) \\left( \\mitI + \\miti \\mitd \\mitomega \\mitR _ { \\mitomega } ( \\mitp ) \\right) \\mupPsi ( \\mitp ) \\end{equation*}",
"\\begin{equation*} \\mupPhi ^ { \\prime \\dagger } ( \\mitp ^ { \\prime } ) \\mitW ( \\mitp ^ { \\prime } ) \\mupPsi ^ { \\prime } ( \\mitp ^ { \\prime } ) = \\mupPhi ^ { \\dagger } ( \\mitp ) \\mitW ( \\mitp ) \\mupPsi ( \\mitp ) . \\end{equation*}",
"\\begin{equation*} \\mitR _ { \\mitvarphi _ { \\mitj } } ^ { \\dagger } ( \\mupGamma _ { 0 } ) = \\mitR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) . \\end{equation*}"
],
"x_min": [
0.5335000157356262,
0.349700003862381,
0.3614000082015991,
0.33719998598098755,
0.7630000114440918,
0.2418999969959259,
0.5860000252723694,
0.3677000105381012,
0.34279999136924744,
0.3151000142097473,
0.2833000123500824,
0.44020000100135803,
0.3573000133037567,
0.38769999146461487,
0.42989999055862427,
0.2639999985694885,
0.3587000072002411,
0.42570000886917114
],
"y_min": [
0.1889999955892563,
0.20170000195503235,
0.302700012922287,
0.45019999146461487,
0.7505000233650208,
0.7645999789237976,
0.7782999873161316,
0.163100004196167,
0.22269999980926514,
0.2728999853134155,
0.40619999170303345,
0.4691999852657318,
0.4950999915599823,
0.5268999934196472,
0.6064000129699707,
0.6317999958992004,
0.6913999915122986,
0.8442000150680542
],
"x_max": [
0.5555999875068665,
0.5929999947547913,
0.5224000215530396,
0.35589998960494995,
0.7878999710083008,
0.2689000070095062,
0.6261000037193298,
0.6316999793052673,
0.6545000076293945,
0.6820999979972839,
0.6593000292778015,
0.5562999844551086,
0.6399999856948853,
0.6122999787330627,
0.5702000260353088,
0.7311999797821045,
0.6406999826431274,
0.5742999911308289
],
"y_max": [
0.1996999979019165,
0.21490000188350677,
0.3149000108242035,
0.45899999141693115,
0.7612000107765198,
0.7767999768257141,
0.7904999852180481,
0.18019999563694,
0.23980000615119934,
0.28999999165534973,
0.4388999938964844,
0.4867999851703644,
0.5234000086784363,
0.5479000210762024,
0.6240000128746033,
0.6644999980926514,
0.7089999914169312,
0.8641999959945679
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page24
|
{
"latex": [
"$K_{\\xi },W,Z,Z^{-1}$",
"$\\Lambda $",
"$x-$",
"$p_{\\alpha }\\rightarrow i\\partial _{\\alpha }$",
"\\begin {equation} =\\frac {1}{(2\\pi )^{4}}\\int D(p)\\exp (-ipx)\\tilde {\\Psi }(y)\\exp (ipy)d^{4}yd^{4}p=\\frac {1}{(2\\pi )^{4}}\\int \\tilde {D}(x-y)\\tilde {\\Psi } (y)d^{4}y. \\end {equation}",
"\\begin {equation} \\Gamma _{0}(p)\\rightarrow \\tilde {\\Gamma }_{0}(z)=Q_{0}\\frac {1}{(2\\pi )^{4}} \\int (p^{2})^{1/n}\\exp (-ipz)d^{4}p;\\quad pz\\equiv p_{0}z_{0}-\\vec {p}\\vec {z}, \\label {s83} \\end {equation}",
"\\begin {equation} \\Gamma (p)\\rightarrow \\tilde {\\Gamma }(z)=\\sum _{\\lambda =0}^{3}Q_{\\lambda } \\frac {1}{(2\\pi )^{4}}\\int p_{\\lambda }^{2/n}\\exp (-ipz)d^{4}p, \\label {s84} \\end {equation}",
"\\begin {equation} \\mathbf {R}_{\\varphi _{j}}(\\Gamma _{0})\\rightarrow \\mathbf {\\tilde {R}} _{\\varphi _{j}}(\\Gamma _{0})=R_{\\varphi _{j}}(\\Gamma _{0})+i\\frac {d}{d\\tilde { \\varphi }_{j}};\\qquad \\frac {d}{d\\tilde {\\varphi }_{j}}=-\\epsilon _{jkl}x_{k} \\frac {\\partial }{\\partial x_{l}}, \\label {s85} \\end {equation}",
"\\begin {equation} \\mathbf {R}_{\\psi _{j}}(\\Gamma _{0})\\rightarrow \\mathbf {\\tilde {R}}_{\\psi _{j}}(z) \\label {s86} \\end {equation}",
"\\begin {equation} =\\frac {1}{(2\\pi )^{4}}\\int \\frac {\\kappa R_{\\varphi _{j}}(\\Gamma _{0})+\\epsilon _{jkl}p_{k}R_{\\varphi _{l}}(\\Gamma _{0})}{p_{0}+\\sqrt { p^{2}-\\kappa ^{2}}}\\exp (-ipz)d^{4}p+i\\frac {d}{d\\tilde {\\psi }_{j}}; \\end {equation}",
"\\begin {equation} \\frac {d}{d\\tilde {\\psi }_{j}}=-x_{0}\\frac {\\partial }{\\partial x_{j}}-x_{j} \\frac {\\partial }{\\partial x_{0}} \\end {equation}",
"\\begin {equation} \\mathbf {R}_{\\omega }(\\Gamma )\\rightarrow \\mathbf {\\tilde {R}}_{\\omega }(z) \\label {s87} \\end {equation}",
"\\begin {equation} =\\frac {1}{(2\\pi )^{4}}\\int Z(\\Gamma _{0},X,\\Gamma )^{-1}\\mathbf {R}_{\\omega }(\\Gamma _{0})Z(\\Gamma _{0},X,\\Gamma )\\exp (-ipz)d^{4}p. \\end {equation}",
"\\begin {equation} \\left ( \\Gamma _{0}(p)-\\mu \\right ) G_{0}(p)=I,\\qquad \\left ( \\Gamma (p)-\\mu \\right ) G(p)=I \\label {s88} \\end {equation}",
"\\begin {equation} G_{0}(p)=\\frac {(\\Gamma _{0}-\\alpha \\mu )(\\Gamma _{0}-\\alpha ^{2}\\mu )...(\\Gamma _{0}-\\alpha ^{n-1}\\mu )}{p^{2}-m^{2}}, \\label {s89} \\end {equation}",
"\\begin {equation} G(p)=\\frac {(\\Gamma -\\alpha \\mu )(\\Gamma -\\alpha ^{2}\\mu )...(\\Gamma -\\alpha ^{n-1}\\mu )}{p^{2}-m^{2}} \\label {sa89} \\end {equation}",
"\\begin {equation} G(p)=Z(\\Gamma _{0},X,\\Gamma )^{-1}G_{0}(p)Z(\\Gamma _{0},X,\\Gamma ). \\label {s90} \\end {equation}",
"\\begin {equation} \\tilde {G}_{0}(x)=\\frac {1}{(2\\pi )^{4}}\\int G_{0}(p)\\exp (-ipx)d^{4}p, \\label {sa90} \\end {equation}",
"\\begin {equation} \\tilde {G}(x)=\\frac {1}{(2\\pi )^{4}}\\int G(p)\\exp (-ipx)d^{4}p \\label {s91} \\end {equation}"
],
"latex_norm": [
"$ K _ { \\xi } , W , Z , Z ^ { - 1 } $",
"$ \\Lambda $",
"$ x - $",
"$ p _ { \\alpha } \\rightarrow i \\partial _ { \\alpha } $",
"\\begin{equation*} = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int D ( p ) \\operatorname { e x p } ( - i p x ) \\widetilde { \\Psi } ( y ) \\operatorname { e x p } ( i p y ) d ^ { 4 } y d ^ { 4 } p = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int \\widetilde { D } ( x - y ) \\widetilde { \\Psi } ( y ) d ^ { 4 } y . \\end{equation*}",
"\\begin{equation*} \\Gamma _ { 0 } ( p ) \\rightarrow \\widetilde { \\Gamma } _ { 0 } ( z ) = Q _ { 0 } \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int ( p ^ { 2 } ) ^ { 1 \\slash n } \\operatorname { e x p } ( - i p z ) d ^ { 4 } p ; \\quad p z \\equiv p _ { 0 } z _ { 0 } - \\vec { p } \\vec { z } , \\end{equation*}",
"\\begin{equation*} \\Gamma ( p ) \\rightarrow \\widetilde { \\Gamma } ( z ) = \\sum _ { \\lambda = 0 } ^ { 3 } Q _ { \\lambda } \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int p _ { \\lambda } ^ { 2 \\slash n } \\operatorname { e x p } ( - i p z ) d ^ { 4 } p , \\end{equation*}",
"\\begin{equation*} R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) \\rightarrow \\widetilde { R } _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) = R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) + i \\frac { d } { d \\widetilde { \\varphi } _ { j } } ; \\qquad \\frac { d } { d \\widetilde { \\varphi } _ { j } } = - \\epsilon _ { j k l } x _ { k } \\frac { \\partial } { \\partial x _ { l } } , \\end{equation*}",
"\\begin{equation*} R _ { \\psi _ { j } } ( \\Gamma _ { 0 } ) \\rightarrow \\widetilde { R } _ { \\psi _ { j } } ( z ) \\end{equation*}",
"\\begin{equation*} = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int \\frac { \\kappa R _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) + \\epsilon _ { j k l } p _ { k } R _ { \\varphi _ { l } } ( \\Gamma _ { 0 } ) } { p _ { 0 } + \\sqrt { p ^ { 2 } - \\kappa ^ { 2 } } } \\operatorname { e x p } ( - i p z ) d ^ { 4 } p + i \\frac { d } { d \\widetilde { \\psi } _ { j } } ; \\end{equation*}",
"\\begin{equation*} \\frac { d } { d \\widetilde { \\psi } _ { j } } = - x _ { 0 } \\frac { \\partial } { \\partial x _ { j } } - x _ { j } \\frac { \\partial } { \\partial x _ { 0 } } \\end{equation*}",
"\\begin{equation*} R _ { \\omega } ( \\Gamma ) \\rightarrow \\widetilde { R } _ { \\omega } ( z ) \\end{equation*}",
"\\begin{equation*} = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int Z ( \\Gamma _ { 0 } , X , \\Gamma ) ^ { - 1 } R _ { \\omega } ( \\Gamma _ { 0 } ) Z ( \\Gamma _ { 0 } , X , \\Gamma ) \\operatorname { e x p } ( - i p z ) d ^ { 4 } p . \\end{equation*}",
"\\begin{equation*} ( \\Gamma _ { 0 } ( p ) - \\mu ) G _ { 0 } ( p ) = I , \\qquad ( \\Gamma ( p ) - \\mu ) G ( p ) = I \\end{equation*}",
"\\begin{equation*} G _ { 0 } ( p ) = \\frac { ( \\Gamma _ { 0 } - \\alpha \\mu ) ( \\Gamma _ { 0 } - \\alpha ^ { 2 } \\mu ) . . . ( \\Gamma _ { 0 } - \\alpha ^ { n - 1 } \\mu ) } { p ^ { 2 } - m ^ { 2 } } , \\end{equation*}",
"\\begin{equation*} G ( p ) = \\frac { ( \\Gamma - \\alpha \\mu ) ( \\Gamma - \\alpha ^ { 2 } \\mu ) . . . ( \\Gamma - \\alpha ^ { n - 1 } \\mu ) } { p ^ { 2 } - m ^ { 2 } } \\end{equation*}",
"\\begin{equation*} G ( p ) = Z ( \\Gamma _ { 0 } , X , \\Gamma ) ^ { - 1 } G _ { 0 } ( p ) Z ( \\Gamma _ { 0 } , X , \\Gamma ) . \\end{equation*}",
"\\begin{equation*} \\widetilde { G } _ { 0 } ( x ) = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int G _ { 0 } ( p ) \\operatorname { e x p } ( - i p x ) d ^ { 4 } p , \\end{equation*}",
"\\begin{equation*} \\widetilde { G } ( x ) = \\frac { 1 } { ( 2 \\pi ) ^ { 4 } } \\int G ( p ) \\operatorname { e x p } ( - i p x ) d ^ { 4 } p \\end{equation*}"
],
"latex_expand": [
"$ \\mitK _ { \\mitxi } , \\mitW , \\mitZ , \\mitZ ^ { - 1 } $",
"$ \\mupLambda $",
"$ \\mitx - $",
"$ \\mitp _ { \\mitalpha } \\rightarrow \\miti \\mitpartial _ { \\mitalpha } $",
"\\begin{equation*} = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitD ( \\mitp ) \\operatorname { e x p } ( - \\miti \\mitp \\mitx ) \\tilde { \\mupPsi } ( \\mity ) \\operatorname { e x p } ( \\miti \\mitp \\mity ) \\mitd ^ { 4 } \\mity \\mitd ^ { 4 } \\mitp = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\tilde { \\mitD } ( \\mitx - \\mity ) \\tilde { \\mupPsi } ( \\mity ) \\mitd ^ { 4 } \\mity . \\end{equation*}",
"\\begin{equation*} \\mupGamma _ { 0 } ( \\mitp ) \\rightarrow \\tilde { \\mupGamma } _ { 0 } ( \\mitz ) = \\mitQ _ { 0 } \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int ( \\mitp ^ { 2 } ) ^ { 1 \\slash \\mitn } \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp ; \\quad \\mitp \\mitz \\equiv \\mitp _ { 0 } \\mitz _ { 0 } - \\vec { \\mitp } \\vec { \\mitz } , \\end{equation*}",
"\\begin{equation*} \\mupGamma ( \\mitp ) \\rightarrow \\tilde { \\mupGamma } ( \\mitz ) = \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitQ _ { \\mitlambda } \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitp _ { \\mitlambda } ^ { 2 \\slash \\mitn } \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp , \\end{equation*}",
"\\begin{equation*} \\mbfR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) \\rightarrow \\tilde { \\mbfR } _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) = \\mitR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) + \\miti \\frac { \\mitd } { \\mitd \\tilde { \\mitvarphi } _ { \\mitj } } ; \\qquad \\frac { \\mitd } { \\mitd \\tilde { \\mitvarphi } _ { \\mitj } } = - \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitx _ { \\mitk } \\frac { \\mitpartial } { \\mitpartial \\mitx _ { \\mitl } } , \\end{equation*}",
"\\begin{equation*} \\mbfR _ { \\mitpsi _ { \\mitj } } ( \\mupGamma _ { 0 } ) \\rightarrow \\tilde { \\mbfR } _ { \\mitpsi _ { \\mitj } } ( \\mitz ) \\end{equation*}",
"\\begin{equation*} = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\frac { \\mitkappa \\mitR _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) + \\mitepsilon _ { \\mitj \\mitk \\mitl } \\mitp _ { \\mitk } \\mitR _ { \\mitvarphi _ { \\mitl } } ( \\mupGamma _ { 0 } ) } { \\mitp _ { 0 } + \\sqrt { \\mitp ^ { 2 } - \\mitkappa ^ { 2 } } } \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp + \\miti \\frac { \\mitd } { \\mitd \\tilde { \\mitpsi } _ { \\mitj } } ; \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd } { \\mitd \\tilde { \\mitpsi } _ { \\mitj } } = - \\mitx _ { 0 } \\frac { \\mitpartial } { \\mitpartial \\mitx _ { \\mitj } } - \\mitx _ { \\mitj } \\frac { \\mitpartial } { \\mitpartial \\mitx _ { 0 } } \\end{equation*}",
"\\begin{equation*} \\mbfR _ { \\mitomega } ( \\mupGamma ) \\rightarrow \\tilde { \\mbfR } _ { \\mitomega } ( \\mitz ) \\end{equation*}",
"\\begin{equation*} = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) ^ { - 1 } \\mbfR _ { \\mitomega } ( \\mupGamma _ { 0 } ) \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) \\operatorname { e x p } ( - \\miti \\mitp \\mitz ) \\mitd ^ { 4 } \\mitp . \\end{equation*}",
"\\begin{equation*} \\left( \\mupGamma _ { 0 } ( \\mitp ) - \\mitmu \\right) \\mitG _ { 0 } ( \\mitp ) = \\mitI , \\qquad \\left( \\mupGamma ( \\mitp ) - \\mitmu \\right) \\mitG ( \\mitp ) = \\mitI \\end{equation*}",
"\\begin{equation*} \\mitG _ { 0 } ( \\mitp ) = \\frac { ( \\mupGamma _ { 0 } - \\mitalpha \\mitmu ) ( \\mupGamma _ { 0 } - \\mitalpha ^ { 2 } \\mitmu ) . . . ( \\mupGamma _ { 0 } - \\mitalpha ^ { \\mitn - 1 } \\mitmu ) } { \\mitp ^ { 2 } - \\mitm ^ { 2 } } , \\end{equation*}",
"\\begin{equation*} \\mitG ( \\mitp ) = \\frac { ( \\mupGamma - \\mitalpha \\mitmu ) ( \\mupGamma - \\mitalpha ^ { 2 } \\mitmu ) . . . ( \\mupGamma - \\mitalpha ^ { \\mitn - 1 } \\mitmu ) } { \\mitp ^ { 2 } - \\mitm ^ { 2 } } \\end{equation*}",
"\\begin{equation*} \\mitG ( \\mitp ) = \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) ^ { - 1 } \\mitG _ { 0 } ( \\mitp ) \\mitZ ( \\mupGamma _ { 0 } , \\mitX , \\mupGamma ) . \\end{equation*}",
"\\begin{equation*} \\tilde { \\mitG } _ { 0 } ( \\mitx ) = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitG _ { 0 } ( \\mitp ) \\operatorname { e x p } ( - \\miti \\mitp \\mitx ) \\mitd ^ { 4 } \\mitp , \\end{equation*}",
"\\begin{equation*} \\tilde { \\mitG } ( \\mitx ) = \\frac { 1 } { ( 2 \\mitpi ) ^ { 4 } } \\int \\mitG ( \\mitp ) \\operatorname { e x p } ( - \\miti \\mitp \\mitx ) \\mitd ^ { 4 } \\mitp \\end{equation*}"
],
"x_min": [
0.2093999981880188,
0.5446000099182129,
0.6115999817848206,
0.6462000012397766,
0.2134999930858612,
0.22110000252723694,
0.31439998745918274,
0.23569999635219574,
0.4284999966621399,
0.274399995803833,
0.4077000021934509,
0.43880000710487366,
0.28130000829696655,
0.3248000144958496,
0.32829999923706055,
0.34689998626708984,
0.3544999957084656,
0.35659998655319214,
0.3677000105381012
],
"y_min": [
0.5131999850273132,
0.5145999789237976,
0.5156000256538391,
0.5288000106811523,
0.1469999998807907,
0.2061000019311905,
0.24660000205039978,
0.2915000021457672,
0.32710000872612,
0.35109999775886536,
0.39010000228881836,
0.4390000104904175,
0.46140000224113464,
0.5648999810218811,
0.6157000064849854,
0.6567000150680542,
0.7178000211715698,
0.7695000171661377,
0.8095999956130981
],
"x_max": [
0.3116999864578247,
0.5562999844551086,
0.6351000070571899,
0.7153000235557556,
0.7809000015258789,
0.7249000072479248,
0.682699978351593,
0.7098000049591064,
0.5716000199317932,
0.7181000113487244,
0.592199981212616,
0.5611000061035156,
0.7139000296592712,
0.6717000007629395,
0.6690000295639038,
0.6531000137329102,
0.6453999876976013,
0.6406000256538391,
0.6316999793052673
],
"y_max": [
0.5264000296592712,
0.5228999853134155,
0.524399995803833,
0.5394999980926514,
0.17820000648498535,
0.23729999363422394,
0.2870999872684479,
0.323199987411499,
0.34610000252723694,
0.38580000400543213,
0.42329999804496765,
0.4571000039577484,
0.4925999939441681,
0.5805000066757202,
0.6474000215530396,
0.6888999938964844,
0.7348999977111816,
0.8003000020980835,
0.8407999873161316
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003126_page25
|
{
"latex": [
"$x-$",
"$\\tilde {G}_{0},\\tilde {G}$",
"$x-$",
"$\\mathbf {\\tilde {R}}_{\\varphi _{j}}(\\Gamma _{0}),\\tilde {W}(\\Gamma _{0})$",
"$i\\partial _{\\alpha }$",
"$p^{2j/n}$",
"$Q_{pr}=S^{p}T^{r}$",
"$S,T$",
"$n\\geq 2$",
"$\\{Q_{pr}\\}$",
"$n=2$",
"$\\{Q_{pr}\\}$",
"$SU(n)$",
"$x-$",
"\\begin {equation} \\int \\tilde {\\Gamma }_{0}(x-y)\\tilde {G}_{0}(y)d^{4}y-\\mu \\tilde {G} _{0}(x)=\\delta ^{4}(x), \\label {s92} \\end {equation}",
"\\begin {equation} \\int \\tilde {\\Gamma }(x-y)\\tilde {G}(y)d^{4}y-\\mu \\tilde {G}(x)=\\left [ \\sum _{\\lambda =0}^{3}Q_{\\lambda }(i\\partial _{\\lambda })^{2/n}-\\mu \\right ] \\tilde {G}(x)=\\delta ^{4}(x). \\label {s93} \\end {equation}"
],
"latex_norm": [
"$ x - $",
"$ \\widetilde { G } _ { 0 } , \\widetilde { G } $",
"$ x - $",
"$ \\widetilde { R } _ { \\varphi _ { j } } ( \\Gamma _ { 0 } ) , \\widetilde { W } ( \\Gamma _ { 0 } ) $",
"$ i \\partial _ { \\alpha } $",
"$ p ^ { 2 j \\slash n } $",
"$ Q _ { p r } = S ^ { p } T ^ { r } $",
"$ S , T $",
"$ n \\geq 2 $",
"$ \\{ Q _ { p r } \\} $",
"$ n = 2 $",
"$ \\{ Q _ { p r } \\} $",
"$ S U ( n ) $",
"$ x - $",
"\\begin{equation*} \\int \\widetilde { \\Gamma } _ { 0 } ( x - y ) \\widetilde { G } _ { 0 } ( y ) d ^ { 4 } y - \\mu \\widetilde { G } _ { 0 } ( x ) = \\delta ^ { 4 } ( x ) , \\end{equation*}",
"\\begin{equation*} \\int \\widetilde { \\Gamma } ( x - y ) \\widetilde { G } ( y ) d ^ { 4 } y - \\mu \\widetilde { G } ( x ) = [ \\sum _ { \\lambda = 0 } ^ { 3 } Q _ { \\lambda } ( i \\partial _ { \\lambda } ) ^ { 2 \\slash n } - \\mu ] \\widetilde { G } ( x ) = \\delta ^ { 4 } ( x ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitx - $",
"$ \\tilde { \\mitG } _ { 0 } , \\tilde { \\mitG } $",
"$ \\mitx - $",
"$ \\tilde { \\mbfR } _ { \\mitvarphi _ { \\mitj } } ( \\mupGamma _ { 0 } ) , \\tilde { \\mitW } ( \\mupGamma _ { 0 } ) $",
"$ \\miti \\mitpartial _ { \\mitalpha } $",
"$ \\mitp ^ { 2 \\mitj \\slash \\mitn } $",
"$ \\mitQ _ { \\mitp \\mitr } = \\mitS ^ { \\mitp } \\mitT ^ { \\mitr } $",
"$ \\mitS , \\mitT $",
"$ \\mitn \\geq 2 $",
"$ \\{ \\mitQ _ { \\mitp \\mitr } \\} $",
"$ \\mitn = 2 $",
"$ \\{ \\mitQ _ { \\mitp \\mitr } \\} $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mitx - $",
"\\begin{equation*} \\int \\tilde { \\mupGamma } _ { 0 } ( \\mitx - \\mity ) \\tilde { \\mitG } _ { 0 } ( \\mity ) \\mitd ^ { 4 } \\mity - \\mitmu \\tilde { \\mitG } _ { 0 } ( \\mitx ) = \\mitdelta ^ { 4 } ( \\mitx ) , \\end{equation*}",
"\\begin{equation*} \\int \\tilde { \\mupGamma } ( \\mitx - \\mity ) \\tilde { \\mitG } ( \\mity ) \\mitd ^ { 4 } \\mity - \\mitmu \\tilde { \\mitG } ( \\mitx ) = \\left[ \\sum _ { \\mitlambda = 0 } ^ { 3 } \\mitQ _ { \\mitlambda } ( \\miti \\mitpartial _ { \\mitlambda } ) ^ { 2 \\slash \\mitn } - \\mitmu \\right] \\tilde { \\mitG } ( \\mitx ) = \\mitdelta ^ { 4 } ( \\mitx ) . \\end{equation*}"
],
"x_min": [
0.47200000286102295,
0.31310001015663147,
0.7642999887466431,
0.5175999999046326,
0.678600013256073,
0.4691999852657318,
0.6924999952316284,
0.4519999921321869,
0.49070000648498535,
0.2093999981880188,
0.484499990940094,
0.2370000034570694,
0.23839999735355377,
0.6550999879837036,
0.3476000130176544,
0.22460000216960907
],
"y_min": [
0.15530000627040863,
0.27149999141693115,
0.2754000127315521,
0.2992999851703644,
0.30219998955726624,
0.38530001044273376,
0.4668000042438507,
0.48100000619888306,
0.49559998512268066,
0.5083000063896179,
0.5238999724388123,
0.5654000043869019,
0.5795999765396118,
0.7231000065803528,
0.1738000065088272,
0.21140000224113464
],
"x_max": [
0.49480000138282776,
0.35530000925064087,
0.7878000140190125,
0.6365000009536743,
0.703499972820282,
0.5065000057220459,
0.7878999710083008,
0.48240000009536743,
0.536300003528595,
0.25429999828338623,
0.5253000259399414,
0.28189998865127563,
0.28610000014305115,
0.6779000163078308,
0.6467999815940857,
0.72079998254776
],
"y_max": [
0.16410000622272491,
0.28519999980926514,
0.28369998931884766,
0.3149000108242035,
0.31290000677108765,
0.398499995470047,
0.47850000858306885,
0.4916999936103821,
0.5054000020027161,
0.5214999914169312,
0.5321999788284302,
0.5781000256538391,
0.5917999744415283,
0.7318999767303467,
0.20409999787807465,
0.25189998745918274
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0003194_page01
|
{
"latex": [
"$\\emptyset $",
"$S^1$",
"$S^1$",
"$S^1$"
],
"latex_norm": [
"$ \\emptyset $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $"
],
"latex_expand": [
"$ \\varnothing $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $"
],
"x_min": [
0.6474999785423279,
0.32409998774528503,
0.5224999785423279,
0.7387999892234802
],
"y_min": [
0.3330000042915344,
0.5288000106811523,
0.5770999789237976,
0.6416000127792358
],
"x_max": [
0.6599000096321106,
0.3447999954223633,
0.5432000160217285,
0.7595000267028809
],
"y_max": [
0.3472000062465668,
0.5404999852180481,
0.5888000130653381,
0.6528000235557556
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003194_page02
|
{
"latex": [
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$"
],
"latex_norm": [
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $"
],
"latex_expand": [
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $"
],
"x_min": [
0.4706000089645386,
0.46720001101493835,
0.3573000133037567,
0.29989999532699585,
0.49070000648498535,
0.2418999969959259,
0.46160000562667847,
0.5867000222206116,
0.699400007724762
],
"y_min": [
0.15620000660419464,
0.19869999587535858,
0.22020000219345093,
0.4115999937057495,
0.5396000146865845,
0.5609999895095825,
0.5824999809265137,
0.6460000276565552,
0.6890000104904175
],
"x_max": [
0.4927000105381012,
0.4885999858379364,
0.37940001487731934,
0.32199999690055847,
0.5120999813079834,
0.26330000162124634,
0.4830000102519989,
0.6080999970436096,
0.72079998254776
],
"y_max": [
0.1678999960422516,
0.21089999377727509,
0.23190000653266907,
0.423799991607666,
0.551800012588501,
0.572700023651123,
0.5942000150680542,
0.6582000255584717,
0.7006999850273132
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003194_page03
|
{
"latex": [
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"$S^1$",
"${\\hat Q}_i$",
"$\\hat H$",
"$N=2$",
"$\\hq _i \\ket {\\Psi }=0$",
"${\\hat H}\\ket {\\Psi }=0$",
"$\\hq _i (i=1, 2)$",
"$S^1$",
"${\\bf 2.2}$",
"\\begin {equation} [{\\hat Q}_i, {\\hat H} ]=0,\\quad \\{{\\hat Q}_i, {\\hat Q}_j\\}=\\delta _{ij} \\hat H, \\qquad i=1,\\cdots N. \\label {susy} \\end {equation}"
],
"latex_norm": [
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ \\hat { Q } _ { i } $",
"$ \\hat { H } $",
"$ N = 2 $",
"$ \\hat { Q } _ { i } \\vert \\Psi \\rangle = 0 $",
"$ \\hat { H } \\vert \\Psi \\rangle = 0 $",
"$ \\hat { Q } _ { i } ( i = 1 , 2 ) $",
"$ S ^ { 1 } $",
"$ 2 . 2 $",
"\\begin{equation*} [ \\hat { Q } _ { i } , \\hat { H } ] = 0 , \\quad \\{ \\hat { Q } _ { i } , \\hat { Q } _ { j } \\} = \\delta _ { i j } \\hat { H } , \\qquad i = 1 , \\cdots N . \\end{equation*}"
],
"latex_expand": [
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitQ } _ { \\miti } $",
"$ \\hat { \\mitH } $",
"$ \\mitN = 2 $",
"$ \\hat { \\mitQ } _ { \\miti } \\vert \\mupPsi \\rangle = 0 $",
"$ \\hat { \\mitH } \\vert \\mupPsi \\rangle = 0 $",
"$ \\hat { \\mitQ } _ { \\miti } ( \\miti = 1 , 2 ) $",
"$ \\mitS ^ { 1 } $",
"$ 2 . 2 $",
"\\begin{equation*} [ \\hat { \\mitQ } _ { \\miti } , \\hat { \\mitH } ] = 0 , \\quad \\{ \\hat { \\mitQ } _ { \\miti } , \\hat { \\mitQ } _ { \\mitj } \\} = \\mitdelta _ { \\miti \\mitj } \\hat { \\mitH } , \\qquad \\miti = 1 , \\cdots \\mitN . \\end{equation*}"
],
"x_min": [
0.14720000326633453,
0.5985000133514404,
0.3779999911785126,
0.760200023651123,
0.7214999794960022,
0.5404000282287598,
0.120899997651577,
0.120899997651577,
0.7732999920845032,
0.31380000710487366,
0.120899997651577,
0.3628000020980835,
0.6337000131607056,
0.29649999737739563
],
"y_min": [
0.2915000021457672,
0.2915000021457672,
0.3555000126361847,
0.48190000653266907,
0.5654000043869019,
0.5845000147819519,
0.6060000061988831,
0.6743000149726868,
0.6919000148773193,
0.7768999934196472,
0.79830002784729,
0.8217999935150146,
0.8241999745368958,
0.6348000168800354
],
"x_max": [
0.16859999299049377,
0.6205999851226807,
0.399399995803833,
0.7906000018119812,
0.742900013923645,
0.5625,
0.1388999968767166,
0.17550000548362732,
0.863099992275238,
0.39739999175071716,
0.21969999372959137,
0.3849000036716461,
0.6620000004768372,
0.7105000019073486
],
"y_max": [
0.30320000648498535,
0.30320000648498535,
0.36719998717308044,
0.49950000643730164,
0.5770999789237976,
0.6015999913215637,
0.619700014591217,
0.6845999956130981,
0.7095000147819519,
0.7950000166893005,
0.8159000277519226,
0.8339999914169312,
0.8339999914169312,
0.6563000082969666
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003194_page04
|
{
"latex": [
"$S^1$",
"$S^1$",
"$S^1$",
"${\\bf 2.2}$",
"$S^1$",
"$S^1$",
"$S^1$",
"$\\hg $",
"$\\hat W$",
"$\\hg , \\hw $",
"$\\hwd $",
"$\\alpha $",
"$\\hw (\\hwd )$",
"$\\hg $",
"$\\hg $",
"$\\alpha $",
"${\\cal H}_{\\alpha }$",
"$\\hg , \\hw $",
"$\\ket {n+\\alpha } (n=0,\\pm 1, \\pm 2, \\cdots )$",
"${\\cal H}_{\\alpha }$",
"${\\bf 1}_{\\alpha }$",
"${\\cal H}_{\\alpha }$",
"$\\hw \\ket {n+\\alpha }=\\ket {n+1+\\alpha }$",
"${\\cal H}_{\\alpha }$",
"${\\cal H}_{\\alpha }$",
"${\\cal H}_{\\beta }$",
"\\begin {equation} [\\hat G, \\hat W]=\\hbar ~{\\hat W}. \\label {comm} \\end {equation}",
"\\begin {equation} {\\hg } \\ket {\\alpha }=\\hbar ~\\alpha \\ket {\\alpha }\\qquad {\\rm with} \\qquad \\norm {\\alpha }{\\alpha }=1, \\end {equation}",
"\\begin {equation} {\\hg }{\\hw }\\ket {\\alpha }=\\hbar ~(\\alpha +1)\\hw \\ket {\\alpha },\\qquad {\\hg }{\\hwd }\\ket {\\alpha }=\\hbar ~(\\alpha -1)\\hwd \\ket {\\alpha }. \\end {equation}",
"\\begin {equation} \\ket {n+\\alpha }\\equiv {\\hw }^n \\ket {\\alpha }, \\qquad n={\\rm integer}, \\end {equation}",
"\\begin {equation} \\hg \\ket {n+\\alpha }=\\hbar ~(n+\\alpha )\\ket {n+\\alpha }. \\label {irred} \\end {equation}",
"\\begin {equation} \\norm {m+\\alpha }{n+\\alpha }=\\delta _{mn}, \\quad \\sum _{n=-\\infty }^{+\\infty }\\ket {n+\\alpha }\\bra {n+\\alpha }={\\bf 1}_{\\alpha }, \\label {irred2} \\end {equation}"
],
"latex_norm": [
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ 2 . 2 $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ \\hat { G } $",
"$ \\hat { W } $",
"$ \\hat { G } , \\hat { W } $",
"$ \\hat { W } ^ { \\dagger } $",
"$ \\alpha $",
"$ \\hat { W } ( \\hat { W } ^ { \\dagger } ) $",
"$ \\hat { G } $",
"$ \\hat { G } $",
"$ \\alpha $",
"$ H _ { \\alpha } $",
"$ \\hat { G } , \\hat { W } $",
"$ \\vert n + \\alpha \\rangle ( n = 0 , \\pm 1 , \\pm 2 , \\cdots ) $",
"$ H _ { \\alpha } $",
"$ 1 _ { \\alpha } $",
"$ H _ { \\alpha } $",
"$ \\hat { W } \\vert n + \\alpha \\rangle = \\vert n + 1 + \\alpha \\rangle $",
"$ H _ { \\alpha } $",
"$ H _ { \\alpha } $",
"$ H _ { \\beta } $",
"\\begin{equation*} [ \\hat { G } , \\hat { W } ] = \\hbar ~ \\hat { W } . \\end{equation*}",
"\\begin{equation*} \\hat { G } \\vert \\alpha \\rangle = \\hbar ~ \\alpha \\vert \\alpha \\rangle \\qquad w i t h \\qquad \\langle \\alpha \\vert \\alpha \\rangle = 1 , \\end{equation*}",
"\\begin{equation*} \\hat { G } \\hat { W } \\vert \\alpha \\rangle = \\hbar ~ ( \\alpha + 1 ) \\hat { W } \\vert \\alpha \\rangle , \\qquad \\hat { G } \\hat { W } ^ { \\dagger } \\vert \\alpha \\rangle = \\hbar ~ ( \\alpha - 1 ) \\hat { W } ^ { \\dagger } \\vert \\alpha \\rangle . \\end{equation*}",
"\\begin{equation*} \\vert n + \\alpha \\rangle \\equiv \\hat { W } ^ { n } \\vert \\alpha \\rangle , \\qquad n = i n t e g e r , \\end{equation*}",
"\\begin{equation*} \\hat { G } \\vert n + \\alpha \\rangle = \\hbar ~ ( n + \\alpha ) \\vert n + \\alpha \\rangle . \\end{equation*}",
"\\begin{equation*} \\langle m + \\alpha \\vert n + \\alpha \\rangle = \\delta _ { m n } , \\quad \\sum _ { n = - \\infty } ^ { + \\infty } \\vert n + \\alpha \\rangle \\langle n + \\alpha \\vert = 1 _ { \\alpha } , \\end{equation*}"
],
"latex_expand": [
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ 2 . 2 $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitG } $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitG } , \\hat { \\mitW } $",
"$ \\hat { \\mitW } ^ { \\dagger } $",
"$ \\mitalpha $",
"$ \\hat { \\mitW } ( \\hat { \\mitW } ^ { \\dagger } ) $",
"$ \\hat { \\mitG } $",
"$ \\hat { \\mitG } $",
"$ \\mitalpha $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\hat { \\mitG } , \\hat { \\mitW } $",
"$ \\vert \\mitn + \\mitalpha \\rangle ( \\mitn = 0 , \\pm 1 , \\pm 2 , \\cdots ) $",
"$ \\mitH _ { \\mitalpha } $",
"$ 1 _ { \\mitalpha } $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\hat { \\mitW } \\vert \\mitn + \\mitalpha \\rangle = \\vert \\mitn + 1 + \\mitalpha \\rangle $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\mitH _ { \\mitbeta } $",
"\\begin{equation*} [ \\hat { \\mitG } , \\hat { \\mitW } ] = \\hslash ~ \\hat { \\mitW } . \\end{equation*}",
"\\begin{equation*} \\hat { \\mitG } \\vert \\mitalpha \\rangle = \\hslash ~ \\mitalpha \\vert \\mitalpha \\rangle \\qquad \\mathrm { w i t h } \\qquad \\langle \\mitalpha \\vert \\mitalpha \\rangle = 1 , \\end{equation*}",
"\\begin{equation*} \\hat { \\mitG } \\hat { \\mitW } \\vert \\mitalpha \\rangle = \\hslash ~ ( \\mitalpha + 1 ) \\hat { \\mitW } \\vert \\mitalpha \\rangle , \\qquad \\hat { \\mitG } \\hat { \\mitW } ^ { \\dagger } \\vert \\mitalpha \\rangle = \\hslash ~ ( \\mitalpha - 1 ) \\hat { \\mitW } ^ { \\dagger } \\vert \\mitalpha \\rangle . \\end{equation*}",
"\\begin{equation*} \\vert \\mitn + \\mitalpha \\rangle \\equiv \\hat { \\mitW } ^ { \\mitn } \\vert \\mitalpha \\rangle , \\qquad \\mitn = \\mathrm { i n t e g e r } , \\end{equation*}",
"\\begin{equation*} \\hat { \\mitG } \\vert \\mitn + \\mitalpha \\rangle = \\hslash ~ ( \\mitn + \\mitalpha ) \\vert \\mitn + \\mitalpha \\rangle . \\end{equation*}",
"\\begin{equation*} \\langle \\mitm + \\mitalpha \\vert \\mitn + \\mitalpha \\rangle = \\mitdelta _ { \\mitm \\mitn } , \\quad \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\vert \\mitn + \\mitalpha \\rangle \\langle \\mitn + \\mitalpha \\vert = 1 _ { \\mitalpha } , \\end{equation*}"
],
"x_min": [
0.47269999980926514,
0.7635999917984009,
0.23770000040531158,
0.414000004529953,
0.120899997651577,
0.3248000144958496,
0.399399995803833,
0.7422000169754028,
0.1996999979019165,
0.250900000333786,
0.349700003862381,
0.29919999837875366,
0.6557999849319458,
0.24529999494552612,
0.321399986743927,
0.1996999979019165,
0.47679999470710754,
0.71670001745224,
0.6517000198364258,
0.6351000070571899,
0.17759999632835388,
0.42570000886917114,
0.6205999851226807,
0.5777000188827515,
0.7450000047683716,
0.8216999769210815,
0.43950000405311584,
0.33719998598098755,
0.25429999828338623,
0.35249999165534973,
0.3772999942302704,
0.2827000021934509
],
"y_min": [
0.09719999879598618,
0.1298999935388565,
0.1729000061750412,
0.19629999995231628,
0.21529999375343323,
0.23680000007152557,
0.25780001282691956,
0.25589999556541443,
0.2768999934196472,
0.34470000863075256,
0.34470000863075256,
0.4408999979496002,
0.4336000084877014,
0.45509999990463257,
0.5903000235557556,
0.6654999852180481,
0.6621000170707703,
0.6582000255584717,
0.6820999979972839,
0.7045999765396118,
0.7865999937057495,
0.7860999703407288,
0.7827000021934509,
0.8076000213623047,
0.8291000127792358,
0.8291000127792358,
0.3075999915599823,
0.39649999141693115,
0.48579999804496765,
0.5532000064849854,
0.6211000084877014,
0.7275000214576721
],
"x_max": [
0.4982999861240387,
0.7857000231742859,
0.2590999901294708,
0.4422999918460846,
0.14229999482631683,
0.34619998931884766,
0.42149999737739563,
0.7580999732017517,
0.22179999947547913,
0.2971999943256378,
0.37869998812675476,
0.3122999966144562,
0.7214999794960022,
0.2612000107765198,
0.33799999952316284,
0.21279999613761902,
0.5044000148773193,
0.7630000114440918,
0.8784000277519226,
0.6626999974250793,
0.19900000095367432,
0.45329999923706055,
0.8271999955177307,
0.6047000288963318,
0.772599995136261,
0.8486999869346619,
0.5673999786376953,
0.6661999821662903,
0.7526000142097473,
0.6510000228881836,
0.6302000284194946,
0.72079998254776
],
"y_max": [
0.11180000007152557,
0.1421000063419342,
0.18459999561309814,
0.2061000019311905,
0.22699999809265137,
0.2485000044107437,
0.27000001072883606,
0.2700999975204468,
0.29109999537467957,
0.361299991607666,
0.3589000105857849,
0.44769999384880066,
0.451200008392334,
0.4693000018596649,
0.6044999957084656,
0.6722999811172485,
0.6743000149726868,
0.6753000020980835,
0.6972000002861023,
0.7167999744415283,
0.798799991607666,
0.798799991607666,
0.8003000020980835,
0.8198000192642212,
0.8413000106811523,
0.8432999849319458,
0.3285999894142151,
0.41749998927116394,
0.5062999725341797,
0.5741999745368958,
0.6420999765396118,
0.7695000171661377
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page05
|
{
"latex": [
"$\\alpha - \\beta ={\\rm integer}$",
"$\\cal H$",
"$\\alpha $",
"$\\cal H$",
"${\\cal H}_{\\alpha }$",
"${\\cal H}_{\\alpha } (0 \\leq \\alpha < 1)$",
"$\\alpha $",
"$\\hg $",
"$\\hw $",
"$S^1$",
"${\\cal H}_{\\alpha }$",
"$\\hw $",
"$\\theta $",
"$\\kappa (\\theta )$",
"$\\abs {\\kappa (\\theta )}=1$",
"$\\kappa (\\theta +2\\pi )=\\kappa (\\theta )$",
"${\\bf 1}_{\\alpha }$",
"${\\cal H}_{\\alpha }$",
"$\\hw $",
"$\\hg $",
"$\\hw $",
"$S^1$",
"$\\ket {\\psi }$",
"$\\psi (\\theta )$",
"$S^1$",
"$\\ket {\\psi }$",
"$\\hw $",
"$\\hg $",
"\\begin {equation} \\hw \\ket {\\theta }= \\e ^{i\\theta }\\ket {\\theta }. \\label {eigen} \\end {equation}",
"\\begin {equation} \\ket {\\theta } = \\kappa (\\theta )\\sum _{n=-\\infty }^{+\\infty } \\e ^{-i n \\theta }\\ket {n+\\alpha }, \\end {equation}",
"\\begin {eqnarray} \\ket {\\theta +2\\pi n}&=&\\ket {\\theta }, \\qquad n={\\rm integer}, \\\\ \\norm {\\theta }{\\theta ^{\\prime }}&=&2\\pi \\sum _{n=-\\infty }^{{}n=+\\infty } \\delta (\\theta -\\theta ^{\\prime }+2\\pi n), \\\\ \\int _0^{2\\pi }{{d\\theta }\\over {2\\pi }}\\ket {\\theta }\\bra {\\theta }&=& \\sum _{n=-\\infty }^{{}+\\infty }\\ket {n+\\alpha }\\bra {n+\\alpha }={\\bf 1}_{\\alpha }, \\\\ {\\rm exp}(-i\\lambda {\\hg \\over \\hbar })\\ket {\\theta }&=& \\e ^{-i\\lambda \\alpha }\\kappa (\\theta )\\kappa ^*(\\theta +\\lambda ) \\ket {\\theta +\\lambda }, \\end {eqnarray}",
"\\begin {equation} \\psi (\\theta )\\equiv \\norm {\\theta }{\\psi }. \\end {equation}",
"\\begin {equation} \\bra {\\theta }{\\rm exp}(i\\lambda {\\hg \\over \\hbar })\\ket {\\psi } =\\e ^{i\\lambda \\alpha }\\kappa ^*(\\theta )\\kappa (\\theta +\\lambda ) \\norm {\\theta +\\lambda }{\\psi }, \\end {equation}",
"\\begin {equation} \\bra {\\theta }{\\hg }\\ket {\\psi }= \\Bigl [-i\\hbar ~{\\del \\over {\\del \\theta }}-i\\hbar ~\\kappa ^*(\\theta ) {{\\del \\kappa (\\theta )}\\over {\\del \\theta }}+\\hbar ~\\alpha \\Bigr ]\\psi (\\theta ). \\label {repreg} \\end {equation}"
],
"latex_norm": [
"$ \\alpha - \\beta = i n t e g e r $",
"$ H $",
"$ \\alpha $",
"$ H $",
"$ H _ { \\alpha } $",
"$ H _ { \\alpha } ( 0 \\leq \\alpha < 1 ) $",
"$ \\alpha $",
"$ \\hat { G } $",
"$ \\hat { W } $",
"$ S ^ { 1 } $",
"$ H _ { \\alpha } $",
"$ \\hat { W } $",
"$ \\theta $",
"$ \\kappa ( \\theta ) $",
"$ \\vert \\kappa ( \\theta ) \\vert = 1 $",
"$ \\kappa ( \\theta + 2 \\pi ) = \\kappa ( \\theta ) $",
"$ 1 _ { \\alpha } $",
"$ H _ { \\alpha } $",
"$ \\hat { W } $",
"$ \\hat { G } $",
"$ \\hat { W } $",
"$ S ^ { 1 } $",
"$ \\vert \\psi \\rangle $",
"$ \\psi ( \\theta ) $",
"$ S ^ { 1 } $",
"$ \\vert \\psi \\rangle $",
"$ \\hat { W } $",
"$ \\hat { G } $",
"\\begin{equation*} \\hat { W } \\vert \\theta \\rangle = e ^ { i \\theta } \\vert \\theta \\rangle . \\end{equation*}",
"\\begin{equation*} \\vert \\theta \\rangle = \\kappa ( \\theta ) \\sum _ { n = - \\infty } ^ { + \\infty } e ^ { - i n \\theta } \\vert n + \\alpha \\rangle , \\end{equation*}",
"\\begin{align*} \\vert \\theta + 2 \\pi n \\rangle & = & \\vert \\theta \\rangle , \\qquad n = i n t e g e r , \\\\ \\langle \\theta \\vert \\theta ^ { \\prime } \\rangle & = & 2 \\pi \\sum _ { n = - \\infty } ^ { n = + \\infty } \\delta ( \\theta - \\theta ^ { \\prime } + 2 \\pi n ) , \\\\ \\int _ { 0 } ^ { 2 \\pi } \\frac { d \\theta } { 2 \\pi } \\vert \\theta \\rangle \\langle \\theta \\vert & = & \\sum _ { n = - \\infty } ^ { + \\infty } \\vert n + \\alpha \\rangle \\langle n + \\alpha \\vert = 1 _ { \\alpha } , \\\\ e x p ( - i \\lambda \\frac { \\hat { G } } { \\hbar } ) \\vert \\theta \\rangle & = & e ^ { - i \\lambda \\alpha } \\kappa ( \\theta ) \\kappa ^ { \\ast } ( \\theta + \\lambda ) \\vert \\theta + \\lambda \\rangle , \\end{align*}",
"\\begin{equation*} \\psi ( \\theta ) \\equiv \\langle \\theta \\vert \\psi \\rangle . \\end{equation*}",
"\\begin{equation*} \\langle \\theta \\vert e x p ( i \\lambda \\frac { \\hat { G } } { \\hbar } ) \\vert \\psi \\rangle = e ^ { i \\lambda \\alpha } \\kappa ^ { \\ast } ( \\theta ) \\kappa ( \\theta + \\lambda ) \\langle \\theta + \\lambda \\vert \\psi \\rangle , \\end{equation*}",
"\\begin{equation*} \\langle \\theta \\vert \\hat { G } \\vert \\psi \\rangle = [ - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } - i \\hbar ~ \\kappa ^ { \\ast } ( \\theta ) \\frac { \\partial \\kappa ( \\theta ) } { \\partial \\theta } + \\hbar ~ \\alpha ] \\psi ( \\theta ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitalpha - \\mitbeta = \\mathrm { i n t e g e r } $",
"$ \\mitH $",
"$ \\mitalpha $",
"$ \\mitH $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\mitH _ { \\mitalpha } ( 0 \\leq \\mitalpha < 1 ) $",
"$ \\mitalpha $",
"$ \\hat { \\mitG } $",
"$ \\hat { \\mitW } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\hat { \\mitW } $",
"$ \\mittheta $",
"$ \\mitkappa ( \\mittheta ) $",
"$ \\left\\vert \\mitkappa ( \\mittheta ) \\right\\vert = 1 $",
"$ \\mitkappa ( \\mittheta + 2 \\mitpi ) = \\mitkappa ( \\mittheta ) $",
"$ 1 _ { \\mitalpha } $",
"$ \\mitH _ { \\mitalpha } $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitG } $",
"$ \\hat { \\mitW } $",
"$ \\mitS ^ { 1 } $",
"$ \\vert \\mitpsi \\rangle $",
"$ \\mitpsi ( \\mittheta ) $",
"$ \\mitS ^ { 1 } $",
"$ \\vert \\mitpsi \\rangle $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitG } $",
"\\begin{equation*} \\hat { \\mitW } \\vert \\mittheta \\rangle = \\mathrm { e } ^ { \\miti \\mittheta } \\vert \\mittheta \\rangle . \\end{equation*}",
"\\begin{equation*} \\vert \\mittheta \\rangle = \\mitkappa ( \\mittheta ) \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\mathrm { e } ^ { - \\miti \\mitn \\mittheta } \\vert \\mitn + \\mitalpha \\rangle , \\end{equation*}",
"\\begin{align*} \\displaystyle \\vert \\mittheta + 2 \\mitpi \\mitn \\rangle & = & \\displaystyle \\vert \\mittheta \\rangle , \\qquad \\mitn = \\mathrm { i n t e g e r } , \\\\ \\displaystyle \\langle \\mittheta \\vert \\mittheta ^ { \\prime } \\rangle & = & \\displaystyle 2 \\mitpi \\sum _ { \\mitn = - \\infty } ^ { \\mitn = + \\infty } \\mitdelta ( \\mittheta - \\mittheta ^ { \\prime } + 2 \\mitpi \\mitn ) , \\\\ \\displaystyle \\int _ { 0 } ^ { 2 \\mitpi } \\frac { \\mitd \\mittheta } { 2 \\mitpi } \\vert \\mittheta \\rangle \\langle \\mittheta \\vert & = & \\displaystyle \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\vert \\mitn + \\mitalpha \\rangle \\langle \\mitn + \\mitalpha \\vert = 1 _ { \\mitalpha } , \\\\ \\displaystyle \\mathrm { e x p } ( - \\miti \\mitlambda \\frac { \\hat { \\mitG } } { \\hslash } ) \\vert \\mittheta \\rangle & = & \\displaystyle \\mathrm { e } ^ { - \\miti \\mitlambda \\mitalpha } \\mitkappa ( \\mittheta ) \\mitkappa ^ { \\ast } ( \\mittheta + \\mitlambda ) \\vert \\mittheta + \\mitlambda \\rangle , \\end{align*}",
"\\begin{equation*} \\mitpsi ( \\mittheta ) \\equiv \\langle \\mittheta \\vert \\mitpsi \\rangle . \\end{equation*}",
"\\begin{equation*} \\langle \\mittheta \\vert \\mathrm { e x p } ( \\miti \\mitlambda \\frac { \\hat { \\mitG } } { \\hslash } ) \\vert \\mitpsi \\rangle = \\mathrm { e } ^ { \\miti \\mitlambda \\mitalpha } \\mitkappa ^ { \\ast } ( \\mittheta ) \\mitkappa ( \\mittheta + \\mitlambda ) \\langle \\mittheta + \\mitlambda \\vert \\mitpsi \\rangle , \\end{equation*}",
"\\begin{equation*} \\langle \\mittheta \\vert \\hat { \\mitG } \\vert \\mitpsi \\rangle = \\Big [ - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } - \\miti \\hslash ~ \\mitkappa ^ { \\ast } ( \\mittheta ) \\frac { \\mitpartial \\mitkappa ( \\mittheta ) } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha \\Big ] \\mitpsi ( \\mittheta ) . \\end{equation*}"
],
"x_min": [
0.5286999940872192,
0.3476000130176544,
0.738099992275238,
0.8458999991416931,
0.33379998803138733,
0.6647999882698059,
0.5583999752998352,
0.42500001192092896,
0.8549000024795532,
0.1485999971628189,
0.4519999921321869,
0.5404000282287598,
0.17829999327659607,
0.40700000524520874,
0.120899997651577,
0.24950000643730164,
0.17759999632835388,
0.42640000581741333,
0.5529000163078308,
0.44780001044273376,
0.51419997215271,
0.23499999940395355,
0.2321999967098236,
0.6820999979972839,
0.7547000050544739,
0.49140000343322754,
0.257099986076355,
0.5149000287055969,
0.4415999948978424,
0.3772999942302704,
0.3019999861717224,
0.44440001249313354,
0.3034000098705292,
0.2985000014305115
],
"y_min": [
0.10109999775886536,
0.1225999966263771,
0.12600000202655792,
0.1225999966263771,
0.1436000019311905,
0.16410000622272491,
0.21140000224113464,
0.24660000205039978,
0.24660000205039978,
0.2915000021457672,
0.2930000126361847,
0.2890999913215637,
0.4390000104904175,
0.43799999356269836,
0.4595000147819519,
0.4595000147819519,
0.6445000171661377,
0.6439999938011169,
0.6615999937057495,
0.6830999851226807,
0.6830999851226807,
0.7064999938011169,
0.7285000085830688,
0.7285000085830688,
0.7279999852180481,
0.7954000234603882,
0.8690999746322632,
0.8690999746322632,
0.3407999873161316,
0.388700008392334,
0.48539999127388,
0.7588000297546387,
0.8198000192642212,
0.8955000042915344
],
"x_max": [
0.6675999760627747,
0.36559998989105225,
0.7512000203132629,
0.8632000088691711,
0.3614000082015991,
0.7926999926567078,
0.5715000033378601,
0.4408999979496002,
0.8769999742507935,
0.17000000178813934,
0.4790000021457672,
0.5618000030517578,
0.18870000541210175,
0.44359999895095825,
0.20520000159740448,
0.3953000009059906,
0.19900000095367432,
0.45399999618530273,
0.5742999911308289,
0.46369999647140503,
0.536300003528595,
0.257099986076355,
0.259799987077713,
0.72079998254776,
0.7760999798774719,
0.5184000134468079,
0.2791999876499176,
0.5307999849319458,
0.5652999877929688,
0.6261000037193298,
0.7001000046730042,
0.5626000165939331,
0.7001000046730042,
0.7089999914169312
],
"y_max": [
0.11429999768733978,
0.13289999961853027,
0.13279999792575836,
0.13289999961853027,
0.15629999339580536,
0.17919999361038208,
0.21819999814033508,
0.26080000400543213,
0.26080000400543213,
0.30320000648498535,
0.30570000410079956,
0.30329999327659607,
0.44929999113082886,
0.4530999958515167,
0.4740999937057495,
0.4740999937057495,
0.6567000150680542,
0.6567000150680542,
0.6758000254631042,
0.6973000168800354,
0.6973000168800354,
0.7186999917030334,
0.7430999875068665,
0.7430999875068665,
0.7397000193595886,
0.8100000023841858,
0.8833000063896179,
0.8833000063896179,
0.3617999851703644,
0.43070000410079956,
0.6337000131607056,
0.7768999934196472,
0.8564000129699707,
0.9291999936103821
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page06
|
{
"latex": [
"$S^1$",
"$S^1$",
"$\\psi (\\theta +2\\pi n) =\\psi (\\theta )$",
"$S^1$",
"$\\alpha $",
"$\\kappa (\\theta )$",
"$\\kappa (\\theta )=\\omega (\\theta )\\kappa ^{\\prime }(\\theta )$",
"$\\omega (\\theta )$",
"$\\abs {\\omega (\\theta )}=1$",
"$\\omega (\\theta +2\\pi )=\\omega (\\theta )$",
"$\\ket {\\theta }=\\omega (\\theta )\\ket {\\theta }^{\\prime }$",
"$\\psi ^{\\prime }(\\theta )$",
"$\\hw $",
"$\\hg $",
"$\\alpha $",
"$A(\\theta )$",
"$A(\\theta +2\\pi )=A(\\theta )$",
"$A^{\\prime }(\\theta )=\\alpha $",
"$A^{\\prime }(\\theta )=\\alpha $",
"$A^{\\prime }(\\theta )=\\beta $",
"$\\beta -\\alpha $",
"$A_{\\alpha }\\equiv \\alpha (0\\leq \\alpha < 1)$",
"$\\kappa (\\theta )=1$",
"$S^1$",
"$0\\leq \\alpha <1$",
"$ \\psi (\\theta )\\rightarrow \\psi ^{\\prime }(\\theta )=\\e ^{in\\theta }\\psi (\\theta ), $",
"$A(\\theta )$",
"$A(\\theta )-n\\hbar $",
"$n=$",
"$n$",
"$\\alpha =0$",
"$S^1$",
"${\\bf R}^2$",
"\\begin {equation} \\bra {\\theta }{\\hw }\\ket {\\psi }=\\e ^{i\\theta }\\psi (\\theta ). \\label {reprew} \\end {equation}",
"\\begin {equation} \\norm {\\chi }{\\psi }=\\int _0^{2\\pi }{{d\\theta }\\over {2\\pi }} \\chi ^*(\\theta )\\psi (\\theta ). \\end {equation}",
"\\begin {equation} \\psi ^{\\prime }(\\theta )=\\omega (\\theta )\\psi (\\theta ). \\label {gtrf1} \\end {equation}",
"\\begin {equation} '\\bra {\\theta }{\\hg }\\ket {\\psi }= \\Bigl [-i\\hbar ~{\\del \\over {\\del \\theta }}+A^{\\prime }(\\theta )\\Bigr ] \\psi (\\theta ), \\label {newrepreg} \\end {equation}",
"\\begin {equation} A^{\\prime }(\\theta ) \\equiv A(\\theta )+i\\hbar ~\\omega ^*(\\theta ) {{\\del \\omega (\\theta )}\\over {\\del \\theta }}, \\quad A(\\theta )\\equiv -i\\hbar ~\\kappa ^*({\\theta }) {{\\del \\kappa (\\theta )}\\over {\\del \\theta }}+\\hbar ~\\alpha . \\label {gtrf2} \\end {equation}"
],
"latex_norm": [
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ \\psi ( \\theta + 2 \\pi n ) = \\psi ( \\theta ) $",
"$ S ^ { 1 } $",
"$ \\alpha $",
"$ \\kappa ( \\theta ) $",
"$ \\kappa ( \\theta ) = \\omega ( \\theta ) \\kappa ^ { \\prime } ( \\theta ) $",
"$ \\omega ( \\theta ) $",
"$ \\vert \\omega ( \\theta ) \\vert = 1 $",
"$ \\omega ( \\theta + 2 \\pi ) = \\omega ( \\theta ) $",
"$ \\vert \\theta \\rangle = \\omega ( \\theta ) \\vert \\theta \\rangle ^ { \\prime } $",
"$ \\psi ^ { \\prime } ( \\theta ) $",
"$ \\hat { W } $",
"$ \\hat { G } $",
"$ \\alpha $",
"$ A ( \\theta ) $",
"$ A ( \\theta + 2 \\pi ) = A ( \\theta ) $",
"$ A ^ { \\prime } ( \\theta ) = \\alpha $",
"$ A ^ { \\prime } ( \\theta ) = \\alpha $",
"$ A ^ { \\prime } ( \\theta ) = \\beta $",
"$ \\beta - \\alpha $",
"$ A _ { \\alpha } \\equiv \\alpha ( 0 \\leq \\alpha < 1 ) $",
"$ \\kappa ( \\theta ) = 1 $",
"$ S ^ { 1 } $",
"$ 0 \\leq \\alpha < 1 $",
"$ \\psi ( \\theta ) \\rightarrow \\psi ^ { \\prime } ( \\theta ) = { e } ^ { i n \\theta } \\psi ( \\theta ) , $",
"$ A ( \\theta ) $",
"$ A ( \\theta ) - n \\hbar $",
"$ n = $",
"$ n $",
"$ \\alpha = 0 $",
"$ S ^ { 1 } $",
"$ R ^ { 2 } $",
"\\begin{equation*} \\langle \\theta \\vert \\hat { W } \\vert \\psi \\rangle = e ^ { i \\theta } \\psi ( \\theta ) . \\end{equation*}",
"\\begin{equation*} \\langle \\chi \\vert \\psi \\rangle = \\int _ { 0 } ^ { 2 \\pi } \\frac { d \\theta } { 2 \\pi } \\chi ^ { \\ast } ( \\theta ) \\psi ( \\theta ) . \\end{equation*}",
"\\begin{equation*} \\psi ^ { \\prime } ( \\theta ) = \\omega ( \\theta ) \\psi ( \\theta ) . \\end{equation*}",
"\\begin{equation*} { } ^ { \\prime } \\langle \\theta \\vert \\hat { G } \\vert \\psi \\rangle = [ - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } + A ^ { \\prime } ( \\theta ) ] \\psi ( \\theta ) , \\end{equation*}",
"\\begin{equation*} A ^ { \\prime } ( \\theta ) \\equiv A ( \\theta ) + i \\hbar ~ \\omega ^ { \\ast } ( \\theta ) \\frac { \\partial \\omega ( \\theta ) } { \\partial \\theta } , \\quad A ( \\theta ) \\equiv - i \\hbar ~ \\kappa ^ { \\ast } ( \\theta ) \\frac { \\partial \\kappa ( \\theta ) } { \\partial \\theta } + \\hbar ~ \\alpha . \\end{equation*}"
],
"latex_expand": [
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitpsi ( \\mittheta + 2 \\mitpi \\mitn ) = \\mitpsi ( \\mittheta ) $",
"$ \\mitS ^ { 1 } $",
"$ \\mitalpha $",
"$ \\mitkappa ( \\mittheta ) $",
"$ \\mitkappa ( \\mittheta ) = \\mitomega ( \\mittheta ) \\mitkappa ^ { \\prime } ( \\mittheta ) $",
"$ \\mitomega ( \\mittheta ) $",
"$ \\left\\vert \\mitomega ( \\mittheta ) \\right\\vert = 1 $",
"$ \\mitomega ( \\mittheta + 2 \\mitpi ) = \\mitomega ( \\mittheta ) $",
"$ \\vert \\mittheta \\rangle = \\mitomega ( \\mittheta ) \\vert \\mittheta \\rangle ^ { \\prime } $",
"$ \\mitpsi ^ { \\prime } ( \\mittheta ) $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitG } $",
"$ \\mitalpha $",
"$ \\mitA ( \\mittheta ) $",
"$ \\mitA ( \\mittheta + 2 \\mitpi ) = \\mitA ( \\mittheta ) $",
"$ \\mitA ^ { \\prime } ( \\mittheta ) = \\mitalpha $",
"$ \\mitA ^ { \\prime } ( \\mittheta ) = \\mitalpha $",
"$ \\mitA ^ { \\prime } ( \\mittheta ) = \\mitbeta $",
"$ \\mitbeta - \\mitalpha $",
"$ \\mitA _ { \\mitalpha } \\equiv \\mitalpha ( 0 \\leq \\mitalpha < 1 ) $",
"$ \\mitkappa ( \\mittheta ) = 1 $",
"$ \\mitS ^ { 1 } $",
"$ 0 \\leq \\mitalpha < 1 $",
"$ \\mitpsi ( \\mittheta ) \\rightarrow \\mitpsi ^ { \\prime } ( \\mittheta ) = { \\mathrm { e } } ^ { \\miti \\mitn \\mittheta } \\mitpsi ( \\mittheta ) , $",
"$ \\mitA ( \\mittheta ) $",
"$ \\mitA ( \\mittheta ) - \\mitn \\hslash $",
"$ \\mitn = $",
"$ \\mitn $",
"$ \\mitalpha = 0 $",
"$ \\mitS ^ { 1 } $",
"$ \\mitR ^ { 2 } $",
"\\begin{equation*} \\langle \\mittheta \\vert \\hat { \\mitW } \\vert \\mitpsi \\rangle = \\mathrm { e } ^ { \\miti \\mittheta } \\mitpsi ( \\mittheta ) . \\end{equation*}",
"\\begin{equation*} \\langle \\mitchi \\vert \\mitpsi \\rangle = \\int _ { 0 } ^ { 2 \\mitpi } \\frac { \\mitd \\mittheta } { 2 \\mitpi } \\mitchi ^ { \\ast } ( \\mittheta ) \\mitpsi ( \\mittheta ) . \\end{equation*}",
"\\begin{equation*} \\mitpsi ^ { \\prime } ( \\mittheta ) = \\mitomega ( \\mittheta ) \\mitpsi ( \\mittheta ) . \\end{equation*}",
"\\begin{equation*} { } ^ { \\prime } \\langle \\mittheta \\vert \\hat { \\mitG } \\vert \\mitpsi \\rangle = \\Big [ - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } + \\mitA ^ { \\prime } ( \\mittheta ) \\Big ] \\mitpsi ( \\mittheta ) , \\end{equation*}",
"\\begin{equation*} \\mitA ^ { \\prime } ( \\mittheta ) \\equiv \\mitA ( \\mittheta ) + \\miti \\hslash ~ \\mitomega ^ { \\ast } ( \\mittheta ) \\frac { \\mitpartial \\mitomega ( \\mittheta ) } { \\mitpartial \\mittheta } , \\quad \\mitA ( \\mittheta ) \\equiv - \\miti \\hslash ~ \\mitkappa ^ { \\ast } ( \\mittheta ) \\frac { \\mitpartial \\mitkappa ( \\mittheta ) } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha . \\end{equation*}"
],
"x_min": [
0.3124000132083893,
0.4830999970436096,
0.46299999952316284,
0.656499981880188,
0.6848999857902527,
0.19629999995231628,
0.7276999950408936,
0.17759999632835388,
0.34209999442100525,
0.47200000286102295,
0.7623000144958496,
0.45680001378059387,
0.420199990272522,
0.6848999857902527,
0.8708000183105469,
0.14720000326633453,
0.20589999854564667,
0.704200029373169,
0.5673999786376953,
0.703499972820282,
0.6455000042915344,
0.120899997651577,
0.49140000343322754,
0.6690000295639038,
0.3898000121116638,
0.4271000027656555,
0.120899997651577,
0.2046000063419342,
0.44780001044273376,
0.5529000163078308,
0.5583999752998352,
0.8306999802589417,
0.30959999561309814,
0.420199990272522,
0.38909998536109924,
0.42640000581741333,
0.35659998655319214,
0.23149999976158142
],
"y_min": [
0.14990000426769257,
0.24410000443458557,
0.2660999894142151,
0.3075999915599823,
0.3345000147819519,
0.35109999775886536,
0.35109999775886536,
0.3725999891757965,
0.3725999891757965,
0.3725999891757965,
0.3725999891757965,
0.3935999870300293,
0.46140000224113464,
0.46140000224113464,
0.6122999787330627,
0.6503999829292297,
0.6718999743461609,
0.6718999743461609,
0.6929000020027161,
0.6929000020027161,
0.7153000235557556,
0.7567999958992004,
0.7567999958992004,
0.7778000235557556,
0.8012999892234802,
0.8198000192642212,
0.8417999744415283,
0.8417999744415283,
0.8467000126838684,
0.8467000126838684,
0.885699987411499,
0.8833000063896179,
0.8978999853134155,
0.1151999980211258,
0.17579999566078186,
0.4253000020980835,
0.48969998955726624,
0.5595999956130981
],
"x_max": [
0.3345000147819519,
0.5044999718666077,
0.6219000220298767,
0.6779000163078308,
0.6980000138282776,
0.23360000550746918,
0.8784000277519226,
0.21559999883174896,
0.4277999997138977,
0.6205999851226807,
0.8784000277519226,
0.5002999901771545,
0.4415999948978424,
0.7008000016212463,
0.883899986743927,
0.18729999661445618,
0.352400004863739,
0.7885000109672546,
0.6559000015258789,
0.7919999957084656,
0.6980000138282776,
0.28610000014305115,
0.5640000104904175,
0.6904000043869019,
0.49000000953674316,
0.6413000226020813,
0.16099999845027924,
0.2874999940395355,
0.48100000619888306,
0.5652999877929688,
0.600600004196167,
0.849399983882904,
0.33239999413490295,
0.5867999792098999,
0.6177999973297119,
0.5805000066757202,
0.6468999981880188,
0.7753999829292297
],
"y_max": [
0.1615999937057495,
0.2558000087738037,
0.2806999981403351,
0.3197999894618988,
0.34130001068115234,
0.36570000648498535,
0.36570000648498535,
0.3871999979019165,
0.3871999979019165,
0.3871999979019165,
0.3871999979019165,
0.40869998931884766,
0.475600004196167,
0.475600004196167,
0.6190999746322632,
0.6654999852180481,
0.6865000128746033,
0.6865000128746033,
0.7080000042915344,
0.7080000042915344,
0.7285000085830688,
0.7718999981880188,
0.7718999981880188,
0.7894999980926514,
0.8130000233650208,
0.8353999853134155,
0.8568999767303467,
0.8568999767303467,
0.8535000085830688,
0.8535000085830688,
0.8939999938011169,
0.8939999938011169,
0.9082000255584717,
0.13619999587535858,
0.2094999998807907,
0.4438999891281128,
0.5228999853134155,
0.5938000082969666
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page07
|
{
"latex": [
"$\\psi ^{\\prime }(\\theta )$",
"$0\\leq A(\\theta ) < \\hbar $",
"$0\\leq \\alpha <1$",
"$\\e ^{in\\theta }$",
"$n=$",
"$S^1$",
"$\\alpha $",
"$e\\Phi /2\\pi \\hbar ~c$",
"$S^1$",
"$S^1$",
"$\\hg $",
"$\\hw $",
"$S^1$",
"${\\hq }_i(i=1, 2)$",
"${\\hq }_i(i=1,2)$",
"$V(\\hw ,\\hwd )$",
"$\\hw $",
"$\\hwd $",
"$m$",
"$R$",
"$S^1$",
"$\\hxi , \\hxib $",
"\\begin {eqnarray} \\hq &\\equiv &{1\\over {\\sqrt 2}}\\Bigl ({\\hat Q}_1+i{\\hat Q}_2\\Bigr ) \\\\ &=&\\Bigl ({1\\over {\\sqrt {2m}R}}\\hg +i V(\\hw ,\\hwd )\\Bigr )\\hxi \\equiv {\\hat q}~\\hxi , \\\\ \\hqb &\\equiv &{1\\over {\\sqrt 2}}\\Bigl ({\\hat Q}_1-i{\\hat Q}_2\\Bigr ) \\\\ &=&\\Bigl ({1\\over {\\sqrt {2m}R}}\\hg -iV(\\hw ,\\hwd )\\Bigr )\\hxib \\equiv {\\hat q}^{\\dagger }~\\hxib . \\end {eqnarray}",
"\\begin {equation} \\{\\hxi ,\\hxib \\}=1,\\qquad \\hxi ^2=\\hxib ^2=0. \\label {anticomm} \\end {equation}",
"\\begin {eqnarray} \\hat H &=& \\{{\\hat Q},{\\hat {\\bar Q}}\\} \\\\ &=& {1\\over {2m R^2}}\\hg ^2+V^2(\\hw ,\\hwd )\\\\ &-&{i\\over {{\\sqrt {2m}R}}} \\Bigl (\\hg V(\\hw ,\\hwd )-V(\\hw ,\\hwd )\\hg \\Bigr )\\Bigl [\\hxi , \\hxib \\Bigr ], \\end {eqnarray}"
],
"latex_norm": [
"$ \\psi ^ { \\prime } ( \\theta ) $",
"$ 0 \\leq A ( \\theta ) < \\hbar $",
"$ 0 \\leq \\alpha < 1 $",
"$ { e } ^ { i n \\theta } $",
"$ n = $",
"$ S ^ { 1 } $",
"$ \\alpha $",
"$ e \\Phi \\slash 2 \\pi \\hbar ~ c $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ \\hat { G } $",
"$ \\hat { W } $",
"$ S ^ { 1 } $",
"$ \\hat { Q } _ { i } ( i = 1 , 2 ) $",
"$ \\hat { Q } _ { i } ( i = 1 , 2 ) $",
"$ V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) $",
"$ \\hat { W } $",
"$ \\hat { W } ^ { \\dagger } $",
"$ m $",
"$ R $",
"$ S ^ { 1 } $",
"$ \\hat { \\xi } , \\hat { \\bar { \\xi } } $",
"\\begin{align*} \\hat { Q } & \\equiv & \\frac { 1 } { \\sqrt { 2 } } ( \\hat { Q } _ { 1 } + i \\hat { Q } _ { 2 } ) \\\\ & = & ( \\frac { 1 } { \\sqrt { 2 m } R } \\hat { G } + i V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) ) \\hat { \\xi } \\equiv \\hat { q } ~ \\hat { \\xi } , \\\\ \\hat { \\bar { Q } } & \\equiv & \\frac { 1 } { \\sqrt { 2 } } ( \\hat { Q } _ { 1 } - i \\hat { Q } _ { 2 } ) \\\\ & = & ( \\frac { 1 } { \\sqrt { 2 m } R } \\hat { G } - i V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) ) \\hat { \\bar { \\xi } } \\equiv \\hat { q } ^ { \\dagger } ~ \\hat { \\bar { \\xi } } . \\end{align*}",
"\\begin{equation*} \\{ \\hat { \\xi } , \\hat { \\bar { \\xi } } \\} = 1 , \\qquad \\hat { \\xi } ^ { 2 } = \\hat { \\bar { \\xi } } ^ { 2 } = 0 . \\end{equation*}",
"\\begin{align*} \\hat { H } & = & \\{ \\hat { Q } , \\hat { \\bar { Q } } \\} \\\\ & = & \\frac { 1 } { 2 m R ^ { 2 } } \\hat { G } ^ { 2 } + V ^ { 2 } ( \\hat { W } , \\hat { W } ^ { \\dagger } ) \\\\ & - & \\frac { i } { \\sqrt { 2 m } R } ( \\hat { G } V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) - V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) \\hat { G } ) [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] , \\end{align*}"
],
"latex_expand": [
"$ \\mitpsi ^ { \\prime } ( \\mittheta ) $",
"$ 0 \\leq \\mitA ( \\mittheta ) < \\hslash $",
"$ 0 \\leq \\mitalpha < 1 $",
"$ { \\mathrm { e } } ^ { \\miti \\mitn \\mittheta } $",
"$ \\mitn = $",
"$ \\mitS ^ { 1 } $",
"$ \\mitalpha $",
"$ \\mite \\mupPhi \\slash 2 \\mitpi \\hslash ~ \\mitc $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitG } $",
"$ \\hat { \\mitW } $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitQ } _ { \\miti } ( \\miti = 1 , 2 ) $",
"$ \\hat { \\mitQ } _ { \\miti } ( \\miti = 1 , 2 ) $",
"$ \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitW } ^ { \\dagger } $",
"$ \\mitm $",
"$ \\mitR $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } $",
"\\begin{align*} \\displaystyle \\hat { \\mitQ } & \\displaystyle \\equiv & \\displaystyle \\frac { 1 } { \\sqrt { 2 } } \\Big ( \\hat { \\mitQ } _ { 1 } + \\miti \\hat { \\mitQ } _ { 2 } \\Big ) \\\\ & = & \\displaystyle \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } \\hat { \\mitG } + \\miti \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\Big ) \\hat { \\mitxi } \\equiv \\hat { \\mitq } ~ \\hat { \\mitxi } , \\\\ \\displaystyle \\hat { \\bar { \\mitQ } } & \\displaystyle \\equiv & \\displaystyle \\frac { 1 } { \\sqrt { 2 } } \\Big ( \\hat { \\mitQ } _ { 1 } - \\miti \\hat { \\mitQ } _ { 2 } \\Big ) \\\\ & = & \\displaystyle \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } \\hat { \\mitG } - \\miti \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\Big ) \\hat { \\bar { \\mitxi } } \\equiv \\hat { \\mitq } ^ { \\dagger } ~ \\hat { \\bar { \\mitxi } } . \\end{align*}",
"\\begin{equation*} \\{ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\} = 1 , \\qquad \\hat { \\mitxi } ^ { 2 } = \\hat { \\bar { \\mitxi } } ^ { 2 } = 0 . \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitH } & = & \\displaystyle \\{ \\hat { \\mitQ } , \\hat { \\bar { \\mitQ } } \\} \\\\ & = & \\displaystyle \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } \\hat { \\mitG } ^ { 2 } + \\mitV ^ { 2 } ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\\\ & \\displaystyle - & \\displaystyle \\frac { \\miti } { \\sqrt { 2 \\mitm } \\mitR } \\Big ( \\hat { \\mitG } \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) - \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) \\hat { \\mitG } \\Big ) \\Big [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\Big ] , \\end{align*}"
],
"x_min": [
0.4968999922275543,
0.7519000172615051,
0.24050000309944153,
0.7635999917984009,
0.8479999899864197,
0.7649999856948853,
0.43050000071525574,
0.16030000150203705,
0.3206999897956848,
0.120899997651577,
0.6087999939918518,
0.6717000007629395,
0.5425000190734863,
0.20659999549388885,
0.4699000120162964,
0.120899997651577,
0.14509999752044678,
0.21559999883174896,
0.31310001015663147,
0.37940001487731934,
0.8562999963760376,
0.4422999918460846,
0.3199999928474426,
0.38420000672340393,
0.28060001134872437
],
"y_min": [
0.10010000318288803,
0.12160000205039978,
0.14399999380111694,
0.14159999787807465,
0.14749999344348907,
0.1851000040769577,
0.21140000224113464,
0.2280000001192093,
0.22750000655651093,
0.3418000042438507,
0.3393999934196472,
0.3393999934196472,
0.3628000020980835,
0.42480000853538513,
0.4672999978065491,
0.6557999849319458,
0.6772000193595886,
0.6772000193595886,
0.6845999956130981,
0.6807000041007996,
0.6791999936103821,
0.6963000297546387,
0.4912000000476837,
0.7261000275611877,
0.798799991607666
],
"x_max": [
0.5404000282287598,
0.8708000183105469,
0.3359000086784363,
0.7940000295639038,
0.883899986743927,
0.7864000201225281,
0.44359999895095825,
0.23909999430179596,
0.34209999442100525,
0.14229999482631683,
0.6247000098228455,
0.6930999755859375,
0.5638999938964844,
0.305400013923645,
0.5687000155448914,
0.21070000529289246,
0.1671999990940094,
0.24459999799728394,
0.3310999870300293,
0.3953000009059906,
0.8784000277519226,
0.4706000089645386,
0.6841999888420105,
0.6226000189781189,
0.7235999703407288
],
"y_max": [
0.1151999980211258,
0.13619999587535858,
0.15569999814033508,
0.15379999577999115,
0.15379999577999115,
0.19679999351501465,
0.21819999814033508,
0.2425999939441681,
0.23919999599456787,
0.35350000858306885,
0.35359999537467957,
0.35359999537467957,
0.375,
0.4424000084400177,
0.48489999771118164,
0.6733999848365784,
0.6909000277519226,
0.6909000277519226,
0.6909000277519226,
0.6913999915122986,
0.6913999915122986,
0.7153000235557556,
0.6420999765396118,
0.7515000104904175,
0.8938999772071838
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page08
|
{
"latex": [
"$\\theta $",
"$P_{\\theta }$",
"$i\\hbar $",
"$\\e ^{i\\theta }$",
"$P_{\\theta }$",
"$\\hw $",
"$\\hg $",
"$\\hw $",
"$\\e ^{i\\theta }$",
"$\\hg $",
"$P_{\\theta }$",
"$\\hxi , \\hxib $",
"$V(\\e ^{i\\theta },\\e ^{-i\\theta })$",
"$2\\theta $",
"$g_N$",
"$S^1$",
"$\\hw $",
"$\\hg =-i\\hbar ~\\del /\\del \\theta +\\hbar ~\\alpha $",
"$\\alpha $",
"\\begin {equation} \\{P_{\\theta }, \\e ^{i\\theta }\\}_P=-i \\e ^{i\\theta }. \\end {equation}",
"\\begin {equation} \\hat H\\rightarrow H_{cl}={P_{\\theta }^2\\over {2mR^2}}+ V^2(\\e ^{i\\theta },\\e ^{-i\\theta }). \\end {equation}",
"\\begin {equation} V(\\e ^{i\\theta },\\e ^{-i\\theta })=\\sqrt {{{mg_NR}\\over 2}}\\sin \\theta , \\label {poten1} \\end {equation}",
"\\begin {equation} V(\\hw ,\\hwd )=\\sqrt {{mg_NR}\\over {2}}\\Bigl ({{\\hw -\\hwd }\\over {2i}}\\Bigr ). \\end {equation}",
"\\begin {equation} \\hat H= {1\\over {2mR^2}}\\hg ^2+{{mg_NR}\\over 2}\\sin ^2\\theta -{\\hbar \\over 2}\\sqrt {{g_N\\over R}}\\cos \\theta \\Bigl [\\hxi , \\hxib \\Bigr ] \\label {hamilton2} \\end {equation}",
"\\begin {equation} \\hq \\ket {\\Psi }=0\\qquad {\\rm and}\\qquad \\hqb \\ket {\\Psi }=0. \\label {ground1} \\end {equation}",
"\\begin {equation} \\hxi =\\left (\\begin {array}{cc} 0&0\\\\ 1&0\\end {array}\\right ),\\qquad \\hxib =\\left (\\begin {array}{cc} 0&1\\\\ 0&0\\end {array}\\right ) \\label {supercharge2} \\end {equation}"
],
"latex_norm": [
"$ \\theta $",
"$ P _ { \\theta } $",
"$ i \\hbar $",
"$ { e } ^ { i \\theta } $",
"$ P _ { \\theta } $",
"$ \\hat { W } $",
"$ \\hat { G } $",
"$ \\hat { W } $",
"$ { e } ^ { i \\theta } $",
"$ \\hat { G } $",
"$ P _ { \\theta } $",
"$ \\hat { \\xi } , \\hat { \\bar { \\xi } } $",
"$ V ( { e } ^ { i \\theta } , e ^ { - i \\theta } ) $",
"$ 2 \\theta $",
"$ g _ { N } $",
"$ S ^ { 1 } $",
"$ \\hat { W } $",
"$ \\hat { G } = - i \\hbar ~ \\partial \\slash \\partial \\theta + \\hbar ~ \\alpha $",
"$ \\alpha $",
"\\begin{equation*} \\{ P _ { \\theta } , e ^ { i \\theta } \\} _ { P } = - i e ^ { i \\theta } . \\end{equation*}",
"\\begin{equation*} \\hat { H } \\rightarrow H _ { c l } = \\frac { P _ { \\theta } ^ { 2 } } { 2 m R ^ { 2 } } + V ^ { 2 } ( e ^ { i \\theta } , e ^ { - i \\theta } ) . \\end{equation*}",
"\\begin{equation*} V ( e ^ { i \\theta } , e ^ { - i \\theta } ) = \\sqrt { \\frac { m g _ { N } R } { 2 } } \\operatorname { s i n } \\theta , \\end{equation*}",
"\\begin{equation*} V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) = \\sqrt { \\frac { m g _ { N } R } { 2 } } ( \\frac { \\hat { W } - \\hat { W } ^ { \\dagger } } { 2 i } ) . \\end{equation*}",
"\\begin{equation*} \\hat { H } = \\frac { 1 } { 2 m R ^ { 2 } } \\hat { G } ^ { 2 } + \\frac { m g _ { N } R } { 2 } { \\operatorname { s i n } } ^ { 2 } \\theta - \\frac { \\hbar } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\operatorname { c o s } \\theta [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] \\end{equation*}",
"\\begin{equation*} \\hat { Q } \\vert \\Psi \\rangle = 0 \\qquad a n d \\qquad \\hat { \\bar { Q } } \\vert \\Psi \\rangle = 0 . \\end{equation*}",
"\\begin{align*} \\hat { \\xi } = ( \\begin{array}{cc} 0 & 0 \\\\ 1 & 0 \\end{array} ) , \\qquad \\hat { \\bar { \\xi } } = ( \\begin{array}{cc} 0 & 1 \\\\ 0 & 0 \\end{array} ) \\end{align*}"
],
"latex_expand": [
"$ \\mittheta $",
"$ \\mitP _ { \\mittheta } $",
"$ \\miti \\hslash $",
"$ { \\mathrm { e } } ^ { \\miti \\mittheta } $",
"$ \\mitP _ { \\mittheta } $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitG } $",
"$ \\hat { \\mitW } $",
"$ { \\mathrm { e } } ^ { \\miti \\mittheta } $",
"$ \\hat { \\mitG } $",
"$ \\mitP _ { \\mittheta } $",
"$ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } $",
"$ \\mitV ( { \\mathrm { e } } ^ { \\miti \\mittheta } , \\mathrm { e } ^ { - \\miti \\mittheta } ) $",
"$ 2 \\mittheta $",
"$ \\mitg _ { \\mitN } $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitG } = - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mittheta + \\hslash ~ \\mitalpha $",
"$ \\mitalpha $",
"\\begin{equation*} \\{ \\mitP _ { \\mittheta } , \\mathrm { e } ^ { \\miti \\mittheta } \\} _ { \\mitP } = - \\miti \\mathrm { e } ^ { \\miti \\mittheta } . \\end{equation*}",
"\\begin{equation*} \\hat { \\mitH } \\rightarrow \\mitH _ { \\mitc \\mitl } = \\frac { \\mitP _ { \\mittheta } ^ { 2 } } { 2 \\mitm \\mitR ^ { 2 } } + \\mitV ^ { 2 } ( \\mathrm { e } ^ { \\miti \\mittheta } , \\mathrm { e } ^ { - \\miti \\mittheta } ) . \\end{equation*}",
"\\begin{equation*} \\mitV ( \\mathrm { e } ^ { \\miti \\mittheta } , \\mathrm { e } ^ { - \\miti \\mittheta } ) = \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\operatorname { s i n } \\mittheta , \\end{equation*}",
"\\begin{equation*} \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) = \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\Big ( \\frac { \\hat { \\mitW } - \\hat { \\mitW } ^ { \\dagger } } { 2 \\miti } \\Big ) . \\end{equation*}",
"\\begin{equation*} \\hat { \\mitH } = \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } \\hat { \\mitG } ^ { 2 } + \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\operatorname { s i n } } ^ { 2 } \\mittheta - \\frac { \\hslash } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\operatorname { c o s } \\mittheta \\Big [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\Big ] \\end{equation*}",
"\\begin{equation*} \\hat { \\mitQ } \\vert \\mupPsi \\rangle = 0 \\qquad \\mathrm { a n d } \\qquad \\hat { \\bar { \\mitQ } } \\vert \\mupPsi \\rangle = 0 . \\end{equation*}",
"\\begin{align*} \\hat { \\mitxi } = \\left( \\begin{array}{cc} 0 & 0 \\\\ 1 & 0 \\end{array} \\right) , \\qquad \\hat { \\bar { \\mitxi } } = \\left( \\begin{array}{cc} 0 & 1 \\\\ 0 & 0 \\end{array} \\right) \\end{align*}"
],
"x_min": [
0.6820999979972839,
0.22390000522136688,
0.8306999802589417,
0.5508000254631042,
0.6158000230789185,
0.6869000196456909,
0.7512000203132629,
0.18870000541210175,
0.2467000037431717,
0.3158000111579895,
0.3677000105381012,
0.5169000029563904,
0.2321999967098236,
0.7131999731063843,
0.802299976348877,
0.8562999963760376,
0.1768999993801117,
0.6039999723434448,
0.8176000118255615,
0.42289999127388,
0.3573000133037567,
0.37869998812675476,
0.3537999987602234,
0.29089999198913574,
0.3634999990463257,
0.3587000072002411
],
"y_min": [
0.1436000019311905,
0.16500000655651093,
0.2328999936580658,
0.2533999979496002,
0.25540000200271606,
0.2515000104904175,
0.2515000104904175,
0.29440000653266907,
0.29589998722076416,
0.29440000653266907,
0.29789999127388,
0.31349998712539673,
0.3910999894142151,
0.4706999957561493,
0.4745999872684479,
0.5932999849319458,
0.6875,
0.6875,
0.6948000192642212,
0.19339999556541443,
0.34279999136924744,
0.41749998927116394,
0.5454000234603882,
0.63919997215271,
0.801800012588501,
0.8901000022888184
],
"x_max": [
0.6924999952316284,
0.24529999494552612,
0.8458999991416931,
0.5728999972343445,
0.6371999979019165,
0.708299994468689,
0.7670999765396118,
0.21080000698566437,
0.2687999904155731,
0.33169999718666077,
0.38909998536109924,
0.545199990272522,
0.326200008392334,
0.7332000136375427,
0.8258000016212463,
0.8784000277519226,
0.19830000400543213,
0.7739999890327454,
0.8306999802589417,
0.583899974822998,
0.6496000289916992,
0.6247000098228455,
0.652999997138977,
0.7159000039100647,
0.6434000134468079,
0.6448000073432922
],
"y_max": [
0.15389999747276306,
0.1776999980211258,
0.24410000443458557,
0.2655999958515167,
0.26759999990463257,
0.26570001244544983,
0.26570001244544983,
0.30809998512268066,
0.30809998512268066,
0.30809998512268066,
0.31060001254081726,
0.3321000039577484,
0.4066999852657318,
0.4814000129699707,
0.4839000105857849,
0.6050000190734863,
0.701200008392334,
0.7050999999046326,
0.7010999917984009,
0.2134000062942505,
0.3774999976158142,
0.4571000039577484,
0.5849999785423279,
0.6733999848365784,
0.8246999979019165,
0.9291999936103821
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page09
|
{
"latex": [
"$2\\times 2$",
"${\\hat S}^{F}\\equiv \\sigma ^3/2$",
"${\\hat S}^F$",
"$\\ket {+}$",
"$\\ket {-}$",
"$+1/2$",
"$-1/2$",
"$\\hw $",
"${\\hat H}$",
"$\\pm 1/2$",
"$I_0(2z)$",
"${\\hat f}=\\half +\\half [\\hxi , \\hxib ]$",
"$0, 1$",
"$0, 1$",
"$$ \\Bigl [\\hxi , \\hxib \\Bigr ]=-\\left (\\begin {array}{cc} 1&0\\\\ 0&-1\\end {array}\\right )\\equiv -\\sigma ^3. $$",
"\\begin {eqnarray} \\hat H&=& \\Bigl ({1\\over {2mR^2}}\\hg ^2+{{mg_NR}\\over 2}\\sin ^2\\theta \\Bigr ) {\\bf 1}_{2\\times 2}+{\\hbar \\over 2}\\sqrt {{g_N\\over R}}\\sigma ^3\\cos \\theta \\\\ &=&\\left (\\begin {array}{cc} {\\hat q}^{\\dagger }{\\hat q}&0\\\\ 0&{\\hat q}{\\hat q}^{\\dagger }\\end {array}\\right )\\equiv \\left (\\begin {array}{cc} {\\hat H}_{+}&0\\\\ 0&{\\hat H}_{-}\\end {array}\\right ). \\end {eqnarray}",
"\\begin {equation} \\ket {\\Psi }={\\ket {+}\\choose \\ket {-}}. \\label {spinor} \\end {equation}",
"\\begin {equation} \\Psi (\\theta )={\\psi _{+\\half }(\\theta )\\choose \\psi _{-\\half }(\\theta )}. \\end {equation}",
"\\begin {eqnarray} {\\hat q}~\\psi _{+\\half }(\\theta )= \\Bigl ({1\\over {\\sqrt {2m}R}}(-i\\hbar ~{\\del \\over {\\del \\theta }}+\\hbar ~\\alpha ) + i\\sqrt {{mg_NR\\over 2}}\\sin \\theta \\Bigr )~\\psi _{+\\half }(\\theta )=0, \\\\ {\\hat q}^{\\dagger }\\psi _{-\\half }(\\theta )= \\Bigl ({1\\over {\\sqrt {2m}R}}(-i\\hbar ~{\\del \\over {\\del \\theta }}+\\hbar ~\\alpha ) - i\\sqrt {{mg_NR\\over 2}}\\sin \\theta \\Bigr )~\\psi _{-\\half }(\\theta )=0. \\end {eqnarray}",
"\\begin {equation} \\psi _{+\\half }(\\theta ) ={1\\over \\sqrt {I_0(2z)}}{\\rm exp}(-i\\alpha \\theta -{z\\over {\\hbar }}\\cos \\theta ), \\quad \\psi _{-\\half }(\\theta ) ={1\\over \\sqrt {I_0(2z)}}{\\rm exp}(-i\\alpha \\theta +{z\\over {\\hbar }}\\cos \\theta ), \\label {ground3} \\end {equation}",
"$$ {{mR^2}\\over \\hbar }\\sqrt {{g_N\\over R}} \\equiv {mR^2\\over \\hbar }\\omega \\equiv {z\\over {\\hbar }}~~. $$"
],
"latex_norm": [
"$ 2 \\times 2 $",
"$ \\hat { S } ^ { F } \\equiv \\sigma ^ { 3 } \\slash 2 $",
"$ \\hat { S } ^ { F } $",
"$ \\vert + \\rangle $",
"$ \\vert - \\rangle $",
"$ + 1 \\slash 2 $",
"$ - 1 \\slash 2 $",
"$ \\hat { W } $",
"$ \\hat { H } $",
"$ \\pm 1 \\slash 2 $",
"$ I _ { 0 } ( 2 z ) $",
"$ \\hat { f } = \\frac { 1 } { 2 } + \\frac { 1 } { 2 } [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] $",
"$ 0 , 1 $",
"$ 0 , 1 $",
"\\begin{align*} [ \\hat { \\xi } , \\hat { \\bar { \\xi } } ] = - ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) \\equiv - \\sigma ^ { 3 } . \\end{align*}",
"\\begin{align*} \\hat { H } & = & ( \\frac { 1 } { 2 m R ^ { 2 } } \\hat { G } ^ { 2 } + \\frac { m g _ { N } R } { 2 } { \\operatorname { s i n } } ^ { 2 } \\theta ) 1 _ { 2 \\times 2 } + \\frac { \\hbar } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\sigma ^ { 3 } \\operatorname { c o s } \\theta \\\\ & = & \\\\ & \\\\ & \\\\ & \\end{align*}",
"\\begin{equation*} \\vert \\Psi \\rangle = { \\vert + \\rangle \\atopwithdelims ( ) \\vert - \\rangle } . \\end{equation*}",
"\\begin{equation*} \\Psi ( \\theta ) = { \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) \\atopwithdelims ( ) \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) } . \\end{equation*}",
"\\begin{align*} \\hat { q } ~ \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) = ( \\frac { 1 } { \\sqrt { 2 m } R } ( - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } + \\hbar ~ \\alpha ) + i \\sqrt { \\frac { m g _ { N } R } { 2 } } \\operatorname { s i n } \\theta ) ~ \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) = 0 , \\\\ \\hat { q } ^ { \\dagger } \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) = ( \\frac { 1 } { \\sqrt { 2 m } R } ( - i \\hbar ~ \\frac { \\partial } { \\partial \\theta } + \\hbar ~ \\alpha ) - i \\sqrt { \\frac { m g _ { N } R } { 2 } } \\operatorname { s i n } \\theta ) ~ \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) = 0 . \\end{align*}",
"\\begin{equation*} \\psi _ { + \\frac { 1 } { 2 } } ( \\theta ) = \\frac { 1 } { \\sqrt { I _ { 0 } ( 2 z ) } } e x p ( - i \\alpha \\theta - \\frac { z } { \\hbar } \\operatorname { c o s } \\theta ) , \\quad \\psi _ { - \\frac { 1 } { 2 } } ( \\theta ) = \\frac { 1 } { \\sqrt { I _ { 0 } ( 2 z ) } } e x p ( - i \\alpha \\theta + \\frac { z } { \\hbar } \\operatorname { c o s } \\theta ) , \\end{equation*}",
"\\begin{equation*} \\frac { m R ^ { 2 } } { \\hbar } \\sqrt { \\frac { g _ { N } } { R } } \\equiv \\frac { m R ^ { 2 } } { \\hbar } \\omega \\equiv \\frac { z } { \\hbar } ~ ~ . \\end{equation*}"
],
"latex_expand": [
"$ 2 \\times 2 $",
"$ \\hat { \\mitS } ^ { \\mitF } \\equiv \\mitsigma ^ { 3 } \\slash 2 $",
"$ \\hat { \\mitS } ^ { \\mitF } $",
"$ \\vert + \\rangle $",
"$ \\vert - \\rangle $",
"$ + 1 \\slash 2 $",
"$ - 1 \\slash 2 $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitH } $",
"$ \\pm 1 \\slash 2 $",
"$ \\mitI _ { 0 } ( 2 \\mitz ) $",
"$ \\hat { \\mitf } = \\frac { 1 } { 2 } + \\frac { 1 } { 2 } [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } ] $",
"$ 0 , 1 $",
"$ 0 , 1 $",
"\\begin{align*} \\Big [ \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } \\Big ] = - \\left( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} \\right) \\equiv - \\mitsigma ^ { 3 } . \\end{align*}",
"\\begin{align*} \\displaystyle \\hat { \\mitH } & = & \\displaystyle \\Big ( \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } \\hat { \\mitG } ^ { 2 } + \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\operatorname { s i n } } ^ { 2 } \\mittheta \\Big ) 1 _ { 2 \\times 2 } + \\frac { \\hslash } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\mitsigma ^ { 3 } \\operatorname { c o s } \\mittheta \\\\ & = & \\\\ & \\\\ & \\\\ & \\end{align*}",
"\\begin{equation*} \\vert \\mupPsi \\rangle = { \\vert + \\rangle \\atopwithdelims ( ) \\vert - \\rangle } . \\end{equation*}",
"\\begin{equation*} \\mupPsi ( \\mittheta ) = { \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) \\atopwithdelims ( ) \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) } . \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitq } ~ \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) = \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } ( - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha ) + \\miti \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\operatorname { s i n } \\mittheta \\Big ) ~ \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) = 0 , \\\\ \\displaystyle \\hat { \\mitq } ^ { \\dagger } \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) = \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR } ( - \\miti \\hslash ~ \\frac { \\mitpartial } { \\mitpartial \\mittheta } + \\hslash ~ \\mitalpha ) - \\miti \\sqrt { \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } } \\operatorname { s i n } \\mittheta \\Big ) ~ \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) = 0 . \\end{align*}",
"\\begin{equation*} \\mitpsi _ { + \\frac { 1 } { 2 } } ( \\mittheta ) = \\frac { 1 } { \\sqrt { \\mitI _ { 0 } ( 2 \\mitz ) } } \\mathrm { e x p } ( - \\miti \\mitalpha \\mittheta - \\frac { \\mitz } { \\hslash } \\operatorname { c o s } \\mittheta ) , \\quad \\mitpsi _ { - \\frac { 1 } { 2 } } ( \\mittheta ) = \\frac { 1 } { \\sqrt { \\mitI _ { 0 } ( 2 \\mitz ) } } \\mathrm { e x p } ( - \\miti \\mitalpha \\mittheta + \\frac { \\mitz } { \\hslash } \\operatorname { c o s } \\mittheta ) , \\end{equation*}",
"\\begin{equation*} \\frac { \\mitm \\mitR ^ { 2 } } { \\hslash } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\equiv \\frac { \\mitm \\mitR ^ { 2 } } { \\hslash } \\mitomega \\equiv \\frac { \\mitz } { \\hslash } ~ ~ . \\end{equation*}"
],
"x_min": [
0.5562999844551086,
0.6462000012397766,
0.5770999789237976,
0.854200005531311,
0.16169999539852142,
0.35519999265670776,
0.4499000012874603,
0.17900000512599945,
0.2777999937534332,
0.7609000205993652,
0.17759999632835388,
0.7263000011444092,
0.23569999635219574,
0.5853000283241272,
0.37599998712539673,
0.26260000467300415,
0.44369998574256897,
0.4223000109195709,
0.19830000400543213,
0.1354999989271164,
0.3862999975681305
],
"y_min": [
0.29589998722076416,
0.31299999356269836,
0.3345000147819519,
0.33739998936653137,
0.35839998722076416,
0.35839998722076416,
0.35839998722076416,
0.43849998712539673,
0.5234000086784363,
0.5264000296592712,
0.7523999810218811,
0.8945000171661377,
0.9140999913215637,
0.9140999913215637,
0.12839999794960022,
0.20409999787807465,
0.3910999894142151,
0.46630001068115234,
0.5752000212669373,
0.6958000063896179,
0.8012999892234802
],
"x_max": [
0.6011999845504761,
0.7422999739646912,
0.6026999950408936,
0.8831999897956848,
0.1906999945640564,
0.4007999897003174,
0.49549999833106995,
0.20110000669956207,
0.29580000042915344,
0.8065000176429749,
0.22939999401569366,
0.8341000080108643,
0.2599000036716461,
0.6101999878883362,
0.6281999945640564,
0.7415000200271606,
0.5633000135421753,
0.5839999914169312,
0.7718999981880188,
0.8327999711036682,
0.6184999942779541
],
"y_max": [
0.30709999799728394,
0.33059999346733093,
0.34869998693466187,
0.35199999809265137,
0.37299999594688416,
0.37299999594688416,
0.37299999594688416,
0.4526999890804291,
0.5375999808311462,
0.5410000085830688,
0.7674999833106995,
0.9121000170707703,
0.9243999719619751,
0.9243999719619751,
0.16500000655651093,
0.2847000062465668,
0.43070000410079956,
0.5092999935150146,
0.663100004196167,
0.7383000254631042,
0.8335000276565552
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page10
|
{
"latex": [
"$\\Psi (\\theta +2\\pi )=\\Psi (\\theta )$",
"$\\psi _{\\pm \\half }(\\theta +2\\pi ) =\\psi _{\\pm \\half }(\\theta )$",
"$\\alpha $",
"$\\alpha ={\\rm integer}$",
"$0\\leq \\alpha <1$",
"$0\\leq \\alpha <1$",
"$0< \\alpha < 1$",
"$\\alpha $",
"${\\rm Tr}(-1)^{{\\hat f}}=n_B^{E=0}-n_F^{E=0}$",
"$n_B^{E=0}=n_F^{E=0}=1$",
"$\\alpha ={\\rm integer}$",
"$n_B^{E=0}=n_F^{E=0}=0$",
"$\\alpha =$",
"$\\alpha $",
"$S^1$",
"$S^1$",
"$\\alpha $",
"$\\alpha $",
"$\\alpha $",
"$0\\leq \\alpha < 1$",
"$\\e ^{in\\theta }(n={\\rm integer})$",
"$\\alpha ={\\rm integer}$",
"$0< \\alpha < 1$",
"$2\\pi $",
"\\begin {equation} \\psi _{\\pm \\half }(\\theta +2\\pi )=\\e ^{-i2\\pi \\alpha }\\psi _{\\pm \\half }(\\theta ). \\label {boundary} \\end {equation}",
"\\begin {equation} \\psi _{\\pm \\half }(\\theta )\\longrightarrow \\psi _{\\pm \\half }^{\\prime }(\\theta )=\\e ^{-i\\alpha \\theta }\\psi _{\\pm \\half }(\\theta ). \\label {gaugetrf} \\end {equation}"
],
"latex_norm": [
"$ \\Psi ( \\theta + 2 \\pi ) = \\Psi ( \\theta ) $",
"$ \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta + 2 \\pi ) = \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) $",
"$ \\alpha $",
"$ \\alpha = i n t e g e r $",
"$ 0 \\leq \\alpha < 1 $",
"$ 0 \\leq \\alpha < 1 $",
"$ 0 < \\alpha < 1 $",
"$ \\alpha $",
"$ T r ( - 1 ) ^ { \\hat { f } } = n _ { B } ^ { E = 0 } - n _ { F } ^ { E = 0 } $",
"$ n _ { B } ^ { E = 0 } = n _ { F } ^ { E = 0 } = 1 $",
"$ \\alpha = i n t e g e r $",
"$ n _ { B } ^ { E = 0 } = n _ { F } ^ { E = 0 } = 0 $",
"$ \\alpha = $",
"$ \\alpha $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ \\alpha $",
"$ \\alpha $",
"$ \\alpha $",
"$ 0 \\leq \\alpha < 1 $",
"$ { e } ^ { i n \\theta } ( n = i n t e g e r ) $",
"$ \\alpha = i n t e g e r $",
"$ 0 < \\alpha < 1 $",
"$ 2 \\pi $",
"\\begin{equation*} \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta + 2 \\pi ) = e ^ { - i 2 \\pi \\alpha } \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) . \\end{equation*}",
"\\begin{equation*} \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) \\longrightarrow \\psi _ { \\pm \\frac { 1 } { 2 } } ^ { \\prime } ( \\theta ) = e ^ { - i \\alpha \\theta } \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mupPsi ( \\mittheta + 2 \\mitpi ) = \\mupPsi ( \\mittheta ) $",
"$ \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta + 2 \\mitpi ) = \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) $",
"$ \\mitalpha $",
"$ \\mitalpha = \\mathrm { i n t e g e r } $",
"$ 0 \\leq \\mitalpha < 1 $",
"$ 0 \\leq \\mitalpha < 1 $",
"$ 0 < \\mitalpha < 1 $",
"$ \\mitalpha $",
"$ \\mathrm { T r } ( - 1 ) ^ { \\hat { \\mitf } } = \\mitn _ { \\mitB } ^ { \\mitE = 0 } - \\mitn _ { \\mitF } ^ { \\mitE = 0 } $",
"$ \\mitn _ { \\mitB } ^ { \\mitE = 0 } = \\mitn _ { \\mitF } ^ { \\mitE = 0 } = 1 $",
"$ \\mitalpha = \\mathrm { i n t e g e r } $",
"$ \\mitn _ { \\mitB } ^ { \\mitE = 0 } = \\mitn _ { \\mitF } ^ { \\mitE = 0 } = 0 $",
"$ \\mitalpha = $",
"$ \\mitalpha $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitalpha $",
"$ \\mitalpha $",
"$ \\mitalpha $",
"$ 0 \\leq \\mitalpha < 1 $",
"$ { \\mathrm { e } } ^ { \\miti \\mitn \\mittheta } ( \\mitn = \\mathrm { i n t e g e r } ) $",
"$ \\mitalpha = \\mathrm { i n t e g e r } $",
"$ 0 < \\mitalpha < 1 $",
"$ 2 \\mitpi $",
"\\begin{equation*} \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta + 2 \\mitpi ) = \\mathrm { e } ^ { - \\miti 2 \\mitpi \\mitalpha } \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) . \\end{equation*}",
"\\begin{equation*} \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) \\longrightarrow \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ^ { \\prime } ( \\mittheta ) = \\mathrm { e } ^ { - \\miti \\mitalpha \\mittheta } \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) . \\end{equation*}"
],
"x_min": [
0.6399000287055969,
0.120899997651577,
0.16099999845027924,
0.3019999861717224,
0.8500000238418579,
0.120899997651577,
0.28610000014305115,
0.2184000015258789,
0.5446000099182129,
0.36899998784065247,
0.5515000224113464,
0.7366999983787537,
0.15070000290870667,
0.3711000084877014,
0.8562999963760376,
0.7713000178337097,
0.7968000173568726,
0.20180000364780426,
0.5680999755859375,
0.630299985408783,
0.7353000044822693,
0.41670000553131104,
0.3849000036716461,
0.8003000020980835,
0.3779999911785126,
0.3537999987602234
],
"y_min": [
0.12160000205039978,
0.14259999990463257,
0.23489999771118164,
0.2524000108242035,
0.25290000438690186,
0.274399995803833,
0.2953999936580658,
0.3197999894618988,
0.31200000643730164,
0.3353999853134155,
0.3379000127315521,
0.3353999853134155,
0.36230000853538513,
0.44780001044273376,
0.46389999985694885,
0.5062999725341797,
0.5541999936103821,
0.5756999850273132,
0.5967000126838684,
0.6812000274658203,
0.6996999979019165,
0.8086000084877014,
0.8300999999046326,
0.8999000191688538,
0.17090000212192535,
0.6416000127792358
],
"x_max": [
0.8051000237464905,
0.31029999256134033,
0.17409999668598175,
0.4036000072956085,
0.8873000144958496,
0.17000000178813934,
0.3772999942302704,
0.23149999976158142,
0.7491999864578247,
0.5162000060081482,
0.6496000289916992,
0.8831999897956848,
0.18459999561309814,
0.38420000672340393,
0.8784000277519226,
0.7926999926567078,
0.8098999857902527,
0.21490000188350677,
0.5812000036239624,
0.71670001745224,
0.8784000277519226,
0.5148000121116638,
0.48030000925064087,
0.8197000026702881,
0.6288999915122986,
0.652999997138977
],
"y_max": [
0.13619999587535858,
0.16120000183582306,
0.24120000004768372,
0.2655999958515167,
0.26460000872612,
0.28610000014305115,
0.30570000410079956,
0.32659998536109924,
0.33009999990463257,
0.351500004529953,
0.350600004196167,
0.351500004529953,
0.36910000443458557,
0.4546000063419342,
0.475600004196167,
0.5180000066757202,
0.5609999895095825,
0.5820000171661377,
0.6035000085830688,
0.6929000020027161,
0.7157999873161316,
0.8213000297546387,
0.840399980545044,
0.9082000255584717,
0.19429999589920044,
0.6660000085830688
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
}
|
|
0003194_page11
|
{
"latex": [
"${{mg_N R}\\over 2}\\sin ^2\\theta $",
"$(\\pm 1/2)$",
"$ \\cos \\theta _{cl}(\\tau )=\\pm \\tanh (\\omega (\\tau -\\tau _0)) $",
"$-2z/\\hbar $",
"${\\rm exp}(-2z/\\hbar )\\times \\cos {2\\pi \\alpha }$",
"$z$",
"$E_0\\sim {1\\over {2mR^2}}(\\alpha ^2+O(z^2))$",
"$E_0\\sim {1\\over {2mR^2}}(\\alpha ^2+O(z^2))$",
"$\\hbar =1$",
"$\\alpha $",
"$R\\rightarrow \\infty $",
"$R$",
"$S^1$",
"$R$",
"$S^1$",
"$R\\rightarrow \\infty $",
"$x\\equiv R\\theta $",
"$\\hg =-i\\hbar ~\\del /\\del \\theta +\\hbar ~\\alpha $",
"$\\hw $",
"$R\\rightarrow \\infty $",
"$S^1$",
"$\\omega =\\sqrt {g_N/R}$",
"$\\cos {2\\pi \\alpha }$",
"$K(\\theta _f,t;\\theta _i,0) =\\bra {\\theta _f}{\\exp (-i{\\hat H}t/\\hbar )\\ket {\\theta _i}}= \\sum _{n=-\\infty }^{+\\infty }\\int _{n-winding} {\\cal D}\\theta \\exp (iS_{eff}/\\hbar )$",
"$S_{eff}=\\int dt {{mR^2}\\over 2}({{d\\theta }\\over {dt}})^2 -{{mg_NR}\\over 2}\\sin ^2\\theta +\\half \\sqrt {g_N\\over R}\\cos \\theta [\\xi , \\xi ^*]+i\\xi ^*{{d\\xi }\\over {dt}} -\\alpha {d\\theta \\over {dt}}$",
"$\\alpha {\\dot \\theta }$",
"\\begin {equation} \\hat H= \\Bigl ({-\\hbar ^2\\over {2m}}\\Bigl ({\\del \\over {\\del x}} +i{\\alpha \\over R}\\Bigr )^2 +{{mg_NR}\\over 2}\\sin ^2({x\\over R})\\Bigr ){\\bf 1}_{2\\times 2} +{\\hbar \\over 2}\\sqrt {{g_N\\over R}}\\sigma ^3\\cos ({x\\over R}). \\label {hamilton4} \\end {equation}",
"\\begin {equation} {\\hat H}={-\\hbar ^2\\over {2m}}{\\del ^2\\over {\\del x^2}}{\\bf 1}_{2\\times 2}. \\end {equation}",
"\\begin {equation} {m\\over \\hbar }\\sqrt {g_N\\over R}\\equiv {{m\\omega }\\over \\hbar }=\\Bigl ({\\rm strength~of~oscillator} \\Bigr )^2 ={\\rm const}. \\label {relation} \\end {equation}",
"\\begin {equation} \\hat H = \\Bigl ({-{\\hbar }^2\\over {2m}}{\\del ^2\\over {\\del x^2}} +{{m\\omega ^2}\\over 2} x^2\\Bigr ){\\bf 1}_{2\\times 2} +{{\\hbar ~\\omega }\\over 2}\\sigma ^3 + O({1\\over R^2}). \\label {harmo} \\end {equation}"
],
"latex_norm": [
"$ \\frac { m g _ { N } R } { 2 } { s i n } ^ { 2 } \\theta $",
"$ ( \\pm 1 \\slash 2 ) $",
"$ c o s \\theta _ { c l } ( \\tau ) = \\pm \\operatorname { t a n h } ( \\omega ( \\tau - \\tau _ { 0 } ) ) $",
"$ - 2 z \\slash \\hbar $",
"$ e x p ( - 2 z \\slash \\hbar ) \\times \\operatorname { c o s } 2 \\pi \\alpha $",
"$ z $",
"$ E _ { 0 } \\sim \\frac { 1 } { 2 m R ^ { 2 } } ( \\alpha ^ { 2 } + O ( z ^ { 2 } ) ) $",
"$ E _ { 0 } \\sim \\frac { 1 } { 2 m R ^ { 2 } } ( \\alpha ^ { 2 } + O ( z ^ { 2 } ) ) $",
"$ \\hbar = 1 $",
"$ \\alpha $",
"$ R \\rightarrow \\infty $",
"$ R $",
"$ S ^ { 1 } $",
"$ R $",
"$ S ^ { 1 } $",
"$ R \\rightarrow \\infty $",
"$ x \\equiv R \\theta $",
"$ \\hat { G } = - i \\hbar ~ \\partial \\slash \\partial \\theta + \\hbar ~ \\alpha $",
"$ \\hat { W } $",
"$ R \\rightarrow \\infty $",
"$ S ^ { 1 } $",
"$ \\omega = \\sqrt { g _ { N } \\slash R } $",
"$ c o s 2 \\pi \\alpha $",
"$ K ( \\theta _ { f } , t ; \\theta _ { i } , 0 ) = \\langle \\theta _ { f } \\vert e x p ( - i \\hat { H } t \\slash \\hbar ) \\vert \\theta _ { i } \\rangle = \\sum _ { n = - \\infty } ^ { + \\infty } \\int _ { n - w i n d i n g } D \\theta \\operatorname { e x p } ( i S _ { e f f } \\slash \\hbar ) $",
"$ S _ { e f f } = \\int d t \\frac { m R ^ { 2 } } { 2 } ( \\frac { d \\theta } { d t } ) ^ { 2 } - \\frac { m g _ { N } R } { 2 } { s i n } ^ { 2 } \\theta + \\frac { 1 } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\operatorname { c o s } \\theta [ \\xi , \\xi ^ { \\ast } ] + i \\xi ^ { \\ast } \\frac { d \\xi } { d t } - \\alpha \\frac { d \\theta } { d t } $",
"$ \\alpha \\dot { \\theta } $",
"\\begin{equation*} \\hat { H } = ( \\frac { - \\hbar ^ { 2 } } { 2 m } ( \\frac { \\partial } { \\partial x } + i \\frac { \\alpha } { R } ) ^ { 2 } + \\frac { m g _ { N } R } { 2 } { \\operatorname { s i n } } ^ { 2 } ( \\frac { x } { R } ) ) 1 _ { 2 \\times 2 } + \\frac { \\hbar } { 2 } \\sqrt { \\frac { g _ { N } } { R } } \\sigma ^ { 3 } \\operatorname { c o s } ( \\frac { x } { R } ) . \\end{equation*}",
"\\begin{equation*} \\hat { H } = \\frac { - \\hbar ^ { 2 } } { 2 m } \\frac { \\partial ^ { 2 } } { \\partial x ^ { 2 } } 1 _ { 2 \\times 2 } . \\end{equation*}",
"\\begin{equation*} \\frac { m } { \\hbar } \\sqrt { \\frac { g _ { N } } { R } } \\equiv \\frac { m \\omega } { \\hbar } = ( s t r e n g t h ~ o f ~ o s c i l l a t o r ) ^ { 2 } = c o n s t . \\end{equation*}",
"\\begin{equation*} \\hat { H } = ( \\frac { - \\hbar ^ { 2 } } { 2 m } \\frac { \\partial ^ { 2 } } { \\partial x ^ { 2 } } + \\frac { m \\omega ^ { 2 } } { 2 } x ^ { 2 } ) 1 _ { 2 \\times 2 } + \\frac { \\hbar ~ \\omega } { 2 } \\sigma ^ { 3 } + O ( \\frac { 1 } { R ^ { 2 } } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\mathrm { s i n } } ^ { 2 } \\mittheta $",
"$ ( \\pm 1 \\slash 2 ) $",
"$ \\mathrm { c o s } \\mittheta _ { \\mitc \\mitl } ( \\mittau ) = \\pm \\operatorname { t a n h } ( \\mitomega ( \\mittau - \\mittau _ { 0 } ) ) $",
"$ - 2 \\mitz \\slash \\hslash $",
"$ \\mathrm { e x p } ( - 2 \\mitz \\slash \\hslash ) \\times \\operatorname { c o s } 2 \\mitpi \\mitalpha $",
"$ \\mitz $",
"$ \\mitE _ { 0 } \\sim \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } ( \\mitalpha ^ { 2 } + \\mitO ( \\mitz ^ { 2 } ) ) $",
"$ \\mitE _ { 0 } \\sim \\frac { 1 } { 2 \\mitm \\mitR ^ { 2 } } ( \\mitalpha ^ { 2 } + \\mitO ( \\mitz ^ { 2 } ) ) $",
"$ \\hslash = 1 $",
"$ \\mitalpha $",
"$ \\mitR \\rightarrow \\infty $",
"$ \\mitR $",
"$ \\mitS ^ { 1 } $",
"$ \\mitR $",
"$ \\mitS ^ { 1 } $",
"$ \\mitR \\rightarrow \\infty $",
"$ \\mitx \\equiv \\mitR \\mittheta $",
"$ \\hat { \\mitG } = - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mittheta + \\hslash ~ \\mitalpha $",
"$ \\hat { \\mitW } $",
"$ \\mitR \\rightarrow \\infty $",
"$ \\mitS ^ { 1 } $",
"$ \\mitomega = \\sqrt { \\mitg _ { \\mitN } \\slash \\mitR } $",
"$ \\mathrm { c o s } 2 \\mitpi \\mitalpha $",
"$ \\mitK ( \\mittheta _ { \\mitf } , \\mitt ; \\mittheta _ { \\miti } , 0 ) = \\langle \\mittheta _ { \\mitf } \\vert \\mathrm { e x p } ( - \\miti \\hat { \\mitH } \\mitt \\slash \\hslash ) \\vert \\mittheta _ { \\miti } \\rangle = \\sum _ { \\mitn = - \\infty } ^ { + \\infty } \\int \\nolimits _ { \\mitn - \\mitw \\miti \\mitn \\mitd \\miti \\mitn \\mitg } \\mitD \\mittheta \\operatorname { e x p } ( \\miti \\mitS _ { \\mite \\mitf \\mitf } \\slash \\hslash ) $",
"$ \\mitS _ { \\mite \\mitf \\mitf } = \\int \\nolimits \\mitd \\mitt \\frac { \\mitm \\mitR ^ { 2 } } { 2 } ( \\frac { \\mitd \\mittheta } { \\mitd \\mitt } ) ^ { 2 } - \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\mathrm { s i n } } ^ { 2 } \\mittheta + \\frac { 1 } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\operatorname { c o s } \\mittheta [ \\mitxi , \\mitxi ^ { \\ast } ] + \\miti \\mitxi ^ { \\ast } \\frac { \\mitd \\mitxi } { \\mitd \\mitt } - \\mitalpha \\frac { \\mitd \\mittheta } { \\mitd \\mitt } $",
"$ \\mitalpha \\dot { \\mittheta } $",
"\\begin{equation*} \\hat { \\mitH } = \\Big ( \\frac { - \\hslash ^ { 2 } } { 2 \\mitm } \\Big ( \\frac { \\mitpartial } { \\mitpartial \\mitx } + \\miti \\frac { \\mitalpha } { \\mitR } \\Big ) ^ { 2 } + \\frac { \\mitm \\mitg _ { \\mitN } \\mitR } { 2 } { \\operatorname { s i n } } ^ { 2 } ( \\frac { \\mitx } { \\mitR } ) \\Big ) 1 _ { 2 \\times 2 } + \\frac { \\hslash } { 2 } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\mitsigma ^ { 3 } \\operatorname { c o s } ( \\frac { \\mitx } { \\mitR } ) . \\end{equation*}",
"\\begin{equation*} \\hat { \\mitH } = \\frac { - \\hslash ^ { 2 } } { 2 \\mitm } \\frac { \\mitpartial ^ { 2 } } { \\mitpartial \\mitx ^ { 2 } } 1 _ { 2 \\times 2 } . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitm } { \\hslash } \\sqrt { \\frac { \\mitg _ { \\mitN } } { \\mitR } } \\equiv \\frac { \\mitm \\mitomega } { \\hslash } = \\Big ( \\mathrm { s t r e n g t h } ~ \\mathrm { o f } ~ \\mathrm { o s c i l l a t o r } \\Big ) ^ { 2 } = \\mathrm { c o n s t } . \\end{equation*}",
"\\begin{equation*} \\hat { \\mitH } = \\Big ( \\frac { - \\hslash ^ { 2 } } { 2 \\mitm } \\frac { \\mitpartial ^ { 2 } } { \\mitpartial \\mitx ^ { 2 } } + \\frac { \\mitm \\mitomega ^ { 2 } } { 2 } \\mitx ^ { 2 } \\Big ) 1 _ { 2 \\times 2 } + \\frac { \\hslash ~ \\mitomega } { 2 } \\mitsigma ^ { 3 } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) . \\end{equation*}"
],
"x_min": [
0.7885000109672546,
0.5425000190734863,
0.5356000065803528,
0.3939000070095062,
0.6032999753952026,
0.4553999900817871,
0.8348000049591064,
0.120899997651577,
0.4408999979496002,
0.6365000009536743,
0.4699000120162964,
0.8679999709129333,
0.1437000036239624,
0.19900000095367432,
0.8245000243186951,
0.5162000060081482,
0.6144000291824341,
0.6392999887466431,
0.120899997651577,
0.3124000132083893,
0.3393000066280365,
0.28130000829696655,
0.30889999866485596,
0.23770000040531158,
0.32199999690055847,
0.26260000467300415,
0.2184000015258789,
0.42289999127388,
0.2840000092983246,
0.29159998893737793
],
"y_min": [
0.09809999912977219,
0.16410000622272491,
0.18549999594688416,
0.20649999380111694,
0.2705000042915344,
0.2964000105857849,
0.31200000643730164,
0.3334999978542328,
0.3345000147819519,
0.33889999985694885,
0.37790000438690186,
0.37790000438690186,
0.3978999853134155,
0.399399995803833,
0.3978999853134155,
0.42089998722076416,
0.4629000127315521,
0.48100000619888306,
0.5019999742507935,
0.5820000171661377,
0.6021000146865845,
0.8241999745368958,
0.861299991607666,
0.8715999722480774,
0.8901000022888184,
0.9071999788284302,
0.5303000211715698,
0.6137999892234802,
0.6904000043869019,
0.7567999958992004
],
"x_max": [
0.883899986743927,
0.6032999753952026,
0.8009999990463257,
0.44780001044273376,
0.7912999987602234,
0.4657999873161316,
0.8866000175476074,
0.2694999873638153,
0.48510000109672546,
0.6496000289916992,
0.536899983882904,
0.8831999897956848,
0.16509999334812164,
0.2142000049352646,
0.8458999991416931,
0.5867000222206116,
0.6834999918937683,
0.8238000273704529,
0.14229999482631683,
0.37869998812675476,
0.3614000082015991,
0.3862999975681305,
0.3634999990463257,
0.7975000143051147,
0.84170001745224,
0.2825999855995178,
0.7885000109672546,
0.5831999778747559,
0.7235000133514404,
0.7152000069618225
],
"y_max": [
0.11670000106096268,
0.17919999361038208,
0.20010000467300415,
0.2215999960899353,
0.2856000065803528,
0.30320000648498535,
0.3296000063419342,
0.350600004196167,
0.3456999957561493,
0.3456999957561493,
0.3882000148296356,
0.3882000148296356,
0.40959998965263367,
0.4097000062465668,
0.40959998965263367,
0.4311999976634979,
0.47360000014305115,
0.4986000061035156,
0.5162000060081482,
0.5922999978065491,
0.6137999892234802,
0.8467000126838684,
0.8695999979972839,
0.8896999955177307,
0.9067000150680542,
0.9189000129699707,
0.5669000148773193,
0.6499000191688538,
0.7235999703407288,
0.79339998960495
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page12
|
{
"latex": [
"$\\hq , \\hqb $",
"$W({\\hat x})\\equiv m{\\omega } {\\hat x}$",
"${\\hat p}\\equiv -i{\\hbar }~\\del /\\del x$",
"$[{\\hat p},{\\hat x}]=-i\\hbar $",
"$({\\hat x})$",
"$(\\hxi , \\hxib )$",
"$R\\rightarrow \\infty $",
"$\\hq _{susy}\\ket {\\Psi }=0$",
"$\\hqb _{susy}\\ket {\\Psi }=0$",
"${\\psi }_{-\\half }^{h.o}(x)$",
"${\\psi }_{+\\half }^{h.o}(x)$",
"$R\\rightarrow \\infty $",
"$I_0(z)\\sim \\e ^z/\\sqrt {2\\pi z}$",
"$z$",
"${\\tilde \\psi }_{\\pm \\half }(x)dx\\equiv \\psi _{\\pm \\half }(\\theta ){{d\\theta }\\over {\\sqrt {2\\pi R}}}$",
"${\\rm Tr}(-1)^{{\\hat f}}=1$",
"$N$",
"${\\hat V}_a\\equiv {\\hat V}_a(\\theta _1, \\cdots , \\theta _N)$",
"$\\hg _a=-i\\hbar ~\\del /\\del \\theta _a+\\hbar ~\\alpha _a$",
"$\\hw $",
"\\begin {eqnarray} \\hq &=&{1\\over {\\sqrt {2m}}}\\Bigl ({\\hat p} + i W({\\hat x})\\Bigr )\\hxi +O({1\\over R^2})\\equiv \\hq _{susy}+O({1\\over R^2}),\\\\ \\hqb &=&{1\\over {\\sqrt {2m}}}\\Bigl ({\\hat p} - i W({\\hat x})\\Bigr )\\hxib +O({1\\over R^2})\\equiv \\hqb _{susy}+O({1\\over R^2}), \\end {eqnarray}",
"\\begin {equation} {\\psi }_{+\\half }^{h.o}(x)\\sim {\\rm exp}(+{{m\\omega }\\over {2\\hbar }} x^2), \\qquad {\\psi }_{-\\half }^{h.o}(x)= \\Bigl ({{m\\omega }\\over {\\pi \\hbar }}\\Bigr )^{1/4} {\\rm exp}(-{{m\\omega }\\over {2\\hbar }} x^2). \\label {harmosol} \\end {equation}",
"\\begin {equation} {\\tilde \\psi }_{+\\half }\\sim {\\rm exp}(+{{m\\omega }\\over {2\\hbar }} x^2),\\qquad {\\tilde \\psi }_{-\\half }(x)= \\Bigl ({{m\\omega }\\over {\\pi \\hbar }}\\Bigr )^{1/4} {\\rm exp}(-{{m\\omega }\\over {2\\hbar }} x^2), \\end {equation}",
"\\begin {eqnarray} \\hq &=&\\sum _{a=1}^{{}N} \\Bigl ({1\\over {\\sqrt {2m}R_a}}\\hg _a +i {\\hat V}_a\\Bigr )\\hxi _a \\equiv \\sum _{a=1}^{{}N}{\\hat q}_a~\\hxi _a, \\\\ \\hqb &=&\\sum _{a=1}^{{}N} \\Bigl ({1\\over {\\sqrt {2m}R_a}}\\hg _a-i{\\hat V}_a\\Bigr )\\hxib \\equiv \\sum _{a=1}^{{}N}{\\hat q}_a^{\\dagger }~\\hxib _a, \\end {eqnarray}",
"\\begin {equation} [\\hg _a, \\hw _b]=\\hbar ~\\delta _{ab}\\hw _b, \\quad \\{\\hxi _a, \\hxib _b\\}=\\delta _{ab}, \\quad \\{\\hxi _a, \\hxi _b\\}=0, \\quad \\{\\hxib _a, \\hxib _b\\}=0. \\quad \\end {equation}"
],
"latex_norm": [
"$ \\hat { Q } , \\hat { \\bar { Q } } $",
"$ W ( \\hat { x } ) \\equiv m \\omega \\hat { x } $",
"$ \\hat { p } \\equiv - i \\hbar ~ \\partial \\slash \\partial x $",
"$ [ \\hat { p } , \\hat { x } ] = - i \\hbar $",
"$ ( \\hat { x } ) $",
"$ ( \\hat { \\xi } , \\hat { \\bar { \\xi } } ) $",
"$ R \\rightarrow \\infty $",
"$ \\hat { Q } _ { s u s y } \\vert \\Psi \\rangle = 0 $",
"$ \\hat { \\bar { Q } } _ { s u s y } \\vert \\Psi \\rangle = 0 $",
"$ \\psi _ { - \\frac { 1 } { 2 } } ^ { h . o } ( x ) $",
"$ \\psi _ { + \\frac { 1 } { 2 } } ^ { h . o } ( x ) $",
"$ R \\rightarrow \\infty $",
"$ I _ { 0 } ( z ) \\sim { e } ^ { z } \\slash \\sqrt { 2 \\pi z } $",
"$ z $",
"$ \\widetilde { \\psi } _ { \\pm \\frac { 1 } { 2 } } ( x ) d x \\equiv \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) \\frac { d \\theta } { \\sqrt { 2 \\pi R } } $",
"$ T r ( - 1 ) ^ { \\hat { f } } = 1 $",
"$ N $",
"$ \\hat { V } _ { a } \\equiv \\hat { V } _ { a } ( \\theta _ { 1 } , \\cdots , \\theta _ { N } ) $",
"$ \\hat { G } _ { a } = - i \\hbar ~ \\partial \\slash \\partial \\theta _ { a } + \\hbar ~ \\alpha _ { a } $",
"$ \\hat { W } $",
"\\begin{align*} \\hat { Q } & = & \\frac { 1 } { \\sqrt { 2 m } } ( \\hat { p } + i W ( \\hat { x } ) ) \\hat { \\xi } + O ( \\frac { 1 } { R ^ { 2 } } ) \\equiv \\hat { Q } _ { s u s y } + O ( \\frac { 1 } { R ^ { 2 } } ) , \\\\ \\hat { \\bar { Q } } & = & \\frac { 1 } { \\sqrt { 2 m } } ( \\hat { p } - i W ( \\hat { x } ) ) \\hat { \\bar { \\xi } } + O ( \\frac { 1 } { R ^ { 2 } } ) \\equiv \\hat { \\bar { Q } } _ { s u s y } + O ( \\frac { 1 } { R ^ { 2 } } ) , \\end{align*}",
"\\begin{equation*} \\psi _ { + \\frac { 1 } { 2 } } ^ { h . o } ( x ) \\sim e x p ( + \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) , \\qquad \\psi _ { - \\frac { 1 } { 2 } } ^ { h . o } ( x ) = ( \\frac { m \\omega } { \\pi \\hbar } ) ^ { 1 \\slash 4 } e x p ( - \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) . \\end{equation*}",
"\\begin{equation*} \\widetilde { \\psi } _ { + \\frac { 1 } { 2 } } \\sim e x p ( + \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) , \\qquad \\widetilde { \\psi } _ { - \\frac { 1 } { 2 } } ( x ) = ( \\frac { m \\omega } { \\pi \\hbar } ) ^ { 1 \\slash 4 } e x p ( - \\frac { m \\omega } { 2 \\hbar } x ^ { 2 } ) , \\end{equation*}",
"\\begin{align*} \\hat { Q } & = & \\sum _ { a = 1 } ^ { N } ( \\frac { 1 } { \\sqrt { 2 m } R _ { a } } \\hat { G } _ { a } + i \\hat { V } _ { a } ) \\hat { \\xi } _ { a } \\equiv \\sum _ { a = 1 } ^ { N } \\hat { q } _ { a } ~ \\hat { \\xi } _ { a } , \\\\ \\hat { \\bar { Q } } & = & \\sum _ { a = 1 } ^ { N } ( \\frac { 1 } { \\sqrt { 2 m } R _ { a } } \\hat { G } _ { a } - i \\hat { V } _ { a } ) \\hat { \\bar { \\xi } } \\equiv \\sum _ { a = 1 } ^ { N } \\hat { q } _ { a } ^ { \\dagger } ~ \\hat { \\bar { \\xi } } _ { a } , \\end{align*}",
"\\begin{equation*} [ \\hat { G } _ { a } , \\hat { W } _ { b } ] = \\hbar ~ \\delta _ { a b } \\hat { W } _ { b } , \\quad \\{ \\hat { \\xi } _ { a } , \\hat { \\bar { \\xi } } _ { b } \\} = \\delta _ { a b } , \\quad \\{ \\hat { \\xi } _ { a } , \\hat { \\xi } _ { b } \\} = 0 , \\quad \\{ \\hat { \\bar { \\xi } } _ { a } , \\hat { \\bar { \\xi } } _ { b } \\} = 0 . \\quad \\end{equation*}"
],
"latex_expand": [
"$ \\hat { \\mitQ } , \\hat { \\bar { \\mitQ } } $",
"$ \\mitW ( \\hat { \\mitx } ) \\equiv \\mitm \\mitomega \\hat { \\mitx } $",
"$ \\hat { \\mitp } \\equiv - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mitx $",
"$ [ \\hat { \\mitp } , \\hat { \\mitx } ] = - \\miti \\hslash $",
"$ ( \\hat { \\mitx } ) $",
"$ ( \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } ) $",
"$ \\mitR \\rightarrow \\infty $",
"$ \\hat { \\mitQ } _ { \\mits \\mitu \\mits \\mity } \\vert \\mupPsi \\rangle = 0 $",
"$ \\hat { \\bar { \\mitQ } } _ { \\mits \\mitu \\mits \\mity } \\vert \\mupPsi \\rangle = 0 $",
"$ \\mitpsi _ { - \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) $",
"$ \\mitpsi _ { + \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) $",
"$ \\mitR \\rightarrow \\infty $",
"$ \\mitI _ { 0 } ( \\mitz ) \\sim { \\mathrm { e } } ^ { \\mitz } \\slash \\sqrt { 2 \\mitpi \\mitz } $",
"$ \\mitz $",
"$ \\tilde { \\mitpsi } _ { \\pm \\frac { 1 } { 2 } } ( \\mitx ) \\mitd \\mitx \\equiv \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) \\frac { \\mitd \\mittheta } { \\sqrt { 2 \\mitpi \\mitR } } $",
"$ \\mathrm { T r } ( - 1 ) ^ { \\hat { \\mitf } } = 1 $",
"$ \\mitN $",
"$ \\hat { \\mitV } _ { \\mita } \\equiv \\hat { \\mitV } _ { \\mita } ( \\mittheta _ { 1 } , \\cdots , \\mittheta _ { \\mitN } ) $",
"$ \\hat { \\mitG } _ { \\mita } = - \\miti \\hslash ~ \\mitpartial \\slash \\mitpartial \\mittheta _ { \\mita } + \\hslash ~ \\mitalpha _ { \\mita } $",
"$ \\hat { \\mitW } $",
"\\begin{align*} \\displaystyle \\hat { \\mitQ } & = & \\displaystyle \\frac { 1 } { \\sqrt { 2 \\mitm } } \\Big ( \\hat { \\mitp } + \\miti \\mitW ( \\hat { \\mitx } ) \\Big ) \\hat { \\mitxi } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) \\equiv \\hat { \\mitQ } _ { \\mits \\mitu \\mits \\mity } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) , \\\\ \\displaystyle \\hat { \\bar { \\mitQ } } & = & \\displaystyle \\frac { 1 } { \\sqrt { 2 \\mitm } } \\Big ( \\hat { \\mitp } - \\miti \\mitW ( \\hat { \\mitx } ) \\Big ) \\hat { \\bar { \\mitxi } } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) \\equiv \\hat { \\bar { \\mitQ } } _ { \\mits \\mitu \\mits \\mity } + \\mitO ( \\frac { 1 } { \\mitR ^ { 2 } } ) , \\end{align*}",
"\\begin{equation*} \\mitpsi _ { + \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) \\sim \\mathrm { e x p } ( + \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) , \\qquad \\mitpsi _ { - \\frac { 1 } { 2 } } ^ { \\Planckconst . \\mito } ( \\mitx ) = \\Big ( \\frac { \\mitm \\mitomega } { \\mitpi \\hslash } \\Big ) ^ { 1 \\slash 4 } \\mathrm { e x p } ( - \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) . \\end{equation*}",
"\\begin{equation*} \\tilde { \\mitpsi } _ { + \\frac { 1 } { 2 } } \\sim \\mathrm { e x p } ( + \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) , \\qquad \\tilde { \\mitpsi } _ { - \\frac { 1 } { 2 } } ( \\mitx ) = \\Big ( \\frac { \\mitm \\mitomega } { \\mitpi \\hslash } \\Big ) ^ { 1 \\slash 4 } \\mathrm { e x p } ( - \\frac { \\mitm \\mitomega } { 2 \\hslash } \\mitx ^ { 2 } ) , \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitQ } & = & \\displaystyle \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } \\hat { \\mitG } _ { \\mita } + \\miti \\hat { \\mitV } _ { \\mita } \\Big ) \\hat { \\mitxi } _ { \\mita } \\equiv \\sum _ { \\mita = 1 } ^ { \\mitN } \\hat { \\mitq } _ { \\mita } ~ \\hat { \\mitxi } _ { \\mita } , \\\\ \\displaystyle \\hat { \\bar { \\mitQ } } & = & \\displaystyle \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( \\frac { 1 } { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } \\hat { \\mitG } _ { \\mita } - \\miti \\hat { \\mitV } _ { \\mita } \\Big ) \\hat { \\bar { \\mitxi } } \\equiv \\sum _ { \\mita = 1 } ^ { \\mitN } \\hat { \\mitq } _ { \\mita } ^ { \\dagger } ~ \\hat { \\bar { \\mitxi } } _ { \\mita } , \\end{align*}",
"\\begin{equation*} [ \\hat { \\mitG } _ { \\mita } , \\hat { \\mitW } _ { \\mitb } ] = \\hslash ~ \\mitdelta _ { \\mita \\mitb } \\hat { \\mitW } _ { \\mitb } , \\quad \\{ \\hat { \\mitxi } _ { \\mita } , \\hat { \\bar { \\mitxi } } _ { \\mitb } \\} = \\mitdelta _ { \\mita \\mitb } , \\quad \\{ \\hat { \\mitxi } _ { \\mita } , \\hat { \\mitxi } _ { \\mitb } \\} = 0 , \\quad \\{ \\hat { \\bar { \\mitxi } } _ { \\mita } , \\hat { \\bar { \\mitxi } } _ { \\mitb } \\} = 0 . \\quad \\end{equation*}"
],
"x_min": [
0.16030000150203705,
0.32690000534057617,
0.4968999922275543,
0.5300999879837036,
0.815500020980835,
0.19210000336170197,
0.588100016117096,
0.4754999876022339,
0.6288999915122986,
0.7117999792098999,
0.15960000455379486,
0.22599999606609344,
0.7063000202178955,
0.16859999299049377,
0.5286999940872192,
0.4699000120162964,
0.5127999782562256,
0.17759999632835388,
0.38839998841285706,
0.6488999724388123,
0.2639999985694885,
0.23499999940395355,
0.2467000037431717,
0.31310001015663147,
0.21220000088214874
],
"y_min": [
0.09669999778270721,
0.2134000062942505,
0.2134000062942505,
0.2563000023365021,
0.27730000019073486,
0.2939000129699707,
0.29980000853538513,
0.33889999985694885,
0.336899995803833,
0.45410001277923584,
0.47510001063346863,
0.5625,
0.5595999956130981,
0.5874000191688538,
0.6542999744415283,
0.6758000254631042,
0.70169997215271,
0.8471999764442444,
0.8471999764442444,
0.8471999764442444,
0.1264999955892563,
0.3882000148296356,
0.6079000234603882,
0.7480000257492065,
0.8988999724388123
],
"x_max": [
0.20110000669956207,
0.44920000433921814,
0.6226999759674072,
0.6365000009536743,
0.8424999713897705,
0.2363000065088272,
0.6550999879837036,
0.5860999822616577,
0.7394999861717224,
0.7732999920845032,
0.22179999947547913,
0.29580000042915344,
0.8528000116348267,
0.17900000512599945,
0.7457000017166138,
0.5763000249862671,
0.5307999849319458,
0.3441999852657318,
0.5860999822616577,
0.6710000038146973,
0.7401999831199646,
0.7720000147819519,
0.7573999762535095,
0.6883999705314636,
0.7940999865531921
],
"y_max": [
0.11569999903440475,
0.22849999368190765,
0.22849999368190765,
0.27090001106262207,
0.2924000024795532,
0.313400000333786,
0.3100999891757965,
0.3569999933242798,
0.3578999936580658,
0.47510001063346863,
0.4966000020503998,
0.5727999806404114,
0.576200008392334,
0.5942000150680542,
0.6753000020980835,
0.6944000124931335,
0.7120000123977661,
0.864799976348877,
0.864799976348877,
0.8614000082015991,
0.2046000063419342,
0.41940000653266907,
0.6391000151634216,
0.8378000259399414,
0.9218000173568726
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page13
|
{
"latex": [
"$T^N=S^1\\otimes \\cdots \\otimes S^1$",
"$\\alpha _a (a=1, \\cdots , N)$",
"$S^1$",
"$\\hq \\ket {-}=\\hqb \\ket {+}=0$",
"$\\Psi ^{\\pm }(\\cdots , \\theta _a+2\\pi , \\cdots ) =\\Psi ^{\\pm }(\\cdots , \\theta _a, \\cdots )~(a=1,\\cdots , N)$",
"$\\Psi ^{\\pm }(\\cdots , \\theta _a+2\\pi , \\cdots ) =\\Psi ^{\\pm }(\\cdots , \\theta _a, \\cdots )~(a=1,\\cdots , N)$",
"$\\alpha _a (a=1, \\cdots , N)$",
"$S^1$",
"$S^1$",
"$\\alpha $",
"$\\alpha $",
"\\begin {equation} {\\hat H}=\\sum _{a=1}^N{1\\over {2 m R_a^2}}\\hg _a\\hg _a + {\\hat V}_a{\\hat V}_a -\\sum _{a, b=1}^N{i\\over {{\\sqrt {2m}R_a}}} [\\hg _a, {\\hat V}_b][\\hxi _a, \\hxib _b]. \\label {torus} \\end {equation}",
"\\begin {equation} \\ket {-}\\equiv \\ket {0},\\quad \\ket {+}\\equiv \\prod _{a=1}^N\\hxib _a~\\ket {0}\\quad {\\rm with}\\quad \\hxi _a \\ket {0}=0~~(a=1, \\cdots , N). \\end {equation}",
"\\begin {eqnarray} \\Psi ^{+}(\\theta _1,\\cdots , \\theta _N)&=& {\\rm exp}\\sum _{a=1}^{N}\\Bigl (-i\\alpha _a\\theta _a +{{\\sqrt {2m}R_a}\\over \\hbar }\\int ^{\\theta _a}d{\\bar \\theta }_a~ V_a({\\bar \\theta }_1,\\cdots , {\\bar \\theta }_a, \\cdots , {\\bar \\theta }_N)\\Bigr ) \\ket {+}, \\\\ \\Psi ^{-}(\\theta _1, \\cdots , \\theta _N)&=& {\\rm exp}\\sum _{a=1}^{N}\\Bigl (-i\\alpha _a\\theta _a -{{\\sqrt {2m}R_a}\\over \\hbar }\\int ^{\\theta _a}d{\\bar \\theta }_a~ V_a({\\bar \\theta }_1,\\cdots , {\\bar \\theta }_a, \\cdots , {\\bar \\theta }_N)\\Bigr ) \\ket {-}. \\end {eqnarray}"
],
"latex_norm": [
"$ T ^ { N } = S ^ { 1 } \\otimes \\cdots \\otimes S ^ { 1 } $",
"$ \\alpha _ { a } ( a = 1 , \\cdots , N ) $",
"$ S ^ { 1 } $",
"$ \\hat { Q } \\vert - \\rangle = \\hat { \\bar { Q } } \\vert + \\rangle = 0 $",
"$ \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } + 2 \\pi , \\cdots ) = \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } , \\cdots ) ~ ( a = 1 , \\cdots , N ) $",
"$ \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } + 2 \\pi , \\cdots ) = \\Psi ^ { \\pm } ( \\cdots , \\theta _ { a } , \\cdots ) ~ ( a = 1 , \\cdots , N ) $",
"$ \\alpha _ { a } ( a = 1 , \\cdots , N ) $",
"$ S ^ { 1 } $",
"$ S ^ { 1 } $",
"$ \\alpha $",
"$ \\alpha $",
"\\begin{equation*} \\hat { H } = \\sum _ { a = 1 } ^ { N } \\frac { 1 } { 2 m R _ { a } ^ { 2 } } \\hat { G } _ { a } \\hat { G } _ { a } + \\hat { V } _ { a } \\hat { V } _ { a } - \\sum _ { a , b = 1 } ^ { N } \\frac { i } { \\sqrt { 2 m } R _ { a } } [ \\hat { G } _ { a } , \\hat { V } _ { b } ] [ \\hat { \\xi } _ { a } , \\hat { \\bar { \\xi } } _ { b } ] . \\end{equation*}",
"\\begin{equation*} \\vert - \\rangle \\equiv \\vert 0 \\rangle , \\quad \\vert + \\rangle \\equiv \\prod _ { a = 1 } ^ { N } \\hat { \\bar { \\xi } } _ { a } ~ \\vert 0 \\rangle \\quad w i t h \\quad \\hat { \\xi } _ { a } \\vert 0 \\rangle = 0 ~ ~ ( a = 1 , \\cdots , N ) . \\end{equation*}",
"\\begin{align*} \\Psi ^ { + } ( \\theta _ { 1 } , \\cdots , \\theta _ { N } ) & = & e x p \\sum _ { a = 1 } ^ { N } ( - i \\alpha _ { a } \\theta _ { a } + \\frac { \\sqrt { 2 m } R _ { a } } { \\hbar } \\int ^ { \\theta _ { a } } d \\bar { \\theta } _ { a } ~ V _ { a } ( \\bar { \\theta } _ { 1 } , \\cdots , \\bar { \\theta } _ { a } , \\cdots , \\bar { \\theta } _ { N } ) ) \\vert + \\rangle , \\\\ \\Psi ^ { - } ( \\theta _ { 1 } , \\cdots , \\theta _ { N } ) & = & e x p \\sum _ { a = 1 } ^ { N } ( - i \\alpha _ { a } \\theta _ { a } - \\frac { \\sqrt { 2 m } R _ { a } } { \\hbar } \\int ^ { \\theta _ { a } } d \\bar { \\theta } _ { a } ~ V _ { a } ( \\bar { \\theta } _ { 1 } , \\cdots , \\bar { \\theta } _ { a } , \\cdots , \\bar { \\theta } _ { N } ) ) \\vert - \\rangle . \\end{align*}"
],
"latex_expand": [
"$ \\mitT ^ { \\mitN } = \\mitS ^ { 1 } \\otimes \\cdots \\otimes \\mitS ^ { 1 } $",
"$ \\mitalpha _ { \\mita } ( \\mita = 1 , \\cdots , \\mitN ) $",
"$ \\mitS ^ { 1 } $",
"$ \\hat { \\mitQ } \\vert - \\rangle = \\hat { \\bar { \\mitQ } } \\vert + \\rangle = 0 $",
"$ \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } + 2 \\mitpi , \\cdots ) = \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } , \\cdots ) ~ ( \\mita = 1 , \\cdots , \\mitN ) $",
"$ \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } + 2 \\mitpi , \\cdots ) = \\mupPsi ^ { \\pm } ( \\cdots , \\mittheta _ { \\mita } , \\cdots ) ~ ( \\mita = 1 , \\cdots , \\mitN ) $",
"$ \\mitalpha _ { \\mita } ( \\mita = 1 , \\cdots , \\mitN ) $",
"$ \\mitS ^ { 1 } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitalpha $",
"$ \\mitalpha $",
"\\begin{equation*} \\hat { \\mitH } = \\sum _ { \\mita = 1 } ^ { \\mitN } \\frac { 1 } { 2 \\mitm \\mitR _ { \\mita } ^ { 2 } } \\hat { \\mitG } _ { \\mita } \\hat { \\mitG } _ { \\mita } + \\hat { \\mitV } _ { \\mita } \\hat { \\mitV } _ { \\mita } - \\sum _ { \\mita , \\mitb = 1 } ^ { \\mitN } \\frac { \\miti } { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } [ \\hat { \\mitG } _ { \\mita } , \\hat { \\mitV } _ { \\mitb } ] [ \\hat { \\mitxi } _ { \\mita } , \\hat { \\bar { \\mitxi } } _ { \\mitb } ] . \\end{equation*}",
"\\begin{equation*} \\vert - \\rangle \\equiv \\vert 0 \\rangle , \\quad \\vert + \\rangle \\equiv \\prod _ { \\mita = 1 } ^ { \\mitN } \\hat { \\bar { \\mitxi } } _ { \\mita } ~ \\vert 0 \\rangle \\quad \\mathrm { w i t h } \\quad \\hat { \\mitxi } _ { \\mita } \\vert 0 \\rangle = 0 ~ ~ ( \\mita = 1 , \\cdots , \\mitN ) . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mupPsi ^ { + } ( \\mittheta _ { 1 } , \\cdots , \\mittheta _ { \\mitN } ) & = & \\displaystyle \\mathrm { e x p } \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( - \\miti \\mitalpha _ { \\mita } \\mittheta _ { \\mita } + \\frac { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } { \\hslash } \\int ^ { \\mittheta _ { \\mita } } \\mitd \\bar { \\mittheta } _ { \\mita } ~ \\mitV _ { \\mita } ( \\bar { \\mittheta } _ { 1 } , \\cdots , \\bar { \\mittheta } _ { \\mita } , \\cdots , \\bar { \\mittheta } _ { \\mitN } ) \\Big ) \\vert + \\rangle , \\\\ \\displaystyle \\mupPsi ^ { - } ( \\mittheta _ { 1 } , \\cdots , \\mittheta _ { \\mitN } ) & = & \\displaystyle \\mathrm { e x p } \\sum _ { \\mita = 1 } ^ { \\mitN } \\Big ( - \\miti \\mitalpha _ { \\mita } \\mittheta _ { \\mita } - \\frac { \\sqrt { 2 \\mitm } \\mitR _ { \\mita } } { \\hslash } \\int ^ { \\mittheta _ { \\mita } } \\mitd \\bar { \\mittheta } _ { \\mita } ~ \\mitV _ { \\mita } ( \\bar { \\mittheta } _ { 1 } , \\cdots , \\bar { \\mittheta } _ { \\mita } , \\cdots , \\bar { \\mittheta } _ { \\mitN } ) \\Big ) \\vert - \\rangle . \\end{align*}"
],
"x_min": [
0.120899997651577,
0.4050000011920929,
0.7580999732017517,
0.17759999632835388,
0.6945000290870667,
0.120899997651577,
0.5942999720573425,
0.8029999732971191,
0.32409998774528503,
0.16590000689029694,
0.5169000029563904,
0.25429999828338623,
0.23360000550746918,
0.15070000290870667
],
"y_min": [
0.20509999990463257,
0.2061000019311905,
0.22709999978542328,
0.37450000643730164,
0.5659000277519226,
0.586899995803833,
0.6298999786376953,
0.7124000191688538,
0.7973999977111816,
0.8661999702453613,
0.8877000212669373,
0.12600000202655792,
0.31790000200271606,
0.4668000042438507
],
"x_max": [
0.29440000653266907,
0.5522000193595886,
0.7795000076293945,
0.3310000002384186,
0.888700008392334,
0.3869999945163727,
0.7401000261306763,
0.8251000046730042,
0.34619998931884766,
0.17900000512599945,
0.5299999713897705,
0.7526000142097473,
0.7732999920845032,
0.854200005531311
],
"y_max": [
0.21879999339580536,
0.22120000422000885,
0.23880000412464142,
0.39399999380111694,
0.5805000066757202,
0.6019999980926514,
0.6449999809265137,
0.7240999937057495,
0.8090999722480774,
0.8730000257492065,
0.8945000171661377,
0.1703999936580658,
0.35989999771118164,
0.5562000274658203
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003194_page14
|
{
"latex": [
"$S^1$",
"$V(\\hw ,\\hwd )$",
"$\\hw $",
"$\\hwd $",
"${\\rm exp}(\\int ^{\\theta }d{\\bar \\theta } V(\\e ^{i{\\bar \\theta }},\\e ^{-i{\\bar \\theta }}))$",
"$\\alpha $",
"$\\hg ^2$",
"$\\alpha $",
"$(m+\\alpha )^2$",
"$\\e ^{im\\theta }$",
"$R\\rightarrow \\infty $",
"$\\omega =\\sqrt {g_N/R}$",
"$\\alpha $",
"$[{\\hat p}, {\\hat x}]=-i\\hbar $",
"$({\\hat x})$",
"$(\\hxi , \\hxib )$",
"\\begin {equation} \\psi _{\\pm \\half }({\\theta })={\\rm exp}\\Bigl (-i\\alpha \\theta \\mp {{\\sqrt {2m}R}\\over \\hbar }\\int ^{\\theta }d{\\bar \\theta }~V(\\e ^{i{\\bar \\theta }}, \\e ^{-i{\\bar \\theta }}) \\Bigr ), \\label {closed} \\end {equation}"
],
"latex_norm": [
"$ S ^ { 1 } $",
"$ V ( \\hat { W } , \\hat { W } ^ { \\dagger } ) $",
"$ \\hat { W } $",
"$ \\hat { W } ^ { \\dagger } $",
"$ e x p ( \\int ^ { \\theta } d \\bar { \\theta } V ( e ^ { i \\bar { \\theta } } , e ^ { - i \\bar { \\theta } } ) ) $",
"$ \\alpha $",
"$ \\hat { G } ^ { 2 } $",
"$ \\alpha $",
"$ ( m + \\alpha ) ^ { 2 } $",
"$ { e } ^ { i m \\theta } $",
"$ R \\rightarrow \\infty $",
"$ \\omega = \\sqrt { g _ { N } \\slash R } $",
"$ \\alpha $",
"$ [ \\hat { p } , \\hat { x } ] = - i \\hbar $",
"$ ( \\hat { x } ) $",
"$ ( \\hat { \\xi } , \\hat { \\bar { \\xi } } ) $",
"\\begin{equation*} \\psi _ { \\pm \\frac { 1 } { 2 } } ( \\theta ) = e x p ( - i \\alpha \\theta \\mp \\frac { \\sqrt { 2 m } R } { \\hbar } \\int ^ { \\theta } d \\bar { \\theta } ~ V ( e ^ { i \\bar { \\theta } } , e ^ { - i \\bar { \\theta } } ) ) , \\end{equation*}"
],
"latex_expand": [
"$ \\mitS ^ { 1 } $",
"$ \\mitV ( \\hat { \\mitW } , \\hat { \\mitW } ^ { \\dagger } ) $",
"$ \\hat { \\mitW } $",
"$ \\hat { \\mitW } ^ { \\dagger } $",
"$ \\mathrm { e x p } ( \\int \\nolimits ^ { \\mittheta } \\mitd \\bar { \\mittheta } \\mitV ( \\mathrm { e } ^ { \\miti \\bar { \\mittheta } } , \\mathrm { e } ^ { - \\miti \\bar { \\mittheta } } ) ) $",
"$ \\mitalpha $",
"$ \\hat { \\mitG } ^ { 2 } $",
"$ \\mitalpha $",
"$ ( \\mitm + \\mitalpha ) ^ { 2 } $",
"$ { \\mathrm { e } } ^ { \\miti \\mitm \\mittheta } $",
"$ \\mitR \\rightarrow \\infty $",
"$ \\mitomega = \\sqrt { \\mitg _ { \\mitN } \\slash \\mitR } $",
"$ \\mitalpha $",
"$ [ \\hat { \\mitp } , \\hat { \\mitx } ] = - \\miti \\hslash $",
"$ ( \\hat { \\mitx } ) $",
"$ ( \\hat { \\mitxi } , \\hat { \\bar { \\mitxi } } ) $",
"\\begin{equation*} \\mitpsi _ { \\pm \\frac { 1 } { 2 } } ( \\mittheta ) = \\mathrm { e x p } \\Big ( - \\miti \\mitalpha \\mittheta \\mp \\frac { \\sqrt { 2 \\mitm } \\mitR } { \\hslash } \\int ^ { \\mittheta } \\mitd \\bar { \\mittheta } ~ \\mitV ( \\mathrm { e } ^ { \\miti \\bar { \\mittheta } } , \\mathrm { e } ^ { - \\miti \\bar { \\mittheta } } ) \\Big ) , \\end{equation*}"
],
"x_min": [
0.46860000491142273,
0.45680001378059387,
0.656499981880188,
0.72079998254776,
0.4332999885082245,
0.14239999651908875,
0.5293999910354614,
0.8708000183105469,
0.1582999974489212,
0.28610000014305115,
0.4546999931335449,
0.4083999991416931,
0.36559998989105225,
0.33660000562667847,
0.8568999767303467,
0.23839999735355377,
0.2874999940395355
],
"y_min": [
0.1851000040769577,
0.20409999787807465,
0.24660000205039978,
0.24660000205039978,
0.37599998712539673,
0.44679999351501465,
0.5673999786376953,
0.5746999979019165,
0.5907999873161316,
0.6327999830245972,
0.6987000107765198,
0.73580002784729,
0.8306000232696533,
0.8682000041007996,
0.8895999789237976,
0.9061999917030334,
0.3125
],
"x_max": [
0.49000000953674316,
0.5465999841690063,
0.678600013256073,
0.7498000264167786,
0.6157000064849854,
0.15549999475479126,
0.553600013256073,
0.883899986743927,
0.2378000020980835,
0.3206999897956848,
0.5217000246047974,
0.5127999782562256,
0.37869998812675476,
0.4375,
0.8831999897956848,
0.28189998865127563,
0.7160000205039978
],
"y_max": [
0.19679999351501465,
0.22169999778270721,
0.26080000400543213,
0.26080000400543213,
0.39309999346733093,
0.4535999894142151,
0.58160001039505,
0.5814999938011169,
0.6064000129699707,
0.6455000042915344,
0.7089999914169312,
0.7583000063896179,
0.836899995803833,
0.8833000063896179,
0.90420001745224,
0.9257000088691711,
0.34860000014305115
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003194_page15
|
{
"latex": [
"$N$",
"$T^N$",
"$\\ket {-}$",
"$\\ket {+}$",
"$\\alpha _a \\neq {\\rm integer}(a=1, \\cdots , N)$",
"$\\alpha _a \\neq {\\rm integer}(a=1, \\cdots , N)$",
"$S^1$",
"${\\rm Tr}(-1)^{{\\hat f}}=1$",
"$S^1$",
"$0 < \\alpha < 1$",
"$\\e ^{-i2\\pi \\alpha }$",
"$S^1$",
"$\\alpha =1/2$",
"$U(1)_R$",
"$U(1)_R$",
"$\\e ^{-i2\\pi \\alpha }$",
"$U(1)_R$"
],
"latex_norm": [
"$ N $",
"$ T ^ { N } $",
"$ \\vert - \\rangle $",
"$ \\vert + \\rangle $",
"$ \\alpha _ { a } \\ne i n t e g e r ( a = 1 , \\cdots , N ) $",
"$ \\alpha _ { a } \\ne i n t e g e r ( a = 1 , \\cdots , N ) $",
"$ S ^ { 1 } $",
"$ T r ( - 1 ) ^ { \\hat { f } } = 1 $",
"$ S ^ { 1 } $",
"$ 0 < \\alpha < 1 $",
"$ { e } ^ { - i 2 \\pi \\alpha } $",
"$ S ^ { 1 } $",
"$ \\alpha = 1 \\slash 2 $",
"$ U ( 1 ) _ { R } $",
"$ U ( 1 ) _ { R } $",
"$ { e } ^ { - i 2 \\pi \\alpha } $",
"$ U ( 1 ) _ { R } $"
],
"latex_expand": [
"$ \\mitN $",
"$ \\mitT ^ { \\mitN } $",
"$ \\vert - \\rangle $",
"$ \\vert + \\rangle $",
"$ \\mitalpha _ { \\mita } \\ne \\mathrm { i n t e g e r } ( \\mita = 1 , \\cdots , \\mitN ) $",
"$ \\mitalpha _ { \\mita } \\ne \\mathrm { i n t e g e r } ( \\mita = 1 , \\cdots , \\mitN ) $",
"$ \\mitS ^ { 1 } $",
"$ \\mathrm { T r } ( - 1 ) ^ { \\hat { \\mitf } } = 1 $",
"$ \\mitS ^ { 1 } $",
"$ 0 < \\mitalpha < 1 $",
"$ { \\mathrm { e } } ^ { - \\miti 2 \\mitpi \\mitalpha } $",
"$ \\mitS ^ { 1 } $",
"$ \\mitalpha = 1 \\slash 2 $",
"$ \\mitU ( 1 ) _ { \\mitR } $",
"$ \\mitU ( 1 ) _ { \\mitR } $",
"$ { \\mathrm { e } } ^ { - \\miti 2 \\mitpi \\mitalpha } $",
"$ \\mitU ( 1 ) _ { \\mitR } $"
],
"x_min": [
0.4133000075817108,
0.6481999754905701,
0.3682999908924103,
0.44510000944137573,
0.738099992275238,
0.120899997651577,
0.17350000143051147,
0.7346000075340271,
0.6538000106811523,
0.120899997651577,
0.26260000467300415,
0.15129999816417694,
0.18729999661445618,
0.5245000123977661,
0.120899997651577,
0.29789999127388,
0.3801000118255615
],
"y_min": [
0.10109999775886536,
0.14159999787807465,
0.16410000622272491,
0.16410000622272491,
0.20649999380111694,
0.2280000001192093,
0.24899999797344208,
0.5015000104904175,
0.61080002784729,
0.6342999935150146,
0.6317999958992004,
0.6747999787330627,
0.739300012588501,
0.8246999979019165,
0.8457000255584717,
0.8661999702453613,
0.9096999764442444
],
"x_max": [
0.43130001425743103,
0.6765000224113464,
0.39800000190734863,
0.4740999937057495,
0.8894000053405762,
0.20110000669956207,
0.1949000060558319,
0.84170001745224,
0.6751999855041504,
0.22390000522136688,
0.31369999051094055,
0.17270000278949738,
0.2606000006198883,
0.5777000188827515,
0.17339999973773956,
0.3490000069141388,
0.4325999915599823
],
"y_max": [
0.11140000075101852,
0.15379999577999115,
0.17919999361038208,
0.17919999361038208,
0.2215999960899353,
0.24310000240802765,
0.260699987411499,
0.5200999975204468,
0.6225000023841858,
0.644599974155426,
0.6439999938011169,
0.6865000128746033,
0.7538999915122986,
0.8392999768257141,
0.8603000044822693,
0.8784000277519226,
0.9243000149726868
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003194_page16
|
{
"latex": [
"$U(1)_R$",
"$\\phi $",
"$S^1$"
],
"latex_norm": [
"$ U ( 1 ) _ { R } $",
"$ \\phi $",
"$ S ^ { 1 } $"
],
"latex_expand": [
"$ \\mitU ( 1 ) _ { \\mitR } $",
"$ \\mitphi $",
"$ \\mitS ^ { 1 } $"
],
"x_min": [
0.37940001487731934,
0.47200000286102295,
0.48579999804496765
],
"y_min": [
0.12160000205039978,
0.30219998955726624,
0.36469998955726624
],
"x_max": [
0.4318999946117401,
0.4837000072002411,
0.5072000026702881
],
"y_max": [
0.13619999587535858,
0.31540000438690186,
0.3763999938964844
],
"expr_type": [
"embedded",
"embedded",
"embedded"
]
}
|
|
0003204_page01
|
{
"latex": [
"$B$",
"$\\Phi $"
],
"latex_norm": [
"$ B $",
"$ \\Phi $"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mupPhi $"
],
"x_min": [
0.2653999924659729,
0.36070001125335693
],
"y_min": [
0.5985999703407288,
0.6470000147819519
],
"x_max": [
0.28060001134872437,
0.37450000643730164
],
"y_max": [
0.6079000234603882,
0.6563000082969666
],
"expr_type": [
"embedded",
"embedded"
]
}
|
|
0003204_page02
|
{
"latex": [
"$SO(d,d,Z)$",
"$d$",
"$B$",
"$B$",
"$B$",
"$\\Phi $",
"$\\Phi $",
"$B$",
"$\\Phi $",
"$\\Phi $",
"$p$",
"\\begin {equation} S = \\frac {1}{4\\pi \\al }\\int _{\\Sigma }d^2\\sigma (g_{\\mu \\nu }\\partial _aX^{\\mu } \\partial ^aX^{\\nu } - 2\\pi \\al B_{\\mu \\nu }\\e ^{ab}\\partial _aX^{\\mu }\\partial _b X^{\\nu })+\\oint _{\\partial \\Sigma }d\\tau A_i(X)\\partial _{\\tau }X^i, \\end {equation}"
],
"latex_norm": [
"$ S O ( d , d , Z ) $",
"$ d $",
"$ B $",
"$ B $",
"$ B $",
"$ \\Phi $",
"$ \\Phi $",
"$ B $",
"$ \\Phi $",
"$ \\Phi $",
"$ p $",
"\\begin{equation*} S = \\frac { 1 } { 4 \\pi \\alpha ^ { \\prime } } \\int _ { \\Sigma } d ^ { 2 } \\sigma ( g _ { \\mu \\nu } \\partial _ { a } X ^ { \\mu } \\partial ^ { a } X ^ { \\nu } - 2 \\pi \\alpha ^ { \\prime } B _ { \\mu \\nu } \\epsilon ^ { a b } \\partial _ { a } X ^ { \\mu } \\partial _ { b } X ^ { \\nu } ) + \\oint _ { \\partial \\Sigma } d \\tau A _ { i } ( X ) \\partial _ { \\tau } X ^ { i } , \\end{equation*}"
],
"latex_expand": [
"$ \\mitS \\mitO ( \\mitd , \\mitd , \\mitZ ) $",
"$ \\mitd $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\mupPhi $",
"$ \\mupPhi $",
"$ \\mitB $",
"$ \\mupPhi $",
"$ \\mupPhi $",
"$ \\mitp $",
"\\begin{equation*} \\mitS = \\frac { 1 } { 4 \\mitpi \\mitalpha ^ { \\prime } } \\int _ { \\mupSigma } \\mitd ^ { 2 } \\mitsigma ( \\mitg _ { \\mitmu \\mitnu } \\mitpartial _ { \\mita } \\mitX ^ { \\mitmu } \\mitpartial ^ { \\mita } \\mitX ^ { \\mitnu } - 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB _ { \\mitmu \\mitnu } \\mitepsilon ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX ^ { \\mitmu } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitnu } ) + \\oint _ { \\mitpartial \\mupSigma } \\mitd \\mittau \\mitA _ { \\miti } ( \\mitX ) \\mitpartial _ { \\mittau } \\mitX ^ { \\miti } , \\end{equation*}"
],
"x_min": [
0.6557999849319458,
0.3490000069141388,
0.746399998664856,
0.6517000198364258,
0.8238000273704529,
0.4194999933242798,
0.541100025177002,
0.3359000086784363,
0.7802000045776367,
0.6973000168800354,
0.7670999765396118,
0.17550000548362732
],
"y_min": [
0.17919999361038208,
0.1973000019788742,
0.24899999797344208,
0.3003000020980835,
0.489300012588501,
0.5404999852180481,
0.6093999743461609,
0.6776999831199646,
0.7289999723434448,
0.7465999722480774,
0.801800012588501,
0.8256999850273132
],
"x_max": [
0.7531999945640564,
0.36010000109672546,
0.7623000144958496,
0.6682999730110168,
0.840399980545044,
0.4339999854564667,
0.5555999875068665,
0.35249999165534973,
0.794700026512146,
0.7117999792098999,
0.7774999737739563,
0.8410000205039978
],
"y_max": [
0.19429999589920044,
0.20800000429153442,
0.25929999351501465,
0.31060001254081726,
0.49959999322891235,
0.5508000254631042,
0.619700014591217,
0.6880000233650208,
0.7397000193595886,
0.7569000124931335,
0.8111000061035156,
0.8583999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003204_page03
|
{
"latex": [
"$A_i, i = 0,1,\\cdots ,p$",
"$p$",
"$g_{\\mu \\nu }, B_{\\mu \\nu }, \\mu = 0,1,\\cdots ,9$",
"$g_{\\mu \\nu }, B_{\\mu \\nu }, \\mu = 0,1,\\cdots ,9$",
"$B_{\\mu \\nu }$",
"$p$",
"$\\F _{ij} = B_{ij} + F_{ij}$",
"$F = dA$",
"$X^{\\mu }, \\mu = p+1,\\cdots ,9$",
"$X^i$",
"$X^i$",
"$\\partial _{\\sigma }X^i - 2\\pi \\al \\partial _{\\tau } X^j\\F _j^i = 0$",
"$\\sigma = 0, \\pi $",
"$X^k$",
"$M_{ij} = g_{ij} - (2\\pi \\al )^2(\\F g^{-1}\\F )_{ij}$",
"$(M^{-1}\\F )^{ij}$",
"$M^{-1ik}\\F _{kl}g^{-1lj}$",
"$X^k(\\sigma ,\\tau )$",
"$\\tau = -i\\tau '$",
"$z = e^{\\tau '+i\\sigma }$",
"$M^{-1} - (2\\pi \\al )^2g^{-1}\\F M^{-1}\\F g^{-1} = g^{-1}, M^{-1}\\F g^{-1} = g^{-1}\\F M^{-1}$",
"\\begin {equation} S = \\frac {1}{4\\pi \\al }\\int _{\\Sigma }d^2\\sigma (g_{\\mu \\nu }\\partial _aX^{\\mu } \\partial ^aX^{\\nu } - 2\\pi \\al \\F _{ij}\\e ^{ab}\\partial _aX^{i}\\partial _b X^{j}) \\end {equation}",
"\\begin {equation} X^k = x_0^k + ( p_0^k\\tau + 2\\pi \\al p_0^j\\F _j^k\\sigma ) + \\sum _{n\\neq 0}\\frac {e^{-in\\tau }}{n}(ia_n^k \\cos n\\sigma + 2\\pi \\al a_n^j\\F _j^k \\sin n\\sigma ). \\label {mod}\\end {equation}",
"\\[ [a_m^i, a_n^j] = 2\\al mM^{-1ij}\\delta _{m+n}, \\hspace {1cm} [x_0^i, p_0^j] =i2\\al M^{-1ij}, \\]",
"\\begin {equation} [x_0^i, x_0^j] = i2\\pi \\al (M^{-1}\\F )^{ij}, \\hspace {1cm} [p_0^i, p_0^j] = 0, \\label {com}\\end {equation}",
"\\begin {equation} X^k(z) = x_0^k - \\frac {i}{2}(p_0^k\\ln z\\bar {z} + 2\\pi \\al p_0^j\\F _j^k \\ln \\frac {z}{\\bar {z}}) + i\\sum _{n\\neq 0} (a_n^k(z^{-n} + \\bar {z}^{-n}) + 2\\pi \\al a_n^j\\F _j^k(z^{-n} - \\bar {z}^{-n})). \\end {equation}",
"\\begin {eqnarray} <0|X^i(z)X^j(z')|0> = \\al ( -M^{-1ij}\\ln z\\bar {z} +2\\pi \\al (\\F M^{-1})^{ij} \\ln \\frac {z}{\\bar {z}} \\hspace {3cm} {}\\\\ -\\frac {1}{2}M^{-1ij}(\\ln |1-\\frac {z'}{z}|^2 + \\ln |1-\\frac {\\bar {z}'}{z}|^2) + \\frac {(2\\pi \\al )^2}{2}(\\F M^{-1}\\F )^{ij}(\\ln |1-\\frac {z'}{z}|^2 - \\ln |1-\\frac {\\bar {z}'}{z}|^2) \\\\ - \\frac {2\\pi \\al }{2}(M^{-1}\\F )^{ij}\\ln \\frac {(z-z')(\\bar {z}-z')} {(z-\\bar {z}')(\\bar {z}-\\bar {z}')} + \\frac {2\\pi \\al }{2}(\\F M^{-1})^{ij}(\\ln \\frac {(z-z')(z-\\bar {z}')}{(\\bar {z}-z')(\\bar {z}-\\bar {z}')} - 2\\ln \\frac {z}{\\bar {z}})), \\end {eqnarray}",
"\\begin {equation} -\\al (g^{-1ij}(\\ln |z-z'|-\\ln |z-\\bar {z}'|) + M^{-1ij}\\ln |z-z'|^2 -2\\pi \\al (M^{-1}\\F g^{-1})^{ij}\\ln \\frac {z-\\bar {z}'}{\\bar {z}-z'}). \\label {pro}\\end {equation}"
],
"latex_norm": [
"$ A _ { i } , i = 0 , 1 , \\cdots , p $",
"$ p $",
"$ g _ { \\mu \\nu } , B _ { \\mu \\nu } , \\mu = 0 , 1 , \\cdots , 9 $",
"$ g _ { \\mu \\nu } , B _ { \\mu \\nu } , \\mu = 0 , 1 , \\cdots , 9 $",
"$ B _ { \\mu \\nu } $",
"$ p $",
"$ F _ { i j } = B _ { i j } + F _ { i j } $",
"$ F = d A $",
"$ X ^ { \\mu } , \\mu = p + 1 , \\cdots , 9 $",
"$ X ^ { i } $",
"$ X ^ { i } $",
"$ \\partial _ { \\sigma } X ^ { i } - 2 \\pi \\alpha ^ { \\prime } \\partial _ { \\tau } X ^ { j } F _ { j } ^ { i } = 0 $",
"$ \\sigma = 0 , \\pi $",
"$ X ^ { k } $",
"$ M _ { i j } = g _ { i j } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( F g ^ { - 1 } F ) _ { i j } $",
"$ ( M ^ { - 1 } F ) ^ { i j } $",
"$ M ^ { - 1 i k } F _ { k l } g ^ { - 1 l j } $",
"$ X ^ { k } ( \\sigma , \\tau ) $",
"$ \\tau = - i \\tau ^ { \\prime } $",
"$ z = e ^ { \\tau ^ { \\prime } + i \\sigma } $",
"$ M ^ { - 1 } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } g ^ { - 1 } F M ^ { - 1 } F g ^ { - 1 } = g ^ { - 1 } , M ^ { - 1 } F g ^ { - 1 } = g ^ { - 1 } F M ^ { - 1 } $",
"\\begin{equation*} S = \\frac { 1 } { 4 \\pi \\alpha ^ { \\prime } } \\int _ { \\Sigma } d ^ { 2 } \\sigma ( g _ { \\mu \\nu } \\partial _ { a } X ^ { \\mu } \\partial ^ { a } X ^ { \\nu } - 2 \\pi \\alpha ^ { \\prime } F _ { i j } \\epsilon ^ { a b } \\partial _ { a } X ^ { i } \\partial _ { b } X ^ { j } ) \\end{equation*}",
"\\begin{equation*} X ^ { k } = x _ { 0 } ^ { k } + ( p _ { 0 } ^ { k } \\tau + 2 \\pi \\alpha ^ { \\prime } p _ { 0 } ^ { j } F _ { j } ^ { k } \\sigma ) + \\sum _ { n \\ne 0 } \\frac { e ^ { - i n \\tau } } { n } ( i a _ { n } ^ { k } \\operatorname { c o s } n \\sigma + 2 \\pi \\alpha ^ { \\prime } a _ { n } ^ { j } F _ { j } ^ { k } \\operatorname { s i n } n \\sigma ) . \\end{equation*}",
"\\begin{equation*} [ a _ { m } ^ { i } , a _ { n } ^ { j } ] = 2 \\alpha ^ { \\prime } m M ^ { - 1 i j } \\delta _ { m + n } , \\hspace{28.45pt} [ x _ { 0 } ^ { i } , p _ { 0 } ^ { j } ] = i 2 \\alpha ^ { \\prime } M ^ { - 1 i j } , \\end{equation*}",
"\\begin{equation*} [ x _ { 0 } ^ { i } , x _ { 0 } ^ { j } ] = i 2 \\pi \\alpha ^ { \\prime } ( M ^ { - 1 } F ) ^ { i j } , \\hspace{28.45pt} [ p _ { 0 } ^ { i } , p _ { 0 } ^ { j } ] = 0 , \\end{equation*}",
"\\begin{equation*} X ^ { k } ( z ) = x _ { 0 } ^ { k } - \\frac { i } { 2 } ( p _ { 0 } ^ { k } \\operatorname { l n } z \\bar { z } + 2 \\pi \\alpha ^ { \\prime } p _ { 0 } ^ { j } F _ { j } ^ { k } \\operatorname { l n } \\frac { z } { \\bar { z } } ) + i \\sum _ { n \\ne 0 } ( a _ { n } ^ { k } ( z ^ { - n } + \\bar { z } ^ { - n } ) + 2 \\pi \\alpha ^ { \\prime } a _ { n } ^ { j } F _ { j } ^ { k } ( z ^ { - n } - \\bar { z } ^ { - n } ) ) . \\end{equation*}",
"\\begin{align*} < 0 \\vert X ^ { i } ( z ) X ^ { j } ( z ^ { \\prime } ) \\vert 0 > = \\alpha ^ { \\prime } ( - M ^ { - 1 i j } \\operatorname { l n } z \\bar { z } + 2 \\pi \\alpha ^ { \\prime } ( F M ^ { - 1 } ) ^ { i j } \\operatorname { l n } \\frac { z } { \\bar { z } } \\hspace{85.36pt} \\\\ - \\frac { 1 } { 2 } M ^ { - 1 i j } ( \\operatorname { l n } \\vert 1 - \\frac { z ^ { \\prime } } { z } \\vert ^ { 2 } + \\operatorname { l n } \\vert 1 - \\frac { \\bar { z } ^ { \\prime } } { z } \\vert ^ { 2 } ) + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 2 } ( F M ^ { - 1 } F ) ^ { i j } ( \\operatorname { l n } \\vert 1 - \\frac { z ^ { \\prime } } { z } \\vert ^ { 2 } - \\operatorname { l n } \\vert 1 - \\frac { \\bar { z } ^ { \\prime } } { z } \\vert ^ { 2 } ) \\\\ - \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 } ( M ^ { - 1 } F ) ^ { i j } \\operatorname { l n } \\frac { ( z - z ^ { \\prime } ) ( \\bar { z } - z ^ { \\prime } ) } { ( z - \\bar { z } ^ { \\prime } ) ( \\bar { z } - \\bar { z } ^ { \\prime } ) } + \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 } ( F M ^ { - 1 } ) ^ { i j } ( \\operatorname { l n } \\frac { ( z - z ^ { \\prime } ) ( z - \\bar { z } ^ { \\prime } ) } { ( \\bar { z } - z ^ { \\prime } ) ( \\bar { z } - \\bar { z } ^ { \\prime } ) } - 2 \\operatorname { l n } \\frac { z } { \\bar { z } } ) ) , \\end{align*}",
"\\begin{equation*} - \\alpha ^ { \\prime } ( g ^ { - 1 i j } ( \\operatorname { l n } \\vert z - z ^ { \\prime } \\vert - \\operatorname { l n } \\vert z - \\bar { z } ^ { \\prime } \\vert ) + M ^ { - 1 i j } \\operatorname { l n } \\vert z - z ^ { \\prime } \\vert ^ { 2 } - 2 \\pi \\alpha ^ { \\prime } ( M ^ { - 1 } F g ^ { - 1 } ) ^ { i j } \\operatorname { l n } \\frac { z - \\bar { z } ^ { \\prime } } { \\bar { z } - z ^ { \\prime } } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitA _ { \\miti } , \\miti = 0 , 1 , \\cdots , \\mitp $",
"$ \\mitp $",
"$ \\mitg _ { \\mitmu \\mitnu } , \\mitB _ { \\mitmu \\mitnu } , \\mitmu = 0 , 1 , \\cdots , 9 $",
"$ \\mitg _ { \\mitmu \\mitnu } , \\mitB _ { \\mitmu \\mitnu } , \\mitmu = 0 , 1 , \\cdots , 9 $",
"$ \\mitB _ { \\mitmu \\mitnu } $",
"$ \\mitp $",
"$ \\mscrF _ { \\miti \\mitj } = \\mitB _ { \\miti \\mitj } + \\mitF _ { \\miti \\mitj } $",
"$ \\mitF = \\mitd \\mitA $",
"$ \\mitX ^ { \\mitmu } , \\mitmu = \\mitp + 1 , \\cdots , 9 $",
"$ \\mitX ^ { \\miti } $",
"$ \\mitX ^ { \\miti } $",
"$ \\mitpartial _ { \\mitsigma } \\mitX ^ { \\miti } - 2 \\mitpi \\mitalpha ^ { \\prime } \\mitpartial _ { \\mittau } \\mitX ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\miti } = 0 $",
"$ \\mitsigma = 0 , \\mitpi $",
"$ \\mitX ^ { \\mitk } $",
"$ \\mitM _ { \\miti \\mitj } = \\mitg _ { \\miti \\mitj } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mscrF \\mitg ^ { - 1 } \\mscrF ) _ { \\miti \\mitj } $",
"$ ( \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } $",
"$ \\mitM ^ { - 1 \\miti \\mitk } \\mscrF _ { \\mitk \\mitl } \\mitg ^ { - 1 \\mitl \\mitj } $",
"$ \\mitX ^ { \\mitk } ( \\mitsigma , \\mittau ) $",
"$ \\mittau = - \\miti \\mittau ^ { \\prime } $",
"$ \\mitz = \\mite ^ { \\mittau ^ { \\prime } + \\miti \\mitsigma } $",
"$ \\mitM ^ { - 1 } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitg ^ { - 1 } \\mscrF \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = \\mitg ^ { - 1 } , \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = \\mitg ^ { - 1 } \\mscrF \\mitM ^ { - 1 } $",
"\\begin{equation*} \\mitS = \\frac { 1 } { 4 \\mitpi \\mitalpha ^ { \\prime } } \\int _ { \\mupSigma } \\mitd ^ { 2 } \\mitsigma ( \\mitg _ { \\mitmu \\mitnu } \\mitpartial _ { \\mita } \\mitX ^ { \\mitmu } \\mitpartial ^ { \\mita } \\mitX ^ { \\mitnu } - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF _ { \\miti \\mitj } \\mitepsilon ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX ^ { \\miti } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitj } ) \\end{equation*}",
"\\begin{equation*} \\mitX ^ { \\mitk } = \\mitx _ { 0 } ^ { \\mitk } + ( \\mitp _ { 0 } ^ { \\mitk } \\mittau + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitp _ { 0 } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } \\mitsigma ) + \\sum _ { \\mitn \\ne 0 } \\frac { \\mite ^ { - \\miti \\mitn \\mittau } } { \\mitn } ( \\miti \\mita _ { \\mitn } ^ { \\mitk } \\operatorname { c o s } \\mitn \\mitsigma + 2 \\mitpi \\mitalpha ^ { \\prime } \\mita _ { \\mitn } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } \\operatorname { s i n } \\mitn \\mitsigma ) . \\end{equation*}",
"\\begin{equation*} [ \\mita _ { \\mitm } ^ { \\miti } , \\mita _ { \\mitn } ^ { \\mitj } ] = 2 \\mitalpha ^ { \\prime } \\mitm \\mitM ^ { - 1 \\miti \\mitj } \\mitdelta _ { \\mitm + \\mitn } , \\hspace{28.45pt} [ \\mitx _ { 0 } ^ { \\miti } , \\mitp _ { 0 } ^ { \\mitj } ] = \\miti 2 \\mitalpha ^ { \\prime } \\mitM ^ { - 1 \\miti \\mitj } , \\end{equation*}",
"\\begin{equation*} [ \\mitx _ { 0 } ^ { \\miti } , \\mitx _ { 0 } ^ { \\mitj } ] = \\miti 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } , \\hspace{28.45pt} [ \\mitp _ { 0 } ^ { \\miti } , \\mitp _ { 0 } ^ { \\mitj } ] = 0 , \\end{equation*}",
"\\begin{equation*} \\mitX ^ { \\mitk } ( \\mitz ) = \\mitx _ { 0 } ^ { \\mitk } - \\frac { \\miti } { 2 } ( \\mitp _ { 0 } ^ { \\mitk } \\operatorname { l n } \\mitz \\bar { \\mitz } + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitp _ { 0 } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } \\operatorname { l n } \\frac { \\mitz } { \\bar { \\mitz } } ) + \\miti \\sum _ { \\mitn \\ne 0 } ( \\mita _ { \\mitn } ^ { \\mitk } ( \\mitz ^ { - \\mitn } + \\bar { \\mitz } ^ { - \\mitn } ) + 2 \\mitpi \\mitalpha ^ { \\prime } \\mita _ { \\mitn } ^ { \\mitj } \\mscrF _ { \\mitj } ^ { \\mitk } ( \\mitz ^ { - \\mitn } - \\bar { \\mitz } ^ { - \\mitn } ) ) . \\end{equation*}",
"\\begin{align*} \\displaystyle < 0 \\vert \\mitX ^ { \\miti } ( \\mitz ) \\mitX ^ { \\mitj } ( \\mitz ^ { \\prime } ) \\vert 0 > = \\mitalpha ^ { \\prime } ( - \\mitM ^ { - 1 \\miti \\mitj } \\operatorname { l n } \\mitz \\bar { \\mitz } + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mscrF \\mitM ^ { - 1 } ) ^ { \\miti \\mitj } \\operatorname { l n } \\frac { \\mitz } { \\bar { \\mitz } } \\hspace{85.36pt} \\\\ \\displaystyle - \\frac { 1 } { 2 } \\mitM ^ { - 1 \\miti \\mitj } ( \\operatorname { l n } \\vert 1 - \\frac { \\mitz ^ { \\prime } } { \\mitz } \\vert ^ { 2 } + \\operatorname { l n } \\vert 1 - \\frac { \\bar { \\mitz } ^ { \\prime } } { \\mitz } \\vert ^ { 2 } ) + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 2 } ( \\mscrF \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } ( \\operatorname { l n } \\vert 1 - \\frac { \\mitz ^ { \\prime } } { \\mitz } \\vert ^ { 2 } - \\operatorname { l n } \\vert 1 - \\frac { \\bar { \\mitz } ^ { \\prime } } { \\mitz } \\vert ^ { 2 } ) \\\\ \\displaystyle - \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 } ( \\mitM ^ { - 1 } \\mscrF ) ^ { \\miti \\mitj } \\operatorname { l n } \\frac { ( \\mitz - \\mitz ^ { \\prime } ) ( \\bar { \\mitz } - \\mitz ^ { \\prime } ) } { ( \\mitz - \\bar { \\mitz } ^ { \\prime } ) ( \\bar { \\mitz } - \\bar { \\mitz } ^ { \\prime } ) } + \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 } ( \\mscrF \\mitM ^ { - 1 } ) ^ { \\miti \\mitj } ( \\operatorname { l n } \\frac { ( \\mitz - \\mitz ^ { \\prime } ) ( \\mitz - \\bar { \\mitz } ^ { \\prime } ) } { ( \\bar { \\mitz } - \\mitz ^ { \\prime } ) ( \\bar { \\mitz } - \\bar { \\mitz } ^ { \\prime } ) } - 2 \\operatorname { l n } \\frac { \\mitz } { \\bar { \\mitz } } ) ) , \\end{align*}",
"\\begin{equation*} - \\mitalpha ^ { \\prime } ( \\mitg ^ { - 1 \\miti \\mitj } ( \\operatorname { l n } \\vert \\mitz - \\mitz ^ { \\prime } \\vert - \\operatorname { l n } \\vert \\mitz - \\bar { \\mitz } ^ { \\prime } \\vert ) + \\mitM ^ { - 1 \\miti \\mitj } \\operatorname { l n } \\vert \\mitz - \\mitz ^ { \\prime } \\vert ^ { 2 } - 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } \\operatorname { l n } \\frac { \\mitz - \\bar { \\mitz } ^ { \\prime } } { \\bar { \\mitz } - \\mitz ^ { \\prime } } ) . \\end{equation*}"
],
"x_min": [
0.17419999837875366,
0.6765999794006348,
0.7892000079154968,
0.11540000140666962,
0.43810001015663147,
0.3483000099658966,
0.5099999904632568,
0.6917999982833862,
0.24330000579357147,
0.33379998803138733,
0.5543000102043152,
0.3828999996185303,
0.6233999729156494,
0.41119998693466187,
0.1728000044822693,
0.47269999980926514,
0.7276999950408936,
0.19349999725818634,
0.11540000140666962,
0.3587000072002411,
0.11540000140666962,
0.27230000495910645,
0.1949000060558319,
0.2777999937534332,
0.32269999384880066,
0.1257999986410141,
0.13539999723434448,
0.13410000503063202
],
"y_min": [
0.094200000166893,
0.09809999912977219,
0.094200000166893,
0.11129999905824661,
0.12890000641345978,
0.149399995803833,
0.218299999833107,
0.218299999833107,
0.2354000061750412,
0.25099998712539673,
0.25099998712539673,
0.26809999346733093,
0.27000001072883606,
0.3540000021457672,
0.4765999913215637,
0.47609999775886536,
0.47609999775886536,
0.5102999806404114,
0.5288000106811523,
0.5268999934196472,
0.7695000171661377,
0.1703999936580658,
0.2969000041484833,
0.41749998927116394,
0.44679999351501465,
0.5547000169754028,
0.6342999935150146,
0.8130000233650208
],
"x_max": [
0.3255000114440918,
0.6869999766349792,
0.9046000242233276,
0.19900000095367432,
0.47130000591278076,
0.3587000072002411,
0.6406000256538391,
0.760200023651123,
0.41190001368522644,
0.3580000102519989,
0.578499972820282,
0.5929999947547913,
0.6924999952316284,
0.4381999969482422,
0.4284999966621399,
0.557699978351593,
0.8485999703407288,
0.2660999894142151,
0.19140000641345978,
0.4422999918460846,
0.6593000292778015,
0.7477999925613403,
0.8252000212669373,
0.7366999983787537,
0.6937999725341797,
0.8671000003814697,
0.861299991607666,
0.8521000146865845
],
"y_max": [
0.10740000009536743,
0.10740000009536743,
0.1088000014424324,
0.125900000333786,
0.14309999346733093,
0.15919999778270721,
0.23250000178813934,
0.22859999537467957,
0.24860000610351562,
0.2632000148296356,
0.2632000148296356,
0.2856999933719635,
0.2827000021934509,
0.3662000000476837,
0.49219998717308044,
0.4916999936103821,
0.4912000000476837,
0.5264000296592712,
0.5410000085830688,
0.5396000146865845,
0.785099983215332,
0.20309999585151672,
0.3393999934196472,
0.43560001254081726,
0.4672999978065491,
0.5952000021934509,
0.7422000169754028,
0.8476999998092651
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003204_page04
|
{
"latex": [
"$M^{-1} = (g+2\\pi \\al \\F )^{-1}g(g-2\\pi \\al \\F )^{-1}$",
"$M^{-1}\\F g^{-1} = (g+2\\pi \\al \\F )^{-1}\\F (g-2\\pi \\al \\F )^{-1}$",
"$M^{-1}\\F g^{-1} = (g+2\\pi \\al \\F )^{-1}\\F (g-2\\pi \\al \\F )^{-1}$",
"$\\te $",
"$G, \\Phi $",
"$G$",
"$\\Phi $",
"$g, B$",
"$\\te $",
"$(p+1)\\times (p+1)$",
"$B_{0i}=0$",
"$g_{0i}=0$",
"$i=1,\\cdots ,p$",
"$p$",
"$p$",
"$T^p$",
"$x^i \\sim x^i + 2\\pi r$",
"$i = 1,\\cdots ,p$",
"$g_{ij}$",
"$SO(p,p,Z)$",
"$E = r^2(g + 2\\pi \\al B)/\\al $",
"$E' = (aE + b)(cE + d)^{-1}$",
"$c^ta + a^tc = 0, d^tb + b^td = 0, c^tb + a^td = 1$",
"$a, b, c$",
"$d$",
"$p\\times p$",
"$\\te $",
"$\\te ^{0i}$",
"$p\\times p$",
"$G_{00}=g_{00}$",
"$\\Phi _{0i}=0$",
"$\\Phi $",
"$p\\times p$",
"$p\\times p$",
"$\\Te = \\te /2\\pi r^2$",
"$G$",
"$\\Phi $",
"$g$",
"$B$",
"$G$",
"$\\te $",
"$\\Phi $",
"$SO(p)$",
"$\\Te $",
"$\\Te \\rightarrow \\Te ' = (c + d\\Te )(a + b\\Te )^{-1}$",
"$G$",
"$\\Phi $",
"$E' + E'^t = (E^tc^t + d^t)^{-1} (E + E^t)(cE+ d)^{-1}$",
"${\\Te '}^t = -\\Te '$",
"$\\Phi '$",
"\\begin {equation} \\frac {1}{G + 2\\pi \\al \\Phi } = - \\frac {\\te }{2\\pi \\al } + \\frac {1}{g + 2\\pi \\al B}, \\label {swf}\\end {equation}",
"\\begin {eqnarray} G &=& \\frac {\\al }{2r^2} \\frac {1}{1+E^t\\Te }( E + E^t )\\frac {1}{1-\\Te E}, \\\\ \\Phi &=& \\frac {1}{4\\pi r^2} \\frac {1}{1+E^t\\Te }( 2E^t\\Te E + E - E^t ) \\frac {1}{1-\\Te E}. \\end {eqnarray}",
"\\begin {equation} 1- \\Te 'E' = \\frac {1}{a^t - \\Te b^t}(1-\\Te E)\\frac {1}{cE + d}. \\label {the}\\end {equation}",
"\\begin {equation} G' = ( a + b\\Te ) G ( a + b \\Te )^t. \\label {tg}\\end {equation}",
"\\begin {equation} \\Phi ' = \\frac {1}{4\\pi r^2}(a+b\\Te )\\frac {1}{1+E^t\\Te }(2X+Y) \\frac {1}{1-\\Te E}(a+b\\Te )^t, \\end {equation}"
],
"latex_norm": [
"$ M ^ { - 1 } = ( g + 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } g ( g - 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } $",
"$ M ^ { - 1 } F g ^ { - 1 } = ( g + 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } F ( g - 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } $",
"$ M ^ { - 1 } F g ^ { - 1 } = ( g + 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } F ( g - 2 \\pi \\alpha ^ { \\prime } F ) ^ { - 1 } $",
"$ \\theta $",
"$ G , \\Phi $",
"$ G $",
"$ \\Phi $",
"$ g , B $",
"$ \\theta $",
"$ ( p + 1 ) \\times ( p + 1 ) $",
"$ B _ { 0 i } = 0 $",
"$ g _ { 0 i } = 0 $",
"$ i = 1 , \\cdots , p $",
"$ p $",
"$ p $",
"$ T ^ { p } $",
"$ x ^ { i } \\sim x ^ { i } + 2 \\pi r $",
"$ i = 1 , \\cdots , p $",
"$ g _ { i j } $",
"$ S O ( p , p , Z ) $",
"$ E = r ^ { 2 } ( g + 2 \\pi \\alpha ^ { \\prime } B ) \\slash \\alpha ^ { \\prime } $",
"$ E ^ { \\prime } = ( a E + b ) ( c E + d ) ^ { - 1 } $",
"$ c ^ { t } a + a ^ { t } c = 0 , d ^ { t } b + b ^ { t } d = 0 , c ^ { t } b + a ^ { t } d = 1 $",
"$ a , b , c $",
"$ d $",
"$ p \\times p $",
"$ \\theta $",
"$ \\theta ^ { 0 i } $",
"$ p \\times p $",
"$ G _ { 0 0 } = g _ { 0 0 } $",
"$ \\Phi _ { 0 i } = 0 $",
"$ \\Phi $",
"$ p \\times p $",
"$ p \\times p $",
"$ \\Theta = \\theta \\slash 2 \\pi r ^ { 2 } $",
"$ G $",
"$ \\Phi $",
"$ g $",
"$ B $",
"$ G $",
"$ \\theta $",
"$ \\Phi $",
"$ S O ( p ) $",
"$ \\Theta $",
"$ \\Theta \\rightarrow \\Theta ^ { \\prime } = ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } $",
"$ G $",
"$ \\Phi $",
"$ E ^ { \\prime } + E ^ { \\prime t } = ( E ^ { t } c ^ { t } + d ^ { t } ) ^ { - 1 } ( E + E ^ { t } ) ( c E + d ) ^ { - 1 } $",
"$ { \\Theta ^ { \\prime } } ^ { t } = - \\Theta ^ { \\prime } $",
"$ \\Phi ^ { \\prime } $",
"\\begin{equation*} \\frac { 1 } { G + 2 \\pi \\alpha ^ { \\prime } \\Phi } = - \\frac { \\theta } { 2 \\pi \\alpha ^ { \\prime } } + \\frac { 1 } { g + 2 \\pi \\alpha ^ { \\prime } B } , \\end{equation*}",
"\\begin{align*} G & = & \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } \\frac { 1 } { 1 + E ^ { t } \\Theta } ( E + E ^ { t } ) \\frac { 1 } { 1 - \\Theta E } , \\\\ \\Phi & = & \\frac { 1 } { 4 \\pi r ^ { 2 } } \\frac { 1 } { 1 + E ^ { t } \\Theta } ( 2 E ^ { t } \\Theta E + E - E ^ { t } ) \\frac { 1 } { 1 - \\Theta E } . \\end{align*}",
"\\begin{equation*} 1 - \\Theta ^ { \\prime } E ^ { \\prime } = \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } ( 1 - \\Theta E ) \\frac { 1 } { c E + d } . \\end{equation*}",
"\\begin{equation*} G ^ { \\prime } = ( a + b \\Theta ) G ( a + b \\Theta ) ^ { t } . \\end{equation*}",
"\\begin{equation*} \\Phi ^ { \\prime } = \\frac { 1 } { 4 \\pi r ^ { 2 } } ( a + b \\Theta ) \\frac { 1 } { 1 + E ^ { t } \\Theta } ( 2 X + Y ) \\frac { 1 } { 1 - \\Theta E } ( a + b \\Theta ) ^ { t } , \\end{equation*}"
],
"latex_expand": [
"$ \\mitM ^ { - 1 } = ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } \\mitg ( \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } $",
"$ \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } \\mscrF ( \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } $",
"$ \\mitM ^ { - 1 } \\mscrF \\mitg ^ { - 1 } = ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } \\mscrF ( \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mscrF ) ^ { - 1 } $",
"$ \\mittheta $",
"$ \\mitG , \\mupPhi $",
"$ \\mitG $",
"$ \\mupPhi $",
"$ \\mitg , \\mitB $",
"$ \\mittheta $",
"$ ( \\mitp + 1 ) \\times ( \\mitp + 1 ) $",
"$ \\mitB _ { 0 \\miti } = 0 $",
"$ \\mitg _ { 0 \\miti } = 0 $",
"$ \\miti = 1 , \\cdots , \\mitp $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitT ^ { \\mitp } $",
"$ \\mitx ^ { \\miti } \\sim \\mitx ^ { \\miti } + 2 \\mitpi \\mitr $",
"$ \\miti = 1 , \\cdots , \\mitp $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\mitS \\mitO ( \\mitp , \\mitp , \\mitZ ) $",
"$ \\mitE = \\mitr ^ { 2 } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB ) \\slash \\mitalpha ^ { \\prime } $",
"$ \\mitE ^ { \\prime } = ( \\mita \\mitE + \\mitb ) ( \\mitc \\mitE + \\mitd ) ^ { - 1 } $",
"$ \\mitc ^ { \\mitt } \\mita + \\mita ^ { \\mitt } \\mitc = 0 , \\mitd ^ { \\mitt } \\mitb + \\mitb ^ { \\mitt } \\mitd = 0 , \\mitc ^ { \\mitt } \\mitb + \\mita ^ { \\mitt } \\mitd = 1 $",
"$ \\mita , \\mitb , \\mitc $",
"$ \\mitd $",
"$ \\mitp \\times \\mitp $",
"$ \\mittheta $",
"$ \\mittheta ^ { 0 \\miti } $",
"$ \\mitp \\times \\mitp $",
"$ \\mitG _ { 0 0 } = \\mitg _ { 0 0 } $",
"$ \\mupPhi _ { 0 \\miti } = 0 $",
"$ \\mupPhi $",
"$ \\mitp \\times \\mitp $",
"$ \\mitp \\times \\mitp $",
"$ \\mupTheta = \\mittheta \\slash 2 \\mitpi \\mitr ^ { 2 } $",
"$ \\mitG $",
"$ \\mupPhi $",
"$ \\mitg $",
"$ \\mitB $",
"$ \\mitG $",
"$ \\mittheta $",
"$ \\mupPhi $",
"$ \\mitS \\mitO ( \\mitp ) $",
"$ \\mupTheta $",
"$ \\mupTheta \\rightarrow \\mupTheta ^ { \\prime } = ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } $",
"$ \\mitG $",
"$ \\mupPhi $",
"$ \\mitE ^ { \\prime } + \\mitE ^ { \\prime \\mitt } = ( \\mitE ^ { \\mitt } \\mitc ^ { \\mitt } + \\mitd ^ { \\mitt } ) ^ { - 1 } ( \\mitE + \\mitE ^ { \\mitt } ) ( \\mitc \\mitE + \\mitd ) ^ { - 1 } $",
"$ { \\mupTheta ^ { \\prime } } ^ { \\mitt } = - \\mupTheta ^ { \\prime } $",
"$ \\mupPhi ^ { \\prime } $",
"\\begin{equation*} \\frac { 1 } { \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } \\mupPhi } = - \\frac { \\mittheta } { 2 \\mitpi \\mitalpha ^ { \\prime } } + \\frac { 1 } { \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitG & = & \\displaystyle \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\frac { 1 } { 1 + \\mitE ^ { \\mitt } \\mupTheta } ( \\mitE + \\mitE ^ { \\mitt } ) \\frac { 1 } { 1 - \\mupTheta \\mitE } , \\\\ \\displaystyle \\mupPhi & = & \\displaystyle \\frac { 1 } { 4 \\mitpi \\mitr ^ { 2 } } \\frac { 1 } { 1 + \\mitE ^ { \\mitt } \\mupTheta } ( 2 \\mitE ^ { \\mitt } \\mupTheta \\mitE + \\mitE - \\mitE ^ { \\mitt } ) \\frac { 1 } { 1 - \\mupTheta \\mitE } . \\end{align*}",
"\\begin{equation*} 1 - \\mupTheta ^ { \\prime } \\mitE ^ { \\prime } = \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } ( 1 - \\mupTheta \\mitE ) \\frac { 1 } { \\mitc \\mitE + \\mitd } . \\end{equation*}",
"\\begin{equation*} \\mitG ^ { \\prime } = ( \\mita + \\mitb \\mupTheta ) \\mitG ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } . \\end{equation*}",
"\\begin{equation*} \\mupPhi ^ { \\prime } = \\frac { 1 } { 4 \\mitpi \\mitr ^ { 2 } } ( \\mita + \\mitb \\mupTheta ) \\frac { 1 } { 1 + \\mitE ^ { \\mitt } \\mupTheta } ( 2 \\mitX + \\mitY ) \\frac { 1 } { 1 - \\mupTheta \\mitE } ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } , \\end{equation*}"
],
"x_min": [
0.2134999930858612,
0.600600004196167,
0.11540000140666962,
0.7871000170707703,
0.1624000072479248,
0.4699000120162964,
0.7692000269889832,
0.4657999873161316,
0.8223999738693237,
0.41600000858306885,
0.8036999702453613,
0.18310000002384186,
0.3068000078201294,
0.8375999927520752,
0.274399995803833,
0.34139999747276306,
0.5169000029563904,
0.6455000042915344,
0.17759999632835388,
0.33660000562667847,
0.6039999723434448,
0.11540000140666962,
0.38769999146461487,
0.8016999959945679,
0.8914999961853027,
0.14790000021457672,
0.7146000266075134,
0.802299976348877,
0.5867000222206116,
0.7146000266075134,
0.8382999897003174,
0.44440001249313354,
0.7996000051498413,
0.4277999997138977,
0.5425000190734863,
0.7457000017166138,
0.8058000206947327,
0.5543000102043152,
0.6087999939918518,
0.37940001487731934,
0.43950000405311584,
0.6557999849319458,
0.15960000455379486,
0.15760000050067902,
0.5625,
0.18870000541210175,
0.24950000643730164,
0.20110000669956207,
0.5583999752998352,
0.4519999921321869,
0.3544999957084656,
0.29789999127388,
0.34619998931884766,
0.39809998869895935,
0.2694999873638153
],
"y_min": [
0.09279999881982803,
0.09279999881982803,
0.10989999771118164,
0.163100004196167,
0.18019999563694,
0.25540000200271606,
0.25540000200271606,
0.27250000834465027,
0.27250000834465027,
0.2890999913215637,
0.28999999165534973,
0.3075999915599823,
0.3075999915599823,
0.31049999594688416,
0.32760000228881836,
0.32420000433921814,
0.322299987077713,
0.3246999979019165,
0.3452000021934509,
0.3402999937534332,
0.33980000019073486,
0.35690000653266907,
0.35740000009536743,
0.35839998722076416,
0.35839998722076416,
0.37700000405311584,
0.37549999356269836,
0.3910999894142151,
0.4115999937057495,
0.41019999980926514,
0.41019999980926514,
0.42719998955726624,
0.4287000000476837,
0.4458000063896179,
0.44290000200271606,
0.44429999589920044,
0.44429999589920044,
0.5576000213623047,
0.5536999702453613,
0.5708000063896179,
0.5708000063896179,
0.5708000063896179,
0.5874000191688538,
0.6226000189781189,
0.6211000084877014,
0.6395999789237976,
0.6395999789237976,
0.6553000211715698,
0.7304999828338623,
0.7919999957084656,
0.2046000063419342,
0.47119998931884766,
0.6820999979972839,
0.7621999979019165,
0.8169000148773193
],
"x_max": [
0.5521000027656555,
0.9018999934196472,
0.19830000400543213,
0.7975000143051147,
0.20180000364780426,
0.48579999804496765,
0.7836999893188477,
0.5009999871253967,
0.8327999711036682,
0.5680000185966492,
0.8755999803543091,
0.24879999458789825,
0.4104999899864197,
0.8479999899864197,
0.2847999930381775,
0.36419999599456787,
0.6337000131607056,
0.742900013923645,
0.1996999979019165,
0.4334000051021576,
0.8003000020980835,
0.3310000002384186,
0.738099992275238,
0.8465999960899353,
0.9018999934196472,
0.1906999945640564,
0.7250000238418579,
0.8251000046730042,
0.6261000037193298,
0.7961000204086304,
0.9018999934196472,
0.45890000462532043,
0.8396999835968018,
0.47269999980926514,
0.6434000134468079,
0.7616000175476074,
0.8202999830245972,
0.5647000074386597,
0.6247000098228455,
0.3953000009059906,
0.44920000433921814,
0.6703000068664551,
0.2142000049352646,
0.17350000143051147,
0.816100001335144,
0.2046000063419342,
0.2639999985694885,
0.5791000127792358,
0.6468999981880188,
0.4713999927043915,
0.6626999974250793,
0.7202000021934509,
0.673799991607666,
0.621999979019165,
0.746999979019165
],
"y_max": [
0.10840000212192535,
0.10840000212192535,
0.12549999356269836,
0.17339999973773956,
0.19339999556541443,
0.2660999894142151,
0.2660999894142151,
0.2856999933719635,
0.2831999957561493,
0.3037000000476837,
0.30219998955726624,
0.32030001282691956,
0.32030001282691956,
0.32030001282691956,
0.33739998936653137,
0.3345000147819519,
0.33550000190734863,
0.33739998936653137,
0.35589998960494995,
0.3553999960422516,
0.3553999960422516,
0.3725000023841858,
0.3716000020503998,
0.3716000020503998,
0.3686999976634979,
0.388700008392334,
0.3862000107765198,
0.4032999873161316,
0.4228000044822693,
0.42340001463890076,
0.42239999771118164,
0.4375,
0.44040000438690186,
0.45750001072883606,
0.4580000042915344,
0.4546000063419342,
0.4546000063419342,
0.5669000148773193,
0.5644000172615051,
0.5814999938011169,
0.5814999938011169,
0.5814999938011169,
0.6019999980926514,
0.6328999996185303,
0.6362000107765198,
0.6499000191688538,
0.6499000191688538,
0.6708999872207642,
0.744700014591217,
0.8026999831199646,
0.24070000648498535,
0.5449000000953674,
0.7157999873161316,
0.7811999917030334,
0.850600004196167
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003204_page05
|
{
"latex": [
"$X = (E^ta^t+b^t)(c+d\\Te )(a+b\\Te )^{-1}(aE+b)$",
"$Y$",
"$Y = E-E^t + 2Y_0$",
"$Y_0 = -(E^ta^t + b^t)cE + (E^tc^t+d^t)b$",
"$X=(E^ta^t + b^t)\\Te '(aE + b)$",
"${\\Te '}^t = - \\Te '$",
"$X=( E^t + (1+E^t\\Te )b^t(a^t-\\Te b^t)^{-1})(\\Te +X_0)(E+ (a+b\\Te )^{-1} b(1-\\Te E))$",
"$X=( E^t + (1+E^t\\Te )b^t(a^t-\\Te b^t)^{-1})(\\Te +X_0)(E+ (a+b\\Te )^{-1} b(1-\\Te E))$",
"$X_0 = -(c^t-\\Te d^t)b\\Te + (a^t - \\Te b^t)c$",
"$2X + Y = 2E^t\\Te E + E - E^t + 2Z,$",
"$2X + Y = 2E^t\\Te E + E - E^t + 2Z,$",
"$Z_0 = (1+ E^t\\Te )b^t(a^t- \\Te b^t)^{-1} (\\Te +X_0)(a+b\\Te )^{-1}b(1-\\Te E)$",
"$X_0$",
"$E^t(a^tc+(a^t-\\Te b^t)d\\Te (a+b\\Te )^{-1}b\\Te )E$",
"$Y_0$",
"$b^t(c+d\\Te )(a+b\\Te )^{-1} = (a+b\\Te )^{-1} - d^t$",
"$[(1+E^t\\Te ) (b^t(a^t-\\Te b^t)^{-1} - d^tb) + (a+b\\Te )^{-1}b]\\Te E + b^tcE$",
"$Y_0$",
"$E^t[(\\Te + (a^t-\\Te b^t)c) (a+b\\Te )^{-1}b - (c^t-\\Te d^t)b\\Te (a+b\\Te )^{-1}b(1-\\Te E)]$",
"$E^t[(a^tc + \\Te d^ta)(a+b\\Te )^{-1}b -(c^t-\\Te d^t)(1-a(a+b\\Te )^{-1})b(1-\\Te E)]$",
"$E^t(a^tc+c^ta)(a+b\\Te )^{-1}b$",
"$Z_0=(E^t\\Te +1)b^t (a^t-\\Te b^t)^{-1}(\\Te +X_0)(-E + (a+b\\Te )^{-1}(aE+b))$",
"$Z_0=(E^t\\Te +1)b^t (a^t-\\Te b^t)^{-1}(\\Te +X_0)(-E + (a+b\\Te )^{-1}(aE+b))$",
"$-E^t(c^t-\\Te d^t)b \\Te E$",
"$Z_0$",
"$X_0$",
"$b$",
"\\begin {equation} X = \\frac {1}{2}(E^ta^t+ b^t)((c+d\\Te )\\frac {1}{a+b\\Te }- \\frac {1}{a^t-\\Te b^t}(c^t-\\Te d^t))(aE + b) \\end {equation}",
"\\begin {eqnarray} Z &=& E^tX_0E + E^t(\\Te + X_0)\\frac {1}{a + b\\Te } b(1-\\Te E) \\\\ &+& (1 + E^t\\Te )b^t\\frac {1}{a^t -\\Te b^t}(\\Te + X_0)E + Y_0 + Z_0 \\end {eqnarray}",
"\\begin {equation} c^t - \\Te d^t = - (a^t - \\Te b^t)(c + d\\Te )\\frac {1}{a + b\\Te } \\label {cd}\\end {equation}",
"\\begin {eqnarray} Z &=& E^t(c^tb + (a^t-\\Te b^t)(c + d\\Te )\\frac {1}{a+b\\Te }b + \\Te \\frac {1}{a+b\\Te }b -2\\Te d^tb)\\Te E \\\\ &+& E^t\\Te d^tb + (\\frac {1}{a+b\\Te } - d^tb)\\Te E + d^tb + Z_0 + (1+ E^t\\Te )b^t\\frac {1}{a^t -\\Te b^t}\\Te E, \\end {eqnarray}",
"\\begin {eqnarray} Z_0 &=& (E^t\\Te +1)b^t[ \\frac {1}{a^t-\\Te b^t}\\Te \\frac {1}{a+b\\Te }(aE+b) \\\\ &+& ((c+d\\Te )\\frac {1}{a+b\\Te }b\\Te + c)\\frac {1}{a+b\\Te } b(1-\\Te E)]. \\end {eqnarray}",
"\\begin {equation} \\frac {1}{a^t - \\Te b^t}\\Te + c = (c + d\\Te )\\frac {1}{a + b\\Te }a, \\label {ab}\\end {equation}"
],
"latex_norm": [
"$ X = ( E ^ { t } a ^ { t } + b ^ { t } ) ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } ( a E + b ) $",
"$ Y $",
"$ Y = E - E ^ { t } + 2 Y _ { 0 } $",
"$ Y _ { 0 } = - ( E ^ { t } a ^ { t } + b ^ { t } ) c E + ( E ^ { t } c ^ { t } + d ^ { t } ) b $",
"$ X = ( E ^ { t } a ^ { t } + b ^ { t } ) \\Theta ^ { \\prime } ( a E + b ) $",
"$ { \\Theta ^ { \\prime } } ^ { t } = - \\Theta ^ { \\prime } $",
"$ X = ( E ^ { t } + ( 1 + E ^ { t } \\Theta ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ) ( \\Theta + X _ { 0 } ) ( E + ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) ) $",
"$ X = ( E ^ { t } + ( 1 + E ^ { t } \\Theta ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ) ( \\Theta + X _ { 0 } ) ( E + ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) ) $",
"$ X _ { 0 } = - ( c ^ { t } - \\Theta d ^ { t } ) b \\Theta + ( a ^ { t } - \\Theta b ^ { t } ) c $",
"$ 2 X + Y = 2 E ^ { t } \\Theta E + E - E ^ { t } + 2 Z , $",
"$ 2 X + Y = 2 E ^ { t } \\Theta E + E - E ^ { t } + 2 Z , $",
"$ Z _ { 0 } = ( 1 + E ^ { t } \\Theta ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ( \\Theta + X _ { 0 } ) ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) $",
"$ X _ { 0 } $",
"$ E ^ { t } ( a ^ { t } c + ( a ^ { t } - \\Theta b ^ { t } ) d \\Theta ( a + b \\Theta ) ^ { - 1 } b \\Theta ) E $",
"$ Y _ { 0 } $",
"$ b ^ { t } ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } = ( a + b \\Theta ) ^ { - 1 } - d ^ { t } $",
"$ [ ( 1 + E ^ { t } \\Theta ) ( b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } - d ^ { t } b ) + ( a + b \\Theta ) ^ { - 1 } b ] \\Theta E + b ^ { t } c E $",
"$ Y _ { 0 } $",
"$ E ^ { t } [ ( \\Theta + ( a ^ { t } - \\Theta b ^ { t } ) c ) ( a + b \\Theta ) ^ { - 1 } b - ( c ^ { t } - \\Theta d ^ { t } ) b \\Theta ( a + b \\Theta ) ^ { - 1 } b ( 1 - \\Theta E ) ] $",
"$ E ^ { t } [ ( a ^ { t } c + \\Theta d ^ { t } a ) ( a + b \\Theta ) ^ { - 1 } b - ( c ^ { t } - \\Theta d ^ { t } ) ( 1 - a ( a + b \\Theta ) ^ { - 1 } ) b ( 1 - \\Theta E ) ] $",
"$ E ^ { t } ( a ^ { t } c + c ^ { t } a ) ( a + b \\Theta ) ^ { - 1 } b $",
"$ Z _ { 0 } = ( E ^ { t } \\Theta + 1 ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ( \\Theta + X _ { 0 } ) ( - E + ( a + b \\Theta ) ^ { - 1 } ( a E + b ) ) $",
"$ Z _ { 0 } = ( E ^ { t } \\Theta + 1 ) b ^ { t } ( a ^ { t } - \\Theta b ^ { t } ) ^ { - 1 } ( \\Theta + X _ { 0 } ) ( - E + ( a + b \\Theta ) ^ { - 1 } ( a E + b ) ) $",
"$ - E ^ { t } ( c ^ { t } - \\Theta d ^ { t } ) b \\Theta E $",
"$ Z _ { 0 } $",
"$ X _ { 0 } $",
"$ b $",
"\\begin{equation*} X = \\frac { 1 } { 2 } ( E ^ { t } a ^ { t } + b ^ { t } ) ( ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } - \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } ( c ^ { t } - \\Theta d ^ { t } ) ) ( a E + b ) \\end{equation*}",
"\\begin{align*} Z & = & E ^ { t } X _ { 0 } E + E ^ { t } ( \\Theta + X _ { 0 } ) \\frac { 1 } { a + b \\Theta } b ( 1 - \\Theta E ) \\\\ & + & ( 1 + E ^ { t } \\Theta ) b ^ { t } \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } ( \\Theta + X _ { 0 } ) E + Y _ { 0 } + Z _ { 0 } \\end{align*}",
"\\begin{equation*} c ^ { t } - \\Theta d ^ { t } = - ( a ^ { t } - \\Theta b ^ { t } ) ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } \\end{equation*}",
"\\begin{align*} Z & = & E ^ { t } ( c ^ { t } b + ( a ^ { t } - \\Theta b ^ { t } ) ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } b + \\Theta \\frac { 1 } { a + b \\Theta } b - 2 \\Theta d ^ { t } b ) \\Theta E \\\\ & + & E ^ { t } \\Theta d ^ { t } b + ( \\frac { 1 } { a + b \\Theta } - d ^ { t } b ) \\Theta E + d ^ { t } b + Z _ { 0 } + ( 1 + E ^ { t } \\Theta ) b ^ { t } \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } \\Theta E , \\end{align*}",
"\\begin{align*} Z _ { 0 } & = & ( E ^ { t } \\Theta + 1 ) b ^ { t } [ \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } \\Theta \\frac { 1 } { a + b \\Theta } ( a E + b ) \\\\ & + & ( ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } b \\Theta + c ) \\frac { 1 } { a + b \\Theta } b ( 1 - \\Theta E ) ] . \\end{align*}",
"\\begin{equation*} \\frac { 1 } { a ^ { t } - \\Theta b ^ { t } } \\Theta + c = ( c + d \\Theta ) \\frac { 1 } { a + b \\Theta } a , \\end{equation*}"
],
"latex_expand": [
"$ \\mitX = ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ( \\mita \\mitE + \\mitb ) $",
"$ \\mitY $",
"$ \\mitY = \\mitE - \\mitE ^ { \\mitt } + 2 \\mitY _ { 0 } $",
"$ \\mitY _ { 0 } = - ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) \\mitc \\mitE + ( \\mitE ^ { \\mitt } \\mitc ^ { \\mitt } + \\mitd ^ { \\mitt } ) \\mitb $",
"$ \\mitX = ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) \\mupTheta ^ { \\prime } ( \\mita \\mitE + \\mitb ) $",
"$ { \\mupTheta ^ { \\prime } } ^ { \\mitt } = - \\mupTheta ^ { \\prime } $",
"$ \\mitX = ( \\mitE ^ { \\mitt } + ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ) ( \\mupTheta + \\mitX _ { 0 } ) ( \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) ) $",
"$ \\mitX = ( \\mitE ^ { \\mitt } + ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ) ( \\mupTheta + \\mitX _ { 0 } ) ( \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) ) $",
"$ \\mitX _ { 0 } = - ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) \\mitb \\mupTheta + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) \\mitc $",
"$ 2 \\mitX + \\mitY = 2 \\mitE ^ { \\mitt } \\mupTheta \\mitE + \\mitE - \\mitE ^ { \\mitt } + 2 \\mitZ , $",
"$ 2 \\mitX + \\mitY = 2 \\mitE ^ { \\mitt } \\mupTheta \\mitE + \\mitE - \\mitE ^ { \\mitt } + 2 \\mitZ , $",
"$ \\mitZ _ { 0 } = ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ( \\mupTheta + \\mitX _ { 0 } ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) $",
"$ \\mitX _ { 0 } $",
"$ \\mitE ^ { \\mitt } ( \\mita ^ { \\mitt } \\mitc + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) \\mitd \\mupTheta ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb \\mupTheta ) \\mitE $",
"$ \\mitY _ { 0 } $",
"$ \\mitb ^ { \\mitt } ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } = ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } - \\mitd ^ { \\mitt } $",
"$ [ ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) ( \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } - \\mitd ^ { \\mitt } \\mitb ) + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ] \\mupTheta \\mitE + \\mitb ^ { \\mitt } \\mitc \\mitE $",
"$ \\mitY _ { 0 } $",
"$ \\mitE ^ { \\mitt } [ ( \\mupTheta + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) \\mitc ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb - ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) \\mitb \\mupTheta ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ( 1 - \\mupTheta \\mitE ) ] $",
"$ \\mitE ^ { \\mitt } [ ( \\mita ^ { \\mitt } \\mitc + \\mupTheta \\mitd ^ { \\mitt } \\mita ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb - ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) ( 1 - \\mita ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ) \\mitb ( 1 - \\mupTheta \\mitE ) ] $",
"$ \\mitE ^ { \\mitt } ( \\mita ^ { \\mitt } \\mitc + \\mitc ^ { \\mitt } \\mita ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb $",
"$ \\mitZ _ { 0 } = ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ( \\mupTheta + \\mitX _ { 0 } ) ( - \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ( \\mita \\mitE + \\mitb ) ) $",
"$ \\mitZ _ { 0 } = ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ^ { - 1 } ( \\mupTheta + \\mitX _ { 0 } ) ( - \\mitE + ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } ( \\mita \\mitE + \\mitb ) ) $",
"$ - \\mitE ^ { \\mitt } ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) \\mitb \\mupTheta \\mitE $",
"$ \\mitZ _ { 0 } $",
"$ \\mitX _ { 0 } $",
"$ \\mitb $",
"\\begin{equation*} \\mitX = \\frac { 1 } { 2 } ( \\mitE ^ { \\mitt } \\mita ^ { \\mitt } + \\mitb ^ { \\mitt } ) ( ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } - \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } ( \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } ) ) ( \\mita \\mitE + \\mitb ) \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitZ & = & \\displaystyle \\mitE ^ { \\mitt } \\mitX _ { 0 } \\mitE + \\mitE ^ { \\mitt } ( \\mupTheta + \\mitX _ { 0 } ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb ( 1 - \\mupTheta \\mitE ) \\\\ & \\displaystyle + & \\displaystyle ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } ( \\mupTheta + \\mitX _ { 0 } ) \\mitE + \\mitY _ { 0 } + \\mitZ _ { 0 } \\end{align*}",
"\\begin{equation*} \\mitc ^ { \\mitt } - \\mupTheta \\mitd ^ { \\mitt } = - ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitZ & = & \\displaystyle \\mitE ^ { \\mitt } ( \\mitc ^ { \\mitt } \\mitb + ( \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } ) ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb + \\mupTheta \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb - 2 \\mupTheta \\mitd ^ { \\mitt } \\mitb ) \\mupTheta \\mitE \\\\ & \\displaystyle + & \\displaystyle \\mitE ^ { \\mitt } \\mupTheta \\mitd ^ { \\mitt } \\mitb + ( \\frac { 1 } { \\mita + \\mitb \\mupTheta } - \\mitd ^ { \\mitt } \\mitb ) \\mupTheta \\mitE + \\mitd ^ { \\mitt } \\mitb + \\mitZ _ { 0 } + ( 1 + \\mitE ^ { \\mitt } \\mupTheta ) \\mitb ^ { \\mitt } \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } \\mupTheta \\mitE , \\end{align*}",
"\\begin{align*} \\displaystyle \\mitZ _ { 0 } & = & \\displaystyle ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } [ \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } \\mupTheta \\frac { 1 } { \\mita + \\mitb \\mupTheta } ( \\mita \\mitE + \\mitb ) \\\\ & \\displaystyle + & \\displaystyle ( ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb \\mupTheta + \\mitc ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb ( 1 - \\mupTheta \\mitE ) ] . \\end{align*}",
"\\begin{equation*} \\frac { 1 } { \\mita ^ { \\mitt } - \\mupTheta \\mitb ^ { \\mitt } } \\mupTheta + \\mitc = ( \\mitc + \\mitd \\mupTheta ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mita , \\end{equation*}"
],
"x_min": [
0.17350000143051147,
0.609499990940094,
0.7360000014305115,
0.16169999539852142,
0.6427000164985657,
0.2093999981880188,
0.5590999722480774,
0.11540000140666962,
0.41600000858306885,
0.7263000011444092,
0.11540000140666962,
0.16030000150203705,
0.15410000085830688,
0.527999997138977,
0.5078999996185303,
0.4332999885082245,
0.3912000060081482,
0.5522000193595886,
0.1437000036239624,
0.2321999967098236,
0.227400004863739,
0.51419997215271,
0.11540000140666962,
0.6654999852180481,
0.34209999442100525,
0.6883000135421753,
0.39250001311302185,
0.22869999706745148,
0.2971999943256378,
0.34139999747276306,
0.18799999356269836,
0.2888999879360199,
0.35659998655319214
],
"y_min": [
0.09279999881982803,
0.094200000166893,
0.093299999833107,
0.1103999987244606,
0.1103999987244606,
0.19339999556541443,
0.19429999589920044,
0.21140000224113464,
0.211899995803833,
0.2290000021457672,
0.24609999358654022,
0.34619998931884766,
0.43070000410079956,
0.4462999999523163,
0.46480000019073486,
0.4805000126361847,
0.4975999891757965,
0.5160999894142151,
0.5317000150680542,
0.5493000149726868,
0.5663999915122986,
0.6675000190734863,
0.6845999956130981,
0.6851000189781189,
0.7031000256538391,
0.7031000256538391,
0.8036999702453613,
0.149399995803833,
0.26899999380111694,
0.38530001044273376,
0.5898000001907349,
0.725600004196167,
0.8246999979019165
],
"x_max": [
0.5626000165939331,
0.6254000067710876,
0.9018999934196472,
0.4733999967575073,
0.8810999989509583,
0.29789999127388,
0.9351000189781189,
0.3675999939441681,
0.6930999755859375,
0.9081000089645386,
0.23149999976158142,
0.6751999855041504,
0.17829999327659607,
0.8396999835968018,
0.527899980545044,
0.7802000045776367,
0.896399974822998,
0.5722000002861023,
0.7512000203132629,
0.8278999924659729,
0.43959999084472656,
0.9115999937057495,
0.2888999879360199,
0.8278999924659729,
0.3634999990463257,
0.7131999731063843,
0.4007999897003174,
0.7911999821662903,
0.72079998254776,
0.678600013256073,
0.8292999863624573,
0.7290999889373779,
0.6600000262260437
],
"y_max": [
0.10840000212192535,
0.10450000315904617,
0.10700000077486038,
0.12549999356269836,
0.12549999356269836,
0.20759999752044678,
0.20990000665187836,
0.22699999809265137,
0.22699999809265137,
0.243599995970726,
0.260699987411499,
0.3617999851703644,
0.44290000200271606,
0.46140000224113464,
0.47749999165534973,
0.49559998512268066,
0.5131999850273132,
0.5288000106811523,
0.5472999811172485,
0.5644000172615051,
0.5814999938011169,
0.6830999851226807,
0.7002000212669373,
0.6996999979019165,
0.7157999873161316,
0.7157999873161316,
0.8140000104904175,
0.1826000064611435,
0.3368000090122223,
0.4189999997615814,
0.6575999855995178,
0.79339998960495,
0.8583999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003204_page06
|
{
"latex": [
"$(E^t\\Te +1)b^t(c +d\\Te ) (a+b\\Te )^{-1}b$",
"$(E^t\\Te + 1)(a +b\\Te )^{-1}b -E^t\\Te d^tb -d^tb$",
"$Z$",
"$E$",
"$(E^t\\Te +1)(d^tb - 2(a+b\\Te )^{-1}b) \\Te E$",
"$SO(p,p,Z)$",
"$g_s$",
"$g'_s = g_s/\\det (cE+d)^{1/2}$",
"$g'_s = g_s/\\det (cE+d)^{1/2}$",
"$G_s = g_s(\\det (G+2\\pi \\al \\Phi )/\\det (g+2\\pi \\al B))^{1/2}$",
"$G_s = g_s(\\det (G+2\\pi \\al \\Phi )/\\det (g+2\\pi \\al B))^{1/2}$",
"$(p+1)\\times (p+1)$",
"$G_s = g_s(\\det (1-\\Te E))^{-1/2}$",
"$G_{00}=g_{00}, \\Phi _{0i} =B_{0i}=0$",
"$SO(p,p,Z)$",
"$G_s$",
"$g_{YM} =((2\\pi )^{p-2}G_s/(\\al )^{(3-p)/2})^{1/2}$",
"$g_{YM} =((2\\pi )^{p-2}G_s/(\\al )^{(3-p)/2})^{1/2}$",
"$\\Phi $",
"$\\Phi = 0$",
"$g$",
"$B$",
"$E^{-1} \\approx \\Te $",
"$\\Phi $",
"$p$",
"$\\Phi $",
"$p$",
"$G=g, \\Phi =B, G_s=g_s$",
"$\\Phi =0$",
"$Tr_{\\te }$",
"$S_{WZ}$",
"$S_{WZ}=\\int Tr_{\\te }(\\sum C^{(n)})e^{2\\pi \\al F}$",
"$n$",
"$C^{(n)}$",
"$F$",
"$B$",
"$\\te $",
"$\\sqrt {\\det (G+2\\pi \\al (F+\\Phi ))_{ij}} (-(G_{00}- (2\\pi \\al )^2 F_{0i}(G+ 2\\pi \\al (F+\\Phi ))^{-1ij}F_{j0}))^{1/2}$",
"\\begin {equation} Z = (E^t\\Te + 1)\\frac {1}{a + b\\Te } b(1 - \\Te E), \\end {equation}",
"\\begin {equation} \\Phi ' = (a + b\\Te )\\Phi (a + b\\Te )^t + \\frac {1}{2\\pi r^2}b(a + b\\Te )^t. \\label {phi}\\end {equation}",
"\\begin {equation} G_s' = \\sqrt {\\det (a + b\\Te )}G_s, \\label {gs}\\end {equation}",
"\\begin {equation} g'_{YM} = g_{YM}(\\det (a + b\\Te ))^{\\frac {1}{4}}. \\label {gym}\\end {equation}",
"\\begin {equation} S = - \\frac {1}{G_s(2\\pi )^p\\al ^{\\frac {p+1}{2}}}\\int d^{p+1}\\sigma Tr_{\\te }\\sqrt {-\\det (G + 2\\pi \\al (F + \\Phi ))} + S_{WZ}. \\end {equation}"
],
"latex_norm": [
"$ ( E ^ { t } \\Theta + 1 ) b ^ { t } ( c + d \\Theta ) ( a + b \\Theta ) ^ { - 1 } b $",
"$ ( E ^ { t } \\Theta + 1 ) ( a + b \\Theta ) ^ { - 1 } b - E ^ { t } \\Theta d ^ { t } b - d ^ { t } b $",
"$ Z $",
"$ E $",
"$ ( E ^ { t } \\Theta + 1 ) ( d ^ { t } b - 2 ( a + b \\Theta ) ^ { - 1 } b ) \\Theta E $",
"$ S O ( p , p , Z ) $",
"$ g _ { s } $",
"$ g _ { s } ^ { \\prime } = g _ { s } \\slash d e t ( c E + d ) ^ { 1 \\slash 2 } $",
"$ g _ { s } ^ { \\prime } = g _ { s } \\slash d e t ( c E + d ) ^ { 1 \\slash 2 } $",
"$ G _ { s } = g _ { s } ( d e t ( G + 2 \\pi \\alpha ^ { \\prime } \\Phi ) \\slash \\operatorname { d e t } ( g + 2 \\pi \\alpha ^ { \\prime } B ) ) ^ { 1 \\slash 2 } $",
"$ G _ { s } = g _ { s } ( d e t ( G + 2 \\pi \\alpha ^ { \\prime } \\Phi ) \\slash \\operatorname { d e t } ( g + 2 \\pi \\alpha ^ { \\prime } B ) ) ^ { 1 \\slash 2 } $",
"$ ( p + 1 ) \\times ( p + 1 ) $",
"$ G _ { s } = g _ { s } ( d e t ( 1 - \\Theta E ) ) ^ { - 1 \\slash 2 } $",
"$ G _ { 0 0 } = g _ { 0 0 } , \\Phi _ { 0 i } = B _ { 0 i } = 0 $",
"$ S O ( p , p , Z ) $",
"$ G _ { s } $",
"$ g _ { Y M } = ( ( 2 \\pi ) ^ { p - 2 } G _ { s } \\slash ( \\alpha ^ { \\prime } ) ^ { ( 3 - p ) \\slash 2 } ) ^ { 1 \\slash 2 } $",
"$ g _ { Y M } = ( ( 2 \\pi ) ^ { p - 2 } G _ { s } \\slash ( \\alpha ^ { \\prime } ) ^ { ( 3 - p ) \\slash 2 } ) ^ { 1 \\slash 2 } $",
"$ \\Phi $",
"$ \\Phi = 0 $",
"$ g $",
"$ B $",
"$ E ^ { - 1 } \\approx \\Theta $",
"$ \\Phi $",
"$ p $",
"$ \\Phi $",
"$ p $",
"$ G = g , \\Phi = B , G _ { s } = g _ { s } $",
"$ \\Phi = 0 $",
"$ T r _ { \\theta } $",
"$ S _ { W Z } $",
"$ S _ { W Z } = \\int T r _ { \\theta } ( \\sum C ^ { ( n ) } ) e ^ { 2 \\pi \\alpha ^ { \\prime } F } $",
"$ n $",
"$ C ^ { ( n ) } $",
"$ F $",
"$ B $",
"$ \\theta $",
"$ \\sqrt { d e t ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) _ { i j } } ( - ( G _ { 0 0 } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } F _ { 0 i } ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) ^ { - 1 i j } F _ { j 0 } ) ) ^ { 1 \\slash 2 } $",
"\\begin{equation*} Z = ( E ^ { t } \\Theta + 1 ) \\frac { 1 } { a + b \\Theta } b ( 1 - \\Theta E ) , \\end{equation*}",
"\\begin{equation*} \\Phi ^ { \\prime } = ( a + b \\Theta ) \\Phi ( a + b \\Theta ) ^ { t } + \\frac { 1 } { 2 \\pi r ^ { 2 } } b ( a + b \\Theta ) ^ { t } . \\end{equation*}",
"\\begin{equation*} G _ { s } ^ { \\prime } = \\sqrt { \\operatorname { d e t } ( a + b \\Theta ) } G _ { s } , \\end{equation*}",
"\\begin{equation*} g _ { Y M } ^ { \\prime } = g _ { Y M } ( \\operatorname { d e t } ( a + b \\Theta ) ) ^ { \\frac { 1 } { 4 } } . \\end{equation*}",
"\\begin{equation*} S = - \\frac { 1 } { G _ { s } ( 2 \\pi ) ^ { p } \\alpha ^ { \\prime \\frac { p + 1 } { 2 } } } \\int d ^ { p + 1 } \\sigma T r _ { \\theta } \\sqrt { - \\operatorname { d e t } ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) } + S _ { W Z } . \\end{equation*}"
],
"latex_expand": [
"$ ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\mitb ^ { \\mitt } ( \\mitc + \\mitd \\mupTheta ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb $",
"$ ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb - \\mitE ^ { \\mitt } \\mupTheta \\mitd ^ { \\mitt } \\mitb - \\mitd ^ { \\mitt } \\mitb $",
"$ \\mitZ $",
"$ \\mitE $",
"$ ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) ( \\mitd ^ { \\mitt } \\mitb - 2 ( \\mita + \\mitb \\mupTheta ) ^ { - 1 } \\mitb ) \\mupTheta \\mitE $",
"$ \\mitS \\mitO ( \\mitp , \\mitp , \\mitZ ) $",
"$ \\mitg _ { \\mits } $",
"$ \\mitg _ { \\mits } ^ { \\prime } = \\mitg _ { \\mits } \\slash \\mathrm { d e t } ( \\mitc \\mitE + \\mitd ) ^ { 1 \\slash 2 } $",
"$ \\mitg _ { \\mits } ^ { \\prime } = \\mitg _ { \\mits } \\slash \\mathrm { d e t } ( \\mitc \\mitE + \\mitd ) ^ { 1 \\slash 2 } $",
"$ \\mitG _ { \\mits } = \\mitg _ { \\mits } ( \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } \\mupPhi ) \\slash \\operatorname { d e t } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB ) ) ^ { 1 \\slash 2 } $",
"$ \\mitG _ { \\mits } = \\mitg _ { \\mits } ( \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } \\mupPhi ) \\slash \\operatorname { d e t } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB ) ) ^ { 1 \\slash 2 } $",
"$ ( \\mitp + 1 ) \\times ( \\mitp + 1 ) $",
"$ \\mitG _ { \\mits } = \\mitg _ { \\mits } ( \\mathrm { d e t } ( 1 - \\mupTheta \\mitE ) ) ^ { - 1 \\slash 2 } $",
"$ \\mitG _ { 0 0 } = \\mitg _ { 0 0 } , \\mupPhi _ { 0 \\miti } = \\mitB _ { 0 \\miti } = 0 $",
"$ \\mitS \\mitO ( \\mitp , \\mitp , \\mitZ ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitg _ { \\mitY \\mitM } = ( ( 2 \\mitpi ) ^ { \\mitp - 2 } \\mitG _ { \\mits } \\slash ( \\mitalpha ^ { \\prime } ) ^ { ( 3 - \\mitp ) \\slash 2 } ) ^ { 1 \\slash 2 } $",
"$ \\mitg _ { \\mitY \\mitM } = ( ( 2 \\mitpi ) ^ { \\mitp - 2 } \\mitG _ { \\mits } \\slash ( \\mitalpha ^ { \\prime } ) ^ { ( 3 - \\mitp ) \\slash 2 } ) ^ { 1 \\slash 2 } $",
"$ \\mupPhi $",
"$ \\mupPhi = 0 $",
"$ \\mitg $",
"$ \\mitB $",
"$ \\mitE ^ { - 1 } \\approx \\mupTheta $",
"$ \\mupPhi $",
"$ \\mitp $",
"$ \\mupPhi $",
"$ \\mitp $",
"$ \\mitG = \\mitg , \\mupPhi = \\mitB , \\mitG _ { \\mits } = \\mitg _ { \\mits } $",
"$ \\mupPhi = 0 $",
"$ \\mitT \\mitr _ { \\mittheta } $",
"$ \\mitS _ { \\mitW \\mitZ } $",
"$ \\mitS _ { \\mitW \\mitZ } = \\int \\nolimits \\mitT \\mitr _ { \\mittheta } ( \\sum \\mitC ^ { ( \\mitn ) } ) \\mite ^ { 2 \\mitpi \\mitalpha ^ { \\prime } \\mitF } $",
"$ \\mitn $",
"$ \\mitC ^ { ( \\mitn ) } $",
"$ \\mitF $",
"$ \\mitB $",
"$ \\mittheta $",
"$ \\sqrt { \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) _ { \\miti \\mitj } } ( - ( \\mitG _ { 0 0 } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitF _ { 0 \\miti } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) ^ { - 1 \\miti \\mitj } \\mitF _ { \\mitj 0 } ) ) ^ { 1 \\slash 2 } $",
"\\begin{equation*} \\mitZ = ( \\mitE ^ { \\mitt } \\mupTheta + 1 ) \\frac { 1 } { \\mita + \\mitb \\mupTheta } \\mitb ( 1 - \\mupTheta \\mitE ) , \\end{equation*}",
"\\begin{equation*} \\mupPhi ^ { \\prime } = ( \\mita + \\mitb \\mupTheta ) \\mupPhi ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } + \\frac { 1 } { 2 \\mitpi \\mitr ^ { 2 } } \\mitb ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } . \\end{equation*}",
"\\begin{equation*} \\mitG _ { \\mits } ^ { \\prime } = \\sqrt { \\operatorname { d e t } ( \\mita + \\mitb \\mupTheta ) } \\mitG _ { \\mits } , \\end{equation*}",
"\\begin{equation*} \\mitg _ { \\mitY \\mitM } ^ { \\prime } = \\mitg _ { \\mitY \\mitM } ( \\operatorname { d e t } ( \\mita + \\mitb \\mupTheta ) ) ^ { \\frac { 1 } { 4 } } . \\end{equation*}",
"\\begin{equation*} \\mitS = - \\frac { 1 } { \\mitG _ { \\mits } ( 2 \\mitpi ) ^ { \\mitp } \\mitalpha ^ { \\prime \\frac { \\mitp + 1 } { 2 } } } \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\mitT \\mitr _ { \\mittheta } \\sqrt { - \\operatorname { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) } + \\mitS _ { \\mitW \\mitZ } . \\end{equation*}"
],
"x_min": [
0.5023999810218811,
0.4043000042438507,
0.29440000653266907,
0.5631999969482422,
0.14309999346733093,
0.18940000236034393,
0.7214999794960022,
0.8575999736785889,
0.11540000140666962,
0.6018999814987183,
0.11540000140666962,
0.3490000069141388,
0.6848999857902527,
0.16380000114440918,
0.7172999978065491,
0.20180000364780426,
0.8382999897003174,
0.11540000140666962,
0.42289999127388,
0.5078999996185303,
0.23430000245571136,
0.35589998960494995,
0.6474999785423279,
0.18729999661445618,
0.1306000053882599,
0.4499000012874603,
0.5134999752044678,
0.4077000021934509,
0.8514000177383423,
0.5273000001907349,
0.3849000036716461,
0.5839999914169312,
0.29580000042915344,
0.489300012588501,
0.767799973487854,
0.3019999861717224,
0.7084000110626221,
0.4657999873161316,
0.36489999294281006,
0.32199999690055847,
0.4090999960899353,
0.39250001311302185,
0.22460000216960907
],
"y_min": [
0.09279999881982803,
0.1103999987244606,
0.12890000641345978,
0.12890000641345978,
0.1445000022649765,
0.26510000228881836,
0.2694999873638153,
0.263700008392334,
0.2808000147342682,
0.2808000147342682,
0.29789999127388,
0.2992999851703644,
0.29789999127388,
0.3174000084400177,
0.3163999915122986,
0.3345000147819519,
0.37549999356269836,
0.39259999990463257,
0.47360000014305115,
0.47360000014305115,
0.49459999799728394,
0.49070000648498535,
0.5067999958992004,
0.5253999829292297,
0.6147000193595886,
0.61080002784729,
0.6147000193595886,
0.7020999789237976,
0.7192000150680542,
0.736299991607666,
0.7705000042915344,
0.7851999998092651,
0.8086000084877014,
0.8026999831199646,
0.8051999807357788,
0.8223000168800354,
0.8223000168800354,
0.8359000086784363,
0.17329999804496765,
0.22509999573230743,
0.3441999852657318,
0.4189000129699707,
0.638700008392334
],
"x_max": [
0.7718999981880188,
0.7174000144004822,
0.30959999561309814,
0.579800009727478,
0.4381999969482422,
0.28619998693466187,
0.7387999892234802,
0.9017999768257141,
0.27230000495910645,
0.9017999768257141,
0.2087000012397766,
0.4747999906539917,
0.9018999934196472,
0.37529999017715454,
0.8141000270843506,
0.22529999911785126,
0.9018999934196472,
0.33379998803138733,
0.4374000132083893,
0.5590000152587891,
0.24469999969005585,
0.3718000054359436,
0.7269999980926514,
0.20250000059604645,
0.14100000262260437,
0.4643999934196472,
0.5238999724388123,
0.6011999845504761,
0.9017999768257141,
0.5583999752998352,
0.4242999851703644,
0.8223999738693237,
0.30820000171661377,
0.5259000062942505,
0.7836999893188477,
0.31790000200271606,
0.7181000113487244,
0.9025999903678894,
0.652400016784668,
0.6980000138282776,
0.6074000000953674,
0.6274999976158142,
0.7954000234603882
],
"y_max": [
0.10840000212192535,
0.12549999356269836,
0.13920000195503235,
0.13920000195503235,
0.15960000455379486,
0.27970001101493835,
0.2793000042438507,
0.2797999978065491,
0.2969000041484833,
0.2969000041484833,
0.3140000104904175,
0.31439998745918274,
0.31450000405311584,
0.33059999346733093,
0.33149999380111694,
0.3472000062465668,
0.3921000063419342,
0.4092000126838684,
0.48429998755455017,
0.48429998755455017,
0.5038999915122986,
0.5013999938964844,
0.5184999704360962,
0.5357000231742859,
0.6240000128746033,
0.6215000152587891,
0.6240000128746033,
0.7153000235557556,
0.7294999957084656,
0.7490000128746033,
0.7832000255584717,
0.801800012588501,
0.8154000043869019,
0.8154000043869019,
0.815500020980835,
0.8325999975204468,
0.8325999975204468,
0.8583999872207642,
0.2070000022649765,
0.2572999894618988,
0.3700999915599823,
0.4408999979496002,
0.677299976348877
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003204_page07
|
{
"latex": [
"$\\sqrt {\\det (G+2\\pi \\al (F+\\Phi ))_{ij}} (-(G_{00}- (2\\pi \\al )^2 F_{0i}(G+ 2\\pi \\al (F+\\Phi ))^{-1ij}F_{j0}))^{1/2}$",
"$i=1,\\cdots ,p$",
"$\\Phi _{0i}=G_{0i}=0$",
"$p$",
"$F_{ij}$",
"$F_{ij} \\rightarrow ((a+b\\Te )F(a+b\\Te )^t -\\frac {1}{2\\pi r^2}b (a+b\\Te )^t)_{ij}$",
"$F_{ij} \\rightarrow ((a+b\\Te )F(a+b\\Te )^t -\\frac {1}{2\\pi r^2}b (a+b\\Te )^t)_{ij}$",
"$F_{0i}$",
"$F_{0i} \\rightarrow (F(a+b\\Te )^t)_{0i}$",
"$G_{00}=g_{00}$",
"$p$",
"$Tr_{\\te }$",
"$Tr_{\\te } \\rightarrow (\\det (a+b\\Te ))^{-1/2}Tr_{\\te }$",
"$D5$",
"$C, C_{lm}$",
"$C_{jklm}$",
"$A = a + b\\Te $",
"$A_i^a$",
"$A_i^{\\:\\:a}$",
"$S_{WZ}$",
"$C_{0i}, C_{0ijk}$",
"$C_{0ijklm}$",
"${}_3C_1, {}_5C_3$",
"$3\\cdot {}_5C_1$",
"\\begin {eqnarray} S_{WZ} &=& \\int d^6\\sigma Tr_{\\te }\\e ^{ilklm}(\\frac {2\\pi \\al }{24}F_{0i} C_{jklm} + \\frac {(2\\pi \\al )^2}{4}F_{0i}F_{jk}C_{lm} + \\frac {(2\\pi \\al )^3}{8}F_{0i}F_{jk}F_{lm}C \\\\ &+& \\frac {1}{5!}C_{0ijklm}+ \\frac {2\\pi \\al }{12}C_{0ijk}F_{lm} + \\frac {(2\\pi \\al )^2}{8}C_{0i}F_{jk}F_{lm}). \\end {eqnarray}",
"\\begin {eqnarray} C &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}C, \\hspace {1cm} C_{ij} \\; \\rightarrow \\; \\frac {1} {\\sqrt {\\det A}}((ACA^t)_{ij} + \\frac {\\al }{r^2}(bA^t)_{[ij]}C), \\\\ C_{ijkl} &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}(A_{[i}^a A_j^b A_k^c A_{l]}^d C_{abcd} + \\frac {6\\al }{r^2}A_{[i}^a A_j^b (bA^t)_{kl]}C_{ab} + 3(\\frac {\\al }{r^2})^2 C(bA^t)_{[ij}(bA^t)_{kl]} ), \\end {eqnarray}",
"\\begin {eqnarray} C_{0i} &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}A_i^a C_{0a}, \\hspace {1cm} C_{0ijk} \\;\\rightarrow \\;\\frac {1}{\\sqrt {\\det A}}(A_{[i}^aA_j^b A_{k]}^c C_{0abc} + \\frac {3\\al }{r^2} A_{[i}^a(bA^t)_{jk]}C_{0a} ), \\\\ C_{0ijklm} &\\rightarrow & \\frac {1}{\\sqrt {\\det A}}(A_{[i}^a \\cdots A_{m]}^e C_{0a\\cdots e} + \\frac {10\\al }{r^2}A_{[i}^a A_j^b A_k^c (bA^t)_{lm]} C_{0abc} \\\\ &+& 15(\\frac {\\al }{r^2})^2 A_{[i}^a(bA^t)_{jk}(bA^t)_{lm]}C_{0a} ), \\end {eqnarray}",
"\\begin {eqnarray} \\la ^i = \\frac {1}{4!}\\e ^{ijklm}C_{jklm}, \\; \\la ^{ijk} = \\frac {1}{2!} \\e ^{ijklm}C_{lm}, \\; \\la ^{ijklm}=\\e ^{ijklm}C, \\\\ \\la =\\frac {1}{5!}\\e ^{ijklm}C_{0ijklm},\\; \\la ^{ij} = \\frac {1}{3!} \\e ^{ijklm}C_{0klm}, \\; \\la ^{ijkl}=\\e ^{ijklm}C_{0m} \\end {eqnarray}"
],
"latex_norm": [
"$ \\sqrt { d e t ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) _ { i j } } ( - ( G _ { 0 0 } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } F _ { 0 i } ( G + 2 \\pi \\alpha ^ { \\prime } ( F + \\Phi ) ) ^ { - 1 i j } F _ { j 0 } ) ) ^ { 1 \\slash 2 } $",
"$ i = 1 , \\cdots , p $",
"$ \\Phi _ { 0 i } = G _ { 0 i } = 0 $",
"$ p $",
"$ F _ { i j } $",
"$ F _ { i j } \\rightarrow ( ( a + b \\Theta ) F ( a + b \\Theta ) ^ { t } - \\frac { 1 } { 2 \\pi r ^ { 2 } } b ( a + b \\Theta ) ^ { t } ) _ { i j } $",
"$ F _ { i j } \\rightarrow ( ( a + b \\Theta ) F ( a + b \\Theta ) ^ { t } - \\frac { 1 } { 2 \\pi r ^ { 2 } } b ( a + b \\Theta ) ^ { t } ) _ { i j } $",
"$ F _ { 0 i } $",
"$ F _ { 0 i } \\rightarrow ( F ( a + b \\Theta ) ^ { t } ) _ { 0 i } $",
"$ G _ { 0 0 } = g _ { 0 0 } $",
"$ p $",
"$ T r _ { \\theta } $",
"$ T r _ { \\theta } \\rightarrow ( d e t ( a + b \\Theta ) ) ^ { - 1 \\slash 2 } T r _ { \\theta } $",
"$ D 5 $",
"$ C , C _ { l m } $",
"$ C _ { j k l m } $",
"$ A = a + b \\Theta $",
"$ A _ { i } ^ { a } $",
"$ A _ { i } ^ { \\> \\> a } $",
"$ S _ { W Z } $",
"$ C _ { 0 i } , C _ { 0 i j k } $",
"$ C _ { 0 i j k l m } $",
"$ { } _ { 3 } C _ { 1 } , { } _ { 5 } C _ { 3 } $",
"$ 3 \\cdot { } _ { 5 } C _ { 1 } $",
"\\begin{align*} S _ { W Z } & = & \\int d ^ { 6 } \\sigma T r _ { \\theta } \\epsilon ^ { i l k l m } ( \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 4 } F _ { 0 i } C _ { j k l m } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 4 } F _ { 0 i } F _ { j k } C _ { l m } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } } { 8 } F _ { 0 i } F _ { j k } F _ { l m } C \\\\ & + & \\frac { 1 } { 5 ! } C _ { 0 i j k l m } + \\frac { 2 \\pi \\alpha ^ { \\prime } } { 1 2 } C _ { 0 i j k } F _ { l m } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 8 } C _ { 0 i } F _ { j k } F _ { l m } ) . \\end{align*}",
"\\begin{align*} C & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } C , \\hspace{28.45pt} C _ { i j } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( ( A C A ^ { t } ) _ { i j } + \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ( b A ^ { t } ) _ { [ i j ] } C ) , \\\\ C _ { i j k l } & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( A _ { [ i } ^ { a } A _ { j } ^ { b } A _ { k } ^ { c } A _ { l ] } ^ { d } C _ { a b c d } + \\frac { 6 \\alpha ^ { \\prime } } { r ^ { 2 } } A _ { [ i } ^ { a } A _ { j } ^ { b } ( b A ^ { t } ) _ { k l ] } C _ { a b } + 3 ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } C ( b A ^ { t } ) _ { [ i j } ( b A ^ { t } ) _ { k l ] } ) , \\end{align*}",
"\\begin{align*} C _ { 0 i } & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } A _ { i } ^ { a } C _ { 0 a } , \\hspace{28.45pt} C _ { 0 i j k } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( A _ { [ i } ^ { a } A _ { j } ^ { b } A _ { k ] } ^ { c } C _ { 0 a b c } + \\frac { 3 \\alpha ^ { \\prime } } { r ^ { 2 } } A _ { [ i } ^ { a } ( b A ^ { t } ) _ { j k ] } C _ { 0 a } ) , \\\\ C _ { 0 i j k l m } & \\rightarrow & \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } ( A _ { [ i } ^ { a } \\cdots A _ { m ] } ^ { e } C _ { 0 a \\cdots e } + \\frac { 1 0 \\alpha ^ { \\prime } } { r ^ { 2 } } A _ { [ i } ^ { a } A _ { j } ^ { b } A _ { k } ^ { c } ( b A ^ { t } ) _ { l m ] } C _ { 0 a b c } \\\\ & + & 1 5 ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } A _ { [ i } ^ { a } ( b A ^ { t } ) _ { j k } ( b A ^ { t } ) _ { l m ] } C _ { 0 a } ) , \\end{align*}",
"\\begin{align*} \\lambda ^ { i } = \\frac { 1 } { 4 ! } \\epsilon ^ { i j k l m } C _ { j k l m } , \\; \\lambda ^ { i j k } = \\frac { 1 } { 2 ! } \\epsilon ^ { i j k l m } C _ { l m } , \\; \\lambda ^ { i j k l m } = \\epsilon ^ { i j k l m } C , \\\\ \\lambda = \\frac { 1 } { 5 ! } \\epsilon ^ { i j k l m } C _ { 0 i j k l m } , \\; \\lambda ^ { i j } = \\frac { 1 } { 3 ! } \\epsilon ^ { i j k l m } C _ { 0 k l m } , \\; \\lambda ^ { i j k l } = \\epsilon ^ { i j k l m } C _ { 0 m } \\end{align*}"
],
"latex_expand": [
"$ \\sqrt { \\mathrm { d e t } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) _ { \\miti \\mitj } } ( - ( \\mitG _ { 0 0 } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitF _ { 0 \\miti } ( \\mitG + 2 \\mitpi \\mitalpha ^ { \\prime } ( \\mitF + \\mupPhi ) ) ^ { - 1 \\miti \\mitj } \\mitF _ { \\mitj 0 } ) ) ^ { 1 \\slash 2 } $",
"$ \\miti = 1 , \\cdots , \\mitp $",
"$ \\mupPhi _ { 0 \\miti } = \\mitG _ { 0 \\miti } = 0 $",
"$ \\mitp $",
"$ \\mitF _ { \\miti \\mitj } $",
"$ \\mitF _ { \\miti \\mitj } \\rightarrow ( ( \\mita + \\mitb \\mupTheta ) \\mitF ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } - \\frac { 1 } { 2 \\mitpi \\mitr ^ { 2 } } \\mitb ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } ) _ { \\miti \\mitj } $",
"$ \\mitF _ { \\miti \\mitj } \\rightarrow ( ( \\mita + \\mitb \\mupTheta ) \\mitF ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } - \\frac { 1 } { 2 \\mitpi \\mitr ^ { 2 } } \\mitb ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } ) _ { \\miti \\mitj } $",
"$ \\mitF _ { 0 \\miti } $",
"$ \\mitF _ { 0 \\miti } \\rightarrow ( \\mitF ( \\mita + \\mitb \\mupTheta ) ^ { \\mitt } ) _ { 0 \\miti } $",
"$ \\mitG _ { 0 0 } = \\mitg _ { 0 0 } $",
"$ \\mitp $",
"$ \\mitT \\mitr _ { \\mittheta } $",
"$ \\mitT \\mitr _ { \\mittheta } \\rightarrow ( \\mathrm { d e t } ( \\mita + \\mitb \\mupTheta ) ) ^ { - 1 \\slash 2 } \\mitT \\mitr _ { \\mittheta } $",
"$ \\mitD 5 $",
"$ \\mitC , \\mitC _ { \\mitl \\mitm } $",
"$ \\mitC _ { \\mitj \\mitk \\mitl \\mitm } $",
"$ \\mitA = \\mita + \\mitb \\mupTheta $",
"$ \\mitA _ { \\miti } ^ { \\mita } $",
"$ \\mitA _ { \\miti } ^ { \\> \\> \\mita } $",
"$ \\mitS _ { \\mitW \\mitZ } $",
"$ \\mitC _ { 0 \\miti } , \\mitC _ { 0 \\miti \\mitj \\mitk } $",
"$ \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } $",
"$ { } _ { 3 } \\mitC _ { 1 } , { } _ { 5 } \\mitC _ { 3 } $",
"$ 3 \\cdot { } _ { 5 } \\mitC _ { 1 } $",
"\\begin{align*} \\displaystyle \\mitS _ { \\mitW \\mitZ } & = & \\displaystyle \\int \\mitd ^ { 6 } \\mitsigma \\mitT \\mitr _ { \\mittheta } \\mitepsilon ^ { \\miti \\mitl \\mitk \\mitl \\mitm } ( \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 4 } \\mitF _ { 0 \\miti } \\mitC _ { \\mitj \\mitk \\mitl \\mitm } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 4 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitC _ { \\mitl \\mitm } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } } { 8 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } \\mitC \\\\ & \\displaystyle + & \\displaystyle \\frac { 1 } { 5 ! } \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } + \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 1 2 } \\mitC _ { 0 \\miti \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 8 } \\mitC _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } ) . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitC & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitC , \\hspace{28.45pt} \\mitC _ { \\miti \\mitj } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( ( \\mitA \\mitC \\mitA ^ { \\mitt } ) _ { \\miti \\mitj } + \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ( \\mitb \\mitA ^ { \\mitt } ) _ { [ \\miti \\mitj ] } \\mitC ) , \\\\ \\displaystyle \\mitC _ { \\miti \\mitj \\mitk \\mitl } & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } \\mitA _ { \\mitk } ^ { \\mitc } \\mitA _ { \\mitl ] } ^ { \\mitd } \\mitC _ { \\mita \\mitb \\mitc \\mitd } + \\frac { 6 \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl ] } \\mitC _ { \\mita \\mitb } + 3 ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\mitC ( \\mitb \\mitA ^ { \\mitt } ) _ { [ \\miti \\mitj } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl ] } ) , \\end{align*}",
"\\begin{align*} \\displaystyle \\mitC _ { 0 \\miti } & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitA _ { \\miti } ^ { \\mita } \\mitC _ { 0 \\mita } , \\hspace{28.45pt} \\mitC _ { 0 \\miti \\mitj \\mitk } \\; \\rightarrow \\; \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } \\mitA _ { \\mitk ] } ^ { \\mitc } \\mitC _ { 0 \\mita \\mitb \\mitc } + \\frac { 3 \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } \\mitA _ { [ \\miti } ^ { \\mita } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk ] } \\mitC _ { 0 \\mita } ) , \\\\ \\displaystyle \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } & \\displaystyle \\rightarrow & \\displaystyle \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } ( \\mitA _ { [ \\miti } ^ { \\mita } \\cdots \\mitA _ { \\mitm ] } ^ { \\mite } \\mitC _ { 0 \\mita \\cdots \\mite } + \\frac { 1 0 \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } \\mitA _ { [ \\miti } ^ { \\mita } \\mitA _ { \\mitj } ^ { \\mitb } \\mitA _ { \\mitk } ^ { \\mitc } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm ] } \\mitC _ { 0 \\mita \\mitb \\mitc } \\\\ & \\displaystyle + & \\displaystyle 1 5 ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\mitA _ { [ \\miti } ^ { \\mita } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm ] } \\mitC _ { 0 \\mita } ) , \\end{align*}",
"\\begin{align*} \\displaystyle \\mitlambda ^ { \\miti } = \\frac { 1 } { 4 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { \\mitj \\mitk \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk } = \\frac { 1 } { 2 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } = \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC , \\\\ \\displaystyle \\mitlambda = \\frac { 1 } { 5 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { 0 \\miti \\mitj \\mitk \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj } = \\frac { 1 } { 3 ! } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { 0 \\mitk \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl } = \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitC _ { 0 \\mitm } \\end{align*}"
],
"x_min": [
0.11810000240802765,
0.39879998564720154,
0.772599995136261,
0.5515000224113464,
0.5300999879837036,
0.7131999731063843,
0.11540000140666962,
0.7450000047683716,
0.14030000567436218,
0.8188999891281128,
0.11540000140666962,
0.4788999855518341,
0.6198999881744385,
0.4512999951839447,
0.6378999948501587,
0.7394999861717224,
0.1720999926328659,
0.3151000142097473,
0.4361000061035156,
0.3573000133037567,
0.8245000243186951,
0.15410000085830688,
0.2224999964237213,
0.3359000086784363,
0.1582999974489212,
0.14509999752044678,
0.13410000503063202,
0.2460000067949295
],
"y_min": [
0.09269999712705612,
0.09470000118017197,
0.094200000166893,
0.1151999980211258,
0.12890000641345978,
0.12700000405311584,
0.14399999380111694,
0.1459999978542328,
0.1615999937057495,
0.18019999563694,
0.218299999833107,
0.21439999341964722,
0.211899995803833,
0.2660999894142151,
0.39259999990463257,
0.39259999990463257,
0.5234000086784363,
0.5234000086784363,
0.5234000086784363,
0.5404999852180481,
0.5404999852180481,
0.5580999851226807,
0.7246000170707703,
0.7246000170707703,
0.2930000126361847,
0.43549999594688416,
0.5859000086784363,
0.7681000232696533
],
"x_max": [
0.3310000002384186,
0.49900001287460327,
0.8963000178337097,
0.5619000196456909,
0.5550000071525574,
0.9074000120162964,
0.3206999897956848,
0.7713000178337097,
0.32339999079704285,
0.9017999768257141,
0.1257999986410141,
0.510699987411499,
0.8679999709129333,
0.4788999855518341,
0.6931999921798706,
0.7864999771118164,
0.27160000801086426,
0.3393000066280365,
0.46650001406669617,
0.39739999175071716,
0.9018999934196472,
0.21220000088214874,
0.29159998893737793,
0.390500009059906,
0.8590999841690063,
0.8720999956130981,
0.8812000155448914,
0.7386999726295471
],
"y_max": [
0.10830000042915344,
0.10740000009536743,
0.10689999908208847,
0.12449999898672104,
0.14309999346733093,
0.14409999549388885,
0.16110000014305115,
0.1581999957561493,
0.17720000445842743,
0.19339999556541443,
0.22759999334812164,
0.22709999978542328,
0.22849999368190765,
0.27639999985694885,
0.4058000147342682,
0.4068000018596649,
0.535099983215332,
0.5375999808311462,
0.5375999808311462,
0.5532000064849854,
0.5551000237464905,
0.5723000168800354,
0.7378000020980835,
0.7372999787330627,
0.3677000105381012,
0.5145999789237976,
0.6996999979019165,
0.8384000062942505
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003204_page08
|
{
"latex": [
"$B =(A^{-1})^t$",
"$B_a^i$",
"$B_{\\:\\:a}^i$",
"$B$",
"$\\Phi $",
"\\begin {eqnarray} S_{WZ} &=& \\int d^6\\sigma Tr_{\\te }(2\\pi \\al F_{0i}\\la ^i + \\frac {(2\\pi \\al )^2}{2}F_{0i}F_{jk}\\la ^{ijk} + \\frac {(2\\pi \\al )^3}{8} F_{0i}F_{jk}F_{lm}\\la ^{ijklm} \\\\ &+& \\la + \\frac {2\\pi \\al }{2}F_{ij}\\la ^{ij} + \\frac {(2\\pi \\al )^2}{8} F_{ij}F_{kl}\\la ^{ijkl} ). \\end {eqnarray}",
"\\begin {eqnarray} \\la ^i &\\rightarrow & \\sqrt {\\det A}(B_a^{i}\\la ^a + \\frac {\\al }{2r^2} B_a^iB_b^jB_c^k\\la ^{abc}(bA^t)_{jk}) + \\frac {1}{8} (\\frac {\\al }{r^2})^2 \\frac {1}{\\sqrt {\\det A}}\\la ^{ijklm}(bA^t)_{jk}(bA^t)_{lm}, \\\\ \\la ^{ijk} &\\rightarrow & \\sqrt {\\det A}B_a^i B_b^j B_c^k \\la ^{abc} + \\frac {\\al }{2r^2} \\frac {1}{\\sqrt {\\det A}}\\la ^{ijklm}(bA^t)_{lm}, \\; \\la ^{ijklm} \\rightarrow \\frac {1}{\\sqrt {\\det A}}\\la ^{ijklm}, \\end {eqnarray}",
"\\begin {eqnarray} \\la &\\rightarrow & \\sqrt {\\det A}(\\la + \\frac {\\al }{2r^2}B_a^i B_b^j (bA^t)_{ij}\\la ^{ab} + \\frac {1}{8} (\\frac {\\al }{r^2})^2B_a^i B_b^j B_c^k B_d^l (bA^t)_{ij}(bA^t)_{kl}\\la ^{abcd}), \\\\ \\la ^{ij} &\\rightarrow & \\sqrt {\\det A}(B_a^i B_b^j \\la ^{ab} + \\frac {\\al }{2r^2}B_a^i B_b^j B_c^k B_d^l(bA^t)_{kl}\\la ^{abcd}),\\; \\la ^{ijkl} \\rightarrow \\sqrt {\\det A}B_a^i B_b^j B_c^k B_d^l\\la ^{abcd}, \\end {eqnarray}"
],
"latex_norm": [
"$ B = ( A ^ { - 1 } ) ^ { t } $",
"$ B _ { a } ^ { i } $",
"$ B _ { \\> \\> a } ^ { i } $",
"$ B $",
"$ \\Phi $",
"\\begin{align*} S _ { W Z } & = & \\int d ^ { 6 } \\sigma T r _ { \\theta } ( 2 \\pi \\alpha ^ { \\prime } F _ { 0 i } \\lambda ^ { i } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 2 } F _ { 0 i } F _ { j k } \\lambda ^ { i j k } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 3 } } { 8 } F _ { 0 i } F _ { j k } F _ { l m } \\lambda ^ { i j k l m } \\\\ & + & \\lambda + \\frac { 2 \\pi \\alpha ^ { \\prime } } { 2 } F _ { i j } \\lambda ^ { i j } + \\frac { ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } } { 8 } F _ { i j } F _ { k l } \\lambda ^ { i j k l } ) . \\end{align*}",
"\\begin{align*} \\lambda ^ { i } & \\rightarrow & \\sqrt { \\operatorname { d e t } A } ( B _ { a } ^ { i } \\lambda ^ { a } + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } \\lambda ^ { a b c } ( b A ^ { t } ) _ { j k } ) + \\frac { 1 } { 8 } ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } \\lambda ^ { i j k l m } ( b A ^ { t } ) _ { j k } ( b A ^ { t } ) _ { l m } , \\\\ \\lambda ^ { i j k } & \\rightarrow & \\sqrt { \\operatorname { d e t } A } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } \\lambda ^ { a b c } + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } \\lambda ^ { i j k l m } ( b A ^ { t } ) _ { l m } , \\; \\lambda ^ { i j k l m } \\rightarrow \\frac { 1 } { \\sqrt { \\operatorname { d e t } A } } \\lambda ^ { i j k l m } , \\end{align*}",
"\\begin{align*} \\lambda & \\rightarrow & \\sqrt { \\operatorname { d e t } A } ( \\lambda + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } B _ { a } ^ { i } B _ { b } ^ { j } ( b A ^ { t } ) _ { i j } \\lambda ^ { a b } + \\frac { 1 } { 8 } ( \\frac { \\alpha ^ { \\prime } } { r ^ { 2 } } ) ^ { 2 } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } B _ { d } ^ { l } ( b A ^ { t } ) _ { i j } ( b A ^ { t } ) _ { k l } \\lambda ^ { a b c d } ) , \\\\ \\lambda ^ { i j } & \\rightarrow & \\sqrt { \\operatorname { d e t } A } ( B _ { a } ^ { i } B _ { b } ^ { j } \\lambda ^ { a b } + \\frac { \\alpha ^ { \\prime } } { 2 r ^ { 2 } } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } B _ { d } ^ { l } ( b A ^ { t } ) _ { k l } \\lambda ^ { a b c d } ) , \\; \\lambda ^ { i j k l } \\rightarrow \\sqrt { \\operatorname { d e t } A } B _ { a } ^ { i } B _ { b } ^ { j } B _ { c } ^ { k } B _ { d } ^ { l } \\lambda ^ { a b c d } , \\end{align*}"
],
"latex_expand": [
"$ \\mitB = ( \\mitA ^ { - 1 } ) ^ { \\mitt } $",
"$ \\mitB _ { \\mita } ^ { \\miti } $",
"$ \\mitB _ { \\> \\> \\mita } ^ { \\miti } $",
"$ \\mitB $",
"$ \\mupPhi $",
"\\begin{align*} \\displaystyle \\mitS _ { \\mitW \\mitZ } & = & \\displaystyle \\int \\mitd ^ { 6 } \\mitsigma \\mitT \\mitr _ { \\mittheta } ( 2 \\mitpi \\mitalpha ^ { \\prime } \\mitF _ { 0 \\miti } \\mitlambda ^ { \\miti } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 2 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitlambda ^ { \\miti \\mitj \\mitk } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 3 } } { 8 } \\mitF _ { 0 \\miti } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitl \\mitm } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\\\ & \\displaystyle + & \\displaystyle \\mitlambda + \\frac { 2 \\mitpi \\mitalpha ^ { \\prime } } { 2 } \\mitF _ { \\miti \\mitj } \\mitlambda ^ { \\miti \\mitj } + \\frac { ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } } { 8 } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitk \\mitl } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl } ) . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitlambda ^ { \\miti } & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } ( \\mitB _ { \\mita } ^ { \\miti } \\mitlambda ^ { \\mita } + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitlambda ^ { \\mita \\mitb \\mitc } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk } ) + \\frac { 1 } { 8 } ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitj \\mitk } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm } , \\\\ \\displaystyle \\mitlambda ^ { \\miti \\mitj \\mitk } & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitlambda ^ { \\mita \\mitb \\mitc } + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitl \\mitm } , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\rightarrow \\frac { 1 } { \\sqrt { \\operatorname { d e t } \\mitA } } \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl \\mitm } , \\end{align*}",
"\\begin{align*} \\displaystyle \\mitlambda & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } ( \\mitlambda + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\miti \\mitj } \\mitlambda ^ { \\mita \\mitb } + \\frac { 1 } { 8 } ( \\frac { \\mitalpha ^ { \\prime } } { \\mitr ^ { 2 } } ) ^ { 2 } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitB _ { \\mitd } ^ { \\mitl } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\miti \\mitj } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl } \\mitlambda ^ { \\mita \\mitb \\mitc \\mitd } ) , \\\\ \\displaystyle \\mitlambda ^ { \\miti \\mitj } & \\displaystyle \\rightarrow & \\displaystyle \\sqrt { \\operatorname { d e t } \\mitA } ( \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitlambda ^ { \\mita \\mitb } + \\frac { \\mitalpha ^ { \\prime } } { 2 \\mitr ^ { 2 } } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitB _ { \\mitd } ^ { \\mitl } ( \\mitb \\mitA ^ { \\mitt } ) _ { \\mitk \\mitl } \\mitlambda ^ { \\mita \\mitb \\mitc \\mitd } ) , \\; \\mitlambda ^ { \\miti \\mitj \\mitk \\mitl } \\rightarrow \\sqrt { \\operatorname { d e t } \\mitA } \\mitB _ { \\mita } ^ { \\miti } \\mitB _ { \\mitb } ^ { \\mitj } \\mitB _ { \\mitc } ^ { \\mitk } \\mitB _ { \\mitd } ^ { \\mitl } \\mitlambda ^ { \\mita \\mitb \\mitc \\mitd } , \\end{align*}"
],
"x_min": [
0.47620001435279846,
0.6704000234603882,
0.7304999828338623,
0.22179999947547913,
0.37389999628067017,
0.18039999902248383,
0.13269999623298645,
0.12849999964237213
],
"y_min": [
0.31839999556541443,
0.31839999556541443,
0.31839999556541443,
0.7372999787330627,
0.8403000235557556,
0.1225999966263771,
0.2304999977350235,
0.38089999556541443
],
"x_max": [
0.5742999911308289,
0.694599986076355,
0.7609000205993652,
0.23839999735355377,
0.38839998841285706,
0.8375999927520752,
0.8817999958992004,
0.8894000053405762
],
"y_max": [
0.33399999141693115,
0.33399999141693115,
0.33399999141693115,
0.7476000189781189,
0.850600004196167,
0.19280000030994415,
0.30559998750686646,
0.4510999917984009
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003204_page09
|
{
"latex": [
"$p$",
"$(p+1)$",
"$p$",
"$p$"
],
"latex_norm": [
"$ p $",
"$ ( p + 1 ) $",
"$ p $",
"$ p $"
],
"latex_expand": [
"$ \\mitp $",
"$ ( \\mitp + 1 ) $",
"$ \\mitp $",
"$ \\mitp $"
],
"x_min": [
0.553600013256073,
0.19349999725818634,
0.7630000114440918,
0.6413000226020813
],
"y_min": [
0.218299999833107,
0.23100000619888306,
0.3384000062942505,
0.3555000126361847
],
"x_max": [
0.5640000104904175,
0.25290000438690186,
0.7734000086784363,
0.6517000198364258
],
"y_max": [
0.22759999334812164,
0.24560000002384186,
0.34769999980926514,
0.36480000615119934
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003221_page01
|
{
"latex": [
"${}^1$",
"${}^1$",
"${}^1$",
"${}^2$",
"${}^3$",
"${}^1$",
"${}^2$",
"${}^3$"
],
"latex_norm": [
"$ { } ^ { 1 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 3 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 3 } $"
],
"latex_expand": [
"$ { } ^ { 1 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 3 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 3 } $"
],
"x_min": [
0.3393000066280365,
0.4505999982357025,
0.5825999975204468,
0.6765999794006348,
0.807200014591217,
0.3634999990463257,
0.4650999903678894,
0.20659999549388885
],
"y_min": [
0.31929999589920044,
0.31929999589920044,
0.31929999589920044,
0.31929999589920044,
0.31929999589920044,
0.3617999851703644,
0.426800012588501,
0.5088000297546387
],
"x_max": [
0.3476000130176544,
0.45890000462532043,
0.5909000039100647,
0.6855999827384949,
0.815500020980835,
0.3718000054359436,
0.4733999967575073,
0.21490000188350677
],
"y_max": [
0.3310000002384186,
0.3310000002384186,
0.3310000002384186,
0.3310000002384186,
0.3310000002384186,
0.3734999895095825,
0.43849998712539673,
0.5205000042915344
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003221_page02
|
{
"latex": [
"$\\pm $",
"$D=11$",
"\\begin {equation} \\label {SBI} S^{(p)}_{{\\rm BI}} = -\\int d^{p+1}\\sigma e^{-\\phi } \\sqrt {|{\\rm det}\\, G_{ij}|} \\, f(T,\\partial T,..)\\,, \\end {equation}"
],
"latex_norm": [
"$ \\pm $",
"$ D = 1 1 $",
"\\begin{equation*} S _ { B I } ^ { ( p ) } = - \\int d ^ { p + 1 } \\sigma e ^ { - \\phi } \\sqrt { \\vert d e t \\, G _ { i j } \\vert } \\, f ( T , \\partial T , . . ) \\, , \\end{equation*}"
],
"latex_expand": [
"$ \\pm $",
"$ \\mitD = 1 1 $",
"\\begin{equation*} \\mitS _ { \\mathrm { B I } } ^ { ( \\mitp ) } = - \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\mite ^ { - \\mitphi } \\sqrt { \\vert \\mathrm { d e t } \\, \\mitG _ { \\miti \\mitj } \\vert } \\, \\mitf ( \\mitT , \\mitpartial \\mitT , . . ) \\, , \\end{equation*}"
],
"x_min": [
0.15479999780654907,
0.7387999892234802,
0.31790000200271606
],
"y_min": [
0.5634999871253967,
0.7109000086784363,
0.7817000150680542
],
"x_max": [
0.17069999873638153,
0.8016999959945679,
0.6952000260353088
],
"y_max": [
0.5733000040054321,
0.7211999893188477,
0.817300021648407
],
"expr_type": [
"embedded",
"embedded",
"isolated"
]
}
|
|
0003221_page03
|
{
"latex": [
"$g$",
"${\\cal F}$",
"$F_{ij}=2\\partial _{[i}V_{j]}$",
"$B$",
"$f$",
"$S$",
"$\\partial T$",
"$(\\partial T)^4$",
"$C$",
"$C$",
"$p$",
"$\\delta $",
"$dT$",
"$f$",
"$\\kappa $",
"\\begin {equation} G_{ij} = g_{ij} + {\\cal F}_{ij}\\,. \\end {equation}",
"\\begin {equation} \\label {nonBPS} S_{\\rm BI}^{(p)} = -\\int d^{p+1}\\sigma \\sqrt { |{\\rm det}\\, ({G}_{ij} + \\partial _iT\\partial _jT)|}\\,g(T)\\,. \\end {equation}",
"\\begin {equation} \\label {SWZ} S^{(p)}_{\\rm WZ} = \\int d^{p+1}\\sigma \\,\\, C\\wedge dT\\wedge e^{\\cal F}\\,. \\end {equation}"
],
"latex_norm": [
"$ g $",
"$ F $",
"$ F _ { i j } = 2 \\partial _ { [ i } V _ { j ] } $",
"$ B $",
"$ f $",
"$ S $",
"$ \\partial T $",
"$ ( \\partial T ) ^ { 4 } $",
"$ C $",
"$ C $",
"$ p $",
"$ \\delta $",
"$ d T $",
"$ f $",
"$ \\kappa $",
"\\begin{equation*} G _ { i j } = g _ { i j } + F _ { i j } \\, . \\end{equation*}",
"\\begin{equation*} S _ { B I } ^ { ( p ) } = - \\int d ^ { p + 1 } \\sigma \\sqrt { \\vert d e t \\, ( G _ { i j } + \\partial _ { i } T \\partial _ { j } T ) \\vert } \\, g ( T ) \\, . \\end{equation*}",
"\\begin{equation*} S _ { W Z } ^ { ( p ) } = \\int d ^ { p + 1 } \\sigma \\, \\, C \\wedge d T \\wedge e ^ { F } \\, . \\end{equation*}"
],
"latex_expand": [
"$ \\mitg $",
"$ \\mitF $",
"$ \\mitF _ { \\miti \\mitj } = 2 \\mitpartial _ { [ \\miti } \\mitV _ { \\mitj ] } $",
"$ \\mitB $",
"$ \\mitf $",
"$ \\mitS $",
"$ \\mitpartial \\mitT $",
"$ ( \\mitpartial \\mitT ) ^ { 4 } $",
"$ \\mitC $",
"$ \\mitC $",
"$ \\mitp $",
"$ \\mitdelta $",
"$ \\mitd \\mitT $",
"$ \\mitf $",
"$ \\mitkappa $",
"\\begin{equation*} \\mitG _ { \\miti \\mitj } = \\mitg _ { \\miti \\mitj } + \\mitF _ { \\miti \\mitj } \\, . \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mathrm { B I } } ^ { ( \\mitp ) } = - \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\sqrt { \\vert \\mathrm { d e t } \\, ( \\mitG _ { \\miti \\mitj } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT ) \\vert } \\, \\mitg ( \\mitT ) \\, . \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mathrm { W Z } } ^ { ( \\mitp ) } = \\int \\mitd ^ { \\mitp + 1 } \\mitsigma \\, \\, \\mitC \\wedge \\mitd \\mitT \\wedge \\mite ^ { \\mitF } \\, . \\end{equation*}"
],
"x_min": [
0.17000000178813934,
0.7623000144958496,
0.29030001163482666,
0.6295999884605408,
0.8804000020027161,
0.8148000240325928,
0.8341000080108643,
0.7318999767303467,
0.24879999458789825,
0.8769999742507935,
0.15889999270439148,
0.7235999703407288,
0.120899997651577,
0.7283999919891357,
0.257099986076355,
0.43880000710487366,
0.31029999256134033,
0.37869998812675476
],
"y_min": [
0.18070000410079956,
0.17679999768733978,
0.19380000233650208,
0.19380000233650208,
0.19380000233650208,
0.35109999775886536,
0.41940000653266907,
0.4350999891757965,
0.6265000104904175,
0.6435999870300293,
0.6646000146865845,
0.6606000065803528,
0.6776999831199646,
0.7583000063896179,
0.7964000105857849,
0.14890000224113464,
0.2827000021934509,
0.576200008392334
],
"x_max": [
0.181099995970726,
0.7789000272750854,
0.4043000042438507,
0.6462000012397766,
0.892799973487854,
0.8285999894142151,
0.8604000210762024,
0.781000018119812,
0.2646999955177307,
0.8928999900817871,
0.16930000483989716,
0.733299970626831,
0.14579999446868896,
0.7401000261306763,
0.2687999904155731,
0.5770000219345093,
0.7056000232696533,
0.6378999948501587
],
"y_max": [
0.1899999976158142,
0.1875,
0.20890000462532043,
0.2045000046491623,
0.2070000022649765,
0.3614000082015991,
0.4300999939441681,
0.4507000148296356,
0.6367999911308289,
0.6542999744415283,
0.6739000082015991,
0.6712999939918518,
0.6883999705314636,
0.7714999914169312,
0.8032000064849854,
0.1665000021457672,
0.3183000087738037,
0.6114000082015991
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003221_page04
|
{
"latex": [
"$\\kappa $",
"$\\theta $",
"$\\theta =\\theta _L+\\theta _R$",
"$\\Gamma _{11}$",
"$\\sigma _3$",
"$\\theta $",
"$(\\theta _{1R}\\ \\theta _{2R})$",
"${\\cal P}_{(p)}$",
"$\\Gamma _{11}$",
"$p=4k+1$",
"$\\unitmatrixDT $",
"$p=4k+3$",
"$p$",
"${\\cal P}_{(p)}$",
"$i\\sigma _2$",
"$p=4k$",
"$\\sigma _1$",
"$p=4k+2$",
"${G} = {g} + {\\cal F}$",
"$\\Gamma $",
"$i,j=0,\\ldots ,p$",
"$\\mu ,\\nu =0,\\ldots ,D-1$",
"\\begin {eqnarray} g_{ij}&=&\\eta _{\\mu \\nu }\\Pi ^\\mu _i\\Pi ^\\nu _j\\,;\\qquad \\Pi ^\\mu _i = \\partial _iX^\\mu - \\bar \\theta \\Gamma ^\\mu \\partial _i\\theta \\,, \\\\ {\\cal F}_{ij}&=&\\partial _iV_j-\\partial _jV_i -\\left \\{\\bar \\theta \\Gamma _{11}\\Gamma _\\mu \\partial _i\\theta \\left (\\partial _jX^\\mu - \\half \\bar \\theta \\Gamma ^\\mu \\partial _j\\theta \\right ) -(i\\leftrightarrow j)\\right \\}\\,, \\\\ C_{i_1\\ldots i_p} &=& \\partial _{[i_1} X^{\\mu _1} \\cdots \\partial _{i_{p-1}}X^{\\mu _{p-1}}\\,\\bar \\theta {\\cal P}_{(p)} \\Gamma _{\\mu _1\\ldots \\mu _{p-1}} \\partial _{i_p]}\\theta + \\ldots \\,. \\end {eqnarray}",
"\\begin {equation} {\\cal L}_{\\rm BI} = -\\sqrt { |{\\rm det}\\, {G}^{(p)}_{10\\,ij}|}\\,, \\end {equation}",
"\\begin {equation} \\theta _R \\to \\left (\\theta _1 \\atop 0\\right )\\,,\\quad \\theta _L \\to \\left ( 0 \\atop \\theta _2\\right )\\,. \\end {equation}",
"\\begin {equation} \\Gamma ^\\mu \\to \\left ( \\begin {array}{cc} 0&\\gamma ^\\mu \\\\ \\gamma ^\\mu & 0 \\end {array} \\right ) \\,,\\quad (\\mu = 0,\\ldots ,8),\\quad \\Gamma ^9 \\to \\left ( \\begin {array}{cc} 0& \\unitmatrixDT \\\\ -\\unitmatrixDT & 0 \\end {array} \\right ) \\,,\\quad \\Gamma ^{11} = \\left ( \\begin {array}{cc} \\unitmatrixDT &0\\\\ 0 &-\\unitmatrixDT \\end {array} \\right ) \\,. \\end {equation}"
],
"latex_norm": [
"$ \\kappa $",
"$ \\theta $",
"$ \\theta = \\theta _ { L } + \\theta _ { R } $",
"$ \\Gamma _ { 1 1 } $",
"$ \\sigma _ { 3 } $",
"$ \\theta $",
"$ ( \\theta _ { 1 R } ~ \\theta _ { 2 R } ) $",
"$ P _ { ( p ) } $",
"$ \\Gamma _ { 1 1 } $",
"$ p = 4 k + 1 $",
"$ 1 $",
"$ p = 4 k + 3 $",
"$ p $",
"$ P _ { ( p ) } $",
"$ i \\sigma _ { 2 } $",
"$ p = 4 k $",
"$ \\sigma _ { 1 } $",
"$ p = 4 k + 2 $",
"$ G = g + F $",
"$ \\Gamma $",
"$ i , j = 0 , \\ldots , p $",
"$ \\mu , \\nu = 0 , \\ldots , D - 1 $",
"\\begin{align*} g _ { i j } & = & \\eta _ { \\mu \\nu } \\Pi _ { i } ^ { \\mu } \\Pi _ { j } ^ { \\nu } \\, ; \\qquad \\Pi _ { i } ^ { \\mu } = \\partial _ { i } X ^ { \\mu } - \\bar { \\theta } \\Gamma ^ { \\mu } \\partial _ { i } \\theta \\, , \\\\ F _ { i j } & = & \\partial _ { i } V _ { j } - \\partial _ { j } V _ { i } - \\{ \\bar { \\theta } \\Gamma _ { 1 1 } \\Gamma _ { \\mu } \\partial _ { i } \\theta ( \\partial _ { j } X ^ { \\mu } - \\frac { 1 } { 2 } \\bar { \\theta } \\Gamma ^ { \\mu } \\partial _ { j } \\theta ) - ( i \\leftrightarrow j ) \\} \\, , \\\\ C _ { i _ { 1 } \\ldots i _ { p } } & = & \\partial _ { [ i _ { 1 } } X ^ { \\mu _ { 1 } } \\cdots \\partial _ { i _ { p - 1 } } X ^ { \\mu _ { p - 1 } } \\, \\bar { \\theta } P _ { ( p ) } \\Gamma _ { \\mu _ { 1 } \\ldots \\mu _ { p - 1 } } \\partial _ { i _ { p } ] } \\theta + \\ldots \\, . \\end{align*}",
"\\begin{equation*} L _ { B I } = - \\sqrt { \\vert d e t \\, G _ { 1 0 \\, i j } ^ { ( p ) } \\vert } \\, , \\end{equation*}",
"\\begin{equation*} \\theta _ { R } \\rightarrow ( { \\theta _ { 1 } \\atop 0 } ) \\, , \\quad \\theta _ { L } \\rightarrow ( { 0 \\atop \\theta _ { 2 } } ) \\, . \\end{equation*}",
"\\begin{equation*} \\Gamma ^ { \\mu } \\rightarrow ( \\begin{array}{cc} 0 & \\gamma ^ { \\mu } \\\\ \\gamma ^ { \\mu } & 0 \\end{array} ) \\, , \\quad ( \\mu = 0 , \\ldots , 8 ) , \\quad \\Gamma ^ { 9 } \\rightarrow ( \\begin{array}{cc} 0 & 1 \\\\ - 1 & 0 \\end{array} ) \\, , \\quad \\Gamma ^ { 1 1 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & - 1 \\end{array} ) \\, . \\end{equation*}"
],
"latex_expand": [
"$ \\mitkappa $",
"$ \\mittheta $",
"$ \\mittheta = \\mittheta _ { \\mitL } + \\mittheta _ { \\mitR } $",
"$ \\mupGamma _ { 1 1 } $",
"$ \\mitsigma _ { 3 } $",
"$ \\mittheta $",
"$ ( \\mittheta _ { 1 \\mitR } ~ \\mittheta _ { 2 \\mitR } ) $",
"$ \\mitP _ { ( \\mitp ) } $",
"$ \\mupGamma _ { 1 1 } $",
"$ \\mitp = 4 \\mitk + 1 $",
"$ \\Bbbone $",
"$ \\mitp = 4 \\mitk + 3 $",
"$ \\mitp $",
"$ \\mitP _ { ( \\mitp ) } $",
"$ \\miti \\mitsigma _ { 2 } $",
"$ \\mitp = 4 \\mitk $",
"$ \\mitsigma _ { 1 } $",
"$ \\mitp = 4 \\mitk + 2 $",
"$ \\mitG = \\mitg + \\mitF $",
"$ \\mupGamma $",
"$ \\miti , \\mitj = 0 , \\ldots , \\mitp $",
"$ \\mitmu , \\mitnu = 0 , \\ldots , \\mitD - 1 $",
"\\begin{align*} \\displaystyle \\mitg _ { \\miti \\mitj } & = & \\displaystyle \\miteta _ { \\mitmu \\mitnu } \\mupPi _ { \\miti } ^ { \\mitmu } \\mupPi _ { \\mitj } ^ { \\mitnu } \\, ; \\qquad \\mupPi _ { \\miti } ^ { \\mitmu } = \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } - \\bar { \\mittheta } \\mupGamma ^ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta \\, , \\\\ \\displaystyle \\mitF _ { \\miti \\mitj } & = & \\displaystyle \\mitpartial _ { \\miti } \\mitV _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitV _ { \\miti } - \\left\\{ \\bar { \\mittheta } \\mupGamma _ { 1 1 } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta \\left( \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - { \\textstyle \\frac { 1 } { 2 } } \\bar { \\mittheta } \\mupGamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta \\right) - ( \\miti \\leftrightarrow \\mitj ) \\right\\} \\, , \\\\ \\displaystyle \\mitC _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp } } & = & \\displaystyle \\mitpartial _ { [ \\miti _ { 1 } } \\mitX ^ { \\mitmu _ { 1 } } \\cdots \\mitpartial _ { \\miti _ { \\mitp - 1 } } \\mitX ^ { \\mitmu _ { \\mitp - 1 } } \\, \\bar { \\mittheta } \\mitP _ { ( \\mitp ) } \\mupGamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitp - 1 } } \\mitpartial _ { \\miti _ { \\mitp } ] } \\mittheta + \\ldots \\, . \\end{align*}",
"\\begin{equation*} \\mitL _ { \\mathrm { B I } } = - \\sqrt { \\vert \\mathrm { d e t } \\, \\mitG _ { 1 0 \\, \\miti \\mitj } ^ { ( \\mitp ) } \\vert } \\, , \\end{equation*}",
"\\begin{equation*} \\mittheta _ { \\mitR } \\rightarrow \\left( { \\mittheta _ { 1 } \\atop 0 } \\right) \\, , \\quad \\mittheta _ { \\mitL } \\rightarrow \\left( { 0 \\atop \\mittheta _ { 2 } } \\right) \\, . \\end{equation*}",
"\\begin{equation*} \\mupGamma ^ { \\mitmu } \\rightarrow \\left( \\begin{array}{cc} 0 & \\mitgamma ^ { \\mitmu } \\\\ \\mitgamma ^ { \\mitmu } & 0 \\end{array} \\right) \\, , \\quad ( \\mitmu = 0 , \\ldots , 8 ) , \\quad \\mupGamma ^ { 9 } \\rightarrow \\left( \\begin{array}{cc} 0 & \\Bbbone \\\\ - \\Bbbone & 0 \\end{array} \\right) \\, , \\quad \\mupGamma ^ { 1 1 } = \\left( \\begin{array}{cc} \\Bbbone & 0 \\\\ 0 & - \\Bbbone \\end{array} \\right) \\, . \\end{equation*}"
],
"x_min": [
0.3124000132083893,
0.6122999787330627,
0.79339998960495,
0.49140000343322754,
0.5555999875068665,
0.673799991607666,
0.8079000115394592,
0.5439000129699707,
0.64410001039505,
0.7096999883651733,
0.8500000238418579,
0.120899997651577,
0.3634999990463257,
0.6122999787330627,
0.7283999919891357,
0.7906000018119812,
0.19699999690055847,
0.25290000438690186,
0.1678999960422516,
0.16099999845027924,
0.42289999127388,
0.7027999758720398,
0.2093999981880188,
0.41119998693466187,
0.3808000087738037,
0.1395999938249588
],
"y_min": [
0.1729000061750412,
0.3379000127315521,
0.3379000127315521,
0.35499998927116394,
0.3589000105857849,
0.35499998927116394,
0.3544999957084656,
0.3725999891757965,
0.3725999891757965,
0.37209999561309814,
0.37209999561309814,
0.38960000872612,
0.39309999346733093,
0.38960000872612,
0.39010000228881836,
0.38960000872612,
0.41019999980926514,
0.4066999852657318,
0.6478999853134155,
0.7567999958992004,
0.8314999938011169,
0.8310999870300293,
0.2549000084400177,
0.6021000146865845,
0.7103999853134155,
0.7788000106811523
],
"x_max": [
0.32409998774528503,
0.6226999759674072,
0.8873999714851379,
0.5189999938011169,
0.574999988079071,
0.6841999888420105,
0.8873999714851379,
0.5770999789237976,
0.6717000007629395,
0.8044000267982483,
0.8616999983787537,
0.21279999613761902,
0.37389999628067017,
0.6455000042915344,
0.7547000050544739,
0.8486999869346619,
0.21639999747276306,
0.34549999237060547,
0.2736000120639801,
0.17409999668598175,
0.5202999711036682,
0.8410000205039978,
0.8009999990463257,
0.6011999845504761,
0.6351000070571899,
0.8361999988555908
],
"y_max": [
0.17970000207424164,
0.3481999933719635,
0.350600004196167,
0.3677000105381012,
0.3677000105381012,
0.36570000648498535,
0.36910000443458557,
0.3871999979019165,
0.384799987077713,
0.38530001044273376,
0.38280001282691956,
0.4027999937534332,
0.40290001034736633,
0.4041999876499176,
0.4018000066280365,
0.4027999937534332,
0.4189999997615814,
0.41990000009536743,
0.6610999703407288,
0.7674999833106995,
0.842199981212616,
0.8422999978065491,
0.3271999955177307,
0.6323999762535095,
0.7484999895095825,
0.8169000148773193
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003221_page05
|
{
"latex": [
"$X^9$",
"$S$",
"$X^9$",
"$\\sigma $",
"$S$",
"$T$",
"$T$",
"\\begin {eqnarray} {G}^{(p)}_{10\\,ij} &\\to & G^{(p)}_{9\\,ij} - \\partial _iS\\partial _jS + 2\\bar \\theta _2\\partial _i\\theta _2\\partial _jS - 2\\bar \\theta _1\\partial _j\\theta _1\\partial _iS + 2\\bar \\theta _2\\partial _i\\theta _2\\bar \\theta _1\\partial _j\\theta _1\\,, \\end {eqnarray}",
"\\begin {eqnarray} G^{(p)}_{9\\,ij} &=& g_{ij} + F_{ij} -2\\bar \\theta _2\\gamma _\\mu \\partial _i\\theta _2\\partial _jX^\\mu -2\\bar \\theta _1\\gamma _\\mu \\partial _j\\theta _1\\partial _iX^\\mu \\\\&& + \\bar \\theta _2\\gamma _\\mu \\partial _i\\theta _2 \\bar \\theta _2\\gamma ^\\mu \\partial _j\\theta _2 + \\bar \\theta _1\\gamma _\\mu \\partial _i\\theta _1 \\bar \\theta _1\\gamma ^\\mu \\partial _j\\theta _1 + 2 \\bar \\theta _2\\gamma _\\mu \\partial _i\\theta _2 \\bar \\theta _1\\gamma ^\\mu \\partial _j\\theta _1 \\,. \\end {eqnarray}",
"\\begin {equation} \\theta _{1R} \\to \\left (\\theta _1 \\atop 0\\right )\\,,\\quad \\theta _{2R} \\to \\left (\\theta _2 \\atop 0\\right )\\,, \\end {equation}",
"\\begin {equation} G^{(p+1)}_{10} \\to \\left (\\begin {array}{cc} G^{(p)}_{9\\,ij} - 2\\bar \\theta _2\\partial _i\\theta _2 \\bar \\theta _1\\partial _j\\theta _1 & \\partial _iS -2\\bar \\theta _2\\partial _i\\theta _2\\\\ -\\partial _jS -2\\bar \\theta _1\\partial _j\\theta _1& -1 \\end {array}\\right )\\,. \\end {equation}",
"\\begin {equation} \\label {matrix-id} {\\rm det} \\left (\\begin {array}{cc} A & B \\\\ C & D \\end {array}\\right ) = {\\rm det} \\left (\\begin {array}{cc} A - BD^{-1}C & B \\\\ 0 & D \\end {array}\\right ) \\left (\\begin {array}{cc} \\unitmatrixDT & 0 \\\\ D^{-1} C & \\unitmatrixDT \\end {array}\\right ) = {\\rm det}\\, ( A - BD^{-1}C) {\\rm det}\\, D\\,. \\end {equation}",
"\\begin {equation} \\label {LnonBPS} {\\cal L}_{\\rm BI}^{(p)} = -\\sqrt { |{\\rm det}\\, ({G}^{(p)}_{10\\,ij} + \\partial _iT\\partial _jT)|}\\,g(T)\\,. \\end {equation}",
"\\begin {equation} G^{(p)}_{9\\,ij} \\to G^{(p)}_{9\\,ij} + \\partial _iT\\partial _jT\\,. \\end {equation}"
],
"latex_norm": [
"$ X ^ { 9 } $",
"$ S $",
"$ X ^ { 9 } $",
"$ \\sigma $",
"$ S $",
"$ T $",
"$ T $",
"\\begin{align*} G _ { 1 0 \\, i j } ^ { ( p ) } & \\rightarrow & G _ { 9 \\, i j } ^ { ( p ) } - \\partial _ { i } S \\partial _ { j } S + 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\partial _ { j } S - 2 \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } \\partial _ { i } S + 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } \\, , \\end{align*}",
"\\begin{align*} G _ { 9 \\, i j } ^ { ( p ) } & = & g _ { i j } + F _ { i j } - 2 \\bar { \\theta } _ { 2 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 2 } \\partial _ { j } X ^ { \\mu } - 2 \\bar { \\theta } _ { 1 } \\gamma _ { \\mu } \\partial _ { j } \\theta _ { 1 } \\partial _ { i } X ^ { \\mu } \\\\ & & + \\bar { \\theta } _ { 2 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 2 } \\gamma ^ { \\mu } \\partial _ { j } \\theta _ { 2 } + \\bar { \\theta } _ { 1 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 1 } \\bar { \\theta } _ { 1 } \\gamma ^ { \\mu } \\partial _ { j } \\theta _ { 1 } + 2 \\bar { \\theta } _ { 2 } \\gamma _ { \\mu } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 1 } \\gamma ^ { \\mu } \\partial _ { j } \\theta _ { 1 } \\, . \\end{align*}",
"\\begin{equation*} \\theta _ { 1 R } \\rightarrow ( { \\theta _ { 1 } \\atop 0 } ) \\, , \\quad \\theta _ { 2 R } \\rightarrow ( { \\theta _ { 2 } \\atop 0 } ) \\, , \\end{equation*}",
"\\begin{align*} G _ { 1 0 } ^ { ( p + 1 ) } \\rightarrow ( \\begin{array}{cc} G _ { 9 \\, i j } ^ { ( p ) } - 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } & \\partial _ { i } S - 2 \\bar { \\theta } _ { 2 } \\partial _ { i } \\theta _ { 2 } \\\\ - \\partial _ { j } S - 2 \\bar { \\theta } _ { 1 } \\partial _ { j } \\theta _ { 1 } & - 1 \\end{array} ) \\, . \\end{align*}",
"\\begin{align*} d e t ( \\begin{array}{cc} A & B \\\\ C & D \\end{array} ) = d e t ( \\begin{array}{cc} A - B D ^ { - 1 } C & B \\\\ 0 & D \\end{array} ) ( \\begin{array}{cc} 1 & 0 \\\\ D ^ { - 1 } C & 1 \\end{array} ) = d e t \\, ( A - B D ^ { - 1 } C ) d e t \\, D \\, . \\end{align*}",
"\\begin{equation*} L _ { B I } ^ { ( p ) } = - \\sqrt { \\vert d e t \\, ( G _ { 1 0 \\, i j } ^ { ( p ) } + \\partial _ { i } T \\partial _ { j } T ) \\vert } \\, g ( T ) \\, . \\end{equation*}",
"\\begin{equation*} G _ { 9 \\, i j } ^ { ( p ) } \\rightarrow G _ { 9 \\, i j } ^ { ( p ) } + \\partial _ { i } T \\partial _ { j } T \\, . \\end{equation*}"
],
"latex_expand": [
"$ \\mitX ^ { 9 } $",
"$ \\mitS $",
"$ \\mitX ^ { 9 } $",
"$ \\mitsigma $",
"$ \\mitS $",
"$ \\mitT $",
"$ \\mitT $",
"\\begin{align*} \\displaystyle \\mitG _ { 1 0 \\, \\miti \\mitj } ^ { ( \\mitp ) } & \\displaystyle \\rightarrow & \\displaystyle \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } - \\mitpartial _ { \\miti } \\mitS \\mitpartial _ { \\mitj } \\mitS + 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\mitpartial _ { \\mitj } \\mitS - 2 \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\mitpartial _ { \\miti } \\mitS + 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\, , \\end{align*}",
"\\begin{align*} \\displaystyle \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } & = & \\displaystyle \\mitg _ { \\miti \\mitj } + \\mitF _ { \\miti \\mitj } - 2 \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { 1 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } \\\\ & & \\displaystyle + \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 2 } \\mitgamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 2 } + \\bar { \\mittheta } _ { 1 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 1 } \\bar { \\mittheta } _ { 1 } \\mitgamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } + 2 \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 1 } \\mitgamma ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } \\, . \\end{align*}",
"\\begin{equation*} \\mittheta _ { 1 \\mitR } \\rightarrow \\left( { \\mittheta _ { 1 } \\atop 0 } \\right) \\, , \\quad \\mittheta _ { 2 \\mitR } \\rightarrow \\left( { \\mittheta _ { 2 } \\atop 0 } \\right) \\, , \\end{equation*}",
"\\begin{align*} \\mitG _ { 1 0 } ^ { ( \\mitp + 1 ) } \\rightarrow \\left( \\begin{array}{cc} \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } - 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } & \\mitpartial _ { \\miti } \\mitS - 2 \\bar { \\mittheta } _ { 2 } \\mitpartial _ { \\miti } \\mittheta _ { 2 } \\\\ - \\mitpartial _ { \\mitj } \\mitS - 2 \\bar { \\mittheta } _ { 1 } \\mitpartial _ { \\mitj } \\mittheta _ { 1 } & - 1 \\end{array} \\right) \\, . \\end{align*}",
"\\begin{align*} \\mathrm { d e t } \\left( \\begin{array}{cc} \\mitA & \\mitB \\\\ \\mitC & \\mitD \\end{array} \\right) = \\mathrm { d e t } \\left( \\begin{array}{cc} \\mitA - \\mitB \\mitD ^ { - 1 } \\mitC & \\mitB \\\\ 0 & \\mitD \\end{array} \\right) \\left( \\begin{array}{cc} \\Bbbone & 0 \\\\ \\mitD ^ { - 1 } \\mitC & \\Bbbone \\end{array} \\right) = \\mathrm { d e t } \\, ( \\mitA - \\mitB \\mitD ^ { - 1 } \\mitC ) \\mathrm { d e t } \\, \\mitD \\, . \\end{align*}",
"\\begin{equation*} \\mitL _ { \\mathrm { B I } } ^ { ( \\mitp ) } = - \\sqrt { \\vert \\mathrm { d e t } \\, ( \\mitG _ { 1 0 \\, \\miti \\mitj } ^ { ( \\mitp ) } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT ) \\vert } \\, \\mitg ( \\mitT ) \\, . \\end{equation*}",
"\\begin{equation*} \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } \\rightarrow \\mitG _ { 9 \\, \\miti \\mitj } ^ { ( \\mitp ) } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT \\, . \\end{equation*}"
],
"x_min": [
0.7809000015258789,
0.33239999413490295,
0.34279999136924744,
0.677299976348877,
0.7091000080108643,
0.27709999680519104,
0.3379000127315521,
0.20659999549388885,
0.20389999449253082,
0.3711000084877014,
0.2827000021934509,
0.1388999968767166,
0.3393000066280365,
0.40639999508857727
],
"y_min": [
0.13330000638961792,
0.15189999341964722,
0.31349998712539673,
0.3188000023365021,
0.33250001072883606,
0.6786999702453613,
0.7919999957084656,
0.17630000412464142,
0.2363000065088272,
0.35690000653266907,
0.42719998955726624,
0.524399995803833,
0.6352999806404114,
0.736299991607666
],
"x_max": [
0.807200014591217,
0.34619998931884766,
0.36980000138282776,
0.6897000074386597,
0.7228999733924866,
0.2922999858856201,
0.352400004863739,
0.807200014591217,
0.8100000023841858,
0.6413000226020813,
0.733299970626831,
0.8769999742507935,
0.6772000193595886,
0.6103000044822693
],
"y_max": [
0.14499999582767487,
0.16220000386238098,
0.32519999146461487,
0.32510000467300415,
0.34279999136924744,
0.6890000104904175,
0.8026999831199646,
0.2061000019311905,
0.2870999872684479,
0.39500001072883606,
0.4681999981403351,
0.5625,
0.6650999784469604,
0.7597000002861023
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003221_page06
|
{
"latex": [
"$\\partial T$",
"$G_{ij}= \\eta _{\\mu \\nu }\\partial _iX^\\mu \\partial _jX^\\nu +F_{ij}$",
"$G^{ij}$",
"$\\theta _L\\to \\theta _{2R}$",
"$\\theta _R\\to \\theta _{1R}$",
"$f$",
"$T$",
"$(\\partial T)^2$",
"$G^{(p)\\,-1}_{10}$",
"$(\\partial T)^2$",
"$g(T)$",
"$g(T)$",
"$p$",
"\\begin {eqnarray} {\\cal L}^{(p)}_{\\rm BI} &=& g(T)\\,\\sqrt { |{\\rm det}\\, G_{ij} |}\\times \\bigg \\{1+ {1\\over 2}G^{ji}(-2\\bar \\theta _L\\Gamma _\\mu \\partial _i\\theta _L\\partial _jX^\\mu -2\\bar \\theta _R\\Gamma _\\mu \\partial _j\\theta _R\\partial _iX^\\mu +\\partial _i T\\partial _jT) \\\\ &&-{1\\over 2} G^{ki}(-2\\bar \\theta _L\\Gamma _\\mu \\partial _i\\theta _L\\partial _lX^\\mu -2\\bar \\theta _R\\Gamma _\\mu \\partial _l\\theta _R\\partial _iX^\\mu ) G^{lm}\\partial _mT\\partial _kT\\\\ &&+{1\\over 4} G^{ji}(-2\\bar \\theta _L\\Gamma _\\mu \\partial _i\\theta _L\\partial _jX^\\mu -2\\bar \\theta _R\\Gamma _\\mu \\partial _j\\theta _R\\partial _iX^\\mu ) G^{kl}\\partial _lT\\partial _kT + \\ldots \\bigg \\}\\,, \\end {eqnarray}",
"\\begin {equation} \\partial _i\\bar \\theta \\partial _j\\theta G^{ij}\\,, \\end {equation}",
"\\begin {equation} \\label {LWZIIA} {\\cal L}^{(p)}_{\\rm WZ} = \\epsilon ^{i_1\\ldots i_{p+1}} \\sum _{k=0}^{(p-1)/2} \\,\\,a_{p,k} C_{i_1\\ldots i_{p-2k}}(F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T\\,, \\end {equation}"
],
"latex_norm": [
"$ \\partial T $",
"$ G _ { i j } = \\eta _ { \\mu \\nu } \\partial _ { i } X ^ { \\mu } \\partial _ { j } X ^ { \\nu } + F _ { i j } $",
"$ G ^ { i j } $",
"$ \\theta _ { L } \\rightarrow \\theta _ { 2 R } $",
"$ \\theta _ { R } \\rightarrow \\theta _ { 1 R } $",
"$ f $",
"$ T $",
"$ ( \\partial T ) ^ { 2 } $",
"$ G _ { 1 0 } ^ { ( p ) \\, - 1 } $",
"$ ( \\partial T ) ^ { 2 } $",
"$ g ( T ) $",
"$ g ( T ) $",
"$ p $",
"\\begin{align*} L _ { B I } ^ { ( p ) } & = & g ( T ) \\, \\sqrt { \\vert d e t \\, G _ { i j } \\vert } \\times \\{ 1 + \\frac { 1 } { 2 } G ^ { j i } ( - 2 \\bar { \\theta } _ { L } \\Gamma _ { \\mu } \\partial _ { i } \\theta _ { L } \\partial _ { j } X ^ { \\mu } - 2 \\bar { \\theta } _ { R } \\Gamma _ { \\mu } \\partial _ { j } \\theta _ { R } \\partial _ { i } X ^ { \\mu } + \\partial _ { i } T \\partial _ { j } T ) \\\\ & & - \\frac { 1 } { 2 } G ^ { k i } ( - 2 \\bar { \\theta } _ { L } \\Gamma _ { \\mu } \\partial _ { i } \\theta _ { L } \\partial _ { l } X ^ { \\mu } - 2 \\bar { \\theta } _ { R } \\Gamma _ { \\mu } \\partial _ { l } \\theta _ { R } \\partial _ { i } X ^ { \\mu } ) G ^ { l m } \\partial _ { m } T \\partial _ { k } T \\\\ & & + \\frac { 1 } { 4 } G ^ { j i } ( - 2 \\bar { \\theta } _ { L } \\Gamma _ { \\mu } \\partial _ { i } \\theta _ { L } \\partial _ { j } X ^ { \\mu } - 2 \\bar { \\theta } _ { R } \\Gamma _ { \\mu } \\partial _ { j } \\theta _ { R } \\partial _ { i } X ^ { \\mu } ) G ^ { k l } \\partial _ { l } T \\partial _ { k } T + \\ldots \\} \\, , \\end{align*}",
"\\begin{equation*} \\partial _ { i } \\bar { \\theta } \\partial _ { j } \\theta G ^ { i j } \\, , \\end{equation*}",
"\\begin{equation*} L _ { W Z } ^ { ( p ) } = \\epsilon ^ { i _ { 1 } \\ldots i _ { p + 1 } } \\sum _ { k = 0 } ^ { ( p - 1 ) \\slash 2 } \\, \\, a _ { p , k } C _ { i _ { 1 } \\ldots i _ { p - 2 k } } ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\, , \\end{equation*}"
],
"latex_expand": [
"$ \\mitpartial \\mitT $",
"$ \\mitG _ { \\miti \\mitj } = \\miteta _ { \\mitmu \\mitnu } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitnu } + \\mitF _ { \\miti \\mitj } $",
"$ \\mitG ^ { \\miti \\mitj } $",
"$ \\mittheta _ { \\mitL } \\rightarrow \\mittheta _ { 2 \\mitR } $",
"$ \\mittheta _ { \\mitR } \\rightarrow \\mittheta _ { 1 \\mitR } $",
"$ \\mitf $",
"$ \\mitT $",
"$ ( \\mitpartial \\mitT ) ^ { 2 } $",
"$ \\mitG _ { 1 0 } ^ { ( \\mitp ) \\, - 1 } $",
"$ ( \\mitpartial \\mitT ) ^ { 2 } $",
"$ \\mitg ( \\mitT ) $",
"$ \\mitg ( \\mitT ) $",
"$ \\mitp $",
"\\begin{align*} \\displaystyle \\mitL _ { \\mathrm { B I } } ^ { ( \\mitp ) } & = & \\displaystyle \\mitg ( \\mitT ) \\, \\sqrt { \\vert \\mathrm { d e t } \\, \\mitG _ { \\miti \\mitj } \\vert } \\times \\bigg \\{ 1 + \\frac { 1 } { 2 } \\mitG ^ { \\mitj \\miti } ( - 2 \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { \\mitL } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { \\mitR } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { \\mitR } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } + \\mitpartial _ { \\miti } \\mitT \\mitpartial _ { \\mitj } \\mitT ) \\\\ & & \\displaystyle - \\frac { 1 } { 2 } \\mitG ^ { \\mitk \\miti } ( - 2 \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { \\mitL } \\mitpartial _ { \\mitl } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { \\mitR } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\mitl } \\mittheta _ { \\mitR } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } ) \\mitG ^ { \\mitl \\mitm } \\mitpartial _ { \\mitm } \\mitT \\mitpartial _ { \\mitk } \\mitT \\\\ & & \\displaystyle + \\frac { 1 } { 4 } \\mitG ^ { \\mitj \\miti } ( - 2 \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\miti } \\mittheta _ { \\mitL } \\mitpartial _ { \\mitj } \\mitX ^ { \\mitmu } - 2 \\bar { \\mittheta } _ { \\mitR } \\mupGamma _ { \\mitmu } \\mitpartial _ { \\mitj } \\mittheta _ { \\mitR } \\mitpartial _ { \\miti } \\mitX ^ { \\mitmu } ) \\mitG ^ { \\mitk \\mitl } \\mitpartial _ { \\mitl } \\mitT \\mitpartial _ { \\mitk } \\mitT + \\ldots \\bigg \\} \\, , \\end{align*}",
"\\begin{equation*} \\mitpartial _ { \\miti } \\bar { \\mittheta } \\mitpartial _ { \\mitj } \\mittheta \\mitG ^ { \\miti \\mitj } \\, , \\end{equation*}",
"\\begin{equation*} \\mitL _ { \\mathrm { W Z } } ^ { ( \\mitp ) } = \\mitepsilon ^ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp + 1 } } \\sum _ { \\mitk = 0 } ^ { ( \\mitp - 1 ) \\slash 2 } \\, \\, \\mita _ { \\mitp , \\mitk } \\mitC _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\, , \\end{equation*}"
],
"x_min": [
0.3296000063419342,
0.1768999993801117,
0.43950000405311584,
0.506600022315979,
0.597100019454956,
0.45339998602867126,
0.34689998626708984,
0.40639999508857727,
0.8313999772071838,
0.5957000255584717,
0.5708000063896179,
0.7580999732017517,
0.1996999979019165,
0.13819999992847443,
0.4602999985218048,
0.2702000141143799
],
"y_min": [
0.1348000019788742,
0.28369998931884766,
0.28220000863075256,
0.35249999165534973,
0.35249999165534973,
0.39890000224113464,
0.4535999894142151,
0.5151000022888184,
0.5121999979019165,
0.5327000021934509,
0.6309000253677368,
0.6478999853134155,
0.8057000041007996,
0.17430000007152557,
0.4203999936580658,
0.8237000107765198
],
"x_max": [
0.35589998960494995,
0.3910999894142151,
0.46779999136924744,
0.5860999822616577,
0.6779999732971191,
0.4657999873161316,
0.3621000051498413,
0.4555000066757202,
0.8873999714851379,
0.6448000073432922,
0.6108999848365784,
0.7982000112533569,
0.210099995136261,
0.8748999834060669,
0.5529000163078308,
0.7422000169754028
],
"y_max": [
0.14509999752044678,
0.29829999804496765,
0.29440000653266907,
0.365200012922287,
0.365200012922287,
0.4120999872684479,
0.46389999985694885,
0.5307000279426575,
0.5307999849319458,
0.5478000044822693,
0.6455000042915344,
0.6625000238418579,
0.8149999976158142,
0.2777999937534332,
0.44040000438690186,
0.8730000257492065
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003221_page07
|
{
"latex": [
"$C$",
"$a_{p,k}$",
"$\\theta $",
"$D=9$",
"$D=9$",
"$p+1$",
"$b_{p+1,k}$",
"$S$",
"$s_m$",
"$m$",
"$+1$",
"$m=4l+2$",
"$-1$",
"$m=4l$",
"$a_{p,k}$",
"$b_{p+1,k}$",
"$\\kappa $",
"$a$",
"$b$",
"\\begin {equation} C_{i_1\\ldots i_{p-2k}}= 2\\partial _{[i_1}X^{\\mu _1}\\cdots \\partial _{i_{p-2k-1}}X^{\\mu _{p-2k-1}}\\, \\bar \\theta _L\\Gamma _{\\mu _1\\ldots \\mu _{p-2k-1}} \\partial _{i_{p-2k}]}\\theta _R\\,. \\end {equation}",
"\\begin {eqnarray} {\\cal L}^{(p)}_{\\rm WZ}&\\to & 2\\epsilon ^{i_1\\ldots i_{p+1}} \\sum _{k=0}^{{}(p-1)/2} \\,a_{p,k}\\,\\bigg \\{ \\tilde C_{i_1\\ldots i_{p-2k}} (F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T \\\\ &&\\ + (p-2k-1) \\tilde C_{i_1\\ldots i_{p-2k-1}}\\partial _{i_{p-2k}}S (F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T\\bigg \\} \\,. \\end {eqnarray}",
"\\begin {equation} \\tilde C_{i_1\\ldots i_m}= \\partial _{[i_1}X^{\\mu _1}\\cdots \\partial _{i_{m-1}}X^{\\mu _{m-1}}\\, \\bar \\theta _2\\gamma _{\\mu _1\\ldots \\mu _{m-1}} \\partial _{i_{m}]}\\theta _1\\,, \\end {equation}",
"\\begin {eqnarray} {\\cal L}^{(p+1)}_{\\rm WZ}&\\to & - 2\\epsilon ^{i_1\\ldots i_{p+1}} \\,s_{p-2k+1} b_{p+1,k}\\bigg \\{ \\sum _{k=0}^{{}(p-1)/2} \\, (p-2k)\\tilde C_{i_1\\ldots i_{p-2k}} (F^k)_{i_{p-2k+1}\\ldots i_p} \\partial _{i_{p+1}}T \\\\ &&\\ + \\sum _{k=1}^{{}(p+1)/2}\\,2k \\tilde C_{i_1\\ldots i_{p-2k+1}} (F^k)_{i_{p-2k+2}\\ldots i_{p-1}}\\partial _{i_p}S \\partial _{i_{p+1}}T\\bigg \\} \\,. \\end {eqnarray}",
"\\begin {eqnarray} a_{p,k} &=& {(p-1)!\\over 2^k\\, k!\\, (p-2k-1)!}\\, a_{p,0}\\,, \\\\ b_{p+1,k}&=& {(-1)^k p!\\over 2^k\\, k! \\,(p-2k)!}\\, b_{p+1,0}\\,, \\\\ a_{p,0} &=& -s_{p+1}\\, p\\, b_{p+1,0}\\,. \\end {eqnarray}"
],
"latex_norm": [
"$ C $",
"$ a _ { p , k } $",
"$ \\theta $",
"$ D = 9 $",
"$ D = 9 $",
"$ p + 1 $",
"$ b _ { p + 1 , k } $",
"$ S $",
"$ s _ { m } $",
"$ m $",
"$ + 1 $",
"$ m = 4 l + 2 $",
"$ - 1 $",
"$ m = 4 l $",
"$ a _ { p , k } $",
"$ b _ { p + 1 , k } $",
"$ \\kappa $",
"$ a $",
"$ b $",
"\\begin{equation*} C _ { i _ { 1 } \\ldots i _ { p - 2 k } } = 2 \\partial _ { [ i _ { 1 } } X ^ { \\mu _ { 1 } } \\cdots \\partial _ { i _ { p - 2 k - 1 } } X ^ { \\mu _ { p - 2 k - 1 } } \\, \\bar { \\theta } _ { L } \\Gamma _ { \\mu _ { 1 } \\ldots \\mu _ { p - 2 k - 1 } } \\partial _ { i _ { p - 2 k } ] } \\theta _ { R } \\, . \\end{equation*}",
"\\begin{align*} L _ { W Z } ^ { ( p ) } & \\rightarrow & 2 \\epsilon ^ { i _ { 1 } \\ldots i _ { p + 1 } } \\sum _ { k = 0 } ^ { ( p - 1 ) \\slash 2 } \\, a _ { p , k } \\, \\{ \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k } } ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\\\ & & ~ + ( p - 2 k - 1 ) \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k - 1 } } \\partial _ { i _ { p - 2 k } } S ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\} \\, . \\end{align*}",
"\\begin{equation*} \\widetilde { C } _ { i _ { 1 } \\ldots i _ { m } } = \\partial _ { [ i _ { 1 } } X ^ { \\mu _ { 1 } } \\cdots \\partial _ { i _ { m - 1 } } X ^ { \\mu _ { m - 1 } } \\, \\bar { \\theta } _ { 2 } \\gamma _ { \\mu _ { 1 } \\ldots \\mu _ { m - 1 } } \\partial _ { i _ { m } ] } \\theta _ { 1 } \\, , \\end{equation*}",
"\\begin{align*} L _ { W Z } ^ { ( p + 1 ) } & \\rightarrow & - 2 \\epsilon ^ { i _ { 1 } \\ldots i _ { p + 1 } } \\, s _ { p - 2 k + 1 } b _ { p + 1 , k } \\{ \\sum _ { k = 0 } ^ { ( p - 1 ) \\slash 2 } \\, ( p - 2 k ) \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k } } ( F ^ { k } ) _ { i _ { p - 2 k + 1 } \\ldots i _ { p } } \\partial _ { i _ { p + 1 } } T \\\\ & & ~ + \\sum _ { k = 1 } ^ { ( p + 1 ) \\slash 2 } \\, 2 k \\widetilde { C } _ { i _ { 1 } \\ldots i _ { p - 2 k + 1 } } ( F ^ { k } ) _ { i _ { p - 2 k + 2 } \\ldots i _ { p - 1 } } \\partial _ { i _ { p } } S \\partial _ { i _ { p + 1 } } T \\} \\, . \\end{align*}",
"\\begin{align*} a _ { p , k } & = & \\frac { ( p - 1 ) ! } { 2 ^ { k } \\, k ! \\, ( p - 2 k - 1 ) ! } \\, a _ { p , 0 } \\, , \\\\ b _ { p + 1 , k } & = & \\frac { ( - 1 ) ^ { k } p ! } { 2 ^ { k } \\, k ! \\, ( p - 2 k ) ! } \\, b _ { p + 1 , 0 } \\, , \\\\ a _ { p , 0 } & = & - s _ { p + 1 } \\, p \\, b _ { p + 1 , 0 } \\, . \\end{align*}"
],
"latex_expand": [
"$ \\mitC $",
"$ \\mita _ { \\mitp , \\mitk } $",
"$ \\mittheta $",
"$ \\mitD = 9 $",
"$ \\mitD = 9 $",
"$ \\mitp + 1 $",
"$ \\mitb _ { \\mitp + 1 , \\mitk } $",
"$ \\mitS $",
"$ \\mits _ { \\mitm } $",
"$ \\mitm $",
"$ + 1 $",
"$ \\mitm = 4 \\mitl + 2 $",
"$ - 1 $",
"$ \\mitm = 4 \\mitl $",
"$ \\mita _ { \\mitp , \\mitk } $",
"$ \\mitb _ { \\mitp + 1 , \\mitk } $",
"$ \\mitkappa $",
"$ \\mita $",
"$ \\mitb $",
"\\begin{equation*} \\mitC _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } = 2 \\mitpartial _ { [ \\miti _ { 1 } } \\mitX ^ { \\mitmu _ { 1 } } \\cdots \\mitpartial _ { \\miti _ { \\mitp - 2 \\mitk - 1 } } \\mitX ^ { \\mitmu _ { \\mitp - 2 \\mitk - 1 } } \\, \\bar { \\mittheta } _ { \\mitL } \\mupGamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitp - 2 \\mitk - 1 } } \\mitpartial _ { \\miti _ { \\mitp - 2 \\mitk } ] } \\mittheta _ { \\mitR } \\, . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitL _ { \\mathrm { W Z } } ^ { ( \\mitp ) } & \\displaystyle \\rightarrow & \\displaystyle 2 \\mitepsilon ^ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp + 1 } } \\sum _ { \\mitk = 0 } ^ { ( \\mitp - 1 ) \\slash 2 } \\, \\mita _ { \\mitp , \\mitk } \\, \\bigg \\{ \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\\\ & & \\displaystyle ~ + ( \\mitp - 2 \\mitk - 1 ) \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk - 1 } } \\mitpartial _ { \\miti _ { \\mitp - 2 \\mitk } } \\mitS ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\bigg \\} \\, . \\end{align*}",
"\\begin{equation*} \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitm } } = \\mitpartial _ { [ \\miti _ { 1 } } \\mitX ^ { \\mitmu _ { 1 } } \\cdots \\mitpartial _ { \\miti _ { \\mitm - 1 } } \\mitX ^ { \\mitmu _ { \\mitm - 1 } } \\, \\bar { \\mittheta } _ { 2 } \\mitgamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitm - 1 } } \\mitpartial _ { \\miti _ { \\mitm } ] } \\mittheta _ { 1 } \\, , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitL _ { \\mathrm { W Z } } ^ { ( \\mitp + 1 ) } & \\displaystyle \\rightarrow & \\displaystyle - 2 \\mitepsilon ^ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp + 1 } } \\, \\mits _ { \\mitp - 2 \\mitk + 1 } \\mitb _ { \\mitp + 1 , \\mitk } \\bigg \\{ \\sum _ { \\mitk = 0 } ^ { ( \\mitp - 1 ) \\slash 2 } \\, ( \\mitp - 2 \\mitk ) \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 1 } \\ldots \\miti _ { \\mitp } } \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\\\ & & \\displaystyle ~ + \\sum _ { \\mitk = 1 } ^ { ( \\mitp + 1 ) \\slash 2 } \\, 2 \\mitk \\tilde { \\mitC } _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitp - 2 \\mitk + 1 } } ( \\mitF ^ { \\mitk } ) _ { \\miti _ { \\mitp - 2 \\mitk + 2 } \\ldots \\miti _ { \\mitp - 1 } } \\mitpartial _ { \\miti _ { \\mitp } } \\mitS \\mitpartial _ { \\miti _ { \\mitp + 1 } } \\mitT \\bigg \\} \\, . \\end{align*}",
"\\begin{align*} \\displaystyle \\mita _ { \\mitp , \\mitk } & = & \\displaystyle \\frac { ( \\mitp - 1 ) ! } { 2 ^ { \\mitk } \\, \\mitk ! \\, ( \\mitp - 2 \\mitk - 1 ) ! } \\, \\mita _ { \\mitp , 0 } \\, , \\\\ \\displaystyle \\mitb _ { \\mitp + 1 , \\mitk } & = & \\displaystyle \\frac { ( - 1 ) ^ { \\mitk } \\mitp ! } { 2 ^ { \\mitk } \\, \\mitk ! \\, ( \\mitp - 2 \\mitk ) ! } \\, \\mitb _ { \\mitp + 1 , 0 } \\, , \\\\ \\displaystyle \\mita _ { \\mitp , 0 } & = & \\displaystyle - \\mits _ { \\mitp + 1 } \\, \\mitp \\, \\mitb _ { \\mitp + 1 , 0 } \\, . \\end{align*}"
],
"x_min": [
0.17970000207424164,
0.5134999752044678,
0.41190001368522644,
0.28610000014305115,
0.5548999905586243,
0.20389999449253082,
0.4194999933242798,
0.7815999984741211,
0.1671999990940094,
0.20389999449253082,
0.4332999885082245,
0.49480000138282776,
0.6392999887466431,
0.7014999985694885,
0.4657999873161316,
0.5376999974250793,
0.5791000127792358,
0.29580000042915344,
0.35659998655319214,
0.23980000615119934,
0.22390000522136688,
0.2922999858856201,
0.1582999974489212,
0.3587000072002411
],
"y_min": [
0.1348000019788742,
0.1386999934911728,
0.15189999341964722,
0.2240999937057495,
0.39160001277923584,
0.43849998712539673,
0.4546000063419342,
0.45509999990463257,
0.6050000190734863,
0.6050000190734863,
0.6021000146865845,
0.6015999913215637,
0.6021000146865845,
0.6015999913215637,
0.6342999935150146,
0.6304000020027161,
0.7958999872207642,
0.8246999979019165,
0.8208000063896179,
0.19140000641345978,
0.2401999980211258,
0.35740000009536743,
0.49070000648498535,
0.6660000085830688
],
"x_max": [
0.1956000030040741,
0.5439000129699707,
0.4223000109195709,
0.3393000066280365,
0.6087999939918518,
0.24879999458789825,
0.4657999873161316,
0.7954000234603882,
0.1906999945640564,
0.22190000116825104,
0.45890000462532043,
0.5895000100135803,
0.664900004863739,
0.7616000175476074,
0.49619999527931213,
0.5846999883651733,
0.5907999873161316,
0.3068999946117401,
0.36559998989105225,
0.7760999798774719,
0.789900004863739,
0.7200999855995178,
0.8549000024795532,
0.6517000198364258
],
"y_max": [
0.14550000429153442,
0.149399995803833,
0.16220000386238098,
0.23440000414848328,
0.4018999934196472,
0.4507000148296356,
0.4691999852657318,
0.46540001034736633,
0.6137999892234802,
0.6118000149726868,
0.6128000020980835,
0.6128000020980835,
0.6128000020980835,
0.6118999719619751,
0.6449999809265137,
0.6449999809265137,
0.8026999831199646,
0.8314999938011169,
0.8314999938011169,
0.21240000426769257,
0.3255999982357025,
0.3788999915122986,
0.5952000021934509,
0.7656000256538391
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
}
|
|
0003221_page08
|
{
"latex": [
"$\\overline {\\rm M5}$",
"$D=11$",
"$\\overline {\\rm M5}$",
"$\\overline {\\rm M5}$",
"$i=1,\\ldots ,5$",
"${\\cal L}_0$",
"\\begin {equation} {\\cal L}_0 = -{\\textstyle {1\\over 24}}\\epsilon ^{ijklm}H_{0ij}H_{klm} -{\\textstyle {1\\over 12}}H_{ijk}H^{ijk}\\,, \\end {equation}"
],
"latex_norm": [
"$ \\overline { M 5 } $",
"$ D = 1 1 $",
"$ \\overline { M 5 } $",
"$ \\overline { M 5 } $",
"$ i = 1 , \\ldots , 5 $",
"$ L _ { 0 } $",
"\\begin{equation*} L _ { 0 } = - \\frac { 1 } { 2 4 } \\epsilon ^ { i j k l m } H _ { 0 i j } H _ { k l m } - \\frac { 1 } { 1 2 } H _ { i j k } H ^ { i j k } \\, , \\end{equation*}"
],
"latex_expand": [
"$ \\overline { \\mathrm { M } 5 } $",
"$ \\mitD = 1 1 $",
"$ \\overline { \\mathrm { M } 5 } $",
"$ \\overline { \\mathrm { M } 5 } $",
"$ \\miti = 1 , \\ldots , 5 $",
"$ \\mitL _ { 0 } $",
"\\begin{equation*} \\mitL _ { 0 } = - { \\textstyle \\frac { 1 } { 2 4 } } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl \\mitm } \\mitH _ { 0 \\miti \\mitj } \\mitH _ { \\mitk \\mitl \\mitm } - { \\textstyle \\frac { 1 } { 1 2 } } \\mitH _ { \\miti \\mitj \\mitk } \\mitH ^ { \\miti \\mitj \\mitk } \\, , \\end{equation*}"
],
"x_min": [
0.1956000030040741,
0.3124000132083893,
0.8644999861717224,
0.8644999861717224,
0.1671999990940094,
0.25780001282691956,
0.3393000066280365
],
"y_min": [
0.3467000126838684,
0.3955000042915344,
0.5249000191688538,
0.5590999722480774,
0.7651000022888184,
0.8159000277519226,
0.7339000105857849
],
"x_max": [
0.22390000522136688,
0.37599998712539673,
0.892799973487854,
0.892799973487854,
0.2687999904155731,
0.2799000144004822,
0.6730999946594238
],
"y_max": [
0.357699990272522,
0.4058000147342682,
0.5358999967575073,
0.5701000094413757,
0.7778000235557556,
0.8285999894142151,
0.7554000020027161
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003221_page09
|
{
"latex": [
"${\\cal L}_0$",
"${\\cal L}_m$",
"${\\cal L} = {\\cal L}_0 + {\\cal L}_m$",
"\\begin {equation} {\\cal L}_m = m^2 B^{\\mu \\nu } B_{\\mu \\nu }\\,. \\end {equation}"
],
"latex_norm": [
"$ L _ { 0 } $",
"$ L _ { m } $",
"$ L = L _ { 0 } + L _ { m } $",
"\\begin{equation*} L _ { m } = m ^ { 2 } B ^ { \\mu \\nu } B _ { \\mu \\nu } \\, . \\end{equation*}"
],
"latex_expand": [
"$ \\mitL _ { 0 } $",
"$ \\mitL _ { \\mitm } $",
"$ \\mitL = \\mitL _ { 0 } + \\mitL _ { \\mitm } $",
"\\begin{equation*} \\mitL _ { \\mitm } = \\mitm ^ { 2 } \\mitB ^ { \\mitmu \\mitnu } \\mitB _ { \\mitmu \\mitnu } \\, . \\end{equation*}"
],
"x_min": [
0.8334000110626221,
0.120899997651577,
0.7172999978065491,
0.42989999055862427
],
"y_min": [
0.17630000412464142,
0.19339999556541443,
0.19339999556541443,
0.14650000631809235
],
"x_max": [
0.8554999828338623,
0.148499995470047,
0.8292999863624573,
0.5860999822616577
],
"y_max": [
0.1889999955892563,
0.2061000019311905,
0.2061000019311905,
0.1665000021457672
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"isolated"
]
}
|
|
0003232_page01
|
{
"latex": [
"$R^4$",
"$C^{{\\mu }{\\nu }}=[X^{\\mu },X^{\\nu }]$",
"${\\phi }^4$",
"$C^{{\\mu }{\\nu }}$",
"$R^4$",
"$QR^4$",
"$R^4$"
],
"latex_norm": [
"$ R ^ { 4 } $",
"$ C ^ { \\mu \\nu } = [ X ^ { \\mu } , X ^ { \\nu } ] $",
"$ \\phi ^ { 4 } $",
"$ C ^ { \\mu \\nu } $",
"$ R ^ { 4 } $",
"$ Q R ^ { 4 } $",
"$ R ^ { 4 } $"
],
"latex_expand": [
"$ \\mitR ^ { 4 } $",
"$ \\mitC ^ { \\mitmu \\mitnu } = [ \\mitX ^ { \\mitmu } , \\mitX ^ { \\mitnu } ] $",
"$ \\mitphi ^ { 4 } $",
"$ \\mitC ^ { \\mitmu \\mitnu } $",
"$ \\mitR ^ { 4 } $",
"$ \\mitQ \\mitR ^ { 4 } $",
"$ \\mitR ^ { 4 } $"
],
"x_min": [
0.6614000201225281,
0.4242999851703644,
0.5562999844551086,
0.48170000314712524,
0.34279999136924744,
0.6082000136375427,
0.6164000034332275
],
"y_min": [
0.3716000020503998,
0.38920000195503235,
0.4359999895095825,
0.45410001277923584,
0.4844000041484833,
0.5005000233650208,
0.5327000021934509
],
"x_max": [
0.6834999918937683,
0.5590999722480774,
0.5756999850273132,
0.51419997215271,
0.36489999294281006,
0.6455000042915344,
0.6384999752044678
],
"y_max": [
0.3833000063896179,
0.40290001034736633,
0.45019999146461487,
0.46389999985694885,
0.4961000084877014,
0.5146999955177307,
0.5439000129699707
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
|
0003232_page02
|
{
"latex": [
"$R^4$",
"$R^2$",
"$x^{\\mu }$",
"$X^{\\mu }$",
"$4-$",
"$S^4$",
"$2-$",
"$S^2$",
"$CP^2$",
"${\\lambda }_p$"
],
"latex_norm": [
"$ R ^ { 4 } $",
"$ R ^ { 2 } $",
"$ x ^ { \\mu } $",
"$ X ^ { \\mu } $",
"$ 4 - $",
"$ S ^ { 4 } $",
"$ 2 - $",
"$ S ^ { 2 } $",
"$ C P ^ { 2 } $",
"$ \\lambda _ { p } $"
],
"latex_expand": [
"$ \\mitR ^ { 4 } $",
"$ \\mitR ^ { 2 } $",
"$ \\mitx ^ { \\mitmu } $",
"$ \\mitX ^ { \\mitmu } $",
"$ 4 - $",
"$ \\mitS ^ { 4 } $",
"$ 2 - $",
"$ \\mitS ^ { 2 } $",
"$ \\mitC \\mitP ^ { 2 } $",
"$ \\mitlambda _ { \\mitp } $"
],
"x_min": [
0.7760999798774719,
0.1728000044822693,
0.5273000001907349,
0.7982000112533569,
0.7457000017166138,
0.1728000044822693,
0.28540000319480896,
0.38420000672340393,
0.48579999804496765,
0.1728000044822693
],
"y_min": [
0.490200012922287,
0.5073000192642212,
0.5092999935150146,
0.5088000297546387,
0.5435000061988831,
0.5586000084877014,
0.5605000257492065,
0.5586000084877014,
0.5586000084877014,
0.7660999894142151
],
"x_max": [
0.7996000051498413,
0.19629999995231628,
0.5486999750137329,
0.8264999985694885,
0.7713000178337097,
0.19419999420642853,
0.3109999895095825,
0.40560001134872437,
0.5252000093460083,
0.19280000030994415
],
"y_max": [
0.5019000172615051,
0.5189999938011169,
0.51910001039505,
0.51910001039505,
0.5547000169754028,
0.5708000063896179,
0.5716999769210815,
0.5702999830245972,
0.5708000063896179,
0.7803000211715698
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.