_id
stringlengths
64
64
repository
stringlengths
7
61
name
stringlengths
5
45
content
stringlengths
0
943k
download_url
stringlengths
94
213
language
stringclasses
1 value
comments
stringlengths
0
20.9k
code
stringlengths
0
943k
555fab74565a2b39ef5b3c4c62fd9a6d40178cc855b22b31a52b77dd516fe74f
maximalexanian/guitarix-vst
gxdistortion.dsp
declare id "gxdistortion"; declare version "0.01"; declare author "brummer"; declare license "BSD"; declare copyright "(c)brummer 2008"; import("stdfaust.lib"); import("guitarix.lib"); F = 300; //nentry("split_low_freq", 250, 20, 600, 10); F1 = 1200; //nentry("split_middle_freq", 650, 600, 1250, 10); F2 = 3200; //nentry("split_high_freq", 1250, 1250, 12000, 10); /********************************************************************** *** this part is included here for backward compatibility from 0.9.27 to *** 0.9.24 ***********************************************************************/ //------------------------------ ba.count and ba.take -------------------------------------- countN ((xs, xxs)) = 1 + countN(xxs); countN (xx) = 1; takeN (1, (xs, xxs)) = xs; takeN (1, xs) = xs; takeN (nn, (xs, xxs)) = takeN (nn-1, xxs); //------------------------------ low/high-passfilters -------------------------------------- tf1N(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2N(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; tf1sN(b1,b0,a0,w1) = tf1N(b0d,b1d,a1d) with { c = 1/tan((w1)*0.5/ma.SR); // bilinear-transform scale-factor d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; tf2sN(b2,b1,b0,a1,a0,w1) = tf2N(b0d,b1d,b2d,a1d,a2d) with { c = 1/tan((w1)*0.5/ma.SR); // bilinear-transform scale-factor csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; lowpassN(N,fc) = lowpass0_highpass1N(0,N,fc); highpassN(N,fc) = lowpass0_highpass1N(1,N,fc); lowpass0_highpass1N(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1sN(s,1-s,1,2*ma.PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2sN(s,0,1-s,a1s,1,w1) with { parity = N % 2; S = (O-parity)/2; // current section number a1s = -2*cos(-ma.PI + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N); w1 = 2*ma.PI*fc; }; }; //------------------------------ an.analyzer -------------------------------------- analyzern(O,lfreqs) = _ <: bsplit(nb) with { nb = countN(lfreqs); fc(n) = takeN(n, lfreqs); lp(n) = lowpassN(O,fc(n)); hp(n) = highpassN(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; analyzerN(lfreqs) = analyzern(3,lfreqs); filterbankn(O,lfreqs) = analyzern(O,lfreqs) : delayeq with { nb = ba.count(lfreqs); fc(n) = ba.take(n, lfreqs); ap(n) = fi.highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; filterbankN(lfreqs) = fi.filterbank(3,lfreqs); /********************************************************************** *** end for backward compatibility from 0.9.27 to *** 0.9.24 , it could removed when switch completly to > 0.9.27 ***********************************************************************/ //----------distortion--------- /* 2 exp() because of valve.vt */ val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1.0 - lp2tm1(x) * 1.02 - 1.0 : clip(-1.0,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; vt = valve.vt(dist, q) : ma.neg : valve.vt(dist, q) : ma.neg with { q_p = 0.9; dist_p = 1.7; q = -q_p*-q_p*-q_p; dist = pow(10,dist_p); }; //-distortion distdrive(drive) = wet_dry_mix(wet_dry, _: distortion) with { //drive = vslider("drive", 0.35, 0, 1, 0.01); //h = (2.0): ba.db2linear; //1,2589412 //l = (4.0): ba.db2linear; //1,584893192 //mh = (4.0): ba.db2linear; //1,584893192 //ml = (2.5): ba.db2linear; //1,333521432 distortion1 = _:ef.cubicnl(0.45*drive,0.0): *(1.2589412); // l distortion2 = _:ef.cubicnl(0.4*drive,0.0) : *(1.584893192); // h distortion3 = _:ef.cubicnl(1.0*drive,0.0) : *(1.584893192); //ml distortion4 = _:ef.cubicnl(0.6*drive,0.0) : *(1.333521432); //mh distortion = fi.lowpass(2,15000.0): fi.highpass(1,31.0) : filterbankN((F,(F1,F2))) : distortion2,distortion4 ,distortion3,distortion1 :>fi.lowpass(1,6531.0); wet_dry = (drive - 0.5) * 2; }; clipit = min(0.7) : max(-0.7) ; gx_drive(drive) = _ <: _ + nonlin(4,4,0.125) * drive * 10 ; wetdry = vslider("wet_dry[name:wet/dry]", 100, 0, 100, 1) : /(100); drive = vslider("drive", 0.35, 0, 1, 0.01) : smoothi(0.999); dist(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry):distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist1(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) <: (clipit: ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; /* 4 exp() because of val */ dist2(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) :val :distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist4(drive,wetdry) =_<:(*(dry): gx_drive(drive)), (*(wetdry) : val <: (ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; process = distdrive;
https://raw.githubusercontent.com/maximalexanian/guitarix-vst/83fd0cbec9588fb2ef47d80f7c6cb0775bfb9f89/guitarix/src/faust/gxdistortion.dsp
faust
nentry("split_low_freq", 250, 20, 600, 10); nentry("split_middle_freq", 650, 600, 1250, 10); nentry("split_high_freq", 1250, 1250, 12000, 10); ********************************************************************* *** this part is included here for backward compatibility from 0.9.27 to *** 0.9.24 ********************************************************************** ------------------------------ ba.count and ba.take -------------------------------------- ------------------------------ low/high-passfilters -------------------------------------- bilinear-transform scale-factor bilinear-transform scale-factor current section number ------------------------------ an.analyzer -------------------------------------- ********************************************************************* *** end for backward compatibility from 0.9.27 to *** 0.9.24 , it could removed when switch completly to > 0.9.27 ********************************************************************** ----------distortion--------- 2 exp() because of valve.vt -distortion drive = vslider("drive", 0.35, 0, 1, 0.01); h = (2.0): ba.db2linear; //1,2589412 l = (4.0): ba.db2linear; //1,584893192 mh = (4.0): ba.db2linear; //1,584893192 ml = (2.5): ba.db2linear; //1,333521432 l h ml mh 4 exp() because of val
declare id "gxdistortion"; declare version "0.01"; declare author "brummer"; declare license "BSD"; declare copyright "(c)brummer 2008"; import("stdfaust.lib"); import("guitarix.lib"); countN ((xs, xxs)) = 1 + countN(xxs); countN (xx) = 1; takeN (1, (xs, xxs)) = xs; takeN (1, xs) = xs; takeN (nn, (xs, xxs)) = takeN (nn-1, xxs); tf1N(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2N(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; tf1sN(b1,b0,a0,w1) = tf1N(b0d,b1d,a1d) with { d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; tf2sN(b2,b1,b0,a1,a0,w1) = tf2N(b0d,b1d,b2d,a1d,a2d) with { csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; lowpassN(N,fc) = lowpass0_highpass1N(0,N,fc); highpassN(N,fc) = lowpass0_highpass1N(1,N,fc); lowpass0_highpass1N(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1sN(s,1-s,1,2*ma.PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2sN(s,0,1-s,a1s,1,w1) with { parity = N % 2; a1s = -2*cos(-ma.PI + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N); w1 = 2*ma.PI*fc; }; }; analyzern(O,lfreqs) = _ <: bsplit(nb) with { nb = countN(lfreqs); fc(n) = takeN(n, lfreqs); lp(n) = lowpassN(O,fc(n)); hp(n) = highpassN(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; analyzerN(lfreqs) = analyzern(3,lfreqs); filterbankn(O,lfreqs) = analyzern(O,lfreqs) : delayeq with { nb = ba.count(lfreqs); fc(n) = ba.take(n, lfreqs); ap(n) = fi.highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; filterbankN(lfreqs) = fi.filterbank(3,lfreqs); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1.0 - lp2tm1(x) * 1.02 - 1.0 : clip(-1.0,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; vt = valve.vt(dist, q) : ma.neg : valve.vt(dist, q) : ma.neg with { q_p = 0.9; dist_p = 1.7; q = -q_p*-q_p*-q_p; dist = pow(10,dist_p); }; distdrive(drive) = wet_dry_mix(wet_dry, _: distortion) with { distortion = fi.lowpass(2,15000.0): fi.highpass(1,31.0) : filterbankN((F,(F1,F2))) : distortion2,distortion4 ,distortion3,distortion1 :>fi.lowpass(1,6531.0); wet_dry = (drive - 0.5) * 2; }; clipit = min(0.7) : max(-0.7) ; gx_drive(drive) = _ <: _ + nonlin(4,4,0.125) * drive * 10 ; wetdry = vslider("wet_dry[name:wet/dry]", 100, 0, 100, 1) : /(100); drive = vslider("drive", 0.35, 0, 1, 0.01) : smoothi(0.999); dist(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry):distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist1(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) <: (clipit: ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; dist2(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) :val :distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist4(drive,wetdry) =_<:(*(dry): gx_drive(drive)), (*(wetdry) : val <: (ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; process = distdrive;
0ac2a6e810ec0374dd84559c22625c2bded6432ad1823d9dfaa5349f3c52f7aa
SimplyOnMyWay/harp-model
McLiagString_04.02.23.dsp
import("stdfaust.lib"); process = en.asrfe(attT60,susLvl,relT60,finLvl,gate) with { //excitation : bodyMode1 : bodyMode2 : bodyMode3 <: _,_ with { //: McLiagString <: _,_ with { attT60 = 0.6; susLvl = 0.75; relT60 = 0.1; finLvl = 0.0; gate = button("g"); excitation = g : en.are(a,r) * no.noise : envFR with { a = 0.02;//0.0005; d = 0.01; s = 0.5; r = 0.05;//0.04; g = 1 - (1@50);//(1-(1@500)) + 0.5*(1@750-(1@1700)); // fb1 = 1.0; fb2 = 1.0; damp = 0.5; spread = 1; envFR = fi.iir(bcoeffs,acoeffs) with { bcoeffs = 1.0038,-0.16283,0.0062466,-0.10801,-0.24058,-0.029842,-0.121,-0.16796,-0.15775,-0.20561,0.0077204; acoeffs = -1.3267,0.61699,-0.75244,0.5751,-0.2797,0.497,-0.45368,0.3945,-0.22875,0.0441; }; }; bodyMode1 = fi.tf21(b0,b1,b2,a1,a2) with { b0 = 1; b1 = -1.9786;//-1.9583; b2 = 0.97882;//0.95958; a1 = -1.9986; //1.9983; a2 = 0.99869; //0.99915; }; bodyMode2 = fi.tf21(b0,b1,b2,a1,a2) with { b0 = 1; b1 = -1.989; //-1.7944; b2 = 0.98912; //0.8077; a1 = -1.999; //-1.9937; a2 = 0.99908; //0.99715; }; bodyMode3 = fi.tf21(b0,b1,b2,a1,a2) with { b0 = 1; b1 = -1.9848;//-1.9537; b2 = 0.98515;//0.95903; a1 = -1.9987;//-1.9936; a2 = 0.99908;//0.99858; }; McLiagString(pluck) = (pluck + dline) ~ (loopGain : loopFilter) with { dline = de.delay(n,d) with { n = 2048; d = ma.SR/f; f = 264*2; }; // ### direct-form (I?) IIR filter implementation ### loopFilter = fi.iir(Bcoeff,Acoeff) with { Bcoeff = 0.99002,0.53323,-0.059946,0.47646,0.6579,0.41096,0.10609,0.25464,0.1224,0.1032,0.23355,0.1154,0.027333,0.24254,0.11144,0.13616,0.29518,0.22837,0.20541,0.1811,0.23351,0.25601,0.18682,0.1572,0.12634,0.1038,0.10661,0.083271,0.077115,0.020829,0.01552; // note av[0] = 1 is assumed by Faust!/ Acoeff = 0.52874,-0.064736,0.48365,0.65922,0.40633,0.10369,0.25905,0.11832,0.10181,0.23729,0.11339,0.026769,0.24361,0.11236,0.13613,0.29448,0.22862,0.20701,0.17915,0.23339,0.2578,0.18605,0.15629,0.1266,0.10381,0.10485,0.084,0.0772,0.019029,0.016185; }; loopGain(x) = 0.999 * x; }; };
https://raw.githubusercontent.com/SimplyOnMyWay/harp-model/794c56b19a82a4b1301f3a83c2baf7f43224fe21/faust_code/McLiagString_04.02.23.dsp
faust
excitation : bodyMode1 : bodyMode2 : bodyMode3 <: _,_ with { //: McLiagString <: _,_ with { 0.0005; 0.04; (1-(1@500)) + 0.5*(1@750-(1@1700)); // -1.9583; 0.95958; 1.9983; 0.99915; -1.7944; 0.8077; -1.9937; 0.99715; -1.9537; 0.95903; -1.9936; 0.99858; ### direct-form (I?) IIR filter implementation ### note av[0] = 1 is assumed by Faust!/
import("stdfaust.lib"); attT60 = 0.6; susLvl = 0.75; relT60 = 0.1; finLvl = 0.0; gate = button("g"); excitation = g : en.are(a,r) * no.noise : envFR with { d = 0.01; s = 0.5; fb1 = 1.0; fb2 = 1.0; damp = 0.5; spread = 1; envFR = fi.iir(bcoeffs,acoeffs) with { bcoeffs = 1.0038,-0.16283,0.0062466,-0.10801,-0.24058,-0.029842,-0.121,-0.16796,-0.15775,-0.20561,0.0077204; acoeffs = -1.3267,0.61699,-0.75244,0.5751,-0.2797,0.497,-0.45368,0.3945,-0.22875,0.0441; }; }; bodyMode1 = fi.tf21(b0,b1,b2,a1,a2) with { b0 = 1; }; bodyMode2 = fi.tf21(b0,b1,b2,a1,a2) with { b0 = 1; }; bodyMode3 = fi.tf21(b0,b1,b2,a1,a2) with { b0 = 1; }; McLiagString(pluck) = (pluck + dline) ~ (loopGain : loopFilter) with { dline = de.delay(n,d) with { n = 2048; d = ma.SR/f; f = 264*2; }; loopFilter = fi.iir(Bcoeff,Acoeff) with { Bcoeff = 0.99002,0.53323,-0.059946,0.47646,0.6579,0.41096,0.10609,0.25464,0.1224,0.1032,0.23355,0.1154,0.027333,0.24254,0.11144,0.13616,0.29518,0.22837,0.20541,0.1811,0.23351,0.25601,0.18682,0.1572,0.12634,0.1038,0.10661,0.083271,0.077115,0.020829,0.01552; Acoeff = 0.52874,-0.064736,0.48365,0.65922,0.40633,0.10369,0.25905,0.11832,0.10181,0.23729,0.11339,0.026769,0.24361,0.11236,0.13613,0.29448,0.22862,0.20701,0.17915,0.23339,0.2578,0.18605,0.15629,0.1266,0.10381,0.10485,0.084,0.0772,0.019029,0.016185; }; loopGain(x) = 0.999 * x; }; };
e599ad07ad71bb78dffca89477cd7ce4f44668381f4b5d059ba19ccf8c491d33
afalaize/faust
drums.dsp
//##################################### drums.dsp ######################################## // Faust instrument specifically designed for `faust2smartkeyb` where 3 drums can // be controlled using pads. The X/Y postion of fingers is detected on each key // and use to control the strike postion on the virtual membrane. // // ## `SmartKeyboard` Use Strategy // // The drum physical model used here is implemented to be generic so that its // fundamental frequency can be changed for each voice. `SamrtKeyboard` is used // in polyphonic mode so each new strike on the interface corresponds to a new // new voice. // // ## Compilation Instructions // // This Faust code will compile fine with any of the standard Faust targets. However // it was specifically designed to be used with `faust2smartkeyb`. For best results, // we recommend to use the following parameters to compile it: // // ``` // faust2smartkeyb [-ios/-android] -effect reverb.dsp drums.dsp // ``` // // ## Version/Licence // // Version 0.0, Feb. 2017 // Copyright Romain Michon CCRMA (Stanford University)/GRAME 2017 // MIT Licence: https://opensource.org/licenses/MIT //######################################################################################## // Interface with 2 keyboards of 2 and 1 keys (3 pads) // Static mode is used so that keys don't change color when touched // Note labels are hidden // Piano Keyboard mode is deactivated so all the keys look the same declare interface "SmartKeyboard{ 'Number of Keyboards':'2', 'Keyboard 0 - Number of Keys':'2', 'Keyboard 1 - Number of Keys':'1', 'Keyboard 0 - Static Mode':'1', 'Keyboard 1 - Static Mode':'1', 'Keyboard 0 - Send X':'1', 'Keyboard 0 - Send Y':'1', 'Keyboard 1 - Send X':'1', 'Keyboard 1 - Send Y':'1', 'Keyboard 0 - Piano Keyboard':'0', 'Keyboard 1 - Piano Keyboard':'0', 'Keyboard 0 - Key 0 - Label':'High', 'Keyboard 0 - Key 1 - Label':'Mid', 'Keyboard 1 - Key 0 - Label':'Low' }"; import("stdfaust.lib"); // standard parameters gate = button("gate"); x = hslider("x",1,0,1,0.001); y = hslider("y",1,0,1,0.001); keyboard = hslider("keyboard",0,0,1,1) : int; key = hslider("key",0,0,1,1) : int; // drum modal physical model drum = excitation <: par(i,N,mode(i,baseFreq,t60Scaler)) :> *(outGain) with{ // number of modes N = 20; // angle theta = 0; // resonance duration t60Scaler = 1; // frequency of the lowest drum bFreq = 60; // output gain (should be changed in function of the number of drums and modes) outGain = 0.1; // excitation position exPos = min((x*2-1 : abs),(y*2-1 : abs)); // retrieving pad number (0-2) j = 2-(keyboard*2+key); // drum root freq is computed in function of pad number baseFreq = bFreq*(j+1); // computing the gain of each filter inGains(i) = cos((i+1)*theta)/float(i+1); // computing each modes, why is this done like this, cus it sounds goooood... mode(i,baseFreq,t60) = *(inGains(i)) : modeFilter(baseFreq+(200*i),(N-i)*t60*0.03)*(1/(i+1)) with{ // biquad taking freq and t60 as arguments modeFilter(f,t60) = fi.tf2(b0,b1,b2,a1,a2) with{ b0 = 1; b1 = 0; b2 = -1; w = 2*ma.PI*f/ma.SR; r = pow(0.001,1/float(t60*ma.SR)); a1 = -2*r*cos(w); a2 = r^2; }; }; // excitation: filtered noise burst. filters change in function of x/y position excitation = noiseburst : fi.highpass(2,40+exPos*500) : fi.lowpass(2,500+exPos*15000) with{ // noise excitation noiseburst = no.noise : *(gate : ba.impulsify : trigger(P)) with { P = ma.SR/300; diffgtz(x) = x != x'; decay(n,x) = x - (x>0)/n; release(n) = + ~ decay(n); trigger(n) = diffgtz : release(n) : > (0.0); }; }; }; process = drum <: _,_;
https://raw.githubusercontent.com/afalaize/faust/8f9f5fe3aa167eaeecc15a99d4da984ac2797be3/examples/smartKeyboard/drums.dsp
faust
##################################### drums.dsp ######################################## Faust instrument specifically designed for `faust2smartkeyb` where 3 drums can be controlled using pads. The X/Y postion of fingers is detected on each key and use to control the strike postion on the virtual membrane. ## `SmartKeyboard` Use Strategy The drum physical model used here is implemented to be generic so that its fundamental frequency can be changed for each voice. `SamrtKeyboard` is used in polyphonic mode so each new strike on the interface corresponds to a new new voice. ## Compilation Instructions This Faust code will compile fine with any of the standard Faust targets. However it was specifically designed to be used with `faust2smartkeyb`. For best results, we recommend to use the following parameters to compile it: ``` faust2smartkeyb [-ios/-android] -effect reverb.dsp drums.dsp ``` ## Version/Licence Version 0.0, Feb. 2017 Copyright Romain Michon CCRMA (Stanford University)/GRAME 2017 MIT Licence: https://opensource.org/licenses/MIT ######################################################################################## Interface with 2 keyboards of 2 and 1 keys (3 pads) Static mode is used so that keys don't change color when touched Note labels are hidden Piano Keyboard mode is deactivated so all the keys look the same standard parameters drum modal physical model number of modes angle resonance duration frequency of the lowest drum output gain (should be changed in function of the number of drums and modes) excitation position retrieving pad number (0-2) drum root freq is computed in function of pad number computing the gain of each filter computing each modes, why is this done like this, cus it sounds goooood... biquad taking freq and t60 as arguments excitation: filtered noise burst. filters change in function of x/y position noise excitation
declare interface "SmartKeyboard{ 'Number of Keyboards':'2', 'Keyboard 0 - Number of Keys':'2', 'Keyboard 1 - Number of Keys':'1', 'Keyboard 0 - Static Mode':'1', 'Keyboard 1 - Static Mode':'1', 'Keyboard 0 - Send X':'1', 'Keyboard 0 - Send Y':'1', 'Keyboard 1 - Send X':'1', 'Keyboard 1 - Send Y':'1', 'Keyboard 0 - Piano Keyboard':'0', 'Keyboard 1 - Piano Keyboard':'0', 'Keyboard 0 - Key 0 - Label':'High', 'Keyboard 0 - Key 1 - Label':'Mid', 'Keyboard 1 - Key 0 - Label':'Low' }"; import("stdfaust.lib"); gate = button("gate"); x = hslider("x",1,0,1,0.001); y = hslider("y",1,0,1,0.001); keyboard = hslider("keyboard",0,0,1,1) : int; key = hslider("key",0,0,1,1) : int; drum = excitation <: par(i,N,mode(i,baseFreq,t60Scaler)) :> *(outGain) with{ N = 20; theta = 0; t60Scaler = 1; bFreq = 60; outGain = 0.1; exPos = min((x*2-1 : abs),(y*2-1 : abs)); j = 2-(keyboard*2+key); baseFreq = bFreq*(j+1); inGains(i) = cos((i+1)*theta)/float(i+1); mode(i,baseFreq,t60) = *(inGains(i)) : modeFilter(baseFreq+(200*i),(N-i)*t60*0.03)*(1/(i+1)) with{ modeFilter(f,t60) = fi.tf2(b0,b1,b2,a1,a2) with{ b0 = 1; b1 = 0; b2 = -1; w = 2*ma.PI*f/ma.SR; r = pow(0.001,1/float(t60*ma.SR)); a1 = -2*r*cos(w); a2 = r^2; }; }; excitation = noiseburst : fi.highpass(2,40+exPos*500) : fi.lowpass(2,500+exPos*15000) with{ noiseburst = no.noise : *(gate : ba.impulsify : trigger(P)) with { P = ma.SR/300; diffgtz(x) = x != x'; decay(n,x) = x - (x>0)/n; release(n) = + ~ decay(n); trigger(n) = diffgtz : release(n) : > (0.0); }; }; }; process = drum <: _,_;
1f45961032e96e45630f16454098943d18b200730950ba273d6f40c1482cb070
sadko4u/tamgamp.lv2
amp_dist.dsp
/* * Simulation of Guitarix amplifier chain * * Copyright (C) 2009, 2010 Hermann Meyer, James Warden, Andreas Degert * Copyright (C) 2011 Pete Shorthose <http://guitarix.org/> * This file is part of tamgamp.lv2 <https://github.com/sadko4u/tamgamp.lv2>. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ declare id "amp_dist"; declare version "0.01"; declare author "Hermann Meyer"; declare license "BSD"; declare copyright "(C) Hermann Meyer 2008"; import("stdfaust.lib"); import("amp_sim.lib"); F = 300; //nentry("split_low_freq", 250, 20, 600, 10); F1 = 1200; //nentry("split_middle_freq", 650, 600, 1250, 10); F2 = 3200; //nentry("split_high_freq", 1250, 1250, 12000, 10); /********************************************************************** *** this part is included here for backward compatibility from 0.9.27 to *** 0.9.24 ***********************************************************************/ //------------------------------ ba.count and ba.take -------------------------------------- countN ((xs, xxs)) = 1 + countN(xxs); countN (xx) = 1; takeN (1, (xs, xxs)) = xs; takeN (1, xs) = xs; takeN (nn, (xs, xxs)) = takeN (nn-1, xxs); //------------------------------ low/high-passfilters -------------------------------------- tf1N(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2N(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; tf1sN(b1,b0,a0,w1) = tf1N(b0d,b1d,a1d) with { c = 1/tan((w1)*0.5/ma.SR); // bilinear-transform scale-factor d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; tf2sN(b2,b1,b0,a1,a0,w1) = tf2N(b0d,b1d,b2d,a1d,a2d) with { c = 1/tan((w1)*0.5/ma.SR); // bilinear-transform scale-factor csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; lowpassN(N,fc) = lowpass0_highpass1N(0,N,fc); highpassN(N,fc) = lowpass0_highpass1N(1,N,fc); lowpass0_highpass1N(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1sN(s,1-s,1,2*ma.PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2sN(s,0,1-s,a1s,1,w1) with { parity = N % 2; S = (O-parity)/2; // current section number a1s = -2*cos(-ma.PI + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N); w1 = 2*ma.PI*fc; }; }; //------------------------------ an.analyzer -------------------------------------- analyzern(O,lfreqs) = _ <: bsplit(nb) with { nb = countN(lfreqs); fc(n) = takeN(n, lfreqs); lp(n) = lowpassN(O,fc(n)); hp(n) = highpassN(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; analyzerN(lfreqs) = analyzern(3,lfreqs); filterbankn(O,lfreqs) = analyzern(O,lfreqs) : delayeq with { nb = ba.count(lfreqs); fc(n) = ba.take(n, lfreqs); ap(n) = fi.highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; filterbankN(lfreqs) = fi.filterbank(3,lfreqs); /********************************************************************** *** end for backward compatibility from 0.9.27 to *** 0.9.24 , it could removed when switch completly to > 0.9.27 ***********************************************************************/ //----------distortion--------- val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1.0 - lp2tm1(x) * 1.02 - 1.0 : clip(-1.0,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; vt = valve.vt(dist, q) : ma.neg : valve.vt(dist, q) : ma.neg with { q_p = 0.9; dist_p = 1.7; q = -q_p*-q_p*-q_p; dist = pow(10,dist_p); }; //-distortion distdrive(drive) = wet_dry_mix(wet_dry, _: distortion) with { //h = (2.0): ba.db2linear; //1,2589412 //l = (4.0): ba.db2linear; //1,584893192 //mh = (4.0): ba.db2linear; //1,584893192 //ml = (2.5): ba.db2linear; //1,333521432 distortion1 = _:ef.cubicnl(0.45*drive,0.0): *(1.2589412); // l distortion2 = _:ef.cubicnl(0.4*drive,0.0) : *(1.584893192); // h distortion3 = _:ef.cubicnl(1.0*drive,0.0) : *(1.584893192); // ml distortion4 = _:ef.cubicnl(0.6*drive,0.0) : *(1.333521432); // mh distortion = fi.lowpass(2,15000.0): fi.highpass(1,31.0) : filterbankN((F,(F1,F2))) : distortion2,distortion4 ,distortion3,distortion1 :>fi.lowpass(1,6531.0); wet_dry = (drive - 0.5) * 2; }; clipit = min(0.7) : max(-0.7) ; wetdry = vslider("wet_dry", 100, 0, 100, 1) : /(100); drive = vslider("drive", 0.35, 0, 1, 0.01) : si.smooth(0.999); dist(drive) = distdrive(drive) ; dist1(drive) = _<: (clipit: ef.cubicnl(drive,0.0) : * (0.5)), distdrive(drive) :>_ ; dist2(drive) = val : distdrive(drive) ; dist4(drive) = val <: (ef.cubicnl(drive,0.0) : * (0.5)), distdrive(drive) :>_ ; process = distdrive;
https://raw.githubusercontent.com/sadko4u/tamgamp.lv2/426da74142fcb6b7687a35b2b1dda3392e171b92/src/faust/amp_dist.dsp
faust
* Simulation of Guitarix amplifier chain * * Copyright (C) 2009, 2010 Hermann Meyer, James Warden, Andreas Degert * Copyright (C) 2011 Pete Shorthose <http://guitarix.org/> * This file is part of tamgamp.lv2 <https://github.com/sadko4u/tamgamp.lv2>. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. nentry("split_low_freq", 250, 20, 600, 10); nentry("split_middle_freq", 650, 600, 1250, 10); nentry("split_high_freq", 1250, 1250, 12000, 10); ********************************************************************* *** this part is included here for backward compatibility from 0.9.27 to *** 0.9.24 ********************************************************************** ------------------------------ ba.count and ba.take -------------------------------------- ------------------------------ low/high-passfilters -------------------------------------- bilinear-transform scale-factor bilinear-transform scale-factor current section number ------------------------------ an.analyzer -------------------------------------- ********************************************************************* *** end for backward compatibility from 0.9.27 to *** 0.9.24 , it could removed when switch completly to > 0.9.27 ********************************************************************** ----------distortion--------- -distortion h = (2.0): ba.db2linear; //1,2589412 l = (4.0): ba.db2linear; //1,584893192 mh = (4.0): ba.db2linear; //1,584893192 ml = (2.5): ba.db2linear; //1,333521432 l h ml mh
declare id "amp_dist"; declare version "0.01"; declare author "Hermann Meyer"; declare license "BSD"; declare copyright "(C) Hermann Meyer 2008"; import("stdfaust.lib"); import("amp_sim.lib"); countN ((xs, xxs)) = 1 + countN(xxs); countN (xx) = 1; takeN (1, (xs, xxs)) = xs; takeN (1, xs) = xs; takeN (nn, (xs, xxs)) = takeN (nn-1, xxs); tf1N(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2N(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; tf1sN(b1,b0,a0,w1) = tf1N(b0d,b1d,a1d) with { d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; tf2sN(b2,b1,b0,a1,a0,w1) = tf2N(b0d,b1d,b2d,a1d,a2d) with { csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; lowpassN(N,fc) = lowpass0_highpass1N(0,N,fc); highpassN(N,fc) = lowpass0_highpass1N(1,N,fc); lowpass0_highpass1N(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1sN(s,1-s,1,2*ma.PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2sN(s,0,1-s,a1s,1,w1) with { parity = N % 2; a1s = -2*cos(-ma.PI + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N); w1 = 2*ma.PI*fc; }; }; analyzern(O,lfreqs) = _ <: bsplit(nb) with { nb = countN(lfreqs); fc(n) = takeN(n, lfreqs); lp(n) = lowpassN(O,fc(n)); hp(n) = highpassN(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; analyzerN(lfreqs) = analyzern(3,lfreqs); filterbankn(O,lfreqs) = analyzern(O,lfreqs) : delayeq with { nb = ba.count(lfreqs); fc(n) = ba.take(n, lfreqs); ap(n) = fi.highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; filterbankN(lfreqs) = fi.filterbank(3,lfreqs); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1.0 - lp2tm1(x) * 1.02 - 1.0 : clip(-1.0,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; vt = valve.vt(dist, q) : ma.neg : valve.vt(dist, q) : ma.neg with { q_p = 0.9; dist_p = 1.7; q = -q_p*-q_p*-q_p; dist = pow(10,dist_p); }; distdrive(drive) = wet_dry_mix(wet_dry, _: distortion) with { distortion = fi.lowpass(2,15000.0): fi.highpass(1,31.0) : filterbankN((F,(F1,F2))) : distortion2,distortion4 ,distortion3,distortion1 :>fi.lowpass(1,6531.0); wet_dry = (drive - 0.5) * 2; }; clipit = min(0.7) : max(-0.7) ; wetdry = vslider("wet_dry", 100, 0, 100, 1) : /(100); drive = vslider("drive", 0.35, 0, 1, 0.01) : si.smooth(0.999); dist(drive) = distdrive(drive) ; dist1(drive) = _<: (clipit: ef.cubicnl(drive,0.0) : * (0.5)), distdrive(drive) :>_ ; dist2(drive) = val : distdrive(drive) ; dist4(drive) = val <: (ef.cubicnl(drive,0.0) : * (0.5)), distdrive(drive) :>_ ; process = distdrive;
23836ba71761d6709ccb796b9d494e9e0beb484350fa75a9592b66d1ee6702f9
sadko4u/tamgamp.lv2
tonestack.dsp
/* * Simulation of Guitarix tonestack chain * * Copyright (C) 2009, 2010 Hermann Meyer, James Warden, Andreas Degert * Copyright (C) 2011 Pete Shorthose <http://guitarix.org/> * This file is part of tamgamp.lv2 <https://github.com/sadko4u/tamgamp.lv2>. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ //tonestack ba.selector declare id "tonestack"; import("stdfaust.lib"); /**************************************************************** ** Equalisation 3 bands ** C1 ** IN >---------||--------- ** | | ** | | R4 | | R1 Treble ** | | | |<------< Out ** | | | | ** | C2 | ** |-------||--------|------ ** | | | ** | | | | ** | | |<---- R2 Bass ** | | | ** | | ** | C3 | | ** --------||------>| | R3 Middle ** | | ** | ** _|_ ** - */ /**************************************************************** ** Guitar tone stacks ** values from CAPS plugin tonestack (based on work from D.T. Yeh) */ ts = environment { k = *(1e3); M = *(1e6); nF = *(1e-9); pF = *(1e-12); /* * Exact imlementation of 59 Bassman 5F6-A. * Different bassmans have more complicated schematics */ bassman = environment { /* Fender 59 Bassman 5F6-A */ R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 56:k; C1 = 250:pF; C2 = 20:nF; C3 = 20:nF; }; /* * The schematic of next generation (Mark-II and higher) differs */ mesa = environment { /* Mesa/Boogie Mark */ R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 250:pF; C2 = 100:nF; C3 = 47:nF; }; /* * Exact implementation of Mesa/Boogie Rectifier Solo tone stack */ mesa_rect_solo = environment { /* Mesa/Boogie Rectifier Solo */ R1 = 220:k; R2 = 1:M; R3 = 25:k; R4 = 47:k; C1 = 500:pF; C2 = 20:nF; C3 = 20:nF; }; /* * Exact implementation of Mesa/Boogie VTwin tone stack */ mesa_vtwin = environment { /* Mesa/Boogie VTwin */ R1 = 200:k; R2 = 1:M; R3 = 25:k; R4 = 33:k; C1 = 500:pF; C2 = 22:nF; C3 = 22:nF; }; /* * Does not match schematics: R3 is a 10k resistor, not potentiometer, * same with the 250k R2 */ twin = environment { /* 69 Twin Reverb AA270 */ R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 120:pF; C2 = 100:nF; C3 = 47:nF; }; princeton = environment { /* 64 Princeton AA1164 */ R1 = 250:k; R2 = 250:k; R3 = 4.8:k; R4 = 100:k; C1 = 250:pF; C2 = 100:nF; C3 = 47:nF; }; /* Marshall */ jcm800 = environment { /* 59/81 JCM-800 Lead 100 2203 */ R1 = 220:k; R2 = 1:M; R3 = 22:k; R4 = 33:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; /* 90 JCM-900 Master 2100: same as JCM-800 */ jcm2000 = environment { /* 81 2000 Lead */ R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 56:k; /* a 10 k fixed + 100 k pot in series actually */ C1 = 500:pF; C2 = 22:nF; C3 = 22:nF; }; jtm45 = environment { /* JTM 45 */ R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 33:k; C1 = 270:pF; C2 = 22:nF; C3 = 22:nF; }; /* parameter order is R1 - R4, C1 - C3 */ mlead = environment { /* 67 Major Lead 200 */ R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 33:k; C1 = 500:pF; C2 = 22:nF; C3 = 22:nF; }; m2199 = environment { /* undated M2199 30W solid state */ R1 = 250:k; R2 = 250:k; R3 = 25:k; R4 = 56:k; C1 = 250:pF; C2 = 47:nF; C3 = 47:nF; }; /* Vox */ ac30 = environment { /* 59/86 AC-30 */ /* R3 is fixed (circuit differs anyway) */ R1 = 1:M; R2 = 1:M; R3 = 10:k; R4 = 100:k; C1 = 50:pF; C2 = 22:nF; C3 = 22:nF; }; ac15 = environment { /* VOX AC-15 */ R1 = 220:k; R2 = 220:k; R3 = 220:k; R4 = 100:k; C1 = 470:pF; C2 = 100:nF; C3 = 47:nF; }; soldano = environment { /* Soldano SLO 100 */ R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 47:k; C1 = 470:pF; C2 = 20:nF; C3 = 20:nF; }; sovtek = environment { /* MIG 100 H*/ R1 = 500:k; R2 = 1:M; R3 = 10:k; R4 = 47:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; peavey = environment { /* c20*/ R1 = 250:k; R2 = 250:k; R3 = 20:k; R4 = 68:k; C1 = 270:pF; C2 = 22:nF; C3 = 22:nF; }; ibanez = environment { /* gx20 */ R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 270:pF; C2 = 100:nF; C3 = 40:nF; }; roland = environment { /* Cube 60 */ R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 41:k; C1 = 240:pF; C2 = 33:nF; C3 = 82:nF; }; ampeg = environment { /* VL 501 */ R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 32:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; ampeg_rev = environment { /* reverbrocket*/ R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 100:pF; C2 = 100:nF; C3 = 47:nF; }; bogner = environment { /* Triple Giant Preamp */ R1 = 250:k; R2 = 1:M; R3 = 33:k; R4 = 51:k; C1 = 220:pF; C2 = 15:nF; C3 = 47:nF; }; groove = environment { /* Trio Preamp */ R1 = 220:k; R2 = 1:M; R3 = 22:k; R4 = 68:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; crunch = environment { /* Hughes&Kettner */ R1 = 220:k; R2 = 220:k; R3 = 10:k; R4 = 100:k; C1 = 220:pF; C2 = 47:nF; C3 = 47:nF; }; fender_blues = environment { /* Fender blues junior */ R1 = 250:k; R2 = 250:k; R3 = 25:k; R4 = 100:k; C1 = 250:pF; C2 = 22:nF; C3 = 22:nF; }; fender_default = environment { /* Fender */ R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 250:pF; C2 = 100:nF; C3 = 47:nF; }; fender_deville = environment { /* Fender Hot Rod */ R1 = 250:k; R2 = 250:k; R3 = 25:k; R4 = 130:k; C1 = 250:pF; C2 = 100:nF; C3 = 22:nF; }; gibsen = environment { /* gs12 reverbrocket */ R1 = 1:M; R2 = 1:M; R3 = 94:k; // 47k fixed R4 = 270:k; C1 = 25:pF; C2 = 60:nF; C3 = 20:nF; }; engl = environment { /* engl */ R1 = 250:k; R2 = 1:M; R3 = 20:k; R4 = 100:k; C1 = 600:pF; C2 = 47:nF; C3 = 47:nF; }; }; t = vslider(".ts.treble", 0.5, 0, 1, 0.01); m = vslider(".ts.middle", 0.5, 0, 1, 0.01); l = vslider(".ts.bass", 0.5, 0, 1, 0.01) : (_-1)*3.4 : exp; tonestack = 1/A0*fi.iir((B0,B1,B2,B3),(A1/A0,A2/A0,A3/A0)) with { C1 = tse.C1; C2 = tse.C2; C3 = tse.C3; R1 = tse.R1; R2 = tse.R2; R3 = tse.R3; R4 = tse.R4; b1 = t*C1*R1 + m*C3*R3 + l*(C1*R2 + C2*R2) + (C1*R3 + C2*R3); b2 = t*(C1*C2*R1*R4 + C1*C3*R1*R4) - m*m*(C1*C3*R3*R3 + C2*C3*R3*R3) + m*(C1*C3*R1*R3 + C1*C3*R3*R3 + C2*C3*R3*R3) + l*(C1*C2*R1*R2 + C1*C2*R2*R4 + C1*C3*R2*R4) + l*m*(C1*C3*R2*R3 + C2*C3*R2*R3) + (C1*C2*R1*R3 + C1*C2*R3*R4 + C1*C3*R3*R4); b3 = l*m*(C1*C2*C3*R1*R2*R3 + C1*C2*C3*R2*R3*R4) - m*m*(C1*C2*C3*R1*R3*R3 + C1*C2*C3*R3*R3*R4) + m*(C1*C2*C3*R1*R3*R3 + C1*C2*C3*R3*R3*R4) + t*C1*C2*C3*R1*R3*R4 - t*m*C1*C2*C3*R1*R3*R4 + t*l*C1*C2*C3*R1*R2*R4; a0 = 1; a1 = (C1*R1 + C1*R3 + C2*R3 + C2*R4 + C3*R4) + m*C3*R3 + l*(C1*R2 + C2*R2); a2 = m*(C1*C3*R1*R3 - C2*C3*R3*R4 + C1*C3*R3*R3 + C2*C3*R3*R3) + l*m*(C1*C3*R2*R3 + C2*C3*R2*R3) - m*m*(C1*C3*R3*R3 + C2*C3*R3*R3) + l*(C1*C2*R2*R4 + C1*C2*R1*R2 + C1*C3*R2*R4 + C2*C3*R2*R4) + (C1*C2*R1*R4 + C1*C3*R1*R4 + C1*C2*R3*R4 + C1*C2*R1*R3 + C1*C3*R3*R4 + C2*C3*R3*R4); a3 = l*m*(C1*C2*C3*R1*R2*R3 + C1*C2*C3*R2*R3*R4) - m*m*(C1*C2*C3*R1*R3*R3 + C1*C2*C3*R3*R3*R4) + m*(C1*C2*C3*R3*R3*R4 + C1*C2*C3*R1*R3*R3 - C1*C2*C3*R1*R3*R4) + l*C1*C2*C3*R1*R2*R4 + C1*C2*C3*R1*R3*R4; c = 2*float(ma.SR); B0 = -b1*c - b2*pow(c,2) - b3*pow(c,3); B1 = -b1*c + b2*pow(c,2) + 3*b3*pow(c,3); B2 = b1*c + b2*pow(c,2) - 3*b3*pow(c,3); B3 = b1*c - b2*pow(c,2) + b3*pow(c,3); A0 = -a0 - a1*c - a2*pow(c,2) - a3*pow(c,3); A1 = -3*a0 - a1*c + a2*pow(c,2) + 3*a3*pow(c,3); A2 = -3*a0 + a1*c + a2*pow(c,2) - 3*a3*pow(c,3); A3 = -a0 + a1*c - a2*pow(c,2) + a3*pow(c,3); }; tse = ts.bassman; process = tonestack;
https://raw.githubusercontent.com/sadko4u/tamgamp.lv2/426da74142fcb6b7687a35b2b1dda3392e171b92/src/faust/tonestack.dsp
faust
* Simulation of Guitarix tonestack chain * * Copyright (C) 2009, 2010 Hermann Meyer, James Warden, Andreas Degert * Copyright (C) 2011 Pete Shorthose <http://guitarix.org/> * This file is part of tamgamp.lv2 <https://github.com/sadko4u/tamgamp.lv2>. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. tonestack ba.selector *************************************************************** ** Equalisation 3 bands ** C1 ** IN >---------||--------- ** | | ** | | R4 | | R1 Treble ** | | | |<------< Out ** | | | | ** | C2 | ** |-------||--------|------ ** | | | ** | | | | ** | | |<---- R2 Bass ** | | | ** | | ** | C3 | | ** --------||------>| | R3 Middle ** | | ** | ** _|_ ** - *************************************************************** ** Guitar tone stacks ** values from CAPS plugin tonestack (based on work from D.T. Yeh) * Exact imlementation of 59 Bassman 5F6-A. * Different bassmans have more complicated schematics Fender 59 Bassman 5F6-A * The schematic of next generation (Mark-II and higher) differs Mesa/Boogie Mark * Exact implementation of Mesa/Boogie Rectifier Solo tone stack Mesa/Boogie Rectifier Solo * Exact implementation of Mesa/Boogie VTwin tone stack Mesa/Boogie VTwin * Does not match schematics: R3 is a 10k resistor, not potentiometer, * same with the 250k R2 69 Twin Reverb AA270 64 Princeton AA1164 Marshall 59/81 JCM-800 Lead 100 2203 90 JCM-900 Master 2100: same as JCM-800 81 2000 Lead a 10 k fixed + 100 k pot in series actually JTM 45 parameter order is R1 - R4, C1 - C3 67 Major Lead 200 undated M2199 30W solid state Vox 59/86 AC-30 R3 is fixed (circuit differs anyway) VOX AC-15 Soldano SLO 100 MIG 100 H c20 gx20 Cube 60 VL 501 reverbrocket Triple Giant Preamp Trio Preamp Hughes&Kettner Fender blues junior Fender Fender Hot Rod gs12 reverbrocket 47k fixed engl
declare id "tonestack"; import("stdfaust.lib"); ts = environment { k = *(1e3); M = *(1e6); nF = *(1e-9); pF = *(1e-12); R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 56:k; C1 = 250:pF; C2 = 20:nF; C3 = 20:nF; }; R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 250:pF; C2 = 100:nF; C3 = 47:nF; }; R1 = 220:k; R2 = 1:M; R3 = 25:k; R4 = 47:k; C1 = 500:pF; C2 = 20:nF; C3 = 20:nF; }; R1 = 200:k; R2 = 1:M; R3 = 25:k; R4 = 33:k; C1 = 500:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 120:pF; C2 = 100:nF; C3 = 47:nF; }; R1 = 250:k; R2 = 250:k; R3 = 4.8:k; R4 = 100:k; C1 = 250:pF; C2 = 100:nF; C3 = 47:nF; }; R1 = 220:k; R2 = 1:M; R3 = 22:k; R4 = 33:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 1:M; R3 = 25:k; C1 = 500:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 33:k; C1 = 270:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 33:k; C1 = 500:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 250:k; R3 = 25:k; R4 = 56:k; C1 = 250:pF; C2 = 47:nF; C3 = 47:nF; }; R1 = 1:M; R2 = 1:M; R3 = 10:k; R4 = 100:k; C1 = 50:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 220:k; R2 = 220:k; R3 = 220:k; R4 = 100:k; C1 = 470:pF; C2 = 100:nF; C3 = 47:nF; }; R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 47:k; C1 = 470:pF; C2 = 20:nF; C3 = 20:nF; }; R1 = 500:k; R2 = 1:M; R3 = 10:k; R4 = 47:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 250:k; R3 = 20:k; R4 = 68:k; C1 = 270:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 270:pF; C2 = 100:nF; C3 = 40:nF; }; R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 41:k; C1 = 240:pF; C2 = 33:nF; C3 = 82:nF; }; R1 = 250:k; R2 = 1:M; R3 = 25:k; R4 = 32:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 100:pF; C2 = 100:nF; C3 = 47:nF; }; R1 = 250:k; R2 = 1:M; R3 = 33:k; R4 = 51:k; C1 = 220:pF; C2 = 15:nF; C3 = 47:nF; }; R1 = 220:k; R2 = 1:M; R3 = 22:k; R4 = 68:k; C1 = 470:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 220:k; R2 = 220:k; R3 = 10:k; R4 = 100:k; C1 = 220:pF; C2 = 47:nF; C3 = 47:nF; }; R1 = 250:k; R2 = 250:k; R3 = 25:k; R4 = 100:k; C1 = 250:pF; C2 = 22:nF; C3 = 22:nF; }; R1 = 250:k; R2 = 250:k; R3 = 10:k; R4 = 100:k; C1 = 250:pF; C2 = 100:nF; C3 = 47:nF; }; R1 = 250:k; R2 = 250:k; R3 = 25:k; R4 = 130:k; C1 = 250:pF; C2 = 100:nF; C3 = 22:nF; }; R1 = 1:M; R2 = 1:M; R4 = 270:k; C1 = 25:pF; C2 = 60:nF; C3 = 20:nF; }; R1 = 250:k; R2 = 1:M; R3 = 20:k; R4 = 100:k; C1 = 600:pF; C2 = 47:nF; C3 = 47:nF; }; }; t = vslider(".ts.treble", 0.5, 0, 1, 0.01); m = vslider(".ts.middle", 0.5, 0, 1, 0.01); l = vslider(".ts.bass", 0.5, 0, 1, 0.01) : (_-1)*3.4 : exp; tonestack = 1/A0*fi.iir((B0,B1,B2,B3),(A1/A0,A2/A0,A3/A0)) with { C1 = tse.C1; C2 = tse.C2; C3 = tse.C3; R1 = tse.R1; R2 = tse.R2; R3 = tse.R3; R4 = tse.R4; b1 = t*C1*R1 + m*C3*R3 + l*(C1*R2 + C2*R2) + (C1*R3 + C2*R3); b2 = t*(C1*C2*R1*R4 + C1*C3*R1*R4) - m*m*(C1*C3*R3*R3 + C2*C3*R3*R3) + m*(C1*C3*R1*R3 + C1*C3*R3*R3 + C2*C3*R3*R3) + l*(C1*C2*R1*R2 + C1*C2*R2*R4 + C1*C3*R2*R4) + l*m*(C1*C3*R2*R3 + C2*C3*R2*R3) + (C1*C2*R1*R3 + C1*C2*R3*R4 + C1*C3*R3*R4); b3 = l*m*(C1*C2*C3*R1*R2*R3 + C1*C2*C3*R2*R3*R4) - m*m*(C1*C2*C3*R1*R3*R3 + C1*C2*C3*R3*R3*R4) + m*(C1*C2*C3*R1*R3*R3 + C1*C2*C3*R3*R3*R4) + t*C1*C2*C3*R1*R3*R4 - t*m*C1*C2*C3*R1*R3*R4 + t*l*C1*C2*C3*R1*R2*R4; a0 = 1; a1 = (C1*R1 + C1*R3 + C2*R3 + C2*R4 + C3*R4) + m*C3*R3 + l*(C1*R2 + C2*R2); a2 = m*(C1*C3*R1*R3 - C2*C3*R3*R4 + C1*C3*R3*R3 + C2*C3*R3*R3) + l*m*(C1*C3*R2*R3 + C2*C3*R2*R3) - m*m*(C1*C3*R3*R3 + C2*C3*R3*R3) + l*(C1*C2*R2*R4 + C1*C2*R1*R2 + C1*C3*R2*R4 + C2*C3*R2*R4) + (C1*C2*R1*R4 + C1*C3*R1*R4 + C1*C2*R3*R4 + C1*C2*R1*R3 + C1*C3*R3*R4 + C2*C3*R3*R4); a3 = l*m*(C1*C2*C3*R1*R2*R3 + C1*C2*C3*R2*R3*R4) - m*m*(C1*C2*C3*R1*R3*R3 + C1*C2*C3*R3*R3*R4) + m*(C1*C2*C3*R3*R3*R4 + C1*C2*C3*R1*R3*R3 - C1*C2*C3*R1*R3*R4) + l*C1*C2*C3*R1*R2*R4 + C1*C2*C3*R1*R3*R4; c = 2*float(ma.SR); B0 = -b1*c - b2*pow(c,2) - b3*pow(c,3); B1 = -b1*c + b2*pow(c,2) + 3*b3*pow(c,3); B2 = b1*c + b2*pow(c,2) - 3*b3*pow(c,3); B3 = b1*c - b2*pow(c,2) + b3*pow(c,3); A0 = -a0 - a1*c - a2*pow(c,2) - a3*pow(c,3); A1 = -3*a0 - a1*c + a2*pow(c,2) + 3*a3*pow(c,3); A2 = -3*a0 + a1*c + a2*pow(c,2) - 3*a3*pow(c,3); A3 = -a0 + a1*c - a2*pow(c,2) + a3*pow(c,3); }; tse = ts.bassman; process = tonestack;
1db21accf256f55ced114b4ba1acf00c0aa23a516f7e83328bded9f8840bb2e1
mengqimusic/bfw
Blippoo.dsp
declare name "Blippoo"; declare version "0.1"; declare author "Meng Qi"; declare license "BSD"; declare copyright "(c)Meng Qi 2022"; declare date "2022-09-15"; import("stdfaust.lib"); // ▄▀▀█▄▄ ▄▀▀▀▀▄ ▄▀▀█▀▄ ▄▀▀▄▀▀▀▄ ▄▀▀▄▀▀▀▄ ▄▀▀▀▀▄ ▄▀▀▀▀▄ // ▐ ▄▀ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ // █▄▄▄▀ ▐ █ ▐ █ ▐ ▐ █▀▀▀▀ ▐ █▀▀▀▀ █ █ █ █ // █ █ █ █ █ █ ▀▄ ▄▀ ▀▄ ▄▀ // ▄▀▄▄▄▀ ▄▀▄▄▄▄▄▄▀ ▄▀▀▀▀▀▄ ▄▀ ▄▀ ▀▀▀▀ ▀▀▀▀ // █ ▐ █ █ █ █ █ // ▐ ▐ ▐ ▐ ▐ ▐ // ▄▀▀▀█▄ ▄▀▀▀▀▄ ▄▀▀▄▀▀▀▄ // █ ▄▀ ▀▄ █ █ █ █ █ // ▐ █▄▄▄▄ █ █ ▐ █▀▀█▀ // █ ▐ ▀▄ ▄▀ ▄▀ █ // █ ▀▀▀▀ █ █ // █ ▐ ▐ // ▐ // ▄▀▀▄ ▄▀▀▄ ▄▀▀█▀▄ ▄▀▀▄ ▀▄ ▄▀▀▀▀▄ ▄▀▀█▀▄ ▄▀▀█▄▄▄▄ // █ █ ▐ █ █ █ █ █ █ █ █ █ █ █ █ ▐ ▄▀ ▐ // ▐ █ █ ▐ █ ▐ ▐ █ ▀█ █ ▀▄▄ ▐ █ ▐ █▄▄▄▄▄ // █ ▄ █ █ █ █ █ █ █ █ █ ▌ // ▀▄▀ ▀▄ ▄▀ ▄▀▀▀▀▀▄ ▄▀ █ ▐▀▄▄▄▄▀ ▐ ▄▀▀▀▀▀▄ ▄▀▄▄▄▄ // ▀ █ █ █ ▐ ▐ █ █ █ ▐ // ▐ ▐ ▐ ▐ ▐ ▐ //----------------------------------------------- // Parameters //----------------------------------------------- rateA = hslider("rateA", 25.31, -50, 127, 0.01); // bottom C ⬇ C# ⬆ / -10 rateB = hslider("rateB", -15.5, -50, 127, 0.01); // top C ⬇ C# ⬆ / -11.84 source0 = hslider("source0", 1, 0, 2, 1); // left octave toggle source1 = hslider("source1", 1, 0, 2, 1); // right octave toggle r_to_rateA = hslider("r_to_rateA", .5082, 0, 1, 0.001) : si.smoo; // bottom D ⬇ D# ⬆ r_to_rateB = hslider("r_to_rateB", .5791, 0, 1, 0.001) : si.smoo; // top D ⬇ D# ⬆ sh_to_rateA = hslider("sh_to_rateA", .2659, 0, 1, 0.001) : si.smoo; // bottom G ⬇ F# ⬆ sh_to_rateB = hslider("sh_to_rateB", .5791, 0, 1, 0.001) : si.smoo; // top G ⬇ F# ⬆ peak1 = hslider("peak1", 37.52, -20, 135, 0.01) : si.smoo; // bottom B ⬇ A# ⬆ peak2 = hslider("peak2", 72.8, -20, 135, 0.01) : si.smoo; // top B ⬇ A# ⬆ r_to_peak1 = hslider("r_to_peak1", .3723, 0, 1, 0.001) : si.smoo; // bottom A ⬇ G# ⬆ r_to_peak2 = hslider("r_to_peak2", .5732, 0, 1, 0.001) : si.smoo; // top A ⬇ G# ⬆ sh_sp_peaks = hslider("sh_sp_peaks", .2518, 0, 1, 0.001) : si.smoo; // top E ⬇ F ⬆ gain = hslider("gain", 1, 0, 1, 0.01) : si.smoo; // volume slider Q = hslider("Q", 31, 1, 200, 0.1); // fixed sh_source_mix = hslider("sh_source_mix", 0, 0, 1, 0.01); // decay slider mix = hslider("mix", 1, 0, 1, 0.01) : si.smoo; // mix slider amp_follower_decay = 0.; mod_depth = hslider("mod_depth", 100, 10, 200, 1); a3_freq = hslider("a3_freq", 440, 300, 600, 0.01); // in normal mode, bottom E / F are used for selecting the speed of parameter ⬇ ⬆ // mode buttons for tap tempo of each osc, hold together then release for keyboard mode, in keyboard mode they are used for octave ⬇ ⬆ // bottom keyboard cycle between 2 osc, top keyboard cycles between 2 filter // source toggle switch external input source //----------------------------------------------- // Functions //----------------------------------------------- mtof(note) = a3_freq * pow(2., (note - 69) / 12); sr(in, cl, data_source) = // 一个带有 8 步循环,16 步正反相循环和持续不停输入模式的移位寄存器 (_ <: _, in, (_ * -1) : ba.selectn(3, data_source) : ba.latch(cl''''''') <: _, ba.latch(cl'''''') <: _, _, !, ba.latch(cl''''') <: _, _, _, !, !, ba.latch(cl'''') <: _, _, _, _, !, !, !, ba.latch(cl''') <: _, _, _, _, _, !, !, !, !, ba.latch(cl'') <: _, _, _, _, _, _, !, !, !, !, !, ba.latch(cl') <: _, _, _, _, _, _, _, !, !, !, !, !, !, ba.latch(cl) : ro.cross(8)) ~*(1); one_peak(cutoff, Q) = fi.tf2np(b0,b1,b2,a1,a2) with { K = tan(ma.PI * cutoff / ma.SR); norm = 1 / (1 + K / Q + K * K); b0 = K / Q * norm; b1 = 0; b2 = -b0; a1 = 2 * (K * K - 1) * norm; a2 = (1 - K / Q + K * K) * norm; }; blippoo(in_l, in_r) = ( ( ( ( ( (rateA + _ * r_to_rateA * mod_depth + _ * sh_to_rateA * mod_depth : mtof : ma.SR * 0.5, _ : min), (rateB + _ * r_to_rateB * mod_depth + _ * sh_to_rateB * mod_depth : mtof : ma.SR * 0.5, _ : min), _ : os.lf_triangle, os.lf_triangle, _ <: _ > 0, _ > 0, !, source0, (_ > 0, _ > 0 : ro.cross(2)), !, source1, _ > 0, (_ * (1 - sh_source_mix), _ * sh_source_mix :> _), (_ > _ : _), ! : sr, sr, ba.latch, _ : _, _, _, !, !, !, !, !, _, _, _, !, !, !, !, !, _, _ // last 3-bits from sr, last 3 bits from sr, SH, Comparator : par(i, 3, (_ <: attach(_, _ : an.amp_follower(amp_follower_decay) : hbargraph("srA_bit_out_%i", 0, 1)))), par(i, 3, (_ <: attach(_, _ : an.amp_follower(amp_follower_decay) : hbargraph("srB_bit_out_%i", 0, 1)))), _, _ : (_ * 0.572, _ * 0.286, _ * 0.143, _ * 0.572, _ * 0.286, _ * 0.143 : ro.interleave(3,2) :> _, _), (_ <: _, _, _), _ : _, _, _, _, _, _ // runglerA, runglerB, SH, SH, SH, Comparator : _, ro.cross(2), _, _, _ // runglerA, SH, runglerB, SH, SH, Comparator ) ~*(1) // runglerA recursed : ro.cross(2), _, _, _, _ // SH, runglerA, runglerB, SH, SH, Comparator ) ~*(1) // SH recursed : !, _, _, _, _, _ // runglerA, runglerB, SH, SH, Comparator : ro.cross(2), _, _, _ // runglerB, runglerA, SH, SH, Comparator ) ~*(1) // runglerB recursed : ro.crossNM(2,1), _, _ // SH, runglerA, runglerB, SH, Comparator ) ~*(1) // SH recursed : !, _, _, _, _ // runglerA, runglerB, SH, Comparator <: _, _, !, !, _, _, _, _ // runglerA, runglerB, runglerA, runglerB, SH, Comparator : (_, _ :> _ * 0.5), _, _, _, _ // (runglerA + runglerB) * 0.5, runglerA, runglerB, SH, Comparator ) ~*(1) // (runglerA + runglerB) * 0.5 recursed : !, _, _, _, _ // runglerA, runglerB, SH, Comparator : _, _, (_ <: _, _), (_ <: _, _) // runglerA, runglerB, SH, SH, Comparator, Comparator : _, (_, _ : ro.cross(2)), _, _, _ // runglerA, SH, runglerB, SH, Comparator, Comparator : _, _, ro.crossNM(2,1), _ // runglerA, SH, Comparator, runglerB, SH, Comparator : (_ * r_to_peak1 * mod_depth + _ * -1 * sh_sp_peaks * mod_depth + peak1 : mtof : 10., _ : max : ma.SR / 2, _ : min), Q, (_ * mix, in_l * (1 - mix) :> _), (_ * r_to_peak2 * mod_depth + _ * 1 * sh_sp_peaks * mod_depth + peak2 : mtof : 10., _ : max : ma.SR / 2, _ : min), Q, (_ * mix, in_r * (1 - mix) :> _) : one_peak, one_peak : fi.dcblocker, fi.dcblocker : _ * gain, _ * gain : ef.cubicnl(0.8, 0), ef.cubicnl(0.8, 0) ; //----------------------------------------------- // Process //----------------------------------------------- process = _, _ : blippoo; /* Thank you Rob! _ /) mo / ) |/)\) /\_ \__|= ( ) __)(__ _____/ \\_____ | || | _ ___ _ || | | \ | | \ || | | | | | | || | |_/ | |_/ || | | \ | | || | | \ | | || | | \. _|_. | . || | || * | * ** * ** |** ** \)).\..//.,(//,,..,,\||(,,.,\\,.((/*/
https://raw.githubusercontent.com/mengqimusic/bfw/2b47c95dda9152e6314edc81fab17037c6d7ca91/Blippoo.dsp
faust
▄▀▀█▄▄ ▄▀▀▀▀▄ ▄▀▀█▀▄ ▄▀▀▄▀▀▀▄ ▄▀▀▄▀▀▀▄ ▄▀▀▀▀▄ ▄▀▀▀▀▄ ▐ ▄▀ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █▄▄▄▀ ▐ █ ▐ █ ▐ ▐ █▀▀▀▀ ▐ █▀▀▀▀ █ █ █ █ █ █ █ █ █ █ ▀▄ ▄▀ ▀▄ ▄▀ ▄▀▄▄▄▀ ▄▀▄▄▄▄▄▄▀ ▄▀▀▀▀▀▄ ▄▀ ▄▀ ▀▀▀▀ ▀▀▀▀ █ ▐ █ █ █ █ █ ▐ ▐ ▐ ▐ ▐ ▐ ▄▀▀▀█▄ ▄▀▀▀▀▄ ▄▀▀▄▀▀▀▄ █ ▄▀ ▀▄ █ █ █ █ █ ▐ █▄▄▄▄ █ █ ▐ █▀▀█▀ █ ▐ ▀▄ ▄▀ ▄▀ █ █ ▀▀▀▀ █ █ █ ▐ ▐ ▐ ▄▀▀▄ ▄▀▀▄ ▄▀▀█▀▄ ▄▀▀▄ ▀▄ ▄▀▀▀▀▄ ▄▀▀█▀▄ ▄▀▀█▄▄▄▄ █ █ ▐ █ █ █ █ █ █ █ █ █ █ █ █ ▐ ▄▀ ▐ ▐ █ █ ▐ █ ▐ ▐ █ ▀█ █ ▀▄▄ ▐ █ ▐ █▄▄▄▄▄ █ ▄ █ █ █ █ █ █ █ █ █ ▌ ▀▄▀ ▀▄ ▄▀ ▄▀▀▀▀▀▄ ▄▀ █ ▐▀▄▄▄▄▀ ▐ ▄▀▀▀▀▀▄ ▄▀▄▄▄▄ ▀ █ █ █ ▐ ▐ █ █ █ ▐ ▐ ▐ ▐ ▐ ▐ ▐ ----------------------------------------------- Parameters ----------------------------------------------- bottom C ⬇ C# ⬆ / -10 top C ⬇ C# ⬆ / -11.84 left octave toggle right octave toggle bottom D ⬇ D# ⬆ top D ⬇ D# ⬆ bottom G ⬇ F# ⬆ top G ⬇ F# ⬆ bottom B ⬇ A# ⬆ top B ⬇ A# ⬆ bottom A ⬇ G# ⬆ top A ⬇ G# ⬆ top E ⬇ F ⬆ volume slider fixed decay slider mix slider in normal mode, bottom E / F are used for selecting the speed of parameter ⬇ ⬆ mode buttons for tap tempo of each osc, hold together then release for keyboard mode, in keyboard mode they are used for octave ⬇ ⬆ bottom keyboard cycle between 2 osc, top keyboard cycles between 2 filter source toggle switch external input source ----------------------------------------------- Functions ----------------------------------------------- 一个带有 8 步循环,16 步正反相循环和持续不停输入模式的移位寄存器 last 3-bits from sr, last 3 bits from sr, SH, Comparator runglerA, runglerB, SH, SH, SH, Comparator runglerA, SH, runglerB, SH, SH, Comparator runglerA recursed SH, runglerA, runglerB, SH, SH, Comparator SH recursed runglerA, runglerB, SH, SH, Comparator runglerB, runglerA, SH, SH, Comparator runglerB recursed SH, runglerA, runglerB, SH, Comparator SH recursed runglerA, runglerB, SH, Comparator runglerA, runglerB, runglerA, runglerB, SH, Comparator (runglerA + runglerB) * 0.5, runglerA, runglerB, SH, Comparator (runglerA + runglerB) * 0.5 recursed runglerA, runglerB, SH, Comparator runglerA, runglerB, SH, SH, Comparator, Comparator runglerA, SH, runglerB, SH, Comparator, Comparator runglerA, SH, Comparator, runglerB, SH, Comparator ----------------------------------------------- Process ----------------------------------------------- Thank you Rob! _ /) mo / ) |/)\) /\_ \__|= ( ) __)(__ _____/ \\_____ | || | _ ___ _ || | | \ | | \ || | | | | | | || | |_/ | |_/ || | | \ | | || | | \ | | || | | \. _|_. | . || | || * | * ** * ** |** ** \)).\..//.,(//,,..,,\||(,,.,\\,.((/
declare name "Blippoo"; declare version "0.1"; declare author "Meng Qi"; declare license "BSD"; declare copyright "(c)Meng Qi 2022"; declare date "2022-09-15"; import("stdfaust.lib"); amp_follower_decay = 0.; mod_depth = hslider("mod_depth", 100, 10, 200, 1); a3_freq = hslider("a3_freq", 440, 300, 600, 0.01); mtof(note) = a3_freq * pow(2., (note - 69) / 12); (_ <: _, in, (_ * -1) : ba.selectn(3, data_source) : ba.latch(cl''''''') <: _, ba.latch(cl'''''') <: _, _, !, ba.latch(cl''''') <: _, _, _, !, !, ba.latch(cl'''') <: _, _, _, _, !, !, !, ba.latch(cl''') <: _, _, _, _, _, !, !, !, !, ba.latch(cl'') <: _, _, _, _, _, _, !, !, !, !, !, ba.latch(cl') <: _, _, _, _, _, _, _, !, !, !, !, !, !, ba.latch(cl) : ro.cross(8)) ~*(1); one_peak(cutoff, Q) = fi.tf2np(b0,b1,b2,a1,a2) with { K = tan(ma.PI * cutoff / ma.SR); norm = 1 / (1 + K / Q + K * K); b0 = K / Q * norm; b1 = 0; b2 = -b0; a1 = 2 * (K * K - 1) * norm; a2 = (1 - K / Q + K * K) * norm; }; blippoo(in_l, in_r) = ( ( ( ( ( (rateA + _ * r_to_rateA * mod_depth + _ * sh_to_rateA * mod_depth : mtof : ma.SR * 0.5, _ : min), (rateB + _ * r_to_rateB * mod_depth + _ * sh_to_rateB * mod_depth : mtof : ma.SR * 0.5, _ : min), _ : os.lf_triangle, os.lf_triangle, _ <: _ > 0, _ > 0, !, source0, (_ > 0, _ > 0 : ro.cross(2)), !, source1, _ > 0, (_ * (1 - sh_source_mix), _ * sh_source_mix :> _), (_ > _ : _), ! : sr, sr, ba.latch, _ : par(i, 3, (_ <: attach(_, _ : an.amp_follower(amp_follower_decay) : hbargraph("srA_bit_out_%i", 0, 1)))), par(i, 3, (_ <: attach(_, _ : an.amp_follower(amp_follower_decay) : hbargraph("srB_bit_out_%i", 0, 1)))), _, _ : (_ * 0.572, _ * 0.286, _ * 0.143, _ * 0.572, _ * 0.286, _ * 0.143 : ro.interleave(3,2) :> _, _), (_ <: _, _, _), _ : (_ * r_to_peak1 * mod_depth + _ * -1 * sh_sp_peaks * mod_depth + peak1 : mtof : 10., _ : max : ma.SR / 2, _ : min), Q, (_ * mix, in_l * (1 - mix) :> _), (_ * r_to_peak2 * mod_depth + _ * 1 * sh_sp_peaks * mod_depth + peak2 : mtof : 10., _ : max : ma.SR / 2, _ : min), Q, (_ * mix, in_r * (1 - mix) :> _) : one_peak, one_peak : fi.dcblocker, fi.dcblocker : _ * gain, _ * gain : ef.cubicnl(0.8, 0), ef.cubicnl(0.8, 0) ; process = _, _ : blippoo;
36691566d2dca217a117311ba2d0088577831ca477c4b7067a2e6a5217b82c61
francescoganassin/FaustDSP-synths
ganassynth3.dsp
declare type = “MIDISynth” import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",no.noise,os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",3,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; subtractive = waveGenerator : hgroup("[1]Filter",fi.resonlp(resFreq,q,1)) with{ ctFreq = hslider("[0]Cutoff Frequency[style:knob]",2000,50,10000,0.1); q = hslider("[1]Q[style:knob]",5,1,30,0.1); lfoFreq = hslider("[2]LFO Frequency[style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth[style:knob]",500,1,10000,1); resFreq = os.osc(lfoFreq)*lfoDepth + ctFreq : max(30); }; envelope = hgroup("[2]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain*0.3) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Subtractive Synthesizer",subtractive*envelope);
https://raw.githubusercontent.com/francescoganassin/FaustDSP-synths/ef9eb3da660f4d53e631a12b7e4f63944c57f61c/ganassynth3.dsp
faust
declare type = “MIDISynth” import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",no.noise,os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",3,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; subtractive = waveGenerator : hgroup("[1]Filter",fi.resonlp(resFreq,q,1)) with{ ctFreq = hslider("[0]Cutoff Frequency[style:knob]",2000,50,10000,0.1); q = hslider("[1]Q[style:knob]",5,1,30,0.1); lfoFreq = hslider("[2]LFO Frequency[style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth[style:knob]",500,1,10000,1); resFreq = os.osc(lfoFreq)*lfoDepth + ctFreq : max(30); }; envelope = hgroup("[2]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain*0.3) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Subtractive Synthesizer",subtractive*envelope);
04d4a41d398b130ae9d86a187217bb02107bb0c57b13ac6486681dd46466006b
francescoganassin/FaustDSP-synths
ganassfilter.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",no.noise,os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",3,0,3,1); freq = vslider("[1]freq[style:knob]",440,40,2000,0.01); }; subtractive = waveGenerator : hgroup("[i]Filters",filters); filters = seq(i,3,someFilter(i)) with{ someFilter(i) = hgroup("[%j]Peak EQ (%j)",fi.peak_eq(lvlfx*lfo,peakfreq,40)) with{ j = i+1; lvlfx = vslider("[0]Level FX",0,-10,10,0.01); peakfreq = hslider("[1]Peak[style:knob]",(j^2)*200,0,4000,1); bandwidth = hslider("[2]Bandwidth[style:knob]",40,20,200,1); lfoFreq = hslider("[3]LFO Freq[style:knob]",5,0.1,10,0.01); lfoDepth = hslider("[4]LFO Dpth[style:knob]",5,1,10,0.1); lfo = os.osc(lfoFreq)*lfoDepth; }; }; envelope = hgroup("[2]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain*0.3) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Sub Synth w Filters",subtractive*envelope);
https://raw.githubusercontent.com/francescoganassin/FaustDSP-synths/ef9eb3da660f4d53e631a12b7e4f63944c57f61c/ganassfilter.dsp
faust
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",no.noise,os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",3,0,3,1); freq = vslider("[1]freq[style:knob]",440,40,2000,0.01); }; subtractive = waveGenerator : hgroup("[i]Filters",filters); filters = seq(i,3,someFilter(i)) with{ someFilter(i) = hgroup("[%j]Peak EQ (%j)",fi.peak_eq(lvlfx*lfo,peakfreq,40)) with{ j = i+1; lvlfx = vslider("[0]Level FX",0,-10,10,0.01); peakfreq = hslider("[1]Peak[style:knob]",(j^2)*200,0,4000,1); bandwidth = hslider("[2]Bandwidth[style:knob]",40,20,200,1); lfoFreq = hslider("[3]LFO Freq[style:knob]",5,0.1,10,0.01); lfoDepth = hslider("[4]LFO Dpth[style:knob]",5,1,10,0.1); lfo = os.osc(lfoFreq)*lfoDepth; }; }; envelope = hgroup("[2]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain*0.3) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Sub Synth w Filters",subtractive*envelope);
766c2b36168134860b20e066f97230cd6a13f72dea0c8046a8ab02287f569a1d
francescoganassin/FaustDSP-synths
ganassynth2.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",no.noise,os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",3,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; filters = seq(i,2,someFilter(i)) with{ someFilter(i) = hgroup("[2]Peak eq %i",fi.peak_eq(Lfx,fx,band)) with{ lfoFreq = hslider("[2]LFO Frequency %i [style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth %i [style:knob]",500,1,10000,1); freq = hslider("[1]PeakFreq %i [style:knob]", 440,50,2000,0.01); Lfx = hslider("[4]PeakAmplitude(DB) %i [style:knob]", 0,-10,10,0.1); fx = os.osc(lfoFreq)*lfoDepth + freq; //fx = freq; band = hslider("[5]PeakBand(Hz) %i [style:knob]", 500,1,10000,1); }; }; envelope = hgroup("[3]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain*0.3) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); //gate = 1; }; process = (waveGenerator : filters) * envelope;
https://raw.githubusercontent.com/francescoganassin/FaustDSP-synths/ef9eb3da660f4d53e631a12b7e4f63944c57f61c/ganassynth2.dsp
faust
fx = freq; gate = 1;
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",no.noise,os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",3,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; filters = seq(i,2,someFilter(i)) with{ someFilter(i) = hgroup("[2]Peak eq %i",fi.peak_eq(Lfx,fx,band)) with{ lfoFreq = hslider("[2]LFO Frequency %i [style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth %i [style:knob]",500,1,10000,1); freq = hslider("[1]PeakFreq %i [style:knob]", 440,50,2000,0.01); Lfx = hslider("[4]PeakAmplitude(DB) %i [style:knob]", 0,-10,10,0.1); fx = os.osc(lfoFreq)*lfoDepth + freq; band = hslider("[5]PeakBand(Hz) %i [style:knob]", 500,1,10000,1); }; }; envelope = hgroup("[3]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain*0.3) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = (waveGenerator : filters) * envelope;
2db9eee13c0cec3cdafafea698f7435fb871c05ad2869a618b94260d5dc37454
francescoganassin/FaustDSP-synths
scandinavian.dsp
import("stdfaust.lib"); freq = vslider("freq[style:knob]",440,400,500,1); mod = os.osc(freq/2); dxOsc(freq,mod,index) = os.triangle(freq+mod*index)+os.triangle(freq*2)+(os.triangle(freq*4)/7)+(os.sawtooth(freq/2)/9) ; timbre = vgroup("[0]Modulation", dxOsc(freq,index1) : dxOsc(freq,index2) : dxOsc(freq,index2) : dxOsc(freq,index3)) with{ index1 = hslider("Mod 1",500,0,500,0.1); index2 = hslider("Mod 2",2,0,10,0.1); index3 = hslider("Mod 3",40,0,100,0.1); }; sound = timbre : vgroup("[i]Filters",filters); filters = seq(i,2,someFilter(i)) with{ someFilter(i) = hgroup("[%j]Peak EQ %j",fi.peak_eq(lvlfx*lfo,peakfreq,bandwidth)) with{ j = i+1; lvlfx = hslider("[0]Level FX",4,0,5,0.01); peakfreq = hslider("[1]Peak[style:knob]",(j^2)*10,10,100,1); bandwidth = hslider("[2]Bandwidth[style:knob]",100,20,200,1); lfoFreq = hslider("[3]LFO Freq[style:knob]",((i+2)^2)*1,0,100,0.01); lfoDepth = hslider("[4]LFO Dpth[style:knob]",3,1,5,0.1); lfo = os.osc(lfoFreq)*lfoDepth; }; }; envelope = hgroup("[1]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain) with{ attack = hslider("[0]Attack[style:knob]",0,0,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("scandinavian",envelope*sound)<:_,_:dm.zita_rev1 ;
https://raw.githubusercontent.com/francescoganassin/FaustDSP-synths/ef9eb3da660f4d53e631a12b7e4f63944c57f61c/scandinavian.dsp
faust
import("stdfaust.lib"); freq = vslider("freq[style:knob]",440,400,500,1); mod = os.osc(freq/2); dxOsc(freq,mod,index) = os.triangle(freq+mod*index)+os.triangle(freq*2)+(os.triangle(freq*4)/7)+(os.sawtooth(freq/2)/9) ; timbre = vgroup("[0]Modulation", dxOsc(freq,index1) : dxOsc(freq,index2) : dxOsc(freq,index2) : dxOsc(freq,index3)) with{ index1 = hslider("Mod 1",500,0,500,0.1); index2 = hslider("Mod 2",2,0,10,0.1); index3 = hslider("Mod 3",40,0,100,0.1); }; sound = timbre : vgroup("[i]Filters",filters); filters = seq(i,2,someFilter(i)) with{ someFilter(i) = hgroup("[%j]Peak EQ %j",fi.peak_eq(lvlfx*lfo,peakfreq,bandwidth)) with{ j = i+1; lvlfx = hslider("[0]Level FX",4,0,5,0.01); peakfreq = hslider("[1]Peak[style:knob]",(j^2)*10,10,100,1); bandwidth = hslider("[2]Bandwidth[style:knob]",100,20,200,1); lfoFreq = hslider("[3]LFO Freq[style:knob]",((i+2)^2)*1,0,100,0.01); lfoDepth = hslider("[4]LFO Dpth[style:knob]",3,1,5,0.1); lfo = os.osc(lfoFreq)*lfoDepth; }; }; envelope = hgroup("[1]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain) with{ attack = hslider("[0]Attack[style:knob]",0,0,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("scandinavian",envelope*sound)<:_,_:dm.zita_rev1 ;
f1b23b1c501ff1661535c141ffb1fed2eaa3168be1cf411e4d6ad016edfbe030
francescoganassin/FaustDSP-synths
ganassx7.dsp
import("stdfaust.lib"); freq = vslider("freq[style:knob]",440,400,500,1); mod = os.osc(freq/2); dxOsc(freq,mod,index) = os.osc(freq+mod*index); timbre = hgroup("[0]Modulation", dxOsc(freq,index1) : dxOsc(freq,index1) : dxOsc(freq,index2) : dxOsc(freq,index3)) with{ index1 = vslider("Mod Index1",10,0,500,0.1); index2 = vslider("Mod Index2",10,0,500,0.1); index3 = vslider("Mod Index3",10,0,500,0.1); }; sound = timbre : hgroup("[i]Filters",filters); filters = seq(i,4,someFilter(i)) with{ someFilter(i) = vgroup("[%j]Peak EQ (%j)",fi.peak_eq(lvlfx*lfo,peakfreq,40)) with{ j = i+1; lvlfx = vslider("[0]Level FX",0,0,10,0.01); peakfreq = hslider("[1]Peak[style:knob]",(j^2)*200,0,4000,1); bandwidth = hslider("[2]Bandwidth[style:knob]",40,20,200,1); lfoFreq = hslider("[3]LFO Freq[style:knob]",5,0.1,10,0.01); lfoDepth = hslider("[4]LFO Dpth[style:knob]",5,1,10,0.1); lfo = os.osc(lfoFreq)*lfoDepth; }; }; envelope = vgroup("[1]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = hgroup("DX7 _ patch 1 1 2 3",envelope*sound) <:_,_:dm.zita_rev1;
https://raw.githubusercontent.com/francescoganassin/FaustDSP-synths/ef9eb3da660f4d53e631a12b7e4f63944c57f61c/ganassx7.dsp
faust
import("stdfaust.lib"); freq = vslider("freq[style:knob]",440,400,500,1); mod = os.osc(freq/2); dxOsc(freq,mod,index) = os.osc(freq+mod*index); timbre = hgroup("[0]Modulation", dxOsc(freq,index1) : dxOsc(freq,index1) : dxOsc(freq,index2) : dxOsc(freq,index3)) with{ index1 = vslider("Mod Index1",10,0,500,0.1); index2 = vslider("Mod Index2",10,0,500,0.1); index3 = vslider("Mod Index3",10,0,500,0.1); }; sound = timbre : hgroup("[i]Filters",filters); filters = seq(i,4,someFilter(i)) with{ someFilter(i) = vgroup("[%j]Peak EQ (%j)",fi.peak_eq(lvlfx*lfo,peakfreq,40)) with{ j = i+1; lvlfx = vslider("[0]Level FX",0,0,10,0.01); peakfreq = hslider("[1]Peak[style:knob]",(j^2)*200,0,4000,1); bandwidth = hslider("[2]Bandwidth[style:knob]",40,20,200,1); lfoFreq = hslider("[3]LFO Freq[style:knob]",5,0.1,10,0.01); lfoDepth = hslider("[4]LFO Dpth[style:knob]",5,1,10,0.1); lfo = os.osc(lfoFreq)*lfoDepth; }; }; envelope = vgroup("[1]Envelope",en.adsr(attack,decay,sustain,release,gate)*gain) with{ attack = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; decay = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sustain = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); release = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain[style:knob]",1,0,1,0.01); gate = button("[5]gate"); }; process = hgroup("DX7 _ patch 1 1 2 3",envelope*sound) <:_,_:dm.zita_rev1;
ed812d8ab8350787b1757104b71d52ebd0e455a874a3159d283255e611cddf3c
francescoganassin/FaustDSP-synths
ganassample.dsp
import("stdfaust.lib"); looper(detune) = rwtable(tablesize,0.0,recIndex,_,readIndex) with{ record = button("Sample") : int; readSpeed = hslider("Read Speed[style:knob]",1,0.001,10,0.01); tablesize = 48000; recIndex = +(1)~*(record) : %(tablesize); readIndex = readSpeed*(detune+1)/float(ma.SR) : (+ : ma.decimal) ~ _ : *(float(tablesize)) : int; }; polyLooper = hgroup("Looper",_ <: par(i,nVoices,looper(detune*i)) :> _,_) with{ nVoices = 10; detune = hslider("Detune[style:knob]",0.01,0,1,0.01); }; efx = ba.bypass1(_,vcf) with{ mvcf_group(x) = hgroup("MOOG VCF",x); cb_group(x) = mvcf_group(hgroup("[0]",x)); freq = mvcf_group(hslider("[1] Corner Freq [unit:PK] [style:knob]", 25, 1, 88, 0.01) : ba.pianokey2hz) : si.smoo; res = mvcf_group(hslider("[2] Corner Reso [style:knob]", 0, -1, 1, 0.01)); outgain = mvcf_group(hslider("[3] VCF Out [unit:dB] [style:knob]", 5, -60, 20, 0.1)) : ba.db2linear : si.smoo; vcfbq = _ <: select2(_, ve.moog_vcf_2b(res,freq), ve.moog_vcf_2bn(res,freq)); vcfarch = _ <: select2(_, ve.moog_vcf(res^4,freq), vcfbq); vcf = vcfarch : *(outgain); }; dist = ba.bypass1(_, ef.cubicnl_nodc(drive:si.smoo,offset:si.smoo)) with{ cnl_group(x) = hgroup("Soft Dist", x); drive = cnl_group(hslider("[1] Drive [style:knob]", 0, 0, 1, 0.01)); offset = cnl_group(hslider("[2] Destroy [style:knob]", 0, 0, 1, 0.01)); }; Nightmare = dm.zita_light :> efx : dist; process = hgroup("Ghostify",polyLooper:Nightmare)<:_,_;
https://raw.githubusercontent.com/francescoganassin/FaustDSP-synths/ef9eb3da660f4d53e631a12b7e4f63944c57f61c/ganassample.dsp
faust
import("stdfaust.lib"); looper(detune) = rwtable(tablesize,0.0,recIndex,_,readIndex) with{ record = button("Sample") : int; readSpeed = hslider("Read Speed[style:knob]",1,0.001,10,0.01); tablesize = 48000; recIndex = +(1)~*(record) : %(tablesize); readIndex = readSpeed*(detune+1)/float(ma.SR) : (+ : ma.decimal) ~ _ : *(float(tablesize)) : int; }; polyLooper = hgroup("Looper",_ <: par(i,nVoices,looper(detune*i)) :> _,_) with{ nVoices = 10; detune = hslider("Detune[style:knob]",0.01,0,1,0.01); }; efx = ba.bypass1(_,vcf) with{ mvcf_group(x) = hgroup("MOOG VCF",x); cb_group(x) = mvcf_group(hgroup("[0]",x)); freq = mvcf_group(hslider("[1] Corner Freq [unit:PK] [style:knob]", 25, 1, 88, 0.01) : ba.pianokey2hz) : si.smoo; res = mvcf_group(hslider("[2] Corner Reso [style:knob]", 0, -1, 1, 0.01)); outgain = mvcf_group(hslider("[3] VCF Out [unit:dB] [style:knob]", 5, -60, 20, 0.1)) : ba.db2linear : si.smoo; vcfbq = _ <: select2(_, ve.moog_vcf_2b(res,freq), ve.moog_vcf_2bn(res,freq)); vcfarch = _ <: select2(_, ve.moog_vcf(res^4,freq), vcfbq); vcf = vcfarch : *(outgain); }; dist = ba.bypass1(_, ef.cubicnl_nodc(drive:si.smoo,offset:si.smoo)) with{ cnl_group(x) = hgroup("Soft Dist", x); drive = cnl_group(hslider("[1] Drive [style:knob]", 0, 0, 1, 0.01)); offset = cnl_group(hslider("[2] Destroy [style:knob]", 0, 0, 1, 0.01)); }; Nightmare = dm.zita_light :> efx : dist; process = hgroup("Ghostify",polyLooper:Nightmare)<:_,_;
fd50c50590b6f25cc121ff8c1f409f89c62bfddf00f18a09187029fba3f88bbe
olilarkin/Tambura
Tambura.dsp
declare name "Tambura"; declare description "Pseudo physical model of an Indian Tambura/Tanpura"; declare author "Oli Larkin ([email protected])"; declare copyright "Oliver Larkin"; declare version "1.0"; declare licence "GPL"; //TODO // - pitch env doesn't get triggered by autoplucker // - autoplucker fixed to 4 strings import("stdfaust.lib"); line (value, time) = state~(_,_):!,_ with { state (t, c) = nt, ba.if (nt <= 0, value, c+(value - c) / nt) with { nt = ba.if( value != value', samples, t-1); samples = time*ma.SR/1000.0; }; }; dtmax = 4096; //tunings of the four strings, ratios of f0 ratios(0) = 1.5; ratios(1) = 2.; ratios(2) = 2.01; ratios(3) = 1.; NStrings = 4; sm = si.smooth(ba.tau2pole(0.05)); //50 ms smoothing //ratios(i) = hslider("/h:main/ratio%1i [style:knob]", 1., 0.1, 2., 0.001); pluck(i) = button("/h:trigger/pluck%1i"); // buttons for manual plucking pluckrate = hslider("/h:trigger/auto pluck rate [style:knob][unit:hz]", 0.1, 0.0, 0.5, 0.001); // automatic plucking rate (Hz) enableautoplucker = checkbox("/h:trigger/enable auto pluck"); // enable automatic plucking f0 = hslider("/h:main/[1]sa [style:knob]", 36, 24, 72, 1) : sm : ba.midikey2hz; // the base pitch of the drone t60 = hslider("/h:main/[2]decay_time [style:knob][unit:s]", 10, 0, 100, 0.1) : sm; // how long the strings decay damp = 1. - hslider("/h:main/[3]high_freq_loss [style:knob]", 0, 0, 1., 0.01) : sm; // string brightness fdetune = hslider("/h:main/[4]harmonic_motion [style:knob][scale:exp]", 0.001, 0., 1, 0.0001) : *(0.2) : sm; // controls the detuning of parallel waveguides that mimics harmonic motion of the tambura coupling = hslider("/h:main/[5]sympathetic_coupling [style:knob]", 0.1, 0., 1., 0.0001) : sm; // level of sympathetic coupling between strings jw = hslider("/h:main/[6]jawari [style:knob]", 0, 0, 1, 0.001) : *(0.1) : sm; // creates the buzzing / jawari effect spread = hslider("/h:main/[7]string_spread [style:knob]", 1., 0., 1., 0.01) : sm; // stereo spread of strings tscale = hslider("/h:main/[8]tune_scale [style:knob]", 1, 0.9, 1.1, 0.001); // descale = hslider("/h:main/[9]decay_scale [style:knob]", 1, 0.1, 1., 0.001); // //dascale = hslider("/h:main/[10]damp_scale [style:knob]", 1, 0.5, 2, 0.01); // ptype = hslider("/h:pick/[1]material [style:knob]", 0.13, 0.0, 1., 0.01) : sm; // crossfades between pink noise and DC excitation pattack = hslider("/h:pick/[2]attack_time [style:knob][scale:exp]", 0.07, 0, 0.5, 0.01); // attack time of pluck envelope, 0 to 0.5 times f0 wavelength ptime = hslider("/h:pick/[3]decay_time [style:knob]", 1., 1, 100., 0.01); // decay time (1 to 10 times f0 wavelength) ppos = hslider("/h:pick/[4]position [style:knob]", 0.25, 0.01, 0.5, 0.01); // pick position (ratio of f0 wavelength) pbend = hslider("/h:pick/[5]bend_depth [style:knob][unit:st]", 3, 0., 12., 0.01); // pick bend depth in semitones pbendtime = hslider("/h:pick/[6]bend_time [style:knob][unit:ms]", 10., 1, 200., 1); // pick bend time (1 to 200 ms) vol = hslider("volume [unit:dB]", 0, -36, +4, 0.1) : ba.db2linear : sm; // master volume // s = string index // c = comb filter index (of 9 comb filters in risset string) tambura(NStrings) = ( couplingmatrix(NStrings), par(s, NStrings, excitation(s)) : ro.interleave(NStrings, 2) : par(s, NStrings, string(s, pluck(s))) ) // string itself with excitation + fbk as input ~ par(s, NStrings, (!,_)) // feedback only the right waveguide : par(s, NStrings, (+:pan(s)) // add left/right waveguides and pan ) :> _,_ //stereo output with { couplingmatrix(NStrings) = par(s, NStrings, *(coupling) : couplingfilter) // coupling filters <: par(s, NStrings, unsel(NStrings, s) :> _ ) // unsel makes sure the feedback is disconnected with { unsel(NStrings,s) = par(j, NStrings, U(s,j)) with { U(s,s)=!; U(s,j)=_; }; //couplingfilter = component("bridgeIR.dsp"); couplingfilter = fi.highshelf(1,-100,5000) : fi.peak_eq(14, 2500, 400) : fi.peak_eq(20, 7500, 650); // EQ to simulate bridge response }; //pan(s) = _ <: *(1-v), *(v) pan(s) = _ <: *((1-v) : sqrt), *((v) : sqrt) with { spreadScale = (1/(NStrings-1)); v = 0.5 + ((spreadScale * s) - 0.5) * spread; }; // excitation(s) = _; excitation(s, trig) = input * ampenv : pickposfilter with { wl = (ma.SR/(f0 * ratios(s))); // wavelength of f0 in samples dur = (ptime * wl) / (ma.SR/1000.); // duration of the pluck in ms ampenv = trig * line(1. - trig, dur) : si.lag_ud(wl * pattack * (1/ma.SR), 0.005); amprand = abs(no.noise) : ba.latch(trig) *(0.25) + (0.75); posrand = abs(no.noise) : ba.latch(trig) *(0.2); input = 1., no.pink_noise : si.interpolate(ptype); // crossfade between DC and pink noise excitation source pickposfilter = fi.ffcombfilter(dtmax, ((ppos + posrand) * wl), -1); // simulation of different pluck positions }; string(s, trig) = _, _ <: +, !,_ : rissetstring(_, s, 1., 1., 1.), rissetstring(_, s, tscale, descale, 1.) // dual risset strings for decoupled feedback with { rissetstring(x, s, ts, des, das) = _ <: par(c, 9, stringloop(x, s, c, ts, das)) :> _ : fi.dcblocker *(0.01); // 9 detuned delay line resonators in parallel stringloop(x, s, c, ts, des, das) = (+ : delay) ~ ((dampingfilter : nlfm) * fbk) // waveguide string with damping filter and non linear apf for jawari effect with { //delay = de.fdelay1a(dtmax, dtsamples, x); // allpass interpolation has better HF response delay = de.fdelaylti(2, dtmax, dtsamples, x); // lagrange interpolation glitches less with pitch envelope pitchenv = trig * line(1. - trig, pbendtime) <: * : *(pbend); thisf0 = ba.pianokey2hz( ba.hz2pianokey((f0 * ratios(s)) + ((c-4) * fdetune) + pitchenv) ) * ts; dtsamples = (ma.SR/thisf0) - 2; fbk = pow(0.001, 1.0/(thisf0*(t60 * descale))); dampingfilter(x) = (h0 * x' + h1*(x+x'')) with { d = das * damp; h0 = (1. + d)/2; h1 = (1. - d)/4; }; nlfm(x) = x <: fi.allpassnn(1,(par(i,1,jw * ma.PI * x))); }; }; }; autoplucker= phasor(pluckrate) <: <(0.25), >(0.25) & <(0.5), >(0.5) & <(0.75), >(0.75) & <(1) : par(s, NStrings, *(enableautoplucker)) with { phasor(freq) = (freq/float(ma.SR) : (+ : ma.decimal) ~ _); }; process = (par(s, NStrings, pluck(s)), autoplucker) :> tambura(NStrings) : *(vol), *(vol);
https://raw.githubusercontent.com/olilarkin/Tambura/7bb4c735d78324aa56d6512732133f7066444935/Tambura.dsp
faust
TODO - pitch env doesn't get triggered by autoplucker - autoplucker fixed to 4 strings tunings of the four strings, ratios of f0 50 ms smoothing ratios(i) = hslider("/h:main/ratio%1i [style:knob]", 1., 0.1, 2., 0.001); buttons for manual plucking automatic plucking rate (Hz) enable automatic plucking the base pitch of the drone how long the strings decay string brightness controls the detuning of parallel waveguides that mimics harmonic motion of the tambura level of sympathetic coupling between strings creates the buzzing / jawari effect stereo spread of strings dascale = hslider("/h:main/[10]damp_scale [style:knob]", 1, 0.5, 2, 0.01); // crossfades between pink noise and DC excitation attack time of pluck envelope, 0 to 0.5 times f0 wavelength decay time (1 to 10 times f0 wavelength) pick position (ratio of f0 wavelength) pick bend depth in semitones pick bend time (1 to 200 ms) master volume s = string index c = comb filter index (of 9 comb filters in risset string) string itself with excitation + fbk as input feedback only the right waveguide add left/right waveguides and pan stereo output coupling filters unsel makes sure the feedback is disconnected couplingfilter = component("bridgeIR.dsp"); EQ to simulate bridge response pan(s) = _ <: *(1-v), *(v) excitation(s) = _; wavelength of f0 in samples duration of the pluck in ms crossfade between DC and pink noise excitation source simulation of different pluck positions dual risset strings for decoupled feedback 9 detuned delay line resonators in parallel waveguide string with damping filter and non linear apf for jawari effect delay = de.fdelay1a(dtmax, dtsamples, x); // allpass interpolation has better HF response lagrange interpolation glitches less with pitch envelope
declare name "Tambura"; declare description "Pseudo physical model of an Indian Tambura/Tanpura"; declare author "Oli Larkin ([email protected])"; declare copyright "Oliver Larkin"; declare version "1.0"; declare licence "GPL"; import("stdfaust.lib"); line (value, time) = state~(_,_):!,_ with { state (t, c) = nt, ba.if (nt <= 0, value, c+(value - c) / nt) with { nt = ba.if( value != value', samples, t-1); samples = time*ma.SR/1000.0; }; }; dtmax = 4096; ratios(0) = 1.5; ratios(1) = 2.; ratios(2) = 2.01; ratios(3) = 1.; NStrings = 4; with { couplingmatrix(NStrings) = with { unsel(NStrings,s) = par(j, NStrings, U(s,j)) with { U(s,s)=!; U(s,j)=_; }; }; pan(s) = _ <: *((1-v) : sqrt), *((v) : sqrt) with { spreadScale = (1/(NStrings-1)); v = 0.5 + ((spreadScale * s) - 0.5) * spread; }; excitation(s, trig) = input * ampenv : pickposfilter with { ampenv = trig * line(1. - trig, dur) : si.lag_ud(wl * pattack * (1/ma.SR), 0.005); amprand = abs(no.noise) : ba.latch(trig) *(0.25) + (0.75); posrand = abs(no.noise) : ba.latch(trig) *(0.2); }; with { with { pitchenv = trig * line(1. - trig, pbendtime) <: * : *(pbend); thisf0 = ba.pianokey2hz( ba.hz2pianokey((f0 * ratios(s)) + ((c-4) * fdetune) + pitchenv) ) * ts; dtsamples = (ma.SR/thisf0) - 2; fbk = pow(0.001, 1.0/(thisf0*(t60 * descale))); dampingfilter(x) = (h0 * x' + h1*(x+x'')) with { d = das * damp; h0 = (1. + d)/2; h1 = (1. - d)/4; }; nlfm(x) = x <: fi.allpassnn(1,(par(i,1,jw * ma.PI * x))); }; }; }; autoplucker= phasor(pluckrate) <: <(0.25), >(0.25) & <(0.5), >(0.5) & <(0.75), >(0.75) & <(1) : par(s, NStrings, *(enableautoplucker)) with { phasor(freq) = (freq/float(ma.SR) : (+ : ma.decimal) ~ _); }; process = (par(s, NStrings, pluck(s)), autoplucker) :> tambura(NStrings) : *(vol), *(vol);
65bc51fda05427dbeab059daa09088c64be2579169a1f7fb3506696dbbb5dd83
dsuedholt/coupled-fds-faust
CoupledFDS.dsp
import("stdfaust.lib"); // ------------------------------------------------------------------- // This file demonstrates how to use the Faust FDS library to couple // multiple Finite Difference Schemes at arbitrary points with rigid // connections. The overall logic is to define an enviroment like // coupledSchemes, to be found at the end of the file, which contains // all individual FDS models constructed by the FDS library as well as // the coupling information. // // `system1D` is then the method that performs the update and coupling // equations, making use of `forceUpdate` to calculate and route the // forces after performing the individual update steps of the FDS. // // The example in this file demonstrates the coupling of three stiff // strings over a bridge, but the code was kept as general as possible // to allow arbitrary couplings. // ------------------------------------------------------------------- declare name "Coupled Finite Difference Schemes in Faust"; declare version "0.1"; declare author "David Suedholt"; // the samplerate here is hardcoded to calculate nPoints from L at compile time k = 1.0 / 44100; // basic stencil parameters nNeighbors = 2; // R nTimesteps = 1; // T // this is fd.model1D without the recursion, so that we can add the forces before going to the next time step // A coupled system consists of one schemeUpdate per FDS stacked in parallel schemeUpdate(points,R,T,scheme) = fd.route1D(points,R,T,scheme) : fd.buildScheme1D(points,R,T); //---------------------------`forceUpdate1D`--------------------------------------- // Given a number of FDS schemes whose individual update equations have already // been calculated, calculate the force at each coupling point and add it back // to the affected grid points according to the order of the coupling // (positive force to the system coupled 'above' the other, negative force to // the one coupled 'below' the other) // // #### Usage // // ``` // si.bus(totalPoints) : forceUpdate1D(coupledSchemes) : si.bus(totalPoints); // ``` // // Where: // // * `coupledSchemes`: An environment containing the information about the schemes // and their coupling as defined further below //------------------------------------------------------------------------------ forceUpdate(coupledSchemes) = inRouting : interp : forcecalc : outRouting with { M = coupledSchemes.nSchemes; nPoints = coupledSchemes.nPoints; startingPoint = coupledSchemes.startingPoint; totalPoints = startingPoint(M); // sum of all points because of the definition of startingPoint h = coupledSchemes.h; posR = coupledSchemes.posR; posS = coupledSchemes.posS; beta = coupledSchemes.beta; nCouplings = coupledSchemes.nCouplings; r = coupledSchemes.r; s = coupledSchemes.s; // alpha values for the interpolation and spreading operators alphaR(i) = posR(i) - floor(posR(i)); alphaS(i) = posS(i) - floor(posS(i)); // the force calculation depends on two grid points from each scheme, so four points per force // this routing attaches these points to the bottom of the scheme so that they can be interpolated and used further inRouting = route(totalPoints, totalPoints+4*nCouplings, // simply pass the current scheme through par(i, totalPoints, (i+1, i+1)), // attach all relevant points from all couplings par(i, nCouplings, // the two points from the 'above' part of the coupling, i.e the r-th scheme (startingPoint(r(i)) + floor(posR(i)), totalPoints+i*4+1), (startingPoint(r(i)) + floor(posR(i))+1, totalPoints+i*4+2), // the two points from the 'below' part, i.e. the s-th scheme (startingPoint(s(i)) + floor(posS(i)), totalPoints+i*4+3), (startingPoint(s(i)) + floor(posS(i))+1, totalPoints+i*4+4) ) ); // linearly interpolate each pair of grid points, so that we are down to one value per scheme interp = // still just passing the scheme through si.bus(totalPoints), par(i, nCouplings, // (1 - alpha) * u_l + (alpha) * u_{l+1} +(*(1 - alphaR(i)), *(alphaR(i))), +(*(1 - alphaS(i)), *(alphaS(i))) ); // now for the actual force calculation forcecalc = // attach the beta coefficients for all couplings (si.bus(totalPoints+2*nCouplings), par(i, nCouplings, beta(i))) : // still just passing the scheme through si.bus(totalPoints), // route each coefficient to its interpolated grid point, perform the multiplication // and add each two grid points belonging to one coupling to obtain the forces (ro.interleave(2*nCouplings, 2) : par(i, 2*nCouplings, *) : par(i, nCouplings, +) <: // perform the spreading operation: each force is distributed back to the four grid points it affects ro.interleave(nCouplings, 4) : par(i, nCouplings, // the force is added to the two points in the r-th scheme *((1 - alphaR(i))/h(r(i))),*(alphaR(i)/h(r(i))), // and subtracted from the ones in the s-th scheme *((alphaS(i) - 1)/h(s(i))),*((alphaS(i) * -1)/h(s(i)))) ); // finally the calculated forces are routed back to the grid points they affect outRouting = route(totalPoints+4*nCouplings, totalPoints, // the original scheme, to which the force is added by the routing par(i, totalPoints, (i+1, i+1)), // route the force back to the grid par(i, nCouplings, (totalPoints+i*4+1, startingPoint(r(i)) + floor(posR(i))), (totalPoints+i*4+2, startingPoint(r(i)) + floor(posR(i))+1), (totalPoints+i*4+3, startingPoint(s(i)) + floor(posS(i))), (totalPoints+i*4+4, startingPoint(s(i)) + floor(posS(i))+1) ) ); }; //---------------------------`system1D`--------------------------------------- // Given a number of FDS schemes stacked in parallel and their coupling points, // calculate the individual updates and add the coupling forces at each time step. // Takes as input an external force signal (e.g. excitation) for each point in the // combined scheme. // // #### Usage // // ``` // si.bus(totalPoints) : system1D(coupledSchemes) : si.bus(totalPoints); // ``` // // Where: // // * `coupledSchemes`: An environment containing the information about the schemes // and their coupling as defined further below //------------------------------------------------------------------------------ system1D(coupledSchemes) = (routing : schemes : forceUpdate(coupledSchemes) : norm) ~ si.bus(totalPoints) with { M = coupledSchemes.nSchemes; nPoints = coupledSchemes.nPoints; startingPoint = coupledSchemes.startingPoint; totalPoints = startingPoint(M); schemes = coupledSchemes.schemes; a = coupledSchemes.a; // after adding all forces, divide by the supplied factor norm = par(i, M, par(j, nPoints(i), /(a(i)))); // the inputs are coming as points0, points1, ..., forces0, forces1 ... // this routing rearranges them to points0, forces0, points1, forces1 ... routing = route(totalPoints*2, totalPoints*2, // routing of grid points par(i, M, par(j, nPoints(i), (startingPoint(i)+j+1, startingPoint(i)*2+j+1))), // routing of forces par(i, M, par(j, nPoints(i), (startingPoint(i)+totalPoints+j+1, startingPoint(i)*2+nPoints(i)+j+1))) ); }; // Coefficients for the FDS of a stiff string with the simply supported boundary condition // In the simply supported condition, we define the coefficients at the boundary points such that // u_{-1} = -u_3 and u_{N+1} = -u_{N-3} simplySupportedScheme(params) = coeffsLeft, midCoeffsDelay, par(i, nPoints-2, midCoeffs, midCoeffsDelay), coeffsRight, midCoeffsDelay with { nPoints = params.nPoints; EI = params.E * params.I; h = params.h; rhoA = params.rho * params.Area; s0 = params.sigma0; s1 = params.sigma1; T = params.T; coeffsLeft = 0, 0, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2 + EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-EI) / h^4; midCoeffs = (-EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-EI) / h^4; coeffsRight = (-EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2 + EI) / h^4, 0, 0; midCoeffsDelay = 0, (-2*rhoA*s1/h^2/k), (2*rhoA*s0/k + 4*rhoA*s1/h^2/k - rhoA/k^2), (-2*rhoA*s1/h^2/k), 0; }; // Coefficients for the FDS of a stiff string with the clamped supported boundary condition // In the clamped condition, no special treatment for the boundary points is needed, the routing // just supplies the virtual points as zero clampedScheme(params) = par(i, nPoints, coeffs, coeffsDelay) with { nPoints = params.nPoints; EI = params.E * params.I; h = params.h; rhoA = params.rho * params.Area; s0 = params.sigma0; s1 = params.sigma1; T = params.T; coeffs = (-EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-EI) / h^4; coeffsDelay = 0, (-2*rhoA*s1/h^2/k), (2*rhoA*s0/k + 4*rhoA*s1/h^2/k - rhoA/k^2), (-2*rhoA*s1/h^2/k), 0; }; // This is a convenience function to calculate all required parameters based on the "tunable" parameter set further down calcAllParams(params) = environment { // keep all parameters from the initial structure rho = params.rho; E = params.E; L = params.L; f0 = params.f0; radius = params.radius; sigma0 = params.sigma0; sigma1 = params.sigma1; I = params.I; Area = params.Area; T = (2*f0*L)^2 * rho * Area; // Tension based on the desired pitch // Calculate the minimum grid spacing given by the stability condition hmin = sqrt(k/2*(T*k/rho/Area + 4*sigma1 + sqrt((T*k/rho/Area + 4*sigma1)^2 + 16*E*I/rho/Area))); // nPoints is the number of points that are actually updated each time step. // N = floor(L / hmin) assumes grid points u_0, u_1, ..., u_{N-1}, u_N // where u_0 = u_N = 0 are fixed boundary points, so we are left with nPoints = N-1 "updatable" points nPoints = floor(L / hmin) - 1; // Calculate the actual grid spacing based on the number of points h = L / (nPoints+1); }; string1 = environment { rho = 1200; // Material density E = 2e9; // Young's modulus L = 0.65; // Length of the string radius = 4.6e-4; f0 = 146.83; // Fundamental frequency, used for tension calculation sigma0 = 1.38; // Frequency-independent damping coefficient sigma1 = 1.3e-4; // Frequency-dependent damping coefficient I = ma.PI * radius^4 / 4; // Moment of Inertia for the strings Area = ma.PI * radius^2; // Cross-sectional area for the strings }; string2 = environment { rho = 1200; E = 2e9; L = 0.65; radius = 4.6e-4; f0 = 169; sigma0 = 1.38; sigma1 = 1.3e-4; I = ma.PI * radius^4 / 4; Area = ma.PI * radius^2; }; string3 = environment { rho = 1200; E = 2e9; L = 0.65; radius = 4.6e-4; f0 = 246.94; sigma0 = 1.38; sigma1 = 1.3e-4; I = ma.PI * radius^4 / 4; Area = ma.PI * radius^2; }; bridge = environment { rho = 1500; E = 3e9; I = 1.136e-10; // Moment of inertia for the bridge Area = 2e-5; // cross-sectional area for the bridge L = 0.16; radius = 4.6e-4; sigma0 = 1.343; sigma1 = 2.59e-3; f0 = 0; // results in Tension being set to 0 }; params(0) = calcAllParams(string1); params(1) = calcAllParams(string2); params(2) = calcAllParams(string3); params(3) = calcAllParams(bridge); // Calculation of the beta coefficients needed for force calculation calcBeta(r, s, posr, poss, ar, as) = (-1)/denom/ar, 1/denom/as with { hr = params(r).h; hs = params(s).h; alphaR = posr - floor(posr); alphaS = poss - floor(poss); jnormsqr = ((1 - alphaR)^2 + alphaR^2) / hr^2; jnormsqs = ((1 - alphaS)^2 + alphaS^2) / hs^2; denom = hr * jnormsqr / ar + hs * jnormsqs / as; }; // Define the coupling of the r-th scheme at position x_r above the s-th scheme at position x_s // in this case, the three strings (0 - 2) are coupled at x = 10 cm // to the bridge (3), where they are fixed at 4cm, 8cm and 12 cm couplings = environment { nCouplings = 3; // indices of the coupled systems (coupling r above s) r(0) = 0; s(0) = 3; // positions are in meters xr(0) = 0.1; xs(0) = 0.04; r(1) = 1; s(1) = 3; xr(1) = 0.1; xs(1) = 0.08; r(2) = 2; s(2) = 3; xr(2) = 0.1; xs(2) = 0.12; }; // The "master" environment containing all the FDS schemes and the coupling information coupledSchemes = environment { nSchemes = 4; // total number of schemes // Number of points in each scheme nPoints(i) = params(i).nPoints; // stack all schemes in parallel using functions from the fd library schemes = par(i, nSchemes-1, schemeUpdate(params(i).nPoints, nNeighbors, nTimesteps, simplySupportedScheme(params(i)))), schemeUpdate(params(3).nPoints, nNeighbors, nTimesteps, clampedScheme(params(3))); // since the points of all schemes are stacked together we need to // determine where one schemes stops and the next begins startingPoint(0) = 0; startingPoint(i) = startingPoint(i-1) + nPoints(i-1); // the normalization factors; division by a is the last step in every update a(i) = params(i).rho * params(i).Area / k^2; // grid spacing is needed for force calculation and spreading operators h(i) = params(i).h; // copy over the coupling definitions nCouplings = couplings.nCouplings; r = couplings.r; s = couplings.s; xr = couplings.xr; xs = couplings.xs; // calculate the continuous position in points based on the position in meters posR(i) = xr(i) / h(r(i)); posS(i) = xs(i) / h(s(i)); // the tuple beta_r, beta_s of coefficients for the force calculation beta(i) = calcBeta(r(i), s(i), posR(i), posS(i), a(r(i)), a(s(i))); }; //----------------------------Interface Elements-----------------------------// play(i) = button("Play%i"); inPoint(i) = hslider("Input Point%i",floor(params(i).nPoints/2),0,params(i).nPoints-1,1); outPoint(i) = hslider("Output Point%i",floor(params(i).nPoints/2),0,params(i).nPoints-1,0.01):si.smoo; outSlider = hslider("Select output to listen", 0, 0, coupledSchemes.nSchemes-1, 1); maxforce = hslider("Maximal Excitation Force", 1, 0.1, 10, 0.1); //------------------------------Excitation Force-----------------------------// excdur_sec = 0.005; excdur_samp = int(excdur_sec * 44100); excforce(n) = ba.if(n <= excdur_samp, maxforce/2 * (1 - cos(ma.PI * n/excdur_samp)), 0); // ba.countup will continue to put out the upper limit once it is reached, until triggered again // so have the limit be one higher and check in excforce if we've exceeded it forceModel(i) = (ba.countup(excdur_samp+1, 1-(play(i))):excforce)/params(i).h; //----------------------------------Process---------------------------------// input = par(i, coupledSchemes.nSchemes, (forceModel(i)/params(i).h)<:fd.linInterp1D(params(i).nPoints, inPoint(i))); output = par(i, coupledSchemes.nSchemes, fd.linInterp1DOut(params(i).nPoints, outPoint(i))); outSelect = ba.selectn(coupledSchemes.nSchemes, outSlider); process = input : system1D(coupledSchemes) : output : outSelect <: _,_;
https://raw.githubusercontent.com/dsuedholt/coupled-fds-faust/b6fa83eae2399262185b47512dd9411681146a03/CoupledFDS.dsp
faust
------------------------------------------------------------------- This file demonstrates how to use the Faust FDS library to couple multiple Finite Difference Schemes at arbitrary points with rigid connections. The overall logic is to define an enviroment like coupledSchemes, to be found at the end of the file, which contains all individual FDS models constructed by the FDS library as well as the coupling information. `system1D` is then the method that performs the update and coupling equations, making use of `forceUpdate` to calculate and route the forces after performing the individual update steps of the FDS. The example in this file demonstrates the coupling of three stiff strings over a bridge, but the code was kept as general as possible to allow arbitrary couplings. ------------------------------------------------------------------- the samplerate here is hardcoded to calculate nPoints from L at compile time basic stencil parameters R T this is fd.model1D without the recursion, so that we can add the forces before going to the next time step A coupled system consists of one schemeUpdate per FDS stacked in parallel ---------------------------`forceUpdate1D`--------------------------------------- Given a number of FDS schemes whose individual update equations have already been calculated, calculate the force at each coupling point and add it back to the affected grid points according to the order of the coupling (positive force to the system coupled 'above' the other, negative force to the one coupled 'below' the other) #### Usage ``` si.bus(totalPoints) : forceUpdate1D(coupledSchemes) : si.bus(totalPoints); ``` Where: * `coupledSchemes`: An environment containing the information about the schemes and their coupling as defined further below ------------------------------------------------------------------------------ sum of all points because of the definition of startingPoint alpha values for the interpolation and spreading operators the force calculation depends on two grid points from each scheme, so four points per force this routing attaches these points to the bottom of the scheme so that they can be interpolated and used further simply pass the current scheme through attach all relevant points from all couplings the two points from the 'above' part of the coupling, i.e the r-th scheme the two points from the 'below' part, i.e. the s-th scheme linearly interpolate each pair of grid points, so that we are down to one value per scheme still just passing the scheme through (1 - alpha) * u_l + (alpha) * u_{l+1} now for the actual force calculation attach the beta coefficients for all couplings still just passing the scheme through route each coefficient to its interpolated grid point, perform the multiplication and add each two grid points belonging to one coupling to obtain the forces perform the spreading operation: each force is distributed back to the four grid points it affects the force is added to the two points in the r-th scheme and subtracted from the ones in the s-th scheme finally the calculated forces are routed back to the grid points they affect the original scheme, to which the force is added by the routing route the force back to the grid ---------------------------`system1D`--------------------------------------- Given a number of FDS schemes stacked in parallel and their coupling points, calculate the individual updates and add the coupling forces at each time step. Takes as input an external force signal (e.g. excitation) for each point in the combined scheme. #### Usage ``` si.bus(totalPoints) : system1D(coupledSchemes) : si.bus(totalPoints); ``` Where: * `coupledSchemes`: An environment containing the information about the schemes and their coupling as defined further below ------------------------------------------------------------------------------ after adding all forces, divide by the supplied factor the inputs are coming as points0, points1, ..., forces0, forces1 ... this routing rearranges them to points0, forces0, points1, forces1 ... routing of grid points routing of forces Coefficients for the FDS of a stiff string with the simply supported boundary condition In the simply supported condition, we define the coefficients at the boundary points such that u_{-1} = -u_3 and u_{N+1} = -u_{N-3} Coefficients for the FDS of a stiff string with the clamped supported boundary condition In the clamped condition, no special treatment for the boundary points is needed, the routing just supplies the virtual points as zero This is a convenience function to calculate all required parameters based on the "tunable" parameter set further down keep all parameters from the initial structure Tension based on the desired pitch Calculate the minimum grid spacing given by the stability condition nPoints is the number of points that are actually updated each time step. N = floor(L / hmin) assumes grid points u_0, u_1, ..., u_{N-1}, u_N where u_0 = u_N = 0 are fixed boundary points, so we are left with nPoints = N-1 "updatable" points Calculate the actual grid spacing based on the number of points Material density Young's modulus Length of the string Fundamental frequency, used for tension calculation Frequency-independent damping coefficient Frequency-dependent damping coefficient Moment of Inertia for the strings Cross-sectional area for the strings Moment of inertia for the bridge cross-sectional area for the bridge results in Tension being set to 0 Calculation of the beta coefficients needed for force calculation Define the coupling of the r-th scheme at position x_r above the s-th scheme at position x_s in this case, the three strings (0 - 2) are coupled at x = 10 cm to the bridge (3), where they are fixed at 4cm, 8cm and 12 cm indices of the coupled systems (coupling r above s) positions are in meters The "master" environment containing all the FDS schemes and the coupling information total number of schemes Number of points in each scheme stack all schemes in parallel using functions from the fd library since the points of all schemes are stacked together we need to determine where one schemes stops and the next begins the normalization factors; division by a is the last step in every update grid spacing is needed for force calculation and spreading operators copy over the coupling definitions calculate the continuous position in points based on the position in meters the tuple beta_r, beta_s of coefficients for the force calculation ----------------------------Interface Elements-----------------------------// ------------------------------Excitation Force-----------------------------// ba.countup will continue to put out the upper limit once it is reached, until triggered again so have the limit be one higher and check in excforce if we've exceeded it ----------------------------------Process---------------------------------//
import("stdfaust.lib"); declare name "Coupled Finite Difference Schemes in Faust"; declare version "0.1"; declare author "David Suedholt"; k = 1.0 / 44100; schemeUpdate(points,R,T,scheme) = fd.route1D(points,R,T,scheme) : fd.buildScheme1D(points,R,T); forceUpdate(coupledSchemes) = inRouting : interp : forcecalc : outRouting with { M = coupledSchemes.nSchemes; nPoints = coupledSchemes.nPoints; startingPoint = coupledSchemes.startingPoint; h = coupledSchemes.h; posR = coupledSchemes.posR; posS = coupledSchemes.posS; beta = coupledSchemes.beta; nCouplings = coupledSchemes.nCouplings; r = coupledSchemes.r; s = coupledSchemes.s; alphaR(i) = posR(i) - floor(posR(i)); alphaS(i) = posS(i) - floor(posS(i)); inRouting = route(totalPoints, totalPoints+4*nCouplings, par(i, totalPoints, (i+1, i+1)), par(i, nCouplings, (startingPoint(r(i)) + floor(posR(i)), totalPoints+i*4+1), (startingPoint(r(i)) + floor(posR(i))+1, totalPoints+i*4+2), (startingPoint(s(i)) + floor(posS(i)), totalPoints+i*4+3), (startingPoint(s(i)) + floor(posS(i))+1, totalPoints+i*4+4) ) ); interp = si.bus(totalPoints), par(i, nCouplings, +(*(1 - alphaR(i)), *(alphaR(i))), +(*(1 - alphaS(i)), *(alphaS(i))) ); forcecalc = (si.bus(totalPoints+2*nCouplings), par(i, nCouplings, beta(i))) : si.bus(totalPoints), (ro.interleave(2*nCouplings, 2) : par(i, 2*nCouplings, *) : par(i, nCouplings, +) <: ro.interleave(nCouplings, 4) : par(i, nCouplings, *((1 - alphaR(i))/h(r(i))),*(alphaR(i)/h(r(i))), *((alphaS(i) - 1)/h(s(i))),*((alphaS(i) * -1)/h(s(i)))) ); outRouting = route(totalPoints+4*nCouplings, totalPoints, par(i, totalPoints, (i+1, i+1)), par(i, nCouplings, (totalPoints+i*4+1, startingPoint(r(i)) + floor(posR(i))), (totalPoints+i*4+2, startingPoint(r(i)) + floor(posR(i))+1), (totalPoints+i*4+3, startingPoint(s(i)) + floor(posS(i))), (totalPoints+i*4+4, startingPoint(s(i)) + floor(posS(i))+1) ) ); }; system1D(coupledSchemes) = (routing : schemes : forceUpdate(coupledSchemes) : norm) ~ si.bus(totalPoints) with { M = coupledSchemes.nSchemes; nPoints = coupledSchemes.nPoints; startingPoint = coupledSchemes.startingPoint; totalPoints = startingPoint(M); schemes = coupledSchemes.schemes; a = coupledSchemes.a; norm = par(i, M, par(j, nPoints(i), /(a(i)))); routing = route(totalPoints*2, totalPoints*2, par(i, M, par(j, nPoints(i), (startingPoint(i)+j+1, startingPoint(i)*2+j+1))), par(i, M, par(j, nPoints(i), (startingPoint(i)+totalPoints+j+1, startingPoint(i)*2+nPoints(i)+j+1))) ); }; simplySupportedScheme(params) = coeffsLeft, midCoeffsDelay, par(i, nPoints-2, midCoeffs, midCoeffsDelay), coeffsRight, midCoeffsDelay with { nPoints = params.nPoints; EI = params.E * params.I; h = params.h; rhoA = params.rho * params.Area; s0 = params.sigma0; s1 = params.sigma1; T = params.T; coeffsLeft = 0, 0, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2 + EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-EI) / h^4; midCoeffs = (-EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-EI) / h^4; coeffsRight = (-EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2 + EI) / h^4, 0, 0; midCoeffsDelay = 0, (-2*rhoA*s1/h^2/k), (2*rhoA*s0/k + 4*rhoA*s1/h^2/k - rhoA/k^2), (-2*rhoA*s1/h^2/k), 0; }; clampedScheme(params) = par(i, nPoints, coeffs, coeffsDelay) with { nPoints = params.nPoints; EI = params.E * params.I; h = params.h; rhoA = params.rho * params.Area; s0 = params.sigma0; s1 = params.sigma1; T = params.T; coeffs = (-EI) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-2*T*h^2 - 6*EI - 2*rhoA*s0*h^4/k - 4*rhoA*s1*h^2/k + 2*rhoA*h^4/k^2) / h^4, (T*h^2 + 4*EI + 2*rhoA*s1*h^2/k) / h^4, (-EI) / h^4; coeffsDelay = 0, (-2*rhoA*s1/h^2/k), (2*rhoA*s0/k + 4*rhoA*s1/h^2/k - rhoA/k^2), (-2*rhoA*s1/h^2/k), 0; }; calcAllParams(params) = environment { rho = params.rho; E = params.E; L = params.L; f0 = params.f0; radius = params.radius; sigma0 = params.sigma0; sigma1 = params.sigma1; I = params.I; Area = params.Area; hmin = sqrt(k/2*(T*k/rho/Area + 4*sigma1 + sqrt((T*k/rho/Area + 4*sigma1)^2 + 16*E*I/rho/Area))); nPoints = floor(L / hmin) - 1; h = L / (nPoints+1); }; string1 = environment { radius = 4.6e-4; }; string2 = environment { rho = 1200; E = 2e9; L = 0.65; radius = 4.6e-4; f0 = 169; sigma0 = 1.38; sigma1 = 1.3e-4; I = ma.PI * radius^4 / 4; Area = ma.PI * radius^2; }; string3 = environment { rho = 1200; E = 2e9; L = 0.65; radius = 4.6e-4; f0 = 246.94; sigma0 = 1.38; sigma1 = 1.3e-4; I = ma.PI * radius^4 / 4; Area = ma.PI * radius^2; }; bridge = environment { rho = 1500; E = 3e9; L = 0.16; radius = 4.6e-4; sigma0 = 1.343; sigma1 = 2.59e-3; }; params(0) = calcAllParams(string1); params(1) = calcAllParams(string2); params(2) = calcAllParams(string3); params(3) = calcAllParams(bridge); calcBeta(r, s, posr, poss, ar, as) = (-1)/denom/ar, 1/denom/as with { hr = params(r).h; hs = params(s).h; alphaR = posr - floor(posr); alphaS = poss - floor(poss); jnormsqr = ((1 - alphaR)^2 + alphaR^2) / hr^2; jnormsqs = ((1 - alphaS)^2 + alphaS^2) / hs^2; denom = hr * jnormsqr / ar + hs * jnormsqs / as; }; couplings = environment { nCouplings = 3; r(0) = 0; s(0) = 3; xr(0) = 0.1; xs(0) = 0.04; r(1) = 1; s(1) = 3; xr(1) = 0.1; xs(1) = 0.08; r(2) = 2; s(2) = 3; xr(2) = 0.1; xs(2) = 0.12; }; coupledSchemes = environment { nPoints(i) = params(i).nPoints; schemes = par(i, nSchemes-1, schemeUpdate(params(i).nPoints, nNeighbors, nTimesteps, simplySupportedScheme(params(i)))), schemeUpdate(params(3).nPoints, nNeighbors, nTimesteps, clampedScheme(params(3))); startingPoint(0) = 0; startingPoint(i) = startingPoint(i-1) + nPoints(i-1); a(i) = params(i).rho * params(i).Area / k^2; h(i) = params(i).h; nCouplings = couplings.nCouplings; r = couplings.r; s = couplings.s; xr = couplings.xr; xs = couplings.xs; posR(i) = xr(i) / h(r(i)); posS(i) = xs(i) / h(s(i)); beta(i) = calcBeta(r(i), s(i), posR(i), posS(i), a(r(i)), a(s(i))); }; play(i) = button("Play%i"); inPoint(i) = hslider("Input Point%i",floor(params(i).nPoints/2),0,params(i).nPoints-1,1); outPoint(i) = hslider("Output Point%i",floor(params(i).nPoints/2),0,params(i).nPoints-1,0.01):si.smoo; outSlider = hslider("Select output to listen", 0, 0, coupledSchemes.nSchemes-1, 1); maxforce = hslider("Maximal Excitation Force", 1, 0.1, 10, 0.1); excdur_sec = 0.005; excdur_samp = int(excdur_sec * 44100); excforce(n) = ba.if(n <= excdur_samp, maxforce/2 * (1 - cos(ma.PI * n/excdur_samp)), 0); forceModel(i) = (ba.countup(excdur_samp+1, 1-(play(i))):excforce)/params(i).h; input = par(i, coupledSchemes.nSchemes, (forceModel(i)/params(i).h)<:fd.linInterp1D(params(i).nPoints, inPoint(i))); output = par(i, coupledSchemes.nSchemes, fd.linInterp1DOut(params(i).nPoints, outPoint(i))); outSelect = ba.selectn(coupledSchemes.nSchemes, outSlider); process = input : system1D(coupledSchemes) : output : outSelect <: _,_;
7ed03d0599ba94b047027ea8194e529f7b82af22acadb7420bc5291164430711
sekisushai/ambitools
hoa_encoder.dsp
declare name "NF-HOA encoder"; declare version "1.1"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2014-2018"; // Description: This tool creates an HOA scene from N inputs. Each input is encoded as a source in space. Source types are plane or spherical waves. // References: //[1] Lecomte, P., & Gauthier, P.-A. (2015). Real-Time 3D Ambisonics using Faust, Processing, Pure Data, And OSC. In 15th International Conference on Digital Audio Effects (DAFx-15). Trondheim, Norway. // Inputs: N // Outputs: (M+1)^2 import("stdfaust.lib"); import("nfc.lib"); import("ymn.lib"); import("gui.lib"); // maximum order for Ambisonics components M = 5; // number of inputs (number of sources to encoder) N = 2; ins = N; outs = (M+1)^2; outsvumeter = vumeter(0,outs); g(i) = hslider("[%i+1][osc:/gain_%i -20 20][style:knob]Gain %2i",0,-20,20,0.1): ba.db2linear; // gain r(i) = hslider("[%i+2][osc:/radius_%i 0.5 50][style:knob]Radius %2i", 2, 1, 50, 0.01);// radius t(i) = hslider("[%i+3][osc:/azimuth_%i 0 360][style:knob]Azimuth %2i", 0, 0, 360, 0.1)*ma.PI/180; // azimuth d(i) = hslider("[%i+4][osc:/elevation_%i -90 90][style:knob]Elevation %2i", 0, -90, 90, 0.1)*ma.PI/180; // elevation spherical(i) = hgroup("[%i+5]Spherical Wave",checkbox("Yes")); // Spherical restitution speaker layout radius r2 is needeed to stabilize near-field filters, see [1] r2(i) = nentry("[~]Speaker Radius %2i", 1.07, 0.5, 10, 0.01); // louspeaker radius r22(i) = r2(i) + (1-spherical(i))*(r(i)-r2(i)); // r2 is transformed to r when shperical(i) = 0 ==> spherical/plane wave selection; source(i) = hgroup("Source %2i",_*g(i)*r22(i)/r(i)<:par(m,M+1,nf(m,r(i),r22(i))<:par(i,2*m+1,_)):>yvec((M+1)^2,t(i),d(i))); //process = hgroup("",vgroup("Parameters",par(i,N,_<:selecteur(i))):>si.bus((M+1)^2):vgroup("[~]Outputs",outsvumeter)); process = hgroup("",vgroup("Parameters",par(i,N,_<:source(i))):>si.bus((M+1)^2):vgroup("[~]Outputs",outsvumeter));
https://raw.githubusercontent.com/sekisushai/ambitools/2d21b7cc7cfe9bc35d91d51ec05bf9250372f0ce/Faust/src/hoa_encoder.dsp
faust
Description: This tool creates an HOA scene from N inputs. Each input is encoded as a source in space. Source types are plane or spherical waves. References: [1] Lecomte, P., & Gauthier, P.-A. (2015). Real-Time 3D Ambisonics using Faust, Processing, Pure Data, And OSC. In 15th International Conference on Digital Audio Effects (DAFx-15). Trondheim, Norway. Inputs: N Outputs: (M+1)^2 maximum order for Ambisonics components number of inputs (number of sources to encoder) gain radius azimuth elevation Spherical restitution speaker layout radius r2 is needeed to stabilize near-field filters, see [1] louspeaker radius r2 is transformed to r when shperical(i) = 0 ==> spherical/plane wave selection; process = hgroup("",vgroup("Parameters",par(i,N,_<:selecteur(i))):>si.bus((M+1)^2):vgroup("[~]Outputs",outsvumeter));
declare name "NF-HOA encoder"; declare version "1.1"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2014-2018"; import("stdfaust.lib"); import("nfc.lib"); import("ymn.lib"); import("gui.lib"); M = 5; N = 2; ins = N; outs = (M+1)^2; outsvumeter = vumeter(0,outs); spherical(i) = hgroup("[%i+5]Spherical Wave",checkbox("Yes")); source(i) = hgroup("Source %2i",_*g(i)*r22(i)/r(i)<:par(m,M+1,nf(m,r(i),r22(i))<:par(i,2*m+1,_)):>yvec((M+1)^2,t(i),d(i))); process = hgroup("",vgroup("Parameters",par(i,N,_<:source(i))):>si.bus((M+1)^2):vgroup("[~]Outputs",outsvumeter));
58fcf0141ee36c35c332c322852aaa63392a65783bfbc8928fbaafbe55581cfc
sekisushai/ambitools
hoa_converter_fuma_to_acn_sn3d.dsp
declare name "HOA Converter : FuMa to ACN SN3D"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("gui.lib"); //Description : this tool converts HOA signals defined with a convention 1 to HOA signals defined with convention 2. Proposed conventions are ACN N3D, ACN SN3D, FuMa. For ACN to FuMa, the ordering change is as in [1] //[1] https://en.wikipedia.org/wiki/Ambisonic_data_exchange_formats // Input ACN: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 // Output FuMa: 0 3 1 2 6 7 5 8 4 12 13 11 14 10 15 9 : W XYZ RSTUV KLMNOPQ // Input FuMa: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : W XYZ RSTUV KLMNOPQ // Output ACN: 0 2 3 1 6 8 4 5 7 15 13 11 9 10 12 14 // Maximum required order (M = 3 for FuMa). M = 3; // Number of inputs ins = (M+1)^2; outs = ins; // FuMa Input conversion(3,2) = par(i,M+1,FuMaACN(i)):par(m,M+1,par(n,2*m+1,_*(1/sqrt(2*m+1)))); // FuMa to ACN_SN3D : FuMa to ACN_N3D to ACN_SN3D FuMaACN(0) = _*sqrt(2); FuMaACN(1) = (ro.cross(2),_):(_,ro.cross(2)): (_*sqrt(3),_*sqrt(3),_*sqrt(3)); FuMaACN(2) = ro.cross(5):(_,ro.cross(2),_,_):(_,_,ro.cross(3)): (_*(sqrt(15)/2),_*(sqrt(15)/2),_*sqrt(5),_*(sqrt(15)/2),_*(sqrt(15)/2)); FuMaACN(3) = ro.cross(7):(_,ro.cross(2),ro.cross(2),_,_):(_,_,ro.cross(2),_,_,_):(_,_,_,ro.cross(4)): (_*sqrt(35/8),_*(sqrt(35)/3),_*sqrt(224/45),_*sqrt(7),_*sqrt(224/45),_*(sqrt(35)/3),_*sqrt(35/8)); FuMaACN(m) = par(i,2*m+1,!:0); // normally they shouldn't be FuMa components for M>3 process = si.bus(ins):hgroup("[1]FuMa",par(i,M+1,meterm(i))):conversion(3,2):hgroup("[2]ACN SN3D",par(i,M+1,meterm(i)));
https://raw.githubusercontent.com/sekisushai/ambitools/2d21b7cc7cfe9bc35d91d51ec05bf9250372f0ce/Faust/src/hoa_converter_fuma_to_acn_sn3d.dsp
faust
Description : this tool converts HOA signals defined with a convention 1 to HOA signals defined with convention 2. Proposed conventions are ACN N3D, ACN SN3D, FuMa. For ACN to FuMa, the ordering change is as in [1] [1] https://en.wikipedia.org/wiki/Ambisonic_data_exchange_formats Input ACN: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output FuMa: 0 3 1 2 6 7 5 8 4 12 13 11 14 10 15 9 : W XYZ RSTUV KLMNOPQ Input FuMa: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : W XYZ RSTUV KLMNOPQ Output ACN: 0 2 3 1 6 8 4 5 7 15 13 11 9 10 12 14 Maximum required order (M = 3 for FuMa). Number of inputs FuMa Input FuMa to ACN_SN3D : FuMa to ACN_N3D to ACN_SN3D normally they shouldn't be FuMa components for M>3
declare name "HOA Converter : FuMa to ACN SN3D"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("gui.lib"); M = 3; ins = (M+1)^2; outs = ins; FuMaACN(0) = _*sqrt(2); FuMaACN(1) = (ro.cross(2),_):(_,ro.cross(2)): (_*sqrt(3),_*sqrt(3),_*sqrt(3)); FuMaACN(2) = ro.cross(5):(_,ro.cross(2),_,_):(_,_,ro.cross(3)): (_*(sqrt(15)/2),_*(sqrt(15)/2),_*sqrt(5),_*(sqrt(15)/2),_*(sqrt(15)/2)); FuMaACN(3) = ro.cross(7):(_,ro.cross(2),ro.cross(2),_,_):(_,_,ro.cross(2),_,_,_):(_,_,_,ro.cross(4)): (_*sqrt(35/8),_*(sqrt(35)/3),_*sqrt(224/45),_*sqrt(7),_*sqrt(224/45),_*(sqrt(35)/3),_*sqrt(35/8)); process = si.bus(ins):hgroup("[1]FuMa",par(i,M+1,meterm(i))):conversion(3,2):hgroup("[2]ACN SN3D",par(i,M+1,meterm(i)));
5d65547e001ae95e54f8e767be96d1cf5a1b0d252dc9c30668b90d114d2ad996
sekisushai/ambitools
hoa_beamforming_hypercardioid_to_hoa.dsp
declare name "HOA Beamforming Hypercardioid To HOA"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; // Description: This tool applies a hypercardioid beampattern to the HOA scene to enhances some directions according to the chosen beampattern. See [1] for more details. The proposed beampattern are regular hypercardioid as described in [2]. The more high the order of the beampattern the more selective is the directionnal filtering. // Inputs: (M+1)^2 // Outputs: (M+1)^2 + (M1+1)^2 where M1 is the hypercardioid order. // References: // [1] P. Lecomte, P.-A. Gauthier, C. Langrenne, A. Berry, and A. Garcia, “Filtrage directionnel dans un scène sonore 3D par une utilisation conjointe de Beamforming et d’Ambisonie d’ordre elevés,” in CFA / VISHNO 2016, 2016, pp. 169–175. // [2] J. Meyer and G. Elko, “A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002, vol. 2, pp. 1781–1784. // CAUTION : this code could take long time to compile for higher order M. It is normal in regards of the size of the matrix involved ((M+1)^2*(M+1)^2*(M1+1)^2). import("stdfaust.lib"); import("ymn.lib"); import("cijk.lib"); import("gui.lib"); // Maximum order of original HOA scene M = 3; // Maximum order of hyppercardioid beampattern (implemented up to order M1=3, but very CPU consuming when M1=3 is chosen) M1 = 2; ins = (M+1)^2; outs = (M+M1+1)^2; //ins // Should be (M+M1+1)^2 to avoid loosing some information after filtering. // VU-Meters activation (choose between vumeteron or off) insvumeter = insvumeteroff; outsvumeter = outsvumeteroff; insvumeteron = par(i,M+1,meterm(i)); insvumeteroff= par(i,ins,_); outsvumeteron = par(i,int(sqrt(outs)),meterm(i)); outsvumeteroff = par(i,outs,_); t = hslider("Azimuth[style:knob]", 0, 0, 360, 0.1)*ma.PI/180; d = hslider("Elevation[style:knob]", 0, -90, 90, 0.1)*ma.PI/180; order(s) = hslider("Order[style:knob]",0,0,M1,0.0001)<:select2(s,int,_); // Order of the beampattern used for filtering, order=0 is a bypass. crossfade(i,x) = par(j,i,_*(1-abs(x-j):max(0))):>_; // linear crossfade between order. step = checkbox("Int/Float"); norm(m) = 1/sqrt(2*m+1); // ORDER 0 hypercoeff(0,0) = 1; // ORDER 1 hypercoeff(1,0) = 0.24993; hypercoeff(1,1) = 0.433017; // ORDER 2 hypercoeff(2,0) = 0.11112; hypercoeff(2,1) = 0.19245; hypercoeff(2,2) = 0.248448; // ORDER 3 hypercoeff(3,0) = 0.0625128; hypercoeff(3,1) = 0.108241; hypercoeff(3,2) = 0.139751; hypercoeff(3,3) = 0.165365; hypercoeff(x1,x2) = 0; g(beam,m) = hypercoeff(beam,m)*norm(m); gvec(beam,M) = par(m,M+1,par(n,2*m+1,g(beam,m))); // TERM i,j OF THE FILTER MATRIX mat(beam,i,j) = gvec(beam,beam):par(k,(beam+1)^2,_*Cijk(i,j,k)):yvec((beam+1)^2,t,d):>_; // A ROW OF THE MATRIX row(beam,i) = par(j,ins,mat(beam,i,j)); // in = number of inputs // out = number of output matrix(beam,in,out) = par(i,in,_)<: par(i,out,buswg(row(beam,i)):>_); //process=bus(ins)<:par(i,M1+1,par(j,ins,_*(i==order))):bus(ins),par(i,M1,matrix(i+1,ins,outs)):>bus(outs); process = si.bus(ins):hgroup("[1]Inputs",insvumeter) <:hgroup("[3]Parameters",par(i,M1+1,matrix(i,ins,outs)):ro.interleave(int(outs),int(M1+1)):par(i,outs,crossfade(M1+1,order(step)))) :hgroup("[2]Outputs",outsvumeter);
https://raw.githubusercontent.com/sekisushai/ambitools/2d21b7cc7cfe9bc35d91d51ec05bf9250372f0ce/Faust/src/hoa_beamforming_hypercardioid_to_hoa.dsp
faust
Description: This tool applies a hypercardioid beampattern to the HOA scene to enhances some directions according to the chosen beampattern. See [1] for more details. The proposed beampattern are regular hypercardioid as described in [2]. The more high the order of the beampattern the more selective is the directionnal filtering. Inputs: (M+1)^2 Outputs: (M+1)^2 + (M1+1)^2 where M1 is the hypercardioid order. References: [1] P. Lecomte, P.-A. Gauthier, C. Langrenne, A. Berry, and A. Garcia, “Filtrage directionnel dans un scène sonore 3D par une utilisation conjointe de Beamforming et d’Ambisonie d’ordre elevés,” in CFA / VISHNO 2016, 2016, pp. 169–175. [2] J. Meyer and G. Elko, “A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002, vol. 2, pp. 1781–1784. CAUTION : this code could take long time to compile for higher order M. It is normal in regards of the size of the matrix involved ((M+1)^2*(M+1)^2*(M1+1)^2). Maximum order of original HOA scene Maximum order of hyppercardioid beampattern (implemented up to order M1=3, but very CPU consuming when M1=3 is chosen) ins // Should be (M+M1+1)^2 to avoid loosing some information after filtering. VU-Meters activation (choose between vumeteron or off) Order of the beampattern used for filtering, order=0 is a bypass. linear crossfade between order. ORDER 0 ORDER 1 ORDER 2 ORDER 3 TERM i,j OF THE FILTER MATRIX A ROW OF THE MATRIX in = number of inputs out = number of output process=bus(ins)<:par(i,M1+1,par(j,ins,_*(i==order))):bus(ins),par(i,M1,matrix(i+1,ins,outs)):>bus(outs);
declare name "HOA Beamforming Hypercardioid To HOA"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("ymn.lib"); import("cijk.lib"); import("gui.lib"); M = 3; M1 = 2; ins = (M+1)^2; insvumeter = insvumeteroff; outsvumeter = outsvumeteroff; insvumeteron = par(i,M+1,meterm(i)); insvumeteroff= par(i,ins,_); outsvumeteron = par(i,int(sqrt(outs)),meterm(i)); outsvumeteroff = par(i,outs,_); t = hslider("Azimuth[style:knob]", 0, 0, 360, 0.1)*ma.PI/180; d = hslider("Elevation[style:knob]", 0, -90, 90, 0.1)*ma.PI/180; step = checkbox("Int/Float"); norm(m) = 1/sqrt(2*m+1); hypercoeff(0,0) = 1; hypercoeff(1,0) = 0.24993; hypercoeff(1,1) = 0.433017; hypercoeff(2,0) = 0.11112; hypercoeff(2,1) = 0.19245; hypercoeff(2,2) = 0.248448; hypercoeff(3,0) = 0.0625128; hypercoeff(3,1) = 0.108241; hypercoeff(3,2) = 0.139751; hypercoeff(3,3) = 0.165365; hypercoeff(x1,x2) = 0; g(beam,m) = hypercoeff(beam,m)*norm(m); gvec(beam,M) = par(m,M+1,par(n,2*m+1,g(beam,m))); mat(beam,i,j) = gvec(beam,beam):par(k,(beam+1)^2,_*Cijk(i,j,k)):yvec((beam+1)^2,t,d):>_; row(beam,i) = par(j,ins,mat(beam,i,j)); matrix(beam,in,out) = par(i,in,_)<: par(i,out,buswg(row(beam,i)):>_); process = si.bus(ins):hgroup("[1]Inputs",insvumeter) <:hgroup("[3]Parameters",par(i,M1+1,matrix(i,ins,outs)):ro.interleave(int(outs),int(M1+1)):par(i,outs,crossfade(M1+1,order(step)))) :hgroup("[2]Outputs",outsvumeter);
be60095c332f2046e05a1b6b9eecb981b2d1b89a2e55db0505560e4e586d0e81
sekisushai/ambitools
hoa_converter.dsp
declare name "HOA Converter : Convention 1 to Convention 2"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("gui.lib"); //Description : this tool converts HOA signals defined with a convention 1 to HOA signals defined with convention 2. Proposed conventions are ACN N3D, ACN SN3D, FuMa. For ACN to FuMa, the ordering change is as in [1] //[1] https://en.wikipedia.org/wiki/Ambisonic_data_exchange_formats // Input ACN: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 // Output FuMa: 0 3 1 2 6 7 5 8 4 12 13 11 14 10 15 9 : W XYZ RSTUV KLMNOPQ // Input FuMa: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : W XYZ RSTUV KLMNOPQ // Output ACN: 0 2 3 1 6 8 4 5 7 15 13 11 9 10 12 14 // Maximum required order (M = 3 for FuMa). M = 4; // Number of inputs ins = (M+1)^2; outs = ins; inconv = rint(hslider("[0]Input[style:knob] (1-ACN_N3D,2-ACN_SN3D, 3-FuMa)",1,1,3,1)); outconv = rint(hslider("[0]Output[style:knob] (1-ACN_N3D,2-ACN_SN3D, 3-FuMa)",1,1,3,1)); uniq = int(3*inconv + outconv - 4); // ACN_N3D Input conversion(1,1) = si.bus(ins); // ACN_N3D to ACN_N3D conversion(1,2) = par(m,M+1,par(n,2*m+1,_*(1/sqrt(2*m+1)))); // ACN_N3D to ACN_SN3D conversion(1,3) = par(i,M+1,ACNFuMa(i)); // ACN_N3D to FuMa // ACN_SN3D Input conversion(2,1) = par(m,M+1,par(n,2*m+1,_*sqrt(2*m+1))); // ACN_SN3D to ACN_N3D conversion(2,2) = conversion(1,1); // ACN_SN3D to ACN_SN3D conversion(2,3) = par(m,M+1,par(n,2*m+1,_*sqrt(2*m+1))):par(i,M+1,ACNFuMa(i)); // ACN_SN3D to FuMa : ACN_SN3D to ACN_N3D to FuMa // FuMa Input conversion(3,1) = par(i,M+1,FuMaACN(i)); // FuMa to ACN_N3D conversion(3,2) = par(i,M+1,FuMaACN(i)):par(m,M+1,par(n,2*m+1,_*(1/sqrt(2*m+1)))); // FuMa to ACN_SN3D : FuMa to ACN_N3D to ACN_SN3D conversion(3,3) = conversion(1,1); // FuMa to FuMa ACNFuMa(0) = _*(1/sqrt(2)); ACNFuMa(1) = ro.cross(3):(_,ro.cross(2)): (_*(1/sqrt(3)),_*(1/sqrt(3)),_*(1/sqrt(3))); ACNFuMa(2) = (ro.cross(3),_,_):(_,ro.cross(3),_):(_,_,ro.cross(2),_):(_,_,_,ro.cross(2)): (_*(1/sqrt(5)),_*(2/sqrt(15)),_*(2/sqrt(15)),_*(2/sqrt(15)),_*(2/sqrt(15))); ACNFuMa(3) = (ro.cross(4),_,_,_):(_,ro.cross(4),_,_):(_,_,ro.cross(3),_,_):(_,_,_,ro.cross(3),_):(_,_,_,_,ro.cross(2),_):(_,_,_,_,_,ro.cross(2)): (_*(1/sqrt(7)),_*sqrt(45/224),_*sqrt(45/224),_*(3/sqrt(35)),_*(3/sqrt(35)),_*sqrt(8/35),_*sqrt(8/35)); ACNFuMa(m) = par(i,2*m+1,!:0); FuMaACN(0) = _*sqrt(2); FuMaACN(1) = (ro.cross(2),_):(_,ro.cross(2)): (_*sqrt(3),_*sqrt(3),_*sqrt(3)); FuMaACN(2) = ro.cross(5):(_,ro.cross(2),_,_):(_,_,ro.cross(3)): (_*(sqrt(15)/2),_*(sqrt(15)/2),_*sqrt(5),_*(sqrt(15)/2),_*(sqrt(15)/2)); FuMaACN(3) = ro.cross(7):(_,ro.cross(2),ro.cross(2),_,_):(_,_,ro.cross(2),_,_,_):(_,_,_,ro.cross(4)): (_*sqrt(35/8),_*(sqrt(35)/3),_*sqrt(224/45),_*sqrt(7),_*sqrt(224/45),_*(sqrt(35)/3),_*sqrt(35/8)); FuMaACN(m) = par(i,2*m+1,!:0); // normally they shouldn't be FuMa components for M>3 process = si.bus(ins):hgroup("[1]Inputs",par(i,M+1,meterm(i)))<:par(i,3,par(j,3,conversion(i+1,j+1))):ro.interleave(int(ins),9):par(i,outs,ba.selectn(9,uniq)):hgroup("[2]Outputs",par(i,M+1,meterm(i))); //process=par(i,M+1,ACNFuMa(i)):par(i,M+1,FuMaACN(i)); // If the routing is correct, shouldn't have any effects :
https://raw.githubusercontent.com/sekisushai/ambitools/2d21b7cc7cfe9bc35d91d51ec05bf9250372f0ce/Faust/src/hoa_converter.dsp
faust
Description : this tool converts HOA signals defined with a convention 1 to HOA signals defined with convention 2. Proposed conventions are ACN N3D, ACN SN3D, FuMa. For ACN to FuMa, the ordering change is as in [1] [1] https://en.wikipedia.org/wiki/Ambisonic_data_exchange_formats Input ACN: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output FuMa: 0 3 1 2 6 7 5 8 4 12 13 11 14 10 15 9 : W XYZ RSTUV KLMNOPQ Input FuMa: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : W XYZ RSTUV KLMNOPQ Output ACN: 0 2 3 1 6 8 4 5 7 15 13 11 9 10 12 14 Maximum required order (M = 3 for FuMa). Number of inputs ACN_N3D Input ACN_N3D to ACN_N3D ACN_N3D to ACN_SN3D ACN_N3D to FuMa ACN_SN3D Input ACN_SN3D to ACN_N3D ACN_SN3D to ACN_SN3D ACN_SN3D to FuMa : ACN_SN3D to ACN_N3D to FuMa FuMa Input FuMa to ACN_N3D FuMa to ACN_SN3D : FuMa to ACN_N3D to ACN_SN3D FuMa to FuMa normally they shouldn't be FuMa components for M>3 process=par(i,M+1,ACNFuMa(i)):par(i,M+1,FuMaACN(i)); // If the routing is correct, shouldn't have any effects :
declare name "HOA Converter : Convention 1 to Convention 2"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("gui.lib"); M = 4; ins = (M+1)^2; outs = ins; inconv = rint(hslider("[0]Input[style:knob] (1-ACN_N3D,2-ACN_SN3D, 3-FuMa)",1,1,3,1)); outconv = rint(hslider("[0]Output[style:knob] (1-ACN_N3D,2-ACN_SN3D, 3-FuMa)",1,1,3,1)); uniq = int(3*inconv + outconv - 4); ACNFuMa(0) = _*(1/sqrt(2)); ACNFuMa(1) = ro.cross(3):(_,ro.cross(2)): (_*(1/sqrt(3)),_*(1/sqrt(3)),_*(1/sqrt(3))); ACNFuMa(2) = (ro.cross(3),_,_):(_,ro.cross(3),_):(_,_,ro.cross(2),_):(_,_,_,ro.cross(2)): (_*(1/sqrt(5)),_*(2/sqrt(15)),_*(2/sqrt(15)),_*(2/sqrt(15)),_*(2/sqrt(15))); ACNFuMa(3) = (ro.cross(4),_,_,_):(_,ro.cross(4),_,_):(_,_,ro.cross(3),_,_):(_,_,_,ro.cross(3),_):(_,_,_,_,ro.cross(2),_):(_,_,_,_,_,ro.cross(2)): (_*(1/sqrt(7)),_*sqrt(45/224),_*sqrt(45/224),_*(3/sqrt(35)),_*(3/sqrt(35)),_*sqrt(8/35),_*sqrt(8/35)); ACNFuMa(m) = par(i,2*m+1,!:0); FuMaACN(0) = _*sqrt(2); FuMaACN(1) = (ro.cross(2),_):(_,ro.cross(2)): (_*sqrt(3),_*sqrt(3),_*sqrt(3)); FuMaACN(2) = ro.cross(5):(_,ro.cross(2),_,_):(_,_,ro.cross(3)): (_*(sqrt(15)/2),_*(sqrt(15)/2),_*sqrt(5),_*(sqrt(15)/2),_*(sqrt(15)/2)); FuMaACN(3) = ro.cross(7):(_,ro.cross(2),ro.cross(2),_,_):(_,_,ro.cross(2),_,_,_):(_,_,_,ro.cross(4)): (_*sqrt(35/8),_*(sqrt(35)/3),_*sqrt(224/45),_*sqrt(7),_*sqrt(224/45),_*(sqrt(35)/3),_*sqrt(35/8)); process = si.bus(ins):hgroup("[1]Inputs",par(i,M+1,meterm(i)))<:par(i,3,par(j,3,conversion(i+1,j+1))):ro.interleave(int(ins),9):par(i,outs,ba.selectn(9,uniq)):hgroup("[2]Outputs",par(i,M+1,meterm(i)));
832683b808cafad4348988da6a44108654ab16f22f940c7e346bf06ba192b18a
sekisushai/ambitools
hoa_rotator.dsp
declare name "HOA Rotator"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("ymn.lib"); // Description: This tool rotates the HOA scene around the x-axis (roll angle), y-axis (pitch angle), and z-axis (yaw angle). Driven with OSC from head-tracking, (for example with andOSC application for Android with andOSC.pd patch provided with ambitools), this tool can compensate the head rotations. See [2] for the matrix definition. Implentation according to [1] with corrections. // References: //[1] J. Ivanic and K. Ruedenberg, “Rotation matrices for real spherical harmonics. Direct determination by recursion,” J. Phys. Chem., vol. 100, no. 15, pp. 6342–6347, 1996. // In TABLE 2 of this paper, from the corrections, the formulaes for the term V(l,m,m') should be taken from the original paper... // Inputs: (M+1)^2 // Outputs: (M+1)^2 // Sliders yaw = hslider("Yaw[osc:/yaw 0 360]", 0, 0, 360, 0.01)*ma.PI/180; // Slider with yaw rotation angle pitch = hslider("Pitch[osc:/picth 0 360]", 0, 0, 360, 0.01)*ma.PI/180; // Slider with pitch rotation angle roll = hslider("Roll[osc:/roll 0 360]", 0, 0, 360, 0.01)*ma.PI/180; // Slider with roll rotation angle // Maximum required order M = 4; ins = (M+1)^2; // Zero-th order rot(0,m,n) = 1; // First order rotation matrix (n1, n2) rot(1,-1,-1) = cos(roll)*cos(yaw) - sin(pitch)*sin(roll)*sin(yaw); rot(1,-1,0) = -1*cos(pitch)*sin(roll); rot(1,-1,1) = cos(yaw)*sin(pitch)*sin(roll) + cos(roll)*sin(yaw); rot(1,0,-1) = cos(yaw)*sin(roll) + cos(roll)*sin(pitch)*sin(yaw); rot(1,0,0) = cos(pitch)*cos(roll); rot(1,0,1) = -1*cos(roll)*cos(yaw)*sin(pitch) + sin(roll)*sin(yaw); rot(1,1,-1) = -1*cos(pitch)*sin(yaw); rot(1,1,0) = sin(pitch); rot(1,1,1) = cos(pitch)*cos(yaw); rot(1,m,n) = 0; // other cases for 1st order. // Recurrence computation for higher-orders denom(m,n2) = case{ (1) => (m+n2)*(m-n2); (0) => 2*m*(2*m-1); }(abs(n2)<m); u(m,n1,n2) = sqrt((m+n1)*(m-n1)/denom(m,n2)); v(m,n1,n2) = 1/2*sqrt((1+(n1==0))*(m+abs(n1)-1)*(m+abs(n1))/denom(m,n2))*(1-2*(n1==0)); w(m,n1,n2) = -1/2*sqrt((m-abs(n1)-1)*(m-abs(n1))/denom(m,n2))*(1-(n1==0)); //U(m,n1,n2) = ba.if(n1==0,P(0,m,0,n2),P(0,m,n1,n2)); U(m,0,n2) = P(0,m,0,n2); U(m,n1,n2) = P(0,m,n1,n2); V(m,n1,n2) = case{ (1,0,0) =>P(1,m,1,n2)+P(-1,m,-1,n2); (0,1,0) =>P(1,m,n1-1,n2)*sqrt(1+(n1==1))-P(-1,m,-n1+1,n2)*(1-(n1==1)); (0,0,1) =>P(1,m,n1+1,n2)*(1-(n1==-1))+P(-1,m,-n1-1,n2)*sqrt(1+(n1==-1)); // sqrt(1+(n1==1)) is right, in the correction of the paper it's sqrt(1-(n1==1)) }(n1==0,n1>0,n1<0); W(m,n1,n2) = case{ (1,0,0) => 0; // Shouldn't be defined but covers some pattern matching cases. (0,1,0) => P(1,m,n1+1,n2)+P(-1,m,-n1-1,n2); (0,0,1) => P(1,m,n1-1,n2)-P(-1,m,-n1+1,n2); }(n1==0,n1>0,n1<0); P(i,m,mu,n2) = case{ (1,0,0) => rot(1,i,0)*rot(m-1,mu,n2); (0,1,0) => rot(1,i,1)*rot(m-1,mu,m-1)-rot(1,i,-1)*rot(m-1,mu,-m+1); (0,0,1) => rot(1,i,1)*rot(m-1,mu,-m+1)+rot(1,i,-1)*rot(m-1,mu,m-1); }(abs(n2)<m,n2==m,n2==-m); // Other cases rot(m,n1,n2) = u(m,n1,n2)*U(m,n1,n2)+v(m,n1,n2)*V(m,n1,n2)+w(m,n1,n2)*W(m,n1,n2); // Main-matrix row row(M,i) = par(m,M+1, par(j,2*m+1,term with{ term = case{ (0) => 0; (1) => rot(m,int(i-m^2)-m,j-m); }((i >= m^2) & (i< (m+1)^2)); } ) ); // Matrix multiplication // n = number of inputs // m = number of outputs matrix(n,m) = par(i,n,_) <: par(i,m,buswg(row(M,i)):>_); process = matrix(ins,ins); //process=rot(2,1,1);
https://raw.githubusercontent.com/sekisushai/ambitools/2d21b7cc7cfe9bc35d91d51ec05bf9250372f0ce/Faust/src/hoa_rotator.dsp
faust
Description: This tool rotates the HOA scene around the x-axis (roll angle), y-axis (pitch angle), and z-axis (yaw angle). Driven with OSC from head-tracking, (for example with andOSC application for Android with andOSC.pd patch provided with ambitools), this tool can compensate the head rotations. See [2] for the matrix definition. Implentation according to [1] with corrections. References: [1] J. Ivanic and K. Ruedenberg, “Rotation matrices for real spherical harmonics. Direct determination by recursion,” J. Phys. Chem., vol. 100, no. 15, pp. 6342–6347, 1996. In TABLE 2 of this paper, from the corrections, the formulaes for the term V(l,m,m') should be taken from the original paper... Inputs: (M+1)^2 Outputs: (M+1)^2 Sliders Slider with yaw rotation angle Slider with pitch rotation angle Slider with roll rotation angle Maximum required order Zero-th order First order rotation matrix (n1, n2) other cases for 1st order. Recurrence computation for higher-orders U(m,n1,n2) = ba.if(n1==0,P(0,m,0,n2),P(0,m,n1,n2)); sqrt(1+(n1==1)) is right, in the correction of the paper it's sqrt(1-(n1==1)) Shouldn't be defined but covers some pattern matching cases. Other cases Main-matrix row Matrix multiplication n = number of inputs m = number of outputs process=rot(2,1,1);
declare name "HOA Rotator"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL"; declare copyright "(c) Pierre Lecomte 2016"; import("stdfaust.lib"); import("ymn.lib"); M = 4; ins = (M+1)^2; rot(0,m,n) = 1; rot(1,-1,-1) = cos(roll)*cos(yaw) - sin(pitch)*sin(roll)*sin(yaw); rot(1,-1,0) = -1*cos(pitch)*sin(roll); rot(1,-1,1) = cos(yaw)*sin(pitch)*sin(roll) + cos(roll)*sin(yaw); rot(1,0,-1) = cos(yaw)*sin(roll) + cos(roll)*sin(pitch)*sin(yaw); rot(1,0,0) = cos(pitch)*cos(roll); rot(1,0,1) = -1*cos(roll)*cos(yaw)*sin(pitch) + sin(roll)*sin(yaw); rot(1,1,-1) = -1*cos(pitch)*sin(yaw); rot(1,1,0) = sin(pitch); rot(1,1,1) = cos(pitch)*cos(yaw); denom(m,n2) = case{ (1) => (m+n2)*(m-n2); (0) => 2*m*(2*m-1); }(abs(n2)<m); u(m,n1,n2) = sqrt((m+n1)*(m-n1)/denom(m,n2)); v(m,n1,n2) = 1/2*sqrt((1+(n1==0))*(m+abs(n1)-1)*(m+abs(n1))/denom(m,n2))*(1-2*(n1==0)); w(m,n1,n2) = -1/2*sqrt((m-abs(n1)-1)*(m-abs(n1))/denom(m,n2))*(1-(n1==0)); U(m,0,n2) = P(0,m,0,n2); U(m,n1,n2) = P(0,m,n1,n2); V(m,n1,n2) = case{ (1,0,0) =>P(1,m,1,n2)+P(-1,m,-1,n2); (0,1,0) =>P(1,m,n1-1,n2)*sqrt(1+(n1==1))-P(-1,m,-n1+1,n2)*(1-(n1==1)); }(n1==0,n1>0,n1<0); W(m,n1,n2) = case{ (0,1,0) => P(1,m,n1+1,n2)+P(-1,m,-n1-1,n2); (0,0,1) => P(1,m,n1-1,n2)-P(-1,m,-n1+1,n2); }(n1==0,n1>0,n1<0); P(i,m,mu,n2) = case{ (1,0,0) => rot(1,i,0)*rot(m-1,mu,n2); (0,1,0) => rot(1,i,1)*rot(m-1,mu,m-1)-rot(1,i,-1)*rot(m-1,mu,-m+1); (0,0,1) => rot(1,i,1)*rot(m-1,mu,-m+1)+rot(1,i,-1)*rot(m-1,mu,m-1); }(abs(n2)<m,n2==m,n2==-m); rot(m,n1,n2) = u(m,n1,n2)*U(m,n1,n2)+v(m,n1,n2)*V(m,n1,n2)+w(m,n1,n2)*W(m,n1,n2); row(M,i) = par(m,M+1, par(j,2*m+1,term with{ term = case{ (0) => 0; (1) => rot(m,int(i-m^2)-m,j-m); }((i >= m^2) & (i< (m+1)^2)); } ) ); matrix(n,m) = par(i,n,_) <: par(i,m,buswg(row(M,i)):>_); process = matrix(ins,ins);
317dbd91f3adf92a3cb355cd8d9da331f657a8f0040ee10d7f23db852cfb871b
sekisushai/ambitools
hoa_decoder_lebedev50_binaural.dsp
declare name "Binaural decoder"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL)"; declare copyright "(c) Pierre Lecomte 2015"; // Description: Binaural decoder for a virtual 50-node Lebedev grid [1]. HRTFs of a Neumann KU-100 from [2]. // References: //[1] Lecomte, P., Gauthier, P.-A., Langrenne, C., Garcia, A., & Berry, A. (2015). On the use of a Lebedev grid for Ambisonics. In Audio Engineering Society Convention 139. New York. //[2] B. Bernschütz, “A spherical far field hrir/hrtf compilation of the neumann ku 100,” in Proceedings of the 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual Conference on Acoustics (DAGA) Conference on Acoustics, 2013, p. 29. // Inputs: (M+1)^2 // Outputs: 2 import("stdfaust.lib"); import("gui.lib"); M = 5; // WARNING: very CPU consuming if taking order up to 5 (36 linear convolution involved, prefer solution like jconvolver...) // Filter bank mix(0) = par(i,(M+1)^2,h(i,0)):>_*volout; mix(1) = par(i,(M+1)^2,h(i,1)):>_*volout; // Gains volin = vslider("[1]Inputs Gain[unit:dB][osc:/levelin -10 10]", 0, -10, 10, 0.1) : ba.db2linear : si.smooth(0.999); volout = vslider("[2]Outputs Gain[unit:dB][osc:/levelout -10 10]", 0, -10, 10, 0.1) : ba.db2linear : si.smooth(0.999); process = hgroup("Inputs",par(i,(M+1)^2,_*volin):par(i,M+1,metermute(i))<:(mix(0),mix(1))):vgroup("Outputs",hgroup("Left",hmeter),hgroup("Right",hmeter)); h(0,0) = fi.fir((2.51182*10^-5, 1.23708*10^-4, -1.7378*10^-4, 9.68384*10^-4, 5.9949*10^-4, 7.67728*10^-4, 1.41179*10^-4, 1.86342*10^-3, 2.49571*10^-4, 1.15892*10^-3, 5.08795*10^-4, 3.63026*10^-3, 5.65104*10^-2, 4.93423*10^-2, 4.49074*10^-2, 6.47491*10^-2, 5.96065*10^-2, 7.34951*10^-2, 3.45148*10^-2, 5.57725*10^-2, 6.59684*10^-2, 5.78092*10^-2, 9.68951*10^-2, 2.12609*10^-2, -1.5415*10^-2, 3.17463*10^-2, 5.28391*10^-2, 3.06246*10^-2, -1.14164*10^-2, 8.70641*10^-3, 2.66261*10^-2, 1.13663*10^-2, 5.70825*10^-3, 2.3002*10^-2, 2.00236*10^-2, 4.46807*10^-3, 1.41227*10^-2, 7.9812*10^-3, 6.93019*10^-3, 1.15891*10^-2, 6.4973*10^-3, 5.69457*10^-3, 7.43299*10^-3, 2.88578*10^-3, 7.92482*10^-3, 1.50058*10^-2, 2.50454*10^-3, -2.96739*10^-3, 3.06785*10^-3, 1.75234*10^-3, 8.6377*10^-4, 3.66525*10^-3, 2.8834*10^-3, 3.25793*10^-3, 3.05273*10^-3, 1.24616*10^-3, 1.21185*10^-3, 5.00282*10^-3, 3.61293*10^-3, 3.12119*10^-3, 4.22506*10^-3, 3.57753*10^-3, 6.80407*10^-3, 6.23851*10^-3, 4.2153*10^-3, 2.74035*10^-3, 2.30892*10^-3, 3.42846*10^-3, 2.25593*10^-3, 1.4647*10^-3, 1.85049*10^-3, 3.21075*10^-3, 5.23563*10^-3, 3.08689*10^-3, 2.91291*10^-3, 6.37431*10^-3, 4.19458*10^-3, 8.28477*10^-4, 2.4405*10^-3, 4.19052*10^-3, 2.43653*10^-3, -1.06944*10^-3, 5.63692*10^-4, 1.57017*10^-3, -3.11911*10^-4, 1.67995*10^-3, 5.17576*10^-3, 3.70831*10^-3, -1.41242*10^-3, -1.34669*10^-3, 4.13299*10^-4, -1.48382*10^-3, -2.49697*10^-3, 2.3955*10^-5, 2.14615*10^-3, 2.72945*10^-3, 5.4874*10^-4, -5.44865*10^-4, 5.84702*10^-4, 6.12825*10^-4, 5.06834*10^-4, 8.77276*10^-4, 1.54024*10^-3, 1.85348*10^-3, 1.20654*10^-3, 1.40592*10^-3, 1.36699*10^-3, 1.2923*10^-3, 9.43651*10^-4, 8.34515*10^-4, 9.81663*10^-4, 6.76256*10^-4, 5.0102*10^-4, 5.33584*10^-4, 5.47366*10^-4, 4.53824*10^-4, 3.416*10^-4, 2.58553*10^-4, 1.68725*10^-4, 1.64044*10^-4, 1.06546*10^-4, 4.25413*10^-5, 1.87179*10^-5, 2.09787*10^-5, 5.71261*10^-6, 5.08139*10^-6, 2.06253*10^-6, 0)); h(1,0) = fi.fir((3.39551*10^-5, 1.5469*10^-4, -3.15062*10^-4, 1.22991*10^-3, 5.86903*10^-4, 1.14689*10^-3, -4.14599*10^-4, 1.94177*10^-3, -1.67329*10^-4, 1.81104*10^-3, -1.17791*10^-3, 5.45812*10^-3, 9.05515*10^-2, 7.71319*10^-2, 6.08862*10^-2, 7.81434*10^-2, 6.36584*10^-2, 8.89548*10^-2, 2.93457*10^-2, 2.14629*10^-2, 4.13412*10^-2, 5.06357*10^-2, 5.85082*10^-2, -3.46875*10^-2, -4.27948*10^-2, -6.03285*10^-4, -9.5142*10^-3, -1.60175*10^-2, -3.94065*10^-2, -3.90074*10^-2, -1.25257*10^-2, -5.21665*10^-3, -1.93807*10^-2, -3.57626*10^-2, -2.6437*10^-2, -1.80915*10^-2, -2.39676*10^-2, -2.69667*10^-2, -2.52633*10^-2, -1.5369*10^-2, -8.62273*10^-3, -2.03737*10^-2, -2.21845*10^-2, -1.88738*10^-2, -1.60792*10^-2, -8.87528*10^-3, -1.16756*10^-2, -1.61942*10^-2, -1.66062*10^-2, -1.28559*10^-2, -1.51194*10^-2, -1.59132*10^-2, -9.58195*10^-3, -6.87643*10^-3, -7.66095*10^-3, -1.00582*10^-2, -1.04416*10^-2, -4.54199*10^-3, -3.77104*10^-3, -4.75476*10^-3, -2.79511*10^-3, -4.74844*10^-3, -4.44703*10^-3, -2.46014*10^-3, -1.70561*10^-3, -2.43748*10^-3, -2.1747*10^-3, -1.57916*10^-3, -3.01046*10^-3, -2.3879*10^-3, -1.02903*10^-3, 1.03767*10^-4, 1.61521*10^-3, 4.6795*10^-4, -1.84981*10^-3, -1.89912*10^-3, -9.29744*10^-4, 1.77653*10^-3, 2.78163*10^-3, 5.87931*10^-4, 2.36486*10^-5, -1.17495*10^-3, 3.31327*10^-4, 3.00031*10^-3, 1.04984*10^-3, 8.84337*10^-4, 1.36716*10^-3, 1.33451*10^-3, 4.59752*10^-4, 2.64467*10^-4, 6.79848*10^-5, -1.38672*10^-4, 1.08099*10^-3, 1.6778*10^-3, 2.14314*10^-3, 1.36595*10^-3, 6.23519*10^-4, 8.13006*10^-4, 9.22271*10^-4, 4.56141*10^-4, 7.05385*10^-4, 7.09739*10^-4, 4.32368*10^-4, 4.7704*10^-4, 4.69697*10^-4, 5.36059*10^-5, -3.5653*10^-4, 4.19816*10^-4, -8.74662*10^-6, -2.73034*10^-4, -2.69357*10^-4, -3.14307*10^-4, -2.72806*10^-4, -2.50633*10^-4, 1.17965*10^-5, -1.25622*10^-4, -9.1399*10^-5, -1.37362*10^-4, -1.63854*10^-4, -1.1129*10^-5, -3.1175*10^-5, -4.81323*10^-5, -6.52305*10^-5, -3.8802*10^-5, -8.31851*10^-6, -2.56393*10^-6, -1.86561*10^-6, 0)); h(2,0) = fi.fir((4.45788*10^-6, 2.85198*10^-5, 1.58404*10^-4, -1.9245*10^-4, 4.94618*10^-4, 3.1507*10^-4, -1.60361*10^-4, -9.70589*10^-4, 1.65835*10^-3, -1.81327*10^-4, -4.38717*10^-4, -3.62721*10^-4, -4.89909*10^-3, 8.68029*10^-4, 5.03397*10^-4, -1.58698*10^-2, -9.2683*10^-3, 3.25354*10^-2, -1.49073*10^-2, -3.71117*10^-2, 1.21098*10^-2, 1.97594*10^-2, -5.7804*10^-3, -3.21277*10^-3, 5.76228*10^-3, -1.15485*10^-2, 5.79697*10^-3, -4.36148*10^-3, 2.16851*10^-2, 2.15763*10^-2, -2.00181*10^-2, -1.61655*10^-2, 8.64831*10^-3, 3.76608*10^-3, -1.37585*10^-2, 1.64669*10^-2, 5.34294*10^-4, -1.93136*10^-2, -3.92637*10^-3, 3.01503*10^-3, 5.31059*10^-3, 7.0971*10^-3, 2.85895*10^-3, -4.32563*10^-3, 2.23295*10^-3, 2.14275*10^-3, 1.30772*10^-3, 9.18714*10^-3, 4.21731*10^-3, -1.61133*10^-3, 1.62146*10^-3, 7.79086*10^-4, 2.79092*10^-3, 5.6766*10^-3, 2.43588*10^-3, -2.94729*10^-4, -3.50462*10^-3, -1.23749*10^-3, 9.95482*10^-4, 7.91254*10^-4, 8.95198*10^-4, -1.13341*10^-3, 1.66911*10^-3, 3.37181*10^-5, -2.71694*10^-3, -1.77024*10^-3, -1.53815*10^-3, -2.60887*10^-3, -4.65625*10^-3, -3.36985*10^-3, -7.35849*10^-4, -1.91902*10^-3, -2.39256*10^-3, -1.13852*10^-3, -3.15111*10^-4, 2.59004*10^-4, -4.10988*10^-5, 2.85455*10^-4, 2.06802*10^-3, 1.60799*10^-3, 3.83377*10^-4, -7.37536*10^-4, -6.08302*10^-4, 7.21582*10^-4, 8.9328*10^-4, 3.68326*10^-3, 3.27138*10^-3, 1.69945*10^-3, 3.75801*10^-3, 4.36899*10^-3, 1.9519*10^-3, -5.44478*10^-6, 1.19739*10^-3, 2.29129*10^-3, 1.28729*10^-3, -1.04971*10^-3, -1.21329*10^-3, 3.24763*10^-4, 5.11494*10^-5, -1.47963*10^-3, -1.55276*10^-3, -1.3151*10^-3, -6.22009*10^-4, -9.64667*10^-4, -1.49514*10^-3, -1.26437*10^-3, -6.41907*10^-4, -2.60407*10^-4, -1.27535*10^-3, -1.079*10^-3, -3.83553*10^-4, -3.88626*10^-4, -5.42304*10^-4, -5.50354*10^-4, -7.58938*10^-5, -6.57488*10^-5, 9.50248*10^-7, 7.74527*10^-5, 5.80835*10^-5, 9.08167*10^-5, 9.94261*10^-5, 8.00668*10^-5, 2.43757*10^-5, 8.79674*10^-6, 8.88365*10^-6, 8.46417*10^-6, 2.40821*10^-6, 0)); h(3,0) = fi.fir((9.93628*10^-6, 2.49699*10^-5, 1.3874*10^-4, -1.77736*10^-4, 6.9471*10^-4, -3.62084*10^-4, 5.34434*10^-4, -1.10817*10^-3, 1.48817*10^-3, -1.31485*10^-3, 2.01002*10^-3, -3.03202*10^-3, -7.21718*10^-3, 6.18924*10^-3, -5.30958*10^-3, 2.5992*10^-3, 2.53457*10^-3, 2.11909*10^-2, 1.74746*10^-2, -1.16911*10^-2, 7.02438*10^-4, -1.20184*10^-2, 9.40654*10^-5, 1.94897*10^-3, -2.54585*10^-2, -6.98871*10^-4, 3.066*10^-2, -3.15638*10^-4, -3.91701*10^-2, 9.67744*10^-3, 3.62823*10^-2, -1.73412*10^-2, -3.01367*10^-2, 6.00683*10^-3, 5.36729*10^-3, -1.00647*10^-2, 3.41282*10^-3, 1.15935*10^-3, 1.73416*10^-5, 4.83835*10^-3, -7.65874*10^-3, -3.03209*10^-3, 8.14256*10^-3, 3.36909*10^-3, 5.03769*10^-3, 6.81093*10^-3, -2.48879*10^-3, -2.99686*10^-3, 5.71347*10^-3, 5.34772*10^-3, -4.98921*10^-4, 1.17636*10^-3, 1.2247*10^-3, 1.66342*10^-3, 3.59199*10^-3, 8.81705*10^-4, 2.88332*10^-3, 2.06635*10^-3, -5.50486*10^-4, -5.02175*10^-4, -1.49053*10^-3, -2.55876*10^-4, 7.08839*10^-4, 1.46986*10^-3, 1.13331*10^-3, 1.0312*10^-3, -1.03439*10^-3, -1.93403*10^-3, -4.52416*10^-5, -1.71475*10^-3, -3.12195*10^-3, -1.98432*10^-3, -1.63132*10^-3, -1.52868*10^-3, -1.21188*10^-3, -3.23087*10^-4, -1.90084*10^-3, -2.99123*10^-3, -1.46794*10^-3, -8.30328*10^-4, -8.29761*10^-4, -3.0592*10^-3, -2.00404*10^-3, 6.95453*10^-4, 3.67688*10^-4, 1.54417*10^-3, 5.27862*10^-3, 3.37025*10^-3, -1.42103*10^-3, -1.03026*10^-3, 1.40369*10^-3, 5.62856*10^-4, -2.01638*10^-3, -1.35489*10^-3, 6.82534*10^-4, 3.17138*10^-3, 1.95891*10^-3, -1.26004*10^-3, -1.70268*10^-3, -1.03889*10^-3, -1.24353*10^-3, -1.24685*10^-3, -7.11991*10^-4, -4.46193*10^-4, -8.88254*10^-4, -6.54569*10^-4, -5.18168*10^-4, -5.63891*10^-4, -8.39627*10^-4, -5.41095*10^-4, -2.0805*10^-4, -9.82972*10^-5, -2.90241*10^-4, -4.28973*10^-4, -1.03579*10^-4, 1.84012*10^-4, 1.84563*10^-4, 3.85491*10^-5, -9.84852*10^-6, 3.92966*10^-5, 1.05639*10^-4, 1.01833*10^-4, 3.88276*10^-5, 8.03417*10^-6, -6.97166*10^-6, 1.70273*10^-6, 2.45331*10^-6, 0)); h(4,0) = fi.fir((1.46221*10^-5, 2.00167*10^-5, 2.02228*10^-4, -5.06998*10^-4, 8.48566*10^-4, -9.19794*10^-4, 1.28861*10^-3, -2.35191*10^-3, 2.47242*10^-3, -2.51081*10^-3, 3.89043*10^-3, -6.7548*10^-3, -1.42655*10^-2, 1.20915*10^-2, -7.36941*10^-3, 1.03427*10^-2, 3.09089*10^-3, 2.74497*10^-2, 3.16732*10^-2, -1.79474*10^-2, -1.23166*10^-2, -2.23719*10^-2, -8.51016*10^-3, -1.0793*10^-2, -1.49272*10^-2, 6.91979*10^-3, 3.41252*10^-3, -3.96492*10^-3, -1.01439*10^-2, -5.08919*10^-3, 1.05234*10^-2, 7.32389*10^-3, -1.92986*10^-3, -2.74518*10^-3, -5.44477*10^-3, 7.32402*10^-3, 1.02309*10^-2, 2.91413*10^-3, 5.3044*10^-3, 5.35601*10^-3, 9.22673*10^-5, -2.41033*10^-3, 1.31455*10^-3, -2.1753*10^-3, 2.08879*10^-4, 4.44323*10^-3, -1.0344*10^-3, -3.04542*10^-3, 1.96889*10^-3, 7.98082*10^-3, 1.60511*10^-3, -1.91281*10^-3, 1.10736*10^-3, -2.80679*10^-3, -3.85064*10^-3, -1.50426*10^-3, 1.63393*10^-3, 5.05196*10^-4, 1.31157*10^-4, 1.47938*10^-3, -3.43024*10^-4, 1.60801*10^-3, 2.05137*10^-3, -5.8659*10^-5, -1.90039*10^-3, -1.10453*10^-3, 8.71167*10^-5, 2.62382*10^-3, 1.47127*10^-3, -2.75591*10^-3, -1.15775*10^-3, -7.69724*10^-4, -1.36039*10^-3, -7.82908*10^-4, 1.16141*10^-3, 1.31188*10^-3, -1.45515*10^-3, -1.14088*10^-5, 4.7882*10^-4, -7.15635*10^-4, -4.8162*10^-4, -1.72614*10^-3, -6.21192*10^-5, 1.29144*10^-3, -1.12739*10^-3, -3.34905*10^-4, 1.90242*10^-3, 8.62519*10^-4, -1.66752*10^-3, -1.27253*10^-3, -1.72844*10^-3, -1.53058*10^-3, 1.48392*10^-4, 6.32642*10^-4, 1.55754*10^-3, 7.61493*10^-5, -4.92681*10^-4, 3.51382*10^-4, 1.83796*10^-4, -6.84209*10^-4, -3.15156*10^-4, 2.54261*10^-4, -4.44158*10^-4, -2.70074*10^-4, 5.07708*10^-4, 3.6701*10^-4, 5.25869*10^-5, 2.04282*10^-4, 1.06553*10^-4, -1.41728*10^-4, 1.45149*10^-4, 8.2866*10^-5, 8.32732*10^-5, 2.27166*10^-4, 8.7317*10^-5, -3.78775*10^-5, 9.09633*10^-5, 3.84705*10^-5, -1.98935*10^-5, 8.21408*10^-6, 3.87224*10^-5, 2.72483*10^-5, -9.02966*10^-6, 2.11859*10^-6, 3.82797*10^-6, 6.18201*10^-6, 2.51378*10^-7, 0)); h(5,0) = fi.fir((1.57811*10^-5, 4.41782*10^-5, 2.31406*10^-4, -2.60758*10^-4, 9.03587*10^-4, 7.02765*10^-4, 3.68557*10^-4, -9.98409*10^-4, 2.52097*10^-3, -2.39278*10^-4, 4.61844*10^-5, -1.62087*10^-4, -1.10732*10^-2, 2.7371*10^-3, 5.96596*10^-3, -2.40448*10^-2, -1.17481*10^-2, 4.51275*10^-2, -1.55188*10^-2, -2.61531*10^-2, 1.67235*10^-2, 1.3603*10^-2, 9.91536*10^-3, 1.60061*10^-3, 1.3329*10^-3, -1.65022*10^-2, -6.43151*10^-4, -5.81921*10^-3, 1.09229*10^-2, 9.98562*10^-3, -9.99544*10^-3, -3.54222*10^-3, 9.14287*10^-3, 4.90455*10^-3, -9.53766*10^-3, 6.01814*10^-3, 4.19719*10^-5, -1.7748*10^-3, 3.86721*10^-3, 4.79459*10^-3, 2.90687*10^-3, -4.31318*10^-4, 3.80235*10^-3, -3.37746*10^-3, -3.13597*10^-3, 1.84624*10^-3, -1.34822*10^-4, 5.54582*10^-4, 3.56967*10^-3, 2.92148*10^-4, -3.51467*10^-3, 1.74319*10^-3, 2.19724*10^-4, -1.43258*10^-3, 2.15198*10^-3, -3.59638*10^-4, -4.76244*10^-3, -2.33638*10^-3, -1.32344*10^-3, -1.42376*10^-3, 1.40545*10^-3, -1.38811*10^-3, -1.74957*10^-3, -4.75105*10^-4, 1.50508*10^-3, 8.84199*10^-5, -4.1918*10^-4, 5.59142*10^-4, -3.77265*10^-3, -4.2904*10^-3, -9.61273*10^-4, 5.89775*10^-4, 6.09699*10^-4, 1.0633*10^-3, 6.47084*10^-4, 2.06941*10^-4, 6.11713*10^-4, 1.1545*10^-3, 1.27111*10^-3, -6.25519*10^-4, -1.93753*10^-3, -3.29212*10^-3, -1.52143*10^-3, 1.45329*10^-3, 2.55904*10^-3, 3.44944*10^-3, 2.62148*10^-3, 1.33959*10^-3, 1.7063*10^-3, 1.67233*10^-3, 5.5143*10^-4, 4.01845*10^-4, 7.19341*10^-4, 6.81816*10^-4, 7.54655*10^-4, 3.01162*10^-3, 3.46972*10^-3, 1.56339*10^-3, 8.42543*10^-4, 3.80719*10^-4, 6.93815*10^-4, 4.66624*10^-4, 6.92291*10^-4, 1.62719*10^-3, 1.133*10^-3, 4.97187*10^-4, 5.06744*10^-4, 5.30096*10^-4, 4.0572*10^-4, 2.01872*10^-4, 2.60275*10^-4, -2.72057*10^-5, -9.1851*10^-5, 3.26233*10^-5, 3.00808*10^-4, 2.03617*10^-4, 5.07898*10^-5, -8.33149*10^-5, -1.03751*10^-5, 7.76086*10^-5, -5.33407*10^-7, -3.06573*10^-5, -1.70851*10^-5, 2.01059*10^-5, 3.98048*10^-6, 3.35889*10^-6, 3.43292*10^-8, 0)); h(6,0) = fi.fir((-3.86616*10^-6, -2.92856*10^-5, 2.57463*10^-4, -2.55296*10^-4, -6.78291*10^-6, -5.84922*10^-4, 1.01332*10^-3, -8.61014*10^-4, 9.46613*10^-4, -1.43681*10^-3, 2.55288*10^-3, -5.67696*10^-3, -4.71336*10^-2, -4.24378*10^-2, -2.01533*10^-2, -2.22634*10^-2, -3.88006*10^-3, -1.15908*10^-2, 3.31593*10^-4, 4.48946*10^-2, 1.8844*10^-3, 1.37521*10^-2, 3.59968*10^-2, -1.28167*10^-2, 1.24978*10^-2, 5.27583*10^-2, 2.34635*10^-2, -2.63881*10^-3, 8.67306*10^-3, 2.4751*10^-2, 5.87393*10^-3, -9.25468*10^-3, 1.18865*10^-2, 1.58006*10^-2, -1.04271*10^-3, -1.14966*10^-2, 9.57015*10^-3, 4.89365*10^-3, -6.55248*10^-3, 7.03939*10^-3, -2.12608*10^-3, -1.04984*10^-2, -3.61629*10^-3, -7.17239*10^-3, -5.23434*10^-3, -2.0962*10^-3, -7.01442*10^-3, -7.31803*10^-3, -4.60171*10^-3, -3.69246*10^-3, -9.09628*10^-3, -3.28774*10^-3, 1.22438*10^-3, -4.19002*10^-3, -5.04437*10^-3, -5.07132*10^-3, -3.11109*10^-3, -1.28336*10^-3, -1.39409*10^-3, -5.34437*10^-4, 1.9439*10^-3, -5.92974*10^-4, -1.41222*10^-3, 2.15115*10^-3, 1.6155*10^-3, 1.10439*10^-3, 5.51147*10^-4, -6.92677*10^-4, -2.69537*10^-3, -8.60682*10^-4, 1.25214*10^-3, 1.17567*10^-3, 6.25862*10^-5, -4.49214*10^-3, -9.97929*10^-4, 2.71718*10^-3, -2.03951*10^-3, -3.55741*10^-3, -1.08387*10^-3, 6.46904*10^-4, -3.55818*10^-4, -1.00778*10^-3, 4.60677*10^-4, 1.43222*10^-3, 7.68707*10^-4, -1.02436*10^-3, -1.92194*10^-3, 1.5598*10^-4, 5.61379*10^-4, -4.09825*10^-4, 3.64663*10^-5, 3.56328*10^-5, 1.15068*10^-3, 8.24869*10^-4, 5.8267*10^-4, -4.83767*10^-4, -1.17138*10^-3, 7.64905*10^-4, 1.21078*10^-3, 4.86777*10^-4, 2.61474*10^-4, 3.07859*10^-4, 2.08667*10^-4, -1.41295*10^-4, 6.09299*10^-5, 1.35904*10^-4, 4.57857*10^-4, 3.37973*10^-4, 2.04718*10^-4, 3.41662*10^-4, 1.00847*10^-4, -8.46021*10^-5, -1.08104*10^-4, -1.27879*10^-4, -1.09223*10^-4, -4.56845*10^-5, -9.0214*10^-5, -1.3188*10^-4, 3.02152*10^-5, 4.86084*10^-5, -4.50631*10^-5, -6.11718*10^-5, -2.83688*10^-5, -8.4151*10^-6, -4.11553*10^-6, -3.53055*10^-6, 8.96305*10^-8, 0)); h(7,0) = fi.fir((4.2463*10^-6, -2.82698*10^-6, 5.23527*10^-5, 2.49726*10^-5, -1.7067*10^-4, -1.7706*10^-4, 2.40886*10^-4, 1.60215*10^-4, -5.28537*10^-4, 2.2609*10^-4, 3.39552*10^-4, 2.7819*10^-4, 2.78137*10^-4, -2.52045*10^-3, -3.72384*10^-4, 7.1841*10^-3, -7.4312*10^-3, -1.10708*10^-2, 9.43312*10^-3, 1.13006*10^-2, -5.36636*10^-3, -4.82279*10^-3, -5.74575*10^-3, -1.60587*10^-3, -8.34246*10^-3, 3.58491*10^-3, 2.4944*10^-2, -1.15642*10^-2, -1.67202*10^-3, 5.18072*10^-4, -1.07983*10^-2, 2.19485*10^-3, 2.35272*10^-2, -3.90009*10^-3, -1.53265*10^-2, 2.15568*10^-2, 3.0387*10^-3, -8.19711*10^-4, 2.183*10^-3, -1.4029*10^-3, -3.91025*10^-3, 1.37613*10^-3, -5.52124*10^-3, -9.85606*10^-3, 2.15494*10^-3, -3.20578*10^-3, -4.54218*10^-3, -1.9447*10^-3, -3.5543*10^-3, -1.64123*10^-3, 4.59555*10^-3, 2.52762*10^-3, -4.02653*10^-3, -1.8522*10^-3, 2.04676*10^-4, 2.88148*10^-3, 3.43243*10^-3, 5.47636*10^-4, 2.75394*10^-3, 2.21665*10^-3, -1.2919*10^-3, 4.00805*10^-4, 2.57166*10^-3, 1.46628*10^-3, 2.72868*10^-5, -1.16132*10^-3, 3.80668*10^-5, 3.61819*10^-3, 2.21192*10^-3, -8.18766*10^-4, 6.62261*10^-4, 1.08661*10^-3, 7.49201*10^-4, -4.81969*10^-5, -4.2257*10^-4, -2.02931*10^-4, 2.06879*10^-5, 6.29365*10^-5, 1.41728*10^-4, -1.46906*10^-3, -2.38707*10^-3, -1.86912*10^-3, -1.11238*10^-3, -1.19961*10^-3, -2.86108*10^-3, 7.00973*10^-4, 1.27749*10^-3, -1.12713*10^-3, -1.14887*10^-3, -4.13161*10^-4, -5.0415*10^-4, -2.00683*10^-3, -3.58722*10^-5, 2.2713*10^-3, 1.24614*10^-3, -1.59644*10^-3, -8.18819*10^-4, 1.43667*10^-3, 7.11437*10^-4, 9.06548*10^-5, 3.20771*10^-4, 5.151*10^-4, 7.0562*10^-4, 2.85357*10^-4, 2.53833*10^-4, 3.44038*10^-4, 3.56086*10^-4, 1.83376*10^-4, 1.0309*10^-4, -9.07505*10^-5, 1.42212*10^-4, 2.47962*10^-4, 5.25912*10^-5, -7.44214*10^-5, -1.31304*10^-4, -1.65695*10^-4, 2.45583*10^-5, 2.84575*10^-6, -9.82888*10^-5, -9.99562*10^-5, -7.66841*10^-6, 5.3135*10^-6, -2.61613*10^-5, -9.6016*10^-6, -6.81842*10^-6, 2.773*10^-6, 4.94959*10^-7, 0)); h(8,0) = fi.fir((-1.68655*10^-5, -7.21153*10^-5, 3.78556*10^-4, -7.01652*10^-4, 1.28073*10^-4, -7.43055*10^-4, 1.35568*10^-3, -2.72118*10^-4, 6.69039*10^-4, -2.1171*10^-3, 2.66075*10^-3, -5.26349*10^-3, -8.64246*10^-2, -7.03236*10^-2, -4.05775*10^-2, -2.6085*10^-2, -1.01035*10^-2, -4.39697*10^-2, 1.08086*10^-2, 5.51774*10^-2, 4.17719*10^-2, -1.44567*10^-2, 2.13921*10^-2, 1.07582*10^-1, 3.87707*10^-2, -5.54456*10^-3, 4.99856*10^-2, 4.09783*10^-2, 4.81083*10^-3, 2.73854*10^-2, 3.64387*10^-2, -3.17886*10^-3, -7.72274*10^-3, 1.81197*10^-2, 1.60415*10^-3, -3.71408*10^-3, -7.00634*10^-3, -1.12762*10^-2, 8.33056*10^-3, -2.80427*10^-3, -2.49734*10^-2, -1.02805*10^-2, 2.14717*10^-4, -1.21152*10^-2, -1.56673*10^-2, -6.13615*10^-3, -9.19539*10^-3, -1.1857*10^-2, -4.06259*10^-3, -3.23696*10^-3, -5.01662*10^-3, -8.23842*10^-3, -1.87769*10^-3, 6.66127*10^-4, -7.61051*10^-3, -7.56122*10^-3, -2.77838*10^-3, -2.46885*10^-3, -4.76789*10^-3, -4.42888*10^-3, -6.30871*10^-4, -1.00798*10^-3, -3.20891*10^-3, -2.00773*10^-3, 1.24406*10^-3, 3.91085*10^-3, 3.65062*10^-3, 5.34785*10^-3, 5.4627*10^-3, 2.41144*10^-3, 1.85354*10^-3, 2.87405*10^-3, 2.07133*10^-3, -2.6133*10^-4, 1.0638*10^-3, 9.85821*10^-4, 8.9492*10^-4, 5.35477*10^-4, -6.03783*10^-4, 7.82042*10^-4, -1.20611*10^-4, -2.37535*10^-3, -2.25807*10^-3, -4.0582*10^-4, -1.75915*10^-3, -1.09401*10^-3, 2.2533*10^-3, -1.34825*10^-3, -4.61702*10^-3, -2.35077*10^-3, -2.49663*10^-4, 3.61728*10^-5, -2.13426*10^-3, -2.67142*10^-3, 7.83896*10^-4, 3.16299*10^-3, 1.16068*10^-3, -1.13754*10^-3, -1.30056*10^-3, -9.18475*10^-4, -4.78309*10^-4, -1.38245*10^-4, -4.1388*10^-4, 1.0279*10^-6, 7.26447*10^-5, -2.33207*10^-4, -2.62141*10^-4, -3.42912*10^-4, -5.39206*10^-4, -3.01184*10^-6, 1.44938*10^-4, -1.69249*10^-4, -1.63111*10^-4, -4.75819*10^-5, -3.09052*10^-4, -2.14425*10^-4, -1.965*10^-6, 4.87482*10^-5, -1.1532*10^-4, -9.03683*10^-5, 4.34695*10^-5, 5.61129*10^-5, 3.83196*10^-5, -3.11789*10^-6, -5.52174*10^-6, -2.11033*10^-6, 1.06705*10^-6, 0)); h(9,0) = fi.fir((-1.60757*10^-5, -4.19701*10^-5, 4.10355*10^-4, -3.34547*10^-4, 1.89441*10^-4, -6.56648*10^-4, 1.66465*10^-3, -1.42845*10^-6, 2.34716*10^-4, -1.96452*10^-3, 2.83126*10^-3, -7.45693*10^-3, -7.13278*10^-2, -5.34188*10^-2, -1.62979*10^-2, 3.06538*10^-2, 3.98189*10^-2, -3.05744*10^-3, 4.62241*10^-2, 7.35245*10^-2, 4.46943*10^-2, -8.62466*10^-3, 1.61692*10^-2, 5.76913*10^-2, -1.09835*10^-2, -3.50465*10^-2, -4.10253*10^-3, -1.13266*10^-2, -1.54331*10^-2, -2.41119*10^-2, -1.19454*10^-2, -8.63187*10^-3, -1.87685*10^-2, -2.04983*10^-2, -2.12632*10^-2, 1.69851*10^-3, -1.08342*10^-2, -1.94009*10^-2, -1.0154*10^-2, -3.29724*10^-3, 2.72871*10^-3, 8.452*10^-3, 1.01911*10^-2, 7.93981*10^-3, 6.70798*10^-3, 3.44097*10^-3, 5.98216*10^-3, 6.46392*10^-3, 4.05223*10^-3, 2.11746*10^-3, 4.45085*10^-3, 7.7832*10^-3, 2.10043*10^-3, 1.49633*10^-3, 3.11967*10^-3, -1.21022*10^-3, -1.50013*10^-3, -1.5582*10^-3, -4.58534*10^-4, 5.71158*10^-4, 1.716*10^-3, 4.97296*10^-4, -1.27246*10^-4, -2.44379*10^-5, 1.48653*10^-3, 2.52236*10^-3, 5.19892*10^-4, -1.60011*10^-3, -1.46534*10^-3, -1.63475*10^-3, -4.88274*10^-3, -2.89252*10^-3, 1.36597*10^-3, 7.09958*10^-4, 4.65135*10^-4, 1.73413*10^-3, 1.87164*10^-3, 3.11041*10^-3, 2.31907*10^-3, -1.33571*10^-3, -3.50304*10^-3, -2.86542*10^-3, 3.92849*10^-5, 2.70084*10^-4, -1.55724*10^-3, -1.21433*10^-4, 1.81963*10^-3, 5.82052*10^-4, -1.12463*10^-3, -1.46465*10^-4, -1.7854*10^-3, -1.70461*10^-3, 2.52183*10^-4, 1.10409*10^-3, 2.46217*10^-3, 1.04006*10^-3, 3.89001*10^-5, 5.9752*10^-4, 6.90762*10^-4, -4.07922*10^-4, -4.72497*10^-4, -4.19827*10^-4, -1.08188*10^-3, -3.84054*10^-4, 3.92463*10^-4, 3.73165*10^-4, -6.68194*10^-5, -3.37365*10^-5, 1.48299*10^-4, -2.71348*10^-4, -4.32147*10^-4, -3.82735*10^-4, -1.33249*10^-4, -5.25158*10^-5, -2.82792*10^-4, -2.16745*10^-4, 2.3925*10^-6, 6.81638*10^-5, 3.5723*10^-5, 2.80703*10^-5, 5.59214*10^-5, 3.75609*10^-5, 2.11466*10^-5, 1.44848*10^-5, -1.74216*10^-7, -1.61781*10^-7, 1.20674*10^-6, 0)); h(10,0) = fi.fir((5.48693*10^-6, -3.85305*10^-5, 1.00796*10^-4, 1.39085*10^-4, -1.37982*10^-4, -3.50258*10^-4, 8.31508*10^-4, 9.31576*10^-5, -7.85107*10^-4, 2.95081*10^-4, 2.062*10^-4, 2.23801*10^-4, 1.53611*10^-3, -6.42346*10^-3, -1.46583*10^-3, 1.49275*10^-2, -1.02315*10^-2, -1.78674*10^-2, 1.32495*10^-2, 1.66362*10^-2, -7.3916*10^-3, 3.36605*10^-3, -2.10234*10^-3, -2.51933*10^-2, -3.16892*10^-3, 3.47789*10^-2, 8.64838*10^-3, -3.03502*10^-2, 6.59946*10^-3, 6.83453*10^-3, 1.85503*10^-3, 2.31009*10^-4, 1.851*10^-3, 3.84314*10^-3, -8.55288*10^-3, -6.04199*10^-3, -8.17616*10^-3, 7.42784*10^-3, 4.66712*10^-3, -2.9096*10^-3, -4.66173*10^-3, -4.38658*10^-3, 6.99246*10^-3, 5.94912*10^-3, 1.72897*10^-3, -6.94179*10^-5, -1.07731*10^-3, -8.2497*10^-4, -2.23008*10^-3, -2.54084*10^-3, -2.44285*10^-3, 2.04601*10^-3, 1.71871*10^-3, -2.67377*10^-3, 3.4213*10^-4, 4.96274*10^-3, 5.22673*10^-3, 1.47745*10^-3, -1.42805*10^-3, -3.73734*10^-3, -1.52274*10^-3, 4.65329*10^-4, -1.28761*10^-3, 3.13016*10^-4, 1.4824*10^-3, 1.47564*10^-3, 6.11671*10^-4, 1.66238*10^-3, 3.46059*10^-4, -1.52436*10^-3, 2.84002*10^-4, 3.34641*10^-4, -3.00188*10^-4, -4.15989*10^-4, 1.44934*10^-3, 2.95361*10^-3, -2.12224*10^-4, -1.7465*10^-3, 9.4611*10^-4, 4.72243*10^-4, -2.35131*10^-3, -2.86437*10^-3, -2.994*10^-4, 8.838*10^-4, 4.36437*10^-4, 4.35811*10^-4, 1.05312*10^-3, -1.18062*10^-3, -3.19579*10^-3, -2.66689*10^-4, 1.3291*10^-3, -6.35546*10^-4, -1.93305*10^-3, -1.22074*10^-3, -7.66797*10^-4, 5.48452*10^-4, 2.24032*10^-3, 6.8593*10^-4, -8.80495*10^-4, -7.36785*10^-4, -2.91027*10^-4, 1.43957*10^-4, 9.94203*10^-5, 1.03047*10^-5, 1.64362*10^-4, 4.18213*10^-4, 2.9296*10^-6, -1.1731*10^-4, 2.73018*10^-4, 3.29795*10^-4, -1.42659*10^-4, -8.36778*10^-5, -7.14364*10^-5, -1.26889*10^-4, 1.45918*10^-4, 7.54347*10^-5, 8.94557*10^-5, -3.85597*10^-5, -7.5002*10^-6, 3.05406*10^-5, 4.88743*10^-5, 4.99589*10^-5, 8.18749*10^-7, 7.05084*10^-7, -1.20529*10^-5, 4.32078*10^-6, 1.38227*10^-6, 0)); h(11,0) = fi.fir((-1.12306*10^-5, -1.96564*10^-5, 2.91555*10^-4, -1.96712*10^-4, 1.67915*10^-4, -4.87725*10^-4, 1.39101*10^-3, -1.01342*10^-3, 1.94679*10^-3, -2.84011*10^-3, 3.55895*10^-3, -8.82548*10^-3, -5.04098*10^-2, -4.7074*10^-2, -4.41737*10^-3, 1.19852*10^-2, 2.97061*10^-2, 2.91912*10^-2, 1.07382*10^-2, 6.67629*10^-2, 2.62009*10^-2, 1.01949*10^-2, 2.44384*10^-2, -2.51683*10^-2, -6.41723*10^-3, 3.51383*10^-3, 5.32911*10^-3, -7.63561*10^-3, -5.45861*10^-2, -1.52686*10^-2, 1.96498*10^-2, -4.82022*10^-3, -1.13631*10^-2, -2.01016*10^-2, -6.07352*10^-3, -7.81816*10^-3, -2.29341*10^-3, -4.00815*10^-3, -8.94526*10^-3, 2.81839*10^-3, 4.13023*10^-4, -2.00456*10^-3, -2.75069*10^-4, 5.94332*10^-3, 1.12361*10^-2, 6.95498*10^-3, 3.16854*10^-4, -1.76094*10^-3, 1.94699*10^-3, 9.01863*10^-3, 8.65974*10^-3, 4.68559*10^-3, 6.54081*10^-4, 1.13477*10^-4, 5.15455*10^-4, 1.43156*10^-4, -5.91623*10^-4, 1.28197*10^-3, 7.18359*10^-4, -4.48033*10^-5, -8.32929*10^-4, 1.75998*10^-3, 2.26954*10^-3, -1.73247*10^-3, -2.44249*10^-3, -2.00254*10^-3, -4.81834*10^-4, 7.73294*10^-4, 3.05641*10^-4, -1.48032*10^-3, -2.4714*10^-3, -2.17995*10^-3, 9.53805*10^-4, -3.9275*10^-4, -4.06353*10^-3, -2.14124*10^-3, 8.98599*10^-4, 1.26397*10^-3, -9.51349*10^-4, -1.14574*10^-3, 1.05746*10^-3, 1.11031*10^-3, 1.64742*10^-4, -1.45004*10^-4, 1.02265*10^-3, 6.24043*10^-4, -2.32233*10^-3, -2.56128*10^-3, -4.4989*10^-4, 8.41901*10^-4, 1.99792*10^-3, 9.17054*10^-4, 3.7591*10^-4, 1.9079*10^-3, 9.5647*10^-4, -3.43216*10^-4, 7.27429*10^-4, 9.97294*10^-4, -6.79702*10^-5, -5.18811*10^-4, -1.20154*10^-4, 4.18061*10^-4, 7.45986*10^-4, 1.44139*10^-4, -4.14496*10^-4, -3.02481*10^-4, -1.10646*10^-4, 1.34045*10^-4, -3.44395*10^-4, -4.14666*10^-5, 7.12612*10^-5, -2.22638*10^-4, -4.24445*10^-4, -4.70283*10^-4, -2.51783*10^-5, -1.20038*10^-5, -3.14955*10^-5, -1.07544*10^-4, -6.22888*10^-5, 6.90663*10^-5, 5.05388*10^-5, 1.23535*10^-5, -5.16506*10^-6, 1.60959*10^-5, 1.17165*10^-5, 8.04748*10^-6, 1.16687*10^-6, 0)); h(12,0) = fi.fir((4.05285*10^-6, -2.38744*10^-5, -1.77443*10^-4, 3.64899*10^-4, 9.0163*10^-5, -6.12552*10^-4, -2.24284*10^-4, 8.40711*10^-4, -6.34741*10^-4, 2.48625*10^-4, 1.07833*10^-4, 1.6957*10^-4, 1.09563*10^-2, -3.92742*10^-4, -1.71496*10^-2, 1.21954*10^-2, 2.24529*10^-2, -1.26705*10^-2, -1.96975*10^-2, -1.58055*10^-2, -6.86806*10^-3, 8.19548*10^-3, 4.41556*10^-2, -1.30615*10^-2, -4.51095*10^-2, 1.85312*10^-2, 1.02524*10^-2, 1.52522*10^-2, 5.72338*10^-3, -8.39197*10^-3, -1.05468*10^-2, 5.86129*10^-3, -3.92588*10^-3, -1.51485*10^-3, 1.4772*10^-2, -8.21411*10^-3, -7.2907*10^-3, -1.82432*10^-3, 6.45056*10^-3, -9.35414*10^-4, 2.58005*10^-4, -2.45199*10^-3, -3.64145*10^-3, -2.60672*10^-3, -6.94716*10^-3, 5.61014*10^-3, 5.94723*10^-3, -6.33431*10^-5, 5.17522*10^-4, -9.55261*10^-4, -2.88925*10^-3, 2.29784*10^-3, 1.9625*10^-3, -1.12007*10^-3, 2.32054*10^-3, -3.21321*10^-4, 7.10064*10^-4, 2.38549*10^-3, 1.65568*10^-3, 1.2767*10^-3, 7.15895*10^-4, -9.5073*10^-4, -3.38625*10^-3, 2.8319*10^-3, 9.38082*10^-4, -1.81631*10^-3, 1.4007*10^-3, 2.405*10^-3, 2.30851*10^-3, 1.26208*10^-3, 2.45352*10^-4, -1.2871*10^-3, -8.98868*10^-4, -4.12349*10^-3, -3.59524*10^-3, -2.12276*10^-4, -1.52058*10^-3, -1.87816*10^-3, -1.48109*10^-3, 8.76298*10^-4, 8.41932*10^-4, 2.58177*10^-5, -7.94133*10^-4, -1.68139*10^-3, -2.50352*10^-4, -1.31875*10^-3, -1.29094*10^-3, -5.04936*10^-4, -2.17749*10^-4, 5.02031*10^-4, 1.32314*10^-3, 2.07371*10^-3, 1.73953*10^-3, -7.51968*10^-5, -1.44401*10^-3, -2.08778*10^-4, 1.29779*10^-3, 1.93557*10^-3, 1.54983*10^-3, 6.71795*10^-4, 3.39349*10^-4, 1.02703*10^-3, 8.1182*10^-4, 7.67969*10^-5, 3.25173*10^-5, 2.03142*10^-5, 1.22237*10^-4, 1.46092*10^-4, 4.62645*10^-4, 5.12512*10^-4, 3.5913*10^-4, 1.89527*10^-4, -4.59823*10^-5, -5.5362*10^-5, -2.35945*10^-5, 7.12921*10^-5, -1.31389*10^-4, -1.41562*10^-4, -4.13157*10^-5, -8.46506*10^-6, -3.85191*10^-6, -2.57285*10^-5, -4.38868*10^-7, -7.68317*10^-6, -7.80589*10^-6, -7.41927*10^-6, -7.51808*10^-7, 0)); h(13,0) = fi.fir((-2.52312*10^-6, 4.34537*10^-5, -1.05713*10^-4, 2.79699*10^-4, -5.04787*10^-4, 5.82347*10^-4, -3.29953*10^-4, 5.66156*10^-4, -8.57682*10^-4, 6.11259*10^-4, 6.82175*10^-5, 1.09725*10^-3, 3.73188*10^-3, -4.21391*10^-3, 1.13579*10^-2, -1.30569*10^-2, -9.1074*10^-3, -6.78927*10^-3, -6.68055*10^-3, 3.66919*10^-2, -1.66733*10^-2, -1.02882*10^-2, 2.77414*10^-2, -4.06681*10^-3, 8.72424*10^-3, -1.47427*10^-2, -1.44785*10^-2, 1.68631*10^-2, 7.36302*10^-3, -4.58477*10^-3, -2.63113*10^-2, -3.09207*10^-3, 5.39354*10^-3, 1.00301*10^-2, 7.68544*10^-5, -6.44387*10^-3, 1.12386*10^-2, -8.55274*10^-3, -5.82475*10^-4, 8.34913*10^-3, 4.05293*10^-3, 4.98791*10^-3, 6.04743*10^-3, -1.83014*10^-3, -7.21087*10^-3, 9.06784*10^-4, 5.00621*10^-3, 3.5765*10^-3, 2.25201*10^-3, -5.81225*10^-4, -5.00102*10^-4, 1.77941*10^-3, -2.64084*10^-3, -3.27415*10^-3, -2.46231*10^-4, -4.01066*10^-3, -4.16767*10^-3, -3.15957*10^-3, -2.77183*10^-3, -2.59037*10^-3, -3.48997*10^-3, -4.77056*10^-4, -7.41451*10^-4, 5.80731*10^-4, 3.00284*10^-3, 2.14308*10^-3, 2.39619*10^-3, 2.43812*10^-3, -8.13831*10^-4, 4.27879*10^-5, 2.84355*10^-3, 1.92226*10^-3, 8.02295*10^-4, 3.21723*10^-4, 2.25629*10^-3, 5.24925*10^-4, -2.12052*10^-3, -9.79097*10^-4, -3.56792*10^-4, -2.54*10^-4, -1.2131*10^-3, -1.8585*10^-3, -1.1357*10^-3, 1.05676*10^-4, -1.89814*10^-3, -1.91763*10^-3, -1.61277*10^-4, -2.20327*10^-4, -1.67573*10^-4, -9.49436*10^-4, -8.30762*10^-4, -6.12352*10^-4, 8.56978*10^-4, 4.10223*10^-4, -1.32621*10^-4, 3.77329*10^-4, 8.1509*10^-5, 5.64883*10^-4, 5.07438*10^-4, 1.90946*10^-4, 1.59857*10^-4, 3.77714*10^-4, 6.15073*10^-4, 2.98232*10^-5, 3.44298*10^-4, 6.27893*10^-4, 3.54246*10^-4, 3.35637*10^-4, 5.85691*10^-4, 6.45228*10^-4, 8.04918*10^-5, 9.1395*10^-5, 1.85267*10^-4, 9.84972*10^-5, 1.4199*10^-4, 1.38519*10^-5, -4.78325*10^-5, -2.22436*10^-5, 7.05634*10^-5, 3.07658*10^-5, -2.68242*10^-5, -3.116*10^-5, -2.34972*10^-5, -2.30493*10^-5, -1.63933*10^-5, -7.51228*10^-6, -5.28915*10^-7, 0)); h(14,0) = fi.fir((8.37095*10^-6, 3.0721*10^-5, -2.44107*10^-5, 3.94012*10^-4, -5.40082*10^-4, 1.33299*10^-4, 5.9634*10^-5, 7.03552*10^-4, -1.22706*10^-3, 1.18495*10^-3, -4.80909*10^-5, -1.72325*10^-4, 1.41354*10^-2, -3.45408*10^-3, -6.5491*10^-3, 1.57246*10^-2, -7.19438*10^-3, -2.43991*10^-2, 2.40516*10^-2, -1.01244*10^-2, -1.91082*10^-2, 1.37094*10^-2, -2.92208*10^-2, 1.30168*10^-3, 1.87559*10^-2, 7.11267*10^-3, 2.2163*10^-2, 1.17525*10^-3, -1.9054*10^-2, -5.14333*10^-3, 1.26468*10^-2, 7.36515*10^-3, 1.80637*10^-3, -1.52187*10^-2, -1.60001*10^-2, 1.54244*10^-2, 7.637*10^-3, -1.02748*10^-2, -1.9387*10^-3, 9.76594*10^-3, -3.17124*10^-3, -3.18131*10^-3, 3.94411*10^-3, -7.37466*10^-3, 4.36414*10^-3, 1.1157*10^-2, -4.28256*10^-3, -3.50576*10^-3, -5.45431*10^-4, -8.15364*10^-4, -8.34486*10^-4, -1.37375*10^-3, -1.00727*10^-3, -2.18833*10^-3, 1.02788*10^-3, 2.78239*10^-3, 4.55995*10^-4, -2.30976*10^-4, 1.50399*10^-4, 1.17113*10^-3, 2.5198*10^-3, -4.04712*10^-4, -9.5934*10^-4, 5.07685*10^-4, 1.62886*10^-3, 1.92579*10^-3, -7.85903*10^-4, 1.40689*10^-4, 6.54063*10^-4, -7.25117*10^-5, -6.8371*10^-4, -7.3845*10^-4, -8.48441*10^-4, -1.02811*10^-3, -7.25093*10^-6, -4.93225*10^-4, 8.02543*10^-4, -7.60084*10^-4, -2.27573*10^-3, 1.78293*10^-4, 6.23596*10^-4, -1.1469*10^-3, -1.36395*10^-3, -5.56316*10^-4, -8.31551*10^-5, 1.07274*10^-3, -1.84015*10^-4, -1.11288*10^-3, 6.7549*10^-4, 1.54597*10^-3, -3.86924*10^-4, 1.53309*10^-4, 2.59752*10^-3, 2.1457*10^-3, 1.63467*10^-3, 1.17306*10^-3, -5.74324*10^-4, -8.54434*10^-5, 7.55146*10^-4, 6.21383*10^-4, 3.80628*10^-4, 7.28026*10^-4, 6.17358*10^-4, 6.14408*10^-4, 4.94544*10^-4, 5.91619*10^-4, 5.76861*10^-4, -2.53606*10^-4, -3.81137*10^-4, -4.09514*10^-6, 4.18388*10^-4, 3.71043*10^-4, -1.45164*10^-5, 1.26919*10^-5, -1.35082*10^-4, -4.0048*10^-5, -9.43885*10^-5, -2.00899*10^-6, 2.78184*10^-5, -1.03767*10^-4, -4.04727*10^-5, 3.33905*10^-5, 2.90409*10^-5, -1.68007*10^-5, -1.98714*10^-5, -7.35414*10^-6, 4.46206*10^-7, 0)); h(15,0) = fi.fir((-2.06109*10^-5, -4.35698*10^-5, -3.2355*10^-4, 6.82276*10^-4, -6.63236*10^-4, 1.21235*10^-3, -2.15786*10^-3, 3.23953*10^-3, -2.98131*10^-3, 3.08077*10^-3, -5.77376*10^-3, 9.80213*10^-3, 1.96517*10^-2, -1.65226*10^-2, -3.9235*10^-4, -1.97247*10^-2, 4.06018*10^-3, -1.42523*10^-2, -3.7316*10^-2, 1.40976*10^-2, 3.46439*10^-2, 2.53549*10^-2, 9.43111*10^-3, 2.64389*10^-2, -1.84273*10^-2, -2.71505*10^-2, 2.64857*10^-2, -3.0688*10^-4, -3.37348*10^-2, 1.21804*10^-3, 3.10434*10^-2, -5.88073*10^-3, -1.77826*10^-2, -2.36909*10^-3, -6.51593*10^-3, -4.35367*10^-4, -2.20238*10^-3, -9.13909*10^-3, 1.37708*10^-3, 6.88927*10^-3, -3.55896*10^-3, 1.32128*10^-3, 3.9352*10^-3, -8.71503*10^-3, -7.75237*10^-3, -2.28113*10^-3, -1.37963*10^-3, 1.10392*10^-3, 6.5292*10^-3, 5.31055*10^-3, 2.89419*10^-3, 1.64227*10^-3, 1.27944*10^-3, 3.49222*10^-3, 1.85941*10^-3, -2.36502*10^-3, -2.1144*10^-3, 1.23933*10^-3, -7.41378*10^-4, -1.82733*10^-3, 2.50107*10^-3, 5.2284*10^-3, 3.14139*10^-3, 4.38634*10^-4, -3.07919*10^-4, -7.73588*10^-4, 5.57951*10^-4, -1.42759*10^-3, -2.67889*10^-3, -1.31779*10^-3, -1.87645*10^-3, 1.13353*10^-3, 2.19127*10^-3, 2.86919*10^-4, -8.08308*10^-4, -1.78288*10^-3, -7.5356*10^-4, -3.00667*10^-4, -5.63399*10^-4, 1.01481*10^-3, 4.23161*10^-4, -3.82178*10^-4, -8.22186*10^-4, -3.69031*10^-5, 5.86933*10^-4, -2.56723*10^-4, 6.38658*10^-4, -9.30012*10^-4, -1.18116*10^-3, -1.06654*10^-3, -1.46779*10^-3, 2.40167*10^-3, 2.22258*10^-3, 8.30153*10^-5, 2.04468*10^-3, 2.7205*10^-3, 5.0057*10^-4, -4.01156*10^-4, -1.05844*10^-5, 7.3607*10^-5, 3.10625*10^-4, -2.57437*10^-4, -9.18619*10^-4, -1.65872*10^-5, 4.16715*10^-4, -3.70808*10^-4, -4.20754*10^-4, -3.93613*10^-4, -4.65384*10^-4, -3.3167*10^-4, -3.9344*10^-4, -3.18859*10^-4, -2.52511*10^-4, -3.32442*10^-4, -3.49208*10^-4, -2.11704*10^-4, -1.23195*10^-4, -5.71822*10^-5, -9.16493*10^-5, -6.42769*10^-5, 1.26129*10^-5, 2.81772*10^-5, 2.64155*10^-5, 2.60022*10^-5, 1.28934*10^-5, 1.22111*10^-6, 1.40342*10^-6, 0)); h(16,0) = fi.fir((-2.1262*10^-5, -5.3094*10^-5, -3.34903*10^-4, 7.7166*10^-4, -3.83729*10^-4, 1.24509*10^-3, -2.45907*10^-3, 3.52222*10^-3, -2.64073*10^-3, 3.39722*10^-3, -6.79985*10^-3, 1.10932*10^-2, 2.38201*10^-2, -1.95592*10^-2, -1.76219*10^-2, -2.68616*10^-2, 2.20748*10^-2, 8.5219*10^-3, -3.22351*10^-2, 1.02863*10^-2, 4.22833*10^-2, 2.54816*10^-2, -1.21111*10^-2, 4.91825*10^-3, -2.22522*10^-2, -2.83548*10^-2, 1.00723*10^-2, -3.82544*10^-3, -2.21542*10^-2, -1.57922*10^-2, 3.22688*10^-2, 2.85047*10^-2, -1.04107*10^-2, -6.69666*10^-3, 1.16439*10^-3, 1.32235*10^-2, 9.17371*10^-3, -1.41874*10^-2, -1.37516*10^-2, 5.45521*10^-3, 2.71587*10^-3, -2.18185*10^-3, 3.67744*10^-3, 1.58416*10^-3, 3.34905*10^-3, 9.90862*10^-4, -7.07962*10^-4, -2.21442*10^-4, 8.41515*10^-4, 2.77331*10^-3, 1.05023*10^-3, -6.67396*10^-4, -6.88945*10^-3, -3.02391*10^-3, 2.38925*10^-3, -2.89899*10^-3, -5.39126*10^-3, -3.59992*10^-3, -1.98825*10^-3, -3.88658*10^-4, -1.79447*10^-3, -8.93149*10^-4, 1.50672*10^-3, 3.82579*10^-4, -9.62443*10^-4, 1.40544*10^-3, 5.06806*10^-3, 5.51325*10^-3, 2.19406*10^-3, -1.89788*10^-3, -9.63223*10^-4, -6.30692*10^-5, -4.18394*10^-4, -7.63769*10^-4, -1.06849*10^-3, 3.02304*10^-6, 1.54457*10^-3, 1.3969*10^-3, -8.50277*10^-4, -3.1279*10^-4, 7.86229*10^-4, -4.1789*10^-5, -6.50408*10^-4, -7.50881*10^-4, 1.00488*10^-3, 2.21638*10^-3, 2.05112*10^-3, -3.7485*10^-4, -1.31973*10^-3, -1.49718*10^-4, -1.79301*10^-3, -1.35671*10^-3, -2.47972*10^-4, 7.2873*10^-4, 1.78987*10^-3, 9.07199*10^-4, -8.45641*10^-4, -5.4271*10^-4, 1.18519*10^-3, 6.26361*10^-4, -7.61591*10^-4, -9.37814*10^-4, -6.643*10^-4, 2.55523*10^-4, 2.6838*10^-4, 9.85502*10^-5, 2.26127*10^-4, 1.74103*10^-4, -2.27209*10^-4, -4.12255*10^-4, -4.38894*10^-5, 1.59478*10^-4, 9.04753*10^-5, -1.37956*10^-4, -2.06061*10^-4, -6.71447*10^-5, 3.17384*10^-6, 7.17361*10^-5, -6.12164*10^-5, -6.66239*10^-5, 1.77189*10^-5, 9.23388*10^-6, -9.38071*10^-6, 8.44729*10^-6, 9.58828*10^-6, 1.07446*10^-6, -8.34712*10^-8, 0)); h(17,0) = fi.fir((3.72465*10^-6, 1.28028*10^-5, 7.17746*10^-6, 2.70815*10^-4, -2.79043*10^-4, 5.75673*10^-4, 4.95002*10^-4, -2.47311*10^-4, -5.29721*10^-4, 1.57953*10^-3, 3.95019*10^-4, -1.09278*10^-3, 1.26422*10^-2, -3.46417*10^-3, -3.10649*10^-3, 4.16136*10^-3, -3.01621*10^-2, -1.92268*10^-3, 3.61441*10^-2, -1.75408*10^-2, -2.37126*10^-2, 2.14288*10^-2, 2.62638*10^-3, 2.95677*10^-3, 1.36048*10^-3, -3.74543*10^-3, 1.2572*10^-2, 1.18809*10^-3, -9.64619*10^-3, -3.85501*10^-3, 1.26109*10^-3, -2.34756*10^-3, 1.31105*10^-2, -3.0624*10^-4, -1.48794*10^-2, 3.30539*10^-3, 1.05468*10^-2, 6.53828*10^-3, -2.07787*10^-4, -6.19983*10^-3, -1.00496*10^-2, 8.45193*10^-4, 5.76367*10^-3, -3.8521*10^-3, -3.23524*10^-3, -1.03326*10^-3, -1.3777*10^-3, 2.74367*10^-3, 1.6738*10^-3, 2.58888*10^-3, 4.14681*10^-3, 8.59083*10^-4, -2.2187*10^-4, -1.64567*10^-3, -3.92902*10^-3, -1.22024*10^-3, -1.99714*10^-3, -2.47375*10^-3, -1.82919*10^-3, -4.82877*10^-4, 1.75925*10^-3, 1.85732*10^-3, 1.34079*10^-3, 4.05816*10^-5, 1.04509*10^-3, 1.38174*10^-3, 4.27601*10^-5, 3.61265*10^-3, 2.11924*10^-4, -6.13213*10^-3, -1.8818*10^-3, -8.97747*10^-6, -1.09108*10^-3, 1.48732*10^-4, 2.25575*10^-3, 2.56526*10^-3, 2.3236*10^-3, 2.39427*10^-3, 7.96718*10^-4, 4.56618*10^-4, -1.2976*10^-4, -2.20121*10^-3, -1.15699*10^-3, 2.49326*10^-4, 2.41237*10^-5, 2.48422*10^-3, 1.85746*10^-3, -1.23666*10^-3, -1.5988*10^-3, 1.91076*10^-3, 2.46245*10^-3, 1.73972*10^-4, -5.19623*10^-4, -1.46449*10^-3, -2.04095*10^-4, 1.26756*10^-3, 2.02897*10^-3, 1.16917*10^-3, 3.8421*10^-5, -1.38969*10^-4, 5.16525*10^-4, 3.13914*10^-4, -4.9481*10^-4, 1.09887*10^-4, 2.47627*10^-4, 3.75995*10^-4, -1.49329*10^-4, -1.07876*10^-4, 2.75636*10^-4, 6.78696*10^-5, 1.24213*10^-4, -3.13663*10^-4, -8.42085*10^-5, -4.39827*10^-5, -2.13902*10^-4, -1.91516*10^-5, 7.36453*10^-6, 5.89022*10^-5, -4.70706*10^-5, -9.50844*10^-5, -2.30979*10^-5, 1.46008*10^-5, 3.52399*10^-5, 1.3475*10^-6, -5.45086*10^-6, 2.87072*10^-6, 1.28309*10^-6, 0)); h(18,0) = fi.fir((-1.14319*10^-5, 5.70168*10^-5, -1.86294*10^-4, 3.75048*10^-4, -6.17655*10^-4, 1.15678*10^-3, -5.95664*10^-4, 7.75796*10^-4, -1.52329*10^-3, 4.51648*10^-4, 2.74568*10^-4, 1.5058*10^-3, 4.33909*10^-3, -6.37433*10^-3, 1.93175*10^-2, -2.33488*10^-2, -1.61029*10^-2, -5.94964*10^-3, -3.46477*10^-3, 6.17741*10^-2, -2.54109*10^-2, -2.52123*10^-2, 3.62129*10^-2, 1.6548*10^-2, -1.9233*10^-3, -5.6289*10^-2, -9.46017*10^-3, 3.45977*10^-2, 8.53129*10^-3, 7.03724*10^-3, -1.99204*10^-2, -1.31458*10^-2, 1.21836*10^-2, 1.3695*10^-2, -4.10369*10^-3, -1.40448*10^-2, 3.31961*10^-3, 3.36219*10^-3, 2.46126*10^-3, 7.23776*10^-4, -2.9619*10^-3, 1.88773*10^-3, 3.42066*10^-3, -5.71986*10^-3, -7.57838*10^-3, 2.34829*10^-3, 5.53183*10^-3, -1.10702*10^-3, -6.84048*10^-3, -2.27223*10^-3, 2.24102*10^-3, 2.3747*10^-3, 1.67453*10^-3, 2.54822*10^-3, 2.08672*10^-3, 3.07626*10^-4, 2.56564*10^-3, 1.51166*10^-3, 1.78498*10^-3, 1.09084*10^-3, -1.72928*10^-3, 2.89013*10^-4, 6.69018*10^-5, -8.65997*10^-4, -9.76137*10^-4, -6.06054*10^-4, -8.3187*10^-5, 7.3816*10^-4, 3.01001*10^-4, -4.68146*10^-4, -8.48891*10^-4, -2.8124*10^-3, -1.43001*10^-3, -4.29597*10^-4, 5.98353*10^-4, 2.29359*10^-3, -1.03739*10^-3, -3.74345*10^-3, -1.39739*10^-3, 2.35076*10^-3, 2.70412*10^-3, 1.24236*10^-3, -1.13197*10^-4, -1.67658*10^-5, 1.45937*10^-3, 1.39789*10^-3, -1.20763*10^-3, -2.62294*10^-3, 2.93813*10^-5, 8.94156*10^-4, 7.48604*10^-4, -1.25445*10^-3, -6.72678*10^-4, 2.38975*10^-3, 4.69039*10^-4, -1.42954*10^-3, -7.57965*10^-6, 4.05015*10^-4, -8.1397*10^-4, -1.2871*10^-3, -4.15345*10^-4, 5.16478*10^-4, 7.62918*10^-4, 2.93036*10^-4, -1.45514*10^-4, 3.6058*10^-6, 2.75218*10^-4, 2.49542*10^-4, 3.89903*10^-5, -5.94134*10^-5, 3.74309*10^-5, 1.73661*10^-4, 1.27454*10^-5, -5.60214*10^-5, -3.17417*10^-5, -8.76434*10^-6, 1.98454*10^-4, -2.67218*10^-5, -8.92639*10^-5, -1.76768*10^-5, 3.69637*10^-5, 1.8821*10^-5, -3.24431*10^-5, -1.33867*10^-5, -5.00961*10^-6, 6.13128*10^-6, 1.14214*10^-6, 0)); h(19,0) = fi.fir((1.39912*10^-5, -1.90322*10^-5, -2.36811*10^-4, 3.78*10^-4, 4.67777*10^-4, -5.70294*10^-4, -4.25031*10^-4, 7.53112*10^-4, 2.81149*10^-4, 2.03049*10^-4, 2.80775*10^-4, -3.43985*10^-4, 1.70614*10^-2, -9.79447*10^-4, -3.48084*10^-2, 1.95027*10^-3, 3.28055*10^-2, 1.40525*10^-2, -2.82654*10^-2, -4.04917*10^-2, -1.88454*10^-2, 2.18175*10^-2, 7.49369*10^-2, -6.37302*10^-3, -5.35023*10^-2, 2.67236*10^-3, 1.94414*10^-2, 2.47297*10^-2, -2.90637*10^-3, -1.92195*10^-2, -1.29717*10^-2, 8.10531*10^-3, 9.43887*10^-3, -1.86979*10^-3, -7.54331*10^-4, -1.5552*10^-3, -9.19779*10^-4, -4.45628*10^-3, -8.47557*10^-3, -7.27784*10^-4, 9.35817*10^-3, 7.95084*10^-3, -2.73346*10^-3, -5.47867*10^-3, 1.71457*10^-3, 3.86253*10^-3, 1.45453*10^-3, -3.26547*10^-3, -3.56416*10^-3, -2.11865*10^-3, 9.55961*10^-5, -2.43794*10^-4, -1.17291*10^-4, 3.27819*10^-3, 2.12824*10^-3, -4.00646*10^-3, -2.77951*10^-3, 2.2176*10^-3, 6.09872*10^-3, 4.09957*10^-3, -3.04548*10^-4, -2.03198*10^-3, -6.76045*10^-4, 1.92213*10^-3, 4.3826*10^-4, -6.96391*10^-4, -1.20328*10^-3, -3.92744*10^-3, -2.89725*10^-3, 1.87697*10^-3, 2.03825*10^-3, 1.25158*10^-3, 1.55957*10^-3, -1.25607*10^-3, -1.74287*10^-3, -1.19106*10^-3, -2.47177*10^-3, -8.66478*10^-4, 3.45487*10^-4, -7.25571*10^-4, -9.33224*10^-4, -4.78745*10^-4, 7.49489*10^-4, 9.01459*10^-4, 6.49265*10^-4, 5.41133*10^-5, -8.21348*10^-4, -3.66501*10^-4, 2.84761*10^-4, 4.90146*10^-4, 7.25643*10^-4, 9.95284*10^-4, 1.71413*10^-3, 2.47695*10^-3, 1.36867*10^-3, 1.09923*10^-3, 5.77726*10^-4, 4.88597*10^-4, 1.12136*10^-3, 7.54761*10^-4, 7.28629*10^-5, -3.36252*10^-5, 1.21649*10^-4, 9.13903*10^-5, 3.79578*10^-4, -3.73852*10^-5, -1.72279*10^-4, 3.31291*10^-5, -7.17044*10^-5, -1.01234*10^-4, -2.91422*10^-4, -1.22341*10^-4, -1.16085*10^-4, -1.16408*10^-4, -1.46982*10^-4, -1.03264*10^-4, -7.37692*10^-5, -1.17855*10^-4, -8.54731*10^-5, -2.54989*10^-5, -1.7197*10^-5, -8.6229*10^-6, 4.54045*10^-6, 6.25169*10^-6, 5.97645*10^-7, -4.51728*10^-6, 4.58062*10^-8, 0)); h(20,0) = fi.fir((-1.03784*10^-5, -5.02284*10^-5, -1.00435*10^-4, 1.51413*10^-4, -2.80004*10^-5, 4.88887*10^-4, 1.78065*10^-5, 4.03915*10^-4, -1.44769*10^-3, 1.23547*10^-3, -1.50615*10^-3, 5.34416*10^-3, 2.0862*10^-2, 1.51143*10^-2, 3.38173*10^-3, -1.26652*10^-2, -4.15784*10^-2, -4.67927*10^-2, -8.35795*10^-3, 4.99569*10^-4, 1.07009*10^-2, 2.76724*10^-2, 1.84233*10^-2, 1.92779*10^-2, -3.87754*10^-3, -6.70207*10^-3, 5.83455*10^-4, 3.65507*10^-3, 2.63628*10^-2, 1.0495*10^-2, 2.29415*10^-3, -1.01188*10^-2, -8.92614*10^-3, -1.22827*10^-2, -1.58944*10^-2, 6.5383*10^-3, -2.11074*10^-3, -4.94324*10^-3, -3.61009*10^-3, 4.71535*10^-3, 7.33884*10^-3, 1.68281*10^-3, -5.71269*10^-3, 3.00027*10^-4, 7.65257*10^-4, -4.91451*10^-3, -4.65906*10^-4, 2.42461*10^-3, 2.9572*10^-3, -1.9431*10^-3, -1.63647*10^-3, -1.79836*10^-3, -2.3648*10^-3, -2.98389*10^-4, 3.33124*10^-3, 3.25046*10^-3, -4.19712*10^-4, -8.64468*10^-5, 2.84304*10^-3, 1.90896*10^-3, -4.17858*10^-3, -3.84341*10^-3, 2.91055*10^-4, 1.37382*10^-3, 2.07858*10^-3, 9.38103*10^-4, 8.37476*10^-4, -9.84316*10^-4, -6.3152*10^-4, 1.77419*10^-3, 1.07893*10^-3, 1.97256*10^-3, -6.64651*10^-7, -3.11015*10^-3, -2.31874*10^-3, -5.61436*10^-4, 7.70415*10^-4, 3.03893*10^-4, -5.17777*10^-4, -8.77033*10^-4, 1.59888*10^-4, 1.30389*10^-3, -9.28064*10^-5, -1.58519*10^-3, 3.21652*10^-4, 1.04393*10^-3, -1.11305*10^-4, -7.09914*10^-4, -7.48207*10^-4, 5.01744*10^-4, 6.36688*10^-4, 5.70744*10^-5, -7.9619*10^-5, 4.99474*10^-4, 7.19178*10^-4, 6.02189*10^-4, 8.40974*10^-4, 6.34879*10^-4, -2.20547*10^-4, -3.53242*10^-4, -9.60885*10^-5, 5.87138*10^-4, 4.78541*10^-4, -1.68409*10^-4, 9.81452*10^-6, -1.09868*10^-4, -1.09251*10^-4, -1.09356*10^-4, -4.73355*10^-4, -4.77114*10^-4, -2.07249*10^-4, -5.31454*10^-5, -1.08869*10^-4, 6.57187*10^-5, -7.95313*10^-5, -6.95875*10^-5, -9.13684*10^-5, -1.11332*10^-4, -1.5923*10^-4, -1.10866*10^-4, 3.51642*10^-5, 4.90464*10^-5, -4.82714*10^-8, -2.58574*10^-5, -4.42373*10^-6, -1.49918*10^-6, 4.39693*10^-8, 0)); h(21,0) = fi.fir((-5.23088*10^-6, 3.4461*10^-5, -1.1068*10^-4, -2.00198*10^-5, 1.4403*10^-4, 1.30836*10^-4, -2.4266*10^-4, 7.40873*10^-5, 1.76835*10^-5, -2.12574*10^-4, 1.68404*10^-4, 2.45132*10^-5, -1.90957*10^-3, 4.70066*10^-3, 8.86332*10^-4, -7.47712*10^-3, 1.58755*10^-3, 6.74364*10^-3, -3.56307*10^-3, 2.78912*10^-3, 5.21713*10^-3, -3.0671*10^-2, 1.94353*10^-2, 1.84019*10^-2, -1.64562*10^-2, -9.06296*10^-3, -6.16176*10^-3, 1.99192*10^-2, -6.38263*10^-3, -4.63457*10^-3, 6.72019*10^-3, 1.45007*10^-2, -6.94916*10^-3, -1.32761*10^-2, 9.01156*10^-3, 2.34021*10^-3, -5.64573*10^-3, -2.8605*10^-3, 3.88246*10^-3, -3.93449*10^-3, 8.473*10^-4, 1.31939*10^-4, 4.84425*10^-4, 3.96984*10^-4, -3.97721*10^-3, -3.2389*10^-4, 9.34662*10^-4, -3.02236*10^-4, -7.12602*10^-4, 2.9808*10^-3, 3.24858*10^-3, -1.33477*10^-3, 3.32192*10^-4, 1.35646*10^-3, 3.48514*10^-3, 1.55395*10^-3, -1.2573*10^-3, -1.14311*10^-4, -2.47372*10^-4, -2.08733*10^-3, -8.98965*10^-5, 8.80268*10^-4, -3.04745*10^-3, -3.64205*10^-3, 3.5715*10^-4, 2.57028*10^-3, -4.63351*10^-4, -2.45922*10^-3, -2.65079*10^-3, 2.28953*10^-3, 4.84152*10^-3, 6.62269*10^-4, -2.51479*10^-3, -2.79594*10^-3, 6.15079*10^-4, 2.09709*10^-3, 9.10119*10^-4, 1.04108*10^-3, -2.67192*10^-6, 1.37465*10^-3, 1.3749*10^-3, -7.41713*10^-5, -2.10023*10^-4, -2.80411*10^-4, -6.16784*10^-5, -1.84891*10^-3, -1.21693*10^-3, 3.45615*10^-4, 6.46264*10^-4, 1.44607*10^-4, -6.25426*10^-4, -1.12509*10^-3, -9.06333*10^-4, 1.13763*10^-4, 1.89175*10^-4, 3.56228*10^-4, 5.01086*10^-4, 4.74641*10^-4, 4.31015*10^-4, -2.62271*10^-4, -6.3192*10^-4, 6.57163*10^-5, 6.44643*10^-4, 5.61176*10^-5, -4.73663*10^-4, -3.36155*10^-4, -2.93857*10^-4, 2.9283*10^-5, 4.03428*10^-4, 1.61672*10^-5, -3.38393*10^-4, 5.91271*10^-5, 3.41547*10^-4, 1.38321*10^-4, -9.71308*10^-5, -1.25321*10^-4, 6.77324*10^-6, 4.99707*10^-5, 5.32461*10^-5, -1.23038*10^-6, -4.21833*10^-5, 1.18088*10^-5, 3.79593*10^-5, 1.60144*10^-5, -1.05587*10^-7, -1.37594*10^-6, -4.91333*10^-7, 0)); h(22,0) = fi.fir((1.72019*10^-5, -4.20162*10^-5, -3.73285*10^-4, 1.19794*10^-6, 8.84338*10^-6, 3.94259*10^-4, -1.10994*10^-3, 1.70722*10^-3, -1.86017*10^-3, 3.33416*10^-3, -4.04497*10^-3, 1.00781*10^-2, 3.26266*10^-2, 3.47874*10^-2, -2.30352*10^-2, -4.8092*10^-2, -1.93256*10^-2, -3.34603*10^-2, 3.91203*10^-3, -2.47213*10^-2, -2.09115*10^-2, 1.91181*10^-2, 3.44971*10^-2, 2.3621*10^-2, 2.21261*10^-2, 4.63034*10^-2, -7.8797*10^-3, -1.27315*10^-2, 8.41159*10^-3, 9.0183*10^-3, -9.59986*10^-3, -1.51029*10^-2, 4.57404*10^-3, 2.0424*10^-2, -1.38748*10^-2, -3.21063*10^-2, -8.36109*10^-3, -1.34129*10^-2, -5.46174*10^-3, -5.14502*10^-3, -6.23044*10^-3, -5.07495*10^-3, 1.24876*10^-3, 6.54397*10^-3, 2.79399*10^-3, 5.00401*10^-3, 3.10408*10^-3, 5.03138*10^-3, 6.23583*10^-3, 8.6589*10^-4, 1.65015*10^-3, 7.15822*10^-3, 6.15348*10^-3, -4.29732*10^-4, -8.19291*10^-4, 7.92234*10^-4, 1.15193*10^-3, 5.79959*10^-4, 3.72656*10^-4, 9.64308*10^-4, -1.23704*10^-3, -3.64308*10^-3, -4.15939*10^-3, -7.55412*10^-4, -1.06258*10^-3, -1.00438*10^-3, 6.96704*10^-4, -5.66219*10^-4, -4.05854*10^-4, 7.82348*10^-4, 1.5915*10^-3, 1.48547*10^-3, -1.90097*10^-3, -6.58052*10^-4, 3.92995*10^-3, 3.12323*10^-3, 5.85214*10^-4, -5.26497*10^-4, 8.42545*10^-4, 1.14842*10^-3, -7.65537*10^-4, -2.58392*10^-3, -3.61297*10^-3, -1.33927*10^-3, -2.36279*10^-3, -2.21687*10^-3, 8.02397*10^-4, 4.78125*10^-4, -2.68152*10^-4, 4.99573*10^-4, -1.19114*10^-4, -2.92779*10^-3, -2.09365*10^-3, -1.16137*10^-3, -3.18641*10^-4, -7.45052*10^-5, -1.63301*10^-4, 1.73168*10^-3, 2.36228*10^-3, 8.37104*10^-4, 1.25802*10^-4, 1.02263*10^-3, 1.31849*10^-3, 1.95092*10^-4, -1.36272*10^-4, 8.23148*10^-4, 5.41122*10^-4, 2.17683*10^-4, -1.14459*10^-4, -2.66353*10^-4, 4.14208*10^-4, 4.01458*10^-4, 1.26237*10^-4, -1.5691*10^-4, -2.59228*10^-4, -1.05037*10^-4, -5.98006*10^-5, -2.54885*10^-6, -5.07352*10^-5, -7.89525*10^-5, -2.01223*10^-5, 1.46484*10^-5, 7.37101*10^-6, -2.47572*10^-5, -1.00244*10^-5, 2.11656*10^-6, 8.72722*10^-7, 0)); h(23,0) = fi.fir((-7.141*10^-7, 5.18206*10^-5, -1.11809*10^-4, -1.33329*10^-4, 2.02929*10^-4, 5.3025*10^-4, -9.57729*10^-4, 1.29078*10^-4, 6.35239*10^-4, -6.03345*10^-4, 3.2269*10^-4, -7.59139*10^-4, -2.39529*10^-3, 1.05155*10^-2, 2.48262*10^-3, -2.01477*10^-2, 6.74812*10^-3, 1.4183*10^-2, -9.86006*10^-3, -4.47612*10^-3, 4.77835*10^-3, -1.39955*10^-2, -1.01347*10^-2, 4.03773*10^-2, 6.13711*10^-3, -4.6698*10^-2, 3.62348*10^-3, 2.21418*10^-2, 9.02199*10^-3, -4.95867*10^-3, -1.89367*10^-2, 8.42662*10^-4, 2.06382*10^-2, 1.06083*10^-3, -1.54334*10^-2, 1.93108*10^-3, 7.39659*10^-3, 6.22777*10^-4, -1.25907*10^-3, 2.54407*10^-3, -2.97958*10^-3, 1.36954*10^-3, 7.28973*10^-3, -6.22034*10^-3, -8.64462*10^-3, 7.76734*10^-4, 3.31172*10^-3, 2.28025*10^-5, -4.14967*10^-3, -1.21156*10^-3, 2.40733*10^-3, 2.37984*10^-3, -3.57925*10^-3, -4.26296*10^-3, 1.33644*10^-3, 1.21754*10^-3, -8.29773*10^-5, -1.69948*10^-4, -8.56917*10^-4, -2.39216*10^-4, 3.32763*10^-3, 3.30293*10^-3, -5.45788*10^-4, -5.91758*10^-4, 2.51024*10^-3, 2.25112*10^-3, 5.63093*10^-5, -8.45649*10^-4, 1.06876*10^-4, 1.2564*10^-3, -3.61035*10^-4, -1.08413*10^-3, -9.0364*10^-5, 8.82425*10^-4, 1.53292*10^-3, -1.4521*10^-4, -2.11802*10^-5, -2.58102*10^-3, -2.1193*10^-3, 1.83101*10^-3, 6.01634*10^-4, -6.27552*10^-4, -1.58407*10^-3, -1.90189*10^-3, 5.32943*10^-4, 8.46243*10^-4, -8.66983*10^-4, -9.31954*10^-4, 4.1581*10^-4, -1.18579*10^-4, -1.897*10^-3, -2.93585*10^-4, 1.38449*10^-3, 1.30733*10^-3, 6.72234*10^-4, -2.02613*10^-4, -8.61147*10^-4, 2.99863*10^-4, 7.83748*10^-4, 2.96552*10^-4, -3.00542*10^-4, -2.04823*10^-4, 2.83507*10^-4, 1.20169*10^-4, 2.85806*10^-4, 6.12934*10^-4, 1.9826*10^-4, -3.09929*10^-4, -4.2288*10^-4, -2.34313*10^-5, 2.14669*10^-4, 2.00705*10^-4, 1.46022*10^-4, -1.51845*10^-4, -1.44395*10^-4, 2.03482*10^-6, -1.44194*10^-4, 4.44424*10^-5, -1.66244*10^-6, -8.72555*10^-5, -6.7243*10^-5, -1.72062*10^-5, 2.30759*10^-5, 2.3008*10^-6, 3.91749*10^-6, -5.48001*10^-6, -8.79393*10^-7, 0)); h(24,0) = fi.fir((2.77815*10^-6, -2.82339*10^-5, -4.28012*10^-4, -3.94248*10^-5, 6.21661*10^-5, 6.26207*10^-4, -1.37245*10^-3, 7.29263*10^-4, 3.3558*10^-4, 1.02731*10^-3, -3.19145*10^-3, 1.02197*10^-2, 4.809*10^-2, 2.91373*10^-2, -2.43826*10^-3, -5.9615*10^-2, -5.67235*10^-2, -1.65282*10^-2, -6.01819*10^-2, -2.54417*10^-2, 3.34517*10^-2, 2.56304*10^-2, 1.94273*10^-2, 3.80066*10^-2, 3.68608*10^-2, 1.629*10^-2, 1.62706*10^-2, 1.02472*10^-2, -1.59477*10^-2, -4.65916*10^-3, 1.19731*10^-2, -7.41363*10^-3, -1.07335*10^-2, -7.76615*10^-3, -6.79729*10^-3, -1.092*10^-2, -1.39099*10^-2, -8.69685*10^-3, 1.85862*10^-3, 8.22441*10^-3, -2.37291*10^-3, -5.07741*10^-3, 5.16845*10^-3, 1.52776*10^-3, -2.1516*10^-3, -2.59251*10^-3, 4.13783*10^-5, 4.50443*10^-3, 4.93388*10^-4, -1.12839*10^-3, -1.11949*10^-3, 3.53529*10^-3, 2.69973*10^-3, -2.18946*10^-3, 4.49132*10^-4, 1.87394*10^-3, 1.83667*10^-3, 1.48457*10^-3, 1.14566*10^-3, 1.16275*10^-3, -1.60028*10^-3, -1.50633*10^-3, -1.15475*10^-3, -1.43402*10^-3, -4.124*10^-4, -1.95193*10^-4, -1.42557*10^-3, -1.83186*10^-3, -1.89538*10^-3, -8.34602*10^-4, 1.73039*10^-3, 2.68183*10^-3, 7.27846*10^-4, -4.58976*10^-4, -8.84948*10^-5, -1.25911*10^-3, 8.99127*10^-4, 1.98166*10^-3, -3.2896*10^-4, -1.08943*10^-3, 5.71055*10^-4, 1.84866*10^-3, 5.39723*10^-4, -4.65231*10^-5, 1.82591*10^-3, 1.54042*10^-3, -7.58082*10^-4, -1.95016*10^-3, -5.29275*10^-4, -1.77073*10^-4, -2.50102*10^-3, -1.03668*10^-3, -9.29285*10^-5, -3.76089*10^-4, 1.19519*10^-3, 1.02399*10^-3, -6.47235*10^-4, -9.69106*10^-4, -1.16687*10^-4, 1.20943*10^-3, 1.23146*10^-3, 1.77917*10^-4, -1.02777*10^-4, 7.43441*10^-4, 1.08294*10^-3, 6.01945*10^-5, 1.90676*10^-4, 4.07182*10^-5, -5.33674*10^-4, 5.0066*10^-5, -1.66584*10^-4, -1.34228*10^-5, 8.92561*10^-5, 8.74663*10^-5, -1.0287*10^-5, -2.04054*10^-4, -2.01394*10^-4, -1.70883*10^-4, 7.31299*10^-6, -2.4284*10^-5, -9.50505*10^-5, -6.39302*10^-5, -3.59127*10^-5, -8.14788*10^-6, 2.35614*10^-6, -1.43761*10^-7, 8.80793*10^-7, 0)); h(25,0) = fi.fir((-1.70263*10^-5, -1.28761*10^-4, -3.34792*10^-4, -2.13287*10^-4, 1.05049*10^-4, 3.68725*10^-4, -6.08016*10^-4, 1.40487*10^-3, 4.62468*10^-4, 7.12078*10^-4, -3.51067*10^-3, 1.23121*10^-2, 2.22899*10^-2, 1.64861*10^-3, -9.93043*10^-3, -4.64173*10^-2, -3.31992*10^-2, -1.29798*10^-2, -4.81246*10^-2, 2.41549*10^-2, 8.46089*10^-2, 3.27345*10^-2, 1.561*10^-2, 4.55923*10^-2, 1.26811*10^-2, -3.0081*10^-2, -2.40429*10^-2, -2.08135*10^-2, -3.20108*10^-2, -4.53053*10^-2, -9.67799*10^-3, 1.21792*10^-2, 5.13198*10^-3, 2.67935*10^-4, 1.13855*10^-2, 1.85694*10^-2, 2.94205*10^-3, -1.28371*10^-3, 2.09454*10^-3, 9.4253*10^-3, -1.55259*10^-5, 2.30617*10^-3, 5.7944*10^-3, 3.98422*10^-4, 2.73429*10^-3, -1.1864*10^-4, 3.04515*10^-3, -2.48611*10^-3, -7.53053*10^-3, -1.40849*10^-3, 3.57481*10^-5, -3.72074*10^-3, -2.11718*10^-3, 2.02768*10^-3, 4.74078*10^-4, -5.12379*10^-4, -2.44481*10^-3, -1.26397*10^-4, -1.27928*10^-4, -2.44065*10^-3, -3.84313*10^-4, 2.91301*10^-3, 4.80335*10^-3, 8.61686*10^-4, 1.40539*10^-3, 1.95178*10^-3, -2.78354*10^-4, -2.43704*10^-3, -2.3621*10^-4, 4.23868*10^-3, -5.92458*10^-4, -4.46858*10^-3, -2.84673*10^-3, -7.28816*10^-4, -2.34322*10^-3, -2.21456*10^-3, 2.85524*10^-3, 1.59543*10^-3, -1.62569*10^-3, -6.62465*10^-4, 2.90071*10^-3, 3.14338*10^-3, 2.76293*10^-4, -6.64091*10^-4, 9.55951*10^-4, -2.73964*10^-5, -5.00895*10^-4, -3.50802*10^-4, -9.79809*10^-5, 1.53133*10^-4, -8.41651*10^-4, -1.77624*10^-3, -2.19278*10^-3, 7.32989*10^-4, 2.63843*10^-3, 2.63199*10^-3, -5.95601*10^-4, -1.49484*10^-3, 9.34703*10^-4, 9.48527*10^-4, -9.29703*10^-4, -1.15517*10^-3, -3.89822*10^-4, 2.53754*10^-4, -4.32335*10^-4, -3.39077*10^-4, 5.88923*10^-4, 2.28243*10^-4, -3.53326*10^-4, 4.89925*10^-5, 3.371*10^-4, 3.68061*10^-4, 1.61925*10^-4, 8.79203*10^-5, -1.05008*10^-4, -4.91721*10^-5, -7.67448*10^-5, -6.1289*10^-5, -3.33774*10^-5, -7.06464*10^-5, -1.05671*10^-5, 2.12878*10^-5, -3.25801*10^-6, 1.09688*10^-7, 5.57647*10^-6, 3.1932*10^-6, 9.49831*10^-7, 0)); h(26,0) = fi.fir((2.68192*10^-6, 5.38381*10^-5, -7.47409*10^-5, -1.42843*10^-4, 2.49371*10^-4, 3.19706*10^-4, -5.1771*10^-4, 8.60445*10^-5, 4.35335*10^-4, -1.14515*10^-3, 1.34702*10^-3, -1.77218*10^-3, -2.67511*10^-3, 1.39846*10^-2, 2.71387*10^-3, -2.30019*10^-2, -5.03077*10^-4, 3.97455*10^-3, -4.28855*10^-3, 2.58428*10^-2, 4.40381*10^-3, -3.19437*10^-2, -1.35128*10^-2, 2.68305*10^-2, 1.5686*10^-2, -1.38866*10^-2, -1.27638*10^-2, -7.24165*10^-3, 2.38144*10^-2, 1.23298*10^-2, -1.74139*10^-2, -9.73992*10^-3, 1.06577*10^-2, 3.12486*10^-3, -2.86586*10^-3, -3.96475*10^-3, -1.0624*10^-2, 7.68047*10^-3, 9.14505*10^-3, -4.15635*10^-3, -9.09655*10^-3, -1.01376*10^-3, 3.48552*10^-3, 4.39891*10^-3, 3.14719*10^-3, -5.99736*10^-3, 1.40738*10^-3, 6.07597*10^-3, 7.76718*10^-4, 1.90838*10^-4, -2.23711*10^-4, 1.22064*10^-3, 3.76688*10^-4, -3.94129*10^-4, -3.47579*10^-3, -1.91599*10^-3, 7.70106*10^-5, -1.19369*10^-3, -2.03858*10^-3, -1.32063*10^-3, 2.99716*10^-3, 2.9268*10^-3, 5.62786*10^-4, -1.04869*10^-3, 8.26995*10^-4, 1.88054*10^-3, -4.93161*10^-4, -3.90518*10^-3, -1.51366*10^-3, 3.76388*10^-3, 5.3093*10^-4, -3.00154*10^-3, -2.40843*10^-3, 8.5528*10^-4, 3.85729*10^-4, -2.43098*10^-3, -2.37887*10^-4, 2.89557*10^-3, 2.61856*10^-3, 3.28094*10^-4, 8.79738*10^-4, 7.70035*10^-4, 5.71347*10^-5, 3.76642*10^-4, 1.31691*10^-3, 9.55996*10^-4, 7.21945*10^-4, -4.03372*10^-4, -1.60847*10^-3, -1.03283*10^-3, -7.51801*10^-4, 4.23174*10^-4, 6.27723*10^-4, -6.71705*10^-4, -8.58713*10^-4, 1.62586*10^-3, 1.03657*10^-3, -9.5057*10^-4, -9.10638*10^-4, -1.0125*10^-3, -8.61948*10^-4, -3.62245*10^-5, -2.27309*10^-4, -5.78743*10^-4, -5.47456*10^-4, 6.47828*10^-5, -2.35777*10^-4, -5.59697*10^-4, -3.44701*10^-4, 2.84905*10^-5, 3.02894*10^-4, 1.77081*10^-4, -1.71227*10^-4, -8.80198*10^-5, 6.64343*10^-5, 6.22115*10^-5, 4.16509*10^-5, 9.30948*10^-5, -1.38413*10^-5, -4.98662*10^-5, 3.01538*10^-5, 4.76362*10^-5, 2.37743*10^-5, 1.70699*10^-5, 4.2651*10^-6, 6.51553*10^-8, 4.06252*10^-7, 0)); h(27,0) = fi.fir((8.51986*10^-6, -7.74554*10^-5, -1.57615*10^-4, 2.81386*10^-4, 7.3914*10^-4, 4.23694*10^-4, -2.06734*10^-3, 2.0378*10^-3, -2.29203*10^-3, 2.98479*10^-3, -5.20434*10^-3, 1.27194*10^-2, 1.84747*10^-2, 2.50006*10^-2, -4.69379*10^-2, -6.82872*10^-2, 1.76843*10^-2, -9.09983*10^-3, 2.63662*10^-2, 2.2592*10^-2, 6.3924*10^-3, 3.44057*10^-2, 8.71626*10^-3, -1.09569*10^-2, -2.00701*10^-2, -3.34543*10^-3, 1.22418*10^-2, -7.62197*10^-3, -1.82466*10^-2, -1.58395*10^-4, 8.04866*10^-3, -7.42268*10^-3, -1.70216*10^-2, -1.33348*10^-2, -8.67311*10^-3, 2.38606*10^-3, 1.93621*10^-2, 1.55897*10^-2, 2.11082*10^-3, 5.56127*10^-3, 8.4834*10^-3, 9.72094*10^-3, -3.15093*10^-3, -6.12273*10^-3, 3.13242*10^-3, 3.43884*10^-3, -3.62372*10^-3, -8.52966*10^-3, -1.53152*10^-3, -2.58936*10^-3, -3.48503*10^-3, -5.35488*10^-3, -5.97157*10^-3, 2.31401*10^-3, 2.92822*10^-3, -1.38717*10^-3, -3.00938*10^-3, -1.19474*10^-3, 5.74179*10^-5, -1.84167*10^-4, 1.72416*10^-3, 1.50731*10^-3, 3.8534*10^-3, 5.42097*10^-3, 3.39852*10^-3, 2.69334*10^-3, 1.66145*10^-3, -1.48438*10^-4, -1.11658*10^-3, -1.16978*10^-3, -1.22465*10^-3, -2.61339*10^-3, -5.84997*10^-4, -2.92849*10^-4, -7.56*10^-4, 2.1444*10^-3, 5.62922*10^-5, -3.50869*10^-3, -2.89841*10^-3, 2.28003*10^-4, 1.17529*10^-3, 8.44764*10^-4, 7.15955*10^-4, 1.11741*10^-3, 1.48688*10^-3, 1.15957*10^-3, -1.09252*10^-3, -2.20769*10^-3, -1.13326*10^-3, -2.55332*10^-4, 9.35657*10^-4, -4.01088*10^-4, 3.27901*10^-4, 2.48299*10^-3, 1.93815*10^-3, -7.27717*10^-5, -9.40745*10^-4, -4.50768*10^-4, -8.76083*10^-4, -1.25786*10^-3, -4.3473*10^-4, 1.59333*10^-4, 3.35003*10^-4, 2.85647*10^-5, -6.99542*10^-5, 1.42745*10^-4, -8.06921*10^-5, -2.4979*10^-4, -8.0048*10^-5, -2.53297*10^-4, -1.35398*10^-4, 2.72418*10^-4, 2.00374*10^-4, -2.73761*10^-5, -8.88094*10^-5, 2.73751*10^-5, 2.66986*10^-4, 7.26382*10^-5, -2.03089*10^-5, -2.65182*10^-5, 4.53633*10^-6, -5.46369*10^-7, -3.69577*10^-6, 9.80256*10^-6, -8.48683*10^-6, 4.36517*10^-6, 2.06204*10^-6, 0)); h(28,0) = fi.fir((-2.45111*10^-6, 6.66307*10^-5, -9.32174*10^-5, -1.60407*10^-5, 1.66822*10^-4, 1.24945*10^-4, -2.63228*10^-4, 1.75562*10^-4, 8.99811*10^-6, -4.89232*10^-4, 8.61523*10^-4, -5.50526*10^-4, -2.741*10^-3, 9.06451*10^-3, 1.47161*10^-3, -1.31018*10^-2, -1.50782*10^-3, 4.18876*10^-3, -2.4936*10^-3, 2.00021*10^-2, 6.25602*10^-3, -4.5702*10^-2, 1.71183*10^-2, 1.90398*10^-2, -9.87325*10^-3, 2.86731*10^-3, -9.41389*10^-3, 5.60726*10^-3, -4.25737*10^-4, -1.00331*10^-3, -1.15684*10^-3, 6.25974*10^-3, 1.32022*10^-3, -1.10307*10^-2, -3.32504*10^-3, 4.56292*10^-3, 6.60159*10^-3, 2.73952*10^-3, -4.58215*10^-3, -4.38771*10^-3, 2.02385*10^-3, 3.9643*10^-3, 2.29238*10^-4, 1.8177*10^-4, 5.30734*10^-4, -1.07051*10^-3, -8.05097*10^-4, 3.55014*10^-4, 1.49892*10^-3, -8.3629*10^-4, -2.93281*10^-4, -2.95353*10^-3, -1.9031*10^-3, -1.97557*10^-3, -1.97986*10^-3, -1.57247*10^-4, -4.70026*10^-4, -2.31036*10^-3, -1.80221*10^-3, 2.72356*10^-3, 3.19405*10^-3, 2.66101*10^-3, 2.00488*10^-3, 3.1505*10^-3, 4.52555*10^-3, 1.35169*10^-3, 1.45411*10^-4, 1.97812*10^-3, 7.67253*10^-4, -2.01637*10^-3, -9.7867*10^-4, -4.91883*10^-4, -1.59083*10^-3, -2.78685*10^-3, -2.58031*10^-3, -1.54227*10^-3, -1.91087*10^-3, -9.45088*10^-4, 1.47535*10^-4, 1.87605*10^-3, 9.27866*10^-4, -1.72966*10^-3, 5.17364*10^-4, 8.3453*10^-4, -9.58155*10^-4, -5.64467*10^-4, 2.71591*10^-4, 3.32391*10^-5, -1.28847*10^-3, -9.01326*10^-4, 6.15793*10^-4, 1.35228*10^-3, 1.13838*10^-3, 3.65355*10^-4, 1.94269*10^-4, 6.89543*10^-4, -1.09271*10^-4, -4.3673*10^-4, 7.48744*10^-5, -8.89243*10^-5, -2.21859*10^-4, 1.9163*10^-4, 4.51852*10^-4, 1.65983*10^-4, -2.60014*10^-5, 1.96808*10^-4, 1.71925*10^-4, 1.27255*10^-4, 2.14574*10^-5, 5.18306*10^-5, -2.48485*10^-5, 1.79268*10^-4, 1.23721*10^-4, 2.41166*10^-5, 4.99249*10^-5, -7.10481*10^-6, -1.77564*10^-5, -2.35601*10^-7, 2.56017*10^-5, 6.58063*10^-6, -2.38164*10^-5, -7.21558*10^-6, -4.49342*10^-6, -6.23026*10^-6, -6.40275*10^-6, -1.86267*10^-6, 5.07019*10^-7, 0)); h(29,0) = fi.fir((-2.18142*10^-5, -1.56564*10^-4, -1.84408*10^-4, -1.06294*10^-5, -2.93371*10^-4, 3.27483*10^-4, 8.31128*10^-4, 8.17338*10^-4, -8.56541*10^-4, 1.37029*10^-3, -1.7446*10^-3, 7.09911*10^-3, 1.0756*10^-2, -1.95281*10^-3, 2.98747*10^-3, -9.02319*10^-3, -3.53463*10^-2, -4.7048*10^-2, -7.06658*10^-3, 2.98992*10^-2, 2.58465*10^-2, 4.26235*10^-2, 3.92127*10^-2, 6.48839*10^-3, -1.66423*10^-3, -1.35478*10^-2, -3.41773*10^-2, -1.68554*10^-2, -2.65172*10^-2, -2.17894*10^-2, 8.60355*10^-3, 8.93964*10^-3, 1.05553*10^-2, 4.43326*10^-3, 6.52963*10^-3, 6.90235*10^-3, 4.03661*10^-3, -4.34042*10^-3, -9.32151*10^-4, -1.8332*10^-4, -3.16858*10^-3, 8.43456*10^-3, 5.70878*10^-3, -1.04407*10^-3, -1.60081*10^-3, 2.86157*10^-3, 3.20929*10^-3, 3.54243*10^-3, 1.28158*10^-4, -5.82607*10^-3, -5.60222*10^-3, -2.0779*10^-3, -2.31387*10^-3, -1.7007*10^-3, -4.11024*10^-4, 7.43701*10^-4, 2.33792*10^-3, 7.64665*10^-4, -1.82756*10^-3, -2.63297*10^-4, -4.69645*10^-4, -2.57292*10^-4, 1.17857*10^-3, 7.8053*10^-4, -1.52468*10^-5, 6.70616*10^-4, 3.99552*10^-3, 9.45599*10^-5, -2.58432*10^-3, 1.85273*10^-3, 1.45445*10^-3, 4.15991*10^-5, -1.07001*10^-3, -2.59023*10^-3, -1.47947*10^-3, 9.27011*10^-4, 1.20252*10^-3, -2.71824*10^-4, -2.60324*10^-4, 9.53455*10^-4, 3.26808*10^-5, -2.77959*10^-3, -7.70604*10^-4, -3.01831*10^-4, 3.07557*10^-4, 2.00473*10^-3, 2.5674*10^-3, 1.52675*10^-3, -4.54995*10^-4, -9.2322*10^-4, -2.85195*10^-3, -1.95925*10^-3, -1.97653*10^-4, 2.60997*10^-4, 1.42043*10^-3, 1.42217*10^-3, -1.21333*10^-4, 7.64203*10^-4, 1.7678*10^-3, -2.00928*10^-4, -2.02617*10^-3, -7.54518*10^-4, -4.18504*10^-4, -2.88454*10^-4, 1.79094*10^-4, 1.47907*10^-4, 1.29107*10^-4, -1.89154*10^-4, 8.77618*10^-5, 7.6293*10^-5, 3.11603*10^-5, 2.20948*10^-4, 1.14784*10^-4, 1.15323*10^-4, -9.51111*10^-5, -6.27218*10^-5, -1.20831*10^-4, 7.54961*10^-5, 8.79836*10^-5, -5.42298*10^-5, -4.57112*10^-5, 7.11125*10^-6, 3.00959*10^-5, 5.90208*10^-6, 5.44547*10^-6, -2.11481*10^-6, 1.0928*10^-7, 0)); h(30,0) = fi.fir((-1.18039*10^-5, 6.60603*10^-6, 2.11791*10^-4, -2.46179*10^-4, -3.99461*10^-4, 3.98691*10^-4, 3.27605*10^-4, -1.47688*10^-4, -5.1073*10^-4, 6.04741*10^-4, -1.06129*10^-3, 5.36497*10^-4, -1.29335*10^-2, 1.4727*10^-3, 3.11939*10^-2, 9.90797*10^-3, -2.34014*10^-2, -3.03173*10^-2, 1.02524*10^-2, 5.28166*10^-3, 2.64191*10^-2, 1.36932*10^-2, -4.89987*10^-2, 1.03916*10^-3, 9.32673*10^-3, 1.36454*10^-2, 2.49342*10^-3, -1.18615*10^-2, -2.37959*10^-4, 1.12098*10^-3, 1.03706*10^-2, -1.21944*10^-2, -5.78663*10^-3, 1.43394*10^-2, 7.13828*10^-3, -1.56883*10^-2, -6.44337*10^-3, 8.18587*10^-4, 8.27502*10^-3, 8.45345*10^-3, -4.65704*10^-3, -2.93578*10^-3, -1.74324*10^-3, 3.76534*10^-3, -3.7675*10^-4, -1.03774*10^-3, 9.59046*10^-4, -1.19035*10^-3, 1.93187*10^-3, 4.40682*10^-5, -1.71104*10^-4, 6.04681*10^-4, 2.80423*10^-3, 1.24663*10^-3, -4.93117*10^-3, -1.73866*10^-3, 1.4399*10^-3, 1.9703*10^-3, -1.11116*10^-3, -3.59368*10^-3, -1.98759*10^-3, -2.84615*10^-4, -5.25284*10^-4, -1.02227*10^-3, 1.8252*10^-3, 1.95075*10^-3, -4.33131*10^-4, -5.29127*10^-4, 1.48042*10^-3, 1.35711*10^-3, -7.68065*10^-4, 7.3311*10^-4, 7.05703*10^-4, -4.88378*10^-4, -7.30893*10^-5, 1.09489*10^-3, -9.40939*10^-4, -2.53659*10^-3, 5.94607*10^-4, 1.43457*10^-3, -5.24453*10^-4, -7.68652*10^-4, 1.39346*10^-3, 1.80516*10^-3, 4.37236*10^-6, -2.92426*10^-3, -2.24872*10^-3, 6.11472*10^-4, 2.86831*10^-4, -8.52483*10^-4, -9.67328*10^-4, -9.20395*10^-5, 1.22176*10^-3, 1.72185*10^-3, 7.73201*10^-4, -3.79908*10^-4, -9.09645*10^-4, -3.48091*10^-4, 3.39934*10^-4, 3.52626*10^-4, -1.17002*10^-4, -7.80214*10^-5, 8.07527*10^-5, -1.68338*10^-5, -1.11947*10^-4, -1.87727*10^-4, -7.96625*10^-5, -1.39837*10^-4, 1.93883*10^-4, -6.72879*10^-6, -1.16221*10^-4, 4.81784*10^-5, -6.48567*10^-5, -8.94861*10^-7, -1.19238*10^-5, 1.58936*10^-4, 9.31571*10^-5, -3.46926*10^-5, -7.13169*10^-5, -5.88322*10^-5, 3.59987*10^-5, 3.74989*10^-5, 4.86425*10^-6, -2.06496*10^-6, 6.6844*10^-7, -9.10627*10^-7, -3.55656*10^-7, 0)); h(31,0) = fi.fir((1.01157*10^-6, -4.03825*10^-5, 2.23065*10^-5, -1.47048*10^-4, 3.3447*10^-4, -6.64534*10^-4, 7.55389*10^-5, 7.61332*10^-5, 5.94679*10^-4, 1.81232*10^-4, -1.14539*10^-3, 9.23611*10^-4, 3.06798*10^-5, 2.00059*10^-3, -1.6422*10^-2, 1.40754*10^-2, 1.3812*10^-2, 5.06151*10^-3, -9.81395*10^-3, -4.59517*10^-2, 2.47785*10^-2, 1.60248*10^-2, -2.50778*10^-3, -5.72812*10^-3, -6.52795*10^-3, 2.65575*10^-2, -1.61714*10^-3, -1.19202*10^-2, -7.35669*10^-3, 6.00253*10^-3, 1.02206*10^-3, -9.38958*10^-3, 6.11832*10^-3, 4.89319*10^-3, 1.05405*10^-3, -5.47477*10^-3, -2.0941*10^-3, 6.8213*10^-3, -2.99433*10^-3, -5.42361*10^-3, -5.4999*10^-4, -7.87007*10^-5, -4.61107*10^-3, -4.80775*10^-4, 1.30451*10^-3, 9.18804*10^-4, 1.65884*10^-3, 1.49424*10^-4, 2.0852*10^-3, 9.60428*10^-4, 1.8685*10^-3, 2.76262*10^-3, 6.98747*10^-3, 3.78388*10^-3, -2.27789*10^-3, 9.75207*10^-4, 7.42107*10^-4, -1.23695*10^-3, -3.36984*10^-3, -5.50671*10^-3, -3.03662*10^-3, -6.60673*10^-4, -6.6618*10^-4, -1.03156*10^-3, 1.53153*10^-3, 1.79709*10^-3, 1.46131*10^-3, 1.89629*10^-3, 1.17538*10^-3, -1.03923*10^-4, 1.48803*10^-4, 4.53915*10^-4, -8.26743*10^-4, -3.24762*10^-3, -3.55812*10^-3, -1.36177*10^-3, -4.16915*10^-4, 1.11758*10^-3, 1.39629*10^-3, 1.67645*10^-3, 8.32944*10^-4, -9.69889*10^-4, -9.83742*10^-4, -1.76922*10^-3, -1.13013*10^-3, 2.84445*10^-5, 1.25928*10^-3, -1.13318*10^-5, -1.7108*10^-3, 1.17786*10^-4, 1.89*10^-3, 1.85798*10^-3, 5.69339*10^-4, 1.59872*10^-4, 9.04747*10^-4, 9.86218*10^-4, -6.75161*10^-5, 1.84688*10^-4, 1.5707*10^-3, 8.84292*10^-4, 1.86045*10^-4, 7.65027*10^-5, -1.78949*10^-4, -2.48451*10^-4, -4.8894*10^-4, -4.23574*10^-4, -1.84412*10^-5, 6.94546*10^-5, -5.46457*10^-4, -6.89602*10^-4, -2.08731*10^-4, -2.04718*10^-4, -1.0308*10^-4, 2.61503*10^-5, -5.68727*10^-5, -1.62033*10^-4, -2.11951*10^-4, -4.45035*10^-5, -1.24917*10^-5, -1.96488*10^-5, 1.24482*10^-5, 5.01888*10^-5, 3.12629*10^-5, 7.84319*10^-6, 5.23772*10^-6, 2.50842*10^-6, 1.26382*10^-7, 0)); h(32,0) = fi.fir((-4.48862*10^-6, 6.09362*10^-5, 2.44466*10^-4, -1.75865*10^-4, -4.49274*10^-4, 4.98891*10^-4, 7.51191*10^-4, -3.11959*10^-4, -3.31602*10^-4, 3.64566*10^-4, -2.79713*10^-4, 5.17846*10^-4, -1.51797*10^-2, 1.73991*10^-3, 3.75927*10^-2, 9.66999*10^-3, -3.46531*10^-2, -2.97084*10^-2, 1.47103*10^-2, 3.66681*10^-2, 2.61141*10^-2, -1.88242*10^-2, -5.40977*10^-2, -2.57094*10^-2, 2.98618*10^-2, 3.33516*10^-2, 3.18798*10^-3, -9.88893*10^-3, -1.88993*10^-2, -7.7309*10^-3, 1.38099*10^-2, 2.22203*10^-2, -4.07277*10^-4, -1.55326*10^-2, -3.21032*10^-3, 7.51132*10^-3, -3.6415*10^-3, 1.25525*10^-3, 9.09915*10^-3, 2.06941*10^-3, -5.42482*10^-3, -1.16972*10^-2, 2.8542*10^-4, 9.08149*10^-3, 9.73025*10^-3, -1.85872*10^-3, -7.28406*10^-3, -3.70021*10^-3, -3.08716*10^-3, 4.51093*10^-3, 3.89232*10^-3, -3.14501*10^-3, -4.60254*10^-4, -1.96657*10^-4, -2.54129*10^-3, 9.01699*10^-4, 3.61275*10^-3, 1.42499*10^-3, -2.29887*10^-3, -2.99232*10^-3, -5.83665*10^-4, 5.25939*10^-4, -7.98806*10^-5, -1.70656*10^-3, -6.68441*10^-4, 1.1855*10^-4, -8.67284*10^-4, 5.37148*10^-4, 2.29131*10^-3, 1.72384*10^-3, 1.07515*10^-3, 5.97472*10^-4, -3.05031*10^-4, -8.13872*10^-4, 6.42208*10^-5, 1.7048*10^-3, 1.3547*10^-3, 2.49221*10^-4, -3.3844*10^-4, -1.58616*10^-3, -1.18645*10^-3, 1.46979*10^-4, 6.4464*10^-5, 6.1178*10^-4, -2.0812*10^-3, -2.30834*10^-3, 1.92456*10^-3, 3.2023*10^-3, 9.47805*10^-4, -2.55453*10^-3, -7.71784*10^-4, 4.6127*10^-4, -4.69807*10^-4, 3.90704*10^-4, 1.51091*10^-3, 1.97553*10^-3, 5.6378*10^-4, 1.39927*10^-4, 4.52311*10^-4, 3.41852*10^-4, 2.79169*10^-4, 7.55511*10^-4, 1.22775*10^-3, 4.61068*10^-4, -3.11203*10^-4, 1.86037*10^-4, 3.25624*10^-4, -1.01329*10^-5, 1.12732*10^-5, 5.47188*10^-5, 2.87584*10^-4, 2.58787*10^-4, -4.64091*10^-6, -5.30887*10^-5, -7.25049*10^-6, -6.32482*10^-5, -2.12418*10^-5, 7.75834*10^-5, 3.02156*10^-5, -4.38703*10^-5, -1.2815*10^-5, 5.53353*10^-6, -1.16328*10^-5, -7.25239*10^-6, -2.23419*10^-6, 2.83422*10^-6, -1.89068*10^-7, 0)); h(33,0) = fi.fir((1.26794*10^-5, -3.7578*10^-5, 1.20349*10^-4, -3.25849*10^-4, 2.95949*10^-4, -1.02578*10^-3, 5.33003*10^-4, -5.52184*10^-4, 1.28688*10^-3, -1.80737*10^-4, -2.36882*10^-4, -1.11859*10^-3, -2.74356*10^-3, 4.83803*10^-3, -1.52924*10^-2, 1.87626*10^-2, 1.2748*10^-2, 2.67758*10^-3, -3.84138*10^-4, -4.83742*10^-2, 1.80199*10^-2, 2.44772*10^-2, -2.35437*10^-2, -2.7768*10^-2, 9.72829*10^-3, 5.97894*10^-2, 5.78605*10^-3, -2.70073*10^-2, -1.25824*10^-2, -1.3434*10^-2, 3.5737*10^-3, 9.26215*10^-3, -9.21767*10^-5, 7.54794*10^-3, -6.29108*10^-3, 5.95796*10^-4, 1.3603*10^-2, -2.96929*10^-3, 2.7787*10^-4, -1.54923*10^-3, -4.33275*10^-4, -6.92862*10^-3, -1.0442*10^-2, 3.4046*10^-3, 3.85159*10^-3, 3.92166*10^-3, -2.73524*10^-3, -4.35121*10^-3, 5.08894*10^-3, 4.72401*10^-4, 2.12803*10^-3, 4.74119*10^-3, -2.16002*10^-3, -2.90217*10^-3, -2.47795*10^-3, -1.38943*10^-3, 1.22764*10^-3, 3.29923*10^-3, 2.06871*10^-3, -3.82866*10^-3, -5.14821*10^-3, -3.03617*10^-3, 2.41698*10^-4, 9.7928*10^-4, -2.62236*10^-3, -8.86112*10^-4, 2.75799*10^-3, 2.54593*10^-3, 2.16744*10^-3, 1.09212*10^-3, -5.37946*10^-4, -3.21608*10^-4, 7.89164*10^-4, 3.70871*10^-4, -1.16524*10^-4, -3.63363*10^-4, 2.0359*10^-3, 2.84025*10^-3, 2.40705*10^-3, 6.30052*10^-4, -8.457*10^-4, 5.49988*10^-4, -1.36692*10^-3, -2.63742*10^-3, -2.43838*10^-3, -2.92289*10^-4, 1.09914*10^-3, -2.7603*10^-4, -3.30784*10^-4, 5.08796*10^-4, 9.19875*10^-4, -3.45505*10^-4, -1.59165*10^-3, -8.26149*10^-4, 1.04705*10^-4, -8.57647*10^-4, -2.17092*10^-3, -2.26857*10^-4, 9.96146*10^-4, 3.54697*10^-4, 8.09902*10^-5, 6.6595*10^-4, 2.99469*10^-4, -6.72221*10^-4, -2.96615*10^-4, 1.79193*10^-4, 1.60559*10^-4, 5.49628*10^-5, 1.77574*10^-4, 2.36535*10^-4, 4.61641*10^-4, 1.12188*10^-4, -3.30619*10^-5, 1.61932*10^-4, 1.35399*10^-4, 2.01172*10^-5, -1.58067*10^-4, 3.94347*10^-5, 7.90168*10^-5, 2.52952*10^-5, -1.41828*10^-5, 7.16722*10^-6, 1.40883*10^-5, -1.1707*10^-5, -2.7363*10^-6, -4.80203*10^-6, -5.81624*10^-7, 0)); h(34,0) = fi.fir((8.14951*10^-6, 3.52685*10^-7, 3.19158*10^-5, 1.14879*10^-5, 4.00007*10^-4, -2.71113*10^-4, -7.01769*10^-4, 1.07489*10^-3, 6.41677*10^-4, -9.01272*10^-4, -6.88747*10^-4, 1.7748*10^-3, -6.96466*10^-3, 2.49486*10^-3, -2.98*10^-3, 2.39814*10^-3, 4.0556*10^-2, -7.6565*10^-3, -3.67176*10^-2, -7.14102*10^-3, 2.16451*10^-2, 2.43323*10^-3, -3.38868*10^-2, 9.98825*10^-3, 1.7029*10^-2, -7.64684*10^-3, 1.21183*10^-2, -6.28892*10^-4, -1.68571*10^-2, -1.01902*10^-3, 1.65353*10^-2, 1.86297*10^-2, -1.46474*10^-2, -1.62934*10^-2, -6.38752*10^-3, 9.29137*10^-3, 1.42479*10^-2, -7.99541*10^-3, -4.23944*10^-3, 1.28385*10^-3, -4.18323*10^-3, 9.13826*10^-4, 1.01335*10^-2, 9.28239*10^-4, -2.46241*10^-3, 1.15421*10^-3, 6.00314*10^-4, -1.37786*10^-3, 1.00493*10^-4, 4.1121*10^-3, -1.41283*10^-3, -3.19451*10^-3, -2.61967*10^-3, -2.7896*10^-3, 5.88005*10^-4, 1.00567*10^-3, -5.48478*10^-4, -2.17545*10^-3, -9.33177*10^-4, 1.25557*10^-3, 8.94945*10^-4, 2.7542*10^-3, 3.56714*10^-3, -4.7788*10^-4, -5.12486*10^-3, -1.72815*10^-3, 2.47594*10^-3, 1.44275*10^-4, 1.48588*10^-3, 3.1345*10^-3, -7.56187*10^-4, -2.44176*10^-3, -4.33004*10^-4, 1.63421*10^-3, 4.28056*10^-4, -2.87614*10^-3, -2.42127*10^-3, 4.56407*10^-4, 1.5641*10^-3, 9.49912*10^-4, 1.08999*10^-3, 1.16118*10^-3, 1.46583*10^-4, -2.16163*10^-4, -1.27645*10^-4, -2.33796*10^-3, -8.47197*10^-4, 2.60412*10^-3, 1.65866*10^-3, -1.86258*10^-3, -1.5387*10^-3, 1.94141*10^-3, 1.36244*10^-3, -2.97423*10^-4, 1.67942*10^-4, 9.26958*10^-4, -2.14066*10^-4, -1.16884*10^-4, 6.92021*10^-4, 5.04406*10^-4, -3.35078*10^-4, 6.28932*10^-4, 9.95192*10^-4, 2.33008*10^-4, 1.0493*10^-4, 5.76404*10^-4, 7.4196*10^-4, -2.23633*10^-4, -5.01475*10^-4, 4.83903*10^-4, 5.36297*10^-4, 1.55359*10^-4, 5.6033*10^-5, 2.01717*10^-5, -4.89991*10^-5, 7.32446*10^-5, -1.40287*10^-4, -1.56736*10^-5, 5.99611*10^-5, -1.58143*10^-6, -5.35903*10^-5, -2.33977*10^-5, -4.23318*10^-6, -2.27502*10^-5, 7.261*10^-6, -3.27926*10^-6, -1.24281*10^-6, 0)); h(35,0) = fi.fir((5.40621*10^-6, 1.91853*10^-5, 1.33104*10^-4, -9.32093*10^-4, 1.94297*10^-4, -5.95943*10^-4, 2.59053*10^-3, -2.76788*10^-3, 2.10005*10^-3, -2.83878*10^-3, 6.53665*10^-3, -1.06439*10^-2, -2.64557*10^-2, 2.02633*10^-2, 3.50476*10^-2, 2.93269*10^-2, -4.17492*10^-2, -2.79913*10^-2, 2.17552*10^-2, -9.52426*10^-3, -2.7775*10^-2, -2.88177*10^-2, 4.94517*10^-2, 4.98324*10^-2, -1.54797*10^-2, -1.93369*10^-3, 4.87655*10^-3, -5.16451*10^-3, -1.44908*10^-2, -1.22021*10^-3, -3.46316*10^-3, -1.41067*10^-2, 3.84372*10^-3, 4.87331*10^-4, -1.71877*10^-3, 8.07785*10^-3, -2.49059*10^-3, -1.64291*10^-3, 1.79895*10^-3, -4.80367*10^-3, -3.04848*10^-4, -3.38744*10^-4, 3.16473*10^-3, 2.54488*10^-3, 3.88663*10^-3, 5.0693*10^-3, -1.43747*10^-3, 2.19258*10^-3, 1.72276*10^-3, 1.55049*10^-5, 1.21859*10^-3, -3.66072*10^-4, -3.84556*10^-3, -4.5419*10^-3, -1.4153*10^-3, 2.86103*10^-3, 2.72508*10^-3, 1.1049*10^-4, -8.63202*10^-4, -2.78885*10^-4, 8.0278*10^-4, -1.36552*10^-3, -8.49942*10^-4, -1.425*10^-3, -9.16682*10^-4, 6.46569*10^-4, 6.50717*10^-4, 2.05676*10^-3, 4.11961*10^-4, -6.81564*10^-4, -1.04465*10^-3, 4.06358*10^-4, -5.18251*10^-5, -3.02467*10^-3, -6.25004*10^-4, 6.71543*10^-4, -1.16373*10^-4, -5.34862*10^-4, -3.65446*10^-4, 3.93975*10^-4, 2.2775*10^-5, 1.00113*10^-3, 8.3288*10^-4, 1.15098*10^-4, 3.53773*10^-4, 2.67389*10^-4, -6.30503*10^-4, -6.6567*10^-4, 8.29062*10^-4, 1.23606*10^-3, -8.7084*10^-4, -7.16723*10^-4, 7.45042*10^-4, 5.75747*10^-4, 5.69013*10^-4, -8.98243*10^-4, -5.03005*10^-4, 5.71304*10^-4, -5.31534*10^-5, 3.29446*10^-4, 9.95788*10^-4, 1.60726*10^-4, -5.96185*10^-4, 2.12565*10^-4, 5.79142*10^-4, -2.2867*10^-4, -2.57395*10^-4, 6.56951*10^-5, 1.84131*10^-4, 2.27385*10^-4, -1.03678*10^-4, -2.96208*10^-4, 1.43947*10^-4, 1.30158*10^-4, -1.59219*10^-4, -7.53028*10^-5, -4.23704*10^-5, -4.65941*10^-5, 3.94849*10^-5, 1.10663*10^-5, -5.17859*10^-5, -3.0136*10^-5, 1.87906*10^-6, -8.87482*10^-6, -1.04529*10^-6, -1.1368*10^-7, 4.15975*10^-7, 0)); h(0,1) = fi.fir((1.96889*10^-5, 1.27139*10^-4, -1.60754*10^-4, 7.24458*10^-4, 8.40054*10^-4, 7.82518*10^-4, 6.46817*10^-4, 1.05561*10^-3, 1.07368*10^-3, 5.57527*10^-4, 2.06854*10^-3, 7.39153*10^-4, 4.89414*10^-2, 5.30012*10^-2, 4.66987*10^-2, 6.22112*10^-2, 4.39486*10^-2, 8.13459*10^-2, 4.74243*10^-2, 4.14059*10^-2, 6.97323*10^-2, 5.03806*10^-2, 1.11697*10^-1, 5.44643*10^-2, -2.12956*10^-2, 3.68012*10^-2, 4.24237*10^-2, 7.52294*10^-3, 1.23141*10^-2, 2.16826*10^-2, 1.77306*10^-2, 8.01942*10^-3, -2.93953*10^-3, 2.1074*10^-2, 2.72114*10^-2, 5.65642*10^-3, 1.05391*10^-2, 8.15985*10^-3, 6.06657*10^-3, 7.29384*10^-3, 1.45252*10^-3, 4.98629*10^-3, 1.40384*10^-2, 1.05579*10^-2, -9.20787*10^-4, 4.31154*10^-3, 8.46299*10^-3, 7.157*10^-4, 6.71666*10^-4, 4.64837*10^-3, 1.43566*10^-3, 2.09301*10^-4, 1.39635*10^-3, 2.92299*10^-3, 4.2595*10^-3, 3.9974*10^-3, 4.49754*10^-6, -6.33171*10^-4, 2.78079*10^-3, 3.80208*10^-3, 2.61221*10^-3, 3.38193*10^-3, 6.48151*10^-3, 6.72976*10^-3, 3.88011*10^-3, 2.93818*10^-3, 1.69334*10^-3, 2.81279*10^-3, 3.37264*10^-3, -3.62222*10^-4, 7.2404*10^-4, 1.98287*10^-3, 3.90875*10^-3, 5.30227*10^-3, 3.60327*10^-3, 5.38217*10^-3, 4.63264*10^-3, 2.01999*10^-3, 2.04096*10^-3, 1.44247*10^-3, 2.66924*10^-3, 1.53689*10^-3, -6.87957*10^-4, 2.51564*10^-5, 1.05509*10^-3, 1.75057*10^-3, 2.67456*10^-3, 3.65475*10^-3, 1.93882*10^-3, -8.75197*10^-4, -6.11186*10^-4, -1.7742*10^-5, -1.96204*10^-3, -2.3706*10^-3, -9.94088*10^-5, 3.35121*10^-3, 2.5739*10^-3, -4.73651*10^-4, -4.8385*10^-4, 5.9498*10^-4, 9.45038*10^-4, 1.3272*10^-3, 1.47426*10^-3, 1.84199*10^-3, 1.2236*10^-3, 1.00501*10^-3, 1.62599*10^-3, 1.30975*10^-3, 9.59789*10^-4, 7.79071*10^-4, 7.09245*10^-4, 1.03368*10^-3, 5.0422*10^-4, 4.26597*10^-4, 5.08036*10^-4, 5.02614*10^-4, 3.83524*10^-4, 1.61141*10^-4, 2.02164*10^-4, 1.95057*10^-4, 1.17308*10^-4, 5.59968*10^-5, -1.47262*10^-6, 7.39806*10^-7, 1.69708*10^-5, 7.13748*10^-6, 1.74779*10^-6, 0)); h(1,1) = fi.fir((-2.47098*10^-5, -1.5027*10^-4, 2.75169*10^-4, -8.51532*10^-4, -8.49503*10^-4, -1.07232*10^-3, -4.29699*10^-4, -4.53602*10^-4, -1.01019*10^-3, -7.2128*10^-4, -1.49621*10^-3, -6.73578*10^-4, -7.84899*10^-2, -8.29356*10^-2, -6.4767*10^-2, -7.72965*10^-2, -4.00928*10^-2, -9.77876*10^-2, -5.31961*10^-2, -8.81751*10^-3, -4.26613*10^-2, -4.13938*10^-2, -8.01361*10^-2, -9.29206*10^-4, 5.68951*10^-2, 1.0567*10^-2, 1.42102*10^-2, 2.54229*10^-2, 2.36018*10^-2, 3.30715*10^-2, 2.46582*10^-2, 1.28671*10^-2, 2.3498*10^-2, 3.02699*10^-2, 2.32959*10^-2, 1.86217*10^-2, 2.90731*10^-2, 3.33365*10^-2, 1.7693*10^-2, 1.6965*10^-2, 2.27996*10^-2, 1.60724*10^-2, 1.75694*10^-2, 1.73035*10^-2, 1.98069*10^-2, 1.70273*10^-2, 1.22635*10^-2, 1.16857*10^-2, 1.21522*10^-2, 1.66992*10^-2, 1.88991*10^-2, 1.43637*10^-2, 7.90244*10^-3, 4.68815*10^-3, 5.80003*10^-3, 7.40671*10^-3, 1.09805*10^-2, 1.10121*10^-2, 5.75489*10^-3, 5.13578*10^-3, 3.89261*10^-3, 2.04509*10^-3, 2.32849*10^-3, 3.037*10^-3, 2.27327*10^-3, 3.77902*10^-4, 1.28867*10^-3, 1.64631*10^-3, 5.42053*10^-4, 3.90025*10^-3, 4.45499*10^-3, 1.55717*10^-4, -1.88932*10^-3, -5.97807*10^-4, -9.84567*10^-4, -1.1553*10^-3, 1.7905*10^-3, 6.59942*10^-4, -2.56507*10^-3, -2.47991*10^-3, -1.74382*10^-3, -1.1313*10^-4, 1.16433*10^-3, -6.15973*10^-4, -2.12734*10^-3, -1.44013*10^-3, -7.52906*10^-4, -1.67116*10^-3, -1.61012*10^-3, 2.19727*10^-4, 1.54297*10^-4, -1.30908*10^-3, -1.27163*10^-3, -1.7169*10^-3, -2.05962*10^-3, -1.39564*10^-3, -6.9698*10^-4, -6.5036*10^-4, -7.37778*10^-4, -7.7856*10^-4, -9.6599*10^-4, -1.05724*10^-3, -6.49337*10^-4, -4.21802*10^-4, -4.06934*10^-4, -4.15784*10^-4, -2.38018*10^-5, -1.54768*10^-4, 9.12388*10^-6, 2.39084*10^-4, 2.2708*10^-4, 2.51322*10^-4, 3.68308*10^-4, 3.06277*10^-4, 1.52618*10^-5, 2.67516*10^-5, 1.18887*10^-4, 1.58936*10^-4, 1.65502*10^-4, 3.39827*10^-5, -2.50192*10^-6, 3.71676*10^-5, 7.19018*10^-5, 4.14705*10^-5, 8.50585*10^-6, 3.69732*10^-6, 1.48337*10^-6, 0)); h(2,1) = fi.fir((-1.04262*10^-5, -3.758*10^-5, -5.11234*10^-6, -2.70496*10^-4, 1.47661*10^-4, 2.31146*10^-4, -2.49192*10^-4, -1.0622*10^-3, 7.69566*10^-4, 7.08007*10^-5, -9.5017*10^-4, -2.12469*10^-4, -5.64598*10^-3, -9.76993*10^-4, -1.84861*10^-3, -1.11431*10^-2, -1.41169*10^-2, 2.58155*10^-2, -2.49322*10^-3, -4.33556*10^-2, 1.20598*10^-3, 2.2299*10^-2, 9.2729*10^-3, 2.78365*10^-3, 4.38648*10^-3, -8.63905*10^-3, 5.37327*10^-4, -1.96867*10^-2, 9.235*10^-3, 3.3864*10^-2, -4.93341*10^-3, -1.43689*10^-2, -8.98901*10^-3, 4.03937*10^-3, -1.33631*10^-3, 5.4466*10^-3, 8.84039*10^-3, -7.86783*10^-3, -1.14674*10^-2, -3.8962*10^-3, 1.08066*10^-3, 8.17955*10^-3, 6.69066*10^-3, 3.30976*10^-4, -2.63441*10^-3, -1.2261*10^-3, 1.84975*10^-4, 3.0812*10^-3, 7.96032*10^-3, 7.56406*10^-3, 4.15929*10^-3, -7.85113*10^-4, -2.29878*10^-4, 3.2282*10^-3, 4.25301*10^-3, 2.27417*10^-3, -7.83797*10^-4, -2.20639*10^-3, -1.52893*10^-3, -1.22218*10^-3, -6.80485*10^-4, 7.66541*10^-6, 2.1519*10^-3, 2.35812*10^-3, -1.34083*10^-3, -2.59829*10^-3, -1.64578*10^-3, -2.75033*10^-3, -3.16542*10^-3, -2.38017*10^-3, -1.82603*10^-3, -1.96376*10^-3, -3.06353*10^-3, -1.37004*10^-3, 1.02092*10^-3, 1.74807*10^-3, 1.39904*10^-4, -1.09607*10^-3, 8.27394*10^-4, 1.45085*10^-3, 9.06103*10^-4, 3.86788*10^-4, -2.74177*10^-5, 1.18894*10^-3, -2.16738*10^-4, -4.39841*10^-4, 2.51957*10^-3, 2.97761*10^-3, 1.73031*10^-3, 1.32805*10^-3, 2.0406*10^-3, 8.76507*10^-4, -1.13467*10^-3, -1.02503*10^-3, -3.84737*10^-4, -4.65506*10^-4, -1.52734*10^-3, -1.28149*10^-3, -4.03028*10^-4, -1.03053*10^-3, -1.20272*10^-3, -1.3616*10^-3, -1.67489*10^-3, -1.86384*10^-3, -1.36555*10^-3, -8.28266*10^-4, -1.10553*10^-3, -9.79588*10^-4, -8.55899*10^-4, -9.47718*10^-4, -7.25086*10^-4, -6.65779*10^-4, -4.86784*10^-4, -2.63489*10^-4, 1.91026*10^-5, 5.59009*10^-5, -3.48346*10^-5, -5.18512*10^-5, -7.89041*10^-7, 9.57012*10^-5, 1.22408*10^-4, 9.32295*10^-5, 3.4954*10^-5, 1.98734*10^-5, 1.89778*10^-5, 1.0045*10^-5, 1.8649*10^-6, 0)); h(3,1) = fi.fir((1.50022*10^-5, 2.32588*10^-5, 1.07706*10^-4, -6.42903*10^-5, 5.58749*10^-4, -1.97024*10^-4, 5.69647*10^-4, -5.05773*10^-4, 2.86004*10^-4, 1.27547*10^-4, 6.54334*10^-4, -2.16524*10^-4, -3.73067*10^-3, 3.3821*10^-3, -5.80219*10^-4, 1.31959*10^-2, -7.36802*10^-3, 1.5611*10^-2, 2.92041*10^-2, -4.39889*10^-3, -1.47934*10^-3, -2.15706*10^-2, 2.1176*10^-2, 1.30594*10^-2, -5.75248*10^-2, -6.0285*10^-3, 5.37481*10^-2, -1.44425*10^-3, -3.91217*10^-2, -9.24877*10^-3, 2.43674*10^-2, 1.15422*10^-2, -2.86455*10^-2, -1.31834*10^-2, 1.25606*10^-2, -4.59738*10^-3, -7.3186*10^-3, -1.5759*10^-3, 1.27378*10^-3, 8.42323*10^-3, -4.34699*10^-3, -1.06382*10^-2, 2.22904*10^-3, 1.10775*10^-2, 2.87069*10^-3, -1.39329*10^-3, 6.15266*10^-3, 1.19972*10^-3, -4.37394*10^-3, 2.01686*10^-3, 4.86999*10^-3, 2.07781*10^-3, 1.78551*10^-4, 1.19525*10^-3, 3.85171*10^-5, 2.21504*10^-3, 3.54482*10^-3, 1.11368*10^-3, 4.08736*10^-4, 7.01284*10^-4, -1.6638*10^-3, -3.83124*10^-3, 1.02589*10^-3, 3.90744*10^-3, 1.21048*10^-3, -4.4511*10^-4, -5.0954*10^-4, -1.10707*10^-3, -2.33558*10^-3, -2.93582*10^-3, -1.81733*10^-3, -1.37873*10^-3, -1.03864*10^-3, -5.9075*10^-4, -1.90491*10^-3, -2.29879*10^-3, -1.00318*10^-3, -1.29805*10^-3, -1.24602*10^-3, -1.10995*10^-3, -1.13996*10^-3, -2.86675*10^-3, -2.73074*10^-3, -1.6274*10^-4, 1.09229*10^-3, 1.50447*10^-3, 2.32615*10^-3, 4.06262*10^-3, 1.98173*10^-3, -1.70804*10^-3, -1.377*10^-3, 1.67907*10^-3, 6.59975*10^-4, -2.28615*10^-3, -1.45302*10^-3, 2.75175*10^-3, 3.73392*10^-3, -4.09495*10^-4, -2.77688*10^-3, -1.30731*10^-3, -5.98906*10^-4, -7.39556*10^-4, -9.1664*10^-4, -6.40613*10^-4, -2.31076*10^-4, -8.29505*10^-4, -8.1294*10^-4, -6.43591*10^-4, -8.06327*10^-4, -7.023*10^-4, -5.28145*10^-4, 1.15798*10^-4, 5.66913*10^-5, -2.80439*10^-4, -2.93776*10^-4, -7.43292*10^-5, 1.16979*10^-4, 3.24905*10^-5, 4.2207*10^-5, 9.86781*10^-5, 1.19185*10^-4, 5.53096*10^-5, 5.56606*10^-6, 8.76003*10^-6, 5.14829*10^-6, 3.31876*10^-6, 1.41881*10^-6, 0)); h(4,1) = fi.fir((-1.28837*10^-5, -2.2571*10^-6, -2.04336*10^-4, 2.89394*10^-4, -4.36107*10^-4, 6.24781*10^-4, -1.14682*10^-3, 1.49292*10^-3, -3.32498*10^-4, -6.40174*10^-5, -6.58512*10^-4, 1.08131*10^-3, 6.14859*10^-3, -5.05303*10^-3, 1.07937*10^-3, -2.58357*10^-2, 1.25871*10^-2, -1.94256*10^-2, -4.44767*10^-2, 1.82515*10^-2, 9.20931*10^-3, 3.15938*10^-2, -6.57556*10^-3, 4.78233*10^-3, 4.80442*10^-2, 3.87811*10^-3, -1.73968*10^-2, -6.6563*10^-3, 9.46403*10^-3, 2.72256*10^-2, 8.70882*10^-4, -2.68658*10^-2, -2.20283*10^-3, 1.70789*10^-2, 5.82195*10^-3, -8.75734*10^-3, -8.55455*10^-3, -7.84948*10^-4, -2.16257*10^-3, -1.07364*10^-2, -6.62343*10^-3, -1.64357*10^-3, 6.85873*10^-3, 3.47187*10^-3, -4.75943*10^-3, -7.34871*10^-3, -4.17985*10^-3, 9.96385*10^-4, 1.68163*10^-3, -4.09446*10^-3, -4.8163*10^-3, 1.88691*10^-3, -4.69171*10^-4, 1.07755*10^-3, 2.62109*10^-3, 2.26215*10^-3, 2.44952*10^-3, -1.30377*10^-3, -3.75098*10^-3, -4.28571*10^-3, -5.1085*10^-4, 2.00028*10^-3, -1.22741*10^-3, 4.00218*10^-4, 9.80719*10^-4, -1.75864*10^-4, 1.75755*10^-4, 9.29631*10^-4, -1.62845*10^-4, 2.34556*10^-4, 3.21454*10^-3, 1.71149*10^-3, -2.60035*10^-4, -1.96968*10^-4, 3.34401*10^-4, -7.62874*10^-4, -9.81886*10^-4, 4.16359*10^-4, -4.26477*10^-4, 1.09789*10^-3, 1.54485*10^-3, 7.30135*10^-4, 1.21663*10^-3, -3.94495*10^-4, 1.2959*10^-4, 1.03707*10^-4, -9.91956*10^-4, -3.0826*10^-4, -8.45419*10^-4, 4.44119*10^-5, 1.00478*10^-3, 1.18167*10^-3, 6.50443*10^-4, -1.2369*10^-3, -1.24727*10^-3, -1.81872*10^-4, 3.26622*10^-4, 4.47982*10^-4, 5.50446*10^-4, -5.50101*10^-5, 1.1103*10^-4, 1.36011*10^-4, -1.81368*10^-4, 2.28636*10^-4, 2.99965*10^-5, -3.51923*10^-4, -3.3669*10^-4, -6.18528*10^-5, 1.54268*10^-4, 4.63668*10^-5, -7.42483*10^-5, -4.85157*10^-5, -8.10968*10^-5, -4.24054*10^-5, -3.68663*10^-5, -5.55517*10^-5, -8.65485*10^-5, -2.59414*10^-5, 2.23151*10^-5, -3.59181*10^-5, -6.33178*10^-5, -4.06072*10^-5, 8.17412*10^-6, 6.14464*10^-6, -3.26217*10^-6, -3.52551*10^-6, -4.87449*10^-7, 0)); h(5,1) = fi.fir((-1.24137*10^-5, -3.47005*10^-5, -2.05885*10^-4, 1.48373*10^-4, -6.74882*10^-4, -7.85914*10^-4, -5.57107*10^-4, 8.44402*10^-4, -1.92172*10^-3, -4.63656*10^-4, 4.82542*10^-4, -3.39503*10^-4, 1.11489*10^-2, 1.39284*10^-3, -3.28332*10^-3, 1.5908*10^-2, 1.68941*10^-2, -3.51254*10^-2, -8.21635*10^-4, 3.68006*10^-2, -7.9993*10^-3, -2.63323*10^-2, -1.61706*10^-2, 2.06245*10^-3, 3.41205*10^-3, 2.43489*10^-3, -2.87375*10^-3, 1.57848*10^-2, -1.0152*10^-3, -1.10397*10^-2, -8.01492*10^-3, -2.2649*10^-3, 1.35094*10^-2, -7.53143*10^-3, -4.96896*10^-3, 5.08388*10^-3, -2.06598*10^-3, -2.20457*10^-4, -3.20157*10^-4, -3.80796*10^-3, -2.63921*10^-3, -2.41141*10^-3, -3.07881*10^-3, 1.14676*10^-3, 7.22064*10^-3, -1.18978*10^-3, -2.66146*10^-3, 1.48231*10^-4, 5.31922*10^-4, -1.93302*10^-3, -1.77042*10^-3, 1.86255*10^-3, 1.40911*10^-3, 1.55444*10^-3, -1.58308*10^-3, -1.56606*10^-3, 3.45985*10^-3, 3.40823*10^-3, 1.78537*10^-3, 5.75071*10^-4, 1.3802*10^-3, 1.32278*10^-3, -1.15249*10^-3, 5.03369*10^-4, 3.3735*10^-4, -5.63033*10^-5, 1.06162*10^-3, -5.44179*10^-4, 7.3547*10^-5, 3.65462*10^-3, 2.67881*10^-3, 6.37521*10^-4, 7.69439*10^-4, -3.47477*10^-4, -1.91797*10^-3, -1.7979*10^-3, 7.51019*10^-5, -1.76065*10^-5, -1.39395*10^-3, 2.275*10^-4, 9.19819*10^-4, 2.07868*10^-3, 2.80241*10^-3, -5.83562*10^-4, -2.58332*10^-3, -2.39031*10^-3, -3.1734*10^-3, -2.73144*10^-3, -1.31188*10^-3, -5.83876*10^-4, -9.65501*10^-4, -7.85101*10^-4, 2.76682*10^-4, -6.82499*10^-4, -1.49796*10^-3, -3.28942*10^-3, -3.08618*10^-3, -1.06711*10^-3, -1.19415*10^-3, -1.22034*10^-3, -6.1493*10^-4, -5.42423*10^-4, -5.71456*10^-4, -1.21467*10^-3, -9.64846*10^-4, -7.1455*10^-4, -9.23679*10^-4, -2.72771*10^-4, -3.95822*10^-4, -3.19031*10^-4, 4.16914*10^-5, -2.42675*10^-4, -2.58434*10^-5, -3.62927*10^-5, -6.50093*10^-5, -7.65374*10^-5, -1.5924*10^-4, 4.49009*10^-5, 1.26739*10^-5, -2.91374*10^-5, 1.32206*10^-5, 7.22764*10^-6, 2.05057*10^-5, 3.47604*10^-8, -1.32724*10^-5, -5.71049*10^-6, 7.21156*10^-7, 0)); h(6,1) = fi.fir((-4.94134*10^-6, -2.03832*10^-5, 1.5575*10^-4, -5.70227*10^-5, -2.26502*10^-4, -1.75224*10^-4, 2.01359*10^-4, 2.31249*10^-4, -6.155*10^-5, -2.72913*10^-4, 3.58363*10^-4, -2.11776*10^-3, -4.22768*10^-2, -4.44816*10^-2, -1.93023*10^-2, -2.74978*10^-2, 5.26948*10^-3, -1.55901*10^-2, -1.26207*10^-2, 4.52021*10^-2, 3.7277*10^-3, 6.97526*10^-3, 3.4926*10^-2, 3.20497*10^-4, 2.01536*10^-2, 4.16384*10^-2, 9.92074*10^-3, 1.52545*10^-2, 1.63858*10^-2, 9.39652*10^-3, 1.39764*10^-2, -6.03544*10^-4, 2.95888*10^-3, 1.07584*10^-2, 4.11948*10^-3, -4.57394*10^-3, -5.18584*10^-5, 8.67053*10^-3, -8.19709*10^-4, -2.71496*10^-3, 1.57178*10^-3, -6.04226*10^-3, -7.573*10^-3, -4.97027*10^-3, -7.72571*10^-3, -5.40122*10^-3, -6.65008*10^-4, -5.13181*10^-3, -8.61829*10^-3, -6.1875*10^-3, -5.86852*10^-3, -6.90397*10^-3, -1.97319*10^-3, -1.10637*10^-3, -4.40538*10^-3, -5.0915*10^-3, -4.60066*10^-3, -3.75105*10^-3, -2.02713*10^-3, 6.34135*10^-4, 1.52519*10^-3, 2.16723*10^-4, -1.90415*10^-3, -6.41773*10^-4, 2.93369*10^-3, 3.06934*10^-3, 1.61143*10^-3, 1.11467*10^-5, -2.91699*10^-3, -1.18198*10^-3, 1.59566*10^-3, 8.02869*10^-5, -1.45224*10^-4, -6.72323*10^-4, -3.35524*10^-3, -1.299*10^-3, 3.48142*10^-4, -3.64334*10^-4, -1.40716*10^-3, -1.33269*10^-3, 9.54181*10^-4, 9.4944*10^-5, -4.90638*10^-4, 7.64064*10^-4, 5.15169*10^-4, 7.1971*10^-5, -8.4653*10^-4, -1.24543*10^-3, -3.70598*10^-4, -3.16498*10^-4, 1.01923*10^-3, 4.93628*10^-4, -1.99826*10^-4, 6.54404*10^-4, 1.59738*10^-4, -1.38876*10^-4, -9.65849*10^-4, -1.78013*10^-4, 1.5065*10^-3, 1.03462*10^-3, 1.02185*10^-4, 1.1025*10^-6, 4.21365*10^-5, -7.97753*10^-5, -3.24792*10^-5, 4.138*10^-4, 6.18073*10^-4, 5.01459*10^-4, 1.29941*10^-4, 1.6541*10^-4, 2.58758*10^-4, 2.1505*10^-5, -1.01844*10^-4, -1.3697*10^-4, -1.05237*10^-4, -5.84711*10^-5, -3.22237*10^-5, -1.69802*10^-5, -1.41509*10^-5, -3.28963*10^-6, -6.86851*10^-5, -5.10851*10^-5, -1.1654*10^-5, -8.49295*10^-6, -7.91252*10^-6, -5.39788*10^-6, 6.59979*10^-8, 0)); h(7,1) = fi.fir((5.35095*10^-6, 2.00819*10^-5, 5.19844*10^-6, -7.49829*10^-5, 1.29621*10^-4, -1.15039*10^-4, -6.50134*10^-5, 3.0013*10^-4, 2.5865*10^-4, -6.40087*10^-4, 5.0859*10^-4, 3.59551*10^-4, -3.63038*10^-4, -1.45427*10^-3, 4.7379*10^-4, 2.51299*10^-4, -3.96484*10^-3, 2.63627*10^-4, -8.43745*10^-3, 1.06017*10^-2, 1.69305*10^-2, -1.39511*10^-2, -1.44406*10^-2, 2.84124*10^-2, -9.65604*10^-3, -2.92933*10^-2, 3.6199*10^-2, -7.86339*10^-3, -9.22201*10^-3, 6.88345*10^-3, -1.165*10^-2, -6.39689*10^-3, 1.92933*10^-2, 1.91555*10^-2, -2.706*10^-2, 9.63596*10^-3, 1.77702*10^-2, -1.58301*10^-2, 1.1423*10^-3, 9.42445*10^-3, -1.5727*10^-3, -6.58114*10^-3, -3.85272*10^-4, -3.49277*10^-3, -4.28385*10^-3, 6.45499*10^-3, -2.64027*10^-3, -5.6145*10^-3, -2.88651*10^-3, -3.92757*10^-3, -5.57668*10^-3, -8.64361*10^-4, 5.74359*10^-3, -1.64622*10^-3, -1.13243*10^-3, -2.56907*10^-5, 7.75016*10^-4, 4.28737*10^-4, -8.0034*10^-4, 3.94994*10^-3, 2.92619*10^-3, 4.54632*10^-4, 1.29704*10^-3, 1.50553*10^-3, 2.81043*10^-3, 8.97913*10^-4, -5.88187*10^-4, 7.43556*10^-4, 2.4844*10^-3, 1.3638*10^-3, -1.86575*10^-3, -2.4288*10^-4, 2.03837*10^-3, 1.71093*10^-3, -2.18125*10^-3, -2.84821*10^-3, 1.03257*10^-4, -1.72719*10^-4, -5.61862*10^-4, -1.77178*10^-3, -2.57691*10^-3, -1.07323*10^-3, -3.158*10^-4, 5.08309*10^-4, -3.59207*10^-4, -1.61329*10^-3, -9.08412*10^-4, -1.17327*10^-3, -2.0847*10^-4, 5.59696*10^-4, -1.71772*10^-4, 1.92954*10^-4, 1.25953*10^-3, 1.1231*10^-3, -2.0233*10^-4, -1.22724*10^-3, -1.68486*10^-4, 1.22649*10^-3, 9.2775*10^-4, 9.54727*10^-4, 1.00476*10^-3, 1.19575*10^-3, 6.38058*10^-4, -1.98384*10^-4, 3.62151*10^-4, 5.23747*10^-4, 2.33961*10^-4, -1.93746*10^-4, 1.0191*10^-5, 3.40968*10^-4, 9.64443*10^-5, -3.49096*10^-4, -2.5527*10^-4, -8.33186*10^-5, -1.33871*10^-5, -2.28995*10^-5, -9.74875*10^-5, -1.36371*10^-4, -1.6574*10^-4, -1.1763*10^-4, -5.28142*10^-5, -1.94034*10^-6, -4.96364*10^-6, -1.68386*10^-5, -7.7027*10^-6, 3.30668*10^-6, 1.57539*10^-7, 0)); h(8,1) = fi.fir((-1.32874*10^-5, -6.44951*10^-5, 3.14378*10^-4, -4.0926*10^-4, -1.25892*10^-4, -6.34386*10^-4, 4.74467*10^-4, 1.04719*10^-3, -1.10016*10^-4, -9.76536*10^-4, -9.4869*10^-5, -1.38136*10^-3, -7.44374*10^-2, -7.68453*10^-2, -4.83192*10^-2, -2.87878*10^-2, 1.08471*10^-2, -4.59645*10^-2, -1.53902*10^-2, 5.40471*10^-2, 4.90934*10^-2, 4.67726*10^-4, -9.30466*10^-4, 7.54126*10^-2, 6.34564*10^-2, 2.87948*10^-2, 4.21412*10^-2, 2.46212*10^-2, 5.61861*10^-3, 3.29321*10^-2, 4.143*10^-2, 9.4423*10^-3, -9.53651*10^-3, 7.1496*10^-3, 4.36247*10^-3, -6.09081*10^-3, 1.4331*10^-3, -4.89087*10^-3, -9.05307*10^-3, -2.63838*10^-3, -8.08286*10^-3, -2.24651*10^-2, -1.05223*10^-2, -2.14593*10^-3, -1.4119*10^-2, -1.30982*10^-2, -6.31691*10^-3, -9.37013*10^-3, -1.03953*10^-2, -3.33511*10^-3, -2.92244*10^-3, -9.20974*10^-3, -4.32975*10^-3, -2.65571*10^-3, -6.26758*10^-3, -4.59766*10^-3, -2.35631*10^-3, -3.48053*10^-3, -4.89879*10^-3, -1.65106*10^-3, -4.49678*10^-4, -1.67732*10^-3, -3.27984*10^-3, -2.45323*10^-3, -9.06947*10^-4, 2.22449*10^-3, 6.56153*10^-3, 6.37634*10^-3, 3.79148*10^-3, 4.72803*10^-3, 4.46647*10^-3, 2.50567*10^-3, 1.30425*10^-3, -2.74135*10^-4, -9.08465*10^-4, -7.12925*10^-4, 1.05*10^-3, 1.86927*10^-3, -2.08903*10^-4, 1.29173*10^-4, 6.41628*10^-4, -3.80057*10^-4, -1.12458*10^-3, -2.37411*10^-3, -1.52554*10^-3, -9.76026*10^-4, -3.10688*10^-4, 9.91772*10^-5, -1.84137*10^-3, -3.16413*10^-3, -1.87875*10^-3, 2.75005*10^-4, -8.87071*10^-4, -2.89758*10^-3, -1.33293*10^-3, 2.02051*10^-3, 2.2768*10^-3, -2.86928*10^-4, -1.55106*10^-3, -1.00915*10^-3, -1.52135*10^-4, 3.3373*10^-5, -2.3814*10^-4, 1.25112*10^-5, 1.09994*10^-4, -4.83405*10^-4, -7.05638*10^-4, -1.58107*10^-4, -9.45697*10^-5, -1.01428*10^-4, -5.72348*10^-5, -3.46081*10^-5, -1.18083*10^-4, -1.95522*10^-4, -2.27988*10^-4, -1.80181*10^-4, -1.06835*10^-4, -4.27783*10^-5, -6.29344*10^-5, -4.93226*10^-5, 2.95878*10^-5, 5.78253*10^-6, -6.19357*10^-7, 1.08966*10^-5, 1.07578*10^-6, -9.86646*10^-7, 1.03369*10^-6, 0)); h(9,1) = fi.fir((1.89155*10^-5, 2.95993*10^-5, -3.15406*10^-4, 7.65605*10^-5, 6.27826*10^-5, 5.32984*10^-4, -9.56498*10^-4, -9.20231*10^-4, 2.08207*10^-5, 1.26033*10^-3, -5.44776*10^-4, 5.12142*10^-3, 6.08886*10^-2, 6.03767*10^-2, 2.75179*10^-2, -2.7306*10^-2, -5.55369*10^-2, -1.95357*10^-3, -2.2666*10^-2, -6.61857*10^-2, -6.39153*10^-2, -6.85298*10^-3, 9.12445*10^-3, -2.57435*10^-2, -2.79132*10^-2, 7.34391*10^-3, 2.42892*10^-2, 1.34953*10^-2, 2.09338*10^-2, 2.37538*10^-2, 2.86742*10^-3, -1.72568*10^-3, 2.57452*10^-2, 2.77789*10^-2, 1.97598*10^-2, 6.38856*10^-3, 3.11321*10^-3, 1.34784*10^-2, 1.89657*10^-2, 2.89754*10^-3, -7.89563*10^-3, 2.89646*10^-3, -3.62881*10^-3, -1.62506*10^-2, -9.76483*10^-3, -4.98942*10^-3, -3.17079*10^-3, -4.25409*10^-3, -8.17591*10^-3, -4.43077*10^-3, -4.5752*10^-3, -6.63702*10^-3, -4.71875*10^-3, 7.84338*10^-4, 1.99607*10^-3, 5.14009*10^-4, -2.8681*10^-3, -3.58773*10^-3, 1.93199*10^-3, 2.63347*10^-3, -2.04118*10^-3, -2.91838*10^-3, -3.9613*10^-4, 1.2512*10^-3, 1.0393*10^-3, -1.89639*10^-4, -8.28256*10^-4, 8.31506*10^-4, 1.59933*10^-3, 1.19016*10^-3, 1.65305*10^-3, 2.22115*10^-3, 1.54955*10^-3, -1.21165*10^-4, -6.7648*10^-4, -1.43391*10^-3, -2.69454*10^-3, -2.6293*10^-3, -2.55959*10^-4, 8.54822*10^-4, 1.2425*10^-3, 2.70886*10^-3, 2.73936*10^-3, -2.15316*10^-5, 7.82466*10^-5, 8.16548*10^-4, -6.64108*10^-4, -9.37912*10^-4, -7.63589*10^-4, -7.52537*10^-4, 2.7312*10^-4, 2.83557*10^-3, 1.2796*10^-3, -2.09591*10^-3, -1.74195*10^-3, -6.81458*10^-4, -7.55823*10^-4, -1.04411*10^-3, -3.70958*10^-4, -7.35482*10^-5, -8.31871*10^-5, 2.83063*10^-4, 3.42585*10^-6, 3.99315*10^-4, 4.68411*10^-4, -4.05334*10^-4, -9.18478*10^-5, 3.19806*10^-4, 3.63852*10^-6, -1.56105*10^-4, 3.77477*10^-4, 6.44241*10^-4, 2.40259*10^-4, 5.68899*10^-5, 1.95567*10^-4, 2.3654*10^-4, 5.73293*10^-5, -4.46169*10^-5, 3.27635*10^-5, 8.1741*10^-6, -7.06224*10^-5, -6.81354*10^-5, -1.28596*10^-5, 9.30078*10^-6, -2.34088*10^-6, -3.51464*10^-6, -9.12964*10^-7, 0)); h(10,1) = fi.fir((-6.90525*10^-6, 1.26895*10^-5, -5.07632*10^-5, -4.25921*10^-6, -3.06084*10^-4, 4.47309*10^-4, -3.00497*10^-4, -4.6817*10^-5, -3.16584*10^-4, 9.80811*10^-4, -8.46133*10^-4, 1.18111*10^-4, 1.25948*10^-4, 2.18183*10^-3, 1.23416*10^-3, -2.23481*10^-3, 3.35082*10^-3, 2.03881*10^-3, 1.09137*10^-2, -2.20259*10^-2, -1.52245*10^-2, 1.7673*10^-2, 5.61989*10^-3, -6.93778*10^-3, 1.84808*10^-2, 2.02873*10^-3, -2.89144*10^-2, 1.34849*10^-2, -4.98675*10^-3, -8.08788*10^-4, 6.34478*10^-3, -5.37065*10^-3, 1.59773*10^-3, -1.19074*10^-2, 1.07473*10^-2, 8.68801*10^-3, -3.46914*10^-3, 6.51347*10^-3, -4.53393*10^-3, -2.97135*10^-3, 4.54128*10^-3, 5.84137*10^-3, -8.06327*10^-3, -3.951*10^-3, 4.98626*10^-3, -5.49752*10^-3, -3.58275*10^-3, -1.26195*10^-3, 4.02261*10^-3, 3.13502*10^-3, 3.09385*10^-3, 2.60939*10^-3, -3.81199*10^-3, 1.51906*10^-4, 1.56251*10^-3, -3.34453*10^-3, -4.42281*10^-3, -2.53939*10^-3, 9.56534*10^-5, 1.01213*10^-3, 2.70927*10^-3, 2.06534*10^-3, 6.16297*10^-4, -6.01002*10^-5, -1.19671*10^-3, -2.03118*10^-3, -1.08711*10^-3, 1.66844*10^-4, -1.25626*10^-3, 3.3741*10^-4, 4.30616*10^-4, -2.24925*10^-4, -2.74129*10^-5, -1.36514*10^-3, -7.57852*10^-5, -1.05727*10^-3, -7.65697*10^-4, 2.26067*10^-4, -8.45473*10^-4, 6.30502*10^-4, -1.94535*10^-5, 2.29648*10^-3, 3.34238*10^-3, 2.9935*10^-4, -1.38639*10^-3, -1.57817*10^-3, -1.97515*10^-4, 7.65762*10^-5, 1.22317*10^-3, 1.36599*10^-3, 4.53566*10^-4, 4.79237*10^-4, 4.35133*10^-4, 1.47025*10^-3, 1.32148*10^-3, -5.42254*10^-4, -1.71888*10^-3, -7.11998*10^-4, 7.2084*10^-4, 2.83247*10^-4, 4.17124*10^-4, 1.35894*10^-4, 2.56366*10^-5, 3.17986*10^-4, -1.74273*10^-4, -4.09525*10^-4, -3.57221*10^-4, 1.3044*10^-4, 2.16033*10^-4, -1.74119*10^-4, -9.33864*10^-5, -6.39853*10^-5, 2.48682*10^-7, 1.336*10^-4, 6.72119*10^-5, -5.60343*10^-5, -1.84328*10^-4, -5.21864*10^-5, 1.34827*10^-5, -3.15558*10^-5, -5.19876*10^-5, -1.81582*10^-5, -8.97496*10^-6, -8.25901*10^-6, 2.4814*10^-6, -3.23644*10^-6, -6.2718*10^-7, 0)); h(11,1) = fi.fir((1.31127*10^-5, -7.38879*10^-6, -1.51989*10^-4, -9.11027*10^-7, 1.939*10^-4, -1.71535*10^-4, -3.22858*10^-4, -2.43654*10^-4, -7.13603*10^-4, 1.11514*10^-3, -6.76222*10^-4, 5.17239*10^-3, 4.60809*10^-2, 4.83216*10^-2, 2.76563*10^-3, -9.17066*10^-4, -3.72107*10^-2, -2.72916*10^-2, -8.20955*10^-4, -6.29913*10^-2, -3.16397*10^-2, -8.77745*10^-3, -2.40856*10^-2, 1.44447*10^-2, 9.33732*10^-4, 5.63275*10^-3, 1.06274*10^-2, -1.33066*10^-2, 3.86248*10^-2, 3.09151*10^-2, -1.0519*10^-2, 3.94804*10^-3, 6.26552*10^-3, 7.84534*10^-3, 1.42782*10^-2, 1.04436*10^-2, 5.34952*10^-3, 9.61553*10^-3, 3.047*10^-3, -2.08251*10^-3, -3.13446*10^-3, 2.02925*10^-3, 4.09361*10^-3, -8.99273*10^-3, -9.42078*10^-3, -2.95204*10^-3, -5.66593*10^-3, -2.00101*10^-3, 6.04909*10^-4, -2.58112*10^-3, -7.69069*10^-3, -8.8627*10^-3, -2.71579*10^-3, -1.69048*10^-3, 1.27175*10^-3, 2.10741*10^-3, -1.56026*10^-3, -2.06903*10^-3, 3.39129*10^-4, -1.18608*10^-3, -1.44718*10^-3, 5.25487*10^-4, -7.11836*10^-5, -9.09094*10^-5, 1.00984*10^-3, 1.69188*10^-3, 1.24293*10^-3, 1.95065*10^-3, 1.83846*10^-3, -1.20529*10^-3, -1.79294*10^-4, 1.8129*10^-3, 1.6884*10^-3, 1.29178*10^-3, 1.39515*10^-3, 1.86454*10^-3, 5.84763*10^-4, -4.84253*10^-4, -8.55611*10^-4, -1.05795*10^-5, 9.96855*10^-4, 3.25346*10^-4, -6.64306*10^-4, -1.05405*10^-3, -4.536*10^-4, 1.4791*10^-4, 5.086*10^-4, 2.10854*10^-3, 1.27291*10^-3, -6.48676*10^-4, -1.05839*10^-3, -1.69906*10^-3, -7.04934*10^-4, -7.45014*10^-5, -5.81171*10^-4, -5.98512*10^-4, -8.77149*10^-4, -6.51168*10^-4, 1.60366*10^-4, 3.21589*10^-4, -1.30289*10^-4, -7.37136*10^-4, -2.81437*10^-4, 6.96143*10^-5, -2.91548*10^-4, 4.27083*10^-5, 3.01242*10^-4, 8.81382*10^-5, 2.94159*10^-4, 3.12487*10^-4, 4.50719*10^-5, 8.06952*10^-5, 2.48997*10^-4, 2.96876*10^-4, 3.83697*10^-5, 2.30441*10^-5, 4.60206*10^-5, 7.06061*10^-5, 8.15635*10^-5, -1.90061*10^-5, -4.67294*10^-5, -2.15894*10^-5, -2.22245*10^-6, -2.14215*10^-5, -1.5791*10^-5, -5.21215*10^-6, -7.49018*10^-7, 0)); h(12,1) = fi.fir((3.27738*10^-6, -1.98933*10^-5, -2.24377*10^-4, 2.36034*10^-4, 2.31547*10^-4, -5.44781*10^-4, -4.39775*10^-4, 7.9964*10^-4, -5.44421*10^-4, -3.37965*10^-5, 2.37477*10^-4, -2.99193*10^-5, 1.06573*10^-2, 3.5753*10^-3, -1.67824*10^-2, 5.96581*10^-3, 2.30173*10^-2, -3.42189*10^-3, -2.06794*10^-2, -1.60074*10^-2, -1.01068*10^-2, -1.35014*10^-2, 4.19631*10^-2, 1.80855*10^-2, -3.55257*10^-2, -2.71591*10^-3, -2.44034*10^-3, 1.2678*10^-2, 1.4909*10^-2, 7.08753*10^-3, -4.76206*10^-3, -7.64567*10^-3, -5.58608*10^-3, -8.15685*10^-3, 1.47137*10^-2, 7.96626*10^-3, -9.86967*10^-3, -8.58863*10^-3, 3.25646*10^-3, 6.15977*10^-3, -4.3833*10^-3, -3.48297*10^-3, 3.04111*10^-3, -1.31719*10^-3, -5.34971*10^-3, -1.47622*10^-3, 5.53479*10^-3, 4.46569*10^-3, 2.13182*10^-3, -9.42707*10^-4, -3.93236*10^-3, -1.68373*10^-3, -3.28718*10^-4, -8.94931*10^-5, 1.94062*10^-3, 1.68114*10^-3, -1.41673*10^-3, -1.68419*10^-3, 3.99343*10^-4, 2.06966*10^-3, 3.69514*10^-4, 2.53042*10^-4, 9.77515*10^-4, -9.12804*10^-4, 2.74873*10^-4, 2.26848*10^-3, 2.31892*10^-3, 2.21365*10^-3, 1.92945*10^-4, 1.38286*10^-3, 2.26825*10^-3, 2.44418*10^-4, -1.87271*10^-3, -3.17289*10^-3, -1.20738*10^-3, -3.89164*10^-5, -7.16831*10^-4, 6.07349*10^-5, -3.01523*10^-5, -4.14409*10^-4, -7.53958*10^-6, -1.12029*10^-3, -1.67158*10^-3, -2.92629*10^-3, -2.39894*10^-3, -5.27782*10^-4, -4.24545*10^-4, -4.0871*10^-4, -2.2978*10^-4, -1.79398*10^-5, 2.39355*10^-4, 1.05812*10^-3, 1.0682*10^-3, -7.58498*10^-4, -1.48937*10^-3, 1.16086*10^-4, 9.87828*10^-4, 8.07473*10^-4, 1.16715*10^-3, 1.13736*10^-3, 4.94459*10^-4, 6.39692*10^-4, 5.38982*10^-4, 1.16257*10^-4, 9.32166*10^-5, 2.36701*10^-4, 4.55971*10^-4, 2.23411*10^-4, 2.12529*10^-4, 3.92538*10^-4, 2.09402*10^-4, 3.10328*10^-4, 1.32193*10^-4, -3.69908*10^-5, -2.28937*10^-5, 5.66962*10^-5, -6.23196*10^-5, -1.05953*10^-4, -1.37302*10^-5, -3.09197*10^-5, -1.28753*10^-5, 8.30434*10^-6, 2.78378*10^-6, -1.26402*10^-5, -1.02932*10^-5, -5.80166*10^-6, -7.71071*10^-7, 0)); h(13,1) = fi.fir((-3.30557*10^-6, 6.58295*10^-6, -4.13336*10^-5, 1.34953*10^-4, -2.3944*10^-4, 1.23429*10^-4, 3.54764*10^-5, 4.38524*10^-4, -4.46457*10^-4, -2.14162*10^-4, 5.94639*10^-4, 1.50709*10^-4, 1.21477*10^-3, -1.43594*10^-3, 2.24066*10^-3, -6.86843*10^-3, 6.84583*10^-4, -1.26404*10^-2, -6.24609*10^-3, 3.23072*10^-2, -9.08867*10^-3, -6.55955*10^-3, 7.42411*10^-3, -3.31393*10^-3, 2.51271*10^-2, 3.7619*10^-4, -2.98252*10^-2, -3.17145*10^-3, 4.79751*10^-3, 1.06036*10^-2, -3.05803*10^-3, -2.0928*10^-2, 1.30206*10^-3, 3.34124*10^-3, 5.98066*10^-3, -1.39712*10^-3, -1.31632*10^-3, 7.16025*10^-3, -7.59216*10^-3, -1.46599*10^-3, 9.55154*10^-3, 5.51641*10^-3, 5.55038*10^-3, 1.23226*10^-3, -4.43409*10^-3, -3.08075*10^-3, 2.40414*10^-3, 2.82354*10^-3, 4.00457*10^-3, 4.7209*10^-3, 8.29111*10^-4, -1.01166*10^-3, -2.57823*10^-3, -1.06278*10^-3, -2.22912*10^-3, -7.95623*10^-4, -7.00189*10^-4, -5.04316*10^-3, -4.18949*10^-3, -2.82809*10^-3, -3.14607*10^-3, -1.21634*10^-3, 6.43135*10^-4, 1.04922*10^-3, 1.33325*10^-4, 1.07997*10^-3, 2.31148*10^-3, 2.65451*10^-3, 1.06408*10^-3, -2.35539*10^-3, -1.14272*10^-4, 3.38497*10^-3, 3.28831*10^-3, 1.71971*10^-4, -3.2057*10^-4, 2.10505*10^-3, -2.96216*10^-4, -2.75839*10^-3, -1.1997*10^-3, 3.46228*10^-4, 1.58192*10^-3, -4.43774*10^-4, -3.29516*10^-3, -1.99081*10^-3, -6.43004*10^-4, -4.21855*10^-4, -9.60012*10^-4, 2.76212*10^-4, 5.72913*10^-4, -1.6863*10^-3, -1.26468*10^-3, -6.3397*10^-4, -3.99078*10^-5, 2.67905*10^-4, 4.92812*10^-5, 6.181*10^-4, 2.44744*10^-4, 4.59707*10^-4, 1.2123*10^-3, 5.20144*10^-4, -5.09173*10^-4, -8.19063*10^-5, 4.93395*10^-4, 2.53793*10^-4, 4.26232*10^-4, 5.82041*10^-4, 4.40844*10^-4, 5.71553*10^-4, 1.36777*10^-4, 9.34823*10^-5, 3.39887*10^-4, 2.97869*10^-4, 2.58727*10^-4, 1.03477*10^-4, 1.28055*10^-4, -1.21549*10^-5, -4.28586*10^-5, 3.3221*10^-5, 2.93676*10^-5, 5.60649*10^-5, -3.26185*10^-5, -5.6678*10^-5, -1.49079*10^-5, -4.80575*10^-6, -7.10373*10^-6, -6.55232*10^-6, -1.24034*10^-6, 0)); h(14,1) = fi.fir((3.51439*10^-7, 2.87613*10^-6, -1.45798*10^-4, 9.0752*10^-5, -6.11966*10^-4, -2.45544*10^-4, -2.21059*10^-4, 5.94499*10^-4, -1.25521*10^-3, 3.12022*10^-4, 4.25134*10^-4, -8.48038*10^-4, 1.33545*10^-2, 1.14058*10^-3, -4.88234*10^-3, 9.19814*10^-3, -6.27052*10^-3, -2.14937*10^-2, 1.23386*10^-2, 8.03106*10^-3, -1.64583*10^-2, -1.01589*10^-2, -2.09074*10^-2, 1.16758*10^-2, 2.38261*10^-2, 4.4089*10^-3, 8.66514*10^-3, -3.65339*10^-3, -3.37606*10^-3, -9.8116*10^-3, -6.91913*10^-3, 8.70097*10^-3, 1.26165*10^-2, 3.51771*10^-3, -2.47151*10^-2, -8.33375*10^-4, 1.7721*10^-2, -1.94991*10^-3, -4.53353*10^-3, 4.02003*10^-3, 6.79846*10^-4, -7.26018*10^-3, -1.77306*10^-4, -2.24289*10^-3, -3.29005*10^-3, 8.41359*10^-3, 4.59243*10^-3, -5.91923*10^-3, -1.20555*10^-3, 2.19487*10^-3, -1.14701*10^-3, 9.30791*10^-5, 2.18685*10^-3, -4.49193*10^-3, -4.73366*10^-3, 2.26702*10^-3, 4.49539*10^-3, 4.21747*10^-3, 3.96111*10^-3, 1.77683*10^-4, -3.02825*10^-3, -8.89718*10^-4, 5.64437*10^-4, -1.67615*10^-4, 6.02522*10^-4, 1.87077*10^-3, 1.2949*10^-3, -5.94883*10^-4, -1.92181*10^-3, -1.22613*10^-3, -8.5715*10^-5, 4.10859*10^-4, -1.40928*10^-4, -2.02792*10^-3, -5.53977*10^-4, 1.30066*10^-3, 5.83343*10^-4, 8.61494*10^-4, -1.19166*10^-3, -2.18237*10^-3, -1.21283*10^-3, -1.08317*10^-3, -1.9593*10^-4, -1.34809*10^-4, -6.54677*10^-4, -9.36929*10^-4, -1.48747*10^-3, -1.59498*10^-3, -1.07904*10^-3, 1.19197*10^-3, 9.83816*10^-4, -9.17038*10^-4, -2.51922*10^-4, -1.71245*10^-4, -6.6768*10^-4, -6.18854*10^-4, -3.61373*10^-4, 2.76893*10^-4, 6.54997*10^-4, 7.13557*10^-4, 7.84532*10^-4, 9.21074*10^-5, -3.20935*10^-5, 1.43232*10^-4, 6.22619*10^-4, 5.18774*10^-4, -2.74811*10^-4, -4.39844*10^-4, 2.92392*10^-4, 4.58341*10^-4, -8.30032*10^-5, -1.57369*10^-4, 1.47762*10^-4, 2.02603*10^-4, -6.66399*10^-5, -5.52051*10^-6, 4.1404*10^-5, -4.42386*10^-5, -7.86137*10^-5, -8.64243*10^-5, -8.95919*10^-6, 2.60922*10^-5, 2.14766*10^-5, -7.65888*10^-6, -9.23643*10^-6, -1.1904*10^-6, -3.57125*10^-7, 0)); h(15,1) = fi.fir((-1.88214*10^-5, 5.47506*10^-7, -3.62138*10^-4, 3.4025*10^-4, -1.5391*10^-4, 9.13577*10^-4, -1.59128*10^-3, 1.86949*10^-3, -5.7894*10^-4, -7.61445*10^-5, -9.44821*10^-4, 1.5239*10^-3, 6.93131*10^-3, -5.08856*10^-3, -1.64934*10^-3, -3.28386*10^-2, 1.56604*10^-2, -7.18646*10^-3, -3.99608*10^-2, 2.78627*10^-2, 2.10797*10^-2, 2.36595*10^-2, 2.04958*10^-2, 2.62763*10^-2, -8.38542*10^-3, -2.54705*10^-2, 1.6657*10^-2, -1.6476*10^-3, -2.9996*10^-2, -2.96593*10^-3, 2.29607*10^-2, 4.06638*10^-3, -1.99525*10^-2, -9.55486*10^-3, 2.15033*10^-3, -7.14622*10^-3, -4.87891*10^-3, -1.99292*10^-3, 1.16732*10^-4, 2.97933*10^-3, 4.9839*10^-4, -6.55393*10^-3, -1.16543*10^-3, 5.36463*10^-3, -6.3972*10^-3, -8.90121*10^-3, -5.88588*10^-4, 4.84007*10^-4, 1.36571*10^-3, 6.21762*10^-3, 6.40891*10^-3, 2.3052*10^-3, 2.52014*10^-3, 3.03026*10^-3, 1.4746*10^-3, 1.06462*10^-3, -4.70089*10^-4, -1.5733*10^-3, -8.0711*10^-4, 1.55653*10^-5, -1.06767*10^-4, 1.10327*10^-3, 3.74636*10^-3, 4.99281*10^-3, 7.22126*10^-4, -2.893*10^-3, -1.64107*10^-3, 7.19126*10^-4, -6.68844*10^-4, -2.46309*10^-3, -1.44934*10^-3, 1.74066*10^-4, 1.00658*10^-3, 5.37174*10^-5, -4.13929*10^-4, -2.79138*10^-4, -9.57403*10^-4, -1.77829*10^-3, -8.63774*10^-4, 1.77585*10^-3, 1.49904*10^-3, 1.27816*10^-4, -5.78467*10^-5, -1.13474*10^-3, -1.34423*10^-4, 3.59113*10^-4, -3.40049*10^-4, -5.12483*10^-4, -7.75252*10^-4, -1.1166*10^-3, -1.37867*10^-3, 3.97475*10^-4, 1.9904*10^-3, 1.12803*10^-3, 1.40679*10^-4, 1.99225*10^-3, 2.10768*10^-3, 2.04947*10^-4, -1.73206*10^-4, -1.23233*10^-5, 4.44418*10^-4, 2.66517*10^-4, -4.01355*10^-4, 1.76596*10^-5, 5.21337*10^-5, -3.43904*10^-4, -5.62304*10^-4, -3.45911*10^-4, 1.63275*10^-4, -1.78548*10^-4, -7.38871*10^-4, -3.41992*10^-4, -1.29415*10^-4, -2.14133*10^-4, -2.67914*10^-4, -2.00619*10^-4, -1.74628*10^-4, -1.68571*10^-4, -1.07805*10^-4, -5.32896*10^-5, 7.93834*10^-6, 1.46317*10^-5, 3.73611*10^-6, 1.32153*10^-5, 1.75291*10^-5, 6.12983*10^-6, 9.58706*10^-7, 0)); h(16,1) = fi.fir((2.47639*10^-5, -4.7088*10^-6, 3.5434*10^-4, -3.9905*10^-4, -8.62417*10^-5, -1.16299*10^-3, 1.49577*10^-3, -1.62677*10^-3, 3.20863*10^-4, -6.24716*10^-4, 1.68283*10^-3, -1.45821*10^-3, -7.87119*10^-3, 4.51814*10^-3, 8.48161*10^-3, 3.31264*10^-2, -2.0029*10^-2, -1.63571*10^-2, 2.27166*10^-2, -1.90547*10^-2, -2.21976*10^-2, -1.74228*10^-2, -1.76328*10^-2, 1.09545*10^-3, 3.26907*10^-2, 3.70124*10^-2, 6.20737*10^-3, -1.76526*10^-2, 1.44063*10^-2, 3.66584*10^-2, -2.08799*10^-2, -4.51098*10^-2, -6.02232*10^-3, 7.96541*10^-3, 7.25046*10^-3, -7.19013*10^-3, -9.58897*10^-3, 5.85768*10^-3, 1.27408*10^-2, 2.27231*10^-3, -1.17918*10^-2, 1.21233*10^-3, 3.52334*10^-3, -8.30121*10^-3, -2.53834*10^-3, 5.23374*10^-3, 2.60297*10^-3, -6.63947*10^-4, 6.88957*10^-4, 3.85154*10^-4, -3.02839*10^-3, -4.64818*10^-3, 1.05713*10^-3, 3.78545*10^-3, 2.27285*10^-3, 3.75072*10^-3, 1.88724*10^-3, 3.72662*10^-3, 6.05514*10^-3, 2.86602*10^-3, 1.42131*10^-3, 1.52038*10^-3, 3.1719*10^-4, -3.99725*10^-3, -2.40002*10^-3, 1.00471*10^-3, -3.04565*10^-3, -6.84891*10^-3, -5.92465*10^-3, -7.91495*10^-4, 2.65224*10^-3, 1.05786*10^-3, 4.39049*10^-4, 1.8128*10^-3, 2.37751*10^-3, 7.46752*10^-4, -1.01038*10^-3, -1.08777*10^-3, -1.53375*10^-3, -3.76877*10^-4, -4.25318*10^-4, -5.65439*10^-4, 1.27944*10^-3, -4.86147*10^-4, -1.09859*10^-3, -4.41226*10^-4, -1.28331*10^-3, -6.54352*10^-4, -5.11422*10^-4, 5.65125*10^-4, 1.91671*10^-3, 2.36682*10^-3, 1.3563*10^-3, -1.02102*10^-3, -7.786*10^-4, -6.98236*10^-4, -8.02984*10^-4, -2.31761*10^-4, 6.12519*10^-6, -9.07679*10^-5, 3.35677*10^-4, 3.22414*10^-4, 2.65365*10^-4, 2.76137*10^-4, 9.15682*10^-5, -2.51816*10^-4, -4.69868*10^-5, 3.0512*10^-4, -1.65316*10^-4, -3.23155*10^-4, 6.31454*10^-5, 1.35007*10^-4, 2.50399*10^-5, -8.92612*10^-5, 2.14393*10^-5, 2.54175*10^-6, 6.31566*10^-5, 1.71501*10^-5, 8.08098*10^-5, 3.0611*10^-5, -7.71602*10^-5, -3.63984*10^-5, 7.08545*10^-6, 2.20134*10^-5, -4.54475*10^-6, -5.94526*10^-6, -1.99452*10^-7, 0)); h(17,1) = fi.fir((-1.12518*10^-5, -2.52175*10^-5, -4.38429*10^-7, -1.61649*10^-4, 1.85227*10^-4, -3.79492*10^-4, -6.08489*10^-4, 8.83931*10^-5, 6.68369*10^-4, -9.99367*10^-4, -1.21022*10^-3, 1.29228*10^-3, -1.21788*10^-2, -4.68315*10^-4, 1.50281*10^-3, -6.03551*10^-4, 3.1857*10^-2, 8.21013*10^-3, -3.03129*10^-2, -7.41938*10^-3, 2.20151*10^-2, 1.01088*10^-2, -6.07037*10^-3, -1.19074*10^-2, -5.38*10^-3, -9.75742*10^-3, 2.26556*10^-3, 3.68369*10^-3, -7.71687*10^-3, 1.49585*10^-2, -2.8647*10^-3, -5.48534*10^-3, 3.84218*10^-3, -7.39329*10^-3, 5.02779*10^-3, 7.88494*10^-3, -4.92785*10^-3, -8.36886*10^-3, -9.18883*10^-3, 5.7775*10^-3, 1.12766*10^-2, 5.56093*10^-3, -1.91035*10^-3, -5.86651*10^-3, 9.93771*10^-4, 4.91499*10^-3, 3.45724*10^-3, 4.10376*10^-5, -1.2248*10^-3, -5.36977*10^-3, -4.36442*10^-3, -2.28246*10^-3, -9.53147*10^-4, 1.04997*10^-3, 2.95045*10^-3, 2.98067*10^-3, 1.74005*10^-3, 1.91928*10^-3, 2.52441*10^-3, -9.23606*10^-5, -8.34922*10^-4, -6.02009*10^-4, -2.25984*10^-4, -1.66927*10^-3, -1.00309*10^-3, -2.0463*10^-4, -1.9296*10^-3, -1.0428*10^-3, -4.5546*10^-4, 1.12042*10^-3, 1.83867*10^-3, 1.65864*10^-3, 1.93418*10^-3, 6.23567*10^-4, -8.31176*10^-4, -3.12604*10^-3, -3.34934*10^-3, -1.48754*10^-3, -2.38546*10^-4, 5.24849*10^-4, -7.20907*10^-4, -4.83266*10^-4, 9.61786*10^-4, 8.75555*10^-4, -7.18929*10^-4, -1.49106*10^-3, -5.01798*10^-4, -3.01003*10^-4, -9.25607*10^-5, -1.64878*10^-4, -9.46731*10^-4, -7.6694*10^-4, -5.47987*10^-4, 5.26503*10^-4, 4.54822*10^-4, -1.24766*10^-3, -1.50239*10^-3, -8.47043*10^-4, -5.93637*10^-4, -3.94813*10^-4, -2.93212*10^-4, -2.53678*10^-4, 1.36606*10^-4, -4.53146*10^-6, 4.64796*10^-5, -4.01919*10^-5, -4.94946*10^-5, 4.74848*10^-5, -2.41033*10^-4, 3.49977*10^-5, -9.78587*10^-5, 1.22163*10^-5, 2.72989*10^-4, 7.91379*10^-5, 7.78936*10^-5, 9.61423*10^-5, 7.98075*10^-5, 1.10373*10^-4, 1.08625*10^-5, 1.68101*10^-5, -5.14588*10^-5, -1.02699*10^-5, 4.24498*10^-5, -1.54209*10^-6, -3.55566*10^-7, -3.38734*10^-6, -1.42182*10^-6, 0)); h(18,1) = fi.fir((8.46754*10^-6, -3.99997*10^-5, 7.81131*10^-5, -1.76664*10^-4, 2.18614*10^-4, -2.62422*10^-4, -4.45652*10^-5, -5.6178*10^-4, 9.2258*10^-4, 7.08956*10^-4, -1.2249*10^-3, -5.24485*10^-4, -8.38376*10^-4, 2.26799*10^-3, -4.73027*10^-3, 8.71162*10^-3, 1.58126*10^-3, 1.83656*10^-2, 2.73151*10^-3, -5.80978*10^-2, 7.39795*10^-3, 3.23093*10^-2, -1.3579*10^-2, -1.44256*10^-2, -1.30734*10^-2, 3.02041*10^-2, 3.12594*10^-2, -2.0943*10^-2, -6.04938*10^-3, -1.38165*10^-2, 1.74843*10^-4, 2.46952*10^-2, 4.84082*10^-4, -1.07633*10^-2, -5.82769*10^-4, 3.04413*10^-3, -1.21855*10^-2, 8.43931*10^-4, 7.15823*10^-3, -1.14539*10^-3, -4.58897*10^-3, 1.71053*10^-3, 5.96175*10^-3, -1.31856*10^-3, 3.25658*10^-3, 4.04222*10^-3, -4.19875*10^-3, 4.47298*10^-4, 2.09315*10^-3, -1.6919*10^-3, -1.33556*10^-3, 5.23524*10^-4, 5.90727*10^-4, -2.3095*10^-3, -1.72704*10^-3, -1.50241*10^-3, -5.78455*10^-4, -3.23551*10^-5, 4.10224*10^-5, -1.55243*10^-3, -2.09868*10^-3, 5.84863*10^-5, -5.67201*10^-4, -1.15911*10^-3, 5.26208*10^-4, 2.4605*10^-3, 1.465*10^-3, -5.84392*10^-4, -1.37493*10^-3, 8.90404*10^-5, 2.72071*10^-3, 3.72753*10^-3, 1.13654*10^-3, -2.32522*10^-3, -7.15857*10^-4, 7.67318*10^-4, 5.34539*10^-4, 1.1149*10^-3, 4.0236*10^-4, 1.03558*10^-4, -2.9607*10^-4, -1.93484*10^-3, -1.47848*10^-3, -1.28741*10^-3, -3.75861*10^-4, 1.52264*10^-4, -7.14358*10^-4, 1.13972*10^-3, 7.74481*10^-4, 6.73181*10^-5, 3.18167*10^-4, -7.12106*10^-4, -8.5018*10^-4, -1.2821*10^-4, 5.63847*10^-4, 4.27308*10^-4, 8.49064*10^-5, 4.12732*10^-5, 7.43967*10^-4, 7.86364*10^-4, 1.09181*10^-4, -1.04291*10^-3, -7.10936*10^-4, 3.65642*10^-4, -1.8673*10^-4, -2.51117*10^-4, 2.83307*10^-5, 1.79366*10^-4, 2.56181*10^-4, -9.16734*10^-5, -8.14924*10^-5, -7.95034*10^-5, -8.87843*10^-5, 5.96209*10^-6, -1.1491*10^-4, 6.3452*10^-5, -2.58999*10^-5, -4.90741*10^-5, 6.5355*10^-5, 5.53433*10^-5, 6.04376*10^-5, -1.73088*10^-5, -1.28328*10^-5, 3.80288*10^-6, 3.25446*10^-6, -1.66874*10^-6, -3.16691*10^-7, 0)); h(19,1) = fi.fir((-1.60519*10^-5, -5.07492*10^-6, 2.87357*10^-4, -2.04084*10^-4, -6.49941*10^-4, 5.25536*10^-4, 4.99998*10^-4, -7.18214*10^-4, -4.36211*10^-4, 3.23886*10^-5, -6.26824*10^-4, 6.89937*10^-4, -1.72606*10^-2, -4.24591*10^-3, 3.61436*10^-2, 5.0167*10^-3, -2.81069*10^-2, -2.331*10^-2, 2.18264*10^-2, 3.92449*10^-2, 1.89946*10^-2, 1.35645*10^-2, -6.3962*10^-2, -3.7707*10^-2, 3.51136*10^-2, 9.01473*10^-3, -1.23668*10^-3, -1.17299*10^-2, -1.24636*10^-2, 7.84715*10^-3, 9.20741*10^-3, 3.91203*10^-4, 6.4388*10^-4, 6.651*10^-4, -3.94122*10^-3, -3.85536*10^-3, 1.92288*10^-3, 4.81443*10^-3, 1.11639*10^-2, 2.85857*10^-3, -4.73491*10^-3, -5.36479*10^-3, -2.82256*10^-3, -2.56657*10^-3, -1.07359*10^-3, 4.01416*10^-3, 1.63053*10^-3, 8.2404*10^-4, -1.27327*10^-3, -1.63773*10^-3, 2.11746*10^-3, 4.64776*10^-3, 5.07914*10^-4, -3.48194*10^-3, -3.2662*10^-3, 1.76202*10^-4, 1.85579*10^-3, 1.85225*10^-3, -2.50956*10^-3, -4.21615*10^-3, -3.10362*10^-3, -1.09943*10^-3, 1.80572*10^-3, 1.15181*10^-3, -6.60232*10^-4, 1.09564*10^-3, 1.99802*10^-3, 1.0342*10^-3, 2.25408*10^-3, 7.62111*10^-8, -1.62152*10^-3, -7.16191*10^-4, -1.81778*10^-3, -1.13227*10^-3, 1.64066*10^-3, 1.83631*10^-3, 1.59506*10^-3, 1.5986*10^-3, 1.80161*10^-3, 8.28893*10^-4, -1.33194*10^-3, -1.3112*10^-3, 4.22487*10^-4, 1.39281*10^-3, 6.23239*10^-4, -1.2205*10^-3, -1.14263*10^-3, 2.98468*10^-4, 1.85644*10^-4, 5.45233*10^-5, -5.75289*10^-4, -1.20267*10^-3, -9.98064*10^-4, -2.37096*10^-3, -1.89254*10^-3, -6.60745*10^-4, -6.57748*10^-4, -8.8091*10^-4, -1.16818*10^-3, -8.61727*10^-4, -3.27773*10^-4, -1.61222*10^-4, 1.94191*10^-4, 3.61344*10^-4, -4.30785*10^-4, -5.61166*10^-4, -1.44006*10^-4, 6.22891*10^-5, 3.5927*10^-4, 1.03944*10^-4, 2.33591*10^-4, 3.22562*10^-4, 4.5599*10^-5, 4.79109*10^-5, 1.36757*10^-4, 1.60109*10^-4, 9.52111*10^-5, 3.45891*10^-5, 7.48501*10^-5, 7.69231*10^-5, 7.42812*10^-5, 1.35771*10^-5, -3.03839*10^-5, -1.24208*10^-5, 5.73009*10^-6, 4.11672*10^-6, -2.39344*10^-7, 0)); h(20,1) = fi.fir((-1.11966*10^-5, -8.88238*10^-5, -6.64415*10^-5, 9.08779*10^-6, 2.8978*10^-4, -1.99779*10^-4, 7.84588*10^-4, -3.08419*10^-4, -3.83537*10^-4, -2.43798*10^-4, 4.00823*10^-5, 4.07078*10^-3, 2.02492*10^-2, 1.45401*10^-2, -1.87744*10^-3, -1.40586*10^-3, -4.04868*10^-2, -4.18774*10^-2, -2.00329*10^-2, -7.1259*10^-3, 1.84133*10^-2, 2.28362*10^-2, 2.64909*10^-2, 1.21774*10^-2, 8.06984*10^-4, 7.44592*10^-3, -8.87858*10^-3, -1.18445*10^-2, 2.63112*10^-2, 2.33436*10^-2, 5.29021*10^-3, -8.71086*10^-3, -1.61164*10^-2, -7.51844*10^-3, -1.53619*10^-2, -3.23006*10^-3, 6.29851*10^-3, 6.60932*10^-4, -6.08021*10^-3, -6.30607*10^-3, 6.02894*10^-3, 6.10741*10^-3, -3.47263*10^-3, -2.0012*10^-4, 1.05347*10^-4, -4.65258*10^-3, -2.81874*10^-3, -1.57369*10^-3, 3.7996*10^-3, 6.86201*10^-3, 1.0076*10^-3, -4.86479*10^-3, -3.46055*10^-3, 2.2847*10^-4, 1.27474*10^-3, 3.60318*10^-3, 4.21488*10^-3, 8.45167*10^-4, -5.06952*10^-4, -8.3919*10^-4, -8.95233*10^-4, -2.80215*10^-3, -1.22374*10^-3, 1.04215*10^-3, 1.0659*10^-3, 5.06966*10^-4, -5.18492*10^-4, -1.42481*10^-3, -8.09402*10^-4, 3.01676*10^-3, 1.85159*10^-3, -2.36257*10^-4, 1.4127*10^-3, -4.00493*10^-4, -2.50376*10^-3, -2.10972*10^-3, 2.11399*10^-4, 1.3705*10^-3, -7.28887*10^-4, -7.70172*10^-4, 3.56111*10^-4, 1.52084*10^-3, 1.09117*10^-3, -2.09016*10^-3, -2.3455*10^-3, -1.67692*10^-4, 7.5464*10^-4, 3.47804*10^-4, -1.01029*10^-3, -8.11262*10^-4, -3.12518*10^-5, 8.49904*10^-4, 1.29043*10^-3, 9.17368*10^-4, 4.42065*10^-4, -8.35573*10^-5, 1.10474*10^-3, 1.50157*10^-3, 1.41582*10^-4, -3.43523*10^-4, -5.0613*10^-5, -1.22187*10^-4, 1.72603*10^-4, 1.26907*10^-4, 4.5528*10^-4, 1.07997*10^-4, -3.74969*10^-4, 2.48529*10^-6, -3.90002*10^-4, -4.24739*10^-4, -2.91292*10^-4, -3.80888*10^-4, 1.2067*10^-5, 3.17963*10^-5, -1.32352*10^-4, -1.43383*10^-4, -1.88798*10^-4, -5.53501*10^-5, -7.91089*10^-5, -1.55607*10^-4, -4.37215*10^-5, 2.5023*10^-5, 4.36754*10^-5, 6.82071*10^-6, -1.51174*10^-5, -4.01122*10^-6, 4.88989*10^-7, 0)); h(21,1) = fi.fir((-1.72456*10^-6, 1.51199*10^-5, -8.9622*10^-5, 4.51662*10^-5, -6.02566*10^-5, 1.4925*10^-4, -4.63978*10^-5, 1.28289*10^-4, -1.59971*10^-4, 5.51018*10^-5, -8.52122*10^-5, 1.24608*10^-4, -4.81403*10^-4, 1.3988*10^-3, 1.42046*10^-3, -2.43694*10^-3, -1.34784*10^-3, 4.05739*10^-3, -3.37356*10^-3, 3.79702*10^-3, -1.62823*10^-4, -1.33363*10^-2, 1.51297*10^-2, -1.99099*10^-3, 8.8277*10^-5, 1.38903*10^-3, -8.64536*10^-3, 1.74132*10^-3, -9.25597*10^-4, 1.16576*10^-4, -1.36287*10^-3, 1.50701*10^-2, 1.57599*10^-3, -9.8981*10^-3, -7.16758*10^-3, 8.06326*10^-3, 5.16217*10^-3, -1.32405*10^-2, 1.65833*10^-3, 4.64267*10^-3, -3.35439*10^-3, -3.49793*10^-4, 1.17955*10^-3, 8.88766*10^-4, -2.01648*10^-3, 8.99674*10^-4, -9.62836*10^-4, -1.71734*10^-3, 3.59954*10^-3, -1.10467*10^-3, -2.3227*10^-4, 1.25554*10^-3, 2.21503*10^-3, -7.08518*10^-4, 1.38544*10^-3, 4.92437*10^-3, -1.78311*10^-4, -1.12848*10^-3, -2.74061*10^-4, -2.76848*10^-3, -1.09522*10^-3, 1.22199*10^-3, -8.65618*10^-4, -2.82137*10^-3, -2.16653*10^-3, -7.13619*10^-4, -8.86716*10^-5, 1.04919*10^-4, 3.42128*10^-4, 3.15598*10^-4, 2.5078*10^-4, 1.17239*10^-3, 1.1948*10^-3, -3.29991*10^-4, -4.60373*10^-4, -9.07143*10^-5, -1.35154*10^-3, 9.80584*10^-4, 2.05091*10^-3, 1.23329*10^-3, -7.46007*10^-5, -1.32245*10^-3, 5.88936*10^-4, 7.87857*10^-4, 1.78134*10^-4, -3.60258*10^-4, -1.19211*10^-3, -2.98303*10^-4, -2.37842*10^-4, -1.07163*10^-4, 4.67904*10^-4, 8.76573*10^-4, 2.68727*10^-4, -1.16942*10^-3, -1.64166*10^-3, -6.53472*10^-5, 2.08517*10^-3, 1.20197*10^-3, 5.97838*10^-6, -7.95606*10^-5, 1.90799*10^-4, -7.33386*10^-5, -2.56214*10^-4, -5.17742*10^-6, -1.06843*10^-4, -4.30154*10^-5, -2.5283*10^-4, -2.67635*10^-4, 1.23694*10^-4, 4.31971*10^-5, -3.80833*10^-4, -2.66416*10^-4, 1.33655*10^-4, 1.31404*10^-4, 2.92614*10^-5, 9.48311*10^-6, -1.79707*10^-5, -5.33063*10^-5, -2.60729*10^-6, -3.11424*10^-5, -5.02754*10^-5, 6.37954*10^-6, 3.6885*10^-5, 2.56571*10^-5, 5.33039*10^-6, -1.5362*10^-6, -5.88919*10^-7, 0)); h(22,1) = fi.fir((2.48655*10^-5, -5.2325*10^-5, -3.16647*10^-4, -1.40598*10^-4, 9.90226*10^-5, 7.29466*10^-5, -5.1453*10^-4, 1.10753*10^-3, -1.26463*10^-3, 2.38535*10^-3, -1.78727*10^-3, 8.03193*10^-3, 2.96316*10^-2, 3.52858*10^-2, -2.0667*10^-2, -4.29015*10^-2, -2.62128*10^-2, -3.74964*10^-2, 1.46813*10^-2, -1.57208*10^-2, -3.99341*10^-2, 1.39343*10^-2, 4.26851*10^-2, 3.79115*10^-2, 1.44081*10^-2, 3.31856*10^-2, 1.29721*10^-2, -1.86206*10^-2, -1.72566*10^-3, 4.66849*10^-3, -5.21283*10^-3, -3.24698*10^-3, 5.97366*10^-3, 1.3015*10^-3, -5.33637*10^-3, -7.63633*10^-3, -2.24471*10^-2, -2.31689*10^-2, -6.6379*10^-3, -1.49051*10^-3, -5.55617*10^-3, -5.42286*10^-3, 1.87131*10^-3, -3.51473*10^-4, 2.32295*10^-3, 6.39798*10^-3, 4.6697*10^-3, 5.0508*10^-3, 4.30472*10^-3, 2.86225*10^-3, 2.47781*10^-3, 5.52152*10^-3, 5.06712*10^-3, 2.91467*10^-3, 2.04454*10^-3, -3.74723*10^-5, -8.71398*10^-4, -3.41146*10^-4, 1.39395*10^-3, 1.41333*10^-3, -8.97885*10^-4, -2.57216*10^-3, -4.39151*10^-3, -3.73773*10^-3, -3.62271*10^-3, -2.64545*10^-4, 2.5929*10^-3, -4.22486*10^-4, -1.2386*10^-3, 7.14534*10^-4, 2.07345*10^-3, 1.28457*10^-3, 1.23699*10^-3, 1.2271*10^-4, -9.64007*10^-4, 1.17332*10^-3, 2.34453*10^-3, 2.26393*10^-3, 1.01466*10^-3, -6.77591*10^-4, -3.89581*10^-4, 4.90595*10^-4, -1.24704*10^-3, -3.26374*10^-3, -2.87005*10^-3, -1.10188*10^-3, 1.1911*10^-4, 4.32073*10^-4, -8.76799*10^-6, -1.04977*10^-3, -6.46028*10^-4, -3.69246*10^-4, -1.91836*10^-3, -3.56517*10^-3, -1.26296*10^-3, 2.54428*10^-4, 1.09714*10^-6, 1.49528*10^-3, 1.82236*10^-3, 8.54379*10^-4, -1.65683*10^-4, 4.23628*10^-4, 1.46408*10^-3, 5.97418*10^-4, -3.6978*10^-5, 3.99827*10^-4, 7.13353*10^-4, 7.93463*10^-4, -4.61018*10^-5, -3.53584*10^-4, 6.40531*10^-4, 4.79932*10^-4, -9.5068*10^-5, -2.38922*10^-4, -7.41771*10^-5, -1.33542*10^-6, -1.45382*10^-4, -5.40852*10^-5, -1.79538*10^-5, -4.78923*10^-5, -1.27759*10^-5, -2.27523*10^-5, -1.74931*10^-5, -8.18893*10^-6, -9.31525*10^-6, -2.14361*10^-6, 1.24397*10^-6, 0)); h(23,1) = fi.fir((-9.94474*10^-6, 4.27114*10^-5, -7.58864*10^-5, -4.08033*10^-5, -1.66029*10^-4, 6.99969*10^-4, -6.60455*10^-4, 3.87942*10^-4, -2.56811*10^-5, 5.21205*10^-4, -9.92013*10^-4, 5.2282*10^-4, 4.02347*10^-4, 1.64552*10^-3, 4.88735*10^-3, -7.16065*10^-3, -1.16489*10^-3, 5.46722*10^-3, 5.91649*10^-3, -2.51933*10^-2, 6.86249*10^-3, 1.25277*10^-2, -2.22476*10^-2, 2.85481*10^-2, 1.69364*10^-2, -2.42674*10^-2, -6.12438*10^-3, 2.59762*10^-3, -7.59654*10^-3, 1.04596*10^-2, 7.95004*10^-3, -1.68353*10^-2, 2.37525*10^-3, 1.71455*10^-2, -1.58868*10^-2, -2.06715*10^-3, 1.14507*10^-2, -3.84699*10^-3, -5.75882*10^-3, 4.73693*10^-3, 4.44541*10^-3, -5.3719*10^-3, 7.07381*10^-3, -1.44816*10^-3, -8.83576*10^-3, 4.74825*10^-3, 3.46505*10^-3, -3.93443*10^-3, -1.88966*10^-3, 1.73706*10^-4, -3.47623*10^-3, -2.49524*10^-3, 3.02676*10^-3, -9.34111*10^-4, -1.06458*10^-3, -2.31743*10^-4, -1.57497*10^-4, -1.67037*10^-3, -3.0292*10^-3, -1.32391*10^-3, 1.38116*10^-3, 5.06015*10^-3, 2.69779*10^-3, 1.31753*10^-3, 5.56525*10^-4, 8.93187*10^-4, 2.29024*10^-3, 1.95557*10^-3, 1.35886*10^-3, -2.43386*10^-4, -1.04462*10^-3, -5.11794*10^-4, -1.02342*10^-3, -1.35237*10^-3, -3.60761*10^-4, -4.90595*10^-4, -6.67587*10^-4, -1.08501*10^-3, -2.71009*10^-3, -6.3472*10^-4, 9.17056*10^-4, 7.24254*10^-4, 7.04233*10^-4, -1.61289*10^-3, -9.26784*10^-4, 1.22065*10^-4, 2.94391*10^-6, -3.4728*10^-4, -1.24285*10^-3, 9.43769*10^-4, 1.1113*10^-3, -7.15588*10^-4, 4.09948*10^-4, 1.4052*10^-3, 6.92748*10^-4, 4.71341*10^-4, 3.15615*10^-4, 4.52161*10^-4, 9.45078*10^-4, 8.04685*10^-4, 8.21556*10^-6, -3.57801*10^-4, 5.83444*10^-7, 6.1747*10^-4, 3.98374*10^-4, 2.45972*10^-4, 1.13249*10^-4, -2.76345*10^-4, 1.21626*10^-4, 2.36304*10^-4, -2.22619*10^-4, -3.59817*10^-4, -9.72827*10^-5, 1.78986*10^-5, -2.0505*10^-4, -6.99009*10^-5, -1.10715*10^-4, -8.35894*10^-5, -4.12822*10^-5, -5.59518*10^-5, -3.75969*10^-5, -5.71836*10^-5, -1.51806*10^-5, -4.28309*10^-6, 6.88232*10^-7, 2.35351*10^-6, -1.47788*10^-7, 0)); h(24,1) = fi.fir((9.35012*10^-6, -5.35087*10^-5, -3.65476*10^-4, -2.45125*10^-4, 2.67346*10^-4, 6.04623*10^-4, -8.77518*10^-4, 1.16198*10^-4, 2.1498*10^-4, 1.02728*10^-3, -1.914*10^-3, 9.69097*10^-3, 4.07828*10^-2, 3.57639*10^-2, 8.26336*10^-3, -5.86346*10^-2, -6.61816*10^-2, -2.39763*10^-2, -4.34275*10^-2, -2.30372*10^-2, 5.32942*10^-3, 2.15685*10^-2, 5.31705*10^-2, 5.41351*10^-2, -4.37594*10^-3, 1.13766*10^-2, 3.23898*10^-2, 3.78819*10^-3, -6.9729*10^-3, -8.28142*10^-3, 1.34835*10^-2, -9.09249*10^-3, -1.45286*10^-2, -6.90546*10^-3, -3.55798*10^-3, -6.78837*10^-3, -1.82876*10^-2, -1.28663*10^-2, 2.19275*10^-3, 8.33522*10^-3, 8.3406*10^-5, -5.79098*10^-3, 3.15133*10^-3, 5.71376*10^-3, -4.30659*10^-3, -5.7374*10^-3, 3.28927*10^-3, 6.59259*10^-3, 1.34358*10^-3, 1.06006*10^-3, -1.49271*10^-3, 1.86571*10^-3, 3.56575*10^-3, 1.81036*10^-6, -3.46722*10^-4, 1.77995*10^-4, -1.24097*10^-4, 1.32287*10^-4, 6.14402*10^-5, 9.07871*10^-4, -1.91513*10^-4, -1.00305*10^-3, -1.00811*10^-4, -1.24849*10^-3, -5.35492*10^-4, -6.00765*10^-5, -7.01885*10^-4, -6.77036*10^-4, -1.84157*10^-3, -2.28896*10^-3, -1.51697*10^-3, 1.21332*10^-3, 2.94839*10^-3, 1.27728*10^-3, -6.31887*10^-4, -9.03401*10^-4, 3.26236*10^-4, -1.10683*10^-4, 1.24937*10^-3, 1.27678*10^-3, -1.93253*10^-5, 9.2739*10^-4, 8.16862*10^-4, 3.07199*10^-4, 1.09648*10^-3, 2.0883*10^-3, 7.45629*10^-4, -1.94134*10^-3, -1.87102*10^-3, -7.60785*10^-4, -1.1286*10^-3, -1.25057*10^-3, -5.22489*10^-4, -4.51032*10^-4, 7.48275*10^-5, 5.8756*10^-4, -1.16422*10^-4, 4.54606*10^-5, 3.94057*10^-4, 3.30823*10^-4, 4.43729*10^-4, 6.34335*10^-4, 7.10508*10^-4, 4.83306*10^-4, 5.21324*10^-4, 2.24978*10^-4, -4.46103*10^-5, 4.35921*10^-5, -1.50574*10^-4, 4.54877*10^-5, -2.53513*10^-4, -1.0568*10^-4, 2.11629*10^-4, 6.57646*10^-5, 5.95893*10^-5, -1.68436*10^-4, -2.68843*10^-4, -1.39565*10^-4, -5.68304*10^-5, -3.4888*10^-6, -6.92076*10^-5, -7.69788*10^-5, -3.3133*10^-5, -1.58658*10^-5, 3.83839*10^-6, 2.13798*10^-6, 8.78916*10^-7, 0)); h(25,1) = fi.fir((1.75745*10^-5, 1.46899*10^-4, 2.98616*10^-4, 2.91907*10^-4, -1.36334*10^-4, -5.05798*10^-4, 4.59936*10^-4, -1.05671*10^-3, -3.71296*10^-4, -1.11838*10^-3, 3.34114*10^-3, -1.35237*10^-2, -1.95576*10^-2, -5.53276*10^-3, 4.60016*10^-3, 4.94228*10^-2, 3.49525*10^-2, 1.69814*10^-2, 4.13115*10^-2, -1.99525*10^-2, -6.08337*10^-2, -4.261*10^-2, -4.6904*10^-2, -3.8218*10^-2, 9.49311*10^-3, 2.55713*10^-2, 2.3786*10^-2, 1.55105*10^-2, 3.00478*10^-2, 5.33536*10^-2, -3.29497*10^-3, -1.3194*10^-2, 5.26077*10^-3, -7.24585*10^-3, -5.95666*10^-3, -2.01764*10^-2, -1.41497*10^-2, 1.1094*10^-2, 9.51644*10^-3, -6.3158*10^-3, -1.71203*10^-2, -2.15968*10^-3, 2.37423*10^-3, -4.59366*10^-3, -3.3277*10^-3, -1.32678*10^-3, 4.36719*10^-4, -9.75091*10^-4, 2.9275*10^-3, 4.98083*10^-3, 3.75698*10^-3, 2.47108*10^-3, 1.81967*10^-3, -9.08305*10^-4, -2.80125*10^-3, 1.30247*10^-4, 3.40864*10^-3, 2.46043*10^-3, 1.88758*10^-3, 2.3077*10^-5, -1.32038*10^-3, -8.685*10^-4, -2.54997*10^-3, -2.42258*10^-3, -1.96148*10^-3, -1.87308*10^-3, -4.56271*10^-4, 9.99454*10^-4, 2.07461*10^-3, -1.27137*10^-3, -2.09749*10^-3, 3.52481*10^-3, 3.48921*10^-3, 2.07019*10^-5, 1.00514*10^-3, 3.1206*10^-3, 2.95256*10^-4, -3.28529*10^-3, -2.15363*10^-3, 9.74996*10^-4, 1.15759*10^-4, -2.08429*10^-3, -1.39596*10^-3, 2.88039*10^-4, 3.52237*10^-4, -8.81839*10^-4, -1.51922*10^-3, 1.19948*10^-3, 1.04628*10^-3, -6.85543*10^-4, 3.08893*10^-5, 9.46998*10^-4, 1.99563*10^-3, 7.05182*10^-4, -9.68873*10^-4, -1.91172*10^-3, -5.8996*10^-4, -9.38325*10^-5, -6.62862*10^-4, -7.00253*10^-5, 1.04924*10^-3, 6.33366*10^-4, -1.25815*10^-4, -6.02163*10^-5, 1.31514*10^-4, 2.49788*10^-4, 1.23289*10^-4, 6.38484*10^-6, 2.98695*10^-5, -7.74413*10^-5, -6.18813*10^-5, -2.91172*10^-4, -2.10773*10^-4, -4.13487*10^-5, 6.10882*10^-5, 7.31887*10^-5, 8.02268*10^-5, 2.289*10^-5, 4.08276*10^-5, 4.40934*10^-5, -1.03733*10^-5, 1.1964*10^-5, 9.03398*10^-6, -7.87942*10^-7, -1.11533*10^-5, -7.913*10^-6, -1.06573*10^-6, 0)); h(26,1) = fi.fir((1.2426*10^-5, -4.77088*10^-5, 1.74254*10^-5, 8.95737*10^-5, 6.94603*10^-6, -5.57998*10^-4, 6.11467*10^-4, -2.28106*10^-4, -3.03717*10^-4, 1.99821*10^-4, 6.37561*10^-4, -2.81438*10^-4, -1.05089*10^-3, -1.26156*10^-3, -7.92312*10^-3, 1.39144*10^-2, 6.49938*10^-3, -8.46662*10^-3, 4.52054*10^-3, 6.68414*10^-3, -2.83141*10^-2, 3.9259*10^-3, 3.43884*10^-2, -2.45073*10^-2, -1.76419*10^-3, 2.56057*10^-3, -1.40884*10^-4, 8.69002*10^-3, -2.1991*10^-3, -6.47077*10^-3, -9.24293*10^-3, 9.10019*10^-3, 1.66209*10^-3, -6.67199*10^-3, 5.0464*10^-3, 5.06006*10^-3, 2.58447*10^-4, -1.72143*10^-4, -2.42872*10^-3, 9.16115*10^-4, 9.92355*10^-4, 1.9535*10^-3, 1.9573*10^-3, -2.8023*10^-3, -4.1707*10^-3, 9.30843*10^-4, 3.45299*10^-4, -2.16593*10^-3, -1.48984*10^-3, -1.44952*10^-3, -9.69359*10^-4, -3.41713*10^-4, 1.87801*10^-3, -9.55175*10^-4, 6.30711*10^-5, 3.86306*10^-3, 1.72614*10^-3, -2.87262*10^-5, 1.01278*10^-3, 1.19309*10^-3, -1.30918*10^-3, -2.47843*10^-3, -5.99368*10^-4, -8.62886*10^-4, -4.50483*10^-4, -4.98383*10^-5, -6.25081*10^-4, 9.02621*10^-4, 1.73495*10^-3, 8.8974*10^-4, -5.08301*10^-4, 2.56778*10^-4, 2.023*10^-3, -2.65444*10^-4, 6.00058*10^-4, 2.7544*10^-3, -5.11977*10^-4, -2.79595*10^-3, -2.27893*10^-3, -1.5044*10^-3, -7.19575*10^-4, -2.48827*10^-4, -3.51084*10^-5, 3.99715*10^-4, -1.07648*10^-3, -2.01868*10^-3, -9.25746*10^-4, 7.67893*10^-4, 1.79612*10^-3, 7.40578*10^-4, -2.08784*10^-4, -5.24523*10^-4, -1.58131*10^-4, 5.07031*10^-4, 2.61123*10^-4, -7.04872*10^-4, -6.71401*10^-4, 3.81263*10^-4, 9.84421*10^-4, 9.53969*10^-4, 9.41409*10^-4, 5.03337*10^-4, 1.95336*10^-4, -1.24894*10^-4, 3.35934*10^-4, 5.48825*10^-4, 2.10516*10^-4, 4.97707*10^-4, 3.23931*10^-4, -9.83185*10^-5, -2.27783*10^-5, -1.5412*10^-4, 1.20834*10^-4, 9.9222*10^-5, -5.28381*10^-5, -8.80554*10^-5, -3.85857*10^-5, 5.25383*10^-5, -1.5899*10^-5, -1.58565*10^-5, -2.24063*10^-5, -4.13718*10^-5, -2.14482*10^-5, -6.95742*10^-6, -4.01784*10^-6, -6.53995*10^-7, -6.41601*10^-7, 0)); h(27,1) = fi.fir((-1.00563*10^-5, 5.9274*10^-5, 2.35554*10^-4, -3.5335*10^-4, -5.97894*10^-4, -7.15845*10^-4, 1.88223*10^-3, -1.71357*10^-3, 2.65382*10^-3, -3.06884*10^-3, 3.68918*10^-3, -1.19578*10^-2, -1.62451*10^-2, -2.60322*10^-2, 3.96346*10^-2, 7.41808*10^-2, -9.73336*10^-3, 1.97923*10^-2, -4.62601*10^-2, -3.74157*10^-2, 3.06522*10^-2, -3.63476*10^-2, -4.49094*10^-2, 9.48836*10^-3, 3.67587*10^-2, 2.54189*10^-2, -1.73924*10^-2, -2.07012*10^-2, 2.39723*10^-2, 2.80468*10^-3, 1.67917*10^-3, 1.25467*10^-2, 4.27576*10^-3, 1.1241*10^-2, 1.18508*10^-2, -6.11762*10^-4, -1.14478*10^-2, -1.26997*10^-2, -8.91142*10^-3, -1.21305*10^-2, -7.06148*10^-3, -1.97276*10^-3, -4.2019*10^-3, 2.15697*10^-3, 4.01709*10^-3, -4.71807*10^-3, -2.01605*10^-3, 8.74338*10^-3, 7.03788*10^-3, 3.42858*10^-3, 2.49072*10^-3, 6.1142*10^-3, 3.20897*10^-3, -6.67307*10^-4, -6.59524*10^-4, -1.37444*10^-3, 1.0144*10^-3, 2.05969*10^-3, -2.46821*10^-3, -1.53181*10^-3, 1.3799*10^-3, 8.26331*10^-4, -2.17175*10^-3, -5.63238*10^-3, -2.79104*10^-3, -1.11618*10^-3, -2.11442*10^-3, -2.07328*10^-4, 6.16098*10^-4, 1.70694*10^-3, 1.04743*10^-3, 6.32304*10^-4, 1.28951*10^-3, -5.49762*10^-4, -1.44309*10^-3, -1.1269*10^-3, 5.84764*10^-4, 8.1579*10^-4, 1.18839*10^-3, 2.26951*10^-3, 1.8906*10^-3, -4.12462*10^-4, -2.3686*10^-3, -2.87648*10^-3, -1.12341*10^-3, 5.21822*10^-4, 1.56127*10^-4, 1.30195*10^-4, 8.20513*10^-4, 1.70656*10^-3, 7.38411*10^-4, -4.16141*10^-4, -7.01969*10^-4, -4.32107*10^-4, -1.20732*10^-4, -1.08228*10^-3, -1.8442*10^-4, 9.55993*10^-4, 8.38237*10^-4, 1.02043*10^-3, 2.83175*10^-4, -5.39898*10^-4, -1.90144*10^-4, 1.35094*10^-5, -2.74943*10^-4, -2.79033*10^-4, 1.77257*10^-4, 2.1278*10^-4, 1.37094*10^-4, 1.9604*10^-4, -3.83873*10^-5, -2.54403*10^-4, -9.55285*10^-5, -1.40286*10^-5, -1.59793*10^-4, -1.89387*10^-4, -1.00599*10^-4, 3.46764*10^-5, 4.29566*10^-5, -7.46743*10^-6, 1.64162*10^-6, 3.71658*10^-7, 8.58456*10^-6, -3.6527*10^-7, 3.71601*10^-6, -8.32524*10^-7, -8.31327*10^-7, 0)); h(28,1) = fi.fir((4.42571*10^-6, -5.25139*10^-5, 4.80723*10^-5, -7.35592*10^-5, 4.77664*10^-5, -2.27046*10^-4, 2.09086*10^-4, -1.4026*10^-4, -2.81565*10^-5, 1.09371*10^-4, -1.18816*10^-5, -2.92397*10^-4, 1.2743*10^-4, -1.64412*10^-3, -4.13328*10^-3, 7.62388*10^-3, 4.75107*10^-3, -7.01003*10^-3, 8.55208*10^-3, -1.04871*10^-2, -1.38051*10^-2, 2.21686*10^-2, -6.08628*10^-3, 7.39797*10^-4, 3.0502*10^-3, -9.89071*10^-3, 4.92144*10^-3, 3.02305*10^-4, -4.89462*10^-3, 3.46101*10^-3, 1.11627*10^-2, -7.56119*10^-3, -7.24114*10^-3, 4.09864*10^-3, 8.23437*10^-3, 1.4973*10^-3, -4.40095*10^-3, -7.53947*10^-3, 2.14502*10^-3, 4.49558*10^-3, -2.4353*10^-3, -3.68379*10^-3, 1.46191*10^-3, 5.10677*10^-4, -2.50409*10^-3, 7.47175*10^-4, 1.79311*10^-3, 9.22453*10^-4, -2.456*10^-3, 7.52408*10^-4, 1.63234*10^-3, 1.28692*10^-3, 1.01539*10^-3, 1.08284*10^-3, 2.19494*10^-3, 3.08748*10^-3, 4.96248*10^-4, 7.71643*10^-4, 1.18863*10^-3, -8.68116*10^-4, -2.69635*10^-3, -2.6382*10^-3, -1.91084*10^-3, -2.79993*10^-3, -3.23837*10^-3, -2.68603*10^-3, -1.86269*10^-3, -1.86959*10^-3, -1.27989*10^-3, 2.01564*10^-3, 2.76083*10^-3, 9.86549*10^-4, -8.7314*10^-4, 1.26592*10^-3, 4.80566*10^-3, 2.13314*10^-3, 1.68506*10^-3, 1.2087*10^-3, -4.96449*10^-4, -7.57128*10^-4, -1.77717*10^-3, -1.01262*10^-3, 1.0737*10^-3, 1.35725*10^-3, 2.15705*10^-4, -7.83307*10^-4, 1.46598*10^-4, 8.85188*10^-4, 8.33678*10^-4, 3.04239*10^-4, -3.98159*10^-4, -8.54766*10^-4, -1.32091*10^-3, -5.35662*10^-4, 8.28129*10^-5, 3.82586*10^-4, -7.23748*10^-5, -8.28216*10^-4, -8.18907*10^-5, 5.12723*10^-4, 3.70794*10^-4, -1.75629*10^-4, -3.78407*10^-4, 2.2061*10^-4, -6.95443*10^-5, -5.58027*10^-4, -2.90926*10^-4, -1.97983*10^-4, 1.29549*10^-4, -1.29874*10^-6, -1.1364*10^-4, 8.94487*10^-5, -9.41637*10^-5, -1.60941*10^-4, -1.69719*10^-4, 2.72544*10^-5, 1.00615*10^-4, -5.87972*10^-5, -4.64086*10^-5, -1.40473*10^-5, 4.62928*10^-5, 2.68796*10^-5, -1.42806*10^-5, -3.50232*10^-6, 7.56753*10^-6, 4.54977*10^-6, -4.9856*10^-7, 0)); h(29,1) = fi.fir((1.72514*10^-5, 2.02799*10^-4, 1.8682*10^-4, 1.60664*10^-4, -4.56519*10^-6, 3.3872*10^-4, -1.28234*10^-3, -3.60277*10^-4, -1.9713*10^-4, -7.16211*10^-5, 7.59286*10^-4, -7.38491*10^-3, -1.19741*10^-2, 3.51663*10^-3, 3.92377*10^-3, 5.26516*10^-4, 3.00314*10^-2, 3.97127*10^-2, 2.70782*10^-2, -1.77782*10^-2, -3.70878*10^-2, -3.91555*10^-2, -4.40249*10^-2, -8.97252*10^-3, -5.0746*10^-3, 6.93356*10^-3, 4.16227*10^-2, 3.0071*10^-2, 2.15117*10^-2, 1.71091*10^-2, -5.29178*10^-3, -1.18732*10^-2, -9.87757*10^-3, -2.20865*10^-3, -1.07476*10^-2, -1.07259*10^-2, 4.16279*10^-3, 6.76094*10^-4, -2.13691*10^-3, 2.86477*10^-3, 3.57658*10^-3, -2.46872*10^-3, -9.27232*10^-3, -4.00764*10^-3, 1.66773*10^-3, 1.61128*10^-3, 4.27902*10^-4, -4.86256*10^-3, -4.47439*10^-3, 2.3905*10^-3, 6.67455*10^-3, 3.03536*10^-3, 1.64915*10^-3, 2.73609*10^-3, -2.71304*10^-4, -1.10411*10^-3, -3.4311*10^-4, -2.00575*10^-4, 1.42515*10^-3, 7.5748*10^-4, -6.2549*10^-4, -2.51395*10^-4, -4.0375*10^-4, 2.30371*10^-5, -1.85713*10^-3, -1.7735*10^-3, -4.67836*10^-4, 2.24438*10^-5, 2.44374*10^-3, -3.6717*10^-4, -1.40439*10^-3, -3.85146*10^-4, -2.78346*10^-4, 1.81392*10^-3, 1.83653*10^-3, 1.19337*10^-4, -2.69222*10^-3, -2.05297*10^-3, -5.49832*10^-4, -6.56534*10^-4, -4.99124*10^-4, 1.98928*10^-3, 2.30627*10^-3, 8.69766*10^-4, 4.68453*10^-4, -6.54213*10^-4, -9.48419*10^-4, -1.15308*10^-3, -9.4006*10^-4, 1.11535*10^-4, 1.58769*10^-3, 2.07482*10^-3, 5.33459*10^-4, -1.09815*10^-4, 9.2514*10^-5, -1.38243*10^-3, -1.83849*10^-3, -1.08857*10^-3, -7.13545*10^-4, 7.82302*10^-5, 1.09697*10^-3, 9.86079*10^-4, 7.54206*10^-4, 7.56137*10^-4, -2.0109*10^-5, -4.71166*10^-4, -4.71096*10^-4, 1.7491*10^-5, 1.12602*10^-4, -1.84757*10^-4, 3.20605*10^-5, -2.10856*10^-4, -8.98024*10^-5, 4.41671*10^-5, 8.48396*10^-5, 1.55277*10^-5, 6.40002*10^-5, 6.22259*10^-5, -7.16573*10^-5, -4.57601*10^-6, -7.5315*10^-6, -1.40902*10^-5, -9.16519*10^-6, -3.96373*10^-6, -5.00245*10^-6, -3.87501*10^-6, -4.69133*10^-7, 0)); h(30,1) = fi.fir((-1.05977*10^-5, -5.86263*10^-6, 2.69518*10^-4, -1.26525*10^-4, -4.52774*10^-4, 5.0002*10^-4, 2.41483*10^-4, -4.51158*10^-6, -6.87059*10^-4, 1.09752*10^-3, -1.20929*10^-3, 1.06518*10^-3, -1.35867*10^-2, -2.28244*10^-3, 3.37715*10^-2, 1.36485*10^-2, -1.589*10^-2, -3.46426*10^-2, 4.41343*10^-3, -1.42898*10^-3, 1.76399*10^-2, 3.29432*10^-2, -3.62081*10^-2, -6.68881*10^-3, -9.56696*10^-3, 1.12001*10^-2, 8.05071*10^-3, 6.88129*10^-4, 6.31159*10^-3, -1.46507*10^-2, 1.09057*10^-2, -5.01016*10^-3, -3.74484*10^-3, -1.11508*10^-3, 1.38261*10^-2, 9.22232*10^-4, -1.71481*10^-2, -3.49336*10^-4, -4.60814*10^-4, 5.75083*10^-3, 9.46257*10^-3, 9.05153*10^-4, -2.65807*10^-3, -4.34325*10^-3, 8.74476*10^-4, 9.42166*10^-4, 2.59628*10^-3, 4.75582*10^-3, -2.48036*10^-3, -2.60247*10^-3, -3.90607*10^-3, 7.86462*10^-4, 2.61399*10^-3, 2.73783*10^-3, -5.18858*10^-4, -4.45753*10^-3, -4.27208*10^-3, -2.76925*10^-3, -1.3237*10^-3, -1.34827*10^-3, -3.49078*10^-4, 8.65055*10^-4, -3.97991*10^-4, -2.80854*10^-3, -1.37461*10^-3, 3.96601*10^-3, 6.43215*10^-3, 3.14286*10^-3, -1.77889*10^-3, -9.95502*10^-4, 1.82123*10^-3, 1.4475*10^-3, 3.40608*10^-4, -7.72423*10^-4, 1.89618*10^-4, 8.67725*10^-4, 4.77414*10^-4, -3.48148*10^-5, 1.28504*10^-3, 1.66311*10^-3, -7.54096*10^-5, -1.73577*10^-4, -4.56731*10^-4, -1.94944*10^-3, -1.84168*10^-3, -4.10563*10^-4, 4.80377*10^-4, 3.29585*10^-4, 1.96801*10^-4, -5.9544*10^-4, -1.58268*10^-3, -8.97449*10^-4, 5.22556*10^-4, 5.07778*10^-4, 9.75903*10^-4, 1.27258*10^-3, -4.88943*10^-4, -1.04705*10^-3, -6.10951*10^-4, -2.51397*10^-4, -1.7389*10^-4, 1.79626*10^-4, 3.07713*10^-4, -2.64718*10^-6, 1.21443*10^-5, -3.27868*10^-5, 9.54264*10^-5, -6.01777*10^-5, -2.66374*10^-4, -4.29445*10^-6, 1.45441*10^-4, 3.37082*10^-4, -1.30989*10^-5, -1.75064*10^-4, 1.04909*10^-5, 1.10349*10^-4, 7.62055*10^-5, -1.22155*10^-5, -6.81875*10^-6, 3.71672*10^-5, 4.54373*10^-5, 2.86475*10^-6, -1.06744*10^-5, -1.45709*10^-5, -3.72582*10^-7, 1.88015*10^-6, -1.63011*10^-7, 0)); h(31,1) = fi.fir((3.63197*10^-6, -4.17893*10^-5, 2.45768*10^-5, -1.34394*10^-4, 1.50699*10^-4, -8.45052*10^-5, -2.68248*10^-4, -2.68464*10^-4, 6.01937*10^-4, 6.75301*10^-4, -8.7964*10^-4, -4.40041*10^-4, 1.13343*10^-3, 4.75425*10^-4, -4.00795*10^-3, -6.47921*10^-4, 5.94561*10^-3, 1.26277*10^-2, 2.50689*10^-3, -4.30838*10^-2, -7.39102*10^-4, 3.85717*10^-2, -4.28972*10^-3, -4.64304*10^-3, -1.6027*10^-2, 1.70557*10^-2, 1.26768*10^-2, -1.12476*10^-2, -3.82452*10^-3, -1.07588*10^-2, 1.15049*10^-2, -6.29321*10^-3, -4.74255*10^-3, 5.58298*10^-3, 6.44089*10^-3, 1.04873*10^-4, -6.63592*10^-3, 7.18382*10^-3, -1.00255*10^-3, -5.59198*10^-3, -9.87406*10^-4, -3.41198*10^-3, -6.22494*10^-4, -9.36523*10^-4, 1.15447*10^-3, 9.73388*10^-4, 1.62607*10^-3, 2.03041*10^-3, -1.79843*10^-3, 1.97711*10^-3, 1.25431*10^-3, 1.92313*10^-3, 2.94417*10^-3, 5.09311*10^-3, 3.40691*10^-3, -2.40451*10^-3, -1.35731*10^-3, 3.72132*10^-4, -1.52802*10^-3, -3.56673*10^-3, -3.94725*10^-3, -2.08793*10^-3, -9.67496*10^-4, 7.06466*10^-4, 2.09277*10^-4, -9.2161*10^-4, 2.89724*10^-3, 3.8661*10^-3, 6.22213*10^-4, -8.51723*10^-4, 1.52091*10^-3, 2.18308*10^-5, -1.30001*10^-3, -1.3667*10^-3, -3.36625*10^-3, -2.26563*10^-3, -9.35397*10^-4, 1.24657*10^-3, 1.29894*10^-3, 6.93492*10^-4, 1.36393*10^-3, 4.27555*10^-4, -5.36187*10^-4, -2.65679*10^-3, -2.42276*10^-3, -7.04107*10^-4, 5.54658*10^-4, 5.9552*10^-4, -1.18464*10^-3, -4.89254*10^-4, 1.09719*10^-3, 2.20104*10^-3, 1.98143*10^-3, 7.49778*10^-4, 3.33683*10^-4, -3.61494*10^-4, 7.21114*10^-4, 1.34956*10^-3, 5.9681*10^-4, 6.10358*10^-4, 7.25472*10^-4, 3.90337*10^-4, -1.48989*10^-4, -4.89266*10^-4, -3.09042*10^-4, -2.36409*10^-4, -1.32294*10^-4, -4.35343*10^-5, -2.01118*10^-4, -2.4303*10^-4, -2.94806*10^-4, -4.64657*10^-4, -2.47144*10^-4, -1.45969*10^-5, -7.18141*10^-5, -1.23111*10^-4, -1.74271*10^-4, -6.39473*10^-5, 3.00874*10^-5, -7.7359*10^-5, -7.41747*10^-5, 2.71876*10^-5, 6.36235*10^-5, 3.12801*10^-5, -4.71864*10^-7, -3.30959*10^-6, 1.23727*10^-7, 0)); h(32,1) = fi.fir((-1.5164*10^-5, 1.02701*10^-5, 1.41547*10^-4, -7.76787*10^-5, -9.04689*10^-4, 4.66854*10^-4, 3.55339*10^-4, -1.87639*10^-4, -1.11055*10^-3, 8.663*10^-4, -8.22522*10^-4, 9.9208*10^-4, -1.70128*10^-2, -1.57207*10^-3, 3.93297*10^-2, 1.49163*10^-2, -2.79797*10^-2, -3.55512*10^-2, 6.42963*10^-3, 3.52265*10^-2, 1.30171*10^-2, 6.14379*10^-3, -2.02561*10^-2, -5.19214*10^-2, 1.02132*10^-2, 2.45356*10^-2, 2.06716*10^-2, -1.51029*10^-3, -2.2164*10^-2, -9.11925*10^-3, -8.62691*10^-3, 2.35389*10^-2, 1.1447*10^-2, -1.31559*10^-3, -1.03384*10^-2, -1.48828*10^-3, 3.21049*10^-3, -2.7003*10^-3, 9.47477*10^-3, 1.01988*10^-3, -5.15505*10^-3, -4.1224*10^-3, -6.57104*10^-3, 2.78443*10^-3, 6.73849*10^-3, 3.25351*10^-3, -4.39663*10^-3, -5.66711*10^-3, 1.41698*10^-3, -1.67894*10^-3, 2.45316*10^-3, 4.59245*10^-3, 2.2929*10^-3, -3.16872*10^-3, -4.27748*10^-3, 2.75949*10^-4, 3.22519*10^-3, 3.55722*10^-3, 2.48167*10^-3, -1.11709*10^-3, -3.5176*10^-3, -3.13317*10^-3, -1.723*10^-3, -8.63605*10^-4, 8.44115*10^-4, 1.26202*10^-3, 4.58586*10^-6, 1.27345*10^-4, -6.5914*10^-4, -1.7622*10^-4, 7.88594*10^-4, 2.76781*10^-3, 2.43735*10^-3, -2.16451*10^-3, -1.70087*10^-3, 1.00277*10^-3, 7.9166*10^-4, 1.67515*10^-3, 2.15798*10^-4, -9.9123*10^-4, -1.56334*10^-3, -1.68341*10^-3, 3.25692*10^-4, 9.56928*10^-4, 2.0754*10^-5, -1.90896*10^-3, -2.64317*10^-3, 1.83213*10^-4, 8.50208*10^-4, -5.55223*10^-4, -9.65448*10^-4, -8.72375*10^-4, -1.45471*10^-3, -2.25587*10^-3, -1.03743*10^-3, 1.09749*10^-3, 1.38833*10^-3, 3.86128*10^-4, 3.49077*10^-4, 1.40134*10^-4, 3.74136*10^-4, -2.56234*10^-5, -2.37476*10^-4, 3.39702*10^-4, 5.52412*10^-4, 2.23003*10^-4, -2.40769*10^-4, -1.23724*10^-4, 4.94989*10^-4, 2.98805*10^-4, -1.87967*10^-4, -1.46232*10^-4, 1.73897*10^-5, -3.34046*10^-5, 5.13725*10^-5, 2.16907*10^-4, 1.12568*10^-4, -7.63593*10^-5, -6.98524*10^-5, -8.69074*10^-5, -2.7445*10^-5, 3.56627*10^-5, 7.37787*10^-6, 3.66075*10^-7, 2.76592*10^-6, 3.84136*10^-6, -6.72085*10^-7, 0)); h(33,1) = fi.fir((1.01375*10^-5, -2.49811*10^-5, 4.65485*10^-5, -2.29372*10^-4, -6.88701*10^-5, -3.90714*10^-4, -1.07298*10^-4, -3.65628*10^-4, 8.87982*10^-4, 6.98917*10^-4, -8.64595*10^-4, -5.15935*10^-4, -3.04341*10^-4, 1.81913*10^-3, -4.17119*10^-3, 5.48634*10^-3, 1.9924*10^-3, 1.36526*10^-2, -1.02873*10^-3, -4.68348*10^-2, 1.59373*10^-3, 3.60815*10^-2, -9.42342*10^-3, -2.29176*10^-2, 3.09503*10^-3, 3.77746*10^-2, 2.88282*10^-2, -3.17335*10^-2, -1.62549*10^-2, 2.04141*10^-4, -1.84381*10^-2, 4.27428*10^-3, 8.99894*10^-3, 6.85897*10^-3, 6.04322*10^-3, -3.95258*10^-3, 3.91352*10^-3, 3.16628*10^-3, 1.33088*10^-3, 3.90822*10^-4, -3.48179*10^-3, -2.61772*10^-3, -5.58366*10^-3, -4.76877*10^-3, 1.58516*10^-3, 6.54236*10^-3, 1.89017*10^-3, -3.3063*10^-3, -8.1561*10^-5, -1.03839*10^-4, 5.74132*10^-4, 2.0712*10^-3, 1.21332*10^-3, 1.80529*10^-3, -2.31329*10^-3, -3.80022*10^-3, -1.45005*10^-3, 2.37035*10^-3, 3.67069*10^-3, 3.02275*10^-4, -4.9128*10^-3, -5.15866*10^-3, -1.35669*10^-3, 9.76814*10^-5, 5.91784*10^-4, 8.61779*10^-4, 1.43107*10^-3, 2.88222*10^-4, -1.00629*10^-3, 1.60129*10^-3, 2.04694*10^-3, 5.91966*10^-4, 7.35529*10^-4, 1.78321*10^-4, 4.39099*10^-4, -9.54427*10^-4, 4.36226*10^-4, 2.77631*10^-3, 3.0928*10^-3, 2.62714*10^-3, -1.35578*10^-3, -1.08538*10^-3, 4.79579*10^-4, -1.78226*10^-3, -3.17387*10^-3, -1.79845*10^-3, 1.05056*10^-3, -2.99232*10^-5, -1.03551*10^-3, -5.69112*10^-4, 6.01508*10^-4, 1.58322*10^-3, -8.23208*10^-4, -1.99189*10^-3, -2.4809*10^-4, 5.06377*10^-4, -8.9911*10^-4, -4.05136*10^-4, 6.31182*10^-4, 2.25169*10^-4, -3.08355*10^-4, -3.50962*10^-4, 5.02959*10^-4, 1.08012*10^-4, -6.87927*10^-4, -5.45958*10^-4, 3.48008*10^-4, 7.64329*10^-4, -1.32916*10^-5, -4.51546*10^-4, 1.87338*10^-4, 6.212*10^-4, 2.56356*10^-4, 2.39158*10^-5, -2.30096*10^-5, 8.15938*10^-6, -2.47797*10^-5, -1.31011*10^-5, 8.27008*10^-5, 4.74732*10^-5, -2.03243*10^-6, 8.23851*10^-7, 9.54223*10^-6, 6.97606*10^-6, 3.78575*10^-6, -1.43513*10^-6, -7.8919*10^-7, 0)); h(34,1) = fi.fir((-4.23075*10^-6, -4.21605*10^-5, -5.52922*10^-5, -1.59978*10^-4, 2.93752*10^-4, -2.06297*10^-4, -9.32457*10^-4, 5.97987*10^-4, 7.46486*10^-4, -7.91399*10^-4, -1.50718*10^-3, 1.53082*10^-3, -6.45897*10^-3, -4.12302*10^-4, -4.28109*10^-3, 3.11497*10^-3, 4.2757*10^-2, 2.62717*10^-3, -3.41347*10^-2, -3.25426*10^-2, 2.15351*10^-2, 2.80744*10^-2, -3.69366*10^-2, 1.38136*10^-2, 1.36663*10^-2, -1.98677*10^-2, 1.33925*10^-2, -1.66183*10^-3, -1.22118*10^-2, 2.64607*10^-3, 3.0944*10^-3, 8.2787*10^-3, 6.12769*10^-3, -1.72205*10^-3, -2.41709*10^-2, -3.63107*10^-3, 1.89019*10^-2, 5.92862*10^-3, -4.12913*10^-3, -7.29143*10^-3, -1.32075*10^-3, -2.22156*10^-3, 7.58612*10^-3, 5.85264*10^-3, -2.90549*10^-3, -2.43273*10^-3, -1.26632*10^-3, -2.39696*10^-4, 2.34591*10^-3, 3.9225*10^-3, 1.88155*10^-3, -2.30692*10^-3, -1.60383*10^-3, -3.26795*10^-3, -3.05104*10^-3, 7.90294*10^-4, 2.08479*10^-3, -4.36044*10^-4, -1.79432*10^-3, 8.07006*10^-4, 1.60437*10^-4, -3.77872*10^-4, 2.68202*10^-3, 2.18859*10^-3, -5.50278*10^-4, -2.15952*10^-3, -2.47974*10^-3, -1.38293*10^-3, 1.16165*10^-3, 3.82518*10^-3, 1.23554*10^-3, -9.52937*10^-4, -1.41146*10^-3, -5.3795*10^-4, 2.01899*10^-4, -2.3482*10^-4, 5.14625*10^-6, -7.19536*10^-4, 8.17245*10^-6, 1.51931*10^-3, 2.97595*10^-4, -1.98034*10^-4, 1.56951*10^-3, -2.80705*10^-4, -2.20105*10^-3, -1.3306*10^-3, -1.12762*10^-3, -1.25525*10^-3, -1.4361*10^-4, 1.2728*10^-3, 2.60613*10^-4, -1.18816*10^-3, -4.00668*10^-4, -3.24235*10^-4, -1.54521*10^-3, -6.33094*10^-4, 2.84425*10^-4, -3.19442*10^-4, -3.78649*10^-4, 2.76423*10^-4, 7.36034*10^-5, -6.94307*10^-5, 2.18866*10^-4, 3.09816*10^-4, 4.41506*10^-4, 2.11596*10^-4, 1.0837*10^-4, -1.01793*10^-4, 6.99201*10^-5, 4.77425*10^-4, -8.02488*10^-5, -1.08287*10^-4, 2.02515*10^-4, 1.81432*10^-4, -1.31045*10^-5, 1.57635*10^-5, 9.60958*10^-6, 3.04029*10^-5, 2.47107*10^-5, -7.85942*10^-6, -6.0562*10^-6, -1.85995*10^-5, -2.64133*10^-7, -1.0509*10^-5, -1.72572*10^-7, 5.22982*10^-7, -3.53876*10^-7, 0)); h(35,1) = fi.fir((1.12765*10^-5, -3.65911*10^-5, 1.06173*10^-4, -5.33286*10^-4, -1.69883*10^-4, -5.69943*10^-4, 1.61338*10^-3, -4.73348*10^-4, -1.36568*10^-5, -9.0807*10^-4, 2.09803*10^-3, -9.92748*10^-4, -9.21977*10^-3, 2.71609*10^-3, 1.64873*10^-2, 2.93523*10^-2, -2.32394*10^-2, -4.09862*10^-2, 7.27637*10^-3, 8.22568*10^-3, -9.44457*10^-3, -2.5463*10^-2, 9.93941*10^-3, 6.29214*10^-2, 1.14492*10^-2, -7.04191*10^-3, 2.81423*10^-3, -2.21118*10^-2, -1.21284*10^-2, -6.07418*10^-3, 4.15989*10^-3, -2.93199*10^-3, -9.59867*10^-3, -8.7117*10^-3, 2.89994*10^-3, 9.09699*10^-3, 3.25678*10^-3, -1.67883*10^-3, -1.11825*10^-3, 5.42193*10^-3, 6.68591*10^-4, -5.09335*10^-3, 2.98655*10^-3, 6.97034*10^-3, 7.70276*10^-4, -1.12635*10^-3, 6.42569*10^-4, 3.29707*10^-3, -1.49884*10^-4, -2.18477*10^-3, -8.68943*10^-5, 2.22795*10^-3, -2.68978*10^-3, -5.62012*10^-3, -5.35669*10^-3, 1.85839*10^-3, 5.87075*10^-3, 2.29604*10^-3, -8.41582*10^-4, -1.51538*10^-3, 1.84832*10^-3, 1.27824*10^-3, -9.7666*10^-4, -1.15073*10^-3, -4.60191*10^-4, -2.181*10^-4, -3.53714*10^-4, -4.96173*10^-4, -2.88855*10^-4, 7.91697*10^-4, 4.2063*10^-4, -6.69976*10^-4, 1.29987*10^-3, -1.32234*10^-3, -1.28346*10^-3, 1.37812*10^-3, 1.4116*10^-3, 2.86537*10^-4, -2.00664*10^-3, -1.3521*10^-3, 3.42351*10^-4, 2.97016*10^-4, -3.18298*10^-5, -3.24878*10^-4, 6.07156*10^-4, 1.39777*10^-3, -7.19942*10^-4, -1.347*10^-3, 4.89703*10^-4, 7.94729*10^-4, -3.85158*10^-4, -1.37693*10^-3, -1.0998*10^-4, 4.59358*10^-4, -3.56807*10^-4, 4.57207*10^-4, 6.47257*10^-4, 2.83578*10^-4, 3.40922*10^-4, 3.48375*10^-4, 6.2797*10^-4, 4.59552*10^-4, 7.54328*10^-5, 3.15497*10^-4, 3.18047*10^-4, -6.81554*10^-5, -1.63798*10^-4, 1.16481*10^-4, 2.4529*10^-4, 1.23295*10^-4, -1.30172*10^-4, -1.87145*10^-4, 1.02567*10^-4, 1.60079*10^-4, -7.18506*10^-5, -1.47306*10^-4, -1.31546*10^-4, -6.18916*10^-5, -3.97443*10^-5, -6.46746*10^-5, -3.96236*10^-5, -1.86122*10^-5, -1.09357*10^-5, -1.29722*10^-5, -1.88962*10^-6, 5.36799*10^-7, 4.90107*10^-7, 0));
https://raw.githubusercontent.com/sekisushai/ambitools/2d21b7cc7cfe9bc35d91d51ec05bf9250372f0ce/Faust/src/hoa_decoder_lebedev50_binaural.dsp
faust
Description: Binaural decoder for a virtual 50-node Lebedev grid [1]. HRTFs of a Neumann KU-100 from [2]. References: [1] Lecomte, P., Gauthier, P.-A., Langrenne, C., Garcia, A., & Berry, A. (2015). On the use of a Lebedev grid for Ambisonics. In Audio Engineering Society Convention 139. New York. [2] B. Bernschütz, “A spherical far field hrir/hrtf compilation of the neumann ku 100,” in Proceedings of the 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual Conference on Acoustics (DAGA) Conference on Acoustics, 2013, p. 29. Inputs: (M+1)^2 Outputs: 2 WARNING: very CPU consuming if taking order up to 5 (36 linear convolution involved, prefer solution like jconvolver...) Filter bank Gains
declare name "Binaural decoder"; declare version "1.0"; declare author "Pierre Lecomte"; declare license "GPL)"; declare copyright "(c) Pierre Lecomte 2015"; import("stdfaust.lib"); import("gui.lib"); M = 5; mix(0) = par(i,(M+1)^2,h(i,0)):>_*volout; mix(1) = par(i,(M+1)^2,h(i,1)):>_*volout; volin = vslider("[1]Inputs Gain[unit:dB][osc:/levelin -10 10]", 0, -10, 10, 0.1) : ba.db2linear : si.smooth(0.999); volout = vslider("[2]Outputs Gain[unit:dB][osc:/levelout -10 10]", 0, -10, 10, 0.1) : ba.db2linear : si.smooth(0.999); process = hgroup("Inputs",par(i,(M+1)^2,_*volin):par(i,M+1,metermute(i))<:(mix(0),mix(1))):vgroup("Outputs",hgroup("Left",hmeter),hgroup("Right",hmeter)); h(0,0) = fi.fir((2.51182*10^-5, 1.23708*10^-4, -1.7378*10^-4, 9.68384*10^-4, 5.9949*10^-4, 7.67728*10^-4, 1.41179*10^-4, 1.86342*10^-3, 2.49571*10^-4, 1.15892*10^-3, 5.08795*10^-4, 3.63026*10^-3, 5.65104*10^-2, 4.93423*10^-2, 4.49074*10^-2, 6.47491*10^-2, 5.96065*10^-2, 7.34951*10^-2, 3.45148*10^-2, 5.57725*10^-2, 6.59684*10^-2, 5.78092*10^-2, 9.68951*10^-2, 2.12609*10^-2, -1.5415*10^-2, 3.17463*10^-2, 5.28391*10^-2, 3.06246*10^-2, -1.14164*10^-2, 8.70641*10^-3, 2.66261*10^-2, 1.13663*10^-2, 5.70825*10^-3, 2.3002*10^-2, 2.00236*10^-2, 4.46807*10^-3, 1.41227*10^-2, 7.9812*10^-3, 6.93019*10^-3, 1.15891*10^-2, 6.4973*10^-3, 5.69457*10^-3, 7.43299*10^-3, 2.88578*10^-3, 7.92482*10^-3, 1.50058*10^-2, 2.50454*10^-3, -2.96739*10^-3, 3.06785*10^-3, 1.75234*10^-3, 8.6377*10^-4, 3.66525*10^-3, 2.8834*10^-3, 3.25793*10^-3, 3.05273*10^-3, 1.24616*10^-3, 1.21185*10^-3, 5.00282*10^-3, 3.61293*10^-3, 3.12119*10^-3, 4.22506*10^-3, 3.57753*10^-3, 6.80407*10^-3, 6.23851*10^-3, 4.2153*10^-3, 2.74035*10^-3, 2.30892*10^-3, 3.42846*10^-3, 2.25593*10^-3, 1.4647*10^-3, 1.85049*10^-3, 3.21075*10^-3, 5.23563*10^-3, 3.08689*10^-3, 2.91291*10^-3, 6.37431*10^-3, 4.19458*10^-3, 8.28477*10^-4, 2.4405*10^-3, 4.19052*10^-3, 2.43653*10^-3, -1.06944*10^-3, 5.63692*10^-4, 1.57017*10^-3, -3.11911*10^-4, 1.67995*10^-3, 5.17576*10^-3, 3.70831*10^-3, -1.41242*10^-3, -1.34669*10^-3, 4.13299*10^-4, -1.48382*10^-3, -2.49697*10^-3, 2.3955*10^-5, 2.14615*10^-3, 2.72945*10^-3, 5.4874*10^-4, -5.44865*10^-4, 5.84702*10^-4, 6.12825*10^-4, 5.06834*10^-4, 8.77276*10^-4, 1.54024*10^-3, 1.85348*10^-3, 1.20654*10^-3, 1.40592*10^-3, 1.36699*10^-3, 1.2923*10^-3, 9.43651*10^-4, 8.34515*10^-4, 9.81663*10^-4, 6.76256*10^-4, 5.0102*10^-4, 5.33584*10^-4, 5.47366*10^-4, 4.53824*10^-4, 3.416*10^-4, 2.58553*10^-4, 1.68725*10^-4, 1.64044*10^-4, 1.06546*10^-4, 4.25413*10^-5, 1.87179*10^-5, 2.09787*10^-5, 5.71261*10^-6, 5.08139*10^-6, 2.06253*10^-6, 0)); h(1,0) = fi.fir((3.39551*10^-5, 1.5469*10^-4, -3.15062*10^-4, 1.22991*10^-3, 5.86903*10^-4, 1.14689*10^-3, -4.14599*10^-4, 1.94177*10^-3, -1.67329*10^-4, 1.81104*10^-3, -1.17791*10^-3, 5.45812*10^-3, 9.05515*10^-2, 7.71319*10^-2, 6.08862*10^-2, 7.81434*10^-2, 6.36584*10^-2, 8.89548*10^-2, 2.93457*10^-2, 2.14629*10^-2, 4.13412*10^-2, 5.06357*10^-2, 5.85082*10^-2, -3.46875*10^-2, -4.27948*10^-2, -6.03285*10^-4, -9.5142*10^-3, -1.60175*10^-2, -3.94065*10^-2, -3.90074*10^-2, -1.25257*10^-2, -5.21665*10^-3, -1.93807*10^-2, -3.57626*10^-2, -2.6437*10^-2, -1.80915*10^-2, -2.39676*10^-2, -2.69667*10^-2, -2.52633*10^-2, -1.5369*10^-2, -8.62273*10^-3, -2.03737*10^-2, -2.21845*10^-2, -1.88738*10^-2, -1.60792*10^-2, -8.87528*10^-3, -1.16756*10^-2, -1.61942*10^-2, -1.66062*10^-2, -1.28559*10^-2, -1.51194*10^-2, -1.59132*10^-2, -9.58195*10^-3, -6.87643*10^-3, -7.66095*10^-3, -1.00582*10^-2, -1.04416*10^-2, -4.54199*10^-3, -3.77104*10^-3, -4.75476*10^-3, -2.79511*10^-3, -4.74844*10^-3, -4.44703*10^-3, -2.46014*10^-3, -1.70561*10^-3, -2.43748*10^-3, -2.1747*10^-3, -1.57916*10^-3, -3.01046*10^-3, -2.3879*10^-3, -1.02903*10^-3, 1.03767*10^-4, 1.61521*10^-3, 4.6795*10^-4, -1.84981*10^-3, -1.89912*10^-3, -9.29744*10^-4, 1.77653*10^-3, 2.78163*10^-3, 5.87931*10^-4, 2.36486*10^-5, -1.17495*10^-3, 3.31327*10^-4, 3.00031*10^-3, 1.04984*10^-3, 8.84337*10^-4, 1.36716*10^-3, 1.33451*10^-3, 4.59752*10^-4, 2.64467*10^-4, 6.79848*10^-5, -1.38672*10^-4, 1.08099*10^-3, 1.6778*10^-3, 2.14314*10^-3, 1.36595*10^-3, 6.23519*10^-4, 8.13006*10^-4, 9.22271*10^-4, 4.56141*10^-4, 7.05385*10^-4, 7.09739*10^-4, 4.32368*10^-4, 4.7704*10^-4, 4.69697*10^-4, 5.36059*10^-5, -3.5653*10^-4, 4.19816*10^-4, -8.74662*10^-6, -2.73034*10^-4, -2.69357*10^-4, -3.14307*10^-4, -2.72806*10^-4, -2.50633*10^-4, 1.17965*10^-5, -1.25622*10^-4, -9.1399*10^-5, -1.37362*10^-4, -1.63854*10^-4, -1.1129*10^-5, -3.1175*10^-5, -4.81323*10^-5, -6.52305*10^-5, -3.8802*10^-5, -8.31851*10^-6, -2.56393*10^-6, -1.86561*10^-6, 0)); h(2,0) = fi.fir((4.45788*10^-6, 2.85198*10^-5, 1.58404*10^-4, -1.9245*10^-4, 4.94618*10^-4, 3.1507*10^-4, -1.60361*10^-4, -9.70589*10^-4, 1.65835*10^-3, -1.81327*10^-4, -4.38717*10^-4, -3.62721*10^-4, -4.89909*10^-3, 8.68029*10^-4, 5.03397*10^-4, -1.58698*10^-2, -9.2683*10^-3, 3.25354*10^-2, -1.49073*10^-2, -3.71117*10^-2, 1.21098*10^-2, 1.97594*10^-2, -5.7804*10^-3, -3.21277*10^-3, 5.76228*10^-3, -1.15485*10^-2, 5.79697*10^-3, -4.36148*10^-3, 2.16851*10^-2, 2.15763*10^-2, -2.00181*10^-2, -1.61655*10^-2, 8.64831*10^-3, 3.76608*10^-3, -1.37585*10^-2, 1.64669*10^-2, 5.34294*10^-4, -1.93136*10^-2, -3.92637*10^-3, 3.01503*10^-3, 5.31059*10^-3, 7.0971*10^-3, 2.85895*10^-3, -4.32563*10^-3, 2.23295*10^-3, 2.14275*10^-3, 1.30772*10^-3, 9.18714*10^-3, 4.21731*10^-3, -1.61133*10^-3, 1.62146*10^-3, 7.79086*10^-4, 2.79092*10^-3, 5.6766*10^-3, 2.43588*10^-3, -2.94729*10^-4, -3.50462*10^-3, -1.23749*10^-3, 9.95482*10^-4, 7.91254*10^-4, 8.95198*10^-4, -1.13341*10^-3, 1.66911*10^-3, 3.37181*10^-5, -2.71694*10^-3, -1.77024*10^-3, -1.53815*10^-3, -2.60887*10^-3, -4.65625*10^-3, -3.36985*10^-3, -7.35849*10^-4, -1.91902*10^-3, -2.39256*10^-3, -1.13852*10^-3, -3.15111*10^-4, 2.59004*10^-4, -4.10988*10^-5, 2.85455*10^-4, 2.06802*10^-3, 1.60799*10^-3, 3.83377*10^-4, -7.37536*10^-4, -6.08302*10^-4, 7.21582*10^-4, 8.9328*10^-4, 3.68326*10^-3, 3.27138*10^-3, 1.69945*10^-3, 3.75801*10^-3, 4.36899*10^-3, 1.9519*10^-3, -5.44478*10^-6, 1.19739*10^-3, 2.29129*10^-3, 1.28729*10^-3, -1.04971*10^-3, -1.21329*10^-3, 3.24763*10^-4, 5.11494*10^-5, -1.47963*10^-3, -1.55276*10^-3, -1.3151*10^-3, -6.22009*10^-4, -9.64667*10^-4, -1.49514*10^-3, -1.26437*10^-3, -6.41907*10^-4, -2.60407*10^-4, -1.27535*10^-3, -1.079*10^-3, -3.83553*10^-4, -3.88626*10^-4, -5.42304*10^-4, -5.50354*10^-4, -7.58938*10^-5, -6.57488*10^-5, 9.50248*10^-7, 7.74527*10^-5, 5.80835*10^-5, 9.08167*10^-5, 9.94261*10^-5, 8.00668*10^-5, 2.43757*10^-5, 8.79674*10^-6, 8.88365*10^-6, 8.46417*10^-6, 2.40821*10^-6, 0)); h(3,0) = fi.fir((9.93628*10^-6, 2.49699*10^-5, 1.3874*10^-4, -1.77736*10^-4, 6.9471*10^-4, -3.62084*10^-4, 5.34434*10^-4, -1.10817*10^-3, 1.48817*10^-3, -1.31485*10^-3, 2.01002*10^-3, -3.03202*10^-3, -7.21718*10^-3, 6.18924*10^-3, -5.30958*10^-3, 2.5992*10^-3, 2.53457*10^-3, 2.11909*10^-2, 1.74746*10^-2, -1.16911*10^-2, 7.02438*10^-4, -1.20184*10^-2, 9.40654*10^-5, 1.94897*10^-3, -2.54585*10^-2, -6.98871*10^-4, 3.066*10^-2, -3.15638*10^-4, -3.91701*10^-2, 9.67744*10^-3, 3.62823*10^-2, -1.73412*10^-2, -3.01367*10^-2, 6.00683*10^-3, 5.36729*10^-3, -1.00647*10^-2, 3.41282*10^-3, 1.15935*10^-3, 1.73416*10^-5, 4.83835*10^-3, -7.65874*10^-3, -3.03209*10^-3, 8.14256*10^-3, 3.36909*10^-3, 5.03769*10^-3, 6.81093*10^-3, -2.48879*10^-3, -2.99686*10^-3, 5.71347*10^-3, 5.34772*10^-3, -4.98921*10^-4, 1.17636*10^-3, 1.2247*10^-3, 1.66342*10^-3, 3.59199*10^-3, 8.81705*10^-4, 2.88332*10^-3, 2.06635*10^-3, -5.50486*10^-4, -5.02175*10^-4, -1.49053*10^-3, -2.55876*10^-4, 7.08839*10^-4, 1.46986*10^-3, 1.13331*10^-3, 1.0312*10^-3, -1.03439*10^-3, -1.93403*10^-3, -4.52416*10^-5, -1.71475*10^-3, -3.12195*10^-3, -1.98432*10^-3, -1.63132*10^-3, -1.52868*10^-3, -1.21188*10^-3, -3.23087*10^-4, -1.90084*10^-3, -2.99123*10^-3, -1.46794*10^-3, -8.30328*10^-4, -8.29761*10^-4, -3.0592*10^-3, -2.00404*10^-3, 6.95453*10^-4, 3.67688*10^-4, 1.54417*10^-3, 5.27862*10^-3, 3.37025*10^-3, -1.42103*10^-3, -1.03026*10^-3, 1.40369*10^-3, 5.62856*10^-4, -2.01638*10^-3, -1.35489*10^-3, 6.82534*10^-4, 3.17138*10^-3, 1.95891*10^-3, -1.26004*10^-3, -1.70268*10^-3, -1.03889*10^-3, -1.24353*10^-3, -1.24685*10^-3, -7.11991*10^-4, -4.46193*10^-4, -8.88254*10^-4, -6.54569*10^-4, -5.18168*10^-4, -5.63891*10^-4, -8.39627*10^-4, -5.41095*10^-4, -2.0805*10^-4, -9.82972*10^-5, -2.90241*10^-4, -4.28973*10^-4, -1.03579*10^-4, 1.84012*10^-4, 1.84563*10^-4, 3.85491*10^-5, -9.84852*10^-6, 3.92966*10^-5, 1.05639*10^-4, 1.01833*10^-4, 3.88276*10^-5, 8.03417*10^-6, -6.97166*10^-6, 1.70273*10^-6, 2.45331*10^-6, 0)); h(4,0) = fi.fir((1.46221*10^-5, 2.00167*10^-5, 2.02228*10^-4, -5.06998*10^-4, 8.48566*10^-4, -9.19794*10^-4, 1.28861*10^-3, -2.35191*10^-3, 2.47242*10^-3, -2.51081*10^-3, 3.89043*10^-3, -6.7548*10^-3, -1.42655*10^-2, 1.20915*10^-2, -7.36941*10^-3, 1.03427*10^-2, 3.09089*10^-3, 2.74497*10^-2, 3.16732*10^-2, -1.79474*10^-2, -1.23166*10^-2, -2.23719*10^-2, -8.51016*10^-3, -1.0793*10^-2, -1.49272*10^-2, 6.91979*10^-3, 3.41252*10^-3, -3.96492*10^-3, -1.01439*10^-2, -5.08919*10^-3, 1.05234*10^-2, 7.32389*10^-3, -1.92986*10^-3, -2.74518*10^-3, -5.44477*10^-3, 7.32402*10^-3, 1.02309*10^-2, 2.91413*10^-3, 5.3044*10^-3, 5.35601*10^-3, 9.22673*10^-5, -2.41033*10^-3, 1.31455*10^-3, -2.1753*10^-3, 2.08879*10^-4, 4.44323*10^-3, -1.0344*10^-3, -3.04542*10^-3, 1.96889*10^-3, 7.98082*10^-3, 1.60511*10^-3, -1.91281*10^-3, 1.10736*10^-3, -2.80679*10^-3, -3.85064*10^-3, -1.50426*10^-3, 1.63393*10^-3, 5.05196*10^-4, 1.31157*10^-4, 1.47938*10^-3, -3.43024*10^-4, 1.60801*10^-3, 2.05137*10^-3, -5.8659*10^-5, -1.90039*10^-3, -1.10453*10^-3, 8.71167*10^-5, 2.62382*10^-3, 1.47127*10^-3, -2.75591*10^-3, -1.15775*10^-3, -7.69724*10^-4, -1.36039*10^-3, -7.82908*10^-4, 1.16141*10^-3, 1.31188*10^-3, -1.45515*10^-3, -1.14088*10^-5, 4.7882*10^-4, -7.15635*10^-4, -4.8162*10^-4, -1.72614*10^-3, -6.21192*10^-5, 1.29144*10^-3, -1.12739*10^-3, -3.34905*10^-4, 1.90242*10^-3, 8.62519*10^-4, -1.66752*10^-3, -1.27253*10^-3, -1.72844*10^-3, -1.53058*10^-3, 1.48392*10^-4, 6.32642*10^-4, 1.55754*10^-3, 7.61493*10^-5, -4.92681*10^-4, 3.51382*10^-4, 1.83796*10^-4, -6.84209*10^-4, -3.15156*10^-4, 2.54261*10^-4, -4.44158*10^-4, -2.70074*10^-4, 5.07708*10^-4, 3.6701*10^-4, 5.25869*10^-5, 2.04282*10^-4, 1.06553*10^-4, -1.41728*10^-4, 1.45149*10^-4, 8.2866*10^-5, 8.32732*10^-5, 2.27166*10^-4, 8.7317*10^-5, -3.78775*10^-5, 9.09633*10^-5, 3.84705*10^-5, -1.98935*10^-5, 8.21408*10^-6, 3.87224*10^-5, 2.72483*10^-5, -9.02966*10^-6, 2.11859*10^-6, 3.82797*10^-6, 6.18201*10^-6, 2.51378*10^-7, 0)); h(5,0) = fi.fir((1.57811*10^-5, 4.41782*10^-5, 2.31406*10^-4, -2.60758*10^-4, 9.03587*10^-4, 7.02765*10^-4, 3.68557*10^-4, -9.98409*10^-4, 2.52097*10^-3, -2.39278*10^-4, 4.61844*10^-5, -1.62087*10^-4, -1.10732*10^-2, 2.7371*10^-3, 5.96596*10^-3, -2.40448*10^-2, -1.17481*10^-2, 4.51275*10^-2, -1.55188*10^-2, -2.61531*10^-2, 1.67235*10^-2, 1.3603*10^-2, 9.91536*10^-3, 1.60061*10^-3, 1.3329*10^-3, -1.65022*10^-2, -6.43151*10^-4, -5.81921*10^-3, 1.09229*10^-2, 9.98562*10^-3, -9.99544*10^-3, -3.54222*10^-3, 9.14287*10^-3, 4.90455*10^-3, -9.53766*10^-3, 6.01814*10^-3, 4.19719*10^-5, -1.7748*10^-3, 3.86721*10^-3, 4.79459*10^-3, 2.90687*10^-3, -4.31318*10^-4, 3.80235*10^-3, -3.37746*10^-3, -3.13597*10^-3, 1.84624*10^-3, -1.34822*10^-4, 5.54582*10^-4, 3.56967*10^-3, 2.92148*10^-4, -3.51467*10^-3, 1.74319*10^-3, 2.19724*10^-4, -1.43258*10^-3, 2.15198*10^-3, -3.59638*10^-4, -4.76244*10^-3, -2.33638*10^-3, -1.32344*10^-3, -1.42376*10^-3, 1.40545*10^-3, -1.38811*10^-3, -1.74957*10^-3, -4.75105*10^-4, 1.50508*10^-3, 8.84199*10^-5, -4.1918*10^-4, 5.59142*10^-4, -3.77265*10^-3, -4.2904*10^-3, -9.61273*10^-4, 5.89775*10^-4, 6.09699*10^-4, 1.0633*10^-3, 6.47084*10^-4, 2.06941*10^-4, 6.11713*10^-4, 1.1545*10^-3, 1.27111*10^-3, -6.25519*10^-4, -1.93753*10^-3, -3.29212*10^-3, -1.52143*10^-3, 1.45329*10^-3, 2.55904*10^-3, 3.44944*10^-3, 2.62148*10^-3, 1.33959*10^-3, 1.7063*10^-3, 1.67233*10^-3, 5.5143*10^-4, 4.01845*10^-4, 7.19341*10^-4, 6.81816*10^-4, 7.54655*10^-4, 3.01162*10^-3, 3.46972*10^-3, 1.56339*10^-3, 8.42543*10^-4, 3.80719*10^-4, 6.93815*10^-4, 4.66624*10^-4, 6.92291*10^-4, 1.62719*10^-3, 1.133*10^-3, 4.97187*10^-4, 5.06744*10^-4, 5.30096*10^-4, 4.0572*10^-4, 2.01872*10^-4, 2.60275*10^-4, -2.72057*10^-5, -9.1851*10^-5, 3.26233*10^-5, 3.00808*10^-4, 2.03617*10^-4, 5.07898*10^-5, -8.33149*10^-5, -1.03751*10^-5, 7.76086*10^-5, -5.33407*10^-7, -3.06573*10^-5, -1.70851*10^-5, 2.01059*10^-5, 3.98048*10^-6, 3.35889*10^-6, 3.43292*10^-8, 0)); h(6,0) = fi.fir((-3.86616*10^-6, -2.92856*10^-5, 2.57463*10^-4, -2.55296*10^-4, -6.78291*10^-6, -5.84922*10^-4, 1.01332*10^-3, -8.61014*10^-4, 9.46613*10^-4, -1.43681*10^-3, 2.55288*10^-3, -5.67696*10^-3, -4.71336*10^-2, -4.24378*10^-2, -2.01533*10^-2, -2.22634*10^-2, -3.88006*10^-3, -1.15908*10^-2, 3.31593*10^-4, 4.48946*10^-2, 1.8844*10^-3, 1.37521*10^-2, 3.59968*10^-2, -1.28167*10^-2, 1.24978*10^-2, 5.27583*10^-2, 2.34635*10^-2, -2.63881*10^-3, 8.67306*10^-3, 2.4751*10^-2, 5.87393*10^-3, -9.25468*10^-3, 1.18865*10^-2, 1.58006*10^-2, -1.04271*10^-3, -1.14966*10^-2, 9.57015*10^-3, 4.89365*10^-3, -6.55248*10^-3, 7.03939*10^-3, -2.12608*10^-3, -1.04984*10^-2, -3.61629*10^-3, -7.17239*10^-3, -5.23434*10^-3, -2.0962*10^-3, -7.01442*10^-3, -7.31803*10^-3, -4.60171*10^-3, -3.69246*10^-3, -9.09628*10^-3, -3.28774*10^-3, 1.22438*10^-3, -4.19002*10^-3, -5.04437*10^-3, -5.07132*10^-3, -3.11109*10^-3, -1.28336*10^-3, -1.39409*10^-3, -5.34437*10^-4, 1.9439*10^-3, -5.92974*10^-4, -1.41222*10^-3, 2.15115*10^-3, 1.6155*10^-3, 1.10439*10^-3, 5.51147*10^-4, -6.92677*10^-4, -2.69537*10^-3, -8.60682*10^-4, 1.25214*10^-3, 1.17567*10^-3, 6.25862*10^-5, -4.49214*10^-3, -9.97929*10^-4, 2.71718*10^-3, -2.03951*10^-3, -3.55741*10^-3, -1.08387*10^-3, 6.46904*10^-4, -3.55818*10^-4, -1.00778*10^-3, 4.60677*10^-4, 1.43222*10^-3, 7.68707*10^-4, -1.02436*10^-3, -1.92194*10^-3, 1.5598*10^-4, 5.61379*10^-4, -4.09825*10^-4, 3.64663*10^-5, 3.56328*10^-5, 1.15068*10^-3, 8.24869*10^-4, 5.8267*10^-4, -4.83767*10^-4, -1.17138*10^-3, 7.64905*10^-4, 1.21078*10^-3, 4.86777*10^-4, 2.61474*10^-4, 3.07859*10^-4, 2.08667*10^-4, -1.41295*10^-4, 6.09299*10^-5, 1.35904*10^-4, 4.57857*10^-4, 3.37973*10^-4, 2.04718*10^-4, 3.41662*10^-4, 1.00847*10^-4, -8.46021*10^-5, -1.08104*10^-4, -1.27879*10^-4, -1.09223*10^-4, -4.56845*10^-5, -9.0214*10^-5, -1.3188*10^-4, 3.02152*10^-5, 4.86084*10^-5, -4.50631*10^-5, -6.11718*10^-5, -2.83688*10^-5, -8.4151*10^-6, -4.11553*10^-6, -3.53055*10^-6, 8.96305*10^-8, 0)); h(7,0) = fi.fir((4.2463*10^-6, -2.82698*10^-6, 5.23527*10^-5, 2.49726*10^-5, -1.7067*10^-4, -1.7706*10^-4, 2.40886*10^-4, 1.60215*10^-4, -5.28537*10^-4, 2.2609*10^-4, 3.39552*10^-4, 2.7819*10^-4, 2.78137*10^-4, -2.52045*10^-3, -3.72384*10^-4, 7.1841*10^-3, -7.4312*10^-3, -1.10708*10^-2, 9.43312*10^-3, 1.13006*10^-2, -5.36636*10^-3, -4.82279*10^-3, -5.74575*10^-3, -1.60587*10^-3, -8.34246*10^-3, 3.58491*10^-3, 2.4944*10^-2, -1.15642*10^-2, -1.67202*10^-3, 5.18072*10^-4, -1.07983*10^-2, 2.19485*10^-3, 2.35272*10^-2, -3.90009*10^-3, -1.53265*10^-2, 2.15568*10^-2, 3.0387*10^-3, -8.19711*10^-4, 2.183*10^-3, -1.4029*10^-3, -3.91025*10^-3, 1.37613*10^-3, -5.52124*10^-3, -9.85606*10^-3, 2.15494*10^-3, -3.20578*10^-3, -4.54218*10^-3, -1.9447*10^-3, -3.5543*10^-3, -1.64123*10^-3, 4.59555*10^-3, 2.52762*10^-3, -4.02653*10^-3, -1.8522*10^-3, 2.04676*10^-4, 2.88148*10^-3, 3.43243*10^-3, 5.47636*10^-4, 2.75394*10^-3, 2.21665*10^-3, -1.2919*10^-3, 4.00805*10^-4, 2.57166*10^-3, 1.46628*10^-3, 2.72868*10^-5, -1.16132*10^-3, 3.80668*10^-5, 3.61819*10^-3, 2.21192*10^-3, -8.18766*10^-4, 6.62261*10^-4, 1.08661*10^-3, 7.49201*10^-4, -4.81969*10^-5, -4.2257*10^-4, -2.02931*10^-4, 2.06879*10^-5, 6.29365*10^-5, 1.41728*10^-4, -1.46906*10^-3, -2.38707*10^-3, -1.86912*10^-3, -1.11238*10^-3, -1.19961*10^-3, -2.86108*10^-3, 7.00973*10^-4, 1.27749*10^-3, -1.12713*10^-3, -1.14887*10^-3, -4.13161*10^-4, -5.0415*10^-4, -2.00683*10^-3, -3.58722*10^-5, 2.2713*10^-3, 1.24614*10^-3, -1.59644*10^-3, -8.18819*10^-4, 1.43667*10^-3, 7.11437*10^-4, 9.06548*10^-5, 3.20771*10^-4, 5.151*10^-4, 7.0562*10^-4, 2.85357*10^-4, 2.53833*10^-4, 3.44038*10^-4, 3.56086*10^-4, 1.83376*10^-4, 1.0309*10^-4, -9.07505*10^-5, 1.42212*10^-4, 2.47962*10^-4, 5.25912*10^-5, -7.44214*10^-5, -1.31304*10^-4, -1.65695*10^-4, 2.45583*10^-5, 2.84575*10^-6, -9.82888*10^-5, -9.99562*10^-5, -7.66841*10^-6, 5.3135*10^-6, -2.61613*10^-5, -9.6016*10^-6, -6.81842*10^-6, 2.773*10^-6, 4.94959*10^-7, 0)); h(8,0) = fi.fir((-1.68655*10^-5, -7.21153*10^-5, 3.78556*10^-4, -7.01652*10^-4, 1.28073*10^-4, -7.43055*10^-4, 1.35568*10^-3, -2.72118*10^-4, 6.69039*10^-4, -2.1171*10^-3, 2.66075*10^-3, -5.26349*10^-3, -8.64246*10^-2, -7.03236*10^-2, -4.05775*10^-2, -2.6085*10^-2, -1.01035*10^-2, -4.39697*10^-2, 1.08086*10^-2, 5.51774*10^-2, 4.17719*10^-2, -1.44567*10^-2, 2.13921*10^-2, 1.07582*10^-1, 3.87707*10^-2, -5.54456*10^-3, 4.99856*10^-2, 4.09783*10^-2, 4.81083*10^-3, 2.73854*10^-2, 3.64387*10^-2, -3.17886*10^-3, -7.72274*10^-3, 1.81197*10^-2, 1.60415*10^-3, -3.71408*10^-3, -7.00634*10^-3, -1.12762*10^-2, 8.33056*10^-3, -2.80427*10^-3, -2.49734*10^-2, -1.02805*10^-2, 2.14717*10^-4, -1.21152*10^-2, -1.56673*10^-2, -6.13615*10^-3, -9.19539*10^-3, -1.1857*10^-2, -4.06259*10^-3, -3.23696*10^-3, -5.01662*10^-3, -8.23842*10^-3, -1.87769*10^-3, 6.66127*10^-4, -7.61051*10^-3, -7.56122*10^-3, -2.77838*10^-3, -2.46885*10^-3, -4.76789*10^-3, -4.42888*10^-3, -6.30871*10^-4, -1.00798*10^-3, -3.20891*10^-3, -2.00773*10^-3, 1.24406*10^-3, 3.91085*10^-3, 3.65062*10^-3, 5.34785*10^-3, 5.4627*10^-3, 2.41144*10^-3, 1.85354*10^-3, 2.87405*10^-3, 2.07133*10^-3, -2.6133*10^-4, 1.0638*10^-3, 9.85821*10^-4, 8.9492*10^-4, 5.35477*10^-4, -6.03783*10^-4, 7.82042*10^-4, -1.20611*10^-4, -2.37535*10^-3, -2.25807*10^-3, -4.0582*10^-4, -1.75915*10^-3, -1.09401*10^-3, 2.2533*10^-3, -1.34825*10^-3, -4.61702*10^-3, -2.35077*10^-3, -2.49663*10^-4, 3.61728*10^-5, -2.13426*10^-3, -2.67142*10^-3, 7.83896*10^-4, 3.16299*10^-3, 1.16068*10^-3, -1.13754*10^-3, -1.30056*10^-3, -9.18475*10^-4, -4.78309*10^-4, -1.38245*10^-4, -4.1388*10^-4, 1.0279*10^-6, 7.26447*10^-5, -2.33207*10^-4, -2.62141*10^-4, -3.42912*10^-4, -5.39206*10^-4, -3.01184*10^-6, 1.44938*10^-4, -1.69249*10^-4, -1.63111*10^-4, -4.75819*10^-5, -3.09052*10^-4, -2.14425*10^-4, -1.965*10^-6, 4.87482*10^-5, -1.1532*10^-4, -9.03683*10^-5, 4.34695*10^-5, 5.61129*10^-5, 3.83196*10^-5, -3.11789*10^-6, -5.52174*10^-6, -2.11033*10^-6, 1.06705*10^-6, 0)); h(9,0) = fi.fir((-1.60757*10^-5, -4.19701*10^-5, 4.10355*10^-4, -3.34547*10^-4, 1.89441*10^-4, -6.56648*10^-4, 1.66465*10^-3, -1.42845*10^-6, 2.34716*10^-4, -1.96452*10^-3, 2.83126*10^-3, -7.45693*10^-3, -7.13278*10^-2, -5.34188*10^-2, -1.62979*10^-2, 3.06538*10^-2, 3.98189*10^-2, -3.05744*10^-3, 4.62241*10^-2, 7.35245*10^-2, 4.46943*10^-2, -8.62466*10^-3, 1.61692*10^-2, 5.76913*10^-2, -1.09835*10^-2, -3.50465*10^-2, -4.10253*10^-3, -1.13266*10^-2, -1.54331*10^-2, -2.41119*10^-2, -1.19454*10^-2, -8.63187*10^-3, -1.87685*10^-2, -2.04983*10^-2, -2.12632*10^-2, 1.69851*10^-3, -1.08342*10^-2, -1.94009*10^-2, -1.0154*10^-2, -3.29724*10^-3, 2.72871*10^-3, 8.452*10^-3, 1.01911*10^-2, 7.93981*10^-3, 6.70798*10^-3, 3.44097*10^-3, 5.98216*10^-3, 6.46392*10^-3, 4.05223*10^-3, 2.11746*10^-3, 4.45085*10^-3, 7.7832*10^-3, 2.10043*10^-3, 1.49633*10^-3, 3.11967*10^-3, -1.21022*10^-3, -1.50013*10^-3, -1.5582*10^-3, -4.58534*10^-4, 5.71158*10^-4, 1.716*10^-3, 4.97296*10^-4, -1.27246*10^-4, -2.44379*10^-5, 1.48653*10^-3, 2.52236*10^-3, 5.19892*10^-4, -1.60011*10^-3, -1.46534*10^-3, -1.63475*10^-3, -4.88274*10^-3, -2.89252*10^-3, 1.36597*10^-3, 7.09958*10^-4, 4.65135*10^-4, 1.73413*10^-3, 1.87164*10^-3, 3.11041*10^-3, 2.31907*10^-3, -1.33571*10^-3, -3.50304*10^-3, -2.86542*10^-3, 3.92849*10^-5, 2.70084*10^-4, -1.55724*10^-3, -1.21433*10^-4, 1.81963*10^-3, 5.82052*10^-4, -1.12463*10^-3, -1.46465*10^-4, -1.7854*10^-3, -1.70461*10^-3, 2.52183*10^-4, 1.10409*10^-3, 2.46217*10^-3, 1.04006*10^-3, 3.89001*10^-5, 5.9752*10^-4, 6.90762*10^-4, -4.07922*10^-4, -4.72497*10^-4, -4.19827*10^-4, -1.08188*10^-3, -3.84054*10^-4, 3.92463*10^-4, 3.73165*10^-4, -6.68194*10^-5, -3.37365*10^-5, 1.48299*10^-4, -2.71348*10^-4, -4.32147*10^-4, -3.82735*10^-4, -1.33249*10^-4, -5.25158*10^-5, -2.82792*10^-4, -2.16745*10^-4, 2.3925*10^-6, 6.81638*10^-5, 3.5723*10^-5, 2.80703*10^-5, 5.59214*10^-5, 3.75609*10^-5, 2.11466*10^-5, 1.44848*10^-5, -1.74216*10^-7, -1.61781*10^-7, 1.20674*10^-6, 0)); h(10,0) = fi.fir((5.48693*10^-6, -3.85305*10^-5, 1.00796*10^-4, 1.39085*10^-4, -1.37982*10^-4, -3.50258*10^-4, 8.31508*10^-4, 9.31576*10^-5, -7.85107*10^-4, 2.95081*10^-4, 2.062*10^-4, 2.23801*10^-4, 1.53611*10^-3, -6.42346*10^-3, -1.46583*10^-3, 1.49275*10^-2, -1.02315*10^-2, -1.78674*10^-2, 1.32495*10^-2, 1.66362*10^-2, -7.3916*10^-3, 3.36605*10^-3, -2.10234*10^-3, -2.51933*10^-2, -3.16892*10^-3, 3.47789*10^-2, 8.64838*10^-3, -3.03502*10^-2, 6.59946*10^-3, 6.83453*10^-3, 1.85503*10^-3, 2.31009*10^-4, 1.851*10^-3, 3.84314*10^-3, -8.55288*10^-3, -6.04199*10^-3, -8.17616*10^-3, 7.42784*10^-3, 4.66712*10^-3, -2.9096*10^-3, -4.66173*10^-3, -4.38658*10^-3, 6.99246*10^-3, 5.94912*10^-3, 1.72897*10^-3, -6.94179*10^-5, -1.07731*10^-3, -8.2497*10^-4, -2.23008*10^-3, -2.54084*10^-3, -2.44285*10^-3, 2.04601*10^-3, 1.71871*10^-3, -2.67377*10^-3, 3.4213*10^-4, 4.96274*10^-3, 5.22673*10^-3, 1.47745*10^-3, -1.42805*10^-3, -3.73734*10^-3, -1.52274*10^-3, 4.65329*10^-4, -1.28761*10^-3, 3.13016*10^-4, 1.4824*10^-3, 1.47564*10^-3, 6.11671*10^-4, 1.66238*10^-3, 3.46059*10^-4, -1.52436*10^-3, 2.84002*10^-4, 3.34641*10^-4, -3.00188*10^-4, -4.15989*10^-4, 1.44934*10^-3, 2.95361*10^-3, -2.12224*10^-4, -1.7465*10^-3, 9.4611*10^-4, 4.72243*10^-4, -2.35131*10^-3, -2.86437*10^-3, -2.994*10^-4, 8.838*10^-4, 4.36437*10^-4, 4.35811*10^-4, 1.05312*10^-3, -1.18062*10^-3, -3.19579*10^-3, -2.66689*10^-4, 1.3291*10^-3, -6.35546*10^-4, -1.93305*10^-3, -1.22074*10^-3, -7.66797*10^-4, 5.48452*10^-4, 2.24032*10^-3, 6.8593*10^-4, -8.80495*10^-4, -7.36785*10^-4, -2.91027*10^-4, 1.43957*10^-4, 9.94203*10^-5, 1.03047*10^-5, 1.64362*10^-4, 4.18213*10^-4, 2.9296*10^-6, -1.1731*10^-4, 2.73018*10^-4, 3.29795*10^-4, -1.42659*10^-4, -8.36778*10^-5, -7.14364*10^-5, -1.26889*10^-4, 1.45918*10^-4, 7.54347*10^-5, 8.94557*10^-5, -3.85597*10^-5, -7.5002*10^-6, 3.05406*10^-5, 4.88743*10^-5, 4.99589*10^-5, 8.18749*10^-7, 7.05084*10^-7, -1.20529*10^-5, 4.32078*10^-6, 1.38227*10^-6, 0)); h(11,0) = fi.fir((-1.12306*10^-5, -1.96564*10^-5, 2.91555*10^-4, -1.96712*10^-4, 1.67915*10^-4, -4.87725*10^-4, 1.39101*10^-3, -1.01342*10^-3, 1.94679*10^-3, -2.84011*10^-3, 3.55895*10^-3, -8.82548*10^-3, -5.04098*10^-2, -4.7074*10^-2, -4.41737*10^-3, 1.19852*10^-2, 2.97061*10^-2, 2.91912*10^-2, 1.07382*10^-2, 6.67629*10^-2, 2.62009*10^-2, 1.01949*10^-2, 2.44384*10^-2, -2.51683*10^-2, -6.41723*10^-3, 3.51383*10^-3, 5.32911*10^-3, -7.63561*10^-3, -5.45861*10^-2, -1.52686*10^-2, 1.96498*10^-2, -4.82022*10^-3, -1.13631*10^-2, -2.01016*10^-2, -6.07352*10^-3, -7.81816*10^-3, -2.29341*10^-3, -4.00815*10^-3, -8.94526*10^-3, 2.81839*10^-3, 4.13023*10^-4, -2.00456*10^-3, -2.75069*10^-4, 5.94332*10^-3, 1.12361*10^-2, 6.95498*10^-3, 3.16854*10^-4, -1.76094*10^-3, 1.94699*10^-3, 9.01863*10^-3, 8.65974*10^-3, 4.68559*10^-3, 6.54081*10^-4, 1.13477*10^-4, 5.15455*10^-4, 1.43156*10^-4, -5.91623*10^-4, 1.28197*10^-3, 7.18359*10^-4, -4.48033*10^-5, -8.32929*10^-4, 1.75998*10^-3, 2.26954*10^-3, -1.73247*10^-3, -2.44249*10^-3, -2.00254*10^-3, -4.81834*10^-4, 7.73294*10^-4, 3.05641*10^-4, -1.48032*10^-3, -2.4714*10^-3, -2.17995*10^-3, 9.53805*10^-4, -3.9275*10^-4, -4.06353*10^-3, -2.14124*10^-3, 8.98599*10^-4, 1.26397*10^-3, -9.51349*10^-4, -1.14574*10^-3, 1.05746*10^-3, 1.11031*10^-3, 1.64742*10^-4, -1.45004*10^-4, 1.02265*10^-3, 6.24043*10^-4, -2.32233*10^-3, -2.56128*10^-3, -4.4989*10^-4, 8.41901*10^-4, 1.99792*10^-3, 9.17054*10^-4, 3.7591*10^-4, 1.9079*10^-3, 9.5647*10^-4, -3.43216*10^-4, 7.27429*10^-4, 9.97294*10^-4, -6.79702*10^-5, -5.18811*10^-4, -1.20154*10^-4, 4.18061*10^-4, 7.45986*10^-4, 1.44139*10^-4, -4.14496*10^-4, -3.02481*10^-4, -1.10646*10^-4, 1.34045*10^-4, -3.44395*10^-4, -4.14666*10^-5, 7.12612*10^-5, -2.22638*10^-4, -4.24445*10^-4, -4.70283*10^-4, -2.51783*10^-5, -1.20038*10^-5, -3.14955*10^-5, -1.07544*10^-4, -6.22888*10^-5, 6.90663*10^-5, 5.05388*10^-5, 1.23535*10^-5, -5.16506*10^-6, 1.60959*10^-5, 1.17165*10^-5, 8.04748*10^-6, 1.16687*10^-6, 0)); h(12,0) = fi.fir((4.05285*10^-6, -2.38744*10^-5, -1.77443*10^-4, 3.64899*10^-4, 9.0163*10^-5, -6.12552*10^-4, -2.24284*10^-4, 8.40711*10^-4, -6.34741*10^-4, 2.48625*10^-4, 1.07833*10^-4, 1.6957*10^-4, 1.09563*10^-2, -3.92742*10^-4, -1.71496*10^-2, 1.21954*10^-2, 2.24529*10^-2, -1.26705*10^-2, -1.96975*10^-2, -1.58055*10^-2, -6.86806*10^-3, 8.19548*10^-3, 4.41556*10^-2, -1.30615*10^-2, -4.51095*10^-2, 1.85312*10^-2, 1.02524*10^-2, 1.52522*10^-2, 5.72338*10^-3, -8.39197*10^-3, -1.05468*10^-2, 5.86129*10^-3, -3.92588*10^-3, -1.51485*10^-3, 1.4772*10^-2, -8.21411*10^-3, -7.2907*10^-3, -1.82432*10^-3, 6.45056*10^-3, -9.35414*10^-4, 2.58005*10^-4, -2.45199*10^-3, -3.64145*10^-3, -2.60672*10^-3, -6.94716*10^-3, 5.61014*10^-3, 5.94723*10^-3, -6.33431*10^-5, 5.17522*10^-4, -9.55261*10^-4, -2.88925*10^-3, 2.29784*10^-3, 1.9625*10^-3, -1.12007*10^-3, 2.32054*10^-3, -3.21321*10^-4, 7.10064*10^-4, 2.38549*10^-3, 1.65568*10^-3, 1.2767*10^-3, 7.15895*10^-4, -9.5073*10^-4, -3.38625*10^-3, 2.8319*10^-3, 9.38082*10^-4, -1.81631*10^-3, 1.4007*10^-3, 2.405*10^-3, 2.30851*10^-3, 1.26208*10^-3, 2.45352*10^-4, -1.2871*10^-3, -8.98868*10^-4, -4.12349*10^-3, -3.59524*10^-3, -2.12276*10^-4, -1.52058*10^-3, -1.87816*10^-3, -1.48109*10^-3, 8.76298*10^-4, 8.41932*10^-4, 2.58177*10^-5, -7.94133*10^-4, -1.68139*10^-3, -2.50352*10^-4, -1.31875*10^-3, -1.29094*10^-3, -5.04936*10^-4, -2.17749*10^-4, 5.02031*10^-4, 1.32314*10^-3, 2.07371*10^-3, 1.73953*10^-3, -7.51968*10^-5, -1.44401*10^-3, -2.08778*10^-4, 1.29779*10^-3, 1.93557*10^-3, 1.54983*10^-3, 6.71795*10^-4, 3.39349*10^-4, 1.02703*10^-3, 8.1182*10^-4, 7.67969*10^-5, 3.25173*10^-5, 2.03142*10^-5, 1.22237*10^-4, 1.46092*10^-4, 4.62645*10^-4, 5.12512*10^-4, 3.5913*10^-4, 1.89527*10^-4, -4.59823*10^-5, -5.5362*10^-5, -2.35945*10^-5, 7.12921*10^-5, -1.31389*10^-4, -1.41562*10^-4, -4.13157*10^-5, -8.46506*10^-6, -3.85191*10^-6, -2.57285*10^-5, -4.38868*10^-7, -7.68317*10^-6, -7.80589*10^-6, -7.41927*10^-6, -7.51808*10^-7, 0)); h(13,0) = fi.fir((-2.52312*10^-6, 4.34537*10^-5, -1.05713*10^-4, 2.79699*10^-4, -5.04787*10^-4, 5.82347*10^-4, -3.29953*10^-4, 5.66156*10^-4, -8.57682*10^-4, 6.11259*10^-4, 6.82175*10^-5, 1.09725*10^-3, 3.73188*10^-3, -4.21391*10^-3, 1.13579*10^-2, -1.30569*10^-2, -9.1074*10^-3, -6.78927*10^-3, -6.68055*10^-3, 3.66919*10^-2, -1.66733*10^-2, -1.02882*10^-2, 2.77414*10^-2, -4.06681*10^-3, 8.72424*10^-3, -1.47427*10^-2, -1.44785*10^-2, 1.68631*10^-2, 7.36302*10^-3, -4.58477*10^-3, -2.63113*10^-2, -3.09207*10^-3, 5.39354*10^-3, 1.00301*10^-2, 7.68544*10^-5, -6.44387*10^-3, 1.12386*10^-2, -8.55274*10^-3, -5.82475*10^-4, 8.34913*10^-3, 4.05293*10^-3, 4.98791*10^-3, 6.04743*10^-3, -1.83014*10^-3, -7.21087*10^-3, 9.06784*10^-4, 5.00621*10^-3, 3.5765*10^-3, 2.25201*10^-3, -5.81225*10^-4, -5.00102*10^-4, 1.77941*10^-3, -2.64084*10^-3, -3.27415*10^-3, -2.46231*10^-4, -4.01066*10^-3, -4.16767*10^-3, -3.15957*10^-3, -2.77183*10^-3, -2.59037*10^-3, -3.48997*10^-3, -4.77056*10^-4, -7.41451*10^-4, 5.80731*10^-4, 3.00284*10^-3, 2.14308*10^-3, 2.39619*10^-3, 2.43812*10^-3, -8.13831*10^-4, 4.27879*10^-5, 2.84355*10^-3, 1.92226*10^-3, 8.02295*10^-4, 3.21723*10^-4, 2.25629*10^-3, 5.24925*10^-4, -2.12052*10^-3, -9.79097*10^-4, -3.56792*10^-4, -2.54*10^-4, -1.2131*10^-3, -1.8585*10^-3, -1.1357*10^-3, 1.05676*10^-4, -1.89814*10^-3, -1.91763*10^-3, -1.61277*10^-4, -2.20327*10^-4, -1.67573*10^-4, -9.49436*10^-4, -8.30762*10^-4, -6.12352*10^-4, 8.56978*10^-4, 4.10223*10^-4, -1.32621*10^-4, 3.77329*10^-4, 8.1509*10^-5, 5.64883*10^-4, 5.07438*10^-4, 1.90946*10^-4, 1.59857*10^-4, 3.77714*10^-4, 6.15073*10^-4, 2.98232*10^-5, 3.44298*10^-4, 6.27893*10^-4, 3.54246*10^-4, 3.35637*10^-4, 5.85691*10^-4, 6.45228*10^-4, 8.04918*10^-5, 9.1395*10^-5, 1.85267*10^-4, 9.84972*10^-5, 1.4199*10^-4, 1.38519*10^-5, -4.78325*10^-5, -2.22436*10^-5, 7.05634*10^-5, 3.07658*10^-5, -2.68242*10^-5, -3.116*10^-5, -2.34972*10^-5, -2.30493*10^-5, -1.63933*10^-5, -7.51228*10^-6, -5.28915*10^-7, 0)); h(14,0) = fi.fir((8.37095*10^-6, 3.0721*10^-5, -2.44107*10^-5, 3.94012*10^-4, -5.40082*10^-4, 1.33299*10^-4, 5.9634*10^-5, 7.03552*10^-4, -1.22706*10^-3, 1.18495*10^-3, -4.80909*10^-5, -1.72325*10^-4, 1.41354*10^-2, -3.45408*10^-3, -6.5491*10^-3, 1.57246*10^-2, -7.19438*10^-3, -2.43991*10^-2, 2.40516*10^-2, -1.01244*10^-2, -1.91082*10^-2, 1.37094*10^-2, -2.92208*10^-2, 1.30168*10^-3, 1.87559*10^-2, 7.11267*10^-3, 2.2163*10^-2, 1.17525*10^-3, -1.9054*10^-2, -5.14333*10^-3, 1.26468*10^-2, 7.36515*10^-3, 1.80637*10^-3, -1.52187*10^-2, -1.60001*10^-2, 1.54244*10^-2, 7.637*10^-3, -1.02748*10^-2, -1.9387*10^-3, 9.76594*10^-3, -3.17124*10^-3, -3.18131*10^-3, 3.94411*10^-3, -7.37466*10^-3, 4.36414*10^-3, 1.1157*10^-2, -4.28256*10^-3, -3.50576*10^-3, -5.45431*10^-4, -8.15364*10^-4, -8.34486*10^-4, -1.37375*10^-3, -1.00727*10^-3, -2.18833*10^-3, 1.02788*10^-3, 2.78239*10^-3, 4.55995*10^-4, -2.30976*10^-4, 1.50399*10^-4, 1.17113*10^-3, 2.5198*10^-3, -4.04712*10^-4, -9.5934*10^-4, 5.07685*10^-4, 1.62886*10^-3, 1.92579*10^-3, -7.85903*10^-4, 1.40689*10^-4, 6.54063*10^-4, -7.25117*10^-5, -6.8371*10^-4, -7.3845*10^-4, -8.48441*10^-4, -1.02811*10^-3, -7.25093*10^-6, -4.93225*10^-4, 8.02543*10^-4, -7.60084*10^-4, -2.27573*10^-3, 1.78293*10^-4, 6.23596*10^-4, -1.1469*10^-3, -1.36395*10^-3, -5.56316*10^-4, -8.31551*10^-5, 1.07274*10^-3, -1.84015*10^-4, -1.11288*10^-3, 6.7549*10^-4, 1.54597*10^-3, -3.86924*10^-4, 1.53309*10^-4, 2.59752*10^-3, 2.1457*10^-3, 1.63467*10^-3, 1.17306*10^-3, -5.74324*10^-4, -8.54434*10^-5, 7.55146*10^-4, 6.21383*10^-4, 3.80628*10^-4, 7.28026*10^-4, 6.17358*10^-4, 6.14408*10^-4, 4.94544*10^-4, 5.91619*10^-4, 5.76861*10^-4, -2.53606*10^-4, -3.81137*10^-4, -4.09514*10^-6, 4.18388*10^-4, 3.71043*10^-4, -1.45164*10^-5, 1.26919*10^-5, -1.35082*10^-4, -4.0048*10^-5, -9.43885*10^-5, -2.00899*10^-6, 2.78184*10^-5, -1.03767*10^-4, -4.04727*10^-5, 3.33905*10^-5, 2.90409*10^-5, -1.68007*10^-5, -1.98714*10^-5, -7.35414*10^-6, 4.46206*10^-7, 0)); h(15,0) = fi.fir((-2.06109*10^-5, -4.35698*10^-5, -3.2355*10^-4, 6.82276*10^-4, -6.63236*10^-4, 1.21235*10^-3, -2.15786*10^-3, 3.23953*10^-3, -2.98131*10^-3, 3.08077*10^-3, -5.77376*10^-3, 9.80213*10^-3, 1.96517*10^-2, -1.65226*10^-2, -3.9235*10^-4, -1.97247*10^-2, 4.06018*10^-3, -1.42523*10^-2, -3.7316*10^-2, 1.40976*10^-2, 3.46439*10^-2, 2.53549*10^-2, 9.43111*10^-3, 2.64389*10^-2, -1.84273*10^-2, -2.71505*10^-2, 2.64857*10^-2, -3.0688*10^-4, -3.37348*10^-2, 1.21804*10^-3, 3.10434*10^-2, -5.88073*10^-3, -1.77826*10^-2, -2.36909*10^-3, -6.51593*10^-3, -4.35367*10^-4, -2.20238*10^-3, -9.13909*10^-3, 1.37708*10^-3, 6.88927*10^-3, -3.55896*10^-3, 1.32128*10^-3, 3.9352*10^-3, -8.71503*10^-3, -7.75237*10^-3, -2.28113*10^-3, -1.37963*10^-3, 1.10392*10^-3, 6.5292*10^-3, 5.31055*10^-3, 2.89419*10^-3, 1.64227*10^-3, 1.27944*10^-3, 3.49222*10^-3, 1.85941*10^-3, -2.36502*10^-3, -2.1144*10^-3, 1.23933*10^-3, -7.41378*10^-4, -1.82733*10^-3, 2.50107*10^-3, 5.2284*10^-3, 3.14139*10^-3, 4.38634*10^-4, -3.07919*10^-4, -7.73588*10^-4, 5.57951*10^-4, -1.42759*10^-3, -2.67889*10^-3, -1.31779*10^-3, -1.87645*10^-3, 1.13353*10^-3, 2.19127*10^-3, 2.86919*10^-4, -8.08308*10^-4, -1.78288*10^-3, -7.5356*10^-4, -3.00667*10^-4, -5.63399*10^-4, 1.01481*10^-3, 4.23161*10^-4, -3.82178*10^-4, -8.22186*10^-4, -3.69031*10^-5, 5.86933*10^-4, -2.56723*10^-4, 6.38658*10^-4, -9.30012*10^-4, -1.18116*10^-3, -1.06654*10^-3, -1.46779*10^-3, 2.40167*10^-3, 2.22258*10^-3, 8.30153*10^-5, 2.04468*10^-3, 2.7205*10^-3, 5.0057*10^-4, -4.01156*10^-4, -1.05844*10^-5, 7.3607*10^-5, 3.10625*10^-4, -2.57437*10^-4, -9.18619*10^-4, -1.65872*10^-5, 4.16715*10^-4, -3.70808*10^-4, -4.20754*10^-4, -3.93613*10^-4, -4.65384*10^-4, -3.3167*10^-4, -3.9344*10^-4, -3.18859*10^-4, -2.52511*10^-4, -3.32442*10^-4, -3.49208*10^-4, -2.11704*10^-4, -1.23195*10^-4, -5.71822*10^-5, -9.16493*10^-5, -6.42769*10^-5, 1.26129*10^-5, 2.81772*10^-5, 2.64155*10^-5, 2.60022*10^-5, 1.28934*10^-5, 1.22111*10^-6, 1.40342*10^-6, 0)); h(16,0) = fi.fir((-2.1262*10^-5, -5.3094*10^-5, -3.34903*10^-4, 7.7166*10^-4, -3.83729*10^-4, 1.24509*10^-3, -2.45907*10^-3, 3.52222*10^-3, -2.64073*10^-3, 3.39722*10^-3, -6.79985*10^-3, 1.10932*10^-2, 2.38201*10^-2, -1.95592*10^-2, -1.76219*10^-2, -2.68616*10^-2, 2.20748*10^-2, 8.5219*10^-3, -3.22351*10^-2, 1.02863*10^-2, 4.22833*10^-2, 2.54816*10^-2, -1.21111*10^-2, 4.91825*10^-3, -2.22522*10^-2, -2.83548*10^-2, 1.00723*10^-2, -3.82544*10^-3, -2.21542*10^-2, -1.57922*10^-2, 3.22688*10^-2, 2.85047*10^-2, -1.04107*10^-2, -6.69666*10^-3, 1.16439*10^-3, 1.32235*10^-2, 9.17371*10^-3, -1.41874*10^-2, -1.37516*10^-2, 5.45521*10^-3, 2.71587*10^-3, -2.18185*10^-3, 3.67744*10^-3, 1.58416*10^-3, 3.34905*10^-3, 9.90862*10^-4, -7.07962*10^-4, -2.21442*10^-4, 8.41515*10^-4, 2.77331*10^-3, 1.05023*10^-3, -6.67396*10^-4, -6.88945*10^-3, -3.02391*10^-3, 2.38925*10^-3, -2.89899*10^-3, -5.39126*10^-3, -3.59992*10^-3, -1.98825*10^-3, -3.88658*10^-4, -1.79447*10^-3, -8.93149*10^-4, 1.50672*10^-3, 3.82579*10^-4, -9.62443*10^-4, 1.40544*10^-3, 5.06806*10^-3, 5.51325*10^-3, 2.19406*10^-3, -1.89788*10^-3, -9.63223*10^-4, -6.30692*10^-5, -4.18394*10^-4, -7.63769*10^-4, -1.06849*10^-3, 3.02304*10^-6, 1.54457*10^-3, 1.3969*10^-3, -8.50277*10^-4, -3.1279*10^-4, 7.86229*10^-4, -4.1789*10^-5, -6.50408*10^-4, -7.50881*10^-4, 1.00488*10^-3, 2.21638*10^-3, 2.05112*10^-3, -3.7485*10^-4, -1.31973*10^-3, -1.49718*10^-4, -1.79301*10^-3, -1.35671*10^-3, -2.47972*10^-4, 7.2873*10^-4, 1.78987*10^-3, 9.07199*10^-4, -8.45641*10^-4, -5.4271*10^-4, 1.18519*10^-3, 6.26361*10^-4, -7.61591*10^-4, -9.37814*10^-4, -6.643*10^-4, 2.55523*10^-4, 2.6838*10^-4, 9.85502*10^-5, 2.26127*10^-4, 1.74103*10^-4, -2.27209*10^-4, -4.12255*10^-4, -4.38894*10^-5, 1.59478*10^-4, 9.04753*10^-5, -1.37956*10^-4, -2.06061*10^-4, -6.71447*10^-5, 3.17384*10^-6, 7.17361*10^-5, -6.12164*10^-5, -6.66239*10^-5, 1.77189*10^-5, 9.23388*10^-6, -9.38071*10^-6, 8.44729*10^-6, 9.58828*10^-6, 1.07446*10^-6, -8.34712*10^-8, 0)); h(17,0) = fi.fir((3.72465*10^-6, 1.28028*10^-5, 7.17746*10^-6, 2.70815*10^-4, -2.79043*10^-4, 5.75673*10^-4, 4.95002*10^-4, -2.47311*10^-4, -5.29721*10^-4, 1.57953*10^-3, 3.95019*10^-4, -1.09278*10^-3, 1.26422*10^-2, -3.46417*10^-3, -3.10649*10^-3, 4.16136*10^-3, -3.01621*10^-2, -1.92268*10^-3, 3.61441*10^-2, -1.75408*10^-2, -2.37126*10^-2, 2.14288*10^-2, 2.62638*10^-3, 2.95677*10^-3, 1.36048*10^-3, -3.74543*10^-3, 1.2572*10^-2, 1.18809*10^-3, -9.64619*10^-3, -3.85501*10^-3, 1.26109*10^-3, -2.34756*10^-3, 1.31105*10^-2, -3.0624*10^-4, -1.48794*10^-2, 3.30539*10^-3, 1.05468*10^-2, 6.53828*10^-3, -2.07787*10^-4, -6.19983*10^-3, -1.00496*10^-2, 8.45193*10^-4, 5.76367*10^-3, -3.8521*10^-3, -3.23524*10^-3, -1.03326*10^-3, -1.3777*10^-3, 2.74367*10^-3, 1.6738*10^-3, 2.58888*10^-3, 4.14681*10^-3, 8.59083*10^-4, -2.2187*10^-4, -1.64567*10^-3, -3.92902*10^-3, -1.22024*10^-3, -1.99714*10^-3, -2.47375*10^-3, -1.82919*10^-3, -4.82877*10^-4, 1.75925*10^-3, 1.85732*10^-3, 1.34079*10^-3, 4.05816*10^-5, 1.04509*10^-3, 1.38174*10^-3, 4.27601*10^-5, 3.61265*10^-3, 2.11924*10^-4, -6.13213*10^-3, -1.8818*10^-3, -8.97747*10^-6, -1.09108*10^-3, 1.48732*10^-4, 2.25575*10^-3, 2.56526*10^-3, 2.3236*10^-3, 2.39427*10^-3, 7.96718*10^-4, 4.56618*10^-4, -1.2976*10^-4, -2.20121*10^-3, -1.15699*10^-3, 2.49326*10^-4, 2.41237*10^-5, 2.48422*10^-3, 1.85746*10^-3, -1.23666*10^-3, -1.5988*10^-3, 1.91076*10^-3, 2.46245*10^-3, 1.73972*10^-4, -5.19623*10^-4, -1.46449*10^-3, -2.04095*10^-4, 1.26756*10^-3, 2.02897*10^-3, 1.16917*10^-3, 3.8421*10^-5, -1.38969*10^-4, 5.16525*10^-4, 3.13914*10^-4, -4.9481*10^-4, 1.09887*10^-4, 2.47627*10^-4, 3.75995*10^-4, -1.49329*10^-4, -1.07876*10^-4, 2.75636*10^-4, 6.78696*10^-5, 1.24213*10^-4, -3.13663*10^-4, -8.42085*10^-5, -4.39827*10^-5, -2.13902*10^-4, -1.91516*10^-5, 7.36453*10^-6, 5.89022*10^-5, -4.70706*10^-5, -9.50844*10^-5, -2.30979*10^-5, 1.46008*10^-5, 3.52399*10^-5, 1.3475*10^-6, -5.45086*10^-6, 2.87072*10^-6, 1.28309*10^-6, 0)); h(18,0) = fi.fir((-1.14319*10^-5, 5.70168*10^-5, -1.86294*10^-4, 3.75048*10^-4, -6.17655*10^-4, 1.15678*10^-3, -5.95664*10^-4, 7.75796*10^-4, -1.52329*10^-3, 4.51648*10^-4, 2.74568*10^-4, 1.5058*10^-3, 4.33909*10^-3, -6.37433*10^-3, 1.93175*10^-2, -2.33488*10^-2, -1.61029*10^-2, -5.94964*10^-3, -3.46477*10^-3, 6.17741*10^-2, -2.54109*10^-2, -2.52123*10^-2, 3.62129*10^-2, 1.6548*10^-2, -1.9233*10^-3, -5.6289*10^-2, -9.46017*10^-3, 3.45977*10^-2, 8.53129*10^-3, 7.03724*10^-3, -1.99204*10^-2, -1.31458*10^-2, 1.21836*10^-2, 1.3695*10^-2, -4.10369*10^-3, -1.40448*10^-2, 3.31961*10^-3, 3.36219*10^-3, 2.46126*10^-3, 7.23776*10^-4, -2.9619*10^-3, 1.88773*10^-3, 3.42066*10^-3, -5.71986*10^-3, -7.57838*10^-3, 2.34829*10^-3, 5.53183*10^-3, -1.10702*10^-3, -6.84048*10^-3, -2.27223*10^-3, 2.24102*10^-3, 2.3747*10^-3, 1.67453*10^-3, 2.54822*10^-3, 2.08672*10^-3, 3.07626*10^-4, 2.56564*10^-3, 1.51166*10^-3, 1.78498*10^-3, 1.09084*10^-3, -1.72928*10^-3, 2.89013*10^-4, 6.69018*10^-5, -8.65997*10^-4, -9.76137*10^-4, -6.06054*10^-4, -8.3187*10^-5, 7.3816*10^-4, 3.01001*10^-4, -4.68146*10^-4, -8.48891*10^-4, -2.8124*10^-3, -1.43001*10^-3, -4.29597*10^-4, 5.98353*10^-4, 2.29359*10^-3, -1.03739*10^-3, -3.74345*10^-3, -1.39739*10^-3, 2.35076*10^-3, 2.70412*10^-3, 1.24236*10^-3, -1.13197*10^-4, -1.67658*10^-5, 1.45937*10^-3, 1.39789*10^-3, -1.20763*10^-3, -2.62294*10^-3, 2.93813*10^-5, 8.94156*10^-4, 7.48604*10^-4, -1.25445*10^-3, -6.72678*10^-4, 2.38975*10^-3, 4.69039*10^-4, -1.42954*10^-3, -7.57965*10^-6, 4.05015*10^-4, -8.1397*10^-4, -1.2871*10^-3, -4.15345*10^-4, 5.16478*10^-4, 7.62918*10^-4, 2.93036*10^-4, -1.45514*10^-4, 3.6058*10^-6, 2.75218*10^-4, 2.49542*10^-4, 3.89903*10^-5, -5.94134*10^-5, 3.74309*10^-5, 1.73661*10^-4, 1.27454*10^-5, -5.60214*10^-5, -3.17417*10^-5, -8.76434*10^-6, 1.98454*10^-4, -2.67218*10^-5, -8.92639*10^-5, -1.76768*10^-5, 3.69637*10^-5, 1.8821*10^-5, -3.24431*10^-5, -1.33867*10^-5, -5.00961*10^-6, 6.13128*10^-6, 1.14214*10^-6, 0)); h(19,0) = fi.fir((1.39912*10^-5, -1.90322*10^-5, -2.36811*10^-4, 3.78*10^-4, 4.67777*10^-4, -5.70294*10^-4, -4.25031*10^-4, 7.53112*10^-4, 2.81149*10^-4, 2.03049*10^-4, 2.80775*10^-4, -3.43985*10^-4, 1.70614*10^-2, -9.79447*10^-4, -3.48084*10^-2, 1.95027*10^-3, 3.28055*10^-2, 1.40525*10^-2, -2.82654*10^-2, -4.04917*10^-2, -1.88454*10^-2, 2.18175*10^-2, 7.49369*10^-2, -6.37302*10^-3, -5.35023*10^-2, 2.67236*10^-3, 1.94414*10^-2, 2.47297*10^-2, -2.90637*10^-3, -1.92195*10^-2, -1.29717*10^-2, 8.10531*10^-3, 9.43887*10^-3, -1.86979*10^-3, -7.54331*10^-4, -1.5552*10^-3, -9.19779*10^-4, -4.45628*10^-3, -8.47557*10^-3, -7.27784*10^-4, 9.35817*10^-3, 7.95084*10^-3, -2.73346*10^-3, -5.47867*10^-3, 1.71457*10^-3, 3.86253*10^-3, 1.45453*10^-3, -3.26547*10^-3, -3.56416*10^-3, -2.11865*10^-3, 9.55961*10^-5, -2.43794*10^-4, -1.17291*10^-4, 3.27819*10^-3, 2.12824*10^-3, -4.00646*10^-3, -2.77951*10^-3, 2.2176*10^-3, 6.09872*10^-3, 4.09957*10^-3, -3.04548*10^-4, -2.03198*10^-3, -6.76045*10^-4, 1.92213*10^-3, 4.3826*10^-4, -6.96391*10^-4, -1.20328*10^-3, -3.92744*10^-3, -2.89725*10^-3, 1.87697*10^-3, 2.03825*10^-3, 1.25158*10^-3, 1.55957*10^-3, -1.25607*10^-3, -1.74287*10^-3, -1.19106*10^-3, -2.47177*10^-3, -8.66478*10^-4, 3.45487*10^-4, -7.25571*10^-4, -9.33224*10^-4, -4.78745*10^-4, 7.49489*10^-4, 9.01459*10^-4, 6.49265*10^-4, 5.41133*10^-5, -8.21348*10^-4, -3.66501*10^-4, 2.84761*10^-4, 4.90146*10^-4, 7.25643*10^-4, 9.95284*10^-4, 1.71413*10^-3, 2.47695*10^-3, 1.36867*10^-3, 1.09923*10^-3, 5.77726*10^-4, 4.88597*10^-4, 1.12136*10^-3, 7.54761*10^-4, 7.28629*10^-5, -3.36252*10^-5, 1.21649*10^-4, 9.13903*10^-5, 3.79578*10^-4, -3.73852*10^-5, -1.72279*10^-4, 3.31291*10^-5, -7.17044*10^-5, -1.01234*10^-4, -2.91422*10^-4, -1.22341*10^-4, -1.16085*10^-4, -1.16408*10^-4, -1.46982*10^-4, -1.03264*10^-4, -7.37692*10^-5, -1.17855*10^-4, -8.54731*10^-5, -2.54989*10^-5, -1.7197*10^-5, -8.6229*10^-6, 4.54045*10^-6, 6.25169*10^-6, 5.97645*10^-7, -4.51728*10^-6, 4.58062*10^-8, 0)); h(20,0) = fi.fir((-1.03784*10^-5, -5.02284*10^-5, -1.00435*10^-4, 1.51413*10^-4, -2.80004*10^-5, 4.88887*10^-4, 1.78065*10^-5, 4.03915*10^-4, -1.44769*10^-3, 1.23547*10^-3, -1.50615*10^-3, 5.34416*10^-3, 2.0862*10^-2, 1.51143*10^-2, 3.38173*10^-3, -1.26652*10^-2, -4.15784*10^-2, -4.67927*10^-2, -8.35795*10^-3, 4.99569*10^-4, 1.07009*10^-2, 2.76724*10^-2, 1.84233*10^-2, 1.92779*10^-2, -3.87754*10^-3, -6.70207*10^-3, 5.83455*10^-4, 3.65507*10^-3, 2.63628*10^-2, 1.0495*10^-2, 2.29415*10^-3, -1.01188*10^-2, -8.92614*10^-3, -1.22827*10^-2, -1.58944*10^-2, 6.5383*10^-3, -2.11074*10^-3, -4.94324*10^-3, -3.61009*10^-3, 4.71535*10^-3, 7.33884*10^-3, 1.68281*10^-3, -5.71269*10^-3, 3.00027*10^-4, 7.65257*10^-4, -4.91451*10^-3, -4.65906*10^-4, 2.42461*10^-3, 2.9572*10^-3, -1.9431*10^-3, -1.63647*10^-3, -1.79836*10^-3, -2.3648*10^-3, -2.98389*10^-4, 3.33124*10^-3, 3.25046*10^-3, -4.19712*10^-4, -8.64468*10^-5, 2.84304*10^-3, 1.90896*10^-3, -4.17858*10^-3, -3.84341*10^-3, 2.91055*10^-4, 1.37382*10^-3, 2.07858*10^-3, 9.38103*10^-4, 8.37476*10^-4, -9.84316*10^-4, -6.3152*10^-4, 1.77419*10^-3, 1.07893*10^-3, 1.97256*10^-3, -6.64651*10^-7, -3.11015*10^-3, -2.31874*10^-3, -5.61436*10^-4, 7.70415*10^-4, 3.03893*10^-4, -5.17777*10^-4, -8.77033*10^-4, 1.59888*10^-4, 1.30389*10^-3, -9.28064*10^-5, -1.58519*10^-3, 3.21652*10^-4, 1.04393*10^-3, -1.11305*10^-4, -7.09914*10^-4, -7.48207*10^-4, 5.01744*10^-4, 6.36688*10^-4, 5.70744*10^-5, -7.9619*10^-5, 4.99474*10^-4, 7.19178*10^-4, 6.02189*10^-4, 8.40974*10^-4, 6.34879*10^-4, -2.20547*10^-4, -3.53242*10^-4, -9.60885*10^-5, 5.87138*10^-4, 4.78541*10^-4, -1.68409*10^-4, 9.81452*10^-6, -1.09868*10^-4, -1.09251*10^-4, -1.09356*10^-4, -4.73355*10^-4, -4.77114*10^-4, -2.07249*10^-4, -5.31454*10^-5, -1.08869*10^-4, 6.57187*10^-5, -7.95313*10^-5, -6.95875*10^-5, -9.13684*10^-5, -1.11332*10^-4, -1.5923*10^-4, -1.10866*10^-4, 3.51642*10^-5, 4.90464*10^-5, -4.82714*10^-8, -2.58574*10^-5, -4.42373*10^-6, -1.49918*10^-6, 4.39693*10^-8, 0)); h(21,0) = fi.fir((-5.23088*10^-6, 3.4461*10^-5, -1.1068*10^-4, -2.00198*10^-5, 1.4403*10^-4, 1.30836*10^-4, -2.4266*10^-4, 7.40873*10^-5, 1.76835*10^-5, -2.12574*10^-4, 1.68404*10^-4, 2.45132*10^-5, -1.90957*10^-3, 4.70066*10^-3, 8.86332*10^-4, -7.47712*10^-3, 1.58755*10^-3, 6.74364*10^-3, -3.56307*10^-3, 2.78912*10^-3, 5.21713*10^-3, -3.0671*10^-2, 1.94353*10^-2, 1.84019*10^-2, -1.64562*10^-2, -9.06296*10^-3, -6.16176*10^-3, 1.99192*10^-2, -6.38263*10^-3, -4.63457*10^-3, 6.72019*10^-3, 1.45007*10^-2, -6.94916*10^-3, -1.32761*10^-2, 9.01156*10^-3, 2.34021*10^-3, -5.64573*10^-3, -2.8605*10^-3, 3.88246*10^-3, -3.93449*10^-3, 8.473*10^-4, 1.31939*10^-4, 4.84425*10^-4, 3.96984*10^-4, -3.97721*10^-3, -3.2389*10^-4, 9.34662*10^-4, -3.02236*10^-4, -7.12602*10^-4, 2.9808*10^-3, 3.24858*10^-3, -1.33477*10^-3, 3.32192*10^-4, 1.35646*10^-3, 3.48514*10^-3, 1.55395*10^-3, -1.2573*10^-3, -1.14311*10^-4, -2.47372*10^-4, -2.08733*10^-3, -8.98965*10^-5, 8.80268*10^-4, -3.04745*10^-3, -3.64205*10^-3, 3.5715*10^-4, 2.57028*10^-3, -4.63351*10^-4, -2.45922*10^-3, -2.65079*10^-3, 2.28953*10^-3, 4.84152*10^-3, 6.62269*10^-4, -2.51479*10^-3, -2.79594*10^-3, 6.15079*10^-4, 2.09709*10^-3, 9.10119*10^-4, 1.04108*10^-3, -2.67192*10^-6, 1.37465*10^-3, 1.3749*10^-3, -7.41713*10^-5, -2.10023*10^-4, -2.80411*10^-4, -6.16784*10^-5, -1.84891*10^-3, -1.21693*10^-3, 3.45615*10^-4, 6.46264*10^-4, 1.44607*10^-4, -6.25426*10^-4, -1.12509*10^-3, -9.06333*10^-4, 1.13763*10^-4, 1.89175*10^-4, 3.56228*10^-4, 5.01086*10^-4, 4.74641*10^-4, 4.31015*10^-4, -2.62271*10^-4, -6.3192*10^-4, 6.57163*10^-5, 6.44643*10^-4, 5.61176*10^-5, -4.73663*10^-4, -3.36155*10^-4, -2.93857*10^-4, 2.9283*10^-5, 4.03428*10^-4, 1.61672*10^-5, -3.38393*10^-4, 5.91271*10^-5, 3.41547*10^-4, 1.38321*10^-4, -9.71308*10^-5, -1.25321*10^-4, 6.77324*10^-6, 4.99707*10^-5, 5.32461*10^-5, -1.23038*10^-6, -4.21833*10^-5, 1.18088*10^-5, 3.79593*10^-5, 1.60144*10^-5, -1.05587*10^-7, -1.37594*10^-6, -4.91333*10^-7, 0)); h(22,0) = fi.fir((1.72019*10^-5, -4.20162*10^-5, -3.73285*10^-4, 1.19794*10^-6, 8.84338*10^-6, 3.94259*10^-4, -1.10994*10^-3, 1.70722*10^-3, -1.86017*10^-3, 3.33416*10^-3, -4.04497*10^-3, 1.00781*10^-2, 3.26266*10^-2, 3.47874*10^-2, -2.30352*10^-2, -4.8092*10^-2, -1.93256*10^-2, -3.34603*10^-2, 3.91203*10^-3, -2.47213*10^-2, -2.09115*10^-2, 1.91181*10^-2, 3.44971*10^-2, 2.3621*10^-2, 2.21261*10^-2, 4.63034*10^-2, -7.8797*10^-3, -1.27315*10^-2, 8.41159*10^-3, 9.0183*10^-3, -9.59986*10^-3, -1.51029*10^-2, 4.57404*10^-3, 2.0424*10^-2, -1.38748*10^-2, -3.21063*10^-2, -8.36109*10^-3, -1.34129*10^-2, -5.46174*10^-3, -5.14502*10^-3, -6.23044*10^-3, -5.07495*10^-3, 1.24876*10^-3, 6.54397*10^-3, 2.79399*10^-3, 5.00401*10^-3, 3.10408*10^-3, 5.03138*10^-3, 6.23583*10^-3, 8.6589*10^-4, 1.65015*10^-3, 7.15822*10^-3, 6.15348*10^-3, -4.29732*10^-4, -8.19291*10^-4, 7.92234*10^-4, 1.15193*10^-3, 5.79959*10^-4, 3.72656*10^-4, 9.64308*10^-4, -1.23704*10^-3, -3.64308*10^-3, -4.15939*10^-3, -7.55412*10^-4, -1.06258*10^-3, -1.00438*10^-3, 6.96704*10^-4, -5.66219*10^-4, -4.05854*10^-4, 7.82348*10^-4, 1.5915*10^-3, 1.48547*10^-3, -1.90097*10^-3, -6.58052*10^-4, 3.92995*10^-3, 3.12323*10^-3, 5.85214*10^-4, -5.26497*10^-4, 8.42545*10^-4, 1.14842*10^-3, -7.65537*10^-4, -2.58392*10^-3, -3.61297*10^-3, -1.33927*10^-3, -2.36279*10^-3, -2.21687*10^-3, 8.02397*10^-4, 4.78125*10^-4, -2.68152*10^-4, 4.99573*10^-4, -1.19114*10^-4, -2.92779*10^-3, -2.09365*10^-3, -1.16137*10^-3, -3.18641*10^-4, -7.45052*10^-5, -1.63301*10^-4, 1.73168*10^-3, 2.36228*10^-3, 8.37104*10^-4, 1.25802*10^-4, 1.02263*10^-3, 1.31849*10^-3, 1.95092*10^-4, -1.36272*10^-4, 8.23148*10^-4, 5.41122*10^-4, 2.17683*10^-4, -1.14459*10^-4, -2.66353*10^-4, 4.14208*10^-4, 4.01458*10^-4, 1.26237*10^-4, -1.5691*10^-4, -2.59228*10^-4, -1.05037*10^-4, -5.98006*10^-5, -2.54885*10^-6, -5.07352*10^-5, -7.89525*10^-5, -2.01223*10^-5, 1.46484*10^-5, 7.37101*10^-6, -2.47572*10^-5, -1.00244*10^-5, 2.11656*10^-6, 8.72722*10^-7, 0)); h(23,0) = fi.fir((-7.141*10^-7, 5.18206*10^-5, -1.11809*10^-4, -1.33329*10^-4, 2.02929*10^-4, 5.3025*10^-4, -9.57729*10^-4, 1.29078*10^-4, 6.35239*10^-4, -6.03345*10^-4, 3.2269*10^-4, -7.59139*10^-4, -2.39529*10^-3, 1.05155*10^-2, 2.48262*10^-3, -2.01477*10^-2, 6.74812*10^-3, 1.4183*10^-2, -9.86006*10^-3, -4.47612*10^-3, 4.77835*10^-3, -1.39955*10^-2, -1.01347*10^-2, 4.03773*10^-2, 6.13711*10^-3, -4.6698*10^-2, 3.62348*10^-3, 2.21418*10^-2, 9.02199*10^-3, -4.95867*10^-3, -1.89367*10^-2, 8.42662*10^-4, 2.06382*10^-2, 1.06083*10^-3, -1.54334*10^-2, 1.93108*10^-3, 7.39659*10^-3, 6.22777*10^-4, -1.25907*10^-3, 2.54407*10^-3, -2.97958*10^-3, 1.36954*10^-3, 7.28973*10^-3, -6.22034*10^-3, -8.64462*10^-3, 7.76734*10^-4, 3.31172*10^-3, 2.28025*10^-5, -4.14967*10^-3, -1.21156*10^-3, 2.40733*10^-3, 2.37984*10^-3, -3.57925*10^-3, -4.26296*10^-3, 1.33644*10^-3, 1.21754*10^-3, -8.29773*10^-5, -1.69948*10^-4, -8.56917*10^-4, -2.39216*10^-4, 3.32763*10^-3, 3.30293*10^-3, -5.45788*10^-4, -5.91758*10^-4, 2.51024*10^-3, 2.25112*10^-3, 5.63093*10^-5, -8.45649*10^-4, 1.06876*10^-4, 1.2564*10^-3, -3.61035*10^-4, -1.08413*10^-3, -9.0364*10^-5, 8.82425*10^-4, 1.53292*10^-3, -1.4521*10^-4, -2.11802*10^-5, -2.58102*10^-3, -2.1193*10^-3, 1.83101*10^-3, 6.01634*10^-4, -6.27552*10^-4, -1.58407*10^-3, -1.90189*10^-3, 5.32943*10^-4, 8.46243*10^-4, -8.66983*10^-4, -9.31954*10^-4, 4.1581*10^-4, -1.18579*10^-4, -1.897*10^-3, -2.93585*10^-4, 1.38449*10^-3, 1.30733*10^-3, 6.72234*10^-4, -2.02613*10^-4, -8.61147*10^-4, 2.99863*10^-4, 7.83748*10^-4, 2.96552*10^-4, -3.00542*10^-4, -2.04823*10^-4, 2.83507*10^-4, 1.20169*10^-4, 2.85806*10^-4, 6.12934*10^-4, 1.9826*10^-4, -3.09929*10^-4, -4.2288*10^-4, -2.34313*10^-5, 2.14669*10^-4, 2.00705*10^-4, 1.46022*10^-4, -1.51845*10^-4, -1.44395*10^-4, 2.03482*10^-6, -1.44194*10^-4, 4.44424*10^-5, -1.66244*10^-6, -8.72555*10^-5, -6.7243*10^-5, -1.72062*10^-5, 2.30759*10^-5, 2.3008*10^-6, 3.91749*10^-6, -5.48001*10^-6, -8.79393*10^-7, 0)); h(24,0) = fi.fir((2.77815*10^-6, -2.82339*10^-5, -4.28012*10^-4, -3.94248*10^-5, 6.21661*10^-5, 6.26207*10^-4, -1.37245*10^-3, 7.29263*10^-4, 3.3558*10^-4, 1.02731*10^-3, -3.19145*10^-3, 1.02197*10^-2, 4.809*10^-2, 2.91373*10^-2, -2.43826*10^-3, -5.9615*10^-2, -5.67235*10^-2, -1.65282*10^-2, -6.01819*10^-2, -2.54417*10^-2, 3.34517*10^-2, 2.56304*10^-2, 1.94273*10^-2, 3.80066*10^-2, 3.68608*10^-2, 1.629*10^-2, 1.62706*10^-2, 1.02472*10^-2, -1.59477*10^-2, -4.65916*10^-3, 1.19731*10^-2, -7.41363*10^-3, -1.07335*10^-2, -7.76615*10^-3, -6.79729*10^-3, -1.092*10^-2, -1.39099*10^-2, -8.69685*10^-3, 1.85862*10^-3, 8.22441*10^-3, -2.37291*10^-3, -5.07741*10^-3, 5.16845*10^-3, 1.52776*10^-3, -2.1516*10^-3, -2.59251*10^-3, 4.13783*10^-5, 4.50443*10^-3, 4.93388*10^-4, -1.12839*10^-3, -1.11949*10^-3, 3.53529*10^-3, 2.69973*10^-3, -2.18946*10^-3, 4.49132*10^-4, 1.87394*10^-3, 1.83667*10^-3, 1.48457*10^-3, 1.14566*10^-3, 1.16275*10^-3, -1.60028*10^-3, -1.50633*10^-3, -1.15475*10^-3, -1.43402*10^-3, -4.124*10^-4, -1.95193*10^-4, -1.42557*10^-3, -1.83186*10^-3, -1.89538*10^-3, -8.34602*10^-4, 1.73039*10^-3, 2.68183*10^-3, 7.27846*10^-4, -4.58976*10^-4, -8.84948*10^-5, -1.25911*10^-3, 8.99127*10^-4, 1.98166*10^-3, -3.2896*10^-4, -1.08943*10^-3, 5.71055*10^-4, 1.84866*10^-3, 5.39723*10^-4, -4.65231*10^-5, 1.82591*10^-3, 1.54042*10^-3, -7.58082*10^-4, -1.95016*10^-3, -5.29275*10^-4, -1.77073*10^-4, -2.50102*10^-3, -1.03668*10^-3, -9.29285*10^-5, -3.76089*10^-4, 1.19519*10^-3, 1.02399*10^-3, -6.47235*10^-4, -9.69106*10^-4, -1.16687*10^-4, 1.20943*10^-3, 1.23146*10^-3, 1.77917*10^-4, -1.02777*10^-4, 7.43441*10^-4, 1.08294*10^-3, 6.01945*10^-5, 1.90676*10^-4, 4.07182*10^-5, -5.33674*10^-4, 5.0066*10^-5, -1.66584*10^-4, -1.34228*10^-5, 8.92561*10^-5, 8.74663*10^-5, -1.0287*10^-5, -2.04054*10^-4, -2.01394*10^-4, -1.70883*10^-4, 7.31299*10^-6, -2.4284*10^-5, -9.50505*10^-5, -6.39302*10^-5, -3.59127*10^-5, -8.14788*10^-6, 2.35614*10^-6, -1.43761*10^-7, 8.80793*10^-7, 0)); h(25,0) = fi.fir((-1.70263*10^-5, -1.28761*10^-4, -3.34792*10^-4, -2.13287*10^-4, 1.05049*10^-4, 3.68725*10^-4, -6.08016*10^-4, 1.40487*10^-3, 4.62468*10^-4, 7.12078*10^-4, -3.51067*10^-3, 1.23121*10^-2, 2.22899*10^-2, 1.64861*10^-3, -9.93043*10^-3, -4.64173*10^-2, -3.31992*10^-2, -1.29798*10^-2, -4.81246*10^-2, 2.41549*10^-2, 8.46089*10^-2, 3.27345*10^-2, 1.561*10^-2, 4.55923*10^-2, 1.26811*10^-2, -3.0081*10^-2, -2.40429*10^-2, -2.08135*10^-2, -3.20108*10^-2, -4.53053*10^-2, -9.67799*10^-3, 1.21792*10^-2, 5.13198*10^-3, 2.67935*10^-4, 1.13855*10^-2, 1.85694*10^-2, 2.94205*10^-3, -1.28371*10^-3, 2.09454*10^-3, 9.4253*10^-3, -1.55259*10^-5, 2.30617*10^-3, 5.7944*10^-3, 3.98422*10^-4, 2.73429*10^-3, -1.1864*10^-4, 3.04515*10^-3, -2.48611*10^-3, -7.53053*10^-3, -1.40849*10^-3, 3.57481*10^-5, -3.72074*10^-3, -2.11718*10^-3, 2.02768*10^-3, 4.74078*10^-4, -5.12379*10^-4, -2.44481*10^-3, -1.26397*10^-4, -1.27928*10^-4, -2.44065*10^-3, -3.84313*10^-4, 2.91301*10^-3, 4.80335*10^-3, 8.61686*10^-4, 1.40539*10^-3, 1.95178*10^-3, -2.78354*10^-4, -2.43704*10^-3, -2.3621*10^-4, 4.23868*10^-3, -5.92458*10^-4, -4.46858*10^-3, -2.84673*10^-3, -7.28816*10^-4, -2.34322*10^-3, -2.21456*10^-3, 2.85524*10^-3, 1.59543*10^-3, -1.62569*10^-3, -6.62465*10^-4, 2.90071*10^-3, 3.14338*10^-3, 2.76293*10^-4, -6.64091*10^-4, 9.55951*10^-4, -2.73964*10^-5, -5.00895*10^-4, -3.50802*10^-4, -9.79809*10^-5, 1.53133*10^-4, -8.41651*10^-4, -1.77624*10^-3, -2.19278*10^-3, 7.32989*10^-4, 2.63843*10^-3, 2.63199*10^-3, -5.95601*10^-4, -1.49484*10^-3, 9.34703*10^-4, 9.48527*10^-4, -9.29703*10^-4, -1.15517*10^-3, -3.89822*10^-4, 2.53754*10^-4, -4.32335*10^-4, -3.39077*10^-4, 5.88923*10^-4, 2.28243*10^-4, -3.53326*10^-4, 4.89925*10^-5, 3.371*10^-4, 3.68061*10^-4, 1.61925*10^-4, 8.79203*10^-5, -1.05008*10^-4, -4.91721*10^-5, -7.67448*10^-5, -6.1289*10^-5, -3.33774*10^-5, -7.06464*10^-5, -1.05671*10^-5, 2.12878*10^-5, -3.25801*10^-6, 1.09688*10^-7, 5.57647*10^-6, 3.1932*10^-6, 9.49831*10^-7, 0)); h(26,0) = fi.fir((2.68192*10^-6, 5.38381*10^-5, -7.47409*10^-5, -1.42843*10^-4, 2.49371*10^-4, 3.19706*10^-4, -5.1771*10^-4, 8.60445*10^-5, 4.35335*10^-4, -1.14515*10^-3, 1.34702*10^-3, -1.77218*10^-3, -2.67511*10^-3, 1.39846*10^-2, 2.71387*10^-3, -2.30019*10^-2, -5.03077*10^-4, 3.97455*10^-3, -4.28855*10^-3, 2.58428*10^-2, 4.40381*10^-3, -3.19437*10^-2, -1.35128*10^-2, 2.68305*10^-2, 1.5686*10^-2, -1.38866*10^-2, -1.27638*10^-2, -7.24165*10^-3, 2.38144*10^-2, 1.23298*10^-2, -1.74139*10^-2, -9.73992*10^-3, 1.06577*10^-2, 3.12486*10^-3, -2.86586*10^-3, -3.96475*10^-3, -1.0624*10^-2, 7.68047*10^-3, 9.14505*10^-3, -4.15635*10^-3, -9.09655*10^-3, -1.01376*10^-3, 3.48552*10^-3, 4.39891*10^-3, 3.14719*10^-3, -5.99736*10^-3, 1.40738*10^-3, 6.07597*10^-3, 7.76718*10^-4, 1.90838*10^-4, -2.23711*10^-4, 1.22064*10^-3, 3.76688*10^-4, -3.94129*10^-4, -3.47579*10^-3, -1.91599*10^-3, 7.70106*10^-5, -1.19369*10^-3, -2.03858*10^-3, -1.32063*10^-3, 2.99716*10^-3, 2.9268*10^-3, 5.62786*10^-4, -1.04869*10^-3, 8.26995*10^-4, 1.88054*10^-3, -4.93161*10^-4, -3.90518*10^-3, -1.51366*10^-3, 3.76388*10^-3, 5.3093*10^-4, -3.00154*10^-3, -2.40843*10^-3, 8.5528*10^-4, 3.85729*10^-4, -2.43098*10^-3, -2.37887*10^-4, 2.89557*10^-3, 2.61856*10^-3, 3.28094*10^-4, 8.79738*10^-4, 7.70035*10^-4, 5.71347*10^-5, 3.76642*10^-4, 1.31691*10^-3, 9.55996*10^-4, 7.21945*10^-4, -4.03372*10^-4, -1.60847*10^-3, -1.03283*10^-3, -7.51801*10^-4, 4.23174*10^-4, 6.27723*10^-4, -6.71705*10^-4, -8.58713*10^-4, 1.62586*10^-3, 1.03657*10^-3, -9.5057*10^-4, -9.10638*10^-4, -1.0125*10^-3, -8.61948*10^-4, -3.62245*10^-5, -2.27309*10^-4, -5.78743*10^-4, -5.47456*10^-4, 6.47828*10^-5, -2.35777*10^-4, -5.59697*10^-4, -3.44701*10^-4, 2.84905*10^-5, 3.02894*10^-4, 1.77081*10^-4, -1.71227*10^-4, -8.80198*10^-5, 6.64343*10^-5, 6.22115*10^-5, 4.16509*10^-5, 9.30948*10^-5, -1.38413*10^-5, -4.98662*10^-5, 3.01538*10^-5, 4.76362*10^-5, 2.37743*10^-5, 1.70699*10^-5, 4.2651*10^-6, 6.51553*10^-8, 4.06252*10^-7, 0)); h(27,0) = fi.fir((8.51986*10^-6, -7.74554*10^-5, -1.57615*10^-4, 2.81386*10^-4, 7.3914*10^-4, 4.23694*10^-4, -2.06734*10^-3, 2.0378*10^-3, -2.29203*10^-3, 2.98479*10^-3, -5.20434*10^-3, 1.27194*10^-2, 1.84747*10^-2, 2.50006*10^-2, -4.69379*10^-2, -6.82872*10^-2, 1.76843*10^-2, -9.09983*10^-3, 2.63662*10^-2, 2.2592*10^-2, 6.3924*10^-3, 3.44057*10^-2, 8.71626*10^-3, -1.09569*10^-2, -2.00701*10^-2, -3.34543*10^-3, 1.22418*10^-2, -7.62197*10^-3, -1.82466*10^-2, -1.58395*10^-4, 8.04866*10^-3, -7.42268*10^-3, -1.70216*10^-2, -1.33348*10^-2, -8.67311*10^-3, 2.38606*10^-3, 1.93621*10^-2, 1.55897*10^-2, 2.11082*10^-3, 5.56127*10^-3, 8.4834*10^-3, 9.72094*10^-3, -3.15093*10^-3, -6.12273*10^-3, 3.13242*10^-3, 3.43884*10^-3, -3.62372*10^-3, -8.52966*10^-3, -1.53152*10^-3, -2.58936*10^-3, -3.48503*10^-3, -5.35488*10^-3, -5.97157*10^-3, 2.31401*10^-3, 2.92822*10^-3, -1.38717*10^-3, -3.00938*10^-3, -1.19474*10^-3, 5.74179*10^-5, -1.84167*10^-4, 1.72416*10^-3, 1.50731*10^-3, 3.8534*10^-3, 5.42097*10^-3, 3.39852*10^-3, 2.69334*10^-3, 1.66145*10^-3, -1.48438*10^-4, -1.11658*10^-3, -1.16978*10^-3, -1.22465*10^-3, -2.61339*10^-3, -5.84997*10^-4, -2.92849*10^-4, -7.56*10^-4, 2.1444*10^-3, 5.62922*10^-5, -3.50869*10^-3, -2.89841*10^-3, 2.28003*10^-4, 1.17529*10^-3, 8.44764*10^-4, 7.15955*10^-4, 1.11741*10^-3, 1.48688*10^-3, 1.15957*10^-3, -1.09252*10^-3, -2.20769*10^-3, -1.13326*10^-3, -2.55332*10^-4, 9.35657*10^-4, -4.01088*10^-4, 3.27901*10^-4, 2.48299*10^-3, 1.93815*10^-3, -7.27717*10^-5, -9.40745*10^-4, -4.50768*10^-4, -8.76083*10^-4, -1.25786*10^-3, -4.3473*10^-4, 1.59333*10^-4, 3.35003*10^-4, 2.85647*10^-5, -6.99542*10^-5, 1.42745*10^-4, -8.06921*10^-5, -2.4979*10^-4, -8.0048*10^-5, -2.53297*10^-4, -1.35398*10^-4, 2.72418*10^-4, 2.00374*10^-4, -2.73761*10^-5, -8.88094*10^-5, 2.73751*10^-5, 2.66986*10^-4, 7.26382*10^-5, -2.03089*10^-5, -2.65182*10^-5, 4.53633*10^-6, -5.46369*10^-7, -3.69577*10^-6, 9.80256*10^-6, -8.48683*10^-6, 4.36517*10^-6, 2.06204*10^-6, 0)); h(28,0) = fi.fir((-2.45111*10^-6, 6.66307*10^-5, -9.32174*10^-5, -1.60407*10^-5, 1.66822*10^-4, 1.24945*10^-4, -2.63228*10^-4, 1.75562*10^-4, 8.99811*10^-6, -4.89232*10^-4, 8.61523*10^-4, -5.50526*10^-4, -2.741*10^-3, 9.06451*10^-3, 1.47161*10^-3, -1.31018*10^-2, -1.50782*10^-3, 4.18876*10^-3, -2.4936*10^-3, 2.00021*10^-2, 6.25602*10^-3, -4.5702*10^-2, 1.71183*10^-2, 1.90398*10^-2, -9.87325*10^-3, 2.86731*10^-3, -9.41389*10^-3, 5.60726*10^-3, -4.25737*10^-4, -1.00331*10^-3, -1.15684*10^-3, 6.25974*10^-3, 1.32022*10^-3, -1.10307*10^-2, -3.32504*10^-3, 4.56292*10^-3, 6.60159*10^-3, 2.73952*10^-3, -4.58215*10^-3, -4.38771*10^-3, 2.02385*10^-3, 3.9643*10^-3, 2.29238*10^-4, 1.8177*10^-4, 5.30734*10^-4, -1.07051*10^-3, -8.05097*10^-4, 3.55014*10^-4, 1.49892*10^-3, -8.3629*10^-4, -2.93281*10^-4, -2.95353*10^-3, -1.9031*10^-3, -1.97557*10^-3, -1.97986*10^-3, -1.57247*10^-4, -4.70026*10^-4, -2.31036*10^-3, -1.80221*10^-3, 2.72356*10^-3, 3.19405*10^-3, 2.66101*10^-3, 2.00488*10^-3, 3.1505*10^-3, 4.52555*10^-3, 1.35169*10^-3, 1.45411*10^-4, 1.97812*10^-3, 7.67253*10^-4, -2.01637*10^-3, -9.7867*10^-4, -4.91883*10^-4, -1.59083*10^-3, -2.78685*10^-3, -2.58031*10^-3, -1.54227*10^-3, -1.91087*10^-3, -9.45088*10^-4, 1.47535*10^-4, 1.87605*10^-3, 9.27866*10^-4, -1.72966*10^-3, 5.17364*10^-4, 8.3453*10^-4, -9.58155*10^-4, -5.64467*10^-4, 2.71591*10^-4, 3.32391*10^-5, -1.28847*10^-3, -9.01326*10^-4, 6.15793*10^-4, 1.35228*10^-3, 1.13838*10^-3, 3.65355*10^-4, 1.94269*10^-4, 6.89543*10^-4, -1.09271*10^-4, -4.3673*10^-4, 7.48744*10^-5, -8.89243*10^-5, -2.21859*10^-4, 1.9163*10^-4, 4.51852*10^-4, 1.65983*10^-4, -2.60014*10^-5, 1.96808*10^-4, 1.71925*10^-4, 1.27255*10^-4, 2.14574*10^-5, 5.18306*10^-5, -2.48485*10^-5, 1.79268*10^-4, 1.23721*10^-4, 2.41166*10^-5, 4.99249*10^-5, -7.10481*10^-6, -1.77564*10^-5, -2.35601*10^-7, 2.56017*10^-5, 6.58063*10^-6, -2.38164*10^-5, -7.21558*10^-6, -4.49342*10^-6, -6.23026*10^-6, -6.40275*10^-6, -1.86267*10^-6, 5.07019*10^-7, 0)); h(29,0) = fi.fir((-2.18142*10^-5, -1.56564*10^-4, -1.84408*10^-4, -1.06294*10^-5, -2.93371*10^-4, 3.27483*10^-4, 8.31128*10^-4, 8.17338*10^-4, -8.56541*10^-4, 1.37029*10^-3, -1.7446*10^-3, 7.09911*10^-3, 1.0756*10^-2, -1.95281*10^-3, 2.98747*10^-3, -9.02319*10^-3, -3.53463*10^-2, -4.7048*10^-2, -7.06658*10^-3, 2.98992*10^-2, 2.58465*10^-2, 4.26235*10^-2, 3.92127*10^-2, 6.48839*10^-3, -1.66423*10^-3, -1.35478*10^-2, -3.41773*10^-2, -1.68554*10^-2, -2.65172*10^-2, -2.17894*10^-2, 8.60355*10^-3, 8.93964*10^-3, 1.05553*10^-2, 4.43326*10^-3, 6.52963*10^-3, 6.90235*10^-3, 4.03661*10^-3, -4.34042*10^-3, -9.32151*10^-4, -1.8332*10^-4, -3.16858*10^-3, 8.43456*10^-3, 5.70878*10^-3, -1.04407*10^-3, -1.60081*10^-3, 2.86157*10^-3, 3.20929*10^-3, 3.54243*10^-3, 1.28158*10^-4, -5.82607*10^-3, -5.60222*10^-3, -2.0779*10^-3, -2.31387*10^-3, -1.7007*10^-3, -4.11024*10^-4, 7.43701*10^-4, 2.33792*10^-3, 7.64665*10^-4, -1.82756*10^-3, -2.63297*10^-4, -4.69645*10^-4, -2.57292*10^-4, 1.17857*10^-3, 7.8053*10^-4, -1.52468*10^-5, 6.70616*10^-4, 3.99552*10^-3, 9.45599*10^-5, -2.58432*10^-3, 1.85273*10^-3, 1.45445*10^-3, 4.15991*10^-5, -1.07001*10^-3, -2.59023*10^-3, -1.47947*10^-3, 9.27011*10^-4, 1.20252*10^-3, -2.71824*10^-4, -2.60324*10^-4, 9.53455*10^-4, 3.26808*10^-5, -2.77959*10^-3, -7.70604*10^-4, -3.01831*10^-4, 3.07557*10^-4, 2.00473*10^-3, 2.5674*10^-3, 1.52675*10^-3, -4.54995*10^-4, -9.2322*10^-4, -2.85195*10^-3, -1.95925*10^-3, -1.97653*10^-4, 2.60997*10^-4, 1.42043*10^-3, 1.42217*10^-3, -1.21333*10^-4, 7.64203*10^-4, 1.7678*10^-3, -2.00928*10^-4, -2.02617*10^-3, -7.54518*10^-4, -4.18504*10^-4, -2.88454*10^-4, 1.79094*10^-4, 1.47907*10^-4, 1.29107*10^-4, -1.89154*10^-4, 8.77618*10^-5, 7.6293*10^-5, 3.11603*10^-5, 2.20948*10^-4, 1.14784*10^-4, 1.15323*10^-4, -9.51111*10^-5, -6.27218*10^-5, -1.20831*10^-4, 7.54961*10^-5, 8.79836*10^-5, -5.42298*10^-5, -4.57112*10^-5, 7.11125*10^-6, 3.00959*10^-5, 5.90208*10^-6, 5.44547*10^-6, -2.11481*10^-6, 1.0928*10^-7, 0)); h(30,0) = fi.fir((-1.18039*10^-5, 6.60603*10^-6, 2.11791*10^-4, -2.46179*10^-4, -3.99461*10^-4, 3.98691*10^-4, 3.27605*10^-4, -1.47688*10^-4, -5.1073*10^-4, 6.04741*10^-4, -1.06129*10^-3, 5.36497*10^-4, -1.29335*10^-2, 1.4727*10^-3, 3.11939*10^-2, 9.90797*10^-3, -2.34014*10^-2, -3.03173*10^-2, 1.02524*10^-2, 5.28166*10^-3, 2.64191*10^-2, 1.36932*10^-2, -4.89987*10^-2, 1.03916*10^-3, 9.32673*10^-3, 1.36454*10^-2, 2.49342*10^-3, -1.18615*10^-2, -2.37959*10^-4, 1.12098*10^-3, 1.03706*10^-2, -1.21944*10^-2, -5.78663*10^-3, 1.43394*10^-2, 7.13828*10^-3, -1.56883*10^-2, -6.44337*10^-3, 8.18587*10^-4, 8.27502*10^-3, 8.45345*10^-3, -4.65704*10^-3, -2.93578*10^-3, -1.74324*10^-3, 3.76534*10^-3, -3.7675*10^-4, -1.03774*10^-3, 9.59046*10^-4, -1.19035*10^-3, 1.93187*10^-3, 4.40682*10^-5, -1.71104*10^-4, 6.04681*10^-4, 2.80423*10^-3, 1.24663*10^-3, -4.93117*10^-3, -1.73866*10^-3, 1.4399*10^-3, 1.9703*10^-3, -1.11116*10^-3, -3.59368*10^-3, -1.98759*10^-3, -2.84615*10^-4, -5.25284*10^-4, -1.02227*10^-3, 1.8252*10^-3, 1.95075*10^-3, -4.33131*10^-4, -5.29127*10^-4, 1.48042*10^-3, 1.35711*10^-3, -7.68065*10^-4, 7.3311*10^-4, 7.05703*10^-4, -4.88378*10^-4, -7.30893*10^-5, 1.09489*10^-3, -9.40939*10^-4, -2.53659*10^-3, 5.94607*10^-4, 1.43457*10^-3, -5.24453*10^-4, -7.68652*10^-4, 1.39346*10^-3, 1.80516*10^-3, 4.37236*10^-6, -2.92426*10^-3, -2.24872*10^-3, 6.11472*10^-4, 2.86831*10^-4, -8.52483*10^-4, -9.67328*10^-4, -9.20395*10^-5, 1.22176*10^-3, 1.72185*10^-3, 7.73201*10^-4, -3.79908*10^-4, -9.09645*10^-4, -3.48091*10^-4, 3.39934*10^-4, 3.52626*10^-4, -1.17002*10^-4, -7.80214*10^-5, 8.07527*10^-5, -1.68338*10^-5, -1.11947*10^-4, -1.87727*10^-4, -7.96625*10^-5, -1.39837*10^-4, 1.93883*10^-4, -6.72879*10^-6, -1.16221*10^-4, 4.81784*10^-5, -6.48567*10^-5, -8.94861*10^-7, -1.19238*10^-5, 1.58936*10^-4, 9.31571*10^-5, -3.46926*10^-5, -7.13169*10^-5, -5.88322*10^-5, 3.59987*10^-5, 3.74989*10^-5, 4.86425*10^-6, -2.06496*10^-6, 6.6844*10^-7, -9.10627*10^-7, -3.55656*10^-7, 0)); h(31,0) = fi.fir((1.01157*10^-6, -4.03825*10^-5, 2.23065*10^-5, -1.47048*10^-4, 3.3447*10^-4, -6.64534*10^-4, 7.55389*10^-5, 7.61332*10^-5, 5.94679*10^-4, 1.81232*10^-4, -1.14539*10^-3, 9.23611*10^-4, 3.06798*10^-5, 2.00059*10^-3, -1.6422*10^-2, 1.40754*10^-2, 1.3812*10^-2, 5.06151*10^-3, -9.81395*10^-3, -4.59517*10^-2, 2.47785*10^-2, 1.60248*10^-2, -2.50778*10^-3, -5.72812*10^-3, -6.52795*10^-3, 2.65575*10^-2, -1.61714*10^-3, -1.19202*10^-2, -7.35669*10^-3, 6.00253*10^-3, 1.02206*10^-3, -9.38958*10^-3, 6.11832*10^-3, 4.89319*10^-3, 1.05405*10^-3, -5.47477*10^-3, -2.0941*10^-3, 6.8213*10^-3, -2.99433*10^-3, -5.42361*10^-3, -5.4999*10^-4, -7.87007*10^-5, -4.61107*10^-3, -4.80775*10^-4, 1.30451*10^-3, 9.18804*10^-4, 1.65884*10^-3, 1.49424*10^-4, 2.0852*10^-3, 9.60428*10^-4, 1.8685*10^-3, 2.76262*10^-3, 6.98747*10^-3, 3.78388*10^-3, -2.27789*10^-3, 9.75207*10^-4, 7.42107*10^-4, -1.23695*10^-3, -3.36984*10^-3, -5.50671*10^-3, -3.03662*10^-3, -6.60673*10^-4, -6.6618*10^-4, -1.03156*10^-3, 1.53153*10^-3, 1.79709*10^-3, 1.46131*10^-3, 1.89629*10^-3, 1.17538*10^-3, -1.03923*10^-4, 1.48803*10^-4, 4.53915*10^-4, -8.26743*10^-4, -3.24762*10^-3, -3.55812*10^-3, -1.36177*10^-3, -4.16915*10^-4, 1.11758*10^-3, 1.39629*10^-3, 1.67645*10^-3, 8.32944*10^-4, -9.69889*10^-4, -9.83742*10^-4, -1.76922*10^-3, -1.13013*10^-3, 2.84445*10^-5, 1.25928*10^-3, -1.13318*10^-5, -1.7108*10^-3, 1.17786*10^-4, 1.89*10^-3, 1.85798*10^-3, 5.69339*10^-4, 1.59872*10^-4, 9.04747*10^-4, 9.86218*10^-4, -6.75161*10^-5, 1.84688*10^-4, 1.5707*10^-3, 8.84292*10^-4, 1.86045*10^-4, 7.65027*10^-5, -1.78949*10^-4, -2.48451*10^-4, -4.8894*10^-4, -4.23574*10^-4, -1.84412*10^-5, 6.94546*10^-5, -5.46457*10^-4, -6.89602*10^-4, -2.08731*10^-4, -2.04718*10^-4, -1.0308*10^-4, 2.61503*10^-5, -5.68727*10^-5, -1.62033*10^-4, -2.11951*10^-4, -4.45035*10^-5, -1.24917*10^-5, -1.96488*10^-5, 1.24482*10^-5, 5.01888*10^-5, 3.12629*10^-5, 7.84319*10^-6, 5.23772*10^-6, 2.50842*10^-6, 1.26382*10^-7, 0)); h(32,0) = fi.fir((-4.48862*10^-6, 6.09362*10^-5, 2.44466*10^-4, -1.75865*10^-4, -4.49274*10^-4, 4.98891*10^-4, 7.51191*10^-4, -3.11959*10^-4, -3.31602*10^-4, 3.64566*10^-4, -2.79713*10^-4, 5.17846*10^-4, -1.51797*10^-2, 1.73991*10^-3, 3.75927*10^-2, 9.66999*10^-3, -3.46531*10^-2, -2.97084*10^-2, 1.47103*10^-2, 3.66681*10^-2, 2.61141*10^-2, -1.88242*10^-2, -5.40977*10^-2, -2.57094*10^-2, 2.98618*10^-2, 3.33516*10^-2, 3.18798*10^-3, -9.88893*10^-3, -1.88993*10^-2, -7.7309*10^-3, 1.38099*10^-2, 2.22203*10^-2, -4.07277*10^-4, -1.55326*10^-2, -3.21032*10^-3, 7.51132*10^-3, -3.6415*10^-3, 1.25525*10^-3, 9.09915*10^-3, 2.06941*10^-3, -5.42482*10^-3, -1.16972*10^-2, 2.8542*10^-4, 9.08149*10^-3, 9.73025*10^-3, -1.85872*10^-3, -7.28406*10^-3, -3.70021*10^-3, -3.08716*10^-3, 4.51093*10^-3, 3.89232*10^-3, -3.14501*10^-3, -4.60254*10^-4, -1.96657*10^-4, -2.54129*10^-3, 9.01699*10^-4, 3.61275*10^-3, 1.42499*10^-3, -2.29887*10^-3, -2.99232*10^-3, -5.83665*10^-4, 5.25939*10^-4, -7.98806*10^-5, -1.70656*10^-3, -6.68441*10^-4, 1.1855*10^-4, -8.67284*10^-4, 5.37148*10^-4, 2.29131*10^-3, 1.72384*10^-3, 1.07515*10^-3, 5.97472*10^-4, -3.05031*10^-4, -8.13872*10^-4, 6.42208*10^-5, 1.7048*10^-3, 1.3547*10^-3, 2.49221*10^-4, -3.3844*10^-4, -1.58616*10^-3, -1.18645*10^-3, 1.46979*10^-4, 6.4464*10^-5, 6.1178*10^-4, -2.0812*10^-3, -2.30834*10^-3, 1.92456*10^-3, 3.2023*10^-3, 9.47805*10^-4, -2.55453*10^-3, -7.71784*10^-4, 4.6127*10^-4, -4.69807*10^-4, 3.90704*10^-4, 1.51091*10^-3, 1.97553*10^-3, 5.6378*10^-4, 1.39927*10^-4, 4.52311*10^-4, 3.41852*10^-4, 2.79169*10^-4, 7.55511*10^-4, 1.22775*10^-3, 4.61068*10^-4, -3.11203*10^-4, 1.86037*10^-4, 3.25624*10^-4, -1.01329*10^-5, 1.12732*10^-5, 5.47188*10^-5, 2.87584*10^-4, 2.58787*10^-4, -4.64091*10^-6, -5.30887*10^-5, -7.25049*10^-6, -6.32482*10^-5, -2.12418*10^-5, 7.75834*10^-5, 3.02156*10^-5, -4.38703*10^-5, -1.2815*10^-5, 5.53353*10^-6, -1.16328*10^-5, -7.25239*10^-6, -2.23419*10^-6, 2.83422*10^-6, -1.89068*10^-7, 0)); h(33,0) = fi.fir((1.26794*10^-5, -3.7578*10^-5, 1.20349*10^-4, -3.25849*10^-4, 2.95949*10^-4, -1.02578*10^-3, 5.33003*10^-4, -5.52184*10^-4, 1.28688*10^-3, -1.80737*10^-4, -2.36882*10^-4, -1.11859*10^-3, -2.74356*10^-3, 4.83803*10^-3, -1.52924*10^-2, 1.87626*10^-2, 1.2748*10^-2, 2.67758*10^-3, -3.84138*10^-4, -4.83742*10^-2, 1.80199*10^-2, 2.44772*10^-2, -2.35437*10^-2, -2.7768*10^-2, 9.72829*10^-3, 5.97894*10^-2, 5.78605*10^-3, -2.70073*10^-2, -1.25824*10^-2, -1.3434*10^-2, 3.5737*10^-3, 9.26215*10^-3, -9.21767*10^-5, 7.54794*10^-3, -6.29108*10^-3, 5.95796*10^-4, 1.3603*10^-2, -2.96929*10^-3, 2.7787*10^-4, -1.54923*10^-3, -4.33275*10^-4, -6.92862*10^-3, -1.0442*10^-2, 3.4046*10^-3, 3.85159*10^-3, 3.92166*10^-3, -2.73524*10^-3, -4.35121*10^-3, 5.08894*10^-3, 4.72401*10^-4, 2.12803*10^-3, 4.74119*10^-3, -2.16002*10^-3, -2.90217*10^-3, -2.47795*10^-3, -1.38943*10^-3, 1.22764*10^-3, 3.29923*10^-3, 2.06871*10^-3, -3.82866*10^-3, -5.14821*10^-3, -3.03617*10^-3, 2.41698*10^-4, 9.7928*10^-4, -2.62236*10^-3, -8.86112*10^-4, 2.75799*10^-3, 2.54593*10^-3, 2.16744*10^-3, 1.09212*10^-3, -5.37946*10^-4, -3.21608*10^-4, 7.89164*10^-4, 3.70871*10^-4, -1.16524*10^-4, -3.63363*10^-4, 2.0359*10^-3, 2.84025*10^-3, 2.40705*10^-3, 6.30052*10^-4, -8.457*10^-4, 5.49988*10^-4, -1.36692*10^-3, -2.63742*10^-3, -2.43838*10^-3, -2.92289*10^-4, 1.09914*10^-3, -2.7603*10^-4, -3.30784*10^-4, 5.08796*10^-4, 9.19875*10^-4, -3.45505*10^-4, -1.59165*10^-3, -8.26149*10^-4, 1.04705*10^-4, -8.57647*10^-4, -2.17092*10^-3, -2.26857*10^-4, 9.96146*10^-4, 3.54697*10^-4, 8.09902*10^-5, 6.6595*10^-4, 2.99469*10^-4, -6.72221*10^-4, -2.96615*10^-4, 1.79193*10^-4, 1.60559*10^-4, 5.49628*10^-5, 1.77574*10^-4, 2.36535*10^-4, 4.61641*10^-4, 1.12188*10^-4, -3.30619*10^-5, 1.61932*10^-4, 1.35399*10^-4, 2.01172*10^-5, -1.58067*10^-4, 3.94347*10^-5, 7.90168*10^-5, 2.52952*10^-5, -1.41828*10^-5, 7.16722*10^-6, 1.40883*10^-5, -1.1707*10^-5, -2.7363*10^-6, -4.80203*10^-6, -5.81624*10^-7, 0)); h(34,0) = fi.fir((8.14951*10^-6, 3.52685*10^-7, 3.19158*10^-5, 1.14879*10^-5, 4.00007*10^-4, -2.71113*10^-4, -7.01769*10^-4, 1.07489*10^-3, 6.41677*10^-4, -9.01272*10^-4, -6.88747*10^-4, 1.7748*10^-3, -6.96466*10^-3, 2.49486*10^-3, -2.98*10^-3, 2.39814*10^-3, 4.0556*10^-2, -7.6565*10^-3, -3.67176*10^-2, -7.14102*10^-3, 2.16451*10^-2, 2.43323*10^-3, -3.38868*10^-2, 9.98825*10^-3, 1.7029*10^-2, -7.64684*10^-3, 1.21183*10^-2, -6.28892*10^-4, -1.68571*10^-2, -1.01902*10^-3, 1.65353*10^-2, 1.86297*10^-2, -1.46474*10^-2, -1.62934*10^-2, -6.38752*10^-3, 9.29137*10^-3, 1.42479*10^-2, -7.99541*10^-3, -4.23944*10^-3, 1.28385*10^-3, -4.18323*10^-3, 9.13826*10^-4, 1.01335*10^-2, 9.28239*10^-4, -2.46241*10^-3, 1.15421*10^-3, 6.00314*10^-4, -1.37786*10^-3, 1.00493*10^-4, 4.1121*10^-3, -1.41283*10^-3, -3.19451*10^-3, -2.61967*10^-3, -2.7896*10^-3, 5.88005*10^-4, 1.00567*10^-3, -5.48478*10^-4, -2.17545*10^-3, -9.33177*10^-4, 1.25557*10^-3, 8.94945*10^-4, 2.7542*10^-3, 3.56714*10^-3, -4.7788*10^-4, -5.12486*10^-3, -1.72815*10^-3, 2.47594*10^-3, 1.44275*10^-4, 1.48588*10^-3, 3.1345*10^-3, -7.56187*10^-4, -2.44176*10^-3, -4.33004*10^-4, 1.63421*10^-3, 4.28056*10^-4, -2.87614*10^-3, -2.42127*10^-3, 4.56407*10^-4, 1.5641*10^-3, 9.49912*10^-4, 1.08999*10^-3, 1.16118*10^-3, 1.46583*10^-4, -2.16163*10^-4, -1.27645*10^-4, -2.33796*10^-3, -8.47197*10^-4, 2.60412*10^-3, 1.65866*10^-3, -1.86258*10^-3, -1.5387*10^-3, 1.94141*10^-3, 1.36244*10^-3, -2.97423*10^-4, 1.67942*10^-4, 9.26958*10^-4, -2.14066*10^-4, -1.16884*10^-4, 6.92021*10^-4, 5.04406*10^-4, -3.35078*10^-4, 6.28932*10^-4, 9.95192*10^-4, 2.33008*10^-4, 1.0493*10^-4, 5.76404*10^-4, 7.4196*10^-4, -2.23633*10^-4, -5.01475*10^-4, 4.83903*10^-4, 5.36297*10^-4, 1.55359*10^-4, 5.6033*10^-5, 2.01717*10^-5, -4.89991*10^-5, 7.32446*10^-5, -1.40287*10^-4, -1.56736*10^-5, 5.99611*10^-5, -1.58143*10^-6, -5.35903*10^-5, -2.33977*10^-5, -4.23318*10^-6, -2.27502*10^-5, 7.261*10^-6, -3.27926*10^-6, -1.24281*10^-6, 0)); h(35,0) = fi.fir((5.40621*10^-6, 1.91853*10^-5, 1.33104*10^-4, -9.32093*10^-4, 1.94297*10^-4, -5.95943*10^-4, 2.59053*10^-3, -2.76788*10^-3, 2.10005*10^-3, -2.83878*10^-3, 6.53665*10^-3, -1.06439*10^-2, -2.64557*10^-2, 2.02633*10^-2, 3.50476*10^-2, 2.93269*10^-2, -4.17492*10^-2, -2.79913*10^-2, 2.17552*10^-2, -9.52426*10^-3, -2.7775*10^-2, -2.88177*10^-2, 4.94517*10^-2, 4.98324*10^-2, -1.54797*10^-2, -1.93369*10^-3, 4.87655*10^-3, -5.16451*10^-3, -1.44908*10^-2, -1.22021*10^-3, -3.46316*10^-3, -1.41067*10^-2, 3.84372*10^-3, 4.87331*10^-4, -1.71877*10^-3, 8.07785*10^-3, -2.49059*10^-3, -1.64291*10^-3, 1.79895*10^-3, -4.80367*10^-3, -3.04848*10^-4, -3.38744*10^-4, 3.16473*10^-3, 2.54488*10^-3, 3.88663*10^-3, 5.0693*10^-3, -1.43747*10^-3, 2.19258*10^-3, 1.72276*10^-3, 1.55049*10^-5, 1.21859*10^-3, -3.66072*10^-4, -3.84556*10^-3, -4.5419*10^-3, -1.4153*10^-3, 2.86103*10^-3, 2.72508*10^-3, 1.1049*10^-4, -8.63202*10^-4, -2.78885*10^-4, 8.0278*10^-4, -1.36552*10^-3, -8.49942*10^-4, -1.425*10^-3, -9.16682*10^-4, 6.46569*10^-4, 6.50717*10^-4, 2.05676*10^-3, 4.11961*10^-4, -6.81564*10^-4, -1.04465*10^-3, 4.06358*10^-4, -5.18251*10^-5, -3.02467*10^-3, -6.25004*10^-4, 6.71543*10^-4, -1.16373*10^-4, -5.34862*10^-4, -3.65446*10^-4, 3.93975*10^-4, 2.2775*10^-5, 1.00113*10^-3, 8.3288*10^-4, 1.15098*10^-4, 3.53773*10^-4, 2.67389*10^-4, -6.30503*10^-4, -6.6567*10^-4, 8.29062*10^-4, 1.23606*10^-3, -8.7084*10^-4, -7.16723*10^-4, 7.45042*10^-4, 5.75747*10^-4, 5.69013*10^-4, -8.98243*10^-4, -5.03005*10^-4, 5.71304*10^-4, -5.31534*10^-5, 3.29446*10^-4, 9.95788*10^-4, 1.60726*10^-4, -5.96185*10^-4, 2.12565*10^-4, 5.79142*10^-4, -2.2867*10^-4, -2.57395*10^-4, 6.56951*10^-5, 1.84131*10^-4, 2.27385*10^-4, -1.03678*10^-4, -2.96208*10^-4, 1.43947*10^-4, 1.30158*10^-4, -1.59219*10^-4, -7.53028*10^-5, -4.23704*10^-5, -4.65941*10^-5, 3.94849*10^-5, 1.10663*10^-5, -5.17859*10^-5, -3.0136*10^-5, 1.87906*10^-6, -8.87482*10^-6, -1.04529*10^-6, -1.1368*10^-7, 4.15975*10^-7, 0)); h(0,1) = fi.fir((1.96889*10^-5, 1.27139*10^-4, -1.60754*10^-4, 7.24458*10^-4, 8.40054*10^-4, 7.82518*10^-4, 6.46817*10^-4, 1.05561*10^-3, 1.07368*10^-3, 5.57527*10^-4, 2.06854*10^-3, 7.39153*10^-4, 4.89414*10^-2, 5.30012*10^-2, 4.66987*10^-2, 6.22112*10^-2, 4.39486*10^-2, 8.13459*10^-2, 4.74243*10^-2, 4.14059*10^-2, 6.97323*10^-2, 5.03806*10^-2, 1.11697*10^-1, 5.44643*10^-2, -2.12956*10^-2, 3.68012*10^-2, 4.24237*10^-2, 7.52294*10^-3, 1.23141*10^-2, 2.16826*10^-2, 1.77306*10^-2, 8.01942*10^-3, -2.93953*10^-3, 2.1074*10^-2, 2.72114*10^-2, 5.65642*10^-3, 1.05391*10^-2, 8.15985*10^-3, 6.06657*10^-3, 7.29384*10^-3, 1.45252*10^-3, 4.98629*10^-3, 1.40384*10^-2, 1.05579*10^-2, -9.20787*10^-4, 4.31154*10^-3, 8.46299*10^-3, 7.157*10^-4, 6.71666*10^-4, 4.64837*10^-3, 1.43566*10^-3, 2.09301*10^-4, 1.39635*10^-3, 2.92299*10^-3, 4.2595*10^-3, 3.9974*10^-3, 4.49754*10^-6, -6.33171*10^-4, 2.78079*10^-3, 3.80208*10^-3, 2.61221*10^-3, 3.38193*10^-3, 6.48151*10^-3, 6.72976*10^-3, 3.88011*10^-3, 2.93818*10^-3, 1.69334*10^-3, 2.81279*10^-3, 3.37264*10^-3, -3.62222*10^-4, 7.2404*10^-4, 1.98287*10^-3, 3.90875*10^-3, 5.30227*10^-3, 3.60327*10^-3, 5.38217*10^-3, 4.63264*10^-3, 2.01999*10^-3, 2.04096*10^-3, 1.44247*10^-3, 2.66924*10^-3, 1.53689*10^-3, -6.87957*10^-4, 2.51564*10^-5, 1.05509*10^-3, 1.75057*10^-3, 2.67456*10^-3, 3.65475*10^-3, 1.93882*10^-3, -8.75197*10^-4, -6.11186*10^-4, -1.7742*10^-5, -1.96204*10^-3, -2.3706*10^-3, -9.94088*10^-5, 3.35121*10^-3, 2.5739*10^-3, -4.73651*10^-4, -4.8385*10^-4, 5.9498*10^-4, 9.45038*10^-4, 1.3272*10^-3, 1.47426*10^-3, 1.84199*10^-3, 1.2236*10^-3, 1.00501*10^-3, 1.62599*10^-3, 1.30975*10^-3, 9.59789*10^-4, 7.79071*10^-4, 7.09245*10^-4, 1.03368*10^-3, 5.0422*10^-4, 4.26597*10^-4, 5.08036*10^-4, 5.02614*10^-4, 3.83524*10^-4, 1.61141*10^-4, 2.02164*10^-4, 1.95057*10^-4, 1.17308*10^-4, 5.59968*10^-5, -1.47262*10^-6, 7.39806*10^-7, 1.69708*10^-5, 7.13748*10^-6, 1.74779*10^-6, 0)); h(1,1) = fi.fir((-2.47098*10^-5, -1.5027*10^-4, 2.75169*10^-4, -8.51532*10^-4, -8.49503*10^-4, -1.07232*10^-3, -4.29699*10^-4, -4.53602*10^-4, -1.01019*10^-3, -7.2128*10^-4, -1.49621*10^-3, -6.73578*10^-4, -7.84899*10^-2, -8.29356*10^-2, -6.4767*10^-2, -7.72965*10^-2, -4.00928*10^-2, -9.77876*10^-2, -5.31961*10^-2, -8.81751*10^-3, -4.26613*10^-2, -4.13938*10^-2, -8.01361*10^-2, -9.29206*10^-4, 5.68951*10^-2, 1.0567*10^-2, 1.42102*10^-2, 2.54229*10^-2, 2.36018*10^-2, 3.30715*10^-2, 2.46582*10^-2, 1.28671*10^-2, 2.3498*10^-2, 3.02699*10^-2, 2.32959*10^-2, 1.86217*10^-2, 2.90731*10^-2, 3.33365*10^-2, 1.7693*10^-2, 1.6965*10^-2, 2.27996*10^-2, 1.60724*10^-2, 1.75694*10^-2, 1.73035*10^-2, 1.98069*10^-2, 1.70273*10^-2, 1.22635*10^-2, 1.16857*10^-2, 1.21522*10^-2, 1.66992*10^-2, 1.88991*10^-2, 1.43637*10^-2, 7.90244*10^-3, 4.68815*10^-3, 5.80003*10^-3, 7.40671*10^-3, 1.09805*10^-2, 1.10121*10^-2, 5.75489*10^-3, 5.13578*10^-3, 3.89261*10^-3, 2.04509*10^-3, 2.32849*10^-3, 3.037*10^-3, 2.27327*10^-3, 3.77902*10^-4, 1.28867*10^-3, 1.64631*10^-3, 5.42053*10^-4, 3.90025*10^-3, 4.45499*10^-3, 1.55717*10^-4, -1.88932*10^-3, -5.97807*10^-4, -9.84567*10^-4, -1.1553*10^-3, 1.7905*10^-3, 6.59942*10^-4, -2.56507*10^-3, -2.47991*10^-3, -1.74382*10^-3, -1.1313*10^-4, 1.16433*10^-3, -6.15973*10^-4, -2.12734*10^-3, -1.44013*10^-3, -7.52906*10^-4, -1.67116*10^-3, -1.61012*10^-3, 2.19727*10^-4, 1.54297*10^-4, -1.30908*10^-3, -1.27163*10^-3, -1.7169*10^-3, -2.05962*10^-3, -1.39564*10^-3, -6.9698*10^-4, -6.5036*10^-4, -7.37778*10^-4, -7.7856*10^-4, -9.6599*10^-4, -1.05724*10^-3, -6.49337*10^-4, -4.21802*10^-4, -4.06934*10^-4, -4.15784*10^-4, -2.38018*10^-5, -1.54768*10^-4, 9.12388*10^-6, 2.39084*10^-4, 2.2708*10^-4, 2.51322*10^-4, 3.68308*10^-4, 3.06277*10^-4, 1.52618*10^-5, 2.67516*10^-5, 1.18887*10^-4, 1.58936*10^-4, 1.65502*10^-4, 3.39827*10^-5, -2.50192*10^-6, 3.71676*10^-5, 7.19018*10^-5, 4.14705*10^-5, 8.50585*10^-6, 3.69732*10^-6, 1.48337*10^-6, 0)); h(2,1) = fi.fir((-1.04262*10^-5, -3.758*10^-5, -5.11234*10^-6, -2.70496*10^-4, 1.47661*10^-4, 2.31146*10^-4, -2.49192*10^-4, -1.0622*10^-3, 7.69566*10^-4, 7.08007*10^-5, -9.5017*10^-4, -2.12469*10^-4, -5.64598*10^-3, -9.76993*10^-4, -1.84861*10^-3, -1.11431*10^-2, -1.41169*10^-2, 2.58155*10^-2, -2.49322*10^-3, -4.33556*10^-2, 1.20598*10^-3, 2.2299*10^-2, 9.2729*10^-3, 2.78365*10^-3, 4.38648*10^-3, -8.63905*10^-3, 5.37327*10^-4, -1.96867*10^-2, 9.235*10^-3, 3.3864*10^-2, -4.93341*10^-3, -1.43689*10^-2, -8.98901*10^-3, 4.03937*10^-3, -1.33631*10^-3, 5.4466*10^-3, 8.84039*10^-3, -7.86783*10^-3, -1.14674*10^-2, -3.8962*10^-3, 1.08066*10^-3, 8.17955*10^-3, 6.69066*10^-3, 3.30976*10^-4, -2.63441*10^-3, -1.2261*10^-3, 1.84975*10^-4, 3.0812*10^-3, 7.96032*10^-3, 7.56406*10^-3, 4.15929*10^-3, -7.85113*10^-4, -2.29878*10^-4, 3.2282*10^-3, 4.25301*10^-3, 2.27417*10^-3, -7.83797*10^-4, -2.20639*10^-3, -1.52893*10^-3, -1.22218*10^-3, -6.80485*10^-4, 7.66541*10^-6, 2.1519*10^-3, 2.35812*10^-3, -1.34083*10^-3, -2.59829*10^-3, -1.64578*10^-3, -2.75033*10^-3, -3.16542*10^-3, -2.38017*10^-3, -1.82603*10^-3, -1.96376*10^-3, -3.06353*10^-3, -1.37004*10^-3, 1.02092*10^-3, 1.74807*10^-3, 1.39904*10^-4, -1.09607*10^-3, 8.27394*10^-4, 1.45085*10^-3, 9.06103*10^-4, 3.86788*10^-4, -2.74177*10^-5, 1.18894*10^-3, -2.16738*10^-4, -4.39841*10^-4, 2.51957*10^-3, 2.97761*10^-3, 1.73031*10^-3, 1.32805*10^-3, 2.0406*10^-3, 8.76507*10^-4, -1.13467*10^-3, -1.02503*10^-3, -3.84737*10^-4, -4.65506*10^-4, -1.52734*10^-3, -1.28149*10^-3, -4.03028*10^-4, -1.03053*10^-3, -1.20272*10^-3, -1.3616*10^-3, -1.67489*10^-3, -1.86384*10^-3, -1.36555*10^-3, -8.28266*10^-4, -1.10553*10^-3, -9.79588*10^-4, -8.55899*10^-4, -9.47718*10^-4, -7.25086*10^-4, -6.65779*10^-4, -4.86784*10^-4, -2.63489*10^-4, 1.91026*10^-5, 5.59009*10^-5, -3.48346*10^-5, -5.18512*10^-5, -7.89041*10^-7, 9.57012*10^-5, 1.22408*10^-4, 9.32295*10^-5, 3.4954*10^-5, 1.98734*10^-5, 1.89778*10^-5, 1.0045*10^-5, 1.8649*10^-6, 0)); h(3,1) = fi.fir((1.50022*10^-5, 2.32588*10^-5, 1.07706*10^-4, -6.42903*10^-5, 5.58749*10^-4, -1.97024*10^-4, 5.69647*10^-4, -5.05773*10^-4, 2.86004*10^-4, 1.27547*10^-4, 6.54334*10^-4, -2.16524*10^-4, -3.73067*10^-3, 3.3821*10^-3, -5.80219*10^-4, 1.31959*10^-2, -7.36802*10^-3, 1.5611*10^-2, 2.92041*10^-2, -4.39889*10^-3, -1.47934*10^-3, -2.15706*10^-2, 2.1176*10^-2, 1.30594*10^-2, -5.75248*10^-2, -6.0285*10^-3, 5.37481*10^-2, -1.44425*10^-3, -3.91217*10^-2, -9.24877*10^-3, 2.43674*10^-2, 1.15422*10^-2, -2.86455*10^-2, -1.31834*10^-2, 1.25606*10^-2, -4.59738*10^-3, -7.3186*10^-3, -1.5759*10^-3, 1.27378*10^-3, 8.42323*10^-3, -4.34699*10^-3, -1.06382*10^-2, 2.22904*10^-3, 1.10775*10^-2, 2.87069*10^-3, -1.39329*10^-3, 6.15266*10^-3, 1.19972*10^-3, -4.37394*10^-3, 2.01686*10^-3, 4.86999*10^-3, 2.07781*10^-3, 1.78551*10^-4, 1.19525*10^-3, 3.85171*10^-5, 2.21504*10^-3, 3.54482*10^-3, 1.11368*10^-3, 4.08736*10^-4, 7.01284*10^-4, -1.6638*10^-3, -3.83124*10^-3, 1.02589*10^-3, 3.90744*10^-3, 1.21048*10^-3, -4.4511*10^-4, -5.0954*10^-4, -1.10707*10^-3, -2.33558*10^-3, -2.93582*10^-3, -1.81733*10^-3, -1.37873*10^-3, -1.03864*10^-3, -5.9075*10^-4, -1.90491*10^-3, -2.29879*10^-3, -1.00318*10^-3, -1.29805*10^-3, -1.24602*10^-3, -1.10995*10^-3, -1.13996*10^-3, -2.86675*10^-3, -2.73074*10^-3, -1.6274*10^-4, 1.09229*10^-3, 1.50447*10^-3, 2.32615*10^-3, 4.06262*10^-3, 1.98173*10^-3, -1.70804*10^-3, -1.377*10^-3, 1.67907*10^-3, 6.59975*10^-4, -2.28615*10^-3, -1.45302*10^-3, 2.75175*10^-3, 3.73392*10^-3, -4.09495*10^-4, -2.77688*10^-3, -1.30731*10^-3, -5.98906*10^-4, -7.39556*10^-4, -9.1664*10^-4, -6.40613*10^-4, -2.31076*10^-4, -8.29505*10^-4, -8.1294*10^-4, -6.43591*10^-4, -8.06327*10^-4, -7.023*10^-4, -5.28145*10^-4, 1.15798*10^-4, 5.66913*10^-5, -2.80439*10^-4, -2.93776*10^-4, -7.43292*10^-5, 1.16979*10^-4, 3.24905*10^-5, 4.2207*10^-5, 9.86781*10^-5, 1.19185*10^-4, 5.53096*10^-5, 5.56606*10^-6, 8.76003*10^-6, 5.14829*10^-6, 3.31876*10^-6, 1.41881*10^-6, 0)); h(4,1) = fi.fir((-1.28837*10^-5, -2.2571*10^-6, -2.04336*10^-4, 2.89394*10^-4, -4.36107*10^-4, 6.24781*10^-4, -1.14682*10^-3, 1.49292*10^-3, -3.32498*10^-4, -6.40174*10^-5, -6.58512*10^-4, 1.08131*10^-3, 6.14859*10^-3, -5.05303*10^-3, 1.07937*10^-3, -2.58357*10^-2, 1.25871*10^-2, -1.94256*10^-2, -4.44767*10^-2, 1.82515*10^-2, 9.20931*10^-3, 3.15938*10^-2, -6.57556*10^-3, 4.78233*10^-3, 4.80442*10^-2, 3.87811*10^-3, -1.73968*10^-2, -6.6563*10^-3, 9.46403*10^-3, 2.72256*10^-2, 8.70882*10^-4, -2.68658*10^-2, -2.20283*10^-3, 1.70789*10^-2, 5.82195*10^-3, -8.75734*10^-3, -8.55455*10^-3, -7.84948*10^-4, -2.16257*10^-3, -1.07364*10^-2, -6.62343*10^-3, -1.64357*10^-3, 6.85873*10^-3, 3.47187*10^-3, -4.75943*10^-3, -7.34871*10^-3, -4.17985*10^-3, 9.96385*10^-4, 1.68163*10^-3, -4.09446*10^-3, -4.8163*10^-3, 1.88691*10^-3, -4.69171*10^-4, 1.07755*10^-3, 2.62109*10^-3, 2.26215*10^-3, 2.44952*10^-3, -1.30377*10^-3, -3.75098*10^-3, -4.28571*10^-3, -5.1085*10^-4, 2.00028*10^-3, -1.22741*10^-3, 4.00218*10^-4, 9.80719*10^-4, -1.75864*10^-4, 1.75755*10^-4, 9.29631*10^-4, -1.62845*10^-4, 2.34556*10^-4, 3.21454*10^-3, 1.71149*10^-3, -2.60035*10^-4, -1.96968*10^-4, 3.34401*10^-4, -7.62874*10^-4, -9.81886*10^-4, 4.16359*10^-4, -4.26477*10^-4, 1.09789*10^-3, 1.54485*10^-3, 7.30135*10^-4, 1.21663*10^-3, -3.94495*10^-4, 1.2959*10^-4, 1.03707*10^-4, -9.91956*10^-4, -3.0826*10^-4, -8.45419*10^-4, 4.44119*10^-5, 1.00478*10^-3, 1.18167*10^-3, 6.50443*10^-4, -1.2369*10^-3, -1.24727*10^-3, -1.81872*10^-4, 3.26622*10^-4, 4.47982*10^-4, 5.50446*10^-4, -5.50101*10^-5, 1.1103*10^-4, 1.36011*10^-4, -1.81368*10^-4, 2.28636*10^-4, 2.99965*10^-5, -3.51923*10^-4, -3.3669*10^-4, -6.18528*10^-5, 1.54268*10^-4, 4.63668*10^-5, -7.42483*10^-5, -4.85157*10^-5, -8.10968*10^-5, -4.24054*10^-5, -3.68663*10^-5, -5.55517*10^-5, -8.65485*10^-5, -2.59414*10^-5, 2.23151*10^-5, -3.59181*10^-5, -6.33178*10^-5, -4.06072*10^-5, 8.17412*10^-6, 6.14464*10^-6, -3.26217*10^-6, -3.52551*10^-6, -4.87449*10^-7, 0)); h(5,1) = fi.fir((-1.24137*10^-5, -3.47005*10^-5, -2.05885*10^-4, 1.48373*10^-4, -6.74882*10^-4, -7.85914*10^-4, -5.57107*10^-4, 8.44402*10^-4, -1.92172*10^-3, -4.63656*10^-4, 4.82542*10^-4, -3.39503*10^-4, 1.11489*10^-2, 1.39284*10^-3, -3.28332*10^-3, 1.5908*10^-2, 1.68941*10^-2, -3.51254*10^-2, -8.21635*10^-4, 3.68006*10^-2, -7.9993*10^-3, -2.63323*10^-2, -1.61706*10^-2, 2.06245*10^-3, 3.41205*10^-3, 2.43489*10^-3, -2.87375*10^-3, 1.57848*10^-2, -1.0152*10^-3, -1.10397*10^-2, -8.01492*10^-3, -2.2649*10^-3, 1.35094*10^-2, -7.53143*10^-3, -4.96896*10^-3, 5.08388*10^-3, -2.06598*10^-3, -2.20457*10^-4, -3.20157*10^-4, -3.80796*10^-3, -2.63921*10^-3, -2.41141*10^-3, -3.07881*10^-3, 1.14676*10^-3, 7.22064*10^-3, -1.18978*10^-3, -2.66146*10^-3, 1.48231*10^-4, 5.31922*10^-4, -1.93302*10^-3, -1.77042*10^-3, 1.86255*10^-3, 1.40911*10^-3, 1.55444*10^-3, -1.58308*10^-3, -1.56606*10^-3, 3.45985*10^-3, 3.40823*10^-3, 1.78537*10^-3, 5.75071*10^-4, 1.3802*10^-3, 1.32278*10^-3, -1.15249*10^-3, 5.03369*10^-4, 3.3735*10^-4, -5.63033*10^-5, 1.06162*10^-3, -5.44179*10^-4, 7.3547*10^-5, 3.65462*10^-3, 2.67881*10^-3, 6.37521*10^-4, 7.69439*10^-4, -3.47477*10^-4, -1.91797*10^-3, -1.7979*10^-3, 7.51019*10^-5, -1.76065*10^-5, -1.39395*10^-3, 2.275*10^-4, 9.19819*10^-4, 2.07868*10^-3, 2.80241*10^-3, -5.83562*10^-4, -2.58332*10^-3, -2.39031*10^-3, -3.1734*10^-3, -2.73144*10^-3, -1.31188*10^-3, -5.83876*10^-4, -9.65501*10^-4, -7.85101*10^-4, 2.76682*10^-4, -6.82499*10^-4, -1.49796*10^-3, -3.28942*10^-3, -3.08618*10^-3, -1.06711*10^-3, -1.19415*10^-3, -1.22034*10^-3, -6.1493*10^-4, -5.42423*10^-4, -5.71456*10^-4, -1.21467*10^-3, -9.64846*10^-4, -7.1455*10^-4, -9.23679*10^-4, -2.72771*10^-4, -3.95822*10^-4, -3.19031*10^-4, 4.16914*10^-5, -2.42675*10^-4, -2.58434*10^-5, -3.62927*10^-5, -6.50093*10^-5, -7.65374*10^-5, -1.5924*10^-4, 4.49009*10^-5, 1.26739*10^-5, -2.91374*10^-5, 1.32206*10^-5, 7.22764*10^-6, 2.05057*10^-5, 3.47604*10^-8, -1.32724*10^-5, -5.71049*10^-6, 7.21156*10^-7, 0)); h(6,1) = fi.fir((-4.94134*10^-6, -2.03832*10^-5, 1.5575*10^-4, -5.70227*10^-5, -2.26502*10^-4, -1.75224*10^-4, 2.01359*10^-4, 2.31249*10^-4, -6.155*10^-5, -2.72913*10^-4, 3.58363*10^-4, -2.11776*10^-3, -4.22768*10^-2, -4.44816*10^-2, -1.93023*10^-2, -2.74978*10^-2, 5.26948*10^-3, -1.55901*10^-2, -1.26207*10^-2, 4.52021*10^-2, 3.7277*10^-3, 6.97526*10^-3, 3.4926*10^-2, 3.20497*10^-4, 2.01536*10^-2, 4.16384*10^-2, 9.92074*10^-3, 1.52545*10^-2, 1.63858*10^-2, 9.39652*10^-3, 1.39764*10^-2, -6.03544*10^-4, 2.95888*10^-3, 1.07584*10^-2, 4.11948*10^-3, -4.57394*10^-3, -5.18584*10^-5, 8.67053*10^-3, -8.19709*10^-4, -2.71496*10^-3, 1.57178*10^-3, -6.04226*10^-3, -7.573*10^-3, -4.97027*10^-3, -7.72571*10^-3, -5.40122*10^-3, -6.65008*10^-4, -5.13181*10^-3, -8.61829*10^-3, -6.1875*10^-3, -5.86852*10^-3, -6.90397*10^-3, -1.97319*10^-3, -1.10637*10^-3, -4.40538*10^-3, -5.0915*10^-3, -4.60066*10^-3, -3.75105*10^-3, -2.02713*10^-3, 6.34135*10^-4, 1.52519*10^-3, 2.16723*10^-4, -1.90415*10^-3, -6.41773*10^-4, 2.93369*10^-3, 3.06934*10^-3, 1.61143*10^-3, 1.11467*10^-5, -2.91699*10^-3, -1.18198*10^-3, 1.59566*10^-3, 8.02869*10^-5, -1.45224*10^-4, -6.72323*10^-4, -3.35524*10^-3, -1.299*10^-3, 3.48142*10^-4, -3.64334*10^-4, -1.40716*10^-3, -1.33269*10^-3, 9.54181*10^-4, 9.4944*10^-5, -4.90638*10^-4, 7.64064*10^-4, 5.15169*10^-4, 7.1971*10^-5, -8.4653*10^-4, -1.24543*10^-3, -3.70598*10^-4, -3.16498*10^-4, 1.01923*10^-3, 4.93628*10^-4, -1.99826*10^-4, 6.54404*10^-4, 1.59738*10^-4, -1.38876*10^-4, -9.65849*10^-4, -1.78013*10^-4, 1.5065*10^-3, 1.03462*10^-3, 1.02185*10^-4, 1.1025*10^-6, 4.21365*10^-5, -7.97753*10^-5, -3.24792*10^-5, 4.138*10^-4, 6.18073*10^-4, 5.01459*10^-4, 1.29941*10^-4, 1.6541*10^-4, 2.58758*10^-4, 2.1505*10^-5, -1.01844*10^-4, -1.3697*10^-4, -1.05237*10^-4, -5.84711*10^-5, -3.22237*10^-5, -1.69802*10^-5, -1.41509*10^-5, -3.28963*10^-6, -6.86851*10^-5, -5.10851*10^-5, -1.1654*10^-5, -8.49295*10^-6, -7.91252*10^-6, -5.39788*10^-6, 6.59979*10^-8, 0)); h(7,1) = fi.fir((5.35095*10^-6, 2.00819*10^-5, 5.19844*10^-6, -7.49829*10^-5, 1.29621*10^-4, -1.15039*10^-4, -6.50134*10^-5, 3.0013*10^-4, 2.5865*10^-4, -6.40087*10^-4, 5.0859*10^-4, 3.59551*10^-4, -3.63038*10^-4, -1.45427*10^-3, 4.7379*10^-4, 2.51299*10^-4, -3.96484*10^-3, 2.63627*10^-4, -8.43745*10^-3, 1.06017*10^-2, 1.69305*10^-2, -1.39511*10^-2, -1.44406*10^-2, 2.84124*10^-2, -9.65604*10^-3, -2.92933*10^-2, 3.6199*10^-2, -7.86339*10^-3, -9.22201*10^-3, 6.88345*10^-3, -1.165*10^-2, -6.39689*10^-3, 1.92933*10^-2, 1.91555*10^-2, -2.706*10^-2, 9.63596*10^-3, 1.77702*10^-2, -1.58301*10^-2, 1.1423*10^-3, 9.42445*10^-3, -1.5727*10^-3, -6.58114*10^-3, -3.85272*10^-4, -3.49277*10^-3, -4.28385*10^-3, 6.45499*10^-3, -2.64027*10^-3, -5.6145*10^-3, -2.88651*10^-3, -3.92757*10^-3, -5.57668*10^-3, -8.64361*10^-4, 5.74359*10^-3, -1.64622*10^-3, -1.13243*10^-3, -2.56907*10^-5, 7.75016*10^-4, 4.28737*10^-4, -8.0034*10^-4, 3.94994*10^-3, 2.92619*10^-3, 4.54632*10^-4, 1.29704*10^-3, 1.50553*10^-3, 2.81043*10^-3, 8.97913*10^-4, -5.88187*10^-4, 7.43556*10^-4, 2.4844*10^-3, 1.3638*10^-3, -1.86575*10^-3, -2.4288*10^-4, 2.03837*10^-3, 1.71093*10^-3, -2.18125*10^-3, -2.84821*10^-3, 1.03257*10^-4, -1.72719*10^-4, -5.61862*10^-4, -1.77178*10^-3, -2.57691*10^-3, -1.07323*10^-3, -3.158*10^-4, 5.08309*10^-4, -3.59207*10^-4, -1.61329*10^-3, -9.08412*10^-4, -1.17327*10^-3, -2.0847*10^-4, 5.59696*10^-4, -1.71772*10^-4, 1.92954*10^-4, 1.25953*10^-3, 1.1231*10^-3, -2.0233*10^-4, -1.22724*10^-3, -1.68486*10^-4, 1.22649*10^-3, 9.2775*10^-4, 9.54727*10^-4, 1.00476*10^-3, 1.19575*10^-3, 6.38058*10^-4, -1.98384*10^-4, 3.62151*10^-4, 5.23747*10^-4, 2.33961*10^-4, -1.93746*10^-4, 1.0191*10^-5, 3.40968*10^-4, 9.64443*10^-5, -3.49096*10^-4, -2.5527*10^-4, -8.33186*10^-5, -1.33871*10^-5, -2.28995*10^-5, -9.74875*10^-5, -1.36371*10^-4, -1.6574*10^-4, -1.1763*10^-4, -5.28142*10^-5, -1.94034*10^-6, -4.96364*10^-6, -1.68386*10^-5, -7.7027*10^-6, 3.30668*10^-6, 1.57539*10^-7, 0)); h(8,1) = fi.fir((-1.32874*10^-5, -6.44951*10^-5, 3.14378*10^-4, -4.0926*10^-4, -1.25892*10^-4, -6.34386*10^-4, 4.74467*10^-4, 1.04719*10^-3, -1.10016*10^-4, -9.76536*10^-4, -9.4869*10^-5, -1.38136*10^-3, -7.44374*10^-2, -7.68453*10^-2, -4.83192*10^-2, -2.87878*10^-2, 1.08471*10^-2, -4.59645*10^-2, -1.53902*10^-2, 5.40471*10^-2, 4.90934*10^-2, 4.67726*10^-4, -9.30466*10^-4, 7.54126*10^-2, 6.34564*10^-2, 2.87948*10^-2, 4.21412*10^-2, 2.46212*10^-2, 5.61861*10^-3, 3.29321*10^-2, 4.143*10^-2, 9.4423*10^-3, -9.53651*10^-3, 7.1496*10^-3, 4.36247*10^-3, -6.09081*10^-3, 1.4331*10^-3, -4.89087*10^-3, -9.05307*10^-3, -2.63838*10^-3, -8.08286*10^-3, -2.24651*10^-2, -1.05223*10^-2, -2.14593*10^-3, -1.4119*10^-2, -1.30982*10^-2, -6.31691*10^-3, -9.37013*10^-3, -1.03953*10^-2, -3.33511*10^-3, -2.92244*10^-3, -9.20974*10^-3, -4.32975*10^-3, -2.65571*10^-3, -6.26758*10^-3, -4.59766*10^-3, -2.35631*10^-3, -3.48053*10^-3, -4.89879*10^-3, -1.65106*10^-3, -4.49678*10^-4, -1.67732*10^-3, -3.27984*10^-3, -2.45323*10^-3, -9.06947*10^-4, 2.22449*10^-3, 6.56153*10^-3, 6.37634*10^-3, 3.79148*10^-3, 4.72803*10^-3, 4.46647*10^-3, 2.50567*10^-3, 1.30425*10^-3, -2.74135*10^-4, -9.08465*10^-4, -7.12925*10^-4, 1.05*10^-3, 1.86927*10^-3, -2.08903*10^-4, 1.29173*10^-4, 6.41628*10^-4, -3.80057*10^-4, -1.12458*10^-3, -2.37411*10^-3, -1.52554*10^-3, -9.76026*10^-4, -3.10688*10^-4, 9.91772*10^-5, -1.84137*10^-3, -3.16413*10^-3, -1.87875*10^-3, 2.75005*10^-4, -8.87071*10^-4, -2.89758*10^-3, -1.33293*10^-3, 2.02051*10^-3, 2.2768*10^-3, -2.86928*10^-4, -1.55106*10^-3, -1.00915*10^-3, -1.52135*10^-4, 3.3373*10^-5, -2.3814*10^-4, 1.25112*10^-5, 1.09994*10^-4, -4.83405*10^-4, -7.05638*10^-4, -1.58107*10^-4, -9.45697*10^-5, -1.01428*10^-4, -5.72348*10^-5, -3.46081*10^-5, -1.18083*10^-4, -1.95522*10^-4, -2.27988*10^-4, -1.80181*10^-4, -1.06835*10^-4, -4.27783*10^-5, -6.29344*10^-5, -4.93226*10^-5, 2.95878*10^-5, 5.78253*10^-6, -6.19357*10^-7, 1.08966*10^-5, 1.07578*10^-6, -9.86646*10^-7, 1.03369*10^-6, 0)); h(9,1) = fi.fir((1.89155*10^-5, 2.95993*10^-5, -3.15406*10^-4, 7.65605*10^-5, 6.27826*10^-5, 5.32984*10^-4, -9.56498*10^-4, -9.20231*10^-4, 2.08207*10^-5, 1.26033*10^-3, -5.44776*10^-4, 5.12142*10^-3, 6.08886*10^-2, 6.03767*10^-2, 2.75179*10^-2, -2.7306*10^-2, -5.55369*10^-2, -1.95357*10^-3, -2.2666*10^-2, -6.61857*10^-2, -6.39153*10^-2, -6.85298*10^-3, 9.12445*10^-3, -2.57435*10^-2, -2.79132*10^-2, 7.34391*10^-3, 2.42892*10^-2, 1.34953*10^-2, 2.09338*10^-2, 2.37538*10^-2, 2.86742*10^-3, -1.72568*10^-3, 2.57452*10^-2, 2.77789*10^-2, 1.97598*10^-2, 6.38856*10^-3, 3.11321*10^-3, 1.34784*10^-2, 1.89657*10^-2, 2.89754*10^-3, -7.89563*10^-3, 2.89646*10^-3, -3.62881*10^-3, -1.62506*10^-2, -9.76483*10^-3, -4.98942*10^-3, -3.17079*10^-3, -4.25409*10^-3, -8.17591*10^-3, -4.43077*10^-3, -4.5752*10^-3, -6.63702*10^-3, -4.71875*10^-3, 7.84338*10^-4, 1.99607*10^-3, 5.14009*10^-4, -2.8681*10^-3, -3.58773*10^-3, 1.93199*10^-3, 2.63347*10^-3, -2.04118*10^-3, -2.91838*10^-3, -3.9613*10^-4, 1.2512*10^-3, 1.0393*10^-3, -1.89639*10^-4, -8.28256*10^-4, 8.31506*10^-4, 1.59933*10^-3, 1.19016*10^-3, 1.65305*10^-3, 2.22115*10^-3, 1.54955*10^-3, -1.21165*10^-4, -6.7648*10^-4, -1.43391*10^-3, -2.69454*10^-3, -2.6293*10^-3, -2.55959*10^-4, 8.54822*10^-4, 1.2425*10^-3, 2.70886*10^-3, 2.73936*10^-3, -2.15316*10^-5, 7.82466*10^-5, 8.16548*10^-4, -6.64108*10^-4, -9.37912*10^-4, -7.63589*10^-4, -7.52537*10^-4, 2.7312*10^-4, 2.83557*10^-3, 1.2796*10^-3, -2.09591*10^-3, -1.74195*10^-3, -6.81458*10^-4, -7.55823*10^-4, -1.04411*10^-3, -3.70958*10^-4, -7.35482*10^-5, -8.31871*10^-5, 2.83063*10^-4, 3.42585*10^-6, 3.99315*10^-4, 4.68411*10^-4, -4.05334*10^-4, -9.18478*10^-5, 3.19806*10^-4, 3.63852*10^-6, -1.56105*10^-4, 3.77477*10^-4, 6.44241*10^-4, 2.40259*10^-4, 5.68899*10^-5, 1.95567*10^-4, 2.3654*10^-4, 5.73293*10^-5, -4.46169*10^-5, 3.27635*10^-5, 8.1741*10^-6, -7.06224*10^-5, -6.81354*10^-5, -1.28596*10^-5, 9.30078*10^-6, -2.34088*10^-6, -3.51464*10^-6, -9.12964*10^-7, 0)); h(10,1) = fi.fir((-6.90525*10^-6, 1.26895*10^-5, -5.07632*10^-5, -4.25921*10^-6, -3.06084*10^-4, 4.47309*10^-4, -3.00497*10^-4, -4.6817*10^-5, -3.16584*10^-4, 9.80811*10^-4, -8.46133*10^-4, 1.18111*10^-4, 1.25948*10^-4, 2.18183*10^-3, 1.23416*10^-3, -2.23481*10^-3, 3.35082*10^-3, 2.03881*10^-3, 1.09137*10^-2, -2.20259*10^-2, -1.52245*10^-2, 1.7673*10^-2, 5.61989*10^-3, -6.93778*10^-3, 1.84808*10^-2, 2.02873*10^-3, -2.89144*10^-2, 1.34849*10^-2, -4.98675*10^-3, -8.08788*10^-4, 6.34478*10^-3, -5.37065*10^-3, 1.59773*10^-3, -1.19074*10^-2, 1.07473*10^-2, 8.68801*10^-3, -3.46914*10^-3, 6.51347*10^-3, -4.53393*10^-3, -2.97135*10^-3, 4.54128*10^-3, 5.84137*10^-3, -8.06327*10^-3, -3.951*10^-3, 4.98626*10^-3, -5.49752*10^-3, -3.58275*10^-3, -1.26195*10^-3, 4.02261*10^-3, 3.13502*10^-3, 3.09385*10^-3, 2.60939*10^-3, -3.81199*10^-3, 1.51906*10^-4, 1.56251*10^-3, -3.34453*10^-3, -4.42281*10^-3, -2.53939*10^-3, 9.56534*10^-5, 1.01213*10^-3, 2.70927*10^-3, 2.06534*10^-3, 6.16297*10^-4, -6.01002*10^-5, -1.19671*10^-3, -2.03118*10^-3, -1.08711*10^-3, 1.66844*10^-4, -1.25626*10^-3, 3.3741*10^-4, 4.30616*10^-4, -2.24925*10^-4, -2.74129*10^-5, -1.36514*10^-3, -7.57852*10^-5, -1.05727*10^-3, -7.65697*10^-4, 2.26067*10^-4, -8.45473*10^-4, 6.30502*10^-4, -1.94535*10^-5, 2.29648*10^-3, 3.34238*10^-3, 2.9935*10^-4, -1.38639*10^-3, -1.57817*10^-3, -1.97515*10^-4, 7.65762*10^-5, 1.22317*10^-3, 1.36599*10^-3, 4.53566*10^-4, 4.79237*10^-4, 4.35133*10^-4, 1.47025*10^-3, 1.32148*10^-3, -5.42254*10^-4, -1.71888*10^-3, -7.11998*10^-4, 7.2084*10^-4, 2.83247*10^-4, 4.17124*10^-4, 1.35894*10^-4, 2.56366*10^-5, 3.17986*10^-4, -1.74273*10^-4, -4.09525*10^-4, -3.57221*10^-4, 1.3044*10^-4, 2.16033*10^-4, -1.74119*10^-4, -9.33864*10^-5, -6.39853*10^-5, 2.48682*10^-7, 1.336*10^-4, 6.72119*10^-5, -5.60343*10^-5, -1.84328*10^-4, -5.21864*10^-5, 1.34827*10^-5, -3.15558*10^-5, -5.19876*10^-5, -1.81582*10^-5, -8.97496*10^-6, -8.25901*10^-6, 2.4814*10^-6, -3.23644*10^-6, -6.2718*10^-7, 0)); h(11,1) = fi.fir((1.31127*10^-5, -7.38879*10^-6, -1.51989*10^-4, -9.11027*10^-7, 1.939*10^-4, -1.71535*10^-4, -3.22858*10^-4, -2.43654*10^-4, -7.13603*10^-4, 1.11514*10^-3, -6.76222*10^-4, 5.17239*10^-3, 4.60809*10^-2, 4.83216*10^-2, 2.76563*10^-3, -9.17066*10^-4, -3.72107*10^-2, -2.72916*10^-2, -8.20955*10^-4, -6.29913*10^-2, -3.16397*10^-2, -8.77745*10^-3, -2.40856*10^-2, 1.44447*10^-2, 9.33732*10^-4, 5.63275*10^-3, 1.06274*10^-2, -1.33066*10^-2, 3.86248*10^-2, 3.09151*10^-2, -1.0519*10^-2, 3.94804*10^-3, 6.26552*10^-3, 7.84534*10^-3, 1.42782*10^-2, 1.04436*10^-2, 5.34952*10^-3, 9.61553*10^-3, 3.047*10^-3, -2.08251*10^-3, -3.13446*10^-3, 2.02925*10^-3, 4.09361*10^-3, -8.99273*10^-3, -9.42078*10^-3, -2.95204*10^-3, -5.66593*10^-3, -2.00101*10^-3, 6.04909*10^-4, -2.58112*10^-3, -7.69069*10^-3, -8.8627*10^-3, -2.71579*10^-3, -1.69048*10^-3, 1.27175*10^-3, 2.10741*10^-3, -1.56026*10^-3, -2.06903*10^-3, 3.39129*10^-4, -1.18608*10^-3, -1.44718*10^-3, 5.25487*10^-4, -7.11836*10^-5, -9.09094*10^-5, 1.00984*10^-3, 1.69188*10^-3, 1.24293*10^-3, 1.95065*10^-3, 1.83846*10^-3, -1.20529*10^-3, -1.79294*10^-4, 1.8129*10^-3, 1.6884*10^-3, 1.29178*10^-3, 1.39515*10^-3, 1.86454*10^-3, 5.84763*10^-4, -4.84253*10^-4, -8.55611*10^-4, -1.05795*10^-5, 9.96855*10^-4, 3.25346*10^-4, -6.64306*10^-4, -1.05405*10^-3, -4.536*10^-4, 1.4791*10^-4, 5.086*10^-4, 2.10854*10^-3, 1.27291*10^-3, -6.48676*10^-4, -1.05839*10^-3, -1.69906*10^-3, -7.04934*10^-4, -7.45014*10^-5, -5.81171*10^-4, -5.98512*10^-4, -8.77149*10^-4, -6.51168*10^-4, 1.60366*10^-4, 3.21589*10^-4, -1.30289*10^-4, -7.37136*10^-4, -2.81437*10^-4, 6.96143*10^-5, -2.91548*10^-4, 4.27083*10^-5, 3.01242*10^-4, 8.81382*10^-5, 2.94159*10^-4, 3.12487*10^-4, 4.50719*10^-5, 8.06952*10^-5, 2.48997*10^-4, 2.96876*10^-4, 3.83697*10^-5, 2.30441*10^-5, 4.60206*10^-5, 7.06061*10^-5, 8.15635*10^-5, -1.90061*10^-5, -4.67294*10^-5, -2.15894*10^-5, -2.22245*10^-6, -2.14215*10^-5, -1.5791*10^-5, -5.21215*10^-6, -7.49018*10^-7, 0)); h(12,1) = fi.fir((3.27738*10^-6, -1.98933*10^-5, -2.24377*10^-4, 2.36034*10^-4, 2.31547*10^-4, -5.44781*10^-4, -4.39775*10^-4, 7.9964*10^-4, -5.44421*10^-4, -3.37965*10^-5, 2.37477*10^-4, -2.99193*10^-5, 1.06573*10^-2, 3.5753*10^-3, -1.67824*10^-2, 5.96581*10^-3, 2.30173*10^-2, -3.42189*10^-3, -2.06794*10^-2, -1.60074*10^-2, -1.01068*10^-2, -1.35014*10^-2, 4.19631*10^-2, 1.80855*10^-2, -3.55257*10^-2, -2.71591*10^-3, -2.44034*10^-3, 1.2678*10^-2, 1.4909*10^-2, 7.08753*10^-3, -4.76206*10^-3, -7.64567*10^-3, -5.58608*10^-3, -8.15685*10^-3, 1.47137*10^-2, 7.96626*10^-3, -9.86967*10^-3, -8.58863*10^-3, 3.25646*10^-3, 6.15977*10^-3, -4.3833*10^-3, -3.48297*10^-3, 3.04111*10^-3, -1.31719*10^-3, -5.34971*10^-3, -1.47622*10^-3, 5.53479*10^-3, 4.46569*10^-3, 2.13182*10^-3, -9.42707*10^-4, -3.93236*10^-3, -1.68373*10^-3, -3.28718*10^-4, -8.94931*10^-5, 1.94062*10^-3, 1.68114*10^-3, -1.41673*10^-3, -1.68419*10^-3, 3.99343*10^-4, 2.06966*10^-3, 3.69514*10^-4, 2.53042*10^-4, 9.77515*10^-4, -9.12804*10^-4, 2.74873*10^-4, 2.26848*10^-3, 2.31892*10^-3, 2.21365*10^-3, 1.92945*10^-4, 1.38286*10^-3, 2.26825*10^-3, 2.44418*10^-4, -1.87271*10^-3, -3.17289*10^-3, -1.20738*10^-3, -3.89164*10^-5, -7.16831*10^-4, 6.07349*10^-5, -3.01523*10^-5, -4.14409*10^-4, -7.53958*10^-6, -1.12029*10^-3, -1.67158*10^-3, -2.92629*10^-3, -2.39894*10^-3, -5.27782*10^-4, -4.24545*10^-4, -4.0871*10^-4, -2.2978*10^-4, -1.79398*10^-5, 2.39355*10^-4, 1.05812*10^-3, 1.0682*10^-3, -7.58498*10^-4, -1.48937*10^-3, 1.16086*10^-4, 9.87828*10^-4, 8.07473*10^-4, 1.16715*10^-3, 1.13736*10^-3, 4.94459*10^-4, 6.39692*10^-4, 5.38982*10^-4, 1.16257*10^-4, 9.32166*10^-5, 2.36701*10^-4, 4.55971*10^-4, 2.23411*10^-4, 2.12529*10^-4, 3.92538*10^-4, 2.09402*10^-4, 3.10328*10^-4, 1.32193*10^-4, -3.69908*10^-5, -2.28937*10^-5, 5.66962*10^-5, -6.23196*10^-5, -1.05953*10^-4, -1.37302*10^-5, -3.09197*10^-5, -1.28753*10^-5, 8.30434*10^-6, 2.78378*10^-6, -1.26402*10^-5, -1.02932*10^-5, -5.80166*10^-6, -7.71071*10^-7, 0)); h(13,1) = fi.fir((-3.30557*10^-6, 6.58295*10^-6, -4.13336*10^-5, 1.34953*10^-4, -2.3944*10^-4, 1.23429*10^-4, 3.54764*10^-5, 4.38524*10^-4, -4.46457*10^-4, -2.14162*10^-4, 5.94639*10^-4, 1.50709*10^-4, 1.21477*10^-3, -1.43594*10^-3, 2.24066*10^-3, -6.86843*10^-3, 6.84583*10^-4, -1.26404*10^-2, -6.24609*10^-3, 3.23072*10^-2, -9.08867*10^-3, -6.55955*10^-3, 7.42411*10^-3, -3.31393*10^-3, 2.51271*10^-2, 3.7619*10^-4, -2.98252*10^-2, -3.17145*10^-3, 4.79751*10^-3, 1.06036*10^-2, -3.05803*10^-3, -2.0928*10^-2, 1.30206*10^-3, 3.34124*10^-3, 5.98066*10^-3, -1.39712*10^-3, -1.31632*10^-3, 7.16025*10^-3, -7.59216*10^-3, -1.46599*10^-3, 9.55154*10^-3, 5.51641*10^-3, 5.55038*10^-3, 1.23226*10^-3, -4.43409*10^-3, -3.08075*10^-3, 2.40414*10^-3, 2.82354*10^-3, 4.00457*10^-3, 4.7209*10^-3, 8.29111*10^-4, -1.01166*10^-3, -2.57823*10^-3, -1.06278*10^-3, -2.22912*10^-3, -7.95623*10^-4, -7.00189*10^-4, -5.04316*10^-3, -4.18949*10^-3, -2.82809*10^-3, -3.14607*10^-3, -1.21634*10^-3, 6.43135*10^-4, 1.04922*10^-3, 1.33325*10^-4, 1.07997*10^-3, 2.31148*10^-3, 2.65451*10^-3, 1.06408*10^-3, -2.35539*10^-3, -1.14272*10^-4, 3.38497*10^-3, 3.28831*10^-3, 1.71971*10^-4, -3.2057*10^-4, 2.10505*10^-3, -2.96216*10^-4, -2.75839*10^-3, -1.1997*10^-3, 3.46228*10^-4, 1.58192*10^-3, -4.43774*10^-4, -3.29516*10^-3, -1.99081*10^-3, -6.43004*10^-4, -4.21855*10^-4, -9.60012*10^-4, 2.76212*10^-4, 5.72913*10^-4, -1.6863*10^-3, -1.26468*10^-3, -6.3397*10^-4, -3.99078*10^-5, 2.67905*10^-4, 4.92812*10^-5, 6.181*10^-4, 2.44744*10^-4, 4.59707*10^-4, 1.2123*10^-3, 5.20144*10^-4, -5.09173*10^-4, -8.19063*10^-5, 4.93395*10^-4, 2.53793*10^-4, 4.26232*10^-4, 5.82041*10^-4, 4.40844*10^-4, 5.71553*10^-4, 1.36777*10^-4, 9.34823*10^-5, 3.39887*10^-4, 2.97869*10^-4, 2.58727*10^-4, 1.03477*10^-4, 1.28055*10^-4, -1.21549*10^-5, -4.28586*10^-5, 3.3221*10^-5, 2.93676*10^-5, 5.60649*10^-5, -3.26185*10^-5, -5.6678*10^-5, -1.49079*10^-5, -4.80575*10^-6, -7.10373*10^-6, -6.55232*10^-6, -1.24034*10^-6, 0)); h(14,1) = fi.fir((3.51439*10^-7, 2.87613*10^-6, -1.45798*10^-4, 9.0752*10^-5, -6.11966*10^-4, -2.45544*10^-4, -2.21059*10^-4, 5.94499*10^-4, -1.25521*10^-3, 3.12022*10^-4, 4.25134*10^-4, -8.48038*10^-4, 1.33545*10^-2, 1.14058*10^-3, -4.88234*10^-3, 9.19814*10^-3, -6.27052*10^-3, -2.14937*10^-2, 1.23386*10^-2, 8.03106*10^-3, -1.64583*10^-2, -1.01589*10^-2, -2.09074*10^-2, 1.16758*10^-2, 2.38261*10^-2, 4.4089*10^-3, 8.66514*10^-3, -3.65339*10^-3, -3.37606*10^-3, -9.8116*10^-3, -6.91913*10^-3, 8.70097*10^-3, 1.26165*10^-2, 3.51771*10^-3, -2.47151*10^-2, -8.33375*10^-4, 1.7721*10^-2, -1.94991*10^-3, -4.53353*10^-3, 4.02003*10^-3, 6.79846*10^-4, -7.26018*10^-3, -1.77306*10^-4, -2.24289*10^-3, -3.29005*10^-3, 8.41359*10^-3, 4.59243*10^-3, -5.91923*10^-3, -1.20555*10^-3, 2.19487*10^-3, -1.14701*10^-3, 9.30791*10^-5, 2.18685*10^-3, -4.49193*10^-3, -4.73366*10^-3, 2.26702*10^-3, 4.49539*10^-3, 4.21747*10^-3, 3.96111*10^-3, 1.77683*10^-4, -3.02825*10^-3, -8.89718*10^-4, 5.64437*10^-4, -1.67615*10^-4, 6.02522*10^-4, 1.87077*10^-3, 1.2949*10^-3, -5.94883*10^-4, -1.92181*10^-3, -1.22613*10^-3, -8.5715*10^-5, 4.10859*10^-4, -1.40928*10^-4, -2.02792*10^-3, -5.53977*10^-4, 1.30066*10^-3, 5.83343*10^-4, 8.61494*10^-4, -1.19166*10^-3, -2.18237*10^-3, -1.21283*10^-3, -1.08317*10^-3, -1.9593*10^-4, -1.34809*10^-4, -6.54677*10^-4, -9.36929*10^-4, -1.48747*10^-3, -1.59498*10^-3, -1.07904*10^-3, 1.19197*10^-3, 9.83816*10^-4, -9.17038*10^-4, -2.51922*10^-4, -1.71245*10^-4, -6.6768*10^-4, -6.18854*10^-4, -3.61373*10^-4, 2.76893*10^-4, 6.54997*10^-4, 7.13557*10^-4, 7.84532*10^-4, 9.21074*10^-5, -3.20935*10^-5, 1.43232*10^-4, 6.22619*10^-4, 5.18774*10^-4, -2.74811*10^-4, -4.39844*10^-4, 2.92392*10^-4, 4.58341*10^-4, -8.30032*10^-5, -1.57369*10^-4, 1.47762*10^-4, 2.02603*10^-4, -6.66399*10^-5, -5.52051*10^-6, 4.1404*10^-5, -4.42386*10^-5, -7.86137*10^-5, -8.64243*10^-5, -8.95919*10^-6, 2.60922*10^-5, 2.14766*10^-5, -7.65888*10^-6, -9.23643*10^-6, -1.1904*10^-6, -3.57125*10^-7, 0)); h(15,1) = fi.fir((-1.88214*10^-5, 5.47506*10^-7, -3.62138*10^-4, 3.4025*10^-4, -1.5391*10^-4, 9.13577*10^-4, -1.59128*10^-3, 1.86949*10^-3, -5.7894*10^-4, -7.61445*10^-5, -9.44821*10^-4, 1.5239*10^-3, 6.93131*10^-3, -5.08856*10^-3, -1.64934*10^-3, -3.28386*10^-2, 1.56604*10^-2, -7.18646*10^-3, -3.99608*10^-2, 2.78627*10^-2, 2.10797*10^-2, 2.36595*10^-2, 2.04958*10^-2, 2.62763*10^-2, -8.38542*10^-3, -2.54705*10^-2, 1.6657*10^-2, -1.6476*10^-3, -2.9996*10^-2, -2.96593*10^-3, 2.29607*10^-2, 4.06638*10^-3, -1.99525*10^-2, -9.55486*10^-3, 2.15033*10^-3, -7.14622*10^-3, -4.87891*10^-3, -1.99292*10^-3, 1.16732*10^-4, 2.97933*10^-3, 4.9839*10^-4, -6.55393*10^-3, -1.16543*10^-3, 5.36463*10^-3, -6.3972*10^-3, -8.90121*10^-3, -5.88588*10^-4, 4.84007*10^-4, 1.36571*10^-3, 6.21762*10^-3, 6.40891*10^-3, 2.3052*10^-3, 2.52014*10^-3, 3.03026*10^-3, 1.4746*10^-3, 1.06462*10^-3, -4.70089*10^-4, -1.5733*10^-3, -8.0711*10^-4, 1.55653*10^-5, -1.06767*10^-4, 1.10327*10^-3, 3.74636*10^-3, 4.99281*10^-3, 7.22126*10^-4, -2.893*10^-3, -1.64107*10^-3, 7.19126*10^-4, -6.68844*10^-4, -2.46309*10^-3, -1.44934*10^-3, 1.74066*10^-4, 1.00658*10^-3, 5.37174*10^-5, -4.13929*10^-4, -2.79138*10^-4, -9.57403*10^-4, -1.77829*10^-3, -8.63774*10^-4, 1.77585*10^-3, 1.49904*10^-3, 1.27816*10^-4, -5.78467*10^-5, -1.13474*10^-3, -1.34423*10^-4, 3.59113*10^-4, -3.40049*10^-4, -5.12483*10^-4, -7.75252*10^-4, -1.1166*10^-3, -1.37867*10^-3, 3.97475*10^-4, 1.9904*10^-3, 1.12803*10^-3, 1.40679*10^-4, 1.99225*10^-3, 2.10768*10^-3, 2.04947*10^-4, -1.73206*10^-4, -1.23233*10^-5, 4.44418*10^-4, 2.66517*10^-4, -4.01355*10^-4, 1.76596*10^-5, 5.21337*10^-5, -3.43904*10^-4, -5.62304*10^-4, -3.45911*10^-4, 1.63275*10^-4, -1.78548*10^-4, -7.38871*10^-4, -3.41992*10^-4, -1.29415*10^-4, -2.14133*10^-4, -2.67914*10^-4, -2.00619*10^-4, -1.74628*10^-4, -1.68571*10^-4, -1.07805*10^-4, -5.32896*10^-5, 7.93834*10^-6, 1.46317*10^-5, 3.73611*10^-6, 1.32153*10^-5, 1.75291*10^-5, 6.12983*10^-6, 9.58706*10^-7, 0)); h(16,1) = fi.fir((2.47639*10^-5, -4.7088*10^-6, 3.5434*10^-4, -3.9905*10^-4, -8.62417*10^-5, -1.16299*10^-3, 1.49577*10^-3, -1.62677*10^-3, 3.20863*10^-4, -6.24716*10^-4, 1.68283*10^-3, -1.45821*10^-3, -7.87119*10^-3, 4.51814*10^-3, 8.48161*10^-3, 3.31264*10^-2, -2.0029*10^-2, -1.63571*10^-2, 2.27166*10^-2, -1.90547*10^-2, -2.21976*10^-2, -1.74228*10^-2, -1.76328*10^-2, 1.09545*10^-3, 3.26907*10^-2, 3.70124*10^-2, 6.20737*10^-3, -1.76526*10^-2, 1.44063*10^-2, 3.66584*10^-2, -2.08799*10^-2, -4.51098*10^-2, -6.02232*10^-3, 7.96541*10^-3, 7.25046*10^-3, -7.19013*10^-3, -9.58897*10^-3, 5.85768*10^-3, 1.27408*10^-2, 2.27231*10^-3, -1.17918*10^-2, 1.21233*10^-3, 3.52334*10^-3, -8.30121*10^-3, -2.53834*10^-3, 5.23374*10^-3, 2.60297*10^-3, -6.63947*10^-4, 6.88957*10^-4, 3.85154*10^-4, -3.02839*10^-3, -4.64818*10^-3, 1.05713*10^-3, 3.78545*10^-3, 2.27285*10^-3, 3.75072*10^-3, 1.88724*10^-3, 3.72662*10^-3, 6.05514*10^-3, 2.86602*10^-3, 1.42131*10^-3, 1.52038*10^-3, 3.1719*10^-4, -3.99725*10^-3, -2.40002*10^-3, 1.00471*10^-3, -3.04565*10^-3, -6.84891*10^-3, -5.92465*10^-3, -7.91495*10^-4, 2.65224*10^-3, 1.05786*10^-3, 4.39049*10^-4, 1.8128*10^-3, 2.37751*10^-3, 7.46752*10^-4, -1.01038*10^-3, -1.08777*10^-3, -1.53375*10^-3, -3.76877*10^-4, -4.25318*10^-4, -5.65439*10^-4, 1.27944*10^-3, -4.86147*10^-4, -1.09859*10^-3, -4.41226*10^-4, -1.28331*10^-3, -6.54352*10^-4, -5.11422*10^-4, 5.65125*10^-4, 1.91671*10^-3, 2.36682*10^-3, 1.3563*10^-3, -1.02102*10^-3, -7.786*10^-4, -6.98236*10^-4, -8.02984*10^-4, -2.31761*10^-4, 6.12519*10^-6, -9.07679*10^-5, 3.35677*10^-4, 3.22414*10^-4, 2.65365*10^-4, 2.76137*10^-4, 9.15682*10^-5, -2.51816*10^-4, -4.69868*10^-5, 3.0512*10^-4, -1.65316*10^-4, -3.23155*10^-4, 6.31454*10^-5, 1.35007*10^-4, 2.50399*10^-5, -8.92612*10^-5, 2.14393*10^-5, 2.54175*10^-6, 6.31566*10^-5, 1.71501*10^-5, 8.08098*10^-5, 3.0611*10^-5, -7.71602*10^-5, -3.63984*10^-5, 7.08545*10^-6, 2.20134*10^-5, -4.54475*10^-6, -5.94526*10^-6, -1.99452*10^-7, 0)); h(17,1) = fi.fir((-1.12518*10^-5, -2.52175*10^-5, -4.38429*10^-7, -1.61649*10^-4, 1.85227*10^-4, -3.79492*10^-4, -6.08489*10^-4, 8.83931*10^-5, 6.68369*10^-4, -9.99367*10^-4, -1.21022*10^-3, 1.29228*10^-3, -1.21788*10^-2, -4.68315*10^-4, 1.50281*10^-3, -6.03551*10^-4, 3.1857*10^-2, 8.21013*10^-3, -3.03129*10^-2, -7.41938*10^-3, 2.20151*10^-2, 1.01088*10^-2, -6.07037*10^-3, -1.19074*10^-2, -5.38*10^-3, -9.75742*10^-3, 2.26556*10^-3, 3.68369*10^-3, -7.71687*10^-3, 1.49585*10^-2, -2.8647*10^-3, -5.48534*10^-3, 3.84218*10^-3, -7.39329*10^-3, 5.02779*10^-3, 7.88494*10^-3, -4.92785*10^-3, -8.36886*10^-3, -9.18883*10^-3, 5.7775*10^-3, 1.12766*10^-2, 5.56093*10^-3, -1.91035*10^-3, -5.86651*10^-3, 9.93771*10^-4, 4.91499*10^-3, 3.45724*10^-3, 4.10376*10^-5, -1.2248*10^-3, -5.36977*10^-3, -4.36442*10^-3, -2.28246*10^-3, -9.53147*10^-4, 1.04997*10^-3, 2.95045*10^-3, 2.98067*10^-3, 1.74005*10^-3, 1.91928*10^-3, 2.52441*10^-3, -9.23606*10^-5, -8.34922*10^-4, -6.02009*10^-4, -2.25984*10^-4, -1.66927*10^-3, -1.00309*10^-3, -2.0463*10^-4, -1.9296*10^-3, -1.0428*10^-3, -4.5546*10^-4, 1.12042*10^-3, 1.83867*10^-3, 1.65864*10^-3, 1.93418*10^-3, 6.23567*10^-4, -8.31176*10^-4, -3.12604*10^-3, -3.34934*10^-3, -1.48754*10^-3, -2.38546*10^-4, 5.24849*10^-4, -7.20907*10^-4, -4.83266*10^-4, 9.61786*10^-4, 8.75555*10^-4, -7.18929*10^-4, -1.49106*10^-3, -5.01798*10^-4, -3.01003*10^-4, -9.25607*10^-5, -1.64878*10^-4, -9.46731*10^-4, -7.6694*10^-4, -5.47987*10^-4, 5.26503*10^-4, 4.54822*10^-4, -1.24766*10^-3, -1.50239*10^-3, -8.47043*10^-4, -5.93637*10^-4, -3.94813*10^-4, -2.93212*10^-4, -2.53678*10^-4, 1.36606*10^-4, -4.53146*10^-6, 4.64796*10^-5, -4.01919*10^-5, -4.94946*10^-5, 4.74848*10^-5, -2.41033*10^-4, 3.49977*10^-5, -9.78587*10^-5, 1.22163*10^-5, 2.72989*10^-4, 7.91379*10^-5, 7.78936*10^-5, 9.61423*10^-5, 7.98075*10^-5, 1.10373*10^-4, 1.08625*10^-5, 1.68101*10^-5, -5.14588*10^-5, -1.02699*10^-5, 4.24498*10^-5, -1.54209*10^-6, -3.55566*10^-7, -3.38734*10^-6, -1.42182*10^-6, 0)); h(18,1) = fi.fir((8.46754*10^-6, -3.99997*10^-5, 7.81131*10^-5, -1.76664*10^-4, 2.18614*10^-4, -2.62422*10^-4, -4.45652*10^-5, -5.6178*10^-4, 9.2258*10^-4, 7.08956*10^-4, -1.2249*10^-3, -5.24485*10^-4, -8.38376*10^-4, 2.26799*10^-3, -4.73027*10^-3, 8.71162*10^-3, 1.58126*10^-3, 1.83656*10^-2, 2.73151*10^-3, -5.80978*10^-2, 7.39795*10^-3, 3.23093*10^-2, -1.3579*10^-2, -1.44256*10^-2, -1.30734*10^-2, 3.02041*10^-2, 3.12594*10^-2, -2.0943*10^-2, -6.04938*10^-3, -1.38165*10^-2, 1.74843*10^-4, 2.46952*10^-2, 4.84082*10^-4, -1.07633*10^-2, -5.82769*10^-4, 3.04413*10^-3, -1.21855*10^-2, 8.43931*10^-4, 7.15823*10^-3, -1.14539*10^-3, -4.58897*10^-3, 1.71053*10^-3, 5.96175*10^-3, -1.31856*10^-3, 3.25658*10^-3, 4.04222*10^-3, -4.19875*10^-3, 4.47298*10^-4, 2.09315*10^-3, -1.6919*10^-3, -1.33556*10^-3, 5.23524*10^-4, 5.90727*10^-4, -2.3095*10^-3, -1.72704*10^-3, -1.50241*10^-3, -5.78455*10^-4, -3.23551*10^-5, 4.10224*10^-5, -1.55243*10^-3, -2.09868*10^-3, 5.84863*10^-5, -5.67201*10^-4, -1.15911*10^-3, 5.26208*10^-4, 2.4605*10^-3, 1.465*10^-3, -5.84392*10^-4, -1.37493*10^-3, 8.90404*10^-5, 2.72071*10^-3, 3.72753*10^-3, 1.13654*10^-3, -2.32522*10^-3, -7.15857*10^-4, 7.67318*10^-4, 5.34539*10^-4, 1.1149*10^-3, 4.0236*10^-4, 1.03558*10^-4, -2.9607*10^-4, -1.93484*10^-3, -1.47848*10^-3, -1.28741*10^-3, -3.75861*10^-4, 1.52264*10^-4, -7.14358*10^-4, 1.13972*10^-3, 7.74481*10^-4, 6.73181*10^-5, 3.18167*10^-4, -7.12106*10^-4, -8.5018*10^-4, -1.2821*10^-4, 5.63847*10^-4, 4.27308*10^-4, 8.49064*10^-5, 4.12732*10^-5, 7.43967*10^-4, 7.86364*10^-4, 1.09181*10^-4, -1.04291*10^-3, -7.10936*10^-4, 3.65642*10^-4, -1.8673*10^-4, -2.51117*10^-4, 2.83307*10^-5, 1.79366*10^-4, 2.56181*10^-4, -9.16734*10^-5, -8.14924*10^-5, -7.95034*10^-5, -8.87843*10^-5, 5.96209*10^-6, -1.1491*10^-4, 6.3452*10^-5, -2.58999*10^-5, -4.90741*10^-5, 6.5355*10^-5, 5.53433*10^-5, 6.04376*10^-5, -1.73088*10^-5, -1.28328*10^-5, 3.80288*10^-6, 3.25446*10^-6, -1.66874*10^-6, -3.16691*10^-7, 0)); h(19,1) = fi.fir((-1.60519*10^-5, -5.07492*10^-6, 2.87357*10^-4, -2.04084*10^-4, -6.49941*10^-4, 5.25536*10^-4, 4.99998*10^-4, -7.18214*10^-4, -4.36211*10^-4, 3.23886*10^-5, -6.26824*10^-4, 6.89937*10^-4, -1.72606*10^-2, -4.24591*10^-3, 3.61436*10^-2, 5.0167*10^-3, -2.81069*10^-2, -2.331*10^-2, 2.18264*10^-2, 3.92449*10^-2, 1.89946*10^-2, 1.35645*10^-2, -6.3962*10^-2, -3.7707*10^-2, 3.51136*10^-2, 9.01473*10^-3, -1.23668*10^-3, -1.17299*10^-2, -1.24636*10^-2, 7.84715*10^-3, 9.20741*10^-3, 3.91203*10^-4, 6.4388*10^-4, 6.651*10^-4, -3.94122*10^-3, -3.85536*10^-3, 1.92288*10^-3, 4.81443*10^-3, 1.11639*10^-2, 2.85857*10^-3, -4.73491*10^-3, -5.36479*10^-3, -2.82256*10^-3, -2.56657*10^-3, -1.07359*10^-3, 4.01416*10^-3, 1.63053*10^-3, 8.2404*10^-4, -1.27327*10^-3, -1.63773*10^-3, 2.11746*10^-3, 4.64776*10^-3, 5.07914*10^-4, -3.48194*10^-3, -3.2662*10^-3, 1.76202*10^-4, 1.85579*10^-3, 1.85225*10^-3, -2.50956*10^-3, -4.21615*10^-3, -3.10362*10^-3, -1.09943*10^-3, 1.80572*10^-3, 1.15181*10^-3, -6.60232*10^-4, 1.09564*10^-3, 1.99802*10^-3, 1.0342*10^-3, 2.25408*10^-3, 7.62111*10^-8, -1.62152*10^-3, -7.16191*10^-4, -1.81778*10^-3, -1.13227*10^-3, 1.64066*10^-3, 1.83631*10^-3, 1.59506*10^-3, 1.5986*10^-3, 1.80161*10^-3, 8.28893*10^-4, -1.33194*10^-3, -1.3112*10^-3, 4.22487*10^-4, 1.39281*10^-3, 6.23239*10^-4, -1.2205*10^-3, -1.14263*10^-3, 2.98468*10^-4, 1.85644*10^-4, 5.45233*10^-5, -5.75289*10^-4, -1.20267*10^-3, -9.98064*10^-4, -2.37096*10^-3, -1.89254*10^-3, -6.60745*10^-4, -6.57748*10^-4, -8.8091*10^-4, -1.16818*10^-3, -8.61727*10^-4, -3.27773*10^-4, -1.61222*10^-4, 1.94191*10^-4, 3.61344*10^-4, -4.30785*10^-4, -5.61166*10^-4, -1.44006*10^-4, 6.22891*10^-5, 3.5927*10^-4, 1.03944*10^-4, 2.33591*10^-4, 3.22562*10^-4, 4.5599*10^-5, 4.79109*10^-5, 1.36757*10^-4, 1.60109*10^-4, 9.52111*10^-5, 3.45891*10^-5, 7.48501*10^-5, 7.69231*10^-5, 7.42812*10^-5, 1.35771*10^-5, -3.03839*10^-5, -1.24208*10^-5, 5.73009*10^-6, 4.11672*10^-6, -2.39344*10^-7, 0)); h(20,1) = fi.fir((-1.11966*10^-5, -8.88238*10^-5, -6.64415*10^-5, 9.08779*10^-6, 2.8978*10^-4, -1.99779*10^-4, 7.84588*10^-4, -3.08419*10^-4, -3.83537*10^-4, -2.43798*10^-4, 4.00823*10^-5, 4.07078*10^-3, 2.02492*10^-2, 1.45401*10^-2, -1.87744*10^-3, -1.40586*10^-3, -4.04868*10^-2, -4.18774*10^-2, -2.00329*10^-2, -7.1259*10^-3, 1.84133*10^-2, 2.28362*10^-2, 2.64909*10^-2, 1.21774*10^-2, 8.06984*10^-4, 7.44592*10^-3, -8.87858*10^-3, -1.18445*10^-2, 2.63112*10^-2, 2.33436*10^-2, 5.29021*10^-3, -8.71086*10^-3, -1.61164*10^-2, -7.51844*10^-3, -1.53619*10^-2, -3.23006*10^-3, 6.29851*10^-3, 6.60932*10^-4, -6.08021*10^-3, -6.30607*10^-3, 6.02894*10^-3, 6.10741*10^-3, -3.47263*10^-3, -2.0012*10^-4, 1.05347*10^-4, -4.65258*10^-3, -2.81874*10^-3, -1.57369*10^-3, 3.7996*10^-3, 6.86201*10^-3, 1.0076*10^-3, -4.86479*10^-3, -3.46055*10^-3, 2.2847*10^-4, 1.27474*10^-3, 3.60318*10^-3, 4.21488*10^-3, 8.45167*10^-4, -5.06952*10^-4, -8.3919*10^-4, -8.95233*10^-4, -2.80215*10^-3, -1.22374*10^-3, 1.04215*10^-3, 1.0659*10^-3, 5.06966*10^-4, -5.18492*10^-4, -1.42481*10^-3, -8.09402*10^-4, 3.01676*10^-3, 1.85159*10^-3, -2.36257*10^-4, 1.4127*10^-3, -4.00493*10^-4, -2.50376*10^-3, -2.10972*10^-3, 2.11399*10^-4, 1.3705*10^-3, -7.28887*10^-4, -7.70172*10^-4, 3.56111*10^-4, 1.52084*10^-3, 1.09117*10^-3, -2.09016*10^-3, -2.3455*10^-3, -1.67692*10^-4, 7.5464*10^-4, 3.47804*10^-4, -1.01029*10^-3, -8.11262*10^-4, -3.12518*10^-5, 8.49904*10^-4, 1.29043*10^-3, 9.17368*10^-4, 4.42065*10^-4, -8.35573*10^-5, 1.10474*10^-3, 1.50157*10^-3, 1.41582*10^-4, -3.43523*10^-4, -5.0613*10^-5, -1.22187*10^-4, 1.72603*10^-4, 1.26907*10^-4, 4.5528*10^-4, 1.07997*10^-4, -3.74969*10^-4, 2.48529*10^-6, -3.90002*10^-4, -4.24739*10^-4, -2.91292*10^-4, -3.80888*10^-4, 1.2067*10^-5, 3.17963*10^-5, -1.32352*10^-4, -1.43383*10^-4, -1.88798*10^-4, -5.53501*10^-5, -7.91089*10^-5, -1.55607*10^-4, -4.37215*10^-5, 2.5023*10^-5, 4.36754*10^-5, 6.82071*10^-6, -1.51174*10^-5, -4.01122*10^-6, 4.88989*10^-7, 0)); h(21,1) = fi.fir((-1.72456*10^-6, 1.51199*10^-5, -8.9622*10^-5, 4.51662*10^-5, -6.02566*10^-5, 1.4925*10^-4, -4.63978*10^-5, 1.28289*10^-4, -1.59971*10^-4, 5.51018*10^-5, -8.52122*10^-5, 1.24608*10^-4, -4.81403*10^-4, 1.3988*10^-3, 1.42046*10^-3, -2.43694*10^-3, -1.34784*10^-3, 4.05739*10^-3, -3.37356*10^-3, 3.79702*10^-3, -1.62823*10^-4, -1.33363*10^-2, 1.51297*10^-2, -1.99099*10^-3, 8.8277*10^-5, 1.38903*10^-3, -8.64536*10^-3, 1.74132*10^-3, -9.25597*10^-4, 1.16576*10^-4, -1.36287*10^-3, 1.50701*10^-2, 1.57599*10^-3, -9.8981*10^-3, -7.16758*10^-3, 8.06326*10^-3, 5.16217*10^-3, -1.32405*10^-2, 1.65833*10^-3, 4.64267*10^-3, -3.35439*10^-3, -3.49793*10^-4, 1.17955*10^-3, 8.88766*10^-4, -2.01648*10^-3, 8.99674*10^-4, -9.62836*10^-4, -1.71734*10^-3, 3.59954*10^-3, -1.10467*10^-3, -2.3227*10^-4, 1.25554*10^-3, 2.21503*10^-3, -7.08518*10^-4, 1.38544*10^-3, 4.92437*10^-3, -1.78311*10^-4, -1.12848*10^-3, -2.74061*10^-4, -2.76848*10^-3, -1.09522*10^-3, 1.22199*10^-3, -8.65618*10^-4, -2.82137*10^-3, -2.16653*10^-3, -7.13619*10^-4, -8.86716*10^-5, 1.04919*10^-4, 3.42128*10^-4, 3.15598*10^-4, 2.5078*10^-4, 1.17239*10^-3, 1.1948*10^-3, -3.29991*10^-4, -4.60373*10^-4, -9.07143*10^-5, -1.35154*10^-3, 9.80584*10^-4, 2.05091*10^-3, 1.23329*10^-3, -7.46007*10^-5, -1.32245*10^-3, 5.88936*10^-4, 7.87857*10^-4, 1.78134*10^-4, -3.60258*10^-4, -1.19211*10^-3, -2.98303*10^-4, -2.37842*10^-4, -1.07163*10^-4, 4.67904*10^-4, 8.76573*10^-4, 2.68727*10^-4, -1.16942*10^-3, -1.64166*10^-3, -6.53472*10^-5, 2.08517*10^-3, 1.20197*10^-3, 5.97838*10^-6, -7.95606*10^-5, 1.90799*10^-4, -7.33386*10^-5, -2.56214*10^-4, -5.17742*10^-6, -1.06843*10^-4, -4.30154*10^-5, -2.5283*10^-4, -2.67635*10^-4, 1.23694*10^-4, 4.31971*10^-5, -3.80833*10^-4, -2.66416*10^-4, 1.33655*10^-4, 1.31404*10^-4, 2.92614*10^-5, 9.48311*10^-6, -1.79707*10^-5, -5.33063*10^-5, -2.60729*10^-6, -3.11424*10^-5, -5.02754*10^-5, 6.37954*10^-6, 3.6885*10^-5, 2.56571*10^-5, 5.33039*10^-6, -1.5362*10^-6, -5.88919*10^-7, 0)); h(22,1) = fi.fir((2.48655*10^-5, -5.2325*10^-5, -3.16647*10^-4, -1.40598*10^-4, 9.90226*10^-5, 7.29466*10^-5, -5.1453*10^-4, 1.10753*10^-3, -1.26463*10^-3, 2.38535*10^-3, -1.78727*10^-3, 8.03193*10^-3, 2.96316*10^-2, 3.52858*10^-2, -2.0667*10^-2, -4.29015*10^-2, -2.62128*10^-2, -3.74964*10^-2, 1.46813*10^-2, -1.57208*10^-2, -3.99341*10^-2, 1.39343*10^-2, 4.26851*10^-2, 3.79115*10^-2, 1.44081*10^-2, 3.31856*10^-2, 1.29721*10^-2, -1.86206*10^-2, -1.72566*10^-3, 4.66849*10^-3, -5.21283*10^-3, -3.24698*10^-3, 5.97366*10^-3, 1.3015*10^-3, -5.33637*10^-3, -7.63633*10^-3, -2.24471*10^-2, -2.31689*10^-2, -6.6379*10^-3, -1.49051*10^-3, -5.55617*10^-3, -5.42286*10^-3, 1.87131*10^-3, -3.51473*10^-4, 2.32295*10^-3, 6.39798*10^-3, 4.6697*10^-3, 5.0508*10^-3, 4.30472*10^-3, 2.86225*10^-3, 2.47781*10^-3, 5.52152*10^-3, 5.06712*10^-3, 2.91467*10^-3, 2.04454*10^-3, -3.74723*10^-5, -8.71398*10^-4, -3.41146*10^-4, 1.39395*10^-3, 1.41333*10^-3, -8.97885*10^-4, -2.57216*10^-3, -4.39151*10^-3, -3.73773*10^-3, -3.62271*10^-3, -2.64545*10^-4, 2.5929*10^-3, -4.22486*10^-4, -1.2386*10^-3, 7.14534*10^-4, 2.07345*10^-3, 1.28457*10^-3, 1.23699*10^-3, 1.2271*10^-4, -9.64007*10^-4, 1.17332*10^-3, 2.34453*10^-3, 2.26393*10^-3, 1.01466*10^-3, -6.77591*10^-4, -3.89581*10^-4, 4.90595*10^-4, -1.24704*10^-3, -3.26374*10^-3, -2.87005*10^-3, -1.10188*10^-3, 1.1911*10^-4, 4.32073*10^-4, -8.76799*10^-6, -1.04977*10^-3, -6.46028*10^-4, -3.69246*10^-4, -1.91836*10^-3, -3.56517*10^-3, -1.26296*10^-3, 2.54428*10^-4, 1.09714*10^-6, 1.49528*10^-3, 1.82236*10^-3, 8.54379*10^-4, -1.65683*10^-4, 4.23628*10^-4, 1.46408*10^-3, 5.97418*10^-4, -3.6978*10^-5, 3.99827*10^-4, 7.13353*10^-4, 7.93463*10^-4, -4.61018*10^-5, -3.53584*10^-4, 6.40531*10^-4, 4.79932*10^-4, -9.5068*10^-5, -2.38922*10^-4, -7.41771*10^-5, -1.33542*10^-6, -1.45382*10^-4, -5.40852*10^-5, -1.79538*10^-5, -4.78923*10^-5, -1.27759*10^-5, -2.27523*10^-5, -1.74931*10^-5, -8.18893*10^-6, -9.31525*10^-6, -2.14361*10^-6, 1.24397*10^-6, 0)); h(23,1) = fi.fir((-9.94474*10^-6, 4.27114*10^-5, -7.58864*10^-5, -4.08033*10^-5, -1.66029*10^-4, 6.99969*10^-4, -6.60455*10^-4, 3.87942*10^-4, -2.56811*10^-5, 5.21205*10^-4, -9.92013*10^-4, 5.2282*10^-4, 4.02347*10^-4, 1.64552*10^-3, 4.88735*10^-3, -7.16065*10^-3, -1.16489*10^-3, 5.46722*10^-3, 5.91649*10^-3, -2.51933*10^-2, 6.86249*10^-3, 1.25277*10^-2, -2.22476*10^-2, 2.85481*10^-2, 1.69364*10^-2, -2.42674*10^-2, -6.12438*10^-3, 2.59762*10^-3, -7.59654*10^-3, 1.04596*10^-2, 7.95004*10^-3, -1.68353*10^-2, 2.37525*10^-3, 1.71455*10^-2, -1.58868*10^-2, -2.06715*10^-3, 1.14507*10^-2, -3.84699*10^-3, -5.75882*10^-3, 4.73693*10^-3, 4.44541*10^-3, -5.3719*10^-3, 7.07381*10^-3, -1.44816*10^-3, -8.83576*10^-3, 4.74825*10^-3, 3.46505*10^-3, -3.93443*10^-3, -1.88966*10^-3, 1.73706*10^-4, -3.47623*10^-3, -2.49524*10^-3, 3.02676*10^-3, -9.34111*10^-4, -1.06458*10^-3, -2.31743*10^-4, -1.57497*10^-4, -1.67037*10^-3, -3.0292*10^-3, -1.32391*10^-3, 1.38116*10^-3, 5.06015*10^-3, 2.69779*10^-3, 1.31753*10^-3, 5.56525*10^-4, 8.93187*10^-4, 2.29024*10^-3, 1.95557*10^-3, 1.35886*10^-3, -2.43386*10^-4, -1.04462*10^-3, -5.11794*10^-4, -1.02342*10^-3, -1.35237*10^-3, -3.60761*10^-4, -4.90595*10^-4, -6.67587*10^-4, -1.08501*10^-3, -2.71009*10^-3, -6.3472*10^-4, 9.17056*10^-4, 7.24254*10^-4, 7.04233*10^-4, -1.61289*10^-3, -9.26784*10^-4, 1.22065*10^-4, 2.94391*10^-6, -3.4728*10^-4, -1.24285*10^-3, 9.43769*10^-4, 1.1113*10^-3, -7.15588*10^-4, 4.09948*10^-4, 1.4052*10^-3, 6.92748*10^-4, 4.71341*10^-4, 3.15615*10^-4, 4.52161*10^-4, 9.45078*10^-4, 8.04685*10^-4, 8.21556*10^-6, -3.57801*10^-4, 5.83444*10^-7, 6.1747*10^-4, 3.98374*10^-4, 2.45972*10^-4, 1.13249*10^-4, -2.76345*10^-4, 1.21626*10^-4, 2.36304*10^-4, -2.22619*10^-4, -3.59817*10^-4, -9.72827*10^-5, 1.78986*10^-5, -2.0505*10^-4, -6.99009*10^-5, -1.10715*10^-4, -8.35894*10^-5, -4.12822*10^-5, -5.59518*10^-5, -3.75969*10^-5, -5.71836*10^-5, -1.51806*10^-5, -4.28309*10^-6, 6.88232*10^-7, 2.35351*10^-6, -1.47788*10^-7, 0)); h(24,1) = fi.fir((9.35012*10^-6, -5.35087*10^-5, -3.65476*10^-4, -2.45125*10^-4, 2.67346*10^-4, 6.04623*10^-4, -8.77518*10^-4, 1.16198*10^-4, 2.1498*10^-4, 1.02728*10^-3, -1.914*10^-3, 9.69097*10^-3, 4.07828*10^-2, 3.57639*10^-2, 8.26336*10^-3, -5.86346*10^-2, -6.61816*10^-2, -2.39763*10^-2, -4.34275*10^-2, -2.30372*10^-2, 5.32942*10^-3, 2.15685*10^-2, 5.31705*10^-2, 5.41351*10^-2, -4.37594*10^-3, 1.13766*10^-2, 3.23898*10^-2, 3.78819*10^-3, -6.9729*10^-3, -8.28142*10^-3, 1.34835*10^-2, -9.09249*10^-3, -1.45286*10^-2, -6.90546*10^-3, -3.55798*10^-3, -6.78837*10^-3, -1.82876*10^-2, -1.28663*10^-2, 2.19275*10^-3, 8.33522*10^-3, 8.3406*10^-5, -5.79098*10^-3, 3.15133*10^-3, 5.71376*10^-3, -4.30659*10^-3, -5.7374*10^-3, 3.28927*10^-3, 6.59259*10^-3, 1.34358*10^-3, 1.06006*10^-3, -1.49271*10^-3, 1.86571*10^-3, 3.56575*10^-3, 1.81036*10^-6, -3.46722*10^-4, 1.77995*10^-4, -1.24097*10^-4, 1.32287*10^-4, 6.14402*10^-5, 9.07871*10^-4, -1.91513*10^-4, -1.00305*10^-3, -1.00811*10^-4, -1.24849*10^-3, -5.35492*10^-4, -6.00765*10^-5, -7.01885*10^-4, -6.77036*10^-4, -1.84157*10^-3, -2.28896*10^-3, -1.51697*10^-3, 1.21332*10^-3, 2.94839*10^-3, 1.27728*10^-3, -6.31887*10^-4, -9.03401*10^-4, 3.26236*10^-4, -1.10683*10^-4, 1.24937*10^-3, 1.27678*10^-3, -1.93253*10^-5, 9.2739*10^-4, 8.16862*10^-4, 3.07199*10^-4, 1.09648*10^-3, 2.0883*10^-3, 7.45629*10^-4, -1.94134*10^-3, -1.87102*10^-3, -7.60785*10^-4, -1.1286*10^-3, -1.25057*10^-3, -5.22489*10^-4, -4.51032*10^-4, 7.48275*10^-5, 5.8756*10^-4, -1.16422*10^-4, 4.54606*10^-5, 3.94057*10^-4, 3.30823*10^-4, 4.43729*10^-4, 6.34335*10^-4, 7.10508*10^-4, 4.83306*10^-4, 5.21324*10^-4, 2.24978*10^-4, -4.46103*10^-5, 4.35921*10^-5, -1.50574*10^-4, 4.54877*10^-5, -2.53513*10^-4, -1.0568*10^-4, 2.11629*10^-4, 6.57646*10^-5, 5.95893*10^-5, -1.68436*10^-4, -2.68843*10^-4, -1.39565*10^-4, -5.68304*10^-5, -3.4888*10^-6, -6.92076*10^-5, -7.69788*10^-5, -3.3133*10^-5, -1.58658*10^-5, 3.83839*10^-6, 2.13798*10^-6, 8.78916*10^-7, 0)); h(25,1) = fi.fir((1.75745*10^-5, 1.46899*10^-4, 2.98616*10^-4, 2.91907*10^-4, -1.36334*10^-4, -5.05798*10^-4, 4.59936*10^-4, -1.05671*10^-3, -3.71296*10^-4, -1.11838*10^-3, 3.34114*10^-3, -1.35237*10^-2, -1.95576*10^-2, -5.53276*10^-3, 4.60016*10^-3, 4.94228*10^-2, 3.49525*10^-2, 1.69814*10^-2, 4.13115*10^-2, -1.99525*10^-2, -6.08337*10^-2, -4.261*10^-2, -4.6904*10^-2, -3.8218*10^-2, 9.49311*10^-3, 2.55713*10^-2, 2.3786*10^-2, 1.55105*10^-2, 3.00478*10^-2, 5.33536*10^-2, -3.29497*10^-3, -1.3194*10^-2, 5.26077*10^-3, -7.24585*10^-3, -5.95666*10^-3, -2.01764*10^-2, -1.41497*10^-2, 1.1094*10^-2, 9.51644*10^-3, -6.3158*10^-3, -1.71203*10^-2, -2.15968*10^-3, 2.37423*10^-3, -4.59366*10^-3, -3.3277*10^-3, -1.32678*10^-3, 4.36719*10^-4, -9.75091*10^-4, 2.9275*10^-3, 4.98083*10^-3, 3.75698*10^-3, 2.47108*10^-3, 1.81967*10^-3, -9.08305*10^-4, -2.80125*10^-3, 1.30247*10^-4, 3.40864*10^-3, 2.46043*10^-3, 1.88758*10^-3, 2.3077*10^-5, -1.32038*10^-3, -8.685*10^-4, -2.54997*10^-3, -2.42258*10^-3, -1.96148*10^-3, -1.87308*10^-3, -4.56271*10^-4, 9.99454*10^-4, 2.07461*10^-3, -1.27137*10^-3, -2.09749*10^-3, 3.52481*10^-3, 3.48921*10^-3, 2.07019*10^-5, 1.00514*10^-3, 3.1206*10^-3, 2.95256*10^-4, -3.28529*10^-3, -2.15363*10^-3, 9.74996*10^-4, 1.15759*10^-4, -2.08429*10^-3, -1.39596*10^-3, 2.88039*10^-4, 3.52237*10^-4, -8.81839*10^-4, -1.51922*10^-3, 1.19948*10^-3, 1.04628*10^-3, -6.85543*10^-4, 3.08893*10^-5, 9.46998*10^-4, 1.99563*10^-3, 7.05182*10^-4, -9.68873*10^-4, -1.91172*10^-3, -5.8996*10^-4, -9.38325*10^-5, -6.62862*10^-4, -7.00253*10^-5, 1.04924*10^-3, 6.33366*10^-4, -1.25815*10^-4, -6.02163*10^-5, 1.31514*10^-4, 2.49788*10^-4, 1.23289*10^-4, 6.38484*10^-6, 2.98695*10^-5, -7.74413*10^-5, -6.18813*10^-5, -2.91172*10^-4, -2.10773*10^-4, -4.13487*10^-5, 6.10882*10^-5, 7.31887*10^-5, 8.02268*10^-5, 2.289*10^-5, 4.08276*10^-5, 4.40934*10^-5, -1.03733*10^-5, 1.1964*10^-5, 9.03398*10^-6, -7.87942*10^-7, -1.11533*10^-5, -7.913*10^-6, -1.06573*10^-6, 0)); h(26,1) = fi.fir((1.2426*10^-5, -4.77088*10^-5, 1.74254*10^-5, 8.95737*10^-5, 6.94603*10^-6, -5.57998*10^-4, 6.11467*10^-4, -2.28106*10^-4, -3.03717*10^-4, 1.99821*10^-4, 6.37561*10^-4, -2.81438*10^-4, -1.05089*10^-3, -1.26156*10^-3, -7.92312*10^-3, 1.39144*10^-2, 6.49938*10^-3, -8.46662*10^-3, 4.52054*10^-3, 6.68414*10^-3, -2.83141*10^-2, 3.9259*10^-3, 3.43884*10^-2, -2.45073*10^-2, -1.76419*10^-3, 2.56057*10^-3, -1.40884*10^-4, 8.69002*10^-3, -2.1991*10^-3, -6.47077*10^-3, -9.24293*10^-3, 9.10019*10^-3, 1.66209*10^-3, -6.67199*10^-3, 5.0464*10^-3, 5.06006*10^-3, 2.58447*10^-4, -1.72143*10^-4, -2.42872*10^-3, 9.16115*10^-4, 9.92355*10^-4, 1.9535*10^-3, 1.9573*10^-3, -2.8023*10^-3, -4.1707*10^-3, 9.30843*10^-4, 3.45299*10^-4, -2.16593*10^-3, -1.48984*10^-3, -1.44952*10^-3, -9.69359*10^-4, -3.41713*10^-4, 1.87801*10^-3, -9.55175*10^-4, 6.30711*10^-5, 3.86306*10^-3, 1.72614*10^-3, -2.87262*10^-5, 1.01278*10^-3, 1.19309*10^-3, -1.30918*10^-3, -2.47843*10^-3, -5.99368*10^-4, -8.62886*10^-4, -4.50483*10^-4, -4.98383*10^-5, -6.25081*10^-4, 9.02621*10^-4, 1.73495*10^-3, 8.8974*10^-4, -5.08301*10^-4, 2.56778*10^-4, 2.023*10^-3, -2.65444*10^-4, 6.00058*10^-4, 2.7544*10^-3, -5.11977*10^-4, -2.79595*10^-3, -2.27893*10^-3, -1.5044*10^-3, -7.19575*10^-4, -2.48827*10^-4, -3.51084*10^-5, 3.99715*10^-4, -1.07648*10^-3, -2.01868*10^-3, -9.25746*10^-4, 7.67893*10^-4, 1.79612*10^-3, 7.40578*10^-4, -2.08784*10^-4, -5.24523*10^-4, -1.58131*10^-4, 5.07031*10^-4, 2.61123*10^-4, -7.04872*10^-4, -6.71401*10^-4, 3.81263*10^-4, 9.84421*10^-4, 9.53969*10^-4, 9.41409*10^-4, 5.03337*10^-4, 1.95336*10^-4, -1.24894*10^-4, 3.35934*10^-4, 5.48825*10^-4, 2.10516*10^-4, 4.97707*10^-4, 3.23931*10^-4, -9.83185*10^-5, -2.27783*10^-5, -1.5412*10^-4, 1.20834*10^-4, 9.9222*10^-5, -5.28381*10^-5, -8.80554*10^-5, -3.85857*10^-5, 5.25383*10^-5, -1.5899*10^-5, -1.58565*10^-5, -2.24063*10^-5, -4.13718*10^-5, -2.14482*10^-5, -6.95742*10^-6, -4.01784*10^-6, -6.53995*10^-7, -6.41601*10^-7, 0)); h(27,1) = fi.fir((-1.00563*10^-5, 5.9274*10^-5, 2.35554*10^-4, -3.5335*10^-4, -5.97894*10^-4, -7.15845*10^-4, 1.88223*10^-3, -1.71357*10^-3, 2.65382*10^-3, -3.06884*10^-3, 3.68918*10^-3, -1.19578*10^-2, -1.62451*10^-2, -2.60322*10^-2, 3.96346*10^-2, 7.41808*10^-2, -9.73336*10^-3, 1.97923*10^-2, -4.62601*10^-2, -3.74157*10^-2, 3.06522*10^-2, -3.63476*10^-2, -4.49094*10^-2, 9.48836*10^-3, 3.67587*10^-2, 2.54189*10^-2, -1.73924*10^-2, -2.07012*10^-2, 2.39723*10^-2, 2.80468*10^-3, 1.67917*10^-3, 1.25467*10^-2, 4.27576*10^-3, 1.1241*10^-2, 1.18508*10^-2, -6.11762*10^-4, -1.14478*10^-2, -1.26997*10^-2, -8.91142*10^-3, -1.21305*10^-2, -7.06148*10^-3, -1.97276*10^-3, -4.2019*10^-3, 2.15697*10^-3, 4.01709*10^-3, -4.71807*10^-3, -2.01605*10^-3, 8.74338*10^-3, 7.03788*10^-3, 3.42858*10^-3, 2.49072*10^-3, 6.1142*10^-3, 3.20897*10^-3, -6.67307*10^-4, -6.59524*10^-4, -1.37444*10^-3, 1.0144*10^-3, 2.05969*10^-3, -2.46821*10^-3, -1.53181*10^-3, 1.3799*10^-3, 8.26331*10^-4, -2.17175*10^-3, -5.63238*10^-3, -2.79104*10^-3, -1.11618*10^-3, -2.11442*10^-3, -2.07328*10^-4, 6.16098*10^-4, 1.70694*10^-3, 1.04743*10^-3, 6.32304*10^-4, 1.28951*10^-3, -5.49762*10^-4, -1.44309*10^-3, -1.1269*10^-3, 5.84764*10^-4, 8.1579*10^-4, 1.18839*10^-3, 2.26951*10^-3, 1.8906*10^-3, -4.12462*10^-4, -2.3686*10^-3, -2.87648*10^-3, -1.12341*10^-3, 5.21822*10^-4, 1.56127*10^-4, 1.30195*10^-4, 8.20513*10^-4, 1.70656*10^-3, 7.38411*10^-4, -4.16141*10^-4, -7.01969*10^-4, -4.32107*10^-4, -1.20732*10^-4, -1.08228*10^-3, -1.8442*10^-4, 9.55993*10^-4, 8.38237*10^-4, 1.02043*10^-3, 2.83175*10^-4, -5.39898*10^-4, -1.90144*10^-4, 1.35094*10^-5, -2.74943*10^-4, -2.79033*10^-4, 1.77257*10^-4, 2.1278*10^-4, 1.37094*10^-4, 1.9604*10^-4, -3.83873*10^-5, -2.54403*10^-4, -9.55285*10^-5, -1.40286*10^-5, -1.59793*10^-4, -1.89387*10^-4, -1.00599*10^-4, 3.46764*10^-5, 4.29566*10^-5, -7.46743*10^-6, 1.64162*10^-6, 3.71658*10^-7, 8.58456*10^-6, -3.6527*10^-7, 3.71601*10^-6, -8.32524*10^-7, -8.31327*10^-7, 0)); h(28,1) = fi.fir((4.42571*10^-6, -5.25139*10^-5, 4.80723*10^-5, -7.35592*10^-5, 4.77664*10^-5, -2.27046*10^-4, 2.09086*10^-4, -1.4026*10^-4, -2.81565*10^-5, 1.09371*10^-4, -1.18816*10^-5, -2.92397*10^-4, 1.2743*10^-4, -1.64412*10^-3, -4.13328*10^-3, 7.62388*10^-3, 4.75107*10^-3, -7.01003*10^-3, 8.55208*10^-3, -1.04871*10^-2, -1.38051*10^-2, 2.21686*10^-2, -6.08628*10^-3, 7.39797*10^-4, 3.0502*10^-3, -9.89071*10^-3, 4.92144*10^-3, 3.02305*10^-4, -4.89462*10^-3, 3.46101*10^-3, 1.11627*10^-2, -7.56119*10^-3, -7.24114*10^-3, 4.09864*10^-3, 8.23437*10^-3, 1.4973*10^-3, -4.40095*10^-3, -7.53947*10^-3, 2.14502*10^-3, 4.49558*10^-3, -2.4353*10^-3, -3.68379*10^-3, 1.46191*10^-3, 5.10677*10^-4, -2.50409*10^-3, 7.47175*10^-4, 1.79311*10^-3, 9.22453*10^-4, -2.456*10^-3, 7.52408*10^-4, 1.63234*10^-3, 1.28692*10^-3, 1.01539*10^-3, 1.08284*10^-3, 2.19494*10^-3, 3.08748*10^-3, 4.96248*10^-4, 7.71643*10^-4, 1.18863*10^-3, -8.68116*10^-4, -2.69635*10^-3, -2.6382*10^-3, -1.91084*10^-3, -2.79993*10^-3, -3.23837*10^-3, -2.68603*10^-3, -1.86269*10^-3, -1.86959*10^-3, -1.27989*10^-3, 2.01564*10^-3, 2.76083*10^-3, 9.86549*10^-4, -8.7314*10^-4, 1.26592*10^-3, 4.80566*10^-3, 2.13314*10^-3, 1.68506*10^-3, 1.2087*10^-3, -4.96449*10^-4, -7.57128*10^-4, -1.77717*10^-3, -1.01262*10^-3, 1.0737*10^-3, 1.35725*10^-3, 2.15705*10^-4, -7.83307*10^-4, 1.46598*10^-4, 8.85188*10^-4, 8.33678*10^-4, 3.04239*10^-4, -3.98159*10^-4, -8.54766*10^-4, -1.32091*10^-3, -5.35662*10^-4, 8.28129*10^-5, 3.82586*10^-4, -7.23748*10^-5, -8.28216*10^-4, -8.18907*10^-5, 5.12723*10^-4, 3.70794*10^-4, -1.75629*10^-4, -3.78407*10^-4, 2.2061*10^-4, -6.95443*10^-5, -5.58027*10^-4, -2.90926*10^-4, -1.97983*10^-4, 1.29549*10^-4, -1.29874*10^-6, -1.1364*10^-4, 8.94487*10^-5, -9.41637*10^-5, -1.60941*10^-4, -1.69719*10^-4, 2.72544*10^-5, 1.00615*10^-4, -5.87972*10^-5, -4.64086*10^-5, -1.40473*10^-5, 4.62928*10^-5, 2.68796*10^-5, -1.42806*10^-5, -3.50232*10^-6, 7.56753*10^-6, 4.54977*10^-6, -4.9856*10^-7, 0)); h(29,1) = fi.fir((1.72514*10^-5, 2.02799*10^-4, 1.8682*10^-4, 1.60664*10^-4, -4.56519*10^-6, 3.3872*10^-4, -1.28234*10^-3, -3.60277*10^-4, -1.9713*10^-4, -7.16211*10^-5, 7.59286*10^-4, -7.38491*10^-3, -1.19741*10^-2, 3.51663*10^-3, 3.92377*10^-3, 5.26516*10^-4, 3.00314*10^-2, 3.97127*10^-2, 2.70782*10^-2, -1.77782*10^-2, -3.70878*10^-2, -3.91555*10^-2, -4.40249*10^-2, -8.97252*10^-3, -5.0746*10^-3, 6.93356*10^-3, 4.16227*10^-2, 3.0071*10^-2, 2.15117*10^-2, 1.71091*10^-2, -5.29178*10^-3, -1.18732*10^-2, -9.87757*10^-3, -2.20865*10^-3, -1.07476*10^-2, -1.07259*10^-2, 4.16279*10^-3, 6.76094*10^-4, -2.13691*10^-3, 2.86477*10^-3, 3.57658*10^-3, -2.46872*10^-3, -9.27232*10^-3, -4.00764*10^-3, 1.66773*10^-3, 1.61128*10^-3, 4.27902*10^-4, -4.86256*10^-3, -4.47439*10^-3, 2.3905*10^-3, 6.67455*10^-3, 3.03536*10^-3, 1.64915*10^-3, 2.73609*10^-3, -2.71304*10^-4, -1.10411*10^-3, -3.4311*10^-4, -2.00575*10^-4, 1.42515*10^-3, 7.5748*10^-4, -6.2549*10^-4, -2.51395*10^-4, -4.0375*10^-4, 2.30371*10^-5, -1.85713*10^-3, -1.7735*10^-3, -4.67836*10^-4, 2.24438*10^-5, 2.44374*10^-3, -3.6717*10^-4, -1.40439*10^-3, -3.85146*10^-4, -2.78346*10^-4, 1.81392*10^-3, 1.83653*10^-3, 1.19337*10^-4, -2.69222*10^-3, -2.05297*10^-3, -5.49832*10^-4, -6.56534*10^-4, -4.99124*10^-4, 1.98928*10^-3, 2.30627*10^-3, 8.69766*10^-4, 4.68453*10^-4, -6.54213*10^-4, -9.48419*10^-4, -1.15308*10^-3, -9.4006*10^-4, 1.11535*10^-4, 1.58769*10^-3, 2.07482*10^-3, 5.33459*10^-4, -1.09815*10^-4, 9.2514*10^-5, -1.38243*10^-3, -1.83849*10^-3, -1.08857*10^-3, -7.13545*10^-4, 7.82302*10^-5, 1.09697*10^-3, 9.86079*10^-4, 7.54206*10^-4, 7.56137*10^-4, -2.0109*10^-5, -4.71166*10^-4, -4.71096*10^-4, 1.7491*10^-5, 1.12602*10^-4, -1.84757*10^-4, 3.20605*10^-5, -2.10856*10^-4, -8.98024*10^-5, 4.41671*10^-5, 8.48396*10^-5, 1.55277*10^-5, 6.40002*10^-5, 6.22259*10^-5, -7.16573*10^-5, -4.57601*10^-6, -7.5315*10^-6, -1.40902*10^-5, -9.16519*10^-6, -3.96373*10^-6, -5.00245*10^-6, -3.87501*10^-6, -4.69133*10^-7, 0)); h(30,1) = fi.fir((-1.05977*10^-5, -5.86263*10^-6, 2.69518*10^-4, -1.26525*10^-4, -4.52774*10^-4, 5.0002*10^-4, 2.41483*10^-4, -4.51158*10^-6, -6.87059*10^-4, 1.09752*10^-3, -1.20929*10^-3, 1.06518*10^-3, -1.35867*10^-2, -2.28244*10^-3, 3.37715*10^-2, 1.36485*10^-2, -1.589*10^-2, -3.46426*10^-2, 4.41343*10^-3, -1.42898*10^-3, 1.76399*10^-2, 3.29432*10^-2, -3.62081*10^-2, -6.68881*10^-3, -9.56696*10^-3, 1.12001*10^-2, 8.05071*10^-3, 6.88129*10^-4, 6.31159*10^-3, -1.46507*10^-2, 1.09057*10^-2, -5.01016*10^-3, -3.74484*10^-3, -1.11508*10^-3, 1.38261*10^-2, 9.22232*10^-4, -1.71481*10^-2, -3.49336*10^-4, -4.60814*10^-4, 5.75083*10^-3, 9.46257*10^-3, 9.05153*10^-4, -2.65807*10^-3, -4.34325*10^-3, 8.74476*10^-4, 9.42166*10^-4, 2.59628*10^-3, 4.75582*10^-3, -2.48036*10^-3, -2.60247*10^-3, -3.90607*10^-3, 7.86462*10^-4, 2.61399*10^-3, 2.73783*10^-3, -5.18858*10^-4, -4.45753*10^-3, -4.27208*10^-3, -2.76925*10^-3, -1.3237*10^-3, -1.34827*10^-3, -3.49078*10^-4, 8.65055*10^-4, -3.97991*10^-4, -2.80854*10^-3, -1.37461*10^-3, 3.96601*10^-3, 6.43215*10^-3, 3.14286*10^-3, -1.77889*10^-3, -9.95502*10^-4, 1.82123*10^-3, 1.4475*10^-3, 3.40608*10^-4, -7.72423*10^-4, 1.89618*10^-4, 8.67725*10^-4, 4.77414*10^-4, -3.48148*10^-5, 1.28504*10^-3, 1.66311*10^-3, -7.54096*10^-5, -1.73577*10^-4, -4.56731*10^-4, -1.94944*10^-3, -1.84168*10^-3, -4.10563*10^-4, 4.80377*10^-4, 3.29585*10^-4, 1.96801*10^-4, -5.9544*10^-4, -1.58268*10^-3, -8.97449*10^-4, 5.22556*10^-4, 5.07778*10^-4, 9.75903*10^-4, 1.27258*10^-3, -4.88943*10^-4, -1.04705*10^-3, -6.10951*10^-4, -2.51397*10^-4, -1.7389*10^-4, 1.79626*10^-4, 3.07713*10^-4, -2.64718*10^-6, 1.21443*10^-5, -3.27868*10^-5, 9.54264*10^-5, -6.01777*10^-5, -2.66374*10^-4, -4.29445*10^-6, 1.45441*10^-4, 3.37082*10^-4, -1.30989*10^-5, -1.75064*10^-4, 1.04909*10^-5, 1.10349*10^-4, 7.62055*10^-5, -1.22155*10^-5, -6.81875*10^-6, 3.71672*10^-5, 4.54373*10^-5, 2.86475*10^-6, -1.06744*10^-5, -1.45709*10^-5, -3.72582*10^-7, 1.88015*10^-6, -1.63011*10^-7, 0)); h(31,1) = fi.fir((3.63197*10^-6, -4.17893*10^-5, 2.45768*10^-5, -1.34394*10^-4, 1.50699*10^-4, -8.45052*10^-5, -2.68248*10^-4, -2.68464*10^-4, 6.01937*10^-4, 6.75301*10^-4, -8.7964*10^-4, -4.40041*10^-4, 1.13343*10^-3, 4.75425*10^-4, -4.00795*10^-3, -6.47921*10^-4, 5.94561*10^-3, 1.26277*10^-2, 2.50689*10^-3, -4.30838*10^-2, -7.39102*10^-4, 3.85717*10^-2, -4.28972*10^-3, -4.64304*10^-3, -1.6027*10^-2, 1.70557*10^-2, 1.26768*10^-2, -1.12476*10^-2, -3.82452*10^-3, -1.07588*10^-2, 1.15049*10^-2, -6.29321*10^-3, -4.74255*10^-3, 5.58298*10^-3, 6.44089*10^-3, 1.04873*10^-4, -6.63592*10^-3, 7.18382*10^-3, -1.00255*10^-3, -5.59198*10^-3, -9.87406*10^-4, -3.41198*10^-3, -6.22494*10^-4, -9.36523*10^-4, 1.15447*10^-3, 9.73388*10^-4, 1.62607*10^-3, 2.03041*10^-3, -1.79843*10^-3, 1.97711*10^-3, 1.25431*10^-3, 1.92313*10^-3, 2.94417*10^-3, 5.09311*10^-3, 3.40691*10^-3, -2.40451*10^-3, -1.35731*10^-3, 3.72132*10^-4, -1.52802*10^-3, -3.56673*10^-3, -3.94725*10^-3, -2.08793*10^-3, -9.67496*10^-4, 7.06466*10^-4, 2.09277*10^-4, -9.2161*10^-4, 2.89724*10^-3, 3.8661*10^-3, 6.22213*10^-4, -8.51723*10^-4, 1.52091*10^-3, 2.18308*10^-5, -1.30001*10^-3, -1.3667*10^-3, -3.36625*10^-3, -2.26563*10^-3, -9.35397*10^-4, 1.24657*10^-3, 1.29894*10^-3, 6.93492*10^-4, 1.36393*10^-3, 4.27555*10^-4, -5.36187*10^-4, -2.65679*10^-3, -2.42276*10^-3, -7.04107*10^-4, 5.54658*10^-4, 5.9552*10^-4, -1.18464*10^-3, -4.89254*10^-4, 1.09719*10^-3, 2.20104*10^-3, 1.98143*10^-3, 7.49778*10^-4, 3.33683*10^-4, -3.61494*10^-4, 7.21114*10^-4, 1.34956*10^-3, 5.9681*10^-4, 6.10358*10^-4, 7.25472*10^-4, 3.90337*10^-4, -1.48989*10^-4, -4.89266*10^-4, -3.09042*10^-4, -2.36409*10^-4, -1.32294*10^-4, -4.35343*10^-5, -2.01118*10^-4, -2.4303*10^-4, -2.94806*10^-4, -4.64657*10^-4, -2.47144*10^-4, -1.45969*10^-5, -7.18141*10^-5, -1.23111*10^-4, -1.74271*10^-4, -6.39473*10^-5, 3.00874*10^-5, -7.7359*10^-5, -7.41747*10^-5, 2.71876*10^-5, 6.36235*10^-5, 3.12801*10^-5, -4.71864*10^-7, -3.30959*10^-6, 1.23727*10^-7, 0)); h(32,1) = fi.fir((-1.5164*10^-5, 1.02701*10^-5, 1.41547*10^-4, -7.76787*10^-5, -9.04689*10^-4, 4.66854*10^-4, 3.55339*10^-4, -1.87639*10^-4, -1.11055*10^-3, 8.663*10^-4, -8.22522*10^-4, 9.9208*10^-4, -1.70128*10^-2, -1.57207*10^-3, 3.93297*10^-2, 1.49163*10^-2, -2.79797*10^-2, -3.55512*10^-2, 6.42963*10^-3, 3.52265*10^-2, 1.30171*10^-2, 6.14379*10^-3, -2.02561*10^-2, -5.19214*10^-2, 1.02132*10^-2, 2.45356*10^-2, 2.06716*10^-2, -1.51029*10^-3, -2.2164*10^-2, -9.11925*10^-3, -8.62691*10^-3, 2.35389*10^-2, 1.1447*10^-2, -1.31559*10^-3, -1.03384*10^-2, -1.48828*10^-3, 3.21049*10^-3, -2.7003*10^-3, 9.47477*10^-3, 1.01988*10^-3, -5.15505*10^-3, -4.1224*10^-3, -6.57104*10^-3, 2.78443*10^-3, 6.73849*10^-3, 3.25351*10^-3, -4.39663*10^-3, -5.66711*10^-3, 1.41698*10^-3, -1.67894*10^-3, 2.45316*10^-3, 4.59245*10^-3, 2.2929*10^-3, -3.16872*10^-3, -4.27748*10^-3, 2.75949*10^-4, 3.22519*10^-3, 3.55722*10^-3, 2.48167*10^-3, -1.11709*10^-3, -3.5176*10^-3, -3.13317*10^-3, -1.723*10^-3, -8.63605*10^-4, 8.44115*10^-4, 1.26202*10^-3, 4.58586*10^-6, 1.27345*10^-4, -6.5914*10^-4, -1.7622*10^-4, 7.88594*10^-4, 2.76781*10^-3, 2.43735*10^-3, -2.16451*10^-3, -1.70087*10^-3, 1.00277*10^-3, 7.9166*10^-4, 1.67515*10^-3, 2.15798*10^-4, -9.9123*10^-4, -1.56334*10^-3, -1.68341*10^-3, 3.25692*10^-4, 9.56928*10^-4, 2.0754*10^-5, -1.90896*10^-3, -2.64317*10^-3, 1.83213*10^-4, 8.50208*10^-4, -5.55223*10^-4, -9.65448*10^-4, -8.72375*10^-4, -1.45471*10^-3, -2.25587*10^-3, -1.03743*10^-3, 1.09749*10^-3, 1.38833*10^-3, 3.86128*10^-4, 3.49077*10^-4, 1.40134*10^-4, 3.74136*10^-4, -2.56234*10^-5, -2.37476*10^-4, 3.39702*10^-4, 5.52412*10^-4, 2.23003*10^-4, -2.40769*10^-4, -1.23724*10^-4, 4.94989*10^-4, 2.98805*10^-4, -1.87967*10^-4, -1.46232*10^-4, 1.73897*10^-5, -3.34046*10^-5, 5.13725*10^-5, 2.16907*10^-4, 1.12568*10^-4, -7.63593*10^-5, -6.98524*10^-5, -8.69074*10^-5, -2.7445*10^-5, 3.56627*10^-5, 7.37787*10^-6, 3.66075*10^-7, 2.76592*10^-6, 3.84136*10^-6, -6.72085*10^-7, 0)); h(33,1) = fi.fir((1.01375*10^-5, -2.49811*10^-5, 4.65485*10^-5, -2.29372*10^-4, -6.88701*10^-5, -3.90714*10^-4, -1.07298*10^-4, -3.65628*10^-4, 8.87982*10^-4, 6.98917*10^-4, -8.64595*10^-4, -5.15935*10^-4, -3.04341*10^-4, 1.81913*10^-3, -4.17119*10^-3, 5.48634*10^-3, 1.9924*10^-3, 1.36526*10^-2, -1.02873*10^-3, -4.68348*10^-2, 1.59373*10^-3, 3.60815*10^-2, -9.42342*10^-3, -2.29176*10^-2, 3.09503*10^-3, 3.77746*10^-2, 2.88282*10^-2, -3.17335*10^-2, -1.62549*10^-2, 2.04141*10^-4, -1.84381*10^-2, 4.27428*10^-3, 8.99894*10^-3, 6.85897*10^-3, 6.04322*10^-3, -3.95258*10^-3, 3.91352*10^-3, 3.16628*10^-3, 1.33088*10^-3, 3.90822*10^-4, -3.48179*10^-3, -2.61772*10^-3, -5.58366*10^-3, -4.76877*10^-3, 1.58516*10^-3, 6.54236*10^-3, 1.89017*10^-3, -3.3063*10^-3, -8.1561*10^-5, -1.03839*10^-4, 5.74132*10^-4, 2.0712*10^-3, 1.21332*10^-3, 1.80529*10^-3, -2.31329*10^-3, -3.80022*10^-3, -1.45005*10^-3, 2.37035*10^-3, 3.67069*10^-3, 3.02275*10^-4, -4.9128*10^-3, -5.15866*10^-3, -1.35669*10^-3, 9.76814*10^-5, 5.91784*10^-4, 8.61779*10^-4, 1.43107*10^-3, 2.88222*10^-4, -1.00629*10^-3, 1.60129*10^-3, 2.04694*10^-3, 5.91966*10^-4, 7.35529*10^-4, 1.78321*10^-4, 4.39099*10^-4, -9.54427*10^-4, 4.36226*10^-4, 2.77631*10^-3, 3.0928*10^-3, 2.62714*10^-3, -1.35578*10^-3, -1.08538*10^-3, 4.79579*10^-4, -1.78226*10^-3, -3.17387*10^-3, -1.79845*10^-3, 1.05056*10^-3, -2.99232*10^-5, -1.03551*10^-3, -5.69112*10^-4, 6.01508*10^-4, 1.58322*10^-3, -8.23208*10^-4, -1.99189*10^-3, -2.4809*10^-4, 5.06377*10^-4, -8.9911*10^-4, -4.05136*10^-4, 6.31182*10^-4, 2.25169*10^-4, -3.08355*10^-4, -3.50962*10^-4, 5.02959*10^-4, 1.08012*10^-4, -6.87927*10^-4, -5.45958*10^-4, 3.48008*10^-4, 7.64329*10^-4, -1.32916*10^-5, -4.51546*10^-4, 1.87338*10^-4, 6.212*10^-4, 2.56356*10^-4, 2.39158*10^-5, -2.30096*10^-5, 8.15938*10^-6, -2.47797*10^-5, -1.31011*10^-5, 8.27008*10^-5, 4.74732*10^-5, -2.03243*10^-6, 8.23851*10^-7, 9.54223*10^-6, 6.97606*10^-6, 3.78575*10^-6, -1.43513*10^-6, -7.8919*10^-7, 0)); h(34,1) = fi.fir((-4.23075*10^-6, -4.21605*10^-5, -5.52922*10^-5, -1.59978*10^-4, 2.93752*10^-4, -2.06297*10^-4, -9.32457*10^-4, 5.97987*10^-4, 7.46486*10^-4, -7.91399*10^-4, -1.50718*10^-3, 1.53082*10^-3, -6.45897*10^-3, -4.12302*10^-4, -4.28109*10^-3, 3.11497*10^-3, 4.2757*10^-2, 2.62717*10^-3, -3.41347*10^-2, -3.25426*10^-2, 2.15351*10^-2, 2.80744*10^-2, -3.69366*10^-2, 1.38136*10^-2, 1.36663*10^-2, -1.98677*10^-2, 1.33925*10^-2, -1.66183*10^-3, -1.22118*10^-2, 2.64607*10^-3, 3.0944*10^-3, 8.2787*10^-3, 6.12769*10^-3, -1.72205*10^-3, -2.41709*10^-2, -3.63107*10^-3, 1.89019*10^-2, 5.92862*10^-3, -4.12913*10^-3, -7.29143*10^-3, -1.32075*10^-3, -2.22156*10^-3, 7.58612*10^-3, 5.85264*10^-3, -2.90549*10^-3, -2.43273*10^-3, -1.26632*10^-3, -2.39696*10^-4, 2.34591*10^-3, 3.9225*10^-3, 1.88155*10^-3, -2.30692*10^-3, -1.60383*10^-3, -3.26795*10^-3, -3.05104*10^-3, 7.90294*10^-4, 2.08479*10^-3, -4.36044*10^-4, -1.79432*10^-3, 8.07006*10^-4, 1.60437*10^-4, -3.77872*10^-4, 2.68202*10^-3, 2.18859*10^-3, -5.50278*10^-4, -2.15952*10^-3, -2.47974*10^-3, -1.38293*10^-3, 1.16165*10^-3, 3.82518*10^-3, 1.23554*10^-3, -9.52937*10^-4, -1.41146*10^-3, -5.3795*10^-4, 2.01899*10^-4, -2.3482*10^-4, 5.14625*10^-6, -7.19536*10^-4, 8.17245*10^-6, 1.51931*10^-3, 2.97595*10^-4, -1.98034*10^-4, 1.56951*10^-3, -2.80705*10^-4, -2.20105*10^-3, -1.3306*10^-3, -1.12762*10^-3, -1.25525*10^-3, -1.4361*10^-4, 1.2728*10^-3, 2.60613*10^-4, -1.18816*10^-3, -4.00668*10^-4, -3.24235*10^-4, -1.54521*10^-3, -6.33094*10^-4, 2.84425*10^-4, -3.19442*10^-4, -3.78649*10^-4, 2.76423*10^-4, 7.36034*10^-5, -6.94307*10^-5, 2.18866*10^-4, 3.09816*10^-4, 4.41506*10^-4, 2.11596*10^-4, 1.0837*10^-4, -1.01793*10^-4, 6.99201*10^-5, 4.77425*10^-4, -8.02488*10^-5, -1.08287*10^-4, 2.02515*10^-4, 1.81432*10^-4, -1.31045*10^-5, 1.57635*10^-5, 9.60958*10^-6, 3.04029*10^-5, 2.47107*10^-5, -7.85942*10^-6, -6.0562*10^-6, -1.85995*10^-5, -2.64133*10^-7, -1.0509*10^-5, -1.72572*10^-7, 5.22982*10^-7, -3.53876*10^-7, 0)); h(35,1) = fi.fir((1.12765*10^-5, -3.65911*10^-5, 1.06173*10^-4, -5.33286*10^-4, -1.69883*10^-4, -5.69943*10^-4, 1.61338*10^-3, -4.73348*10^-4, -1.36568*10^-5, -9.0807*10^-4, 2.09803*10^-3, -9.92748*10^-4, -9.21977*10^-3, 2.71609*10^-3, 1.64873*10^-2, 2.93523*10^-2, -2.32394*10^-2, -4.09862*10^-2, 7.27637*10^-3, 8.22568*10^-3, -9.44457*10^-3, -2.5463*10^-2, 9.93941*10^-3, 6.29214*10^-2, 1.14492*10^-2, -7.04191*10^-3, 2.81423*10^-3, -2.21118*10^-2, -1.21284*10^-2, -6.07418*10^-3, 4.15989*10^-3, -2.93199*10^-3, -9.59867*10^-3, -8.7117*10^-3, 2.89994*10^-3, 9.09699*10^-3, 3.25678*10^-3, -1.67883*10^-3, -1.11825*10^-3, 5.42193*10^-3, 6.68591*10^-4, -5.09335*10^-3, 2.98655*10^-3, 6.97034*10^-3, 7.70276*10^-4, -1.12635*10^-3, 6.42569*10^-4, 3.29707*10^-3, -1.49884*10^-4, -2.18477*10^-3, -8.68943*10^-5, 2.22795*10^-3, -2.68978*10^-3, -5.62012*10^-3, -5.35669*10^-3, 1.85839*10^-3, 5.87075*10^-3, 2.29604*10^-3, -8.41582*10^-4, -1.51538*10^-3, 1.84832*10^-3, 1.27824*10^-3, -9.7666*10^-4, -1.15073*10^-3, -4.60191*10^-4, -2.181*10^-4, -3.53714*10^-4, -4.96173*10^-4, -2.88855*10^-4, 7.91697*10^-4, 4.2063*10^-4, -6.69976*10^-4, 1.29987*10^-3, -1.32234*10^-3, -1.28346*10^-3, 1.37812*10^-3, 1.4116*10^-3, 2.86537*10^-4, -2.00664*10^-3, -1.3521*10^-3, 3.42351*10^-4, 2.97016*10^-4, -3.18298*10^-5, -3.24878*10^-4, 6.07156*10^-4, 1.39777*10^-3, -7.19942*10^-4, -1.347*10^-3, 4.89703*10^-4, 7.94729*10^-4, -3.85158*10^-4, -1.37693*10^-3, -1.0998*10^-4, 4.59358*10^-4, -3.56807*10^-4, 4.57207*10^-4, 6.47257*10^-4, 2.83578*10^-4, 3.40922*10^-4, 3.48375*10^-4, 6.2797*10^-4, 4.59552*10^-4, 7.54328*10^-5, 3.15497*10^-4, 3.18047*10^-4, -6.81554*10^-5, -1.63798*10^-4, 1.16481*10^-4, 2.4529*10^-4, 1.23295*10^-4, -1.30172*10^-4, -1.87145*10^-4, 1.02567*10^-4, 1.60079*10^-4, -7.18506*10^-5, -1.47306*10^-4, -1.31546*10^-4, -6.18916*10^-5, -3.97443*10^-5, -6.46746*10^-5, -3.96236*10^-5, -1.86122*10^-5, -1.09357*10^-5, -1.29722*10^-5, -1.88962*10^-6, 5.36799*10^-7, 4.90107*10^-7, 0));
3a56d586868ec9e084086a06646116008b802d0ca14056c3b37c49d4e8a0925a
simonvanderveldt/guitarix
lowpass_down.dsp
import("stdfaust.lib"); import("reduce.lib"); import("guitarix.lib"); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[unit:dB]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; process = fi.lowpass(1,5631): fi.highpass(1,80): vmeter1 ;
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/lowpass_down.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
import("stdfaust.lib"); import("reduce.lib"); import("guitarix.lib"); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[unit:dB]", -70, +5)); process = fi.lowpass(1,5631): fi.highpass(1,80): vmeter1 ;
96dc3b31b4b5474dfe58a5350e564ef0cf297233cc0133ce7c946baee8bf46ba
simonvanderveldt/guitarix
drumseq.dsp
declare id "seq"; declare name "DrumSequencer"; declare category "Misc"; declare shortname "Drum"; declare description "Simple Drum Step Sequencer"; //https://github.com/josmithiii/faust-jos/tree/master/percussion import("stdfaust.lib"); hat = (vgroup("hat_closed.dsp",component("hat_closed.dsp"))); // hat_closed.dsp kick = (vgroup("kick.dsp",component("kick.dsp"))); // kick.dsp snare = (vgroup("snare.dsp",component("snare.dsp"))); // snare.dsp tom = (vgroup("tom.dsp",component("tom.dsp"))); // tom.dsp gain = vslider("gain [tooltip: Volume level in decibels]",-20,-60,40,0.1) : si.smooth(0.999) : ba.db2linear; process(x) = hat+kick+snare+tom : *(gain) : +(x) : _;
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/faust/drumseq.dsp
faust
https://github.com/josmithiii/faust-jos/tree/master/percussion hat_closed.dsp kick.dsp snare.dsp tom.dsp
declare id "seq"; declare name "DrumSequencer"; declare category "Misc"; declare shortname "Drum"; declare description "Simple Drum Step Sequencer"; import("stdfaust.lib"); gain = vslider("gain [tooltip: Volume level in decibels]",-20,-60,40,0.1) : si.smooth(0.999) : ba.db2linear; process(x) = hat+kick+snare+tom : *(gain) : +(x) : _;
c084c87514994258906061c7fa05b684e476ceb60081af7fb04a0a4e51170e97
simonvanderveldt/guitarix
bmfp.dsp
declare id "bmpf"; declare name "BigMuffFuzzPadel"; declare shortname "FuzzPadel"; declare category "Distortion"; declare description "BigMuffFuzzPadel"; import("guitarix.lib"); import("stdfaust.lib"); import("reduce.lib"); bigmuff = _<: filter1,filter2:>_ with { tone = vslider("tone",0.5,0,1,0.01); filter1 = fi.highpass( 1, 1856):*(tone); filter2 = fi.lowpass( 1, 408 ) :*(1-tone); }; process = _<:*(dry),(*(wet):*(gain):bigmuff:fuzz:fuzzy:fiz):>downfilter with { //fuzz(x) = x-0.15*x^2-0.15*x^3; //fuzz(x) = 1.5*x-0.5*x^3; fuzz(x) = (1+drive/101)*x/(1+drive/101*abs(x)); drive = vslider("drive", 1, -3, 100, 1); fuzzy = fuzzy_tube(2,1,0.5,drive); fiz(x) = x+(x^7); downfilter = fi.lowpass(1,5631): fi.highpass(1,80); gain = vslider("Input",0,-24,20,0.1) : ba.db2linear : smoothi(0.999); wet = vslider("Output", 100, 50, 100, 1) : /(100); dry = 1 - wet; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/bmfp.dsp
faust
fuzz(x) = x-0.15*x^2-0.15*x^3; fuzz(x) = 1.5*x-0.5*x^3;
declare id "bmpf"; declare name "BigMuffFuzzPadel"; declare shortname "FuzzPadel"; declare category "Distortion"; declare description "BigMuffFuzzPadel"; import("guitarix.lib"); import("stdfaust.lib"); import("reduce.lib"); bigmuff = _<: filter1,filter2:>_ with { tone = vslider("tone",0.5,0,1,0.01); filter1 = fi.highpass( 1, 1856):*(tone); filter2 = fi.lowpass( 1, 408 ) :*(1-tone); }; process = _<:*(dry),(*(wet):*(gain):bigmuff:fuzz:fuzzy:fiz):>downfilter with { fuzz(x) = (1+drive/101)*x/(1+drive/101*abs(x)); drive = vslider("drive", 1, -3, 100, 1); fuzzy = fuzzy_tube(2,1,0.5,drive); fiz(x) = x+(x^7); downfilter = fi.lowpass(1,5631): fi.highpass(1,80); gain = vslider("Input",0,-24,20,0.1) : ba.db2linear : smoothi(0.999); wet = vslider("Output", 100, 50, 100, 1) : /(100); dry = 1 - wet; };
0136b86d8ba78bc657fed6e8a0f9725e6173399a5ddbfafa5fd083d17a50e6e7
simonvanderveldt/guitarix
dattorros_progenitor.dsp
declare id "dattorros_progenitor"; declare name "Plate Reverb"; declare category "Reverb"; //------------------------------------ //Based at: //Effect Design Part 1: Reverberator and Other Filters //JON DATTORRO, AES Member //CCRMA, Stanford University, Stanford, CA, USA //------------------------------------ import("stdfaust.lib"); import("guitarix.lib"); //Controls max_predelay_ms = 200; predelay = hslider("predelay ms[name:Predelay]", 0, 0, max_predelay_ms, 10); excursion = hslider("excursion[name:Excursion]", 0, 0, 16, 0.5); decay = hslider("decay[name:Decay]", 0.1, 0, 0.5, 0.01); decay_diffusion1 = hslider("decay diff 1[name:Decay 1]", 0.1, 0, 0.7, 0.01); decay_diffusion2 = hslider("decay diff 2[name:Decay 2]", 0.1, 0, 0.5, 0.01); input_diffusion1 = hslider("input diff 1[name:Input 1]", 0.1, 0, 0.75, 0.01); input_diffusion2 = hslider("input diff 2[name:Input 2]", 0.1, 0, 0.625, 0.01); bandwidth = hslider("bandwidth[name:Bandwidth]", 0.9, 0.1, 0.95, 0.0005); damping = hslider("damping[name:HF Damp]", 0.0005, 0.1, 0.95, 0.0005); dry_wet = hslider("dry/wet[name:Dry/Wet]", 0.5, 0, 1, 0.05); //Will be moved to .lib X = (_,_)<:(!,_,_,!); mixer(c,x0,y0,x1,y1) = sel(c,x0,y0), sel(c,x1,y1) with { sel(c,x,y) = (1-c)*x + c*y; }; //Consts orig_sr = 29761.0; //Original sample rate, described in paper //Correct de.delay lines according sample rate get_length(x) = x/orig_sr:_*ma.SR:int; get_predelay_length(x) = x*ma.SR:_*0.001; input_chain(predelay, bw, input_diffusion1, input_diffusion2) = (_+_)*0.5: de.sdelay(int(2^18), 100*ma.SR/1000.0, get_predelay_length(predelay)):opf(bw): allpass_filter(get_length(142),input_diffusion1):allpass_filter(get_length(107),input_diffusion1): allpass_filter(get_length(379),input_diffusion2):allpass_filter(get_length(277),input_diffusion2); left_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2) = _*0.5+_*0.3:allpass_with_fdelay(get_length(656),decay_diffusion1,17,0.5*(os.osc(1)+1)*excursion)<:@(get_length(4453)),_: opf(damping),_:_*decay,_:allpass_filter(get_length(1800),decay_diffusion2),_:@(get_length(3720)),_:_*decay,_; right_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2) = _*0.5+_*0.3:allpass_with_fdelay(get_length(892),decay_diffusion1,17,0.5*(os.osc(1)+1)*excursion)<:@(get_length(4217)),_: opf(damping),_:_*decay,_:allpass_filter(get_length(2656),decay_diffusion2),_:@(get_length(3163)),_:_*decay,_; process = _,_<: (_,(input_chain(predelay,1 - bandwidth, input_diffusion1,input_diffusion2)<:_,_),_):> (_,(_,X,_:(left_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2), right_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2)):_,X,_)~X),_:_,_,X,_,_: _,(_,_:>_),(_,_:>_),_:X,_,_:mixer(1 - dry_wet);
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/faust/dattorros_progenitor.dsp
faust
------------------------------------ Based at: Effect Design Part 1: Reverberator and Other Filters JON DATTORRO, AES Member CCRMA, Stanford University, Stanford, CA, USA ------------------------------------ Controls Will be moved to .lib Consts Original sample rate, described in paper Correct de.delay lines according sample rate
declare id "dattorros_progenitor"; declare name "Plate Reverb"; declare category "Reverb"; import("stdfaust.lib"); import("guitarix.lib"); max_predelay_ms = 200; predelay = hslider("predelay ms[name:Predelay]", 0, 0, max_predelay_ms, 10); excursion = hslider("excursion[name:Excursion]", 0, 0, 16, 0.5); decay = hslider("decay[name:Decay]", 0.1, 0, 0.5, 0.01); decay_diffusion1 = hslider("decay diff 1[name:Decay 1]", 0.1, 0, 0.7, 0.01); decay_diffusion2 = hslider("decay diff 2[name:Decay 2]", 0.1, 0, 0.5, 0.01); input_diffusion1 = hslider("input diff 1[name:Input 1]", 0.1, 0, 0.75, 0.01); input_diffusion2 = hslider("input diff 2[name:Input 2]", 0.1, 0, 0.625, 0.01); bandwidth = hslider("bandwidth[name:Bandwidth]", 0.9, 0.1, 0.95, 0.0005); damping = hslider("damping[name:HF Damp]", 0.0005, 0.1, 0.95, 0.0005); dry_wet = hslider("dry/wet[name:Dry/Wet]", 0.5, 0, 1, 0.05); X = (_,_)<:(!,_,_,!); mixer(c,x0,y0,x1,y1) = sel(c,x0,y0), sel(c,x1,y1) with { sel(c,x,y) = (1-c)*x + c*y; }; get_length(x) = x/orig_sr:_*ma.SR:int; get_predelay_length(x) = x*ma.SR:_*0.001; input_chain(predelay, bw, input_diffusion1, input_diffusion2) = (_+_)*0.5: de.sdelay(int(2^18), 100*ma.SR/1000.0, get_predelay_length(predelay)):opf(bw): allpass_filter(get_length(142),input_diffusion1):allpass_filter(get_length(107),input_diffusion1): allpass_filter(get_length(379),input_diffusion2):allpass_filter(get_length(277),input_diffusion2); left_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2) = _*0.5+_*0.3:allpass_with_fdelay(get_length(656),decay_diffusion1,17,0.5*(os.osc(1)+1)*excursion)<:@(get_length(4453)),_: opf(damping),_:_*decay,_:allpass_filter(get_length(1800),decay_diffusion2),_:@(get_length(3720)),_:_*decay,_; right_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2) = _*0.5+_*0.3:allpass_with_fdelay(get_length(892),decay_diffusion1,17,0.5*(os.osc(1)+1)*excursion)<:@(get_length(4217)),_: opf(damping),_:_*decay,_:allpass_filter(get_length(2656),decay_diffusion2),_:@(get_length(3163)),_:_*decay,_; process = _,_<: (_,(input_chain(predelay,1 - bandwidth, input_diffusion1,input_diffusion2)<:_,_),_):> (_,(_,X,_:(left_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2), right_branch(excursion,decay_diffusion1,damping,decay,decay_diffusion2)):_,X,_)~X),_:_,_,X,_,_: _,(_,_:>_),(_,_:>_),_:X,_,_:mixer(1 - dry_wet);
3a6357a8c6246446371cb120e6faae870737a5cadb55d50fd9d98b1d1030da66
simonvanderveldt/guitarix
mbdel.dsp
declare id "mbdel"; declare name "MultiBand Delay"; declare shortname "MB Delay"; declare category "Echo / Delay"; declare description "Multi Band Delay"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); interp = 100*ma.SR/1000.0; N = int( 2^18); g1 = vslider("gain1", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d1 = ba.tempo(hslider("delay1[tooltip:Delay in Beats per Minute]",30,24,360,1)); g2 = vslider("gain2", -5, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d2 = ba.tempo(hslider("delay2[tooltip:Delay in Beats per Minute]",60,24,360,1)); g3 = vslider("gain3", -2, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d3 = ba.tempo(hslider("delay3[tooltip:Delay in Beats per Minute]",90,24,360,1)); g4 = vslider("gain4", 0, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d4 = ba.tempo(hslider("delay4[tooltip:Delay in Beats per Minute]",120,24,360,1)); g5 = vslider("gain5", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d5 = ba.tempo(hslider("delay5[tooltip:Delay in Beats per Minute]",150,24,360,1)); del(g,d) = *(g) : de.sdelay(N, interp,d) ; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; process = _<:(geq: ( dist5s , dist4s , dist3s, dist2s, dist1s)),_:>_ with { dist1s = del(g1,d1) : vmeter1; dist2s = del(g2,d2) : vmeter2; dist3s = del(g3,d3) : vmeter3; dist4s = del(g4,d4) : vmeter4; dist5s = del(g5,d5) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/plugins/mbdel.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
declare id "mbdel"; declare name "MultiBand Delay"; declare shortname "MB Delay"; declare category "Echo / Delay"; declare description "Multi Band Delay"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); interp = 100*ma.SR/1000.0; N = int( 2^18); g1 = vslider("gain1", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d1 = ba.tempo(hslider("delay1[tooltip:Delay in Beats per Minute]",30,24,360,1)); g2 = vslider("gain2", -5, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d2 = ba.tempo(hslider("delay2[tooltip:Delay in Beats per Minute]",60,24,360,1)); g3 = vslider("gain3", -2, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d3 = ba.tempo(hslider("delay3[tooltip:Delay in Beats per Minute]",90,24,360,1)); g4 = vslider("gain4", 0, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d4 = ba.tempo(hslider("delay4[tooltip:Delay in Beats per Minute]",120,24,360,1)); g5 = vslider("gain5", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d5 = ba.tempo(hslider("delay5[tooltip:Delay in Beats per Minute]",150,24,360,1)); del(g,d) = *(g) : de.sdelay(N, interp,d) ; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); process = _<:(geq: ( dist5s , dist4s , dist3s, dist2s, dist1s)),_:>_ with { dist1s = del(g1,d1) : vmeter1; dist2s = del(g2,d2) : vmeter2; dist3s = del(g3,d3) : vmeter3; dist4s = del(g4,d4) : vmeter4; dist5s = del(g5,d5) : vmeter5; };
6a7b048c99f33412486c452f35c3e2b5f9fcfdb5a2347803b0b355e210ab7c87
simonvanderveldt/guitarix
graphiceq.dsp
declare id "graphiceq"; declare name "Graphic EQ"; declare category "Tone Control"; declare description "Graphic EQ"; import("stdfaust.lib"); import("reduce.lib"); //geq = fi.filterbank(3, (31.25, 62.5, 125., 250., 500., 1000., 2000., 4000., 8000., 16000.)); geq = fi.filterbank(3, (44., 88., 177., 354., 707., 1414., 2828., 5657., 11384., 18110.)); g1 = vslider("g1[tooltip:gain (dB) below 31.25 Hz]", 0, -60, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g2 = vslider("g2 [tooltip:gain (dB) at 62.5 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g3 = vslider("g3 [tooltip:gain (dB) at 125 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g4 = vslider("g4 [tooltip:gain (dB) at 250 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g5 = vslider("g5 [tooltip:gain (dB) at 500 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g6 = vslider("g6 [tooltip:gain (dB) at 1 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g7 = vslider("g7 [tooltip:gain (dB) at 2 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g8 = vslider("g8 [tooltip:gain (dB) at 4 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g9 = vslider("g9 [tooltip:gain (dB) at 8 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g10 = vslider("g10 [tooltip:gain (dB) at 16 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g11 = vslider("g11 [tooltip:gain (dB) above 16 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); v1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); v2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); v3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); v4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); v5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); v6(x) = attach(x, envelop(x) : vbargraph("v6[nomidi:no]", -70, +5)); v7(x) = attach(x, envelop(x) : vbargraph("v7[nomidi:no]", -70, +5)); v8(x) = attach(x, envelop(x) : vbargraph("v8[nomidi:no]", -70, +5)); v9(x) = attach(x, envelop(x) : vbargraph("v9[nomidi:no]", -70, +5)); v10(x) = attach(x, envelop(x) : vbargraph("v10[nomidi:no]", -70, +5)); v11(x) = attach(x, envelop(x) : vbargraph("v11[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; process = geq :(*(g11):v11), (*(g10):v10),(*(g9):v9),(*(g8):v8),(*(g7):v7),(*(g6):v6), (*(g5):v5),(*(g4):v4),(*(g3):v3),(*(g2):v2),(*(g1):v1) :>_;
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/graphiceq.dsp
faust
geq = fi.filterbank(3, (31.25, 62.5, 125., 250., 500., 1000., 2000., 4000., 8000., 16000.));
declare id "graphiceq"; declare name "Graphic EQ"; declare category "Tone Control"; declare description "Graphic EQ"; import("stdfaust.lib"); import("reduce.lib"); geq = fi.filterbank(3, (44., 88., 177., 354., 707., 1414., 2828., 5657., 11384., 18110.)); g1 = vslider("g1[tooltip:gain (dB) below 31.25 Hz]", 0, -60, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g2 = vslider("g2 [tooltip:gain (dB) at 62.5 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g3 = vslider("g3 [tooltip:gain (dB) at 125 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g4 = vslider("g4 [tooltip:gain (dB) at 250 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g5 = vslider("g5 [tooltip:gain (dB) at 500 Hz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g6 = vslider("g6 [tooltip:gain (dB) at 1 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g7 = vslider("g7 [tooltip:gain (dB) at 2 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g8 = vslider("g8 [tooltip:gain (dB) at 4 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g9 = vslider("g9 [tooltip:gain (dB) at 8 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g10 = vslider("g10 [tooltip:gain (dB) at 16 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); g11 = vslider("g11 [tooltip:gain (dB) above 16 kHz]", 0, -30, 5.2, 0.1) : ba.db2linear : si.smooth(0.999); v1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); v2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); v3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); v4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); v5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); v6(x) = attach(x, envelop(x) : vbargraph("v6[nomidi:no]", -70, +5)); v7(x) = attach(x, envelop(x) : vbargraph("v7[nomidi:no]", -70, +5)); v8(x) = attach(x, envelop(x) : vbargraph("v8[nomidi:no]", -70, +5)); v9(x) = attach(x, envelop(x) : vbargraph("v9[nomidi:no]", -70, +5)); v10(x) = attach(x, envelop(x) : vbargraph("v10[nomidi:no]", -70, +5)); v11(x) = attach(x, envelop(x) : vbargraph("v11[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; process = geq :(*(g11):v11), (*(g10):v10),(*(g9):v9),(*(g8):v8),(*(g7):v7),(*(g6):v6), (*(g5):v5),(*(g4):v4),(*(g3):v3),(*(g2):v2),(*(g1):v1) :>_;
ade77cdaee54cdb6f22eb610cabc707a87157a52ed6ed6659db37703229bb216
simonvanderveldt/guitarix
mbe.dsp
declare id "mbe"; declare name "MultiBand Echo"; declare shortname "MB Echo"; declare category "Echo / Delay"; declare description "Multi Band Echo"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); t1 = ba.tempo(hslider("time1[tooltip:Echo in Beats per Minute]",30,24,360,1)); r1 = hslider("percent1", 10, 0, 100, 0.1)/100.0 : si.smooth(0.999); t2 = ba.tempo(hslider("time2[tooltip:Echo in Beats per Minute]",60,24,360,1)); r2 = hslider("percent2", 30, 0, 100, 0.1)/100.0 : si.smooth(0.999); t3 = ba.tempo(hslider("time3[tooltip:Echo in Beats per Minute]",120,24,360,1)); r3 = hslider("percent3", 45, 0, 100, 0.1)/100.0 : si.smooth(0.999); t4 = ba.tempo(hslider("time4[tooltip:Echo in Beats per Minute]",150,24,360,1)); r4 = hslider("percent4", 20, 0, 100, 0.1)/100.0 : si.smooth(0.999); t5 = ba.tempo(hslider("time5[tooltip:Echo in Beats per Minute]",240,24,360,1)); r5 = hslider("percent5", 0, 0, 100, 0.1)/100.0 : si.smooth(0.999); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; echo1(t,r) = +~(de.sdelay(int(2^18), 100*ma.SR/1000.0, t) * (r)); process = geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :>_ with { dist1s = echo1(t1,r1) : vmeter1 ; dist2s = echo1(t2,r2) : vmeter2; dist3s = echo1(t3,r3) : vmeter3; dist4s = echo1(t4,r4) : vmeter4; dist5s = echo1(t5,r5) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/mbe.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
declare id "mbe"; declare name "MultiBand Echo"; declare shortname "MB Echo"; declare category "Echo / Delay"; declare description "Multi Band Echo"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); t1 = ba.tempo(hslider("time1[tooltip:Echo in Beats per Minute]",30,24,360,1)); r1 = hslider("percent1", 10, 0, 100, 0.1)/100.0 : si.smooth(0.999); t2 = ba.tempo(hslider("time2[tooltip:Echo in Beats per Minute]",60,24,360,1)); r2 = hslider("percent2", 30, 0, 100, 0.1)/100.0 : si.smooth(0.999); t3 = ba.tempo(hslider("time3[tooltip:Echo in Beats per Minute]",120,24,360,1)); r3 = hslider("percent3", 45, 0, 100, 0.1)/100.0 : si.smooth(0.999); t4 = ba.tempo(hslider("time4[tooltip:Echo in Beats per Minute]",150,24,360,1)); r4 = hslider("percent4", 20, 0, 100, 0.1)/100.0 : si.smooth(0.999); t5 = ba.tempo(hslider("time5[tooltip:Echo in Beats per Minute]",240,24,360,1)); r5 = hslider("percent5", 0, 0, 100, 0.1)/100.0 : si.smooth(0.999); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); echo1(t,r) = +~(de.sdelay(int(2^18), 100*ma.SR/1000.0, t) * (r)); process = geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :>_ with { dist1s = echo1(t1,r1) : vmeter1 ; dist2s = echo1(t2,r2) : vmeter2; dist3s = echo1(t3,r3) : vmeter3; dist4s = echo1(t4,r4) : vmeter4; dist5s = echo1(t5,r5) : vmeter5; };
5dd5ad7d9206f4ffce4da234d7149ca5a7ab96c2782bc051f83e91d09e7e2cea
simonvanderveldt/guitarix
mbd.dsp
declare id "mbd"; declare name "MultiBand Distortion"; declare shortname "MB Distortion"; declare category "Distortion"; declare description "MultiBand Distortion"; import("stdfaust.lib"); import("reduce.lib"); anti_denormal = pow(10,-20); anti_denormal_ac = 1 - 1' : *(anti_denormal) : + ~ *(-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); drive1 = hslider("Drive1 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset1 = hslider("Offset1 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive2 = hslider("Drive2 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset2 = hslider("Offset2 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive3 = hslider("Drive3 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset3 = hslider("Offset3 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive4 = hslider("Drive4 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset4 = hslider("Offset4 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive5 = hslider("Drive5 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset5 = hslider("Offset5 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); gain1 = vslider("Gain", 0, -40, 4, 0.1) : ba.db2linear : si.smooth(0.999); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096); // : max(ba.db2linear(-70)) : ba.linear2db; process = _: +(anti_denormal_ac): geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :> *(gain1) with { dist1s = ef.cubicnl_nodc(drive1,offset1: si.smooth(0.999)) : vmeter1; dist2s = ef.cubicnl_nodc(drive2,offset2: si.smooth(0.999)) : vmeter2; dist3s = ef.cubicnl_nodc(drive3,offset3: si.smooth(0.999)) : vmeter3; dist4s = ef.cubicnl_nodc(drive4,offset4: si.smooth(0.999)) : vmeter4; dist5s = ef.cubicnl_nodc(drive5,offset5: si.smooth(0.999)) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/mbd.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
declare id "mbd"; declare name "MultiBand Distortion"; declare shortname "MB Distortion"; declare category "Distortion"; declare description "MultiBand Distortion"; import("stdfaust.lib"); import("reduce.lib"); anti_denormal = pow(10,-20); anti_denormal_ac = 1 - 1' : *(anti_denormal) : + ~ *(-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); drive1 = hslider("Drive1 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset1 = hslider("Offset1 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive2 = hslider("Drive2 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset2 = hslider("Offset2 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive3 = hslider("Drive3 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset3 = hslider("Offset3 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive4 = hslider("Drive4 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset4 = hslider("Offset4 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); drive5 = hslider("Drive5 [tooltip: Amount of distortion]", 0, 0, 1, 0.01); offset5 = hslider("Offset5 [tooltip: Brings in even harmonics]", 0, 0, 0.5, 0.01); gain1 = vslider("Gain", 0, -40, 4, 0.1) : ba.db2linear : si.smooth(0.999); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); process = _: +(anti_denormal_ac): geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :> *(gain1) with { dist1s = ef.cubicnl_nodc(drive1,offset1: si.smooth(0.999)) : vmeter1; dist2s = ef.cubicnl_nodc(drive2,offset2: si.smooth(0.999)) : vmeter2; dist3s = ef.cubicnl_nodc(drive3,offset3: si.smooth(0.999)) : vmeter3; dist4s = ef.cubicnl_nodc(drive4,offset4: si.smooth(0.999)) : vmeter4; dist5s = ef.cubicnl_nodc(drive5,offset5: si.smooth(0.999)) : vmeter5; };
211456365b223f0c97c9a276d90e4c054b35b026ebe24b9741c7d54fa9589c39
simonvanderveldt/guitarix
mbclipper.dsp
declare id "mbclip"; declare name "MultiBand Clipper"; declare shortname "MB Clipper"; declare category "Distortion"; declare description "MultiBand Clipper"; import("stdfaust.lib"); import("reduce.lib"); anti_denormal = pow(10,-20); anti_denormal_ac = 1 - 1' : *(anti_denormal) : + ~ *(-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); drive1 = hslider("Drive1 [tooltip: Amount of distortion]", 0.33, 0, 1, 0.01); drive2 = hslider("Drive2 [tooltip: Amount of distortion]", 0.5, 0, 1, 0.01); drive3 = hslider("Drive3 [tooltip: Amount of distortion]", 0.65, 0, 1, 0.01); drive4 = hslider("Drive4 [tooltip: Amount of distortion]", 0.33, 0, 1, 0.01); drive5 = hslider("Drive5 [tooltip: Amount of distortion]", 0.1, 0, 1, 0.01); gain1 = vslider("Gain", 0, -40, 4, 0.1) : ba.db2linear : si.smooth(0.999); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096); // : max(ba.db2linear(-70)) : ba.linear2db; clip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,2*drive); clip = ffunction(float symclip(float), "clipping.h", ""); postgain = max(1.0,1.0/pregain); }; eclip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,2*drive); clip(x) = ((exp(x*4)-exp(-x*4*1.2))/(exp(x*4)+exp(-x*4)))/4; postgain = max(1.0,1.0/(pregain*2.5)); }; cclip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,drive); clip(x) = ma.tanh((drive+0.0001)*x)/ma.tanh(drive+0.0001); postgain = max(1.0,1.0/pregain); }; aclip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,2*drive); clip(x) = atan(x)/ma.PI; postgain = max(1.0,1.0/pregain); }; process = _: +(anti_denormal_ac): geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :> *(gain1) with { dist1s = clip(drive1: si.smooth(0.999)) : vmeter1; dist2s = clip(drive2: si.smooth(0.999)) : vmeter2; dist3s = clip(drive3: si.smooth(0.999)) : vmeter3; dist4s = clip(drive4: si.smooth(0.999)) : vmeter4; dist5s = clip(drive5: si.smooth(0.999)) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/plugins/mbclipper.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
declare id "mbclip"; declare name "MultiBand Clipper"; declare shortname "MB Clipper"; declare category "Distortion"; declare description "MultiBand Clipper"; import("stdfaust.lib"); import("reduce.lib"); anti_denormal = pow(10,-20); anti_denormal_ac = 1 - 1' : *(anti_denormal) : + ~ *(-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); drive1 = hslider("Drive1 [tooltip: Amount of distortion]", 0.33, 0, 1, 0.01); drive2 = hslider("Drive2 [tooltip: Amount of distortion]", 0.5, 0, 1, 0.01); drive3 = hslider("Drive3 [tooltip: Amount of distortion]", 0.65, 0, 1, 0.01); drive4 = hslider("Drive4 [tooltip: Amount of distortion]", 0.33, 0, 1, 0.01); drive5 = hslider("Drive5 [tooltip: Amount of distortion]", 0.1, 0, 1, 0.01); gain1 = vslider("Gain", 0, -40, 4, 0.1) : ba.db2linear : si.smooth(0.999); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); clip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,2*drive); clip = ffunction(float symclip(float), "clipping.h", ""); postgain = max(1.0,1.0/pregain); }; eclip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,2*drive); clip(x) = ((exp(x*4)-exp(-x*4*1.2))/(exp(x*4)+exp(-x*4)))/4; postgain = max(1.0,1.0/(pregain*2.5)); }; cclip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,drive); clip(x) = ma.tanh((drive+0.0001)*x)/ma.tanh(drive+0.0001); postgain = max(1.0,1.0/pregain); }; aclip(drive) = *(pregain) : clip : *(postgain) with { pregain = pow(10.0,2*drive); clip(x) = atan(x)/ma.PI; postgain = max(1.0,1.0/pregain); }; process = _: +(anti_denormal_ac): geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :> *(gain1) with { dist1s = clip(drive1: si.smooth(0.999)) : vmeter1; dist2s = clip(drive2: si.smooth(0.999)) : vmeter2; dist3s = clip(drive3: si.smooth(0.999)) : vmeter3; dist4s = clip(drive4: si.smooth(0.999)) : vmeter4; dist5s = clip(drive5: si.smooth(0.999)) : vmeter5; };
84a58fbb2a81cfc8b0aba25a347802b6112276716060498740ba70a029c5063a
simonvanderveldt/guitarix
graphiceq.dsp
declare id "graphiceq"; declare name "Graphic EQ"; declare category "Tone Control"; declare description "Graphic EQ"; import("stdfaust.lib"); import("reduce.lib"); //geq = fi.filterbank(3, (31.25, 62.5, 125., 250., 500., 1000., 2000., 4000., 8000., 16000.)); geq = fi.filterbank(3, (44., 88., 177., 354., 707., 1414., 2828., 5657., 11384., 18110.)); g1 = vslider("g1[tooltip:gain (dB) below 31.25 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g2 = vslider("g2 [tooltip:gain (dB) at 62.5 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g3 = vslider("g3 [tooltip:gain (dB) at 125 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g4 = vslider("g4 [tooltip:gain (dB) at 250 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g5 = vslider("g5 [tooltip:gain (dB) at 500 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g6 = vslider("g6 [tooltip:gain (dB) at 1 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g7 = vslider("g7 [tooltip:gain (dB) at 2 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g8 = vslider("g8 [tooltip:gain (dB) at 4 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g9 = vslider("g9 [tooltip:gain (dB) at 8 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g10 = vslider("g10 [tooltip:gain (dB) at 16 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g11 = vslider("g11 [tooltip:gain (dB) above 16 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); v1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); v2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); v3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); v4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); v5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); v6(x) = attach(x, envelop(x) : vbargraph("v6[nomidi:no]", -70, +5)); v7(x) = attach(x, envelop(x) : vbargraph("v7[nomidi:no]", -70, +5)); v8(x) = attach(x, envelop(x) : vbargraph("v8[nomidi:no]", -70, +5)); v9(x) = attach(x, envelop(x) : vbargraph("v9[nomidi:no]", -70, +5)); v10(x) = attach(x, envelop(x) : vbargraph("v10[nomidi:no]", -70, +5)); v11(x) = attach(x, envelop(x) : vbargraph("v11[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; process = geq :(*(g11):v11), (*(g10):v10),(*(g9):v9),(*(g8):v8),(*(g7):v7),(*(g6):v6), (*(g5):v5),(*(g4):v4),(*(g3):v3),(*(g2):v2),(*(g1):v1) :>_;
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/faust/graphiceq.dsp
faust
geq = fi.filterbank(3, (31.25, 62.5, 125., 250., 500., 1000., 2000., 4000., 8000., 16000.));
declare id "graphiceq"; declare name "Graphic EQ"; declare category "Tone Control"; declare description "Graphic EQ"; import("stdfaust.lib"); import("reduce.lib"); geq = fi.filterbank(3, (44., 88., 177., 354., 707., 1414., 2828., 5657., 11384., 18110.)); g1 = vslider("g1[tooltip:gain (dB) below 31.25 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g2 = vslider("g2 [tooltip:gain (dB) at 62.5 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g3 = vslider("g3 [tooltip:gain (dB) at 125 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g4 = vslider("g4 [tooltip:gain (dB) at 250 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g5 = vslider("g5 [tooltip:gain (dB) at 500 Hz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g6 = vslider("g6 [tooltip:gain (dB) at 1 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g7 = vslider("g7 [tooltip:gain (dB) at 2 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g8 = vslider("g8 [tooltip:gain (dB) at 4 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g9 = vslider("g9 [tooltip:gain (dB) at 8 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g10 = vslider("g10 [tooltip:gain (dB) at 16 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); g11 = vslider("g11 [tooltip:gain (dB) above 16 kHz]", 0, -30, 20, 0.1) : ba.db2linear : si.smooth(0.999); v1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); v2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); v3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); v4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); v5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); v6(x) = attach(x, envelop(x) : vbargraph("v6[nomidi:no]", -70, +5)); v7(x) = attach(x, envelop(x) : vbargraph("v7[nomidi:no]", -70, +5)); v8(x) = attach(x, envelop(x) : vbargraph("v8[nomidi:no]", -70, +5)); v9(x) = attach(x, envelop(x) : vbargraph("v9[nomidi:no]", -70, +5)); v10(x) = attach(x, envelop(x) : vbargraph("v10[nomidi:no]", -70, +5)); v11(x) = attach(x, envelop(x) : vbargraph("v11[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; process = geq :(*(g11):v11), (*(g10):v10),(*(g9):v9),(*(g8):v8),(*(g7):v7),(*(g6):v6), (*(g5):v5),(*(g4):v4),(*(g3):v3),(*(g2):v2),(*(g1):v1) :>_;
e0f091c2b04ddca636d7ddb7d622b9de5ea09b6759195f39d83825b50b170910
simonvanderveldt/guitarix
compressor.dsp
declare name "Compressor"; declare category "Guitar Effects"; /* Compressor unit. */ //declare name "compressor -- compressor/limiter unit"; declare author "Albert Graef"; declare version "1.0"; import("stdfaust.lib"); import("guitarix.lib"); import("reduce.lib"); /* Controls. */ // partition the controls into these three groups comp_group(x) = hgroup("1-compression", x); env_group(x) = vgroup("2-envelop", x); gain_group(x) = vgroup("3-gain", x); // compressor controls: ratio, threshold and knee size ratio = nentry("ratio[name:Ratio]", 2, 1, 20, 0.1); threshold = nentry("threshold[name:Threshold]", -20, -96, 10, 0.1); knee = nentry("knee[name:Knee]", 3, 0, 20, 0.1); // attack and release controls; clamped to a minimum of 1 sample attack = hslider("attack[name:Attack]", 0.002, 0, 1, 0.001) : max(1/ma.SR); release = hslider("release[name:Release]", 0.5, 0, 10, 0.01) : max(1/ma.SR); // gain controls: make-up gain, compression gain meter makeup_gain = gain_group(hslider("makeup gain[name:Makeup]", 0, -96, 96, 0.1)); gain(x) = attach(x, x : gain_group(hbargraph("gain", -96, 0))); t = 0.1; g = exp(-1/(ma.SR*t)); env = abs : *(1-g) : + ~ *(g); rms = sqr : *(1-g) : + ~ *(g) : sqrt; sqr(x) = x*x; /* Compute the envelop of a stereo signal. Replace env with rms ba.if you want to use the RMS value instead. */ //env2(x,y) = max(env(x),env(y)); env2(x) = max(env(x)); /* Compute the compression factor for the current input level. The gain is always 0 dB ba.if we're below the reduced threshold, threshold-knee. Beyond the real threshold value the level is scaled by 1/ratio. Between these two extremes we return a convex combination of those factors. This is also known as "soft-knee" compression: the compression kicks in gradually at threshold-knee and reaches its full value at threshold. For special effects, you can also achieve old-school "hard-knee" compression by setting the knee value to fi.zero. Also note that, before computing the gain, the input level is first smoothed out using a 1 fi.pole IIR to prevent clicks when the input level changes abruptly. The attack and release times of this filter are configured with the corresponding envelop controls of the compressor. */ compress(env) = level*(1-r)/r with { // the (filtered) input level above the threshold level = env : h ~ _ : ba.linear2db : (_-threshold+knee) : max(0) with { h(x,y) = f*x+(1-f)*y with { f = (x<y)*ga+(x>=y)*gr; }; ga = exp(-1/(ma.SR*attack)); gr = exp(-1/(ma.SR*release)); }; // the knee factor, clamped to 0..1; we add a small perturbation in // the denominator to prevent infinities and nan when knee<<1 p = level/(knee+eps) : max(0) : min(1) with { eps = 0.001; }; // the actual compression ratio r = 1-p+p*ratio; }; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096); // : max(ba.db2linear(-70)) : ba.linear2db; process(x) = g(x)*x with { //g = env2(x) : compress : gain : +(makeup_gain) : ba.db2linear ; g = add_dc : env : compress : vmeter1 : ba.db2linear ; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/faust/compressor.dsp
faust
Compressor unit. declare name "compressor -- compressor/limiter unit"; Controls. partition the controls into these three groups compressor controls: ratio, threshold and knee size attack and release controls; clamped to a minimum of 1 sample gain controls: make-up gain, compression gain meter Compute the envelop of a stereo signal. Replace env with rms ba.if you want to use the RMS value instead. env2(x,y) = max(env(x),env(y)); Compute the compression factor for the current input level. The gain is always 0 dB ba.if we're below the reduced threshold, threshold-knee. Beyond the real threshold value the level is scaled by 1/ratio. Between these two extremes we return a convex combination of those factors. This is also known as "soft-knee" compression: the compression kicks in gradually at threshold-knee and reaches its full value at threshold. For special effects, you can also achieve old-school "hard-knee" compression by setting the knee value to fi.zero. Also note that, before computing the gain, the input level is first smoothed out using a 1 fi.pole IIR to prevent clicks when the input level changes abruptly. The attack and release times of this filter are configured with the corresponding envelop controls of the compressor. the (filtered) input level above the threshold the knee factor, clamped to 0..1; we add a small perturbation in the denominator to prevent infinities and nan when knee<<1 the actual compression ratio : max(ba.db2linear(-70)) : ba.linear2db; g = env2(x) : compress : gain : +(makeup_gain) : ba.db2linear ;
declare name "Compressor"; declare category "Guitar Effects"; declare author "Albert Graef"; declare version "1.0"; import("stdfaust.lib"); import("guitarix.lib"); import("reduce.lib"); comp_group(x) = hgroup("1-compression", x); env_group(x) = vgroup("2-envelop", x); gain_group(x) = vgroup("3-gain", x); ratio = nentry("ratio[name:Ratio]", 2, 1, 20, 0.1); threshold = nentry("threshold[name:Threshold]", -20, -96, 10, 0.1); knee = nentry("knee[name:Knee]", 3, 0, 20, 0.1); attack = hslider("attack[name:Attack]", 0.002, 0, 1, 0.001) : max(1/ma.SR); release = hslider("release[name:Release]", 0.5, 0, 10, 0.01) : max(1/ma.SR); makeup_gain = gain_group(hslider("makeup gain[name:Makeup]", 0, -96, 96, 0.1)); gain(x) = attach(x, x : gain_group(hbargraph("gain", -96, 0))); t = 0.1; g = exp(-1/(ma.SR*t)); env = abs : *(1-g) : + ~ *(g); rms = sqr : *(1-g) : + ~ *(g) : sqrt; sqr(x) = x*x; env2(x) = max(env(x)); compress(env) = level*(1-r)/r with { level = env : h ~ _ : ba.linear2db : (_-threshold+knee) : max(0) with { h(x,y) = f*x+(1-f)*y with { f = (x<y)*ga+(x>=y)*gr; }; ga = exp(-1/(ma.SR*attack)); gr = exp(-1/(ma.SR*release)); }; p = level/(knee+eps) : max(0) : min(1) with { eps = 0.001; }; r = 1-p+p*ratio; }; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); process(x) = g(x)*x with { g = add_dc : env : compress : vmeter1 : ba.db2linear ; };
7647bf9c496ec171eb0c116a48af06c8f4d62ae1a0b636bebda960d4e3348fa9
simonvanderveldt/guitarix
mbchor.dsp
declare id "mbchor"; declare name "Multi Band Chorus"; declare shortname "MB Chorus"; declare category "Modulation"; declare description "Multi Band Chorus"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); l1 = hslider("level1", 0.5, 0, 1, 0.01); f1 = hslider("freq1[tooltip:Beats per Minute]",30,24,360,1)/60; d1 = hslider("delay1", 0.02, 0, 0.2, 0.01): si.smooth(0.999); de1 = hslider("depth1", 0.02, 0.01, 1, 0.01)/10; l2 = hslider("level2", 0.5, 0, 1, 0.01); f2 = hslider("freq2[tooltip:Beats per Minute]",60,24,360,1)/60; d2 = hslider("delay2", 0.04, 0, 0.2, 0.01): si.smooth(0.999); de2 = hslider("depth2", 0.04, 0.01, 1, 0.01)/10; l3 = hslider("level3", 0.5, 0, 1, 0.01); f3 = hslider("freq3[tooltip:Beats per Minute]",90,24,360,1)/60; d3 = hslider("delay3", 0.06, 0, 0.2, 0.01): si.smooth(0.999); de3 = hslider("depth3", 0.06, 0.01, 1, 0.01)/10; l4 = hslider("level4", 0.5, 0, 1, 0.01); f4 = hslider("freq4[tooltip:Beats per Minute]",120,24,360,1)/60; d4 = hslider("delay4", 0.08, 0, 0.2, 0.01): si.smooth(0.999); de4 = hslider("depth4", 0.08, 0.01, 1, 0.01)/10; l5 = hslider("level5", 0.5, 0, 1, 0.01); f5 = hslider("freq5[tooltip:Beats per Minute]",150,24,360,1)/60; d5 = hslider("delay5", 0.10, 0, 0.2, 0.01): si.smooth(0.999); de5 = hslider("depth5", 0.10, 0.01, 1, 0.01)/10; tblosc(n,f,freq,mod) = (1-d)*rdtable(n,wform,i&(n-1)) + d*rdtable(n,wform,(i+1)&(n-1)) with { wform = ba.time*(2.0*ma.PI)/n : f; phase = freq/ma.SR : (+ : ma.decimal) ~ _; modphase = ma.decimal(phase+mod/(2*ma.PI))*n; i = int(floor(modphase)); d = ma.decimal(modphase); }; chor(dtime,freq,depth,lev) = chorus(dtime,freq,depth,lev,0) : *(lev) with { chorus(dtime,freq,depth,lev,phase,x) = x+lev*de.fdelay(1<<16, t, x) with { t = ma.SR*dtime/2*(1+depth*tblosc(1<<16, sin, freq, phase)); }; }; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -0, +1)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -0, +1)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -0, +1)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -0, +1)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -0, +1)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; process = _<:(geq:( dist5s , dist4s , dist3s, dist2s, dist1s)),_ :>_ with { dist1s = chor(d1,f1,de1,l1) : vmeter1; dist2s = chor(d2,f2,de2,l2) : vmeter2; dist3s = chor(d3,f3,de3,l3) : vmeter3; dist4s = chor(d4,f4,de4,l4) : vmeter4; dist5s = chor(d5,f5,de5,l5) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/plugins/mbchor.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
declare id "mbchor"; declare name "Multi Band Chorus"; declare shortname "MB Chorus"; declare category "Modulation"; declare description "Multi Band Chorus"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); l1 = hslider("level1", 0.5, 0, 1, 0.01); f1 = hslider("freq1[tooltip:Beats per Minute]",30,24,360,1)/60; d1 = hslider("delay1", 0.02, 0, 0.2, 0.01): si.smooth(0.999); de1 = hslider("depth1", 0.02, 0.01, 1, 0.01)/10; l2 = hslider("level2", 0.5, 0, 1, 0.01); f2 = hslider("freq2[tooltip:Beats per Minute]",60,24,360,1)/60; d2 = hslider("delay2", 0.04, 0, 0.2, 0.01): si.smooth(0.999); de2 = hslider("depth2", 0.04, 0.01, 1, 0.01)/10; l3 = hslider("level3", 0.5, 0, 1, 0.01); f3 = hslider("freq3[tooltip:Beats per Minute]",90,24,360,1)/60; d3 = hslider("delay3", 0.06, 0, 0.2, 0.01): si.smooth(0.999); de3 = hslider("depth3", 0.06, 0.01, 1, 0.01)/10; l4 = hslider("level4", 0.5, 0, 1, 0.01); f4 = hslider("freq4[tooltip:Beats per Minute]",120,24,360,1)/60; d4 = hslider("delay4", 0.08, 0, 0.2, 0.01): si.smooth(0.999); de4 = hslider("depth4", 0.08, 0.01, 1, 0.01)/10; l5 = hslider("level5", 0.5, 0, 1, 0.01); f5 = hslider("freq5[tooltip:Beats per Minute]",150,24,360,1)/60; d5 = hslider("delay5", 0.10, 0, 0.2, 0.01): si.smooth(0.999); de5 = hslider("depth5", 0.10, 0.01, 1, 0.01)/10; tblosc(n,f,freq,mod) = (1-d)*rdtable(n,wform,i&(n-1)) + d*rdtable(n,wform,(i+1)&(n-1)) with { wform = ba.time*(2.0*ma.PI)/n : f; phase = freq/ma.SR : (+ : ma.decimal) ~ _; modphase = ma.decimal(phase+mod/(2*ma.PI))*n; i = int(floor(modphase)); d = ma.decimal(modphase); }; chor(dtime,freq,depth,lev) = chorus(dtime,freq,depth,lev,0) : *(lev) with { chorus(dtime,freq,depth,lev,phase,x) = x+lev*de.fdelay(1<<16, t, x) with { t = ma.SR*dtime/2*(1+depth*tblosc(1<<16, sin, freq, phase)); }; }; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -0, +1)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -0, +1)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -0, +1)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -0, +1)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -0, +1)); process = _<:(geq:( dist5s , dist4s , dist3s, dist2s, dist1s)),_ :>_ with { dist1s = chor(d1,f1,de1,l1) : vmeter1; dist2s = chor(d2,f2,de2,l2) : vmeter2; dist3s = chor(d3,f3,de3,l3) : vmeter3; dist4s = chor(d4,f4,de4,l4) : vmeter4; dist5s = chor(d5,f5,de5,l5) : vmeter5; };
257e8917f439ade08c597a5bea821374f993757ed68262d32e3076646ab7b79a
simonvanderveldt/guitarix
mbdel.dsp
declare id "mbdel"; declare name "MultiBand Delay"; declare shortname "MB Delay"; declare category "Echo / Delay"; declare description "Multi Band Delay"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); interp = 100*ma.SR/1000.0; N = int( 2^18); g1 = vslider("gain1", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d1 = ba.tempo(hslider("delay1[tooltip:Delay in Beats per Minute]",30,24,360,1)); g2 = vslider("gain2", -5, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d2 = ba.tempo(hslider("delay2[tooltip:Delay in Beats per Minute]",60,24,360,1)); g3 = vslider("gain3", -2, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d3 = ba.tempo(hslider("delay3[tooltip:Delay in Beats per Minute]",90,24,360,1)); g4 = vslider("gain4", 0, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d4 = ba.tempo(hslider("delay4[tooltip:Delay in Beats per Minute]",120,24,360,1)); g5 = vslider("gain5", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d5 = ba.tempo(hslider("delay5[tooltip:Delay in Beats per Minute]",150,24,360,1)); del(g,d,f) = *(g) : (+: de.sdelay(N, interp,d))~(*(f)) ; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); f1 = vslider("feedback1[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f2 = vslider("feedback2[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f3 = vslider("feedback3[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f4 = vslider("feedback4[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f5 = vslider("feedback5[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; process = _<:(geq: ( dist5s , dist4s , dist3s, dist2s, dist1s)),_:>_ with { dist1s = del(g1,d1,f1) : vmeter1; dist2s = del(g2,d2,f2) : vmeter2; dist3s = del(g3,d3,f3) : vmeter3; dist4s = del(g4,d4,f4) : vmeter4; dist5s = del(g5,d5,f5) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/mbdel.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db;
declare id "mbdel"; declare name "MultiBand Delay"; declare shortname "MB Delay"; declare category "Echo / Delay"; declare description "Multi Band Delay"; import("stdfaust.lib"); import("reduce.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); interp = 100*ma.SR/1000.0; N = int( 2^18); g1 = vslider("gain1", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d1 = ba.tempo(hslider("delay1[tooltip:Delay in Beats per Minute]",30,24,360,1)); g2 = vslider("gain2", -5, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d2 = ba.tempo(hslider("delay2[tooltip:Delay in Beats per Minute]",60,24,360,1)); g3 = vslider("gain3", -2, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d3 = ba.tempo(hslider("delay3[tooltip:Delay in Beats per Minute]",90,24,360,1)); g4 = vslider("gain4", 0, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d4 = ba.tempo(hslider("delay4[tooltip:Delay in Beats per Minute]",120,24,360,1)); g5 = vslider("gain5", -10, -20, 20, 0.1) : ba.db2linear : si.smooth(0.999); d5 = ba.tempo(hslider("delay5[tooltip:Delay in Beats per Minute]",150,24,360,1)); del(g,d,f) = *(g) : (+: de.sdelay(N, interp,d))~(*(f)) ; vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); f1 = vslider("feedback1[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f2 = vslider("feedback2[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f3 = vslider("feedback3[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f4 = vslider("feedback4[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; f5 = vslider("feedback5[tooltip:percentage of the feedback level in the de.delay loop]", 50, 1, 100, 1)/100 ; process = _<:(geq: ( dist5s , dist4s , dist3s, dist2s, dist1s)),_:>_ with { dist1s = del(g1,d1,f1) : vmeter1; dist2s = del(g2,d2,f2) : vmeter2; dist3s = del(g3,d3,f3) : vmeter3; dist4s = del(g4,d4,f4) : vmeter4; dist5s = del(g5,d5,f5) : vmeter5; };
508e8b0d84891b1c083d6c1c456f8a12a80f171a215c821f1060d4458a5786c7
simonvanderveldt/guitarix
mbreverb.dsp
declare id "mbe"; declare name "MultiBand Reverb"; declare shortname "MB Reverb"; declare category "Reverb"; declare description "Multi Band Reverb"; import("stdfaust.lib"); import("reduce.lib"); import("guitarix.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; /*----------------------------------------------- freeverb by "Grame" -----------------------------------------------*/ c1 = vslider("RoomSize1", 0.5, 0, 1, 0.025)*0.28 + 0.7; d1 = vslider("damp1",0.5, 0, 1, 0.025); wet1 = vslider("wet_dry1[name:wet/dry]", 50, 0, 100, 1) : /(100); dry1 = 1 - wet1; c2 = vslider("RoomSize2", 0.5, 0, 1, 0.025)*0.28 + 0.7; d2 = vslider("damp2",0.5, 0, 1, 0.025); wet2 = vslider("wet_dry2[name:wet/dry]", 50, 0, 100, 1) : /(100); dry2 = 1 - wet2; c3 = vslider("RoomSize3", 0.5, 0, 1, 0.025)*0.28 + 0.7; d3 = vslider("damp3",0.5, 0, 1, 0.025); wet3 = vslider("wet_dry3[name:wet/dry]", 50, 0, 100, 1) : /(100); dry3 = 1 - wet3; c4 = vslider("RoomSize4", 0.5, 0, 1, 0.025)*0.28 + 0.7; d4 = vslider("damp4",0.5, 0, 1, 0.025); wet4 = vslider("wet_dry4[name:wet/dry]", 50, 0, 100, 1) : /(100); dry4 = 1 - wet4; c5 = vslider("RoomSize5", 0.5, 0, 1, 0.025)*0.28 + 0.7; d5 = vslider("damp5",0.5, 0, 1, 0.025); wet5 = vslider("wet_dry5[name:wet/dry]", 50, 0, 100, 1) : /(100); dry5 = 1 - wet5; // Filter Parameters combtuningL1 = 1116; combtuningL2 = 1188; combtuningL3 = 1277; combtuningL4 = 1356; combtuningL5 = 1422; combtuningL6 = 1491; combtuningL7 = 1557; combtuningL8 = 1617; allpasstuningL1 = 556; allpasstuningL2 = 441; allpasstuningL3 = 341; allpasstuningL4 = 225; // Reverb components monoReverb(fb1, fb2, damp, spread) = _ <: comb(combtuningL1+spread, fb1, damp), comb(combtuningL2+spread, fb1, damp), comb(combtuningL3+spread, fb1, damp), comb(combtuningL4+spread, fb1, damp), comb(combtuningL5+spread, fb1, damp), comb(combtuningL6+spread, fb1, damp), comb(combtuningL7+spread, fb1, damp), comb(combtuningL8+spread, fb1, damp) +> allpass (allpasstuningL1+spread, fb2) : allpass (allpasstuningL2+spread, fb2) : allpass (allpasstuningL3+spread, fb2) : allpass (allpasstuningL4+spread, fb2) ; //---------------------------------------------------------------- fxctrl(g,w,Fx) = _ <: (*(g) <: _ + Fx ), *(1-w) +> _; reverb(dry, wet_dry, combfeed, dampslider) = _<:*(dry),(*(wet_dry):fxctrl(0.015,wet_dry, monoReverb(combfeed, 0.5, dampslider, 23))):>_; process = geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :>_ with { dist1s = reverb(dry1,wet1,c1,d1) : vmeter1 ; dist2s = reverb(dry2,wet2,c2,d2) : vmeter2; dist3s = reverb(dry3,wet3,c3,d3) : vmeter3; dist4s = reverb(dry4,wet4,c4,d4) : vmeter4; dist5s = reverb(dry5,wet5,c5,d5) : vmeter5; };
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/mbreverb.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db; ----------------------------------------------- freeverb by "Grame" ----------------------------------------------- Filter Parameters Reverb components ----------------------------------------------------------------
declare id "mbe"; declare name "MultiBand Reverb"; declare shortname "MB Reverb"; declare category "Reverb"; declare description "Multi Band Reverb"; import("stdfaust.lib"); import("reduce.lib"); import("guitarix.lib"); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); c1 = vslider("RoomSize1", 0.5, 0, 1, 0.025)*0.28 + 0.7; d1 = vslider("damp1",0.5, 0, 1, 0.025); wet1 = vslider("wet_dry1[name:wet/dry]", 50, 0, 100, 1) : /(100); dry1 = 1 - wet1; c2 = vslider("RoomSize2", 0.5, 0, 1, 0.025)*0.28 + 0.7; d2 = vslider("damp2",0.5, 0, 1, 0.025); wet2 = vslider("wet_dry2[name:wet/dry]", 50, 0, 100, 1) : /(100); dry2 = 1 - wet2; c3 = vslider("RoomSize3", 0.5, 0, 1, 0.025)*0.28 + 0.7; d3 = vslider("damp3",0.5, 0, 1, 0.025); wet3 = vslider("wet_dry3[name:wet/dry]", 50, 0, 100, 1) : /(100); dry3 = 1 - wet3; c4 = vslider("RoomSize4", 0.5, 0, 1, 0.025)*0.28 + 0.7; d4 = vslider("damp4",0.5, 0, 1, 0.025); wet4 = vslider("wet_dry4[name:wet/dry]", 50, 0, 100, 1) : /(100); dry4 = 1 - wet4; c5 = vslider("RoomSize5", 0.5, 0, 1, 0.025)*0.28 + 0.7; d5 = vslider("damp5",0.5, 0, 1, 0.025); wet5 = vslider("wet_dry5[name:wet/dry]", 50, 0, 100, 1) : /(100); dry5 = 1 - wet5; combtuningL1 = 1116; combtuningL2 = 1188; combtuningL3 = 1277; combtuningL4 = 1356; combtuningL5 = 1422; combtuningL6 = 1491; combtuningL7 = 1557; combtuningL8 = 1617; allpasstuningL1 = 556; allpasstuningL2 = 441; allpasstuningL3 = 341; allpasstuningL4 = 225; monoReverb(fb1, fb2, damp, spread) = _ <: comb(combtuningL1+spread, fb1, damp), comb(combtuningL2+spread, fb1, damp), comb(combtuningL3+spread, fb1, damp), comb(combtuningL4+spread, fb1, damp), comb(combtuningL5+spread, fb1, damp), comb(combtuningL6+spread, fb1, damp), comb(combtuningL7+spread, fb1, damp), comb(combtuningL8+spread, fb1, damp) +> allpass (allpasstuningL1+spread, fb2) : allpass (allpasstuningL2+spread, fb2) : allpass (allpasstuningL3+spread, fb2) : allpass (allpasstuningL4+spread, fb2) ; fxctrl(g,w,Fx) = _ <: (*(g) <: _ + Fx ), *(1-w) +> _; reverb(dry, wet_dry, combfeed, dampslider) = _<:*(dry),(*(wet_dry):fxctrl(0.015,wet_dry, monoReverb(combfeed, 0.5, dampslider, 23))):>_; process = geq: ( dist5s , dist4s , dist3s, dist2s, dist1s) :>_ with { dist1s = reverb(dry1,wet1,c1,d1) : vmeter1 ; dist2s = reverb(dry2,wet2,c2,d2) : vmeter2; dist3s = reverb(dry3,wet3,c3,d3) : vmeter3; dist4s = reverb(dry4,wet4,c4,d4) : vmeter4; dist5s = reverb(dry5,wet5,c5,d5) : vmeter5; };
fd606838df7e42c14f84c51ef979f95ef8f120876137fbce4d56013c9fc7b11b
simonvanderveldt/guitarix
mbc.dsp
declare id "mbc"; declare name "Multi Band Compressor"; declare shortname "MB Comp"; declare category "Guitar Effects"; declare description "Multi Band Compressor contributed by kokoko3k"; import("stdfaust.lib"); import("reduce.lib"); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; //Mono process = geq : ( gcomp5s , gcomp4s , gcomp3s, gcomp2s, gcomp1s) :>_ with { gcomp1s = ba.bypass1(bswitch1,co.compressor_mono(ratio1,-push1,attack1,release1)):*(Makeup1) : vmeter1; gcomp2s = ba.bypass1(bswitch2,co.compressor_mono(ratio2,-push2,attack2,release2)):*(Makeup2) : vmeter2; gcomp3s = ba.bypass1(bswitch3,co.compressor_mono(ratio3,-push3,attack3,release3)):*(Makeup3) : vmeter3; gcomp4s = ba.bypass1(bswitch4,co.compressor_mono(ratio4,-push4,attack4,release4)):*(Makeup4) : vmeter4; gcomp5s = ba.bypass1(bswitch5,co.compressor_mono(ratio5,-push5,attack5,release5)):*(Makeup5) : vmeter5; }; sel1 = hslider("Mode1[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel2 = hslider("Mode2[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel3 = hslider("Mode3[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel4 = hslider("Mode4[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel5 = hslider("Mode5[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); not(x) = abs(x-1); mute1 = not(max(0,sel1-2)); mute2 = not(max(0,sel2-2)); mute3 = not(max(0,sel3-2)); mute4 = not(max(0,sel4-2)); mute5 = not(max(0,sel5-2)); bypass(switch, block) = _ <: select2(switch, _, block); bswitch1 = max(0,sel1-1); bswitch2 = max(0,sel2-1); bswitch3 = max(0,sel3-1); bswitch4 = max(0,sel4-1); bswitch5 = max(0,sel5-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); ratio1 = hslider("[9] Ratio1 [tooltip: Compression ratio]",2,1,100,0.1); attack1 = hslider("[A] Attack1 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release1 = hslider("[B] Release1 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio2 = hslider("[9] Ratio2 [tooltip: Compression ratio]",2,1,100,0.1); attack2 = hslider("[A] Attack2 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release2 = hslider("[B] Release2 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio3 = hslider("[9] Ratio3 [tooltip: Compression ratio]",2,1,100,0.1); attack3 = hslider("[A] Attack3 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release3 = hslider("[B] Release3 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio4 = hslider("[9] Ratio4 [tooltip: Compression ratio]",2,1,100,0.1); attack4 = hslider("[A] Attack4 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release4 = hslider("[B] Release4 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio5 = hslider("[9] Ratio5 [tooltip: Compression ratio]",2,1,100,0.1); attack5 = hslider("[A] Attack5 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release5 = hslider("[B] Release5 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); push1 = hslider("[5] Makeup1 [tooltip: Post amplification and threshold]" , 13, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push2 = hslider("[5] Makeup2 [tooltip: Post amplification and threshold]" , 10, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push3 = hslider("[5] Makeup3 [tooltip: Post amplification and threshold]" , 4, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push4 = hslider("[5] Makeup4 [tooltip: Post amplification and threshold]" , 8, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push5 = hslider("[5] Makeup5 [tooltip: Post amplification and threshold]" , 11, -50, +50, 0.1) ; // threshold-=push ; makeup+=push safe1 = hslider("[6] Makeup-Threshold1 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe2 = hslider("[6] Makeup-Threshold2 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe3 = hslider("[6] Makeup-Threshold3 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe4 = hslider("[6] Makeup-Threshold4 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe5 = hslider("[6] Makeup-Threshold5 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe Makeup1 = mute1* (not(bswitch1)*(push1-safe1) : ba.db2linear : si.smooth(0.999)); Makeup2 = mute2* (not(bswitch2)*(push2-safe2) : ba.db2linear : si.smooth(0.999)); Makeup3 = mute3* (not(bswitch3)*(push3-safe3) : ba.db2linear : si.smooth(0.999)); Makeup4 = mute4* (not(bswitch4)*(push4-safe4) : ba.db2linear : si.smooth(0.999)); Makeup5 = mute5* (not(bswitch5)*(push5-safe5) : ba.db2linear : si.smooth(0.999)); //Low end headsets: 13,10,4,8,11 (split 80,210,1700,5000) //Mid-high end headsets: 17,20.5,20,10.5,10 (split 44,180,800,5000)
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/plugins/mbc.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db; Mono threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push makeup-=safe makeup-=safe makeup-=safe makeup-=safe makeup-=safe Low end headsets: 13,10,4,8,11 (split 80,210,1700,5000) Mid-high end headsets: 17,20.5,20,10.5,10 (split 44,180,800,5000)
declare id "mbc"; declare name "Multi Band Compressor"; declare shortname "MB Comp"; declare category "Guitar Effects"; declare description "Multi Band Compressor contributed by kokoko3k"; import("stdfaust.lib"); import("reduce.lib"); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[nomidi:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[nomidi:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[nomidi:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[nomidi:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[nomidi:no]", -70, +5)); process = geq : ( gcomp5s , gcomp4s , gcomp3s, gcomp2s, gcomp1s) :>_ with { gcomp1s = ba.bypass1(bswitch1,co.compressor_mono(ratio1,-push1,attack1,release1)):*(Makeup1) : vmeter1; gcomp2s = ba.bypass1(bswitch2,co.compressor_mono(ratio2,-push2,attack2,release2)):*(Makeup2) : vmeter2; gcomp3s = ba.bypass1(bswitch3,co.compressor_mono(ratio3,-push3,attack3,release3)):*(Makeup3) : vmeter3; gcomp4s = ba.bypass1(bswitch4,co.compressor_mono(ratio4,-push4,attack4,release4)):*(Makeup4) : vmeter4; gcomp5s = ba.bypass1(bswitch5,co.compressor_mono(ratio5,-push5,attack5,release5)):*(Makeup5) : vmeter5; }; sel1 = hslider("Mode1[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel2 = hslider("Mode2[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel3 = hslider("Mode3[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel4 = hslider("Mode4[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel5 = hslider("Mode5[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); not(x) = abs(x-1); mute1 = not(max(0,sel1-2)); mute2 = not(max(0,sel2-2)); mute3 = not(max(0,sel3-2)); mute4 = not(max(0,sel4-2)); mute5 = not(max(0,sel5-2)); bypass(switch, block) = _ <: select2(switch, _, block); bswitch1 = max(0,sel1-1); bswitch2 = max(0,sel2-1); bswitch3 = max(0,sel3-1); bswitch4 = max(0,sel4-1); bswitch5 = max(0,sel5-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); ratio1 = hslider("[9] Ratio1 [tooltip: Compression ratio]",2,1,100,0.1); attack1 = hslider("[A] Attack1 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release1 = hslider("[B] Release1 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio2 = hslider("[9] Ratio2 [tooltip: Compression ratio]",2,1,100,0.1); attack2 = hslider("[A] Attack2 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release2 = hslider("[B] Release2 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio3 = hslider("[9] Ratio3 [tooltip: Compression ratio]",2,1,100,0.1); attack3 = hslider("[A] Attack3 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release3 = hslider("[B] Release3 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio4 = hslider("[9] Ratio4 [tooltip: Compression ratio]",2,1,100,0.1); attack4 = hslider("[A] Attack4 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release4 = hslider("[B] Release4 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio5 = hslider("[9] Ratio5 [tooltip: Compression ratio]",2,1,100,0.1); attack5 = hslider("[A] Attack5 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release5 = hslider("[B] Release5 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); Makeup1 = mute1* (not(bswitch1)*(push1-safe1) : ba.db2linear : si.smooth(0.999)); Makeup2 = mute2* (not(bswitch2)*(push2-safe2) : ba.db2linear : si.smooth(0.999)); Makeup3 = mute3* (not(bswitch3)*(push3-safe3) : ba.db2linear : si.smooth(0.999)); Makeup4 = mute4* (not(bswitch4)*(push4-safe4) : ba.db2linear : si.smooth(0.999)); Makeup5 = mute5* (not(bswitch5)*(push5-safe5) : ba.db2linear : si.smooth(0.999));
cc517d00c06aff416940ef3ca1d687b0385f48751d3e75567146e9a133d2e1a5
simonvanderveldt/guitarix
mbcs.dsp
declare id "mbcs"; declare name "Multi Band Compressor Stereo"; declare shortname "MB Comp St"; declare category "Guitar Effects"; declare description "Multi Band Compressor contributed by kokoko3k"; import("stdfaust.lib"); import("reduce.lib"); sel1 = hslider("Mode1[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel2 = hslider("Mode2[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel3 = hslider("Mode3[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel4 = hslider("Mode4[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel5 = hslider("Mode5[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); not(x) = abs(x-1); mute1 = not(max(0,sel1-2)); mute2 = not(max(0,sel2-2)); mute3 = not(max(0,sel3-2)); mute4 = not(max(0,sel4-2)); mute5 = not(max(0,sel5-2)); bypass(switch, block) = _ <: select2(switch, _, block); bswitch1 = max(0,sel1-1); bswitch2 = max(0,sel2-1); bswitch3 = max(0,sel3-1); bswitch4 = max(0,sel4-1); bswitch5 = max(0,sel5-1); vmeter1(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v1[nomidi:no][tooltip: Sum of Band1 ]", -70, +5)),y; vmeter2(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v2[nomidi:no][tooltip: Sum of Band2 ]", -70, +5)),y; vmeter3(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v3[nomidi:no][tooltip: Sum of Band3 ]", -70, +5)),y; vmeter4(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v4[nomidi:no][tooltip: Sum of Band4 ]", -70, +5)),y; vmeter5(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v5[nomidi:no][tooltip: Sum of Band5 ]", -70, +5)),y; envelop = _ : max ~ (1.0/ma.SR) : reduce(max,4096) : *(0.5); // : max(ba.db2linear(-70)) : ba.linear2db; //Stereo process = (_,_):geqs: ( gcomp5s , gcomp4s , gcomp3s, gcomp2s, gcomp1s) :>(_,_) with { gcomp1s = ba.bypass2(bswitch1,co.compressor_stereo(ratio1,-push1,attack1,release1)):*(Makeup1),*(Makeup1) : vmeter1; gcomp2s = ba.bypass2(bswitch2,co.compressor_stereo(ratio2,-push2,attack2,release2)):*(Makeup2),*(Makeup2) : vmeter2; gcomp3s = ba.bypass2(bswitch3,co.compressor_stereo(ratio3,-push3,attack3,release3)):*(Makeup3),*(Makeup3) : vmeter3; gcomp4s = ba.bypass2(bswitch4,co.compressor_stereo(ratio4,-push4,attack4,release4)):*(Makeup4),*(Makeup4) : vmeter4; gcomp5s = ba.bypass2(bswitch5,co.compressor_stereo(ratio5,-push5,attack5,release5)):*(Makeup5),*(Makeup5) : vmeter5; }; hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); cross5 = _,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_ ; geqs = (geq,geq) <: cross5; ratio1 = hslider("[9] Ratio1 [tooltip: Compression ratio]",2,1,100,0.1); attack1 = hslider("[A] Attack1 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release1 = hslider("[B] Release1 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio2 = hslider("[9] Ratio2 [tooltip: Compression ratio]",2,1,100,0.1); attack2 = hslider("[A] Attack2 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release2 = hslider("[B] Release2 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio3 = hslider("[9] Ratio3 [tooltip: Compression ratio]",2,1,100,0.1); attack3 = hslider("[A] Attack3 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release3 = hslider("[B] Release3 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio4 = hslider("[9] Ratio4 [tooltip: Compression ratio]",2,1,100,0.1); attack4 = hslider("[A] Attack4 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release4 = hslider("[B] Release4 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio5 = hslider("[9] Ratio5 [tooltip: Compression ratio]",2,1,100,0.1); attack5 = hslider("[A] Attack5 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release5 = hslider("[B] Release5 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); push1 = hslider("[5] Makeup1 [tooltip: Post amplification and threshold]" , 13, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push2 = hslider("[5] Makeup2 [tooltip: Post amplification and threshold]" , 10, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push3 = hslider("[5] Makeup3 [tooltip: Post amplification and threshold]" , 4, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push4 = hslider("[5] Makeup4 [tooltip: Post amplification and threshold]" , 8, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push5 = hslider("[5] Makeup5 [tooltip: Post amplification and threshold]" , 11, -50, +50, 0.1) ; // threshold-=push ; makeup+=push safe1 = hslider("[6] Makeup-Threshold1 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe2 = hslider("[6] Makeup-Threshold2 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe3 = hslider("[6] Makeup-Threshold3 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe4 = hslider("[6] Makeup-Threshold4 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe5 = hslider("[6] Makeup-Threshold5 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe Makeup1 = mute1* (not(bswitch1)*(push1-safe1) : ba.db2linear : si.smooth(0.999)); Makeup2 = mute2* (not(bswitch2)*(push2-safe2) : ba.db2linear : si.smooth(0.999)); Makeup3 = mute3* (not(bswitch3)*(push3-safe3) : ba.db2linear : si.smooth(0.999)); Makeup4 = mute4* (not(bswitch4)*(push4-safe4) : ba.db2linear : si.smooth(0.999)); Makeup5 = mute5* (not(bswitch5)*(push5-safe5) : ba.db2linear : si.smooth(0.999)); //Low end headsets: 13,10,4,8,11 (split 80,210,1700,5000) //Mid-high end headsets: 17,20.5,20,10.5,10 (split 44,180,800,5000)
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/plugins/mbcs.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db; Stereo threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push makeup-=safe makeup-=safe makeup-=safe makeup-=safe makeup-=safe Low end headsets: 13,10,4,8,11 (split 80,210,1700,5000) Mid-high end headsets: 17,20.5,20,10.5,10 (split 44,180,800,5000)
declare id "mbcs"; declare name "Multi Band Compressor Stereo"; declare shortname "MB Comp St"; declare category "Guitar Effects"; declare description "Multi Band Compressor contributed by kokoko3k"; import("stdfaust.lib"); import("reduce.lib"); sel1 = hslider("Mode1[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel2 = hslider("Mode2[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel3 = hslider("Mode3[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel4 = hslider("Mode4[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel5 = hslider("Mode5[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); not(x) = abs(x-1); mute1 = not(max(0,sel1-2)); mute2 = not(max(0,sel2-2)); mute3 = not(max(0,sel3-2)); mute4 = not(max(0,sel4-2)); mute5 = not(max(0,sel5-2)); bypass(switch, block) = _ <: select2(switch, _, block); bswitch1 = max(0,sel1-1); bswitch2 = max(0,sel2-1); bswitch3 = max(0,sel3-1); bswitch4 = max(0,sel4-1); bswitch5 = max(0,sel5-1); vmeter1(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v1[nomidi:no][tooltip: Sum of Band1 ]", -70, +5)),y; vmeter2(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v2[nomidi:no][tooltip: Sum of Band2 ]", -70, +5)),y; vmeter3(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v3[nomidi:no][tooltip: Sum of Band3 ]", -70, +5)),y; vmeter4(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v4[nomidi:no][tooltip: Sum of Band4 ]", -70, +5)),y; vmeter5(x,y) = attach(x, envelop(abs(x)+abs(y)) : vbargraph("v5[nomidi:no][tooltip: Sum of Band5 ]", -70, +5)),y; process = (_,_):geqs: ( gcomp5s , gcomp4s , gcomp3s, gcomp2s, gcomp1s) :>(_,_) with { gcomp1s = ba.bypass2(bswitch1,co.compressor_stereo(ratio1,-push1,attack1,release1)):*(Makeup1),*(Makeup1) : vmeter1; gcomp2s = ba.bypass2(bswitch2,co.compressor_stereo(ratio2,-push2,attack2,release2)):*(Makeup2),*(Makeup2) : vmeter2; gcomp3s = ba.bypass2(bswitch3,co.compressor_stereo(ratio3,-push3,attack3,release3)):*(Makeup3),*(Makeup3) : vmeter3; gcomp4s = ba.bypass2(bswitch4,co.compressor_stereo(ratio4,-push4,attack4,release4)):*(Makeup4),*(Makeup4) : vmeter4; gcomp5s = ba.bypass2(bswitch5,co.compressor_stereo(ratio5,-push5,attack5,release5)):*(Makeup5),*(Makeup5) : vmeter5; }; hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); cross5 = _,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_,!,!,!,!,!,_,!,!,!,!,_ ; geqs = (geq,geq) <: cross5; ratio1 = hslider("[9] Ratio1 [tooltip: Compression ratio]",2,1,100,0.1); attack1 = hslider("[A] Attack1 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release1 = hslider("[B] Release1 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio2 = hslider("[9] Ratio2 [tooltip: Compression ratio]",2,1,100,0.1); attack2 = hslider("[A] Attack2 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release2 = hslider("[B] Release2 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio3 = hslider("[9] Ratio3 [tooltip: Compression ratio]",2,1,100,0.1); attack3 = hslider("[A] Attack3 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release3 = hslider("[B] Release3 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio4 = hslider("[9] Ratio4 [tooltip: Compression ratio]",2,1,100,0.1); attack4 = hslider("[A] Attack4 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release4 = hslider("[B] Release4 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio5 = hslider("[9] Ratio5 [tooltip: Compression ratio]",2,1,100,0.1); attack5 = hslider("[A] Attack5 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release5 = hslider("[B] Release5 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); Makeup1 = mute1* (not(bswitch1)*(push1-safe1) : ba.db2linear : si.smooth(0.999)); Makeup2 = mute2* (not(bswitch2)*(push2-safe2) : ba.db2linear : si.smooth(0.999)); Makeup3 = mute3* (not(bswitch3)*(push3-safe3) : ba.db2linear : si.smooth(0.999)); Makeup4 = mute4* (not(bswitch4)*(push4-safe4) : ba.db2linear : si.smooth(0.999)); Makeup5 = mute5* (not(bswitch5)*(push5-safe5) : ba.db2linear : si.smooth(0.999));
ff7e02f32313b2cb69e20d2f1247ea799e09840562e355a6799d6a86c3d6faf8
simonvanderveldt/guitarix
mbc.dsp
declare id "mbc"; declare name "Multi Band Compressor"; declare shortname "MB Compressor"; declare category "Guitar Effects"; declare description "Multi Band Compressor contributed by kokoko3k"; import("stdfaust.lib"); import("reduce.lib"); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[tooltip:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[tooltip:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[tooltip:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[tooltip:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[tooltip:no]", -70, +5)); vmeter6(x) = attach(x, envelop(x) : vbargraph("v6[tooltip:no]", -70, +5)); vmeter7(x) = attach(x, envelop(x) : vbargraph("v7[tooltip:no]", -70, +5)); vmeter8(x) = attach(x, envelop(x) : vbargraph("v8[tooltip:no]", -70, +5)); vmeter9(x) = attach(x, envelop(x) : vbargraph("v9[tooltip:no]", -70, +5)); vmeter10(x) = attach(x, envelop(x) : vbargraph("v10[tooltip:no]", -70, +5)); envelop = abs : max ~ (1.0/ma.SR) : reduce(max,4096) ; // : max(ba.db2linear(-70)) : ba.linear2db; //Mono process = geq : ( gcomp5s , gcomp4s , gcomp3s, gcomp2s, gcomp1s) :>_ with { gcomp1s = vmeter6:ba.bypass1(bswitch1,co.compressor_mono(ratio1,-push1,attack1,release1)):*(Makeup1) : vmeter1; gcomp2s = vmeter7:ba.bypass1(bswitch2,co.compressor_mono(ratio2,-push2,attack2,release2)):*(Makeup2) : vmeter2; gcomp3s = vmeter8:ba.bypass1(bswitch3,co.compressor_mono(ratio3,-push3,attack3,release3)):*(Makeup3) : vmeter3; gcomp4s = vmeter9:ba.bypass1(bswitch4,co.compressor_mono(ratio4,-push4,attack4,release4)):*(Makeup4) : vmeter4; gcomp5s = vmeter10:ba.bypass1(bswitch5,co.compressor_mono(ratio5,-push5,attack5,release5)):*(Makeup5) : vmeter5; }; sel1 = hslider("Mode1[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel2 = hslider("Mode2[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel3 = hslider("Mode3[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel4 = hslider("Mode4[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel5 = hslider("Mode5[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); not(x) = abs(x-1); mute1 = not(max(0,sel1-2)); mute2 = not(max(0,sel2-2)); mute3 = not(max(0,sel3-2)); mute4 = not(max(0,sel4-2)); mute5 = not(max(0,sel5-2)); bypass(switch, block) = _ <: select2(switch, _, block); bswitch1 = max(0,sel1-1); bswitch2 = max(0,sel2-1); bswitch3 = max(0,sel3-1); bswitch4 = max(0,sel4-1); bswitch5 = max(0,sel5-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); ratio1 = hslider("[9] Ratio1 [tooltip: Compression ratio]",2,1,100,0.1); attack1 = hslider("[A] Attack1 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release1 = hslider("[B] Release1 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio2 = hslider("[9] Ratio2 [tooltip: Compression ratio]",2,1,100,0.1); attack2 = hslider("[A] Attack2 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release2 = hslider("[B] Release2 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio3 = hslider("[9] Ratio3 [tooltip: Compression ratio]",2,1,100,0.1); attack3 = hslider("[A] Attack3 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release3 = hslider("[B] Release3 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio4 = hslider("[9] Ratio4 [tooltip: Compression ratio]",2,1,100,0.1); attack4 = hslider("[A] Attack4 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release4 = hslider("[B] Release4 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio5 = hslider("[9] Ratio5 [tooltip: Compression ratio]",2,1,100,0.1); attack5 = hslider("[A] Attack5 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release5 = hslider("[B] Release5 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); push1 = hslider("[5] Makeup1 [tooltip: Post amplification and threshold]" , 13, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push2 = hslider("[5] Makeup2 [tooltip: Post amplification and threshold]" , 10, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push3 = hslider("[5] Makeup3 [tooltip: Post amplification and threshold]" , 4, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push4 = hslider("[5] Makeup4 [tooltip: Post amplification and threshold]" , 8, -50, +50, 0.1) ; // threshold-=push ; makeup+=push push5 = hslider("[5] Makeup5 [tooltip: Post amplification and threshold]" , 11, -50, +50, 0.1) ; // threshold-=push ; makeup+=push safe1 = hslider("[6] MakeupThreshold1 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe2 = hslider("[6] MakeupThreshold2 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe3 = hslider("[6] MakeupThreshold3 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe4 = hslider("[6] MakeupThreshold4 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe safe5 = hslider("[6] MakeupThreshold5 [tooltip: Threshold correction, an anticlip measure]" , 2, 0, +10, 0.1) ; // makeup-=safe Makeup1 = mute1* (not(bswitch1)*(push1-safe1) : ba.db2linear : si.smooth(0.999)); Makeup2 = mute2* (not(bswitch2)*(push2-safe2) : ba.db2linear : si.smooth(0.999)); Makeup3 = mute3* (not(bswitch3)*(push3-safe3) : ba.db2linear : si.smooth(0.999)); Makeup4 = mute4* (not(bswitch4)*(push4-safe4) : ba.db2linear : si.smooth(0.999)); Makeup5 = mute5* (not(bswitch5)*(push5-safe5) : ba.db2linear : si.smooth(0.999)); //Low end headsets: 13,10,4,8,11 (split 80,210,1700,5000) //Mid-high end headsets: 17,20.5,20,10.5,10 (split 44,180,800,5000)
https://raw.githubusercontent.com/simonvanderveldt/guitarix/51ba3d2bba6118a7fbf67a56c30e860faa155d5f/trunk/src/LV2/faust/mbc.dsp
faust
: max(ba.db2linear(-70)) : ba.linear2db; Mono threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push threshold-=push ; makeup+=push makeup-=safe makeup-=safe makeup-=safe makeup-=safe makeup-=safe Low end headsets: 13,10,4,8,11 (split 80,210,1700,5000) Mid-high end headsets: 17,20.5,20,10.5,10 (split 44,180,800,5000)
declare id "mbc"; declare name "Multi Band Compressor"; declare shortname "MB Compressor"; declare category "Guitar Effects"; declare description "Multi Band Compressor contributed by kokoko3k"; import("stdfaust.lib"); import("reduce.lib"); vmeter1(x) = attach(x, envelop(x) : vbargraph("v1[tooltip:no]", -70, +5)); vmeter2(x) = attach(x, envelop(x) : vbargraph("v2[tooltip:no]", -70, +5)); vmeter3(x) = attach(x, envelop(x) : vbargraph("v3[tooltip:no]", -70, +5)); vmeter4(x) = attach(x, envelop(x) : vbargraph("v4[tooltip:no]", -70, +5)); vmeter5(x) = attach(x, envelop(x) : vbargraph("v5[tooltip:no]", -70, +5)); vmeter6(x) = attach(x, envelop(x) : vbargraph("v6[tooltip:no]", -70, +5)); vmeter7(x) = attach(x, envelop(x) : vbargraph("v7[tooltip:no]", -70, +5)); vmeter8(x) = attach(x, envelop(x) : vbargraph("v8[tooltip:no]", -70, +5)); vmeter9(x) = attach(x, envelop(x) : vbargraph("v9[tooltip:no]", -70, +5)); vmeter10(x) = attach(x, envelop(x) : vbargraph("v10[tooltip:no]", -70, +5)); process = geq : ( gcomp5s , gcomp4s , gcomp3s, gcomp2s, gcomp1s) :>_ with { gcomp1s = vmeter6:ba.bypass1(bswitch1,co.compressor_mono(ratio1,-push1,attack1,release1)):*(Makeup1) : vmeter1; gcomp2s = vmeter7:ba.bypass1(bswitch2,co.compressor_mono(ratio2,-push2,attack2,release2)):*(Makeup2) : vmeter2; gcomp3s = vmeter8:ba.bypass1(bswitch3,co.compressor_mono(ratio3,-push3,attack3,release3)):*(Makeup3) : vmeter3; gcomp4s = vmeter9:ba.bypass1(bswitch4,co.compressor_mono(ratio4,-push4,attack4,release4)):*(Makeup4) : vmeter4; gcomp5s = vmeter10:ba.bypass1(bswitch5,co.compressor_mono(ratio5,-push5,attack5,release5)):*(Makeup5) : vmeter5; }; sel1 = hslider("Mode1[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel2 = hslider("Mode2[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel3 = hslider("Mode3[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel4 = hslider("Mode4[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); sel5 = hslider("Mode5[enum:Compress|Bypass|Mute][tooltip: Compress or Mute the selected band, or Bypass The Compressor]",1,1,3,1); not(x) = abs(x-1); mute1 = not(max(0,sel1-2)); mute2 = not(max(0,sel2-2)); mute3 = not(max(0,sel3-2)); mute4 = not(max(0,sel4-2)); mute5 = not(max(0,sel5-2)); bypass(switch, block) = _ <: select2(switch, _, block); bswitch1 = max(0,sel1-1); bswitch2 = max(0,sel2-1); bswitch3 = max(0,sel3-1); bswitch4 = max(0,sel4-1); bswitch5 = max(0,sel5-1); hifr1 =hslider("crossover_b1_b2 [log][name:Crossover B1-B2 (hz)][tooltip: Crossover fi.bandpass frequency]" ,80 , 20, 20000, 1.08); hifr2 =hslider("crossover_b2_b3 [log][name:Crossover B2-B3 (hz)][tooltip: Crossover fi.bandpass frequency]",210,20,20000,1.08); hifr3 =hslider("crossover_b3_b4 [log][name:Crossover B3-B4 (hz)][tooltip: Crossover fi.bandpass frequency]",1700,20,20000,1.08); hifr4 =hslider("crossover_b4_b5 [log][name:Crossover B4-B5 (hz)][tooltip: Crossover fi.bandpass frequency]",5000,20,20000,1.08); geq = fi.filterbank(3, (hifr1,hifr2,hifr3,hifr4)); ratio1 = hslider("[9] Ratio1 [tooltip: Compression ratio]",2,1,100,0.1); attack1 = hslider("[A] Attack1 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release1 = hslider("[B] Release1 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio2 = hslider("[9] Ratio2 [tooltip: Compression ratio]",2,1,100,0.1); attack2 = hslider("[A] Attack2 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release2 = hslider("[B] Release2 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio3 = hslider("[9] Ratio3 [tooltip: Compression ratio]",2,1,100,0.1); attack3 = hslider("[A] Attack3 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release3 = hslider("[B] Release3 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio4 = hslider("[9] Ratio4 [tooltip: Compression ratio]",2,1,100,0.1); attack4 = hslider("[A] Attack4 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release4 = hslider("[B] Release4 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); ratio5 = hslider("[9] Ratio5 [tooltip: Compression ratio]",2,1,100,0.1); attack5 = hslider("[A] Attack5 [tooltip: Time before the compressor starts to kick in]", 0.012, 0.001, 1, 0.001); release5 = hslider("[B] Release5 [tooltip: Time before the compressor releases the sound]", 1.25, 0.01, 10, 0.01); Makeup1 = mute1* (not(bswitch1)*(push1-safe1) : ba.db2linear : si.smooth(0.999)); Makeup2 = mute2* (not(bswitch2)*(push2-safe2) : ba.db2linear : si.smooth(0.999)); Makeup3 = mute3* (not(bswitch3)*(push3-safe3) : ba.db2linear : si.smooth(0.999)); Makeup4 = mute4* (not(bswitch4)*(push4-safe4) : ba.db2linear : si.smooth(0.999)); Makeup5 = mute5* (not(bswitch5)*(push5-safe5) : ba.db2linear : si.smooth(0.999));
4f324017d7be0eba27be0c1173902f2cc1d930d4f70e7231af445f6548df5279
Frando/rust-faust
volume.dsp
declare name "dbmeter"; declare version "1.0"; declare author "Grame"; declare license "BSD"; declare copyright "(c)GRAME 2006"; //------------------------------------------------- // A dB Vumeter //------------------------------------------------- import("stdfaust.lib"); envelop = abs : max(ba.db2linear(-70)) : ba.linear2db : min(10) : max ~ -(320.0/ma.SR); process = _ : envelop : vbargraph("channel0[unit:dB]", -70, 10) : _;
https://raw.githubusercontent.com/Frando/rust-faust/b3238eabdb45f77d1cd27bfbdb90818935e71cfd/examples/example-dbmeter-jack/dsp/volume.dsp
faust
------------------------------------------------- A dB Vumeter -------------------------------------------------
declare name "dbmeter"; declare version "1.0"; declare author "Grame"; declare license "BSD"; declare copyright "(c)GRAME 2006"; import("stdfaust.lib"); envelop = abs : max(ba.db2linear(-70)) : ba.linear2db : min(10) : max ~ -(320.0/ma.SR); process = _ : envelop : vbargraph("channel0[unit:dB]", -70, 10) : _;
878a682230747731509ba67cd589ca779d6c8489f8c9a8dd67d9cb575f75f483
Frando/rust-faust
volume.dsp
declare name "volumecontrol"; declare version "1.0"; declare author "Franz Heinzmann"; declare license "BSD"; declare options "[osc:on]"; import("stdfaust.lib"); stereo(func) = _,_ : func(_),func(_) : _,_; volumeM = *(vslider("volume", 0, -70, +4, 0.1) : ba.db2linear : si.smoo); volume = stereo(volumeM); envelop = abs : max ~ -(1.0/ma.SR) : max(ba.db2linear(-70)) : ba.linear2db; vumeterM(x) = envelop(x) : vbargraph("level[2][unit:dB][style:dB]", -60, +5); vumeterS(a,b) = a,b <: _,_,_,_ : (a, b, attach(0,vumeterM((a+b)/2)), 0) :> _,_; vumeter = _,_ : vumeterS(_,_); faderchannel = _,_ : volume : vumeter : _,_; process = faderchannel;
https://raw.githubusercontent.com/Frando/rust-faust/b3238eabdb45f77d1cd27bfbdb90818935e71cfd/examples/example-jack/dsp/volume.dsp
faust
declare name "volumecontrol"; declare version "1.0"; declare author "Franz Heinzmann"; declare license "BSD"; declare options "[osc:on]"; import("stdfaust.lib"); stereo(func) = _,_ : func(_),func(_) : _,_; volumeM = *(vslider("volume", 0, -70, +4, 0.1) : ba.db2linear : si.smoo); volume = stereo(volumeM); envelop = abs : max ~ -(1.0/ma.SR) : max(ba.db2linear(-70)) : ba.linear2db; vumeterM(x) = envelop(x) : vbargraph("level[2][unit:dB][style:dB]", -60, +5); vumeterS(a,b) = a,b <: _,_,_,_ : (a, b, attach(0,vumeterM((a+b)/2)), 0) :> _,_; vumeter = _,_ : vumeterS(_,_); faderchannel = _,_ : volume : vumeter : _,_; process = faderchannel;
661f832787ac5bbb7ab2760704a51d3ca29b1a196b29dc435a718a610a074ff0
jcelerier/guitarixlib
valve_rect.dsp
// dsp algorithm from swh ladspa valve_rect plugin (Steve Harrison) import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); sag = vslider("sag", 0, 0, 1, 0.01); dist_p = vslider("dist", 0, 0, 1, 0.01); process(x) = valve.vt(dist, q(x), x) with { dist = dist_p * 40 + 0.1; q(x) = lp1tm1(x) * sag - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); };
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/valve_rect.dsp
faust
dsp algorithm from swh ladspa valve_rect plugin (Steve Harrison)
import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); sag = vslider("sag", 0, 0, 1, 0.01); dist_p = vslider("dist", 0, 0, 1, 0.01); process(x) = valve.vt(dist, q(x), x) with { dist = dist_p * 40 + 0.1; q(x) = lp1tm1(x) * sag - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); };
91125e627ce23c7daff4941365672a7ee2aaf437043fd2d9e2fdf5b761443301
jcelerier/guitarixlib
jconv_post.dsp
declare id "jconv"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); wet = vslider("wet_dry[name:wet/dry][tooltip:percentage of processed signal in output signal]", 100, 0, 100, 1) : /(100); dry = 1 - wet; deltadelay = vslider("diff_delay[name:Delta Delay][tooltip:delay left or right channel by the specified amount (unit: ms)]", 0, -100, 100, 0.01)*ba.millisec : smoothi(0.999); gain = vslider("gain[name:Gain][tooltip:gain trim for processed signal (unit: dB)]", 0, -20, 20, 0.1) : ba.db2linear : smoothi(0.999); jbal = vslider("balance[name:Balance][tooltip:left/right trim for processed signal]", 0, -1, 1, 0.1): smoothi(0.999); bal = balance_ctrl.bal; /* ** We want to move the sound source to the right ** with increasing values of deltadelay; this means ** we have to delay the left channel */ //bug in faust (at least up to version 0.9.27) //rdelay = -deltadelay : max(0); //ldelay = deltadelay : max(0); rdelay = select2(deltadelay > 0, -deltadelay, 0); ldelay = select2(deltadelay < 0, deltadelay, 0); fx = gain * de.fdelay1s(ldelay), gain * de.fdelay1s(rdelay) : balance(jbal); process = *(dry), *(dry), (*(wet),*(wet) : fx) :> balance(bal);
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/jconv_post.dsp
faust
** We want to move the sound source to the right ** with increasing values of deltadelay; this means ** we have to delay the left channel bug in faust (at least up to version 0.9.27) rdelay = -deltadelay : max(0); ldelay = deltadelay : max(0);
declare id "jconv"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); wet = vslider("wet_dry[name:wet/dry][tooltip:percentage of processed signal in output signal]", 100, 0, 100, 1) : /(100); dry = 1 - wet; deltadelay = vslider("diff_delay[name:Delta Delay][tooltip:delay left or right channel by the specified amount (unit: ms)]", 0, -100, 100, 0.01)*ba.millisec : smoothi(0.999); gain = vslider("gain[name:Gain][tooltip:gain trim for processed signal (unit: dB)]", 0, -20, 20, 0.1) : ba.db2linear : smoothi(0.999); jbal = vslider("balance[name:Balance][tooltip:left/right trim for processed signal]", 0, -1, 1, 0.1): smoothi(0.999); bal = balance_ctrl.bal; rdelay = select2(deltadelay > 0, -deltadelay, 0); ldelay = select2(deltadelay < 0, deltadelay, 0); fx = gain * de.fdelay1s(ldelay), gain * de.fdelay1s(rdelay) : balance(jbal); process = *(dry), *(dry), (*(wet),*(wet) : fx) :> balance(bal);
03a2ea4667ccc0512cb188db144649b0b996bbb5efcd660419cc50a26f973442
jcelerier/guitarixlib
gxamp17.dsp
declare id "12AT7 feedback"; // in amp tube ba.selector declare name "12AT7 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); /**************************************************************** ** Tube Preamp Emulation stage 1 - 2 * 12AT7 feedback */ val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { atten = 0.6; stage1 = tubestage(TB_12AT7_68k,86.0,2700.0,2.617753) : - ~ (atten*tubestage(TB_12AT7_250k,132.0,1500.0,1.887332)) : *(preamp): fi.lowpass(1,6531.0) : tubestage(TB_12AT7_250k,132.0,1500.0,1.887332): + ~ (atten*tubestage(TB_12AT7_250k,194.0,820.0,1.256962)); stage2 = fi.lowpass(1,6531.0) : tubestage(TB_12AT7_250k,194.0,820.0,1.256962) : *(gain1); } ; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; /* drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999); */ };
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/gxamp17.dsp
faust
in amp tube ba.selector *************************************************************** ** Tube Preamp Emulation stage 1 - 2 * 12AT7 feedback drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999);
declare name "12AT7 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { atten = 0.6; stage1 = tubestage(TB_12AT7_68k,86.0,2700.0,2.617753) : - ~ (atten*tubestage(TB_12AT7_250k,132.0,1500.0,1.887332)) : *(preamp): fi.lowpass(1,6531.0) : tubestage(TB_12AT7_250k,132.0,1500.0,1.887332): + ~ (atten*tubestage(TB_12AT7_250k,194.0,820.0,1.256962)); stage2 = fi.lowpass(1,6531.0) : tubestage(TB_12AT7_250k,194.0,820.0,1.256962) : *(gain1); } ; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; };
da9c8f49f353b5c0409d2191ae021754ae8723265e60d7e399c756f4c69499ed
jcelerier/guitarixlib
gxamp11.dsp
declare id "12AU7 feedback"; // in amp tube ba.selector declare name "12AU7 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); /**************************************************************** ** Tube Preamp Emulation stage 1 - 2 * 12AU7 feedback */ val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { stage1 = tubestage130_10(TB_12AU7_68k,86.0,2700.0,1.257240) : - ~ tubestage130_10(TB_12AU7_250k,132.0,1500.0,0.776162) : *(preamp): fi.lowpass(1,6531.0) : tubestage130_10(TB_12AU7_250k,132.0,1500.0,0.776162): + ~ tubestage130_10(TB_12AU7_250k,194.0,820.0,0.445487) ; stage2 = fi.lowpass(1,6531.0) : tubestage130_10(TB_12AU7_250k,194.0,820.0,0.445487) : *(gain1); } ; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; /* drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999); */ } ;
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/gxamp11.dsp
faust
in amp tube ba.selector *************************************************************** ** Tube Preamp Emulation stage 1 - 2 * 12AU7 feedback drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999);
declare name "12AU7 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { stage1 = tubestage130_10(TB_12AU7_68k,86.0,2700.0,1.257240) : - ~ tubestage130_10(TB_12AU7_250k,132.0,1500.0,0.776162) : *(preamp): fi.lowpass(1,6531.0) : tubestage130_10(TB_12AU7_250k,132.0,1500.0,0.776162): + ~ tubestage130_10(TB_12AU7_250k,194.0,820.0,0.445487) ; stage2 = fi.lowpass(1,6531.0) : tubestage130_10(TB_12AU7_250k,194.0,820.0,0.445487) : *(gain1); } ; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; } ;
0b03d7e4ba520b94db2c241cb6f694cddebb95b3ebdd67b63728777e7675c9da
jcelerier/guitarixlib
gxamp9.dsp
declare id "12ax7 feedback"; // in amp tube ba.selector declare name "12ax7 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); /**************************************************************** ** Tube Preamp Emulation stage 1 - 2 * 12ax7 feedback */ val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { atten = 0.6; stage1 = tubestage(TB_12AX7_68k,86.0,2700.0,1.581656) : - ~ (atten*tubestage(TB_12AX7_250k,132.0,1500.0,1.204285)) : *(preamp): fi.lowpass(1,6531.0) : tubestage(TB_12AX7_250k,132.0,1500.0,1.204285): + ~ (atten*tubestage(TB_12AX7_250k,194.0,820.0,0.840702)); stage2 = fi.lowpass(1,6531.0) : tubestage(TB_12AX7_250k,194.0,820.0,0.840702) : *(gain1); } ; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; /* drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999); */ };
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/gxamp9.dsp
faust
in amp tube ba.selector *************************************************************** ** Tube Preamp Emulation stage 1 - 2 * 12ax7 feedback drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999);
declare name "12ax7 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { atten = 0.6; stage1 = tubestage(TB_12AX7_68k,86.0,2700.0,1.581656) : - ~ (atten*tubestage(TB_12AX7_250k,132.0,1500.0,1.204285)) : *(preamp): fi.lowpass(1,6531.0) : tubestage(TB_12AX7_250k,132.0,1500.0,1.204285): + ~ (atten*tubestage(TB_12AX7_250k,194.0,820.0,0.840702)); stage2 = fi.lowpass(1,6531.0) : tubestage(TB_12AX7_250k,194.0,820.0,0.840702) : *(gain1); } ; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; };
79fc6cf6dcaeebc8c71fd17e74be5c8828c1ff4dcbbc8eadfa6adab86c6dffeb
jcelerier/guitarixlib
gxamp13.dsp
declare id "6DJ8 feedback"; // in amp tube ba.selector declare name "6DJ8 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); /**************************************************************** ** Tube Preamp Emulation stage 1 - 2 */ val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { atten = 0.6; stage1 = tubestage130_20(TB_6DJ8_68k,86.0,2700.0,1.863946) : - ~ (atten*tubestage130_20(TB_6DJ8_250k,132.0,1500.0,1.271609)) : *(preamp): fi.lowpass(1,6531.0) : tubestage130_20(TB_6DJ8_250k,132.0,1500.0,1.271609): + ~ (atten*tubestage130_20(TB_6DJ8_250k,194.0,820.0,0.797043)); stage2 = fi.lowpass(1,6531.0) : tubestage130_20(TB_6DJ8_250k,194.0,820.0,0.797043) : *(gain1); }; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; /* drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999); */ };
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/gxamp13.dsp
faust
in amp tube ba.selector *************************************************************** ** Tube Preamp Emulation stage 1 - 2 drive = vslider(".gxdistortion.drive[alias]",0.35, 0, 1, 0.01); wet_dry = vslider(".gxdistortion.wet_dry[alias]", 100, 0, 100, 1) : /(100) : smoothi(0.999); preamp = vslider(".amp2.stage1.Pregain[alias]",0,-20,20,0.1) : ba.db2linear : smoothi(0.999); gain1 = vslider(".amp2.stage2.gain1[alias]", 6, -20.0, 20.0, 0.1) : ba.db2linear : smoothi(0.999);
declare name "6DJ8 feedback"; declare samplerate "96000"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1 - lp2tm1(x) * 1.02 - 1.0 : clip(-1,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; tubeax(preamp,gain1) = hgroup("stage1", stage1) : hgroup("stage2", stage2) with { atten = 0.6; stage1 = tubestage130_20(TB_6DJ8_68k,86.0,2700.0,1.863946) : - ~ (atten*tubestage130_20(TB_6DJ8_250k,132.0,1500.0,1.271609)) : *(preamp): fi.lowpass(1,6531.0) : tubestage130_20(TB_6DJ8_250k,132.0,1500.0,1.271609): + ~ (atten*tubestage130_20(TB_6DJ8_250k,194.0,820.0,0.797043)); stage2 = fi.lowpass(1,6531.0) : tubestage130_20(TB_6DJ8_250k,194.0,820.0,0.797043) : *(gain1); }; process = val : component("gxdistortion.dsp").dist1(drive,wet_dry) : tubeax(preamp,gain1) with { drive = ampctrl.drive; wet_dry = ampctrl.wet_dry; preamp = ampctrl.preamp; gain1 = ampctrl.gain1; };
75be65d54d8593ffc401292d07848f6005b62547bb4972978efac096ef6c562d
jcelerier/guitarixlib
gxdistortion.dsp
declare id "gxdistortion"; declare version "0.01"; declare author "brummer"; declare license "BSD"; declare copyright "(c)brummer 2008"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); F = 300; //nentry("split_low_freq", 250, 20, 600, 10); F1 = 1200; //nentry("split_middle_freq", 650, 600, 1250, 10); F2 = 3200; //nentry("split_high_freq", 1250, 1250, 12000, 10); /********************************************************************** *** this part is included here for backward compatibility from 0.9.27 to *** 0.9.24 ***********************************************************************/ //------------------------------ ba.count and ba.take -------------------------------------- countN ((xs, xxs)) = 1 + countN(xxs); countN (xx) = 1; takeN (1, (xs, xxs)) = xs; takeN (1, xs) = xs; takeN (nn, (xs, xxs)) = takeN (nn-1, xxs); //------------------------------ low/high-passfilters -------------------------------------- tf1N(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2N(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; tf1sN(b1,b0,a0,w1) = tf1N(b0d,b1d,a1d) with { c = 1/tan((w1)*0.5/ma.SR); // bilinear-transform scale-factor d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; tf2sN(b2,b1,b0,a1,a0,w1) = tf2N(b0d,b1d,b2d,a1d,a2d) with { c = 1/tan((w1)*0.5/ma.SR); // bilinear-transform scale-factor csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; lowpassN(N,fc) = lowpass0_highpass1N(0,N,fc); highpassN(N,fc) = lowpass0_highpass1N(1,N,fc); lowpass0_highpass1N(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1sN(s,1-s,1,2*ma.PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2sN(s,0,1-s,a1s,1,w1) with { parity = N % 2; S = (O-parity)/2; // current section number a1s = -2*cos(-ma.PI + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N); w1 = 2*ma.PI*fc; }; }; //------------------------------ an.analyzer -------------------------------------- analyzern(O,lfreqs) = _ <: bsplit(nb) with { nb = countN(lfreqs); fc(n) = takeN(n, lfreqs); lp(n) = lowpassN(O,fc(n)); hp(n) = highpassN(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; analyzerN(lfreqs) = analyzern(3,lfreqs); filterbankn(O,lfreqs) = analyzern(O,lfreqs) : delayeq with { nb = ba.count(lfreqs); fc(n) = ba.take(n, lfreqs); ap(n) = fi.highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; filterbankN(lfreqs) = fi.filterbank(3,lfreqs); /********************************************************************** *** end for backward compatibility from 0.9.27 to *** 0.9.24 , it could removed when switch completely to > 0.9.27 ***********************************************************************/ //----------distortion--------- /* 2 exp() because of valve.vt */ val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1.0 - lp2tm1(x) * 1.02 - 1.0 : clip(-1.0,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; vt = valve.vt(dist, q) : ma.neg : valve.vt(dist, q) : ma.neg with { q_p = 0.9; dist_p = 1.7; q = -q_p*-q_p*-q_p; dist = pow(10,dist_p); }; //-distortion distdrive(drive) = wet_dry_mix(wet_dry, _: distortion) with { //drive = vslider("drive", 0.35, 0, 1, 0.01); //h = (2.0): ba.db2linear; //1,2589412 //l = (4.0): ba.db2linear; //1,584893192 //mh = (4.0): ba.db2linear; //1,584893192 //ml = (2.5): ba.db2linear; //1,333521432 distortion1 = _:ef.cubicnl(0.45*drive,0.0): *(1.2589412); // l distortion2 = _:ef.cubicnl(0.4*drive,0.0) : *(1.584893192); // h distortion3 = _:ef.cubicnl(1.0*drive,0.0) : *(1.584893192); //ml distortion4 = _:ef.cubicnl(0.6*drive,0.0) : *(1.333521432); //mh distortion = fi.lowpass(2,15000.0): fi.highpass(1,31.0) : filterbankN((F,F1,F2)) : distortion2,distortion4 ,distortion3,distortion1 :>fi.lowpass(1,6531.0); wet_dry = (drive - 0.5) * 2; }; clipit = min(0.7) : max(-0.7) ; gx_drive(drive) = _ <: _ + nonlin(4,4,0.125) * drive * 10 ; wetdry = vslider("wet_dry[name:wet/dry]", 100, 0, 100, 1) : /(100); drive = vslider("drive", 0.35, 0, 1, 0.01) : smoothi(0.999); dist(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry):distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist1(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) <: (clipit: ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; /* 4 exp() because of val */ dist2(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) :val :distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist4(drive,wetdry) =_<:(*(dry): gx_drive(drive)), (*(wetdry) : val <: (ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; process = distdrive;
https://raw.githubusercontent.com/jcelerier/guitarixlib/9c2947507cd13b82554020e669a85244e867d584/guitarix/gxdistortion.dsp
faust
nentry("split_low_freq", 250, 20, 600, 10); nentry("split_middle_freq", 650, 600, 1250, 10); nentry("split_high_freq", 1250, 1250, 12000, 10); ********************************************************************* *** this part is included here for backward compatibility from 0.9.27 to *** 0.9.24 ********************************************************************** ------------------------------ ba.count and ba.take -------------------------------------- ------------------------------ low/high-passfilters -------------------------------------- bilinear-transform scale-factor bilinear-transform scale-factor current section number ------------------------------ an.analyzer -------------------------------------- ********************************************************************* *** end for backward compatibility from 0.9.27 to *** 0.9.24 , it could removed when switch completely to > 0.9.27 ********************************************************************** ----------distortion--------- 2 exp() because of valve.vt -distortion drive = vslider("drive", 0.35, 0, 1, 0.01); h = (2.0): ba.db2linear; //1,2589412 l = (4.0): ba.db2linear; //1,584893192 mh = (4.0): ba.db2linear; //1,584893192 ml = (2.5): ba.db2linear; //1,333521432 l h ml mh 4 exp() because of val
declare id "gxdistortion"; declare version "0.01"; declare author "brummer"; declare license "BSD"; declare copyright "(c)brummer 2008"; import("stdfaust.lib"); import("delays.lib"); import("guitarix.lib"); countN ((xs, xxs)) = 1 + countN(xxs); countN (xx) = 1; takeN (1, (xs, xxs)) = xs; takeN (1, xs) = xs; takeN (nn, (xs, xxs)) = takeN (nn-1, xxs); tf1N(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2N(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; tf1sN(b1,b0,a0,w1) = tf1N(b0d,b1d,a1d) with { d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; tf2sN(b2,b1,b0,a1,a0,w1) = tf2N(b0d,b1d,b2d,a1d,a2d) with { csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; lowpassN(N,fc) = lowpass0_highpass1N(0,N,fc); highpassN(N,fc) = lowpass0_highpass1N(1,N,fc); lowpass0_highpass1N(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1sN(s,1-s,1,2*ma.PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2sN(s,0,1-s,a1s,1,w1) with { parity = N % 2; a1s = -2*cos(-ma.PI + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N); w1 = 2*ma.PI*fc; }; }; analyzern(O,lfreqs) = _ <: bsplit(nb) with { nb = countN(lfreqs); fc(n) = takeN(n, lfreqs); lp(n) = lowpassN(O,fc(n)); hp(n) = highpassN(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; analyzerN(lfreqs) = analyzern(3,lfreqs); filterbankn(O,lfreqs) = analyzern(O,lfreqs) : delayeq with { nb = ba.count(lfreqs); fc(n) = ba.take(n, lfreqs); ap(n) = fi.highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; filterbankN(lfreqs) = fi.filterbank(3,lfreqs); val(x) = valve.vt(dist, q(x), x) with { dist = 40.1; q(x) = lp1tm1(x) * 1.0 - lp2tm1(x) * 1.02 - 1.0 : clip(-1.0,-0.01); lp(a) = *(1 - a) : + ~ *(a); lp1tm1 = abs <: lp(0.9999), _ : max; avgs = lp1tm1 : avg; avg_size = ma.SR/9; avg(x) = x - de.delay1s(avg_size,x) : + ~ _ : /(avg_size); lp2tm1 = avgs : lp(0.999); }; vt = valve.vt(dist, q) : ma.neg : valve.vt(dist, q) : ma.neg with { q_p = 0.9; dist_p = 1.7; q = -q_p*-q_p*-q_p; dist = pow(10,dist_p); }; distdrive(drive) = wet_dry_mix(wet_dry, _: distortion) with { distortion = fi.lowpass(2,15000.0): fi.highpass(1,31.0) : filterbankN((F,F1,F2)) : distortion2,distortion4 ,distortion3,distortion1 :>fi.lowpass(1,6531.0); wet_dry = (drive - 0.5) * 2; }; clipit = min(0.7) : max(-0.7) ; gx_drive(drive) = _ <: _ + nonlin(4,4,0.125) * drive * 10 ; wetdry = vslider("wet_dry[name:wet/dry]", 100, 0, 100, 1) : /(100); drive = vslider("drive", 0.35, 0, 1, 0.01) : smoothi(0.999); dist(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry):distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist1(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) <: (clipit: ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; dist2(drive,wetdry) =_<:(*(dry): gx_drive(drive)),(*(wetdry) :val :distdrive(drive)):>_ with{ dry = 1 - wetdry; }; dist4(drive,wetdry) =_<:(*(dry): gx_drive(drive)), (*(wetdry) : val <: (ef.cubicnl(drive,0.0) : * (0.5)),distdrive(drive) :>_):>_ with{ dry = 1 - wetdry; }; process = distdrive;
fdee7e6b54256dd30f0b3694c0f1f88acfbdc4ddd5579056a67d12b38aee4a5e
HexHive/datAFLow
structure4chris.dsp
import("stdfaust.lib"); process = button("play")*no.noise : structure(4,4,200); //-------------------------------------------------------------------------------------------------- // usage (osx): // faust2caqt structure4chris.dsp // open ./structure4chris.app //-------------------------------------------------------------------------------------------------- //---------------------------------------IMPLEMENTATION--------------------------------------------- //-------------------------------------------------------------------------------------------------- // structure(X,Y,D): a 2D structure of X*Y interconnected nodes // with a propagation time of D samples between them. // The structure has a mono input and a stereo output structure(X,Y,D) = (connections(X,Y, 1,1) : nodes(X, Y)) ~ delaylines(X,Y,D-1) : listen(X,Y, 1,Y/2, X-1, Y/2); //-------------------------------------------------------------------------------------------------- // creates the connections for a mesh of X*Y nodes with 4 inputs and 4 outputs // with an injection point at coord x0,y0. connections(X, Y, x0, y0) = route(X*Y*4+1, X*Y*4, par(x, X, par(y, Y, connections(x,y))), in, N(x0,y0), in, E(x0,y0), in, S(x0,y0), in, W(x0,y0) ) with { in = X*Y*4 + 1; // additional input for signal injection // for each node we establish connections with its 4 neighbours connections(x,y) = N(x,y), S(x,y-1), S(x,y), N(x,y+1), W(x,y), E(x-1,y), E(x,y), W(x+1,y); N(x,y) = (1 + 0 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); E(x,y) = (1 + 1 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); S(x,y) = (1 + 2 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); W(x,y) = (1 + 3 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); }; //-------------------------------------------------------------------------------------------------- // Among the X*Y nodes, listen to the node of coordinates (x,y) listen(X, Y, x0, y0, x1, y1) = route( X*Y*4, 2, N(x0,y0), 1, E(x0,y0), 1, S(x0,y0), 1, W(x0,y0), 1, N(x1,y1), 2, E(x1,y1), 2, S(x1,y1), 2, W(x1,y1), 2 ) with { N(x,y) = (1 + 0 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); E(x,y) = (1 + 1 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); S(x,y) = (1 + 2 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); W(x,y) = (1 + 3 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); }; //-------------------------------------------------------------------------------------------------- // the X*Y nodes with specific borders nodes(X,Y) = // the X*Y nodes par (x, X, north), par (y, Y-2, (west, par (x, X-2, node), east)), par (x, X, south) with { // regular nodes node(n,e,s,w) = (e+s+w)/3, (n+s+w)/3, (n+e+w)/3, (n+e+s)/3; // border nodes north(n,e,s,w) = 0, 0, filter(s), 0; east(n,e,s,w) = 0, 0, 0, filter(w); south(n,e,s,w) = filter(n), 0, 0, 0; west(n,e,s,w) = 0, filter(e), 0, 0; // common filter inside each border node filter = fi.lowpass(3,4000); }; //-------------------------------------------------------------------------------------------------- // X*Y*4 parallel delay lines delaylines(X,Y,D) = par(i, X*Y*4, @(D));
https://raw.githubusercontent.com/HexHive/datAFLow/b9f3cbc42b1970f8655817c9fb67b1eaba3ae4c0/evaluation/ddfuzz/seeds/faust/structure4chris.dsp
faust
-------------------------------------------------------------------------------------------------- usage (osx): faust2caqt structure4chris.dsp open ./structure4chris.app -------------------------------------------------------------------------------------------------- ---------------------------------------IMPLEMENTATION--------------------------------------------- -------------------------------------------------------------------------------------------------- structure(X,Y,D): a 2D structure of X*Y interconnected nodes with a propagation time of D samples between them. The structure has a mono input and a stereo output -------------------------------------------------------------------------------------------------- creates the connections for a mesh of X*Y nodes with 4 inputs and 4 outputs with an injection point at coord x0,y0. additional input for signal injection for each node we establish connections with its 4 neighbours -------------------------------------------------------------------------------------------------- Among the X*Y nodes, listen to the node of coordinates (x,y) -------------------------------------------------------------------------------------------------- the X*Y nodes with specific borders the X*Y nodes regular nodes border nodes common filter inside each border node -------------------------------------------------------------------------------------------------- X*Y*4 parallel delay lines
import("stdfaust.lib"); process = button("play")*no.noise : structure(4,4,200); structure(X,Y,D) = (connections(X,Y, 1,1) : nodes(X, Y)) ~ delaylines(X,Y,D-1) : listen(X,Y, 1,Y/2, X-1, Y/2); connections(X, Y, x0, y0) = route(X*Y*4+1, X*Y*4, par(x, X, par(y, Y, connections(x,y))), in, N(x0,y0), in, E(x0,y0), in, S(x0,y0), in, W(x0,y0) ) with { connections(x,y) = N(x,y), S(x,y-1), S(x,y), N(x,y+1), W(x,y), E(x-1,y), E(x,y), W(x+1,y); N(x,y) = (1 + 0 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); E(x,y) = (1 + 1 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); S(x,y) = (1 + 2 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); W(x,y) = (1 + 3 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); }; listen(X, Y, x0, y0, x1, y1) = route( X*Y*4, 2, N(x0,y0), 1, E(x0,y0), 1, S(x0,y0), 1, W(x0,y0), 1, N(x1,y1), 2, E(x1,y1), 2, S(x1,y1), 2, W(x1,y1), 2 ) with { N(x,y) = (1 + 0 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); E(x,y) = (1 + 1 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); S(x,y) = (1 + 2 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); W(x,y) = (1 + 3 + (x+y*X)*4) * (x>=0) * (x<X) * (y>=0) * (y<Y); }; nodes(X,Y) = par (x, X, north), par (y, Y-2, (west, par (x, X-2, node), east)), par (x, X, south) with { node(n,e,s,w) = (e+s+w)/3, (n+s+w)/3, (n+e+w)/3, (n+e+s)/3; north(n,e,s,w) = 0, 0, filter(s), 0; east(n,e,s,w) = 0, 0, 0, filter(w); south(n,e,s,w) = filter(n), 0, 0, 0; west(n,e,s,w) = 0, filter(e), 0, 0; filter = fi.lowpass(3,4000); }; delaylines(X,Y,D) = par(i, X*Y*4, @(D));
a882726e5ff497c90cb19ac25abf7601126afa405490a9e0fef84cce06009ded
JDCAudio/Stray_virtual-synth
oscExperimentation1.0.dsp
import("stdfaust.lib"); //define samplerate sr = ma.SR; twopi = 2.0*ma.PI; //define waveform in table ts = 1<<16; //size = 65536 samples time = (+(1) ~ _) , 1 : - ; sinewave = ((float(time) / float(ts)) * twopi) : sin; phase = os.phasor(ts,freq); //read from table sin_osc(freq) = rdtable(ts,sinewave,int(phase)); //generate a one sample impulse from the gate trig = pm.impulseExcitation(reset); freq = hslider("freq", 100, 0, 1600, 0.001); process = sin_osc(freq);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/oscExperimentation1.0.dsp
faust
define samplerate define waveform in table size = 65536 samples read from table generate a one sample impulse from the gate
import("stdfaust.lib"); sr = ma.SR; twopi = 2.0*ma.PI; time = (+(1) ~ _) , 1 : - ; sinewave = ((float(time) / float(ts)) * twopi) : sin; phase = os.phasor(ts,freq); sin_osc(freq) = rdtable(ts,sinewave,int(phase)); trig = pm.impulseExcitation(reset); freq = hslider("freq", 100, 0, 1600, 0.001); process = sin_osc(freq);
7451e33a6449e5d23b82d7d023ca482ad86f3540b56accd2819ab7b2a9942587
JDCAudio/Stray_virtual-synth
NoiseWave2.dsp
import("stdfaust.lib"); freq = hslider("Freq",440,50,2000,0.1); rand = no.noise : ba.latch(ba.beat(60)); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; f = freq + rand; process = os.osc(f) * envelope;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/d8eec109c51547fd9bc7311bbd1a833791f39476/WaveGenerationTests/OriginalTests/NoiseWave2.dsp
faust
import("stdfaust.lib"); freq = hslider("Freq",440,50,2000,0.1); rand = no.noise : ba.latch(ba.beat(60)); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; f = freq + rand; process = os.osc(f) * envelope;
e19fcec512ad52ada149cabc1697cbfe74c44907d105e3c53bd6d1929fbb0ac0
JDCAudio/Stray_virtual-synth
oscExperimentation1.2.dsp
import("stdfaust.lib"); //define samplerate twopi = 2.0*ma.PI; //define base waveform in table tableSize = 1<<16; //size = 65536 samples time = (+(1) ~ _) , 1 : - ; sinewave = ((float(time) / float(tableSize)) * twopi) : sin; //Define index readIndex = int(os.phasor(tableSize,freq)); writeIndex = readIndex : de.delay(32,32); writeStream = no.noise; //read from table sin_osc(freq) = rwtable(tableSize,sinewave,writeStream,writeIndex,readIndex); freq = hslider("freq", 100, 0, 1600, 0.001); switch = button("toggle") : ba.toggle; process = switch*sin_osc(freq);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/oscExperimentation1.2.dsp
faust
define samplerate define base waveform in table size = 65536 samples Define index read from table
import("stdfaust.lib"); twopi = 2.0*ma.PI; time = (+(1) ~ _) , 1 : - ; sinewave = ((float(time) / float(tableSize)) * twopi) : sin; readIndex = int(os.phasor(tableSize,freq)); writeIndex = readIndex : de.delay(32,32); writeStream = no.noise; sin_osc(freq) = rwtable(tableSize,sinewave,writeStream,writeIndex,readIndex); freq = hslider("freq", 100, 0, 1600, 0.001); switch = button("toggle") : ba.toggle; process = switch*sin_osc(freq);
c08091cbb1d3aa44d031fa2bf839b1828c057f40eaa9c07de73938e8fa6b0eeb
JDCAudio/Stray_virtual-synth
polymidi.dsp
import("stdfaust.lib"); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; waveGenerator = hgroup("[0]Wave Generator",os.osc(freq),os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",0,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; process = vgroup("Synth",waveGenerator * envelope);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/polymidi.dsp
faust
import("stdfaust.lib"); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; waveGenerator = hgroup("[0]Wave Generator",os.osc(freq),os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",0,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; process = vgroup("Synth",waveGenerator * envelope);
227eb29743801c83701c2ef5b6b08bb683a685fb1eff45d2e3f465ce63fdd277
JDCAudio/Stray_virtual-synth
polymidiam.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq),os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",0,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; am = hgroup("[2]AM",modulator) with{ modulator = ((1-modDepth) + os.osc(modFreq)*0.5+0.5)*modDepth; modFreq = hslider("[0]Modulator Frequency[style:knob]",20,0.01,2000,0.01); modDepth = hslider("[1]Modulator Depth[style:knob]",0.5,0,1,0.01); }; process = vgroup("Synth",(waveGenerator*am) * envelope);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/polymidiam.dsp
faust
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq),os.triangle(freq),os.square(freq),os.sawtooth(freq) : ba.selectn(4,wave)) with{ wave = nentry("[0]Waveform",0,0,3,1); freq = hslider("[1]freq",440,50,2000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; am = hgroup("[2]AM",modulator) with{ modulator = ((1-modDepth) + os.osc(modFreq)*0.5+0.5)*modDepth; modFreq = hslider("[0]Modulator Frequency[style:knob]",20,0.01,2000,0.01); modDepth = hslider("[1]Modulator Depth[style:knob]",0.5,0,1,0.01); }; process = vgroup("Synth",(waveGenerator*am) * envelope);
4df1f362549c818ae5a425e5e36b441aa4809534c1996eaae3a897ecc9e45043
JDCAudio/Stray_virtual-synth
VariableAmpList.dsp
import("stdfaust.lib"); //N = order of interpolation N = 15; //I = number of iterations for various parameters I = N+1; //x used to calculate current location in waveform x = os.phasor(I, freq); //initialize list of inteeger x values xCoords = par(i,I,int(i)); //Sliders for all amplitudes of integer values ampList = hgroup("[2]Amplitudes",par(i,I,vslider("A%i",0,-1,1,0.01))); //do the interpolation result = x, ampList : it.lagrangeInterpolation(N,xCoords); //basic midi and envelope freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; //gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; process = result * envelope;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/953e9fbb8c14f9a1072cddc0decf2af8231cd6c6/WaveGenerationTests/OriginalTests/VariableAmpList.dsp
faust
N = order of interpolation I = number of iterations for various parameters x used to calculate current location in waveform initialize list of inteeger x values Sliders for all amplitudes of integer values do the interpolation basic midi and envelope gain = hslider("[4]gain",1,0,1,0.01);
import("stdfaust.lib"); N = 15; I = N+1; x = os.phasor(I, freq); xCoords = par(i,I,int(i)); ampList = hgroup("[2]Amplitudes",par(i,I,vslider("A%i",0,-1,1,0.01))); result = x, ampList : it.lagrangeInterpolation(N,xCoords); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gate = button("gate"); }; process = result * envelope;
54a464dab6c1f79df83d361ba7f4b31893994908db8a4ad4806c9f5f419d27fd
JDCAudio/Stray_virtual-synth
VariableAmpClipped.dsp
import("stdfaust.lib"); //N = order of interpolation N = 5; //I = number of iterations for various parameters I = N+1; //x used to calculate current location in waveform x = os.phasor(I, freq); //initialize list of inteeger x values xCoords = par(i,I,int(i)); //Sliders for all amplitudes of integer values ampList = hgroup("[2]Amplitudes",par(i,I,vslider("A%i",0,-1,1,0.01))); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); result = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi and envelope freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; //gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; process = result * envelope;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/953e9fbb8c14f9a1072cddc0decf2af8231cd6c6/WaveGenerationTests/OriginalTests/VariableAmpClipped.dsp
faust
N = order of interpolation I = number of iterations for various parameters x used to calculate current location in waveform initialize list of inteeger x values Sliders for all amplitudes of integer values do the interpolation basic midi and envelope gain = hslider("[4]gain",1,0,1,0.01);
import("stdfaust.lib"); N = 5; I = N+1; x = os.phasor(I, freq); xCoords = par(i,I,int(i)); ampList = hgroup("[2]Amplitudes",par(i,I,vslider("A%i",0,-1,1,0.01))); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); result = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gate = button("gate"); }; process = result * envelope;
6ab162bcc675bde743a58c6b11109d64f641580369b11f2fedb6d8df5525cb24
JDCAudio/Stray_virtual-synth
NoiseWave1.dsp
import("stdfaust.lib"); triangleWave = waveform{0,0.25,0.5,0.75,1,0.75,0.5,0.25,0,-0.25,-0.5,-0.75,-1,-0.75,-.5,-0.25}; squareWave = waveform{0,1,1,1,1,1,1,0,-1,-1,-1,-1,-1,-1,-1,0}; testOsc(freq) = squareWave,int(os.phasor(16,freq)) : rdtable; freq = hslider("freq",440,50,2000,0.01); rIdx = os.phasor(16, freq); wIdx = ba.period(hslider("writeSpeed",16,1,16,0.01)); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; noise = no.lfnoise(freq) * hslider("noiseGain",0.5,0,1,0.01); process = it.frwtable(1,16,os.sinwaveform(16),wIdx,(testOsc(freq) * noise),rIdx) * envelope; //process = triangleOsc(freq) * envelope;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/d8eec109c51547fd9bc7311bbd1a833791f39476/WaveGenerationTests/OriginalTests/NoiseWave1.dsp
faust
process = triangleOsc(freq) * envelope;
import("stdfaust.lib"); triangleWave = waveform{0,0.25,0.5,0.75,1,0.75,0.5,0.25,0,-0.25,-0.5,-0.75,-1,-0.75,-.5,-0.25}; squareWave = waveform{0,1,1,1,1,1,1,0,-1,-1,-1,-1,-1,-1,-1,0}; testOsc(freq) = squareWave,int(os.phasor(16,freq)) : rdtable; freq = hslider("freq",440,50,2000,0.01); rIdx = os.phasor(16, freq); wIdx = ba.period(hslider("writeSpeed",16,1,16,0.01)); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; noise = no.lfnoise(freq) * hslider("noiseGain",0.5,0,1,0.01); process = it.frwtable(1,16,os.sinwaveform(16),wIdx,(testOsc(freq) * noise),rIdx) * envelope;
1aabf99aa5761b7df7532d2286a1c9943f577b8754ff07a22242a525fea5ee6a
JDCAudio/Stray_virtual-synth
SubtractivePROG.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am, no.noise : ba.selectn(5,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,4,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = fmMod*fmCheck; fmMod = os.osc(fmFreq) * fmDepth; fmCheck = checkbox("[4]FM On/Off"); fmFreq = hslider("[5]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[6]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Synth", waveGenerator * envelope);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/SubtractivePROG.dsp
faust
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am, no.noise : ba.selectn(5,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,4,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = fmMod*fmCheck; fmMod = os.osc(fmFreq) * fmDepth; fmCheck = checkbox("[4]FM On/Off"); fmFreq = hslider("[5]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[6]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Synth", waveGenerator * envelope);
03dc468988e1711f8c9b9826363097ca8e002013c5445277ed4859ba371ac69c
JDCAudio/Stray_virtual-synth
polymidiamfmPROG.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am : ba.selectn(4,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,3,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = os.osc(fmFreq) * fmDepth; fmFreq = hslider("[4]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[5]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Synth", waveGenerator * envelope);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/polymidiamfmPROG.dsp
faust
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am : ba.selectn(4,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,3,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = os.osc(fmFreq) * fmDepth; fmFreq = hslider("[4]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[5]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; process = vgroup("Synth", waveGenerator * envelope);
c4271d5a9275481ee30f678a0ca106c4f498c5021d27414ee3a0216409b7748b
JDCAudio/Stray_virtual-synth
SubtractiveFixed.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am, no.noise : ba.selectn(5,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,4,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = fmMod*fmCheck; fmMod = os.osc(fmFreq) * fmDepth; fmCheck = checkbox("[4]FM On/Off"); fmFreq = hslider("[5]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[6]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; subtractive = waveGenerator : hgroup("[2]Filter",fi.resonlp(resFreq,q,1)) with{ cutOff = hslider("[0]Cutoff Freq[style:knob]",2000,50,10000,0.01); q = hslider("[1]Q[style:knob]",5,1,30,0.1); lfoFreq = hslider("[2]LFO Freq[style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth[style:knob]",500,1,10000,1); resFreq = cutOff + os.osc(lfoFreq)*lfoDepth : max(30); }; process = vgroup("Synth", subtractive * envelope);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/SubtractiveFixed.dsp
faust
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am, no.noise : ba.selectn(5,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,4,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = fmMod*fmCheck; fmMod = os.osc(fmFreq) * fmDepth; fmCheck = checkbox("[4]FM On/Off"); fmFreq = hslider("[5]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[6]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; subtractive = waveGenerator : hgroup("[2]Filter",fi.resonlp(resFreq,q,1)) with{ cutOff = hslider("[0]Cutoff Freq[style:knob]",2000,50,10000,0.01); q = hslider("[1]Q[style:knob]",5,1,30,0.1); lfoFreq = hslider("[2]LFO Freq[style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth[style:knob]",500,1,10000,1); resFreq = cutOff + os.osc(lfoFreq)*lfoDepth : max(30); }; process = vgroup("Synth", subtractive * envelope);
d9dec7606a15ccb94e0c5e10a9b84a661318d7e68bf9f1dee76cbbfde2811c5d
JDCAudio/Stray_virtual-synth
Subtractive.dsp
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am, no.noise : ba.selectn(5,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,4,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = fmMod*fmCheck; fmMod = os.osc(fmFreq) * fmDepth; fmCheck = checkbox("[4]FM On/Off"); fmFreq = hslider("[5]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[6]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; subtractive = waveGenerator : hgroup("[2]Filter",fi.resonlp(resFreq,q,1)) with{ cutOff = hslider("[0]Cutoff Freq[style:knob]",10,0.1,20,0.01); q = hslider("[1]Q[style:knob]",5,1,30,0.1); lfoFreq = hslider("[2]LFO Freq[style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth[style:knob]",500,1,10000,1); resFreq = cutOff + os.osc(lfoFreq)*lfoDepth : max(30); }; process = vgroup("Synth", subtractive * envelope);
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/05d2947279ac4b170d71f6604c9dd9ca6d6bfc15/FaustTests/FaustFamiliarization/Subtractive.dsp
faust
import("stdfaust.lib"); waveGenerator = hgroup("[0]Wave Generator",os.osc(freq+fm)*am,os.triangle(freq+fm)*am,os.square(freq+fm)*am,os.sawtooth(freq+fm)*am, no.noise : ba.selectn(5,wave)) with{ freq = hslider("[0]freq",440,50,2000,0.01); wave = nentry("[1]Waveform",0,0,4,1); am = ((1-amDepth) + os.osc(amFreq)*0.5+0.5)*amDepth; amFreq = hslider("[2]AM Freq[style:knob]",20,0.01,2000,0.01); amDepth = hslider("[3]AM Depth[style:knob]",0.5,0,1,0.01); fm = fmMod*fmCheck; fmMod = os.osc(fmFreq) * fmDepth; fmCheck = checkbox("[4]FM On/Off"); fmFreq = hslider("[5]FM Freq[style:knob]",20,0.1,2000,0.01); fmDepth = hslider("[6]FM Depth[style:knob]",100,0,1000,0.01); }; envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("[5]gate"); }; subtractive = waveGenerator : hgroup("[2]Filter",fi.resonlp(resFreq,q,1)) with{ cutOff = hslider("[0]Cutoff Freq[style:knob]",10,0.1,20,0.01); q = hslider("[1]Q[style:knob]",5,1,30,0.1); lfoFreq = hslider("[2]LFO Freq[style:knob]",10,0.1,20,0.01); lfoDepth = hslider("[3]LFO Depth[style:knob]",500,1,10000,1); resFreq = cutOff + os.osc(lfoFreq)*lfoDepth : max(30); }; process = vgroup("Synth", subtractive * envelope);
5aefa18fac1ed85b8e7e2c81628f6f0e15db3537c21aab383e0192fd72bc4303
JDCAudio/Stray_virtual-synth
AmpList.dsp
import("stdfaust.lib"); //perlin style noise begins with predefined values at set integers //test waveforms yCoords1 = (0, 0.5, 1.0, 0.5, 0, -0.5, -1.0, -0.5); yCoords2 = (0, 1.0, 1.0, 1.0, 0, -1.0, -1.0, -1.0); yCoords3 = (0, 0.0, 1.0, 0.0, 0, 0.0, -1.0, 0.0); yCoords4 = (0, 1.0, 0.75, 0.25, 0, -0.25, -0.75, -1.0); yCoords5 = (0,no.noise,no.noise,no.noise,0,no.noise,no.noise,no.noise); ampList = hgroup("[2]Amplitudes",a0, a1, a2, a3, a4, a5, a6, a7) with{ a0 = vslider("0",0,-1,1,0.01); a1 = vslider("1",0,-1,1,0.01); a2 = vslider("2",0,-1,1,0.01); a3 = vslider("3",0,-1,1,0.01); a4 = vslider("4",0,-1,1,0.01); a5 = vslider("5",0,-1,1,0.01); a6 = vslider("6",0,-1,1,0.01); a7 = vslider("7",0,-1,1,0.01); }; //yCoords6 = ampList; xCoords = (0,1,2,3,4,5,6,7); //No lists in faust, use paralell //Use interpolation to find in-between values /*x , yCoords : lagrangeInterpolation(N, xCoordsList) : _ N: order of the interpolator, known at compile-time xCoordsList: a list of N + 1 elements determining the x-axis spacing of the points, known at compile-time x: an x-axis position to interpolate between the y-values yCoords: N + 1 elements determining the values of the interpolation points */ N = 7; x = os.phasor(8, freq); //do the interpolation result = x, ampList : it.lagrangeInterpolation(N,xCoords); //basic midi and envelope freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; process = result * envelope;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/a2b38509b36e6fe675f82b89f3347ab207ffd812/WaveGenerationTests/OriginalTests/AmpList.dsp
faust
perlin style noise begins with predefined values at set integers test waveforms yCoords6 = ampList; No lists in faust, use paralell Use interpolation to find in-between values x , yCoords : lagrangeInterpolation(N, xCoordsList) : _ N: order of the interpolator, known at compile-time xCoordsList: a list of N + 1 elements determining the x-axis spacing of the points, known at compile-time x: an x-axis position to interpolate between the y-values yCoords: N + 1 elements determining the values of the interpolation points do the interpolation basic midi and envelope
import("stdfaust.lib"); yCoords1 = (0, 0.5, 1.0, 0.5, 0, -0.5, -1.0, -0.5); yCoords2 = (0, 1.0, 1.0, 1.0, 0, -1.0, -1.0, -1.0); yCoords3 = (0, 0.0, 1.0, 0.0, 0, 0.0, -1.0, 0.0); yCoords4 = (0, 1.0, 0.75, 0.25, 0, -0.25, -0.75, -1.0); yCoords5 = (0,no.noise,no.noise,no.noise,0,no.noise,no.noise,no.noise); ampList = hgroup("[2]Amplitudes",a0, a1, a2, a3, a4, a5, a6, a7) with{ a0 = vslider("0",0,-1,1,0.01); a1 = vslider("1",0,-1,1,0.01); a2 = vslider("2",0,-1,1,0.01); a3 = vslider("3",0,-1,1,0.01); a4 = vslider("4",0,-1,1,0.01); a5 = vslider("5",0,-1,1,0.01); a6 = vslider("6",0,-1,1,0.01); a7 = vslider("7",0,-1,1,0.01); }; xCoords = (0,1,2,3,4,5,6,7); N = 7; x = os.phasor(8, freq); result = x, ampList : it.lagrangeInterpolation(N,xCoords); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[1]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; process = result * envelope;
69608704ca0fbdfe34a3259e1f862e57c96a719e0b381f6c1570e822eae78b3c
JDCAudio/Stray_virtual-synth
ModListVariableWave.dsp
import("stdfaust.lib"); modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0,0,20,0.01); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0,0,20,0.01); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0,0,20,0.01); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0,0,20,0.01); modF4 = vslider("h:Modulation/h:[1]Modulation Frequency/[4]mod4[style:knob]",0,0,20,0.01); modF5 = vslider("h:Modulation/h:[1]Modulation Frequency/[5]mod5[style:knob]",0,0,20,0.01); modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1,0.01); modA4 = vslider("h:Modulation/h:[2]Modulation Amplitude/[4]modA4[style:knob]",0,0,1,0.01); modA5 = vslider("h:Modulation/h:[2]Modulation Amplitude/[5]modA5[style:knob]",0,0,1,0.01); modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0",0,0,2,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1",0,0,2,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2",0,0,2,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3",0,0,2,1); modW4 = nentry("h:Modulation/h:[3]Modulation Waveform/[4]modWave4",0,0,2,1); modW5 = nentry("h:Modulation/h:[3]Modulation Waveform/[5]modWave5",0,0,2,1); ampList = (a0, a1, a2, a3, a4, a5) with{ a0 = ba.if(modW0 == 0, os.osc(modF0) * modA0, ba.if(modW0 == 1, os.triangle(modF0) * modA0, ba.if(modW0 == 2, os.sawtooth(modF0)))); a1 = ba.if(modW1 == 0, os.osc(modF1) * modA1, ba.if(modW1 == 1, os.triangle(modF1) * modA1, ba.if(modW1 == 2, os.sawtooth(modF1)))); a2 = ba.if(modW2 == 0, os.osc(modF2) * modA2, ba.if(modW2 == 1, os.triangle(modF2) * modA2, ba.if(modW2 == 2, os.sawtooth(modF2)))); a3 = ba.if(modW3 == 0, os.osc(modF3) * modA3, ba.if(modW3 == 1, os.triangle(modF3) * modA3, ba.if(modW3 == 2, os.sawtooth(modF3)))); a4 = ba.if(modW4 == 0, os.osc(modF4) * modA4, ba.if(modW4 == 1, os.triangle(modF4) * modA4, ba.if(modW4 == 2, os.sawtooth(modF4)))); a5 = ba.if(modW5 == 0, os.osc(modF5) * modA5, ba.if(modW5 == 1, os.triangle(modF5) * modA5, ba.if(modW5 == 2, os.sawtooth(modF5)))); }; xCoords = par(i,I,int(i)); //No lists in faust, use paralell //Use interpolation to find in-between values /*x , yCoords : lagrangeInterpolation(N, xCoordsList) : _ N: order of the interpolator, known at compile-time xCoordsList: a list of N + 1 elements determining the x-axis spacing of the points, known at compile-time x: an x-axis position to interpolate between the y-values yCoords: N + 1 elements determining the values of the interpolation points */ N = 5; I = N+1; x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); //clipping clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi and envelope freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; process = clipResult * envelope;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/9571e2e12286c75ae495205546dfcfeb63449fe9/WaveGenerationTests/lfoAmplitudeControl/ModListVariableWave.dsp
faust
No lists in faust, use paralell Use interpolation to find in-between values x , yCoords : lagrangeInterpolation(N, xCoordsList) : _ N: order of the interpolator, known at compile-time xCoordsList: a list of N + 1 elements determining the x-axis spacing of the points, known at compile-time x: an x-axis position to interpolate between the y-values yCoords: N + 1 elements determining the values of the interpolation points do the interpolation clipping basic midi and envelope
import("stdfaust.lib"); modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0,0,20,0.01); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0,0,20,0.01); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0,0,20,0.01); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0,0,20,0.01); modF4 = vslider("h:Modulation/h:[1]Modulation Frequency/[4]mod4[style:knob]",0,0,20,0.01); modF5 = vslider("h:Modulation/h:[1]Modulation Frequency/[5]mod5[style:knob]",0,0,20,0.01); modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1,0.01); modA4 = vslider("h:Modulation/h:[2]Modulation Amplitude/[4]modA4[style:knob]",0,0,1,0.01); modA5 = vslider("h:Modulation/h:[2]Modulation Amplitude/[5]modA5[style:knob]",0,0,1,0.01); modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0",0,0,2,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1",0,0,2,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2",0,0,2,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3",0,0,2,1); modW4 = nentry("h:Modulation/h:[3]Modulation Waveform/[4]modWave4",0,0,2,1); modW5 = nentry("h:Modulation/h:[3]Modulation Waveform/[5]modWave5",0,0,2,1); ampList = (a0, a1, a2, a3, a4, a5) with{ a0 = ba.if(modW0 == 0, os.osc(modF0) * modA0, ba.if(modW0 == 1, os.triangle(modF0) * modA0, ba.if(modW0 == 2, os.sawtooth(modF0)))); a1 = ba.if(modW1 == 0, os.osc(modF1) * modA1, ba.if(modW1 == 1, os.triangle(modF1) * modA1, ba.if(modW1 == 2, os.sawtooth(modF1)))); a2 = ba.if(modW2 == 0, os.osc(modF2) * modA2, ba.if(modW2 == 1, os.triangle(modF2) * modA2, ba.if(modW2 == 2, os.sawtooth(modF2)))); a3 = ba.if(modW3 == 0, os.osc(modF3) * modA3, ba.if(modW3 == 1, os.triangle(modF3) * modA3, ba.if(modW3 == 2, os.sawtooth(modF3)))); a4 = ba.if(modW4 == 0, os.osc(modF4) * modA4, ba.if(modW4 == 1, os.triangle(modF4) * modA4, ba.if(modW4 == 2, os.sawtooth(modF4)))); a5 = ba.if(modW5 == 0, os.osc(modF5) * modA5, ba.if(modW5 == 1, os.triangle(modF5) * modA5, ba.if(modW5 == 2, os.sawtooth(modF5)))); }; xCoords = par(i,I,int(i)); N = 5; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain*0.3) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01); gate = button("gate"); }; process = clipResult * envelope;
acdcfb1970c817839d3e00429b2547669bf38012f8e8d76a617034474ec44833
JDCAudio/Stray_virtual-synth
ModListVariableWave(CleanedUp).dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0,0,20,0.01); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0,0,20,0.01); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0,0,20,0.01); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0,0,20,0.01); //Amp List Modulation Amplitude modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1,0.01); //Amp List Modulation waveform (0 = sin, 1 = triangle, 3 = saw) modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0",0,0,2,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1",0,0,2,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2",0,0,2,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3",0,0,2,1); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator ampList = (a0, a1, a2, a3) with{ a0 = ba.if(modW0 == 0, os.osc(modF0) * modA0, ba.if(modW0 == 1, os.triangle(modF0) * modA0, ba.if(modW0 == 2, os.sawtooth(modF0)))); a1 = ba.if(modW1 == 0, os.osc(modF1) * modA1, ba.if(modW1 == 1, os.triangle(modF1) * modA1, ba.if(modW1 == 2, os.sawtooth(modF1)))); a2 = ba.if(modW2 == 0, os.osc(modF2) * modA2, ba.if(modW2 == 1, os.triangle(modF2) * modA2, ba.if(modW2 == 2, os.sawtooth(modF2)))); a3 = ba.if(modW3 == 0, os.osc(modF3) * modA3, ba.if(modW3 == 1, os.triangle(modF3) * modA3, ba.if(modW3 == 2, os.sawtooth(modF3)))); }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 3; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/9571e2e12286c75ae495205546dfcfeb63449fe9/WaveGenerationTests/lfoAmplitudeControl/ModListVariableWave(CleanedUp).dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude Amp List Modulation waveform (0 = sin, 1 = triangle, 3 = saw) AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0,0,20,0.01); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0,0,20,0.01); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0,0,20,0.01); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0,0,20,0.01); modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1,0.01); modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0",0,0,2,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1",0,0,2,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2",0,0,2,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3",0,0,2,1); ampList = (a0, a1, a2, a3) with{ a0 = ba.if(modW0 == 0, os.osc(modF0) * modA0, ba.if(modW0 == 1, os.triangle(modF0) * modA0, ba.if(modW0 == 2, os.sawtooth(modF0)))); a1 = ba.if(modW1 == 0, os.osc(modF1) * modA1, ba.if(modW1 == 1, os.triangle(modF1) * modA1, ba.if(modW1 == 2, os.sawtooth(modF1)))); a2 = ba.if(modW2 == 0, os.osc(modF2) * modA2, ba.if(modW2 == 1, os.triangle(modF2) * modA2, ba.if(modW2 == 2, os.sawtooth(modF2)))); a3 = ba.if(modW3 == 0, os.osc(modF3) * modA3, ba.if(modW3 == 1, os.triangle(modF3) * modA3, ba.if(modW3 == 2, os.sawtooth(modF3)))); }; xCoords = par(i,I,int(i)); N = 3; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result;
a444bfd67842397b19ab209be6d97e669da3f72e71e2066ba53e45f9de3d3a3b
JDCAudio/Stray_virtual-synth
withRandomLFO-1.dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0.001,0,20,0.001); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0.001,0,20,0.001); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0.001,0,20,0.001); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0.001,0,20,0.001); //Amp List Modulation Amplitude modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1,0.01); //Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = random) modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0",0,0,3,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1",0,0,3,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2",0,0,3,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3",0,0,3,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise(fRand3))); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator ampList = (a0, a1, a2, a3) with{ a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, os.sawtooth(modF0), ba.if(modW0 == 3, lfoRand0)))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, os.sawtooth(modF1), ba.if(modW1 == 3, lfoRand1)))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, os.sawtooth(modF2), ba.if(modW2 == 3, lfoRand2)))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, os.sawtooth(modF3), ba.if(modW3 == 3, lfoRand3)))) * modA3; }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 3; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/9571e2e12286c75ae495205546dfcfeb63449fe9/WaveGenerationTests/lfoAmplitudeControl/withRandomLFO-1.dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = random) AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0.001,0,20,0.001); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0.001,0,20,0.001); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0.001,0,20,0.001); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0.001,0,20,0.001); modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1,0.01); modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0",0,0,3,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1",0,0,3,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2",0,0,3,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3",0,0,3,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise(fRand3))); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); ampList = (a0, a1, a2, a3) with{ a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, os.sawtooth(modF0), ba.if(modW0 == 3, lfoRand0)))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, os.sawtooth(modF1), ba.if(modW1 == 3, lfoRand1)))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, os.sawtooth(modF2), ba.if(modW2 == 3, lfoRand2)))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, os.sawtooth(modF3), ba.if(modW3 == 3, lfoRand3)))) * modA3; }; xCoords = par(i,I,int(i)); N = 3; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result;
4ba6ad48b8309be1fce20a64977ddfcdd96151bb895538be63381560a0fcc6cf
JDCAudio/Stray_virtual-synth
smoothCrossing.dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3",0.001,0.001,20,0.001); //Amp List Modulation Amplitude, turn on and off points modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3"); //Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[0]P0[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[1]P1[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[2]P2[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[3]P3[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); /*RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random*/ //These variables are consistent and can be used for all iterations of the random nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); //Assign modulation frequency variables to new random frequency variables for readability fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; //Seperate "Read Point" X values for each iteration of the random xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); //Create 4 seperate lists (parallel) of smooth noise aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); //Create 4 seperate lists (parallel) of noise aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); //Use lagrange interpolation to connect the random points from previous blocks lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); //Clip the LFO's to a -1 to 1 range lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator //aC1 and aC2 provide consistent Zero-crossing points ampList = (aC1, a0, a1, a2, a3, aC2) with{ //Nested if/else statements to pick the correct wave for each amplitude point aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 5; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result, result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/213d5e2abccbd6a22bd0d5e560956c49c08bbde1/WaveGenerationTests/smoothCrossing.dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude, turn on and off points Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random These variables are consistent and can be used for all iterations of the random Assign modulation frequency variables to new random frequency variables for readability Seperate "Read Point" X values for each iteration of the random Create 4 seperate lists (parallel) of smooth noise Create 4 seperate lists (parallel) of noise Use lagrange interpolation to connect the random points from previous blocks Clip the LFO's to a -1 to 1 range AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator aC1 and aC2 provide consistent Zero-crossing points Nested if/else statements to pick the correct wave for each amplitude point Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3",0.001,0.001,20,0.001); modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3"); modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[0]P0[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[1]P1[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[2]P2[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Waveform/[3]P3[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); ampList = (aC1, a0, a1, a2, a3, aC2) with{ aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; xCoords = par(i,I,int(i)); N = 5; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result, result;
f0774033715d541ddac2a20a436d0a679169f8105308322c428cd24d0a60f991
JDCAudio/Stray_virtual-synth
withRandomLFO-2.dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0.001,0.001,20,0.001); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0.001,0.001,20,0.001); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0.001,0.001,20,0.001); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0.001,0.001,20,0.001); //Amp List Modulation Amplitude modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1.0,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1.0,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1.0,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1.0,0.01); //Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); /*RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random*/ //These variables are consistent and can be used for all iterations of the random nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); //Assign modulation frequency variables to new random frequency variables for readability fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; //Seperate "Read Point" X values for each iteration of the random xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); //Create 4 seperate lists (parallel) of smooth noise aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); //Create 4 seperate lists (parallel) of noise aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); //Use lagrange interpolation to connect the random points from previous blocks lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); //Clip the LFO's to a -1 to 1 range lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator ampList = (a0, a1, a2, a3) with{ //Nested if/else statements to pick the correct wave for each amplitude point a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, os.sawtooth(modF0), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, os.sawtooth(modF1), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, os.sawtooth(modF2), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, os.sawtooth(modF3), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 3; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result, result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/9571e2e12286c75ae495205546dfcfeb63449fe9/WaveGenerationTests/lfoAmplitudeControl/withRandomLFO-2.dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random These variables are consistent and can be used for all iterations of the random Assign modulation frequency variables to new random frequency variables for readability Seperate "Read Point" X values for each iteration of the random Create 4 seperate lists (parallel) of smooth noise Create 4 seperate lists (parallel) of noise Use lagrange interpolation to connect the random points from previous blocks Clip the LFO's to a -1 to 1 range AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator Nested if/else statements to pick the correct wave for each amplitude point Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Modulation/h:[1]Modulation Frequency/[0]mod0[style:knob]",0.001,0.001,20,0.001); modF1 = vslider("h:Modulation/h:[1]Modulation Frequency/[1]mod1[style:knob]",0.001,0.001,20,0.001); modF2 = vslider("h:Modulation/h:[1]Modulation Frequency/[2]mod2[style:knob]",0.001,0.001,20,0.001); modF3 = vslider("h:Modulation/h:[1]Modulation Frequency/[3]mod3[style:knob]",0.001,0.001,20,0.001); modA0 = vslider("h:Modulation/h:[2]Modulation Amplitude/[0]modA0[style:knob]",0,0,1.0,0.01); modA1 = vslider("h:Modulation/h:[2]Modulation Amplitude/[1]modA1[style:knob]",0,0,1.0,0.01); modA2 = vslider("h:Modulation/h:[2]Modulation Amplitude/[2]modA2[style:knob]",0,0,1.0,0.01); modA3 = vslider("h:Modulation/h:[2]Modulation Amplitude/[3]modA3[style:knob]",0,0,1.0,0.01); modW0 = nentry("h:Modulation/h:[3]Modulation Waveform/[0]modWave0[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW1 = nentry("h:Modulation/h:[3]Modulation Waveform/[1]modWave1[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW2 = nentry("h:Modulation/h:[3]Modulation Waveform/[2]modWave2[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); modW3 = nentry("h:Modulation/h:[3]Modulation Waveform/[3]modWave3[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}]",0,0,4,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); ampList = (a0, a1, a2, a3) with{ a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, os.sawtooth(modF0), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, os.sawtooth(modF1), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, os.sawtooth(modF2), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, os.sawtooth(modF3), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; }; xCoords = par(i,I,int(i)); N = 3; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result, result;
63688ad2657b7bacdbee84d97d976360d176aee9028664cd3f804cc465c917c2
JDCAudio/Stray_virtual-synth
stray_1_0.dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0 Freq[tooltip:Frequency of the LFO controlling Point 0 of the Waveform]",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1 Freq[tooltip:Frequency of the LFO controlling Point 1 of the Waveform]",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2 Freq[tooltip:Frequency of the LFO controlling Point 2 of the Waveform]",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3 Freq[tooltip:Frequency of the LFO controlling Point 3 of the Waveform]",0.001,0.001,20,0.001); //Amp List Modulation Amplitude, turn on and off points modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0 Toggle[tooltip:Turn On/Off LFO for Point 0]"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1 Toggle[tooltip:Turn On/Off LFO for Point 1]"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2 Toggle[tooltip:Turn On/Off LFO for Point 2]"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3 Toggle[tooltip:Turn On/Off LFO for Point 3]"); //Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[0]P0 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 0]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[1]P1 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 1]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[2]P2 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 2]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[3]P3 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 3]",0,0,4,1); /*RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random*/ //These variables are consistent and can be used for all iterations of the random nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); //Assign modulation frequency variables to new random frequency variables for readability fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; //Seperate "Read Point" X values for each iteration of the random xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); //Create 4 seperate lists (parallel) of smooth noise aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); //Create 4 seperate lists (parallel) of noise aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); //Use lagrange interpolation to connect the random points from previous blocks lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); //Clip the LFO's to a -1 to 1 range lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator //aC1 and aC2 provide consistent Zero-crossing points ampList = (aC1, a0, a1, a2, a3, aC2) with{ //Nested if/else statements to pick the correct wave for each amplitude point aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 5; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result, result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/c0771fc89a9c64eae9faadeda79b5646a673742b/Stray/1_0/FaustDSP/stray_1_0.dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude, turn on and off points Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random These variables are consistent and can be used for all iterations of the random Assign modulation frequency variables to new random frequency variables for readability Seperate "Read Point" X values for each iteration of the random Create 4 seperate lists (parallel) of smooth noise Create 4 seperate lists (parallel) of noise Use lagrange interpolation to connect the random points from previous blocks Clip the LFO's to a -1 to 1 range AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator aC1 and aC2 provide consistent Zero-crossing points Nested if/else statements to pick the correct wave for each amplitude point Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0 Freq[tooltip:Frequency of the LFO controlling Point 0 of the Waveform]",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1 Freq[tooltip:Frequency of the LFO controlling Point 1 of the Waveform]",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2 Freq[tooltip:Frequency of the LFO controlling Point 2 of the Waveform]",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3 Freq[tooltip:Frequency of the LFO controlling Point 3 of the Waveform]",0.001,0.001,20,0.001); modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0 Toggle[tooltip:Turn On/Off LFO for Point 0]"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1 Toggle[tooltip:Turn On/Off LFO for Point 1]"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2 Toggle[tooltip:Turn On/Off LFO for Point 2]"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3 Toggle[tooltip:Turn On/Off LFO for Point 3]"); modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[0]P0 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 0]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[1]P1 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 1]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[2]P2 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 2]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape/[3]P3 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 3]",0,0,4,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); ampList = (aC1, a0, a1, a2, a3, aC2) with{ aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; xCoords = par(i,I,int(i)); N = 5; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result, result;
6fea328bb313147f547e35d895fa1bd44b7d8484d04b134003de9823e2c8207a
JDCAudio/Stray_virtual-synth
stray_1_2.dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0 Freq[tooltip:Frequency of the LFO controlling Point 0 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1 Freq[tooltip:Frequency of the LFO controlling Point 1 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2 Freq[tooltip:Frequency of the LFO controlling Point 2 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3 Freq[tooltip:Frequency of the LFO controlling Point 3 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); //Amp List Modulation Amplitude, turn on and off points modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0 Toggle[tooltip:Turn On/Off LFO for Point 0]"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1 Toggle[tooltip:Turn On/Off LFO for Point 1]"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2 Toggle[tooltip:Turn On/Off LFO for Point 2]"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3 Toggle[tooltip:Turn On/Off LFO for Point 3]"); //Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) //Adding the 0 = sin and so on to the group title is redundant within the faust interface, but since the menu object does not transition properly to juce this is the most simple solution for now modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[0]P0 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 0]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[1]P1 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 1]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[2]P2 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 2]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[3]P3 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 3]",0,0,4,1); /*RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random*/ //These variables are consistent and can be used for all iterations of the random nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); //Assign modulation frequency variables to new random frequency variables for readability fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; //Seperate "Read Point" X values for each iteration of the random xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); //Create 4 seperate lists (parallel) of smooth noise aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); //Create 4 seperate lists (parallel) of noise aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); //Use lagrange interpolation to connect the random points from previous blocks lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); //Clip the LFO's to a -1 to 1 range lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator //aC1 and aC2 provide consistent Zero-crossing points ampList = (aC1, a0, a1, a2, a3, aC2) with{ //Nested if/else statements to pick the correct wave for each amplitude point aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 5; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq[hidden:1]",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob][unit:ms]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob][unit:ms]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob][unit:A]",0.8,0,1,0.01); rel = hslider("[3]Release[style:knob][unit:ms]",50,1,1000,1)*0.001; gain = (hslider("[4]gain[hidden:1]",1,0,1,0.01) * 0.3); gate = button("gate[hidden:1]"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result, result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/e2d263b2b50bd9ac364d9160c284039358d0fce5/Stray/1_2/FaustDSP/stray_1_2.dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude, turn on and off points Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) Adding the 0 = sin and so on to the group title is redundant within the faust interface, but since the menu object does not transition properly to juce this is the most simple solution for now RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random These variables are consistent and can be used for all iterations of the random Assign modulation frequency variables to new random frequency variables for readability Seperate "Read Point" X values for each iteration of the random Create 4 seperate lists (parallel) of smooth noise Create 4 seperate lists (parallel) of noise Use lagrange interpolation to connect the random points from previous blocks Clip the LFO's to a -1 to 1 range AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator aC1 and aC2 provide consistent Zero-crossing points Nested if/else statements to pick the correct wave for each amplitude point Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0 Freq[tooltip:Frequency of the LFO controlling Point 0 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1 Freq[tooltip:Frequency of the LFO controlling Point 1 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2 Freq[tooltip:Frequency of the LFO controlling Point 2 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3 Freq[tooltip:Frequency of the LFO controlling Point 3 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0 Toggle[tooltip:Turn On/Off LFO for Point 0]"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1 Toggle[tooltip:Turn On/Off LFO for Point 1]"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2 Toggle[tooltip:Turn On/Off LFO for Point 2]"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3 Toggle[tooltip:Turn On/Off LFO for Point 3]"); modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[0]P0 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 0]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[1]P1 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 1]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[2]P2 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 2]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[3]P3 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 3]",0,0,4,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); ampList = (aC1, a0, a1, a2, a3, aC2) with{ aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; xCoords = par(i,I,int(i)); N = 5; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq[hidden:1]",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob][unit:ms]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob][unit:ms]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob][unit:A]",0.8,0,1,0.01); rel = hslider("[3]Release[style:knob][unit:ms]",50,1,1000,1)*0.001; gain = (hslider("[4]gain[hidden:1]",1,0,1,0.01) * 0.3); gate = button("gate[hidden:1]"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result, result;
bef911ad0b1bffb633efd6d52bedfb0b5cb14a9a2056798f41ea6733e1ef2973
JDCAudio/Stray_virtual-synth
stray_1_1.dsp
import("stdfaust.lib"); /*MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values*/ //Amp List Modulation Frequency modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0 Freq[tooltip:Frequency of the LFO controlling Point 0 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1 Freq[tooltip:Frequency of the LFO controlling Point 1 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2 Freq[tooltip:Frequency of the LFO controlling Point 2 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3 Freq[tooltip:Frequency of the LFO controlling Point 3 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); //Amp List Modulation Amplitude, turn on and off points modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0 Toggle[tooltip:Turn On/Off LFO for Point 0]"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1 Toggle[tooltip:Turn On/Off LFO for Point 1]"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2 Toggle[tooltip:Turn On/Off LFO for Point 2]"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3 Toggle[tooltip:Turn On/Off LFO for Point 3]"); //Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) //Adding the 0 = sin and so on to the group title is redundant within the faust interface, but since the menu object does not transition properly to juce this is the most simple solution for now modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[0]P0 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 0]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[1]P1 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 1]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[2]P2 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 2]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[3]P3 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 3]",0,0,4,1); /*RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random*/ //These variables are consistent and can be used for all iterations of the random nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); //Assign modulation frequency variables to new random frequency variables for readability fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; //Seperate "Read Point" X values for each iteration of the random xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); //Create 4 seperate lists (parallel) of smooth noise aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); //Create 4 seperate lists (parallel) of noise aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); //Use lagrange interpolation to connect the random points from previous blocks lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); //Clip the LFO's to a -1 to 1 range lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); /*AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list*/ //List of Amplitudes to be sent to interpolator //aC1 and aC2 provide consistent Zero-crossing points ampList = (aC1, a0, a1, a2, a3, aC2) with{ //Nested if/else statements to pick the correct wave for each amplitude point aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; //Using the paralell composition again, create a "list" for the integer X values of each amplitude xCoords = par(i,I,int(i)); /*INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting*/ //Order of Interpolation N = 5; /*I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now*/ I = N+1; //Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation x = os.phasor(I, freq); //do the interpolation interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); /*POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument*/ //clip results between -1 and 1 to ensure the signal will not be clipping the output clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); //basic midi integration through frequency slider freq = hslider("freq",300,20,3000,0.1); //Creates ADSR envelope, gate variable is automatically connected to a midi key press //en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob][unit:ms]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob][unit:ms]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob][unit:ms]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob][unit:ms]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; //High Pass filter for eliminating any DC offset filResult = clipResult : fi.highpass(16,15); //Apply the envelope to the sound result = filResult * envelope; process = result, result;
https://raw.githubusercontent.com/JDCAudio/Stray_virtual-synth/dedea5c43e977f95afc05c9597567cdf0a830b73/Stray/1_1/FaustDSP/stray_1_1.dsp
faust
MODULATION SECTION: Each group of four modulation parameters controls a single variable within the ampList Variables modW0-modW3 are used to select the oscillating waveform (sin, tri, saw) Variables modA0-modA3 determine the amplitude of said waves Variables modF0-modF3 determine the frequency of oscillation for that particular amplitude value The modulation section results in 4 seperate oscillating values Amp List Modulation Frequency Amp List Modulation Amplitude, turn on and off points Amp List Modulation waveform (0 = sin, 1 = triangle, 2 = saw, 3 = smooth random, 4 = random) Adding the 0 = sin and so on to the group title is redundant within the faust interface, but since the menu object does not transition properly to juce this is the most simple solution for now RANDOM LFO SECTION: In this region, all necessary variables for interpolation are declared and random LFO waves are generated, one set of 4 smooth random and one set of 4 random These variables are consistent and can be used for all iterations of the random Assign modulation frequency variables to new random frequency variables for readability Seperate "Read Point" X values for each iteration of the random Create 4 seperate lists (parallel) of smooth noise Create 4 seperate lists (parallel) of noise Use lagrange interpolation to connect the random points from previous blocks Clip the LFO's to a -1 to 1 range AMP LIST SECTION: a0-a3 are assigned to the proper group of modulation parameters, a series of if statements are used to determine what wave has been selected with the variables modW0-modW3 The amp list section takes the 4 oscillating values from before and puts them all into parrallel composition, which for my purposes is being viewed as a list List of Amplitudes to be sent to interpolator aC1 and aC2 provide consistent Zero-crossing points Nested if/else statements to pick the correct wave for each amplitude point Using the paralell composition again, create a "list" for the integer X values of each amplitude INTERPOLATION SECTION: This is where the waveform for the synthesizer is determined. I am using the langrangeInterpolation object to calculate the values in between the ampList values. xCoords for our integer X values, and ampList determines the Y values for each point in xCoords. 'x', a phasor object will ramp from 0 to N and is typically used to read through tables, we are using it to calculate the in-between values with lagrangeInterpolation. N refers to the order of interpolation, which has larger implications, but for our purposes, it determines how many values the interpolator is expecting Order of Interpolation I is how many values in the lists (ampList and xCoords) the interpolator is expecting, based off of the order of interpolation. xCoords is generalized using this variable, the amplist and modulation values are written out for clarity for now Ramps from 0 to I at a speed dependent on the current frequency, used to drive the interpolation do the interpolation POST INTERPOLATION: At this point, a wave has been drawn that goes through all of our oscillating values, resulting in a dynamic waveform. The remaining elements are used to "tame" this waveform, and add standard synthesizer elements to create a playable instrument clip results between -1 and 1 to ensure the signal will not be clipping the output basic midi integration through frequency slider Creates ADSR envelope, gate variable is automatically connected to a midi key press en.adsr expects times in seconds, which is not very readable, so the user controlls are in ms High Pass filter for eliminating any DC offset Apply the envelope to the sound
import("stdfaust.lib"); modF0 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[0]P0 Freq[tooltip:Frequency of the LFO controlling Point 0 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF1 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[1]P1 Freq[tooltip:Frequency of the LFO controlling Point 1 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF2 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[2]P2 Freq[tooltip:Frequency of the LFO controlling Point 2 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modF3 = vslider("h:Wave Point Control/h:[0]Point Oscillation Frequency/[3]P3 Freq[tooltip:Frequency of the LFO controlling Point 3 of the Waveform][unit:Hz]",0.001,0.001,20,0.001); modA0 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[0]P0 Toggle[tooltip:Turn On/Off LFO for Point 0]"); modA1 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[1]P1 Toggle[tooltip:Turn On/Off LFO for Point 1]"); modA2 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[2]P2 Toggle[tooltip:Turn On/Off LFO for Point 2]"); modA3 = checkbox("h:Wave Point Control/v:[1]Point LFO/h:[2]On | Off/[3]P3 Toggle[tooltip:Turn On/Off LFO for Point 3]"); modW0 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[0]P0 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 0]",0,0,4,1); modW1 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[1]P1 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 1]",0,0,4,1); modW2 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[2]P2 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 2]",0,0,4,1); modW3 = nentry("h:Wave Point Control/v:[1]Point LFO/h:[3]LFO Shape: 0 = sin, 1 = tri, 2 = saw, 3 = smooth rand, 4 = coarse rand/[3]P3 Shape[style:menu{'Sine':0;'Triangle':1;'Sawtooth':2'Smooth Rand':3;'Coarse Rand':4}][tooltip:Change the LFO Shape for Point 3]",0,0,4,1); nRand = 2; iRand = nRand + 1; xRandList = par(i,iRand,int(i)); fRand0 = modF0; fRand1 = modF1; fRand2 = modF2; fRand3 = modF3; xRand0 = os.phasor(iRand, fRand0); xRand1 = os.phasor(iRand, fRand1); xRand2 = os.phasor(iRand, fRand2); xRand3 = os.phasor(iRand, fRand3); aSmNoise0 = par(i,iRand,(no.lfnoise(fRand0))); aSmNoise1 = par(i,iRand,(no.lfnoise(fRand1))); aSmNoise2 = par(i,iRand,(no.lfnoise(fRand2))); aSmNoise3 = par(i,iRand,(no.lfnoise(fRand3))); aNoise0 = par(i,iRand,(no.lfnoise0(fRand0))); aNoise1 = par(i,iRand,(no.lfnoise0(fRand1))); aNoise2 = par(i,iRand,(no.lfnoise0(fRand2))); aNoise3 = par(i,iRand,(no.lfnoise0(fRand3))); lfoSmInterp0 = xRand0, aSmNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp0 = xRand0, aNoise0 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp1 = xRand1, aSmNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp1 = xRand1, aNoise1 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp2 = xRand2, aSmNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp2 = xRand2, aNoise2 : it.lagrangeInterpolation(nRand, xRandList); lfoSmInterp3 = xRand3, aSmNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoInterp3 = xRand3, aNoise3 : it.lagrangeInterpolation(nRand, xRandList); lfoSmRand0 = ba.if(lfoSmInterp0 > 1.0, 1.0, ba.if(lfoSmInterp0 < -1.0, -1.0, lfoSmInterp0)); lfoRand0 = ba.if(lfoInterp0 > 1.0, 1.0, ba.if(lfoInterp0 < -1.0, -1.0, lfoInterp0)); lfoSmRand1 = ba.if(lfoSmInterp1 > 1.0, 1.0, ba.if(lfoSmInterp1 < -1.0, -1.0, lfoSmInterp1)); lfoRand1 = ba.if(lfoInterp1 > 1.0, 1.0, ba.if(lfoInterp1 < -1.0, -1.0, lfoInterp1)); lfoSmRand2 = ba.if(lfoSmInterp2 > 1.0, 1.0, ba.if(lfoSmInterp2 < -1.0, -1.0, lfoSmInterp2)); lfoRand2 = ba.if(lfoInterp2 > 1.0, 1.0, ba.if(lfoInterp2 < -1.0, -1.0, lfoInterp2)); lfoSmRand3 = ba.if(lfoSmInterp3 > 1.0, 1.0, ba.if(lfoSmInterp3 < -1.0, -1.0, lfoSmInterp3)); lfoRand3 = ba.if(lfoInterp3 > 1.0, 1.0, ba.if(lfoInterp3 < -1.0, -1.0, lfoInterp3)); ampList = (aC1, a0, a1, a2, a3, aC2) with{ aC1 = 0; a0 = ba.if(modW0 == 0, os.osc(modF0), ba.if(modW0 == 1, os.triangle(modF0), ba.if(modW0 == 2, si.smoo(os.sawtooth(modF0)), ba.if(modW0 == 3, lfoSmRand0, ba.if(modW0 == 4, lfoRand0))))) * modA0; a1 = ba.if(modW1 == 0, os.osc(modF1), ba.if(modW1 == 1, os.triangle(modF1), ba.if(modW1 == 2, si.smoo(os.sawtooth(modF1)), ba.if(modW1 == 3, lfoSmRand1, ba.if(modW1 == 4, lfoRand1))))) * modA1; a2 = ba.if(modW2 == 0, os.osc(modF2), ba.if(modW2 == 1, os.triangle(modF2), ba.if(modW2 == 2, si.smoo(os.sawtooth(modF2)), ba.if(modW2 == 3, lfoSmRand2, ba.if(modW2 == 4, lfoRand2))))) * modA2; a3 = ba.if(modW3 == 0, os.osc(modF3), ba.if(modW3 == 1, os.triangle(modF3), ba.if(modW3 == 2, si.smoo(os.sawtooth(modF3)), ba.if(modW3 == 3, lfoSmRand3, ba.if(modW3 == 4, lfoRand3))))) * modA3; aC2 = 0; }; xCoords = par(i,I,int(i)); N = 5; I = N+1; x = os.phasor(I, freq); interpResult = x, ampList : it.lagrangeInterpolation(N,xCoords); clipResult = ba.if(interpResult>1.0, 1.0, (ba.if(interpResult<-1.0, -1.0, interpResult))); freq = hslider("freq",300,20,3000,0.1); envelope = hgroup("[0]Envelope",en.adsr(atk,dcy,sus,rel,gate)*gain) with{ atk = hslider("[0]Attack[style:knob][unit:ms]",50,1,1000,1)*0.001; dcy = hslider("[1]Decay[style:knob][unit:ms]",50,1,1000,1)*0.001; sus = hslider("[2]Sustain[style:knob][unit:ms]",0.8,0.01,1,1); rel = hslider("[3]Release[style:knob][unit:ms]",50,1,1000,1)*0.001; gain = hslider("[4]gain",1,0,1,0.01) * 0.3; gate = button("gate"); }; filResult = clipResult : fi.highpass(16,15); result = filResult * envelope; process = result, result;
c6928866c9d2be8a5fad37cfdec47052032d38957643841878455d5a13712f26
Trzyszcz/Langley
hihat.dsp
declare name "hihat"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("frequency", 440, 20, 20000, 0.001); gain = nentry("gain", 0.3, 0, 1, 0.001); gate = button("gate"); dry_sound = ( (gate : en.ar(0.02, 0.1*gain)) * gain * no.pink_noise ) : fi.highpass(3, 7.5*freq) : fi.lowpass(2, 7000); wet_sound = 0.04*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = (wet_sound + (dry_sound*0.96))<:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/21824b34f50f17ec2984ba9f1845a6ef4b3ac0ec/Instruments/Hihat/hihat.dsp
faust
declare name "hihat"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("frequency", 440, 20, 20000, 0.001); gain = nentry("gain", 0.3, 0, 1, 0.001); gate = button("gate"); dry_sound = ( (gate : en.ar(0.02, 0.1*gain)) * gain * no.pink_noise ) : fi.highpass(3, 7.5*freq) : fi.lowpass(2, 7000); wet_sound = 0.04*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = (wet_sound + (dry_sound*0.96))<:_,_;
ea87f4e74f23982826fc8ec8a6e5d7fbf82d0325723644a67e89543ad78ca688
Trzyszcz/Langley
Normik3.dsp
declare name "normik3"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); frequency = freq * (1 + ( (os.osc(7) * 3 * RightHorizontal)/100) ); timbre = os.osc(frequency) + (os.osc(2*frequency) * RightVertical); process = gain * gate * timbre;
https://raw.githubusercontent.com/Trzyszcz/Langley/21824b34f50f17ec2984ba9f1845a6ef4b3ac0ec/Instruments/Normie/Normik3.dsp
faust
declare name "normik3"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); frequency = freq * (1 + ( (os.osc(7) * 3 * RightHorizontal)/100) ); timbre = os.osc(frequency) + (os.osc(2*frequency) * RightVertical); process = gain * gate * timbre;
6ee5616dc5f056aaef57064ffdbdcf7ae5eb608d3aa12c99c6d80bdb2f9df2fd
Trzyszcz/Langley
uan.dsp
declare name "Uan"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); freque(frey) = frey + (frey*RightHorizontal*os.triangle(16*frey)); osc_base(frex) = gain * (gate : Envelope) * (os.square(frex)) : fi.lowpass(2, 500); freqD = freq * (1 - (RightVertical/100)); freqU = freq * (1 + (RightVertical/100)); dry_sound = ((2/3) * osc_base(freque(freq))) + ((1/4) * osc_base(freque(freqD))) + ((1/4) * osc_base(freque(freqU))); dry_soundEQ = dry_sound + ( (1/4) * dry_sound : fi.lowpass(2,100) ) + ( (1/4) * dry_sound : fi.lowpass(2, 50) ); wet_sound = 0.15*dry_soundEQ : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.85)<:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/8146c5e9fff7b158736e420915157bb1158c5887/Instruments/Uan/uan.dsp
faust
declare name "Uan"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); freque(frey) = frey + (frey*RightHorizontal*os.triangle(16*frey)); osc_base(frex) = gain * (gate : Envelope) * (os.square(frex)) : fi.lowpass(2, 500); freqD = freq * (1 - (RightVertical/100)); freqU = freq * (1 + (RightVertical/100)); dry_sound = ((2/3) * osc_base(freque(freq))) + ((1/4) * osc_base(freque(freqD))) + ((1/4) * osc_base(freque(freqU))); dry_soundEQ = dry_sound + ( (1/4) * dry_sound : fi.lowpass(2,100) ) + ( (1/4) * dry_sound : fi.lowpass(2, 50) ); wet_sound = 0.15*dry_soundEQ : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.85)<:_,_;
a221747c1972626c35c70eecf0bb260cb6a473232dbba7d587059cb4291e3fa1
Trzyszcz/Langley
mou.dsp
declare name "Mou"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); freque1 = freq + (freq*0.007*no.lfnoise0(32)*RightVertical*3); freque2 = freq + (freq*0.014*no.lfnoise0(32)*RightVertical*3); basictimbre(x) = (1/2) * os.triangle(x) + (1/3) * os.triangle(3*x); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; dry_sound = distortion(gain * (gate : Envelope) * (basictimbre(freque1) + basictimbre(freque2)) ) : fi.lowpass(2, 9000); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/21824b34f50f17ec2984ba9f1845a6ef4b3ac0ec/Instruments/Mou/mou.dsp
faust
is x between y and z
declare name "Mou"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); freque1 = freq + (freq*0.007*no.lfnoise0(32)*RightVertical*3); freque2 = freq + (freq*0.014*no.lfnoise0(32)*RightVertical*3); basictimbre(x) = (1/2) * os.triangle(x) + (1/3) * os.triangle(3*x); distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; dry_sound = distortion(gain * (gate : Envelope) * (basictimbre(freque1) + basictimbre(freque2)) ) : fi.lowpass(2, 9000); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<:_,_;
44ac093c65bae102dc1a15b53380c043bfa593ed37e529070c5c81e759ec7ee8
Trzyszcz/Langley
shash.dsp
declare name "Shash"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 1); gain = nentry("gain", 0.3, 0, 10, 0.01): si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01) : si.smoo; LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01) : si.smoo; LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); noilev = 0.001; pgain = 160 * LeftVertical; mspread = 0.0489508 * (2.71828^(1.83413*(2*RightVertical + 1))); frelim(xfreq) = min(xfreq, 20000); my_sound(xfreq) = (no.noise * noilev <: fi.peak_eq_rm(pgain, xfreq, mspread*0.0001) : fi.lowpass(3, frelim(1.5*xfreq)) : fi.highpass(3, frelim(0.5*xfreq))); timbre(x) = my_sound(x) + (1/2) * my_sound(x*2) + (1/3) * my_sound(x*3); dry_sound = timbre(freq)*(gate : Envelope)*gain; wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/9c178deb946ef4822ba9c56368b7d20c18bbf2b8/Instruments/Shash/shash.dsp
faust
declare name "Shash"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 1); gain = nentry("gain", 0.3, 0, 10, 0.01): si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01) : si.smoo; LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01) : si.smoo; LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); noilev = 0.001; pgain = 160 * LeftVertical; mspread = 0.0489508 * (2.71828^(1.83413*(2*RightVertical + 1))); frelim(xfreq) = min(xfreq, 20000); my_sound(xfreq) = (no.noise * noilev <: fi.peak_eq_rm(pgain, xfreq, mspread*0.0001) : fi.lowpass(3, frelim(1.5*xfreq)) : fi.highpass(3, frelim(0.5*xfreq))); timbre(x) = my_sound(x) + (1/2) * my_sound(x*2) + (1/3) * my_sound(x*3); dry_sound = timbre(freq)*(gate : Envelope)*gain; wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
59ad7bc3f566101e29bdca4cb11f7143dc337343032a3bfe8d5f21e96e548e70
Trzyszcz/Langley
gutter.dsp
declare name "gutter"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); filres = nentry("filres", 1, 0.1, 20, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); basictimbre(x) = (1/2)*os.pulsetrain(x*1.01, LeftVertical/2) + (1/2)*os.pulsetrain(x*0.99, LeftVertical/2) : fi.resonlp( (8*RightVertical + 4)*x, filres, 1); dry_sound = gain * (gate : Envelope) * basictimbre(freq); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (0.95 * dry_sound) <: _,_; //some old stuff, sorry for keeping it /* basictimbre(x) = (os.sawtooth(x) + (1/2)*os.sawtooth(2*x) + (1/3)*os.sawtooth(3*x)) : fi.lowpass(1, (8*RightHorizontal + 4)*x); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; dry_sound = distortion(gain * (gate : Envelope) * basictimbre(freq)) : fi.lowpass(1, (8*RightVertical + 4)*freq); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<: co.compressor_stereo(1.1, 0, 1, 0.5); */
https://raw.githubusercontent.com/Trzyszcz/Langley/25867936f5d0bf7b1b21969db6f58fc3a66c791b/Instruments/Gutter/gutter.dsp
faust
some old stuff, sorry for keeping it basictimbre(x) = (os.sawtooth(x) + (1/2)*os.sawtooth(2*x) + (1/3)*os.sawtooth(3*x)) : fi.lowpass(1, (8*RightHorizontal + 4)*x); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; dry_sound = distortion(gain * (gate : Envelope) * basictimbre(freq)) : fi.lowpass(1, (8*RightVertical + 4)*freq); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<: co.compressor_stereo(1.1, 0, 1, 0.5);
declare name "gutter"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); filres = nentry("filres", 1, 0.1, 20, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); basictimbre(x) = (1/2)*os.pulsetrain(x*1.01, LeftVertical/2) + (1/2)*os.pulsetrain(x*0.99, LeftVertical/2) : fi.resonlp( (8*RightVertical + 4)*x, filres, 1); dry_sound = gain * (gate : Envelope) * basictimbre(freq); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (0.95 * dry_sound) <: _,_;
7140731303922a23b2d9c050b1754e3da469a19615dd7406bac7c24217042e23
Trzyszcz/Langley
distorgan.dsp
declare name "Distorgan"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); Lower_part(freq) = (65/100) * os.triangle(freq*(1/2)*(499/500)); Main_part(freq) = (56/100) * os.osc(freq + (freq*(2/5)*os.osc(7*freq))); High_part(freq) = (70/100) * (os.osc(2*freq) + (1/3) * os.osc(3*2*freq) + (1/5) * os.osc(5*2*freq)); timbre(x) = (Lower_part(x) + Main_part(x) + High_part(x)) * (0.04 + LeftVertical) * (1/2); u_freq = freq*(1 + (0.2*(RightVertical - 0.50196081399918))); distorted_timbre = distortion(timbre(freq) + timbre(u_freq)); dry_sound = (distorted_timbre - 1/8) * gain * (gate : Envelope) : fi.lowpass(2, 9000); wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/c695120d16615884be94a58ff547e5c443313630/Instruments/Distorgan/distorgan.dsp
faust
is x between y and z
declare name "Distorgan"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); Lower_part(freq) = (65/100) * os.triangle(freq*(1/2)*(499/500)); Main_part(freq) = (56/100) * os.osc(freq + (freq*(2/5)*os.osc(7*freq))); High_part(freq) = (70/100) * (os.osc(2*freq) + (1/3) * os.osc(3*2*freq) + (1/5) * os.osc(5*2*freq)); timbre(x) = (Lower_part(x) + Main_part(x) + High_part(x)) * (0.04 + LeftVertical) * (1/2); u_freq = freq*(1 + (0.2*(RightVertical - 0.50196081399918))); distorted_timbre = distortion(timbre(freq) + timbre(u_freq)); dry_sound = (distorted_timbre - 1/8) * gain * (gate : Envelope) : fi.lowpass(2, 9000); wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
378f872aaa1ce2b3e8a87d1c648422005451fa9571d57356e08aa877bfdd6e94
Trzyszcz/Langley
vang.dsp
declare name "Vang"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 1); gain = nentry("gain", 0.3, 0, 10, 0.01): si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01) : si.smoo; LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); noise_for_unison(y) = no.multinoise(4) : ba.downSample(y), ba.downSample(y), ba.downSample(y),ba.downSample(y) : fi.lowpass(1, y),fi.lowpass(1, y), fi.lowpass(1, y),fi.lowpass(1, y); add_noise_to_freq(base_freq, noise) = base_freq*(1 + (noise*0.014*LeftVertical)); noised_frequencies(base_freq) = noise_for_unison(32) : add_noise_to_freq(base_freq), add_noise_to_freq(base_freq), add_noise_to_freq(base_freq), add_noise_to_freq(base_freq); timbre(x) = noised_frequencies(x) : os.sawtooth, os.sawtooth, os.sawtooth, os.sawtooth :> fi.lowpass(1, 100 + (400*RightVertical)); dry_sound = timbre(freq)*(gate : Envelope)*gain; wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/d37f30e9c8713a258894421d889f6000df29d495/Instruments/Vang/vang.dsp
faust
declare name "Vang"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 1); gain = nentry("gain", 0.3, 0, 10, 0.01): si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01) : si.smoo; LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); noise_for_unison(y) = no.multinoise(4) : ba.downSample(y), ba.downSample(y), ba.downSample(y),ba.downSample(y) : fi.lowpass(1, y),fi.lowpass(1, y), fi.lowpass(1, y),fi.lowpass(1, y); add_noise_to_freq(base_freq, noise) = base_freq*(1 + (noise*0.014*LeftVertical)); noised_frequencies(base_freq) = noise_for_unison(32) : add_noise_to_freq(base_freq), add_noise_to_freq(base_freq), add_noise_to_freq(base_freq), add_noise_to_freq(base_freq); timbre(x) = noised_frequencies(x) : os.sawtooth, os.sawtooth, os.sawtooth, os.sawtooth :> fi.lowpass(1, 100 + (400*RightVertical)); dry_sound = timbre(freq)*(gate : Envelope)*gain; wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
a8c375be42e2f1dba73765e35f344d7935428871b091514785050c4bcc9a829b
Trzyszcz/Langley
organ.dsp
declare name "Organ"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); Lower_part(freq) = (65/100) * os.triangle(freq*(1/2)*(499/500)); Main_part(freq) = (56/100) * os.osc(freq + (freq*(2/5)*os.osc(7*freq))); High_part(freq) = (70/100) * (os.osc(2*freq) + (1/3) * os.osc(3*2*freq) + (1/5) * os.osc(5*2*freq)); timbre(x) = (Lower_part(x) + Main_part(x) + High_part(x)) * (0.04 + LeftVertical) * (1/2); u_freq = freq*(1 + (0.2*(RightVertical - 0.50196081399918))); distorted_timbre = distortion(timbre(freq) + timbre(u_freq)); dry_sound = (distorted_timbre - 1/8) * gain * (gate : Envelope) : fi.lowpass(2, 9000); wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/25867936f5d0bf7b1b21969db6f58fc3a66c791b/Instruments/Organ/organ.dsp
faust
is x between y and z
declare name "Organ"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); LeftVertical = hslider("leftvertical", 0.5, 0, 1, 0.01); LeftPush = button("LeftPush"); RightPush = button("RightPush"); Envelope = en.adsr(0.1, 0, 1, 0.1); Lower_part(freq) = (65/100) * os.triangle(freq*(1/2)*(499/500)); Main_part(freq) = (56/100) * os.osc(freq + (freq*(2/5)*os.osc(7*freq))); High_part(freq) = (70/100) * (os.osc(2*freq) + (1/3) * os.osc(3*2*freq) + (1/5) * os.osc(5*2*freq)); timbre(x) = (Lower_part(x) + Main_part(x) + High_part(x)) * (0.04 + LeftVertical) * (1/2); u_freq = freq*(1 + (0.2*(RightVertical - 0.50196081399918))); distorted_timbre = distortion(timbre(freq) + timbre(u_freq)); dry_sound = (distorted_timbre - 1/8) * gain * (gate : Envelope) : fi.lowpass(2, 9000); wet_sound = 0.15*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; main_stream = wet_sound + (dry_sound*0.85); long_delay = + ~ ( @(5*48000) *(19/20) ); short_delay = + ~ ( @(0.5*48000) *(1/3) ); short_delayed_stream = main_stream * RightPush : short_delay; long_delayed_stream = ( main_stream + short_delayed_stream ) * LeftPush : long_delay; process = main_stream + short_delayed_stream + long_delayed_stream <:_,_;
fa25be148c50e1549c8bcf28664f73dd557e055f2455dde5ff97eb6ae0999de0
Trzyszcz/Langley
testmou2.dsp
declare name "TestMou2"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); initgain = nentry("initgain", 0.3, 0, 10, 0.01) : si.smoo; RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = initgain * en.adsr(0.1, 0, 1, 0.1); nullify = *(0); f1(x) = no.multinoise(4) <: _,nullify,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f2(x) = no.multinoise(4) <: nullify,_,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f3(x) = no.multinoise(4) <: nullify,nullify,_,nullify :> ba.downSample(x) : fi.lowpass(1, x); f4(x) = no.multinoise(4) <: nullify,nullify,nullify,_ :> ba.downSample(x) : fi.lowpass(1, x); rate = 32; freque1 = freq + (freq*0.005*f1(rate)*RightVertical*3); freque2 = freq + (freq*0.005*f2(rate)*RightVertical*3); freque3 = freq + (freq*0.005*f3(rate)*RightVertical*3); freque4 = freq + (freq*0.005*f4(rate)*RightVertical*3); basictimbre(x) = (1/2) * os.triangle(x) + (1/3) * os.triangle(3*x); timbre = (1/4) * basictimbre(freque1) + (1/4) * basictimbre(freque2) + (1/4) * basictimbre(freque3) + (1/4) * basictimbre(freque4); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; distorted_timbre = distortion((RightHorizontal + 0.1) * timbre) / (RightHorizontal + 0.1); dry_sound = gain * (1/(2^( (RightVertical - (1/2)) * 3 ))) * (gate : Envelope) * distorted_timbre : fi.lowpass(2, 9000); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/21824b34f50f17ec2984ba9f1845a6ef4b3ac0ec/Instruments/TestMou2/testmou2.dsp
faust
is x between y and z
declare name "TestMou2"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); initgain = nentry("initgain", 0.3, 0, 10, 0.01) : si.smoo; RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = initgain * en.adsr(0.1, 0, 1, 0.1); nullify = *(0); f1(x) = no.multinoise(4) <: _,nullify,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f2(x) = no.multinoise(4) <: nullify,_,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f3(x) = no.multinoise(4) <: nullify,nullify,_,nullify :> ba.downSample(x) : fi.lowpass(1, x); f4(x) = no.multinoise(4) <: nullify,nullify,nullify,_ :> ba.downSample(x) : fi.lowpass(1, x); rate = 32; freque1 = freq + (freq*0.005*f1(rate)*RightVertical*3); freque2 = freq + (freq*0.005*f2(rate)*RightVertical*3); freque3 = freq + (freq*0.005*f3(rate)*RightVertical*3); freque4 = freq + (freq*0.005*f4(rate)*RightVertical*3); basictimbre(x) = (1/2) * os.triangle(x) + (1/3) * os.triangle(3*x); timbre = (1/4) * basictimbre(freque1) + (1/4) * basictimbre(freque2) + (1/4) * basictimbre(freque3) + (1/4) * basictimbre(freque4); distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; distorted_timbre = distortion((RightHorizontal + 0.1) * timbre) / (RightHorizontal + 0.1); dry_sound = gain * (1/(2^( (RightVertical - (1/2)) * 3 ))) * (gate : Envelope) * distorted_timbre : fi.lowpass(2, 9000); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<:_,_;
5af789383c8c3fe790d5918fd6ab9330862d3ef6629a719c7a69770ff7bcbee3
Trzyszcz/Langley
testmou.dsp
declare name "TestMou"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); nullify = *(0); f1(x) = no.multinoise(4) <: _,nullify,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f2(x) = no.multinoise(4) <: nullify,_,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f3(x) = no.multinoise(4) <: nullify,nullify,_,nullify :> ba.downSample(x) : fi.lowpass(1, x); f4(x) = no.multinoise(4) <: nullify,nullify,nullify,_ :> ba.downSample(x) : fi.lowpass(1, x); rate = 32; freque1 = freq + (freq*0.005*f1(rate)*RightVertical*3); freque2 = freq + (freq*0.005*f2(rate)*RightVertical*3); freque3 = freq + (freq*0.005*f3(rate)*RightVertical*3); freque4 = freq + (freq*0.005*f4(rate)*RightVertical*3); basictimbre(x) = (1/2) * os.triangle(x) + (1/3) * os.triangle(3*x); timbre = (1/4) * basictimbre(freque1) + (1/4) * basictimbre(freque2) + (1/4) * basictimbre(freque3) + (1/4) * basictimbre(freque4); is_bet(x, y, z) = (x >= y) & (x < z); //is x between y and z distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; distorted_timbre = distortion((RightHorizontal + 0.1) * timbre) / (RightHorizontal + 0.1); dry_sound = gain * (1/(2^(RightHorizontal - (1/2)))) * (gate : Envelope) * distorted_timbre : fi.lowpass(2, 9000); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<:_,_;
https://raw.githubusercontent.com/Trzyszcz/Langley/21824b34f50f17ec2984ba9f1845a6ef4b3ac0ec/Instruments/TestMou/testmou.dsp
faust
is x between y and z
declare name "TestMou"; declare nvoices "16"; import("stdfaust.lib"); freq = nentry("freq", 440, 20, 20000, 0.01); gain = nentry("gain", 0.3, 0, 10, 0.01) : si.smoo; gate = button("gate"); RightHorizontal = hslider("righthorizontal", 0.5, 0, 1, 0.01); RightVertical = hslider("rightvertical", 0.5, 0, 1, 0.01); Envelope = en.adsr(0.1, 0, 1, 0.1); nullify = *(0); f1(x) = no.multinoise(4) <: _,nullify,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f2(x) = no.multinoise(4) <: nullify,_,nullify,nullify :> ba.downSample(x) : fi.lowpass(1, x); f3(x) = no.multinoise(4) <: nullify,nullify,_,nullify :> ba.downSample(x) : fi.lowpass(1, x); f4(x) = no.multinoise(4) <: nullify,nullify,nullify,_ :> ba.downSample(x) : fi.lowpass(1, x); rate = 32; freque1 = freq + (freq*0.005*f1(rate)*RightVertical*3); freque2 = freq + (freq*0.005*f2(rate)*RightVertical*3); freque3 = freq + (freq*0.005*f3(rate)*RightVertical*3); freque4 = freq + (freq*0.005*f4(rate)*RightVertical*3); basictimbre(x) = (1/2) * os.triangle(x) + (1/3) * os.triangle(3*x); timbre = (1/4) * basictimbre(freque1) + (1/4) * basictimbre(freque2) + (1/4) * basictimbre(freque3) + (1/4) * basictimbre(freque4); distortion(x) = (x < -0.08905) * ( -1/4 * (1 - ( (1 - abs(x) - 0.032847) ^ 12) ) + 0.01) + is_bet(x, -0.08905, 0.320018) * ( (-6.153*(x^2)) + (3.9375*x) ) + (0.320018 < x) * 0.630035; distorted_timbre = distortion((RightHorizontal + 0.1) * timbre) / (RightHorizontal + 0.1); dry_sound = gain * (1/(2^(RightHorizontal - (1/2)))) * (gate : Envelope) * distorted_timbre : fi.lowpass(2, 9000); wet_sound = 0.05*dry_sound : re.mono_freeverb(0.5, 0.5, 0.5, 0.5); process = wet_sound + (dry_sound*0.95)<:_,_;
2a1a7174da8f060039c6b9ad0dc1613a28ae9f67be267b309daca4d0fb9b957a
beataburreau/FAUST-signal-graphs-goes-Haskell
bell.dsp
declare filename "bellModel.dsp"; declare name "bellModel"; import("stdfaust.lib"); tf22(b0,b1,b2,a1,a2) = // tf2, direct-form 2: _ : (((_,_,_:>_)~*(-a1)<:mem,*(b0))~*(-a2)) : (_<:mem,*(b1)),_ : *(b2),_,_ :> _; modeFilter(freq,t60,gain) = tf22(b0,b1,b2,a1,a2)*gain with{ b0 = 1; b1 = 0; b2 = -1; w = 2*ma.PI*freq/ma.SR; r = pow(0.001,1/float(t60*ma.SR)); a1 = -2*r*cos(w); a2 = r^2; }; standardBellModel(nModes,exPos,t60) = modeFilter(400,10,0.691911) // standardBellModel(nModes,exPos,t60) = _ <: // par(i,nModes,modeFilter(modesFreqs(i),modesT60s(i),modesGains(int(exPos),i))) // :> /(nModes) with{ nExPos = 7; modesFreqs(n) = ba.take(n+1,(490.25,493.646,924.838,927.779,1181.21,1186.94,1348.84,1349.5,1560.33,1635.97,1706.73,1712.89,1745.05,1745.25,2005.51,2025.47,2053.88,2142.37,2151.4,2408.16,2534.11,2536.42,2623.3,2628.4,2711.57,2712.46,2823.23,2827.22,2863.42,2874.19,2923,2925.69,3032.52,3042.15,3208.57,3392.52,3485.92,3493.65,3539.8,3550.56,3678.71,3719.04,3722.59,3786.28,3789.38,3993.59,3998.43,4123.41,4164.83,4187.98)); modesGains(p,n) = waveform{0.691911,0.622333,0.548651,0.463306,0.826946,0.749513,0.2242,0.642678,0.760442,0.326054,0.276463,0.359344,0.18258,0.686765,0.457159,0.839015,0.845338,0.372377,0.306417,0.147381,0.359707,0.653537,0.27553,0.401233,0.435417,0.251481,0.190062,0.773372,0.315014,0.228812,0.521512,0.411542,0.720762,1,0.286502,0.338938,0.119995,0.432289,0.409677,0.156272,0.298871,0.250786,0.640776,0.209431,0.17001,0.390014,0.301698,0.799413,0.980581,0.385,0.82544,0.818894,0.349616,0.235396,0.783164,0.821914,0.28411,0.430286,0.507671,0.326254,0.260488,0.273364,0.20518,0.714852,0.47995,0.803637,0.683943,0.355371,0.406924,0.656257,0.423025,0.413515,0.38636,0.384787,0.389448,0.813367,0.234988,1,0.311268,0.350245,0.403856,0.646143,0.500485,0.833553,0.431768,0.467064,0.298979,0.487413,0.514907,0.369383,0.106197,0.494224,0.816079,0.535807,0.379873,0.380201,0.606306,0.516117,0.748449,0.556948,0.587066,0.584423,0.394866,0.341121,0.433458,0.455987,0.361237,0.42939,0.122969,0.133175,0.505176,0.513985,0.0554619,0.604942,0.372074,0.381126,0.314354,0.499636,0.518711,0.923792,0.259544,0.576517,0.553915,0.585444,0.245369,1,0.117757,0.977318,0.652862,0.509314,0.14855,0.506402,0.180059,0.356005,0.38681,0.279354,0.205792,0.551055,0.689107,0.445724,0.306857,0.324747,0.603621,0.394466,0.288613,0.264697,0.60612,0.20274,0.267271,0.925656,0.439228,0.425884,0.626633,0.547204,0.230022,0.225654,0.392697,0.493474,0.149857,0.0604048,0.693889,0.740271,0.175485,0.704998,0.329732,0.153026,0.125744,0.286995,0.278878,0.812372,0.0562174,0.241479,0.294525,0.358834,0.171047,0.847604,0.17228,0.97521,0.892073,0.613987,0.0659213,0.301583,0.0610847,0.125438,0.145151,0.180086,0.124231,0.260161,0.337573,0.203743,0.655798,0.425893,0.902347,0.500686,0.311173,0.215561,0.349591,0.0854218,0.0805062,1,0.338652,0.295396,0.698314,0.664972,0.118983,0.0881905,0.31158,0.391136,0.151915,0.239504,0.685742,0.884332,0.288516,0.768688,0.274851,0.0490311,0.0357865,0.293303,0.249461,0.493771,0.340984,0.467623,0.216631,0.255235,0.0988695,0.46198,0.147247,0.640196,1,0.551938,0.0453732,0.189907,0.0197542,0.0309217,0.769837,0.360418,0.384041,0.867434,0.398948,0.171848,0.748652,0.301957,0.860611,0.958674,0.54903,0.272753,0.372753,0.0180728,0.0292353,0.8502,0.224583,0.214805,0.670319,0.586433,0.0435142,0.0388574,0.144811,0.157061,0.155569,0.418334,0.673656,0.749573,0.337354,0.747254,0.255997,0.0239656,0.0310719,0.721087,0.700616,0.199051,0.511844,0.849485,0.700682,0.778658,0.171289,0.261973,0.129228,0.328597,0.781821,0.583813,0.0806713,0.416876,0.0118202,0.00868563,1,0.461884,0.186882,0.641364,0.994705,0.501902,0.566449,0.0678845,0.139737,0.462582,0.318656,0.233947,0.495941,0.0314028,0.0146478,0.70432,0.124953,0.132549,0.457126,0.378636,0.0169362,0.0195494,0.204155,0.294401,0.271367,0.730857,0.459322,0.433078,0.325171,0.734536,0.416205,0.012873,0.0388489,0.821567,0.863683,0.0920531,0.393972,0.539544,0.832052,0.842732,0.241144,0.479558,0.283092,0.477845,0.385473,0.436587,0.144308,0.642395,0.0215791,0.00779029,0.563714,0.838279,0.410004,0.829086,1,0.630598,0.0233729,0.496217,0.711042,0.914266,0.695042,0.331894,0.898442,0.028568,0.0174966,0.482846},int(p*nModes+n) : rdtable; modesT60s(i) = t60*pow(1-(modesFreqs(i)/4191.95),2.5); }; process = 1-1' : ba.impulsify : standardBellModel(50,0,30);
https://raw.githubusercontent.com/beataburreau/FAUST-signal-graphs-goes-Haskell/6f468716515a5047e290864b5af448c14d4c03d4/test/test-files/bell.dsp
faust
tf2, direct-form 2: standardBellModel(nModes,exPos,t60) = _ <: par(i,nModes,modeFilter(modesFreqs(i),modesT60s(i),modesGains(int(exPos),i))) :> /(nModes)
declare filename "bellModel.dsp"; declare name "bellModel"; import("stdfaust.lib"); _ : (((_,_,_:>_)~*(-a1)<:mem,*(b0))~*(-a2)) : (_<:mem,*(b1)),_ : *(b2),_,_ :> _; modeFilter(freq,t60,gain) = tf22(b0,b1,b2,a1,a2)*gain with{ b0 = 1; b1 = 0; b2 = -1; w = 2*ma.PI*freq/ma.SR; r = pow(0.001,1/float(t60*ma.SR)); a1 = -2*r*cos(w); a2 = r^2; }; standardBellModel(nModes,exPos,t60) = modeFilter(400,10,0.691911) with{ nExPos = 7; modesFreqs(n) = ba.take(n+1,(490.25,493.646,924.838,927.779,1181.21,1186.94,1348.84,1349.5,1560.33,1635.97,1706.73,1712.89,1745.05,1745.25,2005.51,2025.47,2053.88,2142.37,2151.4,2408.16,2534.11,2536.42,2623.3,2628.4,2711.57,2712.46,2823.23,2827.22,2863.42,2874.19,2923,2925.69,3032.52,3042.15,3208.57,3392.52,3485.92,3493.65,3539.8,3550.56,3678.71,3719.04,3722.59,3786.28,3789.38,3993.59,3998.43,4123.41,4164.83,4187.98)); modesGains(p,n) = waveform{0.691911,0.622333,0.548651,0.463306,0.826946,0.749513,0.2242,0.642678,0.760442,0.326054,0.276463,0.359344,0.18258,0.686765,0.457159,0.839015,0.845338,0.372377,0.306417,0.147381,0.359707,0.653537,0.27553,0.401233,0.435417,0.251481,0.190062,0.773372,0.315014,0.228812,0.521512,0.411542,0.720762,1,0.286502,0.338938,0.119995,0.432289,0.409677,0.156272,0.298871,0.250786,0.640776,0.209431,0.17001,0.390014,0.301698,0.799413,0.980581,0.385,0.82544,0.818894,0.349616,0.235396,0.783164,0.821914,0.28411,0.430286,0.507671,0.326254,0.260488,0.273364,0.20518,0.714852,0.47995,0.803637,0.683943,0.355371,0.406924,0.656257,0.423025,0.413515,0.38636,0.384787,0.389448,0.813367,0.234988,1,0.311268,0.350245,0.403856,0.646143,0.500485,0.833553,0.431768,0.467064,0.298979,0.487413,0.514907,0.369383,0.106197,0.494224,0.816079,0.535807,0.379873,0.380201,0.606306,0.516117,0.748449,0.556948,0.587066,0.584423,0.394866,0.341121,0.433458,0.455987,0.361237,0.42939,0.122969,0.133175,0.505176,0.513985,0.0554619,0.604942,0.372074,0.381126,0.314354,0.499636,0.518711,0.923792,0.259544,0.576517,0.553915,0.585444,0.245369,1,0.117757,0.977318,0.652862,0.509314,0.14855,0.506402,0.180059,0.356005,0.38681,0.279354,0.205792,0.551055,0.689107,0.445724,0.306857,0.324747,0.603621,0.394466,0.288613,0.264697,0.60612,0.20274,0.267271,0.925656,0.439228,0.425884,0.626633,0.547204,0.230022,0.225654,0.392697,0.493474,0.149857,0.0604048,0.693889,0.740271,0.175485,0.704998,0.329732,0.153026,0.125744,0.286995,0.278878,0.812372,0.0562174,0.241479,0.294525,0.358834,0.171047,0.847604,0.17228,0.97521,0.892073,0.613987,0.0659213,0.301583,0.0610847,0.125438,0.145151,0.180086,0.124231,0.260161,0.337573,0.203743,0.655798,0.425893,0.902347,0.500686,0.311173,0.215561,0.349591,0.0854218,0.0805062,1,0.338652,0.295396,0.698314,0.664972,0.118983,0.0881905,0.31158,0.391136,0.151915,0.239504,0.685742,0.884332,0.288516,0.768688,0.274851,0.0490311,0.0357865,0.293303,0.249461,0.493771,0.340984,0.467623,0.216631,0.255235,0.0988695,0.46198,0.147247,0.640196,1,0.551938,0.0453732,0.189907,0.0197542,0.0309217,0.769837,0.360418,0.384041,0.867434,0.398948,0.171848,0.748652,0.301957,0.860611,0.958674,0.54903,0.272753,0.372753,0.0180728,0.0292353,0.8502,0.224583,0.214805,0.670319,0.586433,0.0435142,0.0388574,0.144811,0.157061,0.155569,0.418334,0.673656,0.749573,0.337354,0.747254,0.255997,0.0239656,0.0310719,0.721087,0.700616,0.199051,0.511844,0.849485,0.700682,0.778658,0.171289,0.261973,0.129228,0.328597,0.781821,0.583813,0.0806713,0.416876,0.0118202,0.00868563,1,0.461884,0.186882,0.641364,0.994705,0.501902,0.566449,0.0678845,0.139737,0.462582,0.318656,0.233947,0.495941,0.0314028,0.0146478,0.70432,0.124953,0.132549,0.457126,0.378636,0.0169362,0.0195494,0.204155,0.294401,0.271367,0.730857,0.459322,0.433078,0.325171,0.734536,0.416205,0.012873,0.0388489,0.821567,0.863683,0.0920531,0.393972,0.539544,0.832052,0.842732,0.241144,0.479558,0.283092,0.477845,0.385473,0.436587,0.144308,0.642395,0.0215791,0.00779029,0.563714,0.838279,0.410004,0.829086,1,0.630598,0.0233729,0.496217,0.711042,0.914266,0.695042,0.331894,0.898442,0.028568,0.0174966,0.482846},int(p*nModes+n) : rdtable; modesT60s(i) = t60*pow(1-(modesFreqs(i)/4191.95),2.5); }; process = 1-1' : ba.impulsify : standardBellModel(50,0,30);
654417800b99066c25481b4b12c1d9f07aeaffd72c15c4b19e8b0cce7186fa5b
beataburreau/FAUST-signal-graphs-goes-Haskell
bellModel_oneWave.dsp
declare filename "bellModel_oneWave.dsp"; declare name "bellModel_oneWave"; import("stdfaust.lib"); tf22(b0,b1,b2,a1,a2) = // tf2, direct-form 2: _ : (((_,_,_:>_)~*(-a1) : + (1000) : - (1000) <:mem,*(b0))~*(-a2)) : (_<:mem,*(b1)),_ : *(b2),_,_ :> _; modeFilter(freq,t60,gain) = tf22(b0,b1,b2,a1,a2)*gain with{ b0 = 1; b1 = 0; b2 = -1; w = 2*ma.PI*freq/ma.SR; r = pow(0.001,1/float(t60*ma.SR)); a1 = -2*r*cos(w); a2 = r^2; }; //standardBellModel(nModes,exPos,t60) = modeFilter(modesFreqs(0),modesT60s(0),modesGains(int(exPos),0)) standardBellModel(nModes,exPos,t60) = modeFilter(1000,10,1) //standardBellModel(nModes,exPos,t60) = _ <: //par(i,nModes,modeFilter(modesFreqs(i),modesT60s(i),modesGains(int(exPos),i))) //:> /(nModes) with{ nExPos = 7; modesFreqs(n) = ba.take(n+1,(490.25,493.646,924.838,927.779,1181.21,1186.94,1348.84,1349.5,1560.33,1635.97,1706.73,1712.89,1745.05,1745.25,2005.51,2025.47,2053.88,2142.37,2151.4,2408.16,2534.11,2536.42,2623.3,2628.4,2711.57,2712.46,2823.23,2827.22,2863.42,2874.19,2923,2925.69,3032.52,3042.15,3208.57,3392.52,3485.92,3493.65,3539.8,3550.56,3678.71,3719.04,3722.59,3786.28,3789.38,3993.59,3998.43,4123.41,4164.83,4187.98)); modesGains(p,n) = waveform{0.691911,0.622333,0.548651,0.463306,0.826946,0.749513,0.2242,0.642678,0.760442,0.326054,0.276463,0.359344,0.18258,0.686765,0.457159,0.839015,0.845338,0.372377,0.306417,0.147381,0.359707,0.653537,0.27553,0.401233,0.435417,0.251481,0.190062,0.773372,0.315014,0.228812,0.521512,0.411542,0.720762,1,0.286502,0.338938,0.119995,0.432289,0.409677,0.156272,0.298871,0.250786,0.640776,0.209431,0.17001,0.390014,0.301698,0.799413,0.980581,0.385,0.82544,0.818894,0.349616,0.235396,0.783164,0.821914,0.28411,0.430286,0.507671,0.326254,0.260488,0.273364,0.20518,0.714852,0.47995,0.803637,0.683943,0.355371,0.406924,0.656257,0.423025,0.413515,0.38636,0.384787,0.389448,0.813367,0.234988,1,0.311268,0.350245,0.403856,0.646143,0.500485,0.833553,0.431768,0.467064,0.298979,0.487413,0.514907,0.369383,0.106197,0.494224,0.816079,0.535807,0.379873,0.380201,0.606306,0.516117,0.748449,0.556948,0.587066,0.584423,0.394866,0.341121,0.433458,0.455987,0.361237,0.42939,0.122969,0.133175,0.505176,0.513985,0.0554619,0.604942,0.372074,0.381126,0.314354,0.499636,0.518711,0.923792,0.259544,0.576517,0.553915,0.585444,0.245369,1,0.117757,0.977318,0.652862,0.509314,0.14855,0.506402,0.180059,0.356005,0.38681,0.279354,0.205792,0.551055,0.689107,0.445724,0.306857,0.324747,0.603621,0.394466,0.288613,0.264697,0.60612,0.20274,0.267271,0.925656,0.439228,0.425884,0.626633,0.547204,0.230022,0.225654,0.392697,0.493474,0.149857,0.0604048,0.693889,0.740271,0.175485,0.704998,0.329732,0.153026,0.125744,0.286995,0.278878,0.812372,0.0562174,0.241479,0.294525,0.358834,0.171047,0.847604,0.17228,0.97521,0.892073,0.613987,0.0659213,0.301583,0.0610847,0.125438,0.145151,0.180086,0.124231,0.260161,0.337573,0.203743,0.655798,0.425893,0.902347,0.500686,0.311173,0.215561,0.349591,0.0854218,0.0805062,1,0.338652,0.295396,0.698314,0.664972,0.118983,0.0881905,0.31158,0.391136,0.151915,0.239504,0.685742,0.884332,0.288516,0.768688,0.274851,0.0490311,0.0357865,0.293303,0.249461,0.493771,0.340984,0.467623,0.216631,0.255235,0.0988695,0.46198,0.147247,0.640196,1,0.551938,0.0453732,0.189907,0.0197542,0.0309217,0.769837,0.360418,0.384041,0.867434,0.398948,0.171848,0.748652,0.301957,0.860611,0.958674,0.54903,0.272753,0.372753,0.0180728,0.0292353,0.8502,0.224583,0.214805,0.670319,0.586433,0.0435142,0.0388574,0.144811,0.157061,0.155569,0.418334,0.673656,0.749573,0.337354,0.747254,0.255997,0.0239656,0.0310719,0.721087,0.700616,0.199051,0.511844,0.849485,0.700682,0.778658,0.171289,0.261973,0.129228,0.328597,0.781821,0.583813,0.0806713,0.416876,0.0118202,0.00868563,1,0.461884,0.186882,0.641364,0.994705,0.501902,0.566449,0.0678845,0.139737,0.462582,0.318656,0.233947,0.495941,0.0314028,0.0146478,0.70432,0.124953,0.132549,0.457126,0.378636,0.0169362,0.0195494,0.204155,0.294401,0.271367,0.730857,0.459322,0.433078,0.325171,0.734536,0.416205,0.012873,0.0388489,0.821567,0.863683,0.0920531,0.393972,0.539544,0.832052,0.842732,0.241144,0.479558,0.283092,0.477845,0.385473,0.436587,0.144308,0.642395,0.0215791,0.00779029,0.563714,0.838279,0.410004,0.829086,1,0.630598,0.0233729,0.496217,0.711042,0.914266,0.695042,0.331894,0.898442,0.028568,0.0174966,0.482846},int(p*nModes+n) : rdtable; modesT60s(i) = t60*pow(1-(modesFreqs(i)/4191.95),2.5); }; process = 1-1' : ba.impulsify : standardBellModel(50,0,30);
https://raw.githubusercontent.com/beataburreau/FAUST-signal-graphs-goes-Haskell/6f468716515a5047e290864b5af448c14d4c03d4/test/test-files/bellModel_oneWave.dsp
faust
tf2, direct-form 2: standardBellModel(nModes,exPos,t60) = modeFilter(modesFreqs(0),modesT60s(0),modesGains(int(exPos),0)) standardBellModel(nModes,exPos,t60) = _ <: par(i,nModes,modeFilter(modesFreqs(i),modesT60s(i),modesGains(int(exPos),i))) :> /(nModes)
declare filename "bellModel_oneWave.dsp"; declare name "bellModel_oneWave"; import("stdfaust.lib"); _ : (((_,_,_:>_)~*(-a1) : + (1000) : - (1000) <:mem,*(b0))~*(-a2)) : (_<:mem,*(b1)),_ : *(b2),_,_ :> _; modeFilter(freq,t60,gain) = tf22(b0,b1,b2,a1,a2)*gain with{ b0 = 1; b1 = 0; b2 = -1; w = 2*ma.PI*freq/ma.SR; r = pow(0.001,1/float(t60*ma.SR)); a1 = -2*r*cos(w); a2 = r^2; }; standardBellModel(nModes,exPos,t60) = modeFilter(1000,10,1) with{ nExPos = 7; modesFreqs(n) = ba.take(n+1,(490.25,493.646,924.838,927.779,1181.21,1186.94,1348.84,1349.5,1560.33,1635.97,1706.73,1712.89,1745.05,1745.25,2005.51,2025.47,2053.88,2142.37,2151.4,2408.16,2534.11,2536.42,2623.3,2628.4,2711.57,2712.46,2823.23,2827.22,2863.42,2874.19,2923,2925.69,3032.52,3042.15,3208.57,3392.52,3485.92,3493.65,3539.8,3550.56,3678.71,3719.04,3722.59,3786.28,3789.38,3993.59,3998.43,4123.41,4164.83,4187.98)); modesGains(p,n) = waveform{0.691911,0.622333,0.548651,0.463306,0.826946,0.749513,0.2242,0.642678,0.760442,0.326054,0.276463,0.359344,0.18258,0.686765,0.457159,0.839015,0.845338,0.372377,0.306417,0.147381,0.359707,0.653537,0.27553,0.401233,0.435417,0.251481,0.190062,0.773372,0.315014,0.228812,0.521512,0.411542,0.720762,1,0.286502,0.338938,0.119995,0.432289,0.409677,0.156272,0.298871,0.250786,0.640776,0.209431,0.17001,0.390014,0.301698,0.799413,0.980581,0.385,0.82544,0.818894,0.349616,0.235396,0.783164,0.821914,0.28411,0.430286,0.507671,0.326254,0.260488,0.273364,0.20518,0.714852,0.47995,0.803637,0.683943,0.355371,0.406924,0.656257,0.423025,0.413515,0.38636,0.384787,0.389448,0.813367,0.234988,1,0.311268,0.350245,0.403856,0.646143,0.500485,0.833553,0.431768,0.467064,0.298979,0.487413,0.514907,0.369383,0.106197,0.494224,0.816079,0.535807,0.379873,0.380201,0.606306,0.516117,0.748449,0.556948,0.587066,0.584423,0.394866,0.341121,0.433458,0.455987,0.361237,0.42939,0.122969,0.133175,0.505176,0.513985,0.0554619,0.604942,0.372074,0.381126,0.314354,0.499636,0.518711,0.923792,0.259544,0.576517,0.553915,0.585444,0.245369,1,0.117757,0.977318,0.652862,0.509314,0.14855,0.506402,0.180059,0.356005,0.38681,0.279354,0.205792,0.551055,0.689107,0.445724,0.306857,0.324747,0.603621,0.394466,0.288613,0.264697,0.60612,0.20274,0.267271,0.925656,0.439228,0.425884,0.626633,0.547204,0.230022,0.225654,0.392697,0.493474,0.149857,0.0604048,0.693889,0.740271,0.175485,0.704998,0.329732,0.153026,0.125744,0.286995,0.278878,0.812372,0.0562174,0.241479,0.294525,0.358834,0.171047,0.847604,0.17228,0.97521,0.892073,0.613987,0.0659213,0.301583,0.0610847,0.125438,0.145151,0.180086,0.124231,0.260161,0.337573,0.203743,0.655798,0.425893,0.902347,0.500686,0.311173,0.215561,0.349591,0.0854218,0.0805062,1,0.338652,0.295396,0.698314,0.664972,0.118983,0.0881905,0.31158,0.391136,0.151915,0.239504,0.685742,0.884332,0.288516,0.768688,0.274851,0.0490311,0.0357865,0.293303,0.249461,0.493771,0.340984,0.467623,0.216631,0.255235,0.0988695,0.46198,0.147247,0.640196,1,0.551938,0.0453732,0.189907,0.0197542,0.0309217,0.769837,0.360418,0.384041,0.867434,0.398948,0.171848,0.748652,0.301957,0.860611,0.958674,0.54903,0.272753,0.372753,0.0180728,0.0292353,0.8502,0.224583,0.214805,0.670319,0.586433,0.0435142,0.0388574,0.144811,0.157061,0.155569,0.418334,0.673656,0.749573,0.337354,0.747254,0.255997,0.0239656,0.0310719,0.721087,0.700616,0.199051,0.511844,0.849485,0.700682,0.778658,0.171289,0.261973,0.129228,0.328597,0.781821,0.583813,0.0806713,0.416876,0.0118202,0.00868563,1,0.461884,0.186882,0.641364,0.994705,0.501902,0.566449,0.0678845,0.139737,0.462582,0.318656,0.233947,0.495941,0.0314028,0.0146478,0.70432,0.124953,0.132549,0.457126,0.378636,0.0169362,0.0195494,0.204155,0.294401,0.271367,0.730857,0.459322,0.433078,0.325171,0.734536,0.416205,0.012873,0.0388489,0.821567,0.863683,0.0920531,0.393972,0.539544,0.832052,0.842732,0.241144,0.479558,0.283092,0.477845,0.385473,0.436587,0.144308,0.642395,0.0215791,0.00779029,0.563714,0.838279,0.410004,0.829086,1,0.630598,0.0233729,0.496217,0.711042,0.914266,0.695042,0.331894,0.898442,0.028568,0.0174966,0.482846},int(p*nModes+n) : rdtable; modesT60s(i) = t60*pow(1-(modesFreqs(i)/4191.95),2.5); }; process = 1-1' : ba.impulsify : standardBellModel(50,0,30);
5639c2c26de2f8c58a3cbc936091840410a685a255e374e584d797b8efcadd99
SputnikStan5/Lua-Stk
midi_trigger.dsp
// midi-trigger.dsp // // Henrik von Coler // 2020-05-17 import("stdfaust.lib"); freq = nentry("freq",200,40,2000,0.01) : si.polySmooth(gate,0.999,2); gain = nentry("gain",1,0,1,0.01) : si.polySmooth(gate,0.999,2); gate = button("gate") : si.smoo; process = vgroup("synth",os.sawtooth(freq)*gain*gate <: _,_); // import("stdfaust.lib"); // freq =100; // hslider("frequency[midi:ctrl 48]",100,20,1000,0.1) : si.smoo; // trigger = 1 when MIDI key pressed // = 0 when released // trig = button("trigger[midi:key 0,1]"); // process = os.osc(freq) * en.arfe(0.01, 1, 0,trig) <: _,_ ;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/sound_synthesis_faust/faust/Control/midi_trigger.dsp
faust
midi-trigger.dsp Henrik von Coler 2020-05-17 import("stdfaust.lib"); freq =100; hslider("frequency[midi:ctrl 48]",100,20,1000,0.1) : si.smoo; trigger = 1 when MIDI key pressed = 0 when released trig = button("trigger[midi:key 0,1]"); process = os.osc(freq) * en.arfe(0.01, 1, 0,trig) <: _,_ ;
import("stdfaust.lib"); freq = nentry("freq",200,40,2000,0.01) : si.polySmooth(gate,0.999,2); gain = nentry("gain",1,0,1,0.01) : si.polySmooth(gate,0.999,2); gate = button("gate") : si.smoo; process = vgroup("synth",os.sawtooth(freq)*gain*gate <: _,_);
6bb38e678f1a6ae9656028d217c4cc0455116e1b66ae370eecc7831dac3f15b3
SputnikStan5/Lua-Stk
feedback_minimal.dsp
import("stdfaust.lib"); process = + ~ (_*0.1) ;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/sound_synthesis_faust/faust/Basics/feedback_minimal.dsp
faust
import("stdfaust.lib"); process = + ~ (_*0.1) ;
256060817f7439039e0aecd8e15d86187c0b580a322d84dd0cdbb5b5bec65ef9
SputnikStan5/AudioLAB
sequential_example.dsp
import("stdfaust.lib"); freq = hslider("frequency",100, 10, 1000, 0.001) : si.smoo; sig = 0.5*os.square(50); filt = fi.lowpass(5,freq); process = sig:filt;
https://raw.githubusercontent.com/SputnikStan5/AudioLAB/c12684b16f4d27dc3c33e63986611923821117d2/Faust/Library/DSP/sound_synthesis_faust/faust/Basics/sequential_example.dsp
faust
import("stdfaust.lib"); freq = hslider("frequency",100, 10, 1000, 0.001) : si.smoo; sig = 0.5*os.square(50); filt = fi.lowpass(5,freq); process = sig:filt;
d2bcaf0b320dd6f80fd02164c0f5050b0ef705aae9b13f49b4f2ffb9579d1967
SputnikStan5/AudioLAB
quad_spat.dsp
declare name "quad_spat"; declare author "HvC"; import("stdfaust.lib"); angle = hslider("angle", 0.0, 0, 1, 0.01); distance = hslider("distance", 0.5, 0, 1, 0.01); process = vgroup("quad_spat", sp.spat(4, angle, distance));
https://raw.githubusercontent.com/SputnikStan5/AudioLAB/c12684b16f4d27dc3c33e63986611923821117d2/Faust/Library/sound_synthesis_faust/faust/Spatial/quad_spat.dsp
faust
declare name "quad_spat"; declare author "HvC"; import("stdfaust.lib"); angle = hslider("angle", 0.0, 0, 1, 0.01); distance = hslider("distance", 0.5, 0, 1, 0.01); process = vgroup("quad_spat", sp.spat(4, angle, distance));
94e3662ed35a20673296cfcdea95167f9d512547e3660f7397bd1f1de30ff3c1
SputnikStan5/Lua-Stk
feedback_example.dsp
import("stdfaust.lib"); // two parameters as horizontal sliders gain = hslider("Gain",0, 0, 1, 0.01); delay = hslider("Delay",0, 0, 10000, 1); // source signal is a saw sig = os.lf_imptrain(1); // the processing function process = sig : + ~ (gain * (_ ,delay : @)) ;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/sound_synthesis_faust/faust/Basics/feedback_example.dsp
faust
two parameters as horizontal sliders source signal is a saw the processing function
import("stdfaust.lib"); gain = hslider("Gain",0, 0, 1, 0.01); delay = hslider("Delay",0, 0, 10000, 1); sig = os.lf_imptrain(1); process = sig : + ~ (gain * (_ ,delay : @)) ;
22841fb2b0cbef82d44b4a18d38ba4c678204fa79949e15b29867658fa805509
SputnikStan5/Lua-Stk
midi_example.dsp
// midi-example.dsp // // Control a sine wave frequency with a MIDI controller. // // Henrik von Coler // 2020-05-17 import("stdfaust.lib"); freq = hslider("frequency[midi:ctrl 48]",100,20,1000,0.1) : si.smoo; process = os.osc(freq) <: _,_ ;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Control/midi_example.dsp
faust
midi-example.dsp Control a sine wave frequency with a MIDI controller. Henrik von Coler 2020-05-17
import("stdfaust.lib"); freq = hslider("frequency[midi:ctrl 48]",100,20,1000,0.1) : si.smoo; process = os.osc(freq) <: _,_ ;
33b8b885d5fb375c8b28188eba2389bb1251ec18f41b73bba7b0aa5c1e720add
SputnikStan5/Lua-Stk
merging_example.dsp
import("stdfaust.lib"); // create four sine waves // with arbitrary frequencies s1 = 0.2*os.osc(120); s2 = 0.2*os.osc(340); s3 = 0.2*os.osc(1560); s4 = 0.2*os.osc(780); // merge them to two signals process = s1,s2,s3,s4 :> _;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Basics/merging_example.dsp
faust
create four sine waves with arbitrary frequencies merge them to two signals
import("stdfaust.lib"); s1 = 0.2*os.osc(120); s2 = 0.2*os.osc(340); s3 = 0.2*os.osc(1560); s4 = 0.2*os.osc(780); process = s1,s2,s3,s4 :> _;
574bb99e8a67f4bd67557a85f98e8670c3044deefd2e5cbdbd41c37b42dea060
SputnikStan5/Lua-Stk
n_spat.dsp
import("stdfaust.lib"); speakers = (-45, 45, 135, -135); n = 4; angle = hslider("angle", 0.0, -180, 180, 0.01); distance = hslider("distance", 0.5, 0, 10, 0.01); process = _ <: par(i, n, *( scaler(i, n, angle, distance) : si.smooth(0.9999) )) with { scaler(i, n, angle, distance) = (distance/2.0+0.5) * sqrt( max(0.0, 1.0 - abs(fmod(angle+0.5 + float(n-i) /n, 1.0) - 0.5) * n * distance)); };
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Spatial/n_spat.dsp
faust
import("stdfaust.lib"); speakers = (-45, 45, 135, -135); n = 4; angle = hslider("angle", 0.0, -180, 180, 0.01); distance = hslider("distance", 0.5, 0, 10, 0.01); process = _ <: par(i, n, *( scaler(i, n, angle, distance) : si.smooth(0.9999) )) with { scaler(i, n, angle, distance) = (distance/2.0+0.5) * sqrt( max(0.0, 1.0 - abs(fmod(angle+0.5 + float(n-i) /n, 1.0) - 0.5) * n * distance)); };
e725b8af300309cb813dced045f5456ec8dbca4b65e975e264f7f0132555fe68
SputnikStan5/Lua-Stk
sine_example.dsp
// sine_example.dsp // // Henrik von Coler // 2020-04-21 import("stdfaust.lib"); // input parameters with GUI elements freq = hslider("frequency",100, 10, 1000, 0.001); gain = hslider("gain[style:knob]",0.5, 0, 1, 0.001); // a sine oscillator with controllable freuency and aplitude: process = os.osc(freq)*gain;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Basics/sine_example.dsp
faust
sine_example.dsp Henrik von Coler 2020-04-21 input parameters with GUI elements a sine oscillator with controllable freuency and aplitude:
import("stdfaust.lib"); freq = hslider("frequency",100, 10, 1000, 0.001); gain = hslider("gain[style:knob]",0.5, 0, 1, 0.001); process = os.osc(freq)*gain;
139b1d52361a466abef6d50e01134ba8fd1ee4a0556f77efa153ea7da4deaeef
SputnikStan5/Lua-Stk
sawtooth_filter.dsp
// sawtooth-filter.dsp // // First steps with a VCO-VCA-VCF setup. // The three modules are connected in series. // // No anti-aliasing! // // - steady sound // - control over f0, cutoff, resonance, gain // // Henrik von Coler // 2020-05-17 import("stdfaust.lib"); ////////////////////////////////////////////////////////////////////////// // Control Parameters ////////////////////////////////////////////////////////////////////////// cutoff = hslider("Cutoff [midi:ctrl 48]", 100, 5, 6000, 0.001):si.smoo; f0 = hslider("Pitch[midi:ctrl 49]", 100, 5, 500, 0.001):si.smoo; q = hslider("Q[midi:ctrl 50]", 1, 0.1, 100, 0.01):si.smoo; gain = hslider("Gain[midi:ctrl 51]", 1, 0, 1, 0.01):si.smoo; ////////////////////////////////////////////////////////////////////////// // Define three 'module' functions ////////////////////////////////////////////////////////////////////////// vco = os.sawtooth(f0); vcf = fi.resonlp(cutoff,q,1) ; vca(x) = gain * x; ////////////////////////////////////////////////////////////////////////// // Define three 'modules' ////////////////////////////////////////////////////////////////////////// voice = vco : vcf : vca; process = voice <: _,_ ;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Subtractive/sawtooth_filter.dsp
faust
sawtooth-filter.dsp First steps with a VCO-VCA-VCF setup. The three modules are connected in series. No anti-aliasing! - steady sound - control over f0, cutoff, resonance, gain Henrik von Coler 2020-05-17 //////////////////////////////////////////////////////////////////////// Control Parameters //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// Define three 'module' functions //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// Define three 'modules' ////////////////////////////////////////////////////////////////////////
import("stdfaust.lib"); cutoff = hslider("Cutoff [midi:ctrl 48]", 100, 5, 6000, 0.001):si.smoo; f0 = hslider("Pitch[midi:ctrl 49]", 100, 5, 500, 0.001):si.smoo; q = hslider("Q[midi:ctrl 50]", 1, 0.1, 100, 0.01):si.smoo; gain = hslider("Gain[midi:ctrl 51]", 1, 0, 1, 0.01):si.smoo; vco = os.sawtooth(f0); vcf = fi.resonlp(cutoff,q,1) ; vca(x) = gain * x; voice = vco : vcf : vca; process = voice <: _,_ ;
6209aaf1211651b14b933ba1addfaf49cd7d28782a5ba38ff84872b37d0da1d1
SputnikStan5/Lua-Stk
fm-simple.dsp
// fm-simple.dsp // // 2-operator FM synthesis // // - with trigger // - dynamic modulation index // through temporal envelope // // Henrik von Coler // 2020-05-11 import("stdfaust.lib"); ///////////////////////////////////////////////////////// // UI ELEMENTS ///////////////////////////////////////////////////////// trigger = button("Trigger"); f_1 = hslider("OP 1 Frequency",100,0.01,1000,0.1); f_2 = hslider("OP 2 Frequency",100,0.01,1000,0.1); ind_1 = hslider("Modulation Index",0,0,1000,0.1); // a slider for the first release time r1 = hslider("Release 1",0.5,0.01,5,0.01); // a slider for the second release time r2 = hslider("Release 2",0.5,0.01,5,0.01); ///////////////////////////////////////////////////////// // FM Function ///////////////////////////////////////////////////////// am(f1, f2, t1, r1, r2) = gain * os.osc(f1 + (os.osc(f2) * ind_1)* index1) with { gain = en.arfe(0.01, r2, 0,t1); index1 = en.arfe(0.01, r1, 0,t1); }; ///////////////////////////////////////////////////////// // processing ///////////////////////////////////////////////////////// process = am(f_1,f_2, trigger, r1 ,r2) <: _,_;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Modulation/fm-simple/fm-simple.dsp
faust
fm-simple.dsp 2-operator FM synthesis - with trigger - dynamic modulation index through temporal envelope Henrik von Coler 2020-05-11 /////////////////////////////////////////////////////// UI ELEMENTS /////////////////////////////////////////////////////// a slider for the first release time a slider for the second release time /////////////////////////////////////////////////////// FM Function /////////////////////////////////////////////////////// /////////////////////////////////////////////////////// processing ///////////////////////////////////////////////////////
import("stdfaust.lib"); trigger = button("Trigger"); f_1 = hslider("OP 1 Frequency",100,0.01,1000,0.1); f_2 = hslider("OP 2 Frequency",100,0.01,1000,0.1); ind_1 = hslider("Modulation Index",0,0,1000,0.1); r1 = hslider("Release 1",0.5,0.01,5,0.01); r2 = hslider("Release 2",0.5,0.01,5,0.01); am(f1, f2, t1, r1, r2) = gain * os.osc(f1 + (os.osc(f2) * ind_1)* index1) with { gain = en.arfe(0.01, r2, 0,t1); index1 = en.arfe(0.01, r1, 0,t1); }; process = am(f_1,f_2, trigger, r1 ,r2) <: _,_;
e4142efcecf501c169929bb9130ad51442c12f9cc9c53f837d77202b08be37f7
SputnikStan5/Lua-Stk
trigger_phasor.dsp
/// // towards a hard-synced oscillator // // based on: // Synchronous Programming in Audio Processing: // A Lookup Table Oscillator Case Study // // no anti-aliasing // // HvC // 2020-08-29 //import( "stdfaust.lib" ) ; import( "all.lib" ) ; // gate and single sample impulse gater = button ("gater"); trig = pm.impulseExcitation(gater); // some basic stuff sr = SR; twopi = 2.0*PI; ts = 1<<16 ; time = (+(1) ~ _ ) , 1 : - ; // define the waveform sawwave = ((float(time) / float(ts)) *2 -1)*-1; pulsewidth = hslider("pulsewidth", 0, 0, 1, 0.01); sqaurewave = sawwave : >(0.0); dec ( x ) = x - floor (x) ; // from the paper: // phase ( freq ) = freq / float ( sr ) : (+ : dec ) ~ _ : * ( float (ts) ) ; phase = os.hs_phasor(ts,f,trig); saw_osc( freq) = rdtable ( ts , sawwave , int ( phase ) ) ; square_osc( freq) = rdtable ( ts , sqaurewave , int ( phase ) ) ; f = hslider("f", 440, 2, 20000, 1); mix = hslider("mix", 0, 0, 1, 0.01); process = saw_osc(f) *mix + square_osc(f)*(1-mix) <: _,_ ;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/sound_synthesis_faust/faust/Oscillators/trigger_phasor.dsp
faust
/ towards a hard-synced oscillator based on: Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study no anti-aliasing HvC 2020-08-29 import( "stdfaust.lib" ) ; gate and single sample impulse some basic stuff define the waveform from the paper: phase ( freq ) = freq / float ( sr ) : (+ : dec ) ~ _ : * ( float (ts) ) ;
import( "all.lib" ) ; gater = button ("gater"); trig = pm.impulseExcitation(gater); sr = SR; twopi = 2.0*PI; ts = 1<<16 ; time = (+(1) ~ _ ) , 1 : - ; sawwave = ((float(time) / float(ts)) *2 -1)*-1; pulsewidth = hslider("pulsewidth", 0, 0, 1, 0.01); sqaurewave = sawwave : >(0.0); dec ( x ) = x - floor (x) ; phase = os.hs_phasor(ts,f,trig); saw_osc( freq) = rdtable ( ts , sawwave , int ( phase ) ) ; square_osc( freq) = rdtable ( ts , sqaurewave , int ( phase ) ) ; f = hslider("f", 440, 2, 20000, 1); mix = hslider("mix", 0, 0, 1, 0.01); process = saw_osc(f) *mix + square_osc(f)*(1-mix) <: _,_ ;
138536e8bacf112c8ee8a1e30ae2ffccdb6e46adabd7eb14f2da229409291577
SputnikStan5/Lua-Stk
am-ringmod.dsp
// am-ringmod.dsp // // Example for amplitude modulation // and ringmodulation. // // - steady sound // - adjustable frequencies // - fader for morphing between am/ringmod // // Henrik von Coler // 2020-05-11 import("stdfaust.lib"); f_x = hslider("Signal Frequency",100,0.01,1000,0.1); f_m = hslider("Modulator Frequency",100,0.01,1000,0.1); m_off = hslider("Modulator Offset",0,0,0.5,0.01); am(fx, fm) = os.osc(fx) * ((1-m_off) * os.osc(fm) + m_off); process = am(f_x,f_m) <: _,_;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/sound_synthesis_faust/faust/Modulation/am-ringmod/am-ringmod.dsp
faust
am-ringmod.dsp Example for amplitude modulation and ringmodulation. - steady sound - adjustable frequencies - fader for morphing between am/ringmod Henrik von Coler 2020-05-11
import("stdfaust.lib"); f_x = hslider("Signal Frequency",100,0.01,1000,0.1); f_m = hslider("Modulator Frequency",100,0.01,1000,0.1); m_off = hslider("Modulator Offset",0,0,0.5,0.01); am(fx, fm) = os.osc(fx) * ((1-m_off) * os.osc(fm) + m_off); process = am(f_x,f_m) <: _,_;
b55b7883f6ffe41aea2d9bce51582092f4c1b624e973942c9e5b8e7e4dac10b4
SputnikStan5/Lua-Stk
am-ringmod-trigger.dsp
// am-ringmod.dsp // // // // Henrik von Coler // 2020-05-11 import("stdfaust.lib"); f_x = hslider("Signal Frequency",100,0.01,1000,0.1); f_m = hslider("Modulator Frequency",100,0.01,1000,0.1); m_off = hslider("Modulator Offset",0,0,0.5,0.01); am(fx, fm) = os.osc(fx) * ((1-m_off) * os.osc(fm) + m_off); // generate a single sine and apply the arfe envelope // the attack time is set to 0.01 process = am(f_x,f_m) <: _,_;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/sound_synthesis_faust/faust/Modulation/am-ringmod-trigger/am-ringmod-trigger.dsp
faust
am-ringmod.dsp Henrik von Coler 2020-05-11 generate a single sine and apply the arfe envelope the attack time is set to 0.01
import("stdfaust.lib"); f_x = hslider("Signal Frequency",100,0.01,1000,0.1); f_m = hslider("Modulator Frequency",100,0.01,1000,0.1); m_off = hslider("Modulator Offset",0,0,0.5,0.01); am(fx, fm) = os.osc(fx) * ((1-m_off) * os.osc(fm) + m_off); process = am(f_x,f_m) <: _,_;
788e7200b0ad4d67e57c2ec426bcb020fcbd9634500a7baf83b31b30505f227b
SputnikStan5/Lua-Stk
fourier_series.dsp
// fourier_series.dsp // // Generate a square wave through Fourier series. // - without control // // Henrik von Coler // 2020-05-06 import("stdfaust.lib"); // define a fundamental frequency f0 = 100; // define the number of partials n_partial = 50; // partial function with one argument () partial(partIDX) = (4/ma.PI) * os.oscrs(f)*volume // arguments with { f = f0 * (2*partIDX+1); volume = 1/(2*partIDX+1); }; // the processing function, // running 50 partials parallel // mono output process = par(i, n_partial, partial(i)) :> +;
https://raw.githubusercontent.com/SputnikStan5/Lua-Stk/80cc99dce8648eccc2b065afdf170b8334091461/Faust/DSP/sound_synthesis_faust/faust/Additive/fourier_series/fourier_series.dsp
faust
fourier_series.dsp Generate a square wave through Fourier series. - without control Henrik von Coler 2020-05-06 define a fundamental frequency define the number of partials partial function with one argument () arguments the processing function, running 50 partials parallel mono output
import("stdfaust.lib"); f0 = 100; n_partial = 50; partial(partIDX) = (4/ma.PI) * os.oscrs(f)*volume with { f = f0 * (2*partIDX+1); volume = 1/(2*partIDX+1); }; process = par(i, n_partial, partial(i)) :> +;
8ae75686ec5a2f5f35c396500e265269938c4765371d189c1c7873b3f79a8ba8
SputnikStan5/AudioLAB
ringmod-input.dsp
// ringmod-input.dsp // // Ringmodulator for audio input // // - fader for controlling modulator frequency // - fader for controlling mix of ringmod // // Henrik von Coler // 2020-05-12 import("stdfaust.lib"); f_m = hslider("Modulator Frequency",100,0.01,1000,0.1); mix = hslider("Modulation Mix",0.5,0,1,0.01); am(x, fm) = (1-mix) * x + mix * x * os.osc(fm); process(x) = am(x,f_m) <: _,_;
https://raw.githubusercontent.com/SputnikStan5/AudioLAB/c12684b16f4d27dc3c33e63986611923821117d2/Faust/Library/sound_synthesis_faust/faust/Modulation/ringmod-input/ringmod-input.dsp
faust
ringmod-input.dsp Ringmodulator for audio input - fader for controlling modulator frequency - fader for controlling mix of ringmod Henrik von Coler 2020-05-12
import("stdfaust.lib"); f_m = hslider("Modulator Frequency",100,0.01,1000,0.1); mix = hslider("Modulation Mix",0.5,0,1,0.01); am(x, fm) = (1-mix) * x + mix * x * os.osc(fm); process(x) = am(x,f_m) <: _,_;
b3eaa20d6d280f7e6ed25553c896fff0553718120fff811aef6f5dc5bedcaad1
SputnikStan5/LV2-Prototyper
svf.dsp
import("stdfaust.lib"); G = hslider("Gain", 0, -10, 10, 0.1); F = hslider("Freq", 1000, 100, 10000, 1); Q = hslider("Q", 1, 0.01, 100, 0.01); process = _ : fi.svf.lp(F,Q,G) : _,_;
https://raw.githubusercontent.com/SputnikStan5/LV2-Prototyper/14965bd2c5f042d3f11e9a11f9614b5089b99184/svf.dsp
faust
import("stdfaust.lib"); G = hslider("Gain", 0, -10, 10, 0.1); F = hslider("Freq", 1000, 100, 10000, 1); Q = hslider("Q", 1, 0.01, 100, 0.01); process = _ : fi.svf.lp(F,Q,G) : _,_;
9cec295c4623caed5ff47f654dd32f06de8aee1d9e1644fe95fadafd9a970b38
SputnikStan5/GobyJIT
splitting_example.dsp
// splitting_example.dsp // // Henrik von Coler // 2020-04-21 import("stdfaust.lib"); // a source signal signal = os.imptrain(5); // split signal to stereo in process function: process = signal <: _,_,_,_,_,_,_,_;
https://raw.githubusercontent.com/SputnikStan5/GobyJIT/589bb827b5b85095d81558c21438d080951a94b5/Faust/DSP/sound_synthesis_faust/faust/Basics/splitting_example.dsp
faust
splitting_example.dsp Henrik von Coler 2020-04-21 a source signal split signal to stereo in process function:
import("stdfaust.lib"); signal = os.imptrain(5); process = signal <: _,_,_,_,_,_,_,_;
db107c3d164ad4515be3de5b5d2b3b07d3e40efece1fa87f210c8fdcf14a9cc7
jacktrip/jacktrip
zitarevdsp.dsp
import("stdfaust.lib"); // Modified version from Faust Libraries demos.lib process = zita_rev1; // same as dm.zita_rev1 but for wetness control and some defaults //process = zita_rev1 : _,attach(cout); // Not using this solution yet, but it works //cout = ffunction (int cout(), <iostream>, ""); // dummy function to force #include <iostream> in output //----------------------------------`(dm.)zita_rev1`------------------------------ // Example GUI for `zita_rev1_stereo` (mostly following the Linux `zita-rev1` GUI). // // Only the dry/wet and output level parameters are "dezippered" here. If // parameters are to be varied in real time, use `smooth(0.999)` or the like // in the same way. // // #### Usage // // ``` // _,_ : zita_rev1 : _,_ // ``` // // #### Reference // // <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html> //------------------------------------------------------------ zita_rev1 = _,_ <: re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ : out_eq,_,_ : wet_dry_2(wet) : out_level with{ fsmax = 48000.0; // highest sampling rate that will be used fdn_group(x) = hgroup( "[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER ALLPASS-COMB REVERBERATOR (8x8). See Faust's reverbs.lib for documentation and references]", x); in_group(x) = fdn_group(hgroup("[1] Input", x)); rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob] [tooltip: Delay in ms before reverberation begins]",60,20,100,1)); freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x)); f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob] [scale:log] [tooltip: Crossover frequency (Hz) separating low and middle frequencies]", 200, 50, 1000, 1)); t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob] [scale:log] [style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]", 3, 1, 8, 0.1)); t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log] [tooltip: T60 = time (in seconds) to decay 60dB in middle band]",2, 1, 8, 0.1)); f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log] [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]", 6000, 1500, 0.49*fsmax, 1)); out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q); // Zolzer style peaking eq (not used in zita-rev1) (filters.lib): // pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q); // Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filters.lib): pareq_stereo(eqf,eql,Q) = fi.peak_eq_rm(eql,eqf,tpbt), fi.peak_eq_rm(eql,eqf,tpbt) with { tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4) wcT = 2*ma.PI*eqf/ma.SR; // peak frequency in rad/sample g = ba.db2linear(eql); // peak gain }; eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x)); eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob] [scale:log] [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]", 315, 40, 2500, 1)); eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob] [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 1]", 0, -15, 15, 0.1)); eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 1]", 3, 0.1, 10, 0.1)); eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x)); eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob] [scale:log] [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]", 1500, 160, 10000, 1)); eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob] [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 2]", 0, -15, 15, 0.1)); eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 2]", 3, 0.1, 10, 0.1)); out_group(x) = fdn_group(hgroup("[5] Output", x)); wet_dry(wet,y,x) = wet*y + (1-wet)*x; wet_dry_2(wet,y1,y2,x1,x2) = wet_dry(wet,y1,x1), wet_dry(wet,y2,x2); wet = out_group(vslider("[1] Wet [style:knob] [tooltip: Dry/Wet Mix: 0 = dry, 1 = wet]", 0, 0.0, 1.0, 0.01)) : si.smoo; out_level = *(gain),*(gain); gain = out_group(vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output scale factor]", -3, -70, 20, 0.1)) : ba.db2linear : si.smoo; };
https://raw.githubusercontent.com/jacktrip/jacktrip/821ba6436cd721a96c7a4877a3c3e5432d3811fc/faust-src/zitarevdsp.dsp
faust
Modified version from Faust Libraries demos.lib same as dm.zita_rev1 but for wetness control and some defaults process = zita_rev1 : _,attach(cout); // Not using this solution yet, but it works cout = ffunction (int cout(), <iostream>, ""); // dummy function to force #include <iostream> in output ----------------------------------`(dm.)zita_rev1`------------------------------ Example GUI for `zita_rev1_stereo` (mostly following the Linux `zita-rev1` GUI). Only the dry/wet and output level parameters are "dezippered" here. If parameters are to be varied in real time, use `smooth(0.999)` or the like in the same way. #### Usage ``` _,_ : zita_rev1 : _,_ ``` #### Reference <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html> ------------------------------------------------------------ highest sampling rate that will be used Zolzer style peaking eq (not used in zita-rev1) (filters.lib): pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q); Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filters.lib): tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4) peak frequency in rad/sample peak gain
import("stdfaust.lib"); zita_rev1 = _,_ <: re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ : out_eq,_,_ : wet_dry_2(wet) : out_level with{ fdn_group(x) = hgroup( "[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER ALLPASS-COMB REVERBERATOR (8x8). See Faust's reverbs.lib for documentation and references]", x); in_group(x) = fdn_group(hgroup("[1] Input", x)); rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob] [tooltip: Delay in ms before reverberation begins]",60,20,100,1)); freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x)); f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob] [scale:log] [tooltip: Crossover frequency (Hz) separating low and middle frequencies]", 200, 50, 1000, 1)); t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob] [scale:log] [style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]", 3, 1, 8, 0.1)); t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log] [tooltip: T60 = time (in seconds) to decay 60dB in middle band]",2, 1, 8, 0.1)); f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log] [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]", 6000, 1500, 0.49*fsmax, 1)); out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q); pareq_stereo(eqf,eql,Q) = fi.peak_eq_rm(eql,eqf,tpbt), fi.peak_eq_rm(eql,eqf,tpbt) with { }; eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x)); eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob] [scale:log] [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]", 315, 40, 2500, 1)); eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob] [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 1]", 0, -15, 15, 0.1)); eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 1]", 3, 0.1, 10, 0.1)); eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x)); eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob] [scale:log] [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]", 1500, 160, 10000, 1)); eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob] [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 2]", 0, -15, 15, 0.1)); eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 2]", 3, 0.1, 10, 0.1)); out_group(x) = fdn_group(hgroup("[5] Output", x)); wet_dry(wet,y,x) = wet*y + (1-wet)*x; wet_dry_2(wet,y1,y2,x1,x2) = wet_dry(wet,y1,x1), wet_dry(wet,y2,x2); wet = out_group(vslider("[1] Wet [style:knob] [tooltip: Dry/Wet Mix: 0 = dry, 1 = wet]", 0, 0.0, 1.0, 0.01)) : si.smoo; out_level = *(gain),*(gain); gain = out_group(vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output scale factor]", -3, -70, 20, 0.1)) : ba.db2linear : si.smoo; };