File size: 10,553 Bytes
3ba2bb3
 
 
 
114b652
 
3ba2bb3
 
 
 
40cfc25
 
 
 
 
 
 
 
3ba2bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: cc-by-4.0
size_categories:
- 10M<n<100M
tags:
- geospatial
---

# Geonames 

A simple parquet conversion of Geonames place database and ZIP codes. 

## Source

The tab-separated, zipped textfiles `allCountries.zip` from:

- https://download.geonames.org/export/dump/ and
- https://download.geonames.org/export/zip/.

## Columns

allCountries.zip

```
The main 'geoname' table has the following fields :
---------------------------------------------------
geonameid         : integer id of record in geonames database
name              : name of geographical point (utf8) varchar(200)
asciiname         : name of geographical point in plain ascii characters, varchar(200)
alternatenames    : alternatenames, comma separated, ascii names automatically transliterated, convenience attribute from alternatename table, varchar(10000)
latitude          : latitude in decimal degrees (wgs84)
longitude         : longitude in decimal degrees (wgs84)
feature class     : see http://www.geonames.org/export/codes.html, char(1)
feature code      : see http://www.geonames.org/export/codes.html, varchar(10)
country code      : ISO-3166 2-letter country code, 2 characters
cc2               : alternate country codes, comma separated, ISO-3166 2-letter country code, 200 characters
admin1 code       : fipscode (subject to change to iso code), see exceptions below, see file admin1Codes.txt for display names of this code; varchar(20)
admin2 code       : code for the second administrative division, a county in the US, see file admin2Codes.txt; varchar(80) 
admin3 code       : code for third level administrative division, varchar(20)
admin4 code       : code for fourth level administrative division, varchar(20)
population        : bigint (8 byte int) 
elevation         : in meters, integer
dem               : digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. srtm processed by cgiar/ciat.
timezone          : the iana timezone id (see file timeZone.txt) varchar(40)
modification date : date of last modification in yyyy-MM-dd format
```

## Conversion 

```python
import pandas as pd
df = pd.read_csv('allCountries.txt', sep='\t', header=None, low_memory=False)
df.to_parquet('geonames_23_03_2025.parquet')
```

## Quality 

Be warned, the quality - especially for other languages than English - might sometimes be low. Sometimes there are duplicates and very confusing entries.

## Query with DuckDB

### Example query for `München`

```python
import duckdb
import geopandas
df = duckdb.sql(f"SELECT * FROM 'geonames_23_03_2025.parquet' WHERE \"1\" = 'München'  ").df() # you can add the country code to the query with AND \"8\" = 'GB'
gdf = geopandas.GeoDataFrame(    df,    geometry=geopandas.points_from_xy(x=df["5"], y=df["4"]))
gdf
```

| ID      | Name    | Alternate Name | Additional Info | Latitude  | Longitude | Feature Class | Feature Code | Country Code | Admin Code | Admin1 | Admin2 | Admin3  | Admin4    | Population | Elevation | Time Zone       | Last Update  | Geometry               |
|---------|---------|---------------|----------------|-----------|-----------|---------------|--------------|--------------|------------|--------|--------|---------|----------|------------|-----------|---------------|--------------|------------------------|
| 2867711 | München | Muenchen      | None           | 51.60698  | 13.31243  | P             | PPL          | DE           | None       | 11     | 00     | 12062   | 12062500 | 0          | NaN       | Europe/Berlin  | 2015-09-04   | POINT (13.312 51.607)  |
| 2867713 | München | Munchen       | None           | 48.69668  | 13.46314  | P             | PPL          | DE           | None       | 02     | 092    | 09275   | 09275128 | 0          | NaN       | Europe/Berlin  | 2013-02-19   | POINT (13.463 48.697)  |

Note that using the German spelling the query yields nonsense. Instead, query in English: 

```python
import duckdb
import geopandas
df = duckdb.sql(f"SELECT * FROM 'geonames_23_03_2025.parquet' WHERE \"1\" = 'Munich' AND \"8\" = 'DE'  ").df() # you can add the country code to the query with AND \"8\" = 'GB'
gdf = geopandas.GeoDataFrame(    df,    geometry=geopandas.points_from_xy(x=df["5"], y=df["4"]))
gdf
```

| ID      | Name   | Official Name | Alternate Names | Latitude  | Longitude | Feature Class | Feature Code | Country Code | Admin Code | Admin1 | Admin2 | Admin3  | Admin4    | Population | Elevation | Time Zone      | Last Update  | Geometry               |
|---------|--------|--------------|-----------------|-----------|-----------|---------------|--------------|--------------|------------|--------|--------|---------|----------|------------|-----------|--------------|--------------|------------------------|
| 2867714 | Munich | Munich       | Lungsod ng Muenchen, Lungsod ng München, MUC, Min... | 48.13743  | 11.57549  | P             | PPLA         | DE           | None       | 02     | 091    | 09162   | 09162000 | 1260391     | NaN       | 524          | Europe/Berlin | 2023-10-12   | POINT (11.575 48.137)  |

This query returns only one entry with a city centroid, just as expected.

## Visualize with deck.gl 

```python
import pydeck as pdk
import pandas as pd
import numpy as np 

# load some gdf
gdf["coordinates"] = gdf.apply(lambda x: [x.geometry.x, x.geometry.y], axis=1)

# Define a layer to display on a map
layer = pdk.Layer(
    "ScatterplotLayer",
                # coordinates is an array 
    gdf[["1","coordinates"]], # super important! only pass what's needed. If geometry column from geopandas is passed, error!
    pickable=True,
    opacity=0.99,
    stroked=True,
    filled=True,
    radius_scale=6,
    radius_min_pixels=1,
    radius_max_pixels=100,
    line_width_min_pixels=1,
    get_position="coordinates",
    get_radius="1000",
    get_fill_color=[255, 140, 0],
    get_line_color=[255, 140, 0],
)

# Set the viewport location
view_state = pdk.ViewState(latitude=np.mean(gdf.geometry.y), longitude=np.mean(gdf.geometry.x), zoom=12, bearing=0, pitch=0)

# Render
r = pdk.Deck(layers=[layer], initial_view_state=view_state,height=2000, tooltip={"text": "{1}"})
r.to_html("scatterplot_layer.html")
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c4da8719565937fb268b32/sxpg_RYZLBmdHN1kQ_9K-.png)

## Sample 

| ID        | Name                          | Official Name                      | Alternate Names                                  | Latitude  | Longitude | Feature Class | Feature Code | Country Code | Admin Code | Admin1 | Admin2 | Admin3 | Admin4 | Population | Elevation | Time Zone      | Last Update  |
|----------|-------------------------------|------------------------------------|-------------------------------------------------|-----------|-----------|---------------|--------------|--------------|------------|--------|--------|--------|--------|------------|-----------|---------------|--------------|
| 2994701  | Roc Meler                     | Roc Meler                         | Roc Mele, Roc Meler, Roc Mélé                   | 42.58765  | 1.74180   | T             | PK           | AD           | AD,FR      | 02     | NaN    | NaN    | NaN    | 0          | 2811      | Europe/Andorra | 2023-10-03   |
| 3017832  | Pic de les Abelletes          | Pic de les Abelletes              | Pic de la Font-Negre, Pic de la Font-Nègre, Pic ... | 42.52535  | 1.73343   | T             | PK           | AD           | FR         | A9     | 66     | 663    | 66146  | 0          | NaN       | 2411          | Europe/Andorra | 2014-11-05   |
| 3017833  | Estany de les Abelletes       | Estany de les Abelletes           | Estany de les Abelletes, Etang de Font-Negre, Ét... | 42.52915  | 1.73362   | H             | LK           | AD           | FR         | A9     | NaN    | NaN    | NaN    | 0          | NaN       | 2260          | Europe/Andorra | 2014-11-05   |
| 3023203  | Port Vieux de la Coume d’Ose  | Port Vieux de la Coume d'Ose      | Port Vieux de Coume d'Ose, Port Vieux de Coume ... | 42.62568  | 1.61823   | T             | PASS         | AD           | NaN        | 00     | NaN    | NaN    | NaN    | 0          | NaN       | 2687          | Europe/Andorra | 2014-11-05   |
| 3029315  | Port de la Cabanette          | Port de la Cabanette              | Port de la Cabanette, Porteille de la Cabanette | 42.60000  | 1.73333   | T             | PASS         | AD           | AD,FR      | B3     | 09     | 091    | 09139  | 0          | NaN       | 2379          | Europe/Andorra | 2014-11-05   |
| ...      | ...                           | ...                                | ...                                             | ...       | ...       | ...           | ...          | ...          | ...        | ...    | ...    | ...    | ...    | ...        | ...       | ...           | ...          |
| 13216940 | GLORIA Seamount               | GLORIA Seamount                   | NaN                                             | 45.03000  | -15.53500 | U             | SMU          | NaN          | NaN        | 00     | NaN    | NaN    | NaN    | 0          | NaN       | -9999         | NaN          | 2025-02-19   |
| 13216941 | Yubko Hills                   | Yubko Hills                       | NaN                                             | 13.01820  | -134.41130 | U             | HLSU         | NaN          | NaN        | 00     | NaN    | NaN    | NaN    | 0          | NaN       | -9999         | NaN          | 2025-02-19   |
| 13216942 | Maguari Seamount              | Maguari Seamount                  | NaN                                             | 0.68832   | -44.31278 | U             | SMU          | NaN          | NaN        | 00     | NaN    | NaN    | NaN    | 0          | NaN       | -9999         | NaN          | 2025-02-19   |
| 13216943 | Quintana Seamount             | Quintana Seamount                 | NaN                                             | -32.74950 | -38.67696 | U             | SMU          | NaN          | NaN        | 00     | NaN    | NaN    | NaN    | 0          | NaN       | -9999         | NaN          | 2025-02-19   |
| 13216944 | Satander Guyot                | Satander Guyot                    | NaN                                             | -1.92806  | -37.82161 | U             | DEPU         | NaN          | NaN        | 00     | NaN    | NaN    | NaN    | 0          | NaN       | -9999         | NaN          | 2025-02-19   |

13111559 rows × 19 columns