response
stringlengths 1
33.1k
| instruction
stringlengths 22
582k
|
---|---|
Configure the common library for a specific branch.
>>> set_swift_branch('main') | def set_swift_branch(branch):
"""Configure the common library for a specific branch.
>>> set_swift_branch('main')
"""
global swift_branch
swift_branch = branch |
Override the default execute timeout | def set_default_execute_timeout(timeout):
"""Override the default execute timeout"""
global DEFAULT_EXECUTE_TIMEOUT
DEFAULT_EXECUTE_TIMEOUT = timeout |
Clone Swift and dependencies using update-checkout. | def clone_repos(swift_branch, workspace='.'):
"""Clone Swift and dependencies using update-checkout."""
workspace = private_workspace(workspace)
swift = os.path.join(workspace, "swift")
# Clone swift checkout
if not os.path.exists(swift):
git_clone('[email protected]:apple/swift.git', swift, tree=swift_branch)
# Update checkout
checkout_cmd = [os.path.join(swift, 'utils/update-checkout')]
checkout_cmd += [
"--clone-with-ssh",
"--reset-to-remote",
"--scheme",
swift_branch,
'-j',
str(multiprocessing.cpu_count())
]
check_execute(checkout_cmd, timeout=60*30) |
A callback function that raises an alarm. | def alarm_handler(signum, frame):
"""A callback function that raises an alarm."""
raise Alarm |
Return a valid shell string from a given command list.
>>> shell_join(['echo', 'Hello, World!'])
"echo 'Hello, World!'" | def shell_join(command):
"""Return a valid shell string from a given command list.
>>> shell_join(['echo', 'Hello, World!'])
"echo 'Hello, World!'"
"""
return ' '.join([pipes.quote(x) for x in command]) |
Print a string to stderr and flush. | def debug_print(s, stderr=sys.stderr):
"""Print a string to stderr and flush."""
print(s, file=stderr)
stderr.flush() |
Print a command list as a shell string to stderr and flush. | def shell_debug_print(command, stderr=sys.stderr):
"""Print a command list as a shell string to stderr and flush."""
debug_print('$ ' + shell_join(command), stderr=stderr) |
Execute a given command with an optional timeout in seconds.
>>> execute(['echo', 'Hello, World!'])
0 | def execute(command, timeout=None,
stdout=sys.stdout, stderr=sys.stderr,
**kwargs):
"""Execute a given command with an optional timeout in seconds.
>>> execute(['echo', 'Hello, World!'])
0
"""
if timeout is None:
timeout = DEFAULT_EXECUTE_TIMEOUT
shell_debug_print(command, stderr=stderr)
returncode = 124 # timeout return code
try:
with Timeout(timeout):
returncode = subprocess.call(
command, stdout=stdout, stderr=stderr, **kwargs
)
except Alarm:
debug_print(command[0] + ': Timed out', stderr=stderr)
return returncode |
Check execute a given command and return its output.
>>> check_execute_output(['echo', 'Hello, World!'])
'Hello, World!\n' | def check_execute_output(command, timeout=None,
stdout=sys.stdout, stderr=sys.stderr, **kwargs):
"""Check execute a given command and return its output.
>>> check_execute_output(['echo', 'Hello, World!'])
'Hello, World!\\n'
"""
if timeout is None:
timeout = DEFAULT_EXECUTE_TIMEOUT
shell_debug_print(command, stderr=stderr)
try:
with Timeout(timeout):
output = subprocess.check_output(
command, stderr=stderr, **kwargs
).decode('utf-8')
except subprocess.CalledProcessError as e:
debug_print(e, stderr=stderr)
raise
return output |
Check execute a given command.
>>> check_execute(['echo', 'Hello, World!'])
0 | def check_execute(command, timeout=None,
sandbox_profile=None, max_retries=1,
stdout=sys.stdout, stderr=sys.stderr,
**kwargs):
"""Check execute a given command.
>>> check_execute(['echo', 'Hello, World!'])
0
"""
if timeout is None:
timeout = DEFAULT_EXECUTE_TIMEOUT
if sandbox_profile:
if platform.system() == 'Darwin':
command = ['sandbox-exec', '-f', sandbox_profile] + command
elif platform.system() == 'Linux':
# TODO: remove explicit dns after Firejail bug is resolved
command = ['firejail', '--quiet', '--profile=%s' % sandbox_profile,
'--private=.', '--overlay-tmpfs',
'--dns=8.8.8.8'] + command
returncode = -1
for retry in range(max_retries):
returncode = execute(command, timeout=timeout,
stdout=stdout, stderr=stderr,
**kwargs)
if returncode == 0:
return returncode
raise ExecuteCommandFailure(command, returncode) |
Perform a git submodule update operation on a path. | def git_submodule_update(path, stdout=sys.stdout, stderr=sys.stderr):
"""Perform a git submodule update operation on a path."""
command = ['git', '-C', path, 'submodule', 'update', '--init',
'--recursive']
return check_execute(command, stdout=stdout, stderr=stderr) |
Perform a git clean operation on a path. | def git_clean(path, stdout=sys.stdout, stderr=sys.stderr):
"""Perform a git clean operation on a path."""
command = ['git', '-C', path, 'clean', '-ffdx']
if platform.system() == 'Darwin':
check_execute(['chflags', '-R', 'nouchg', path], stdout=stdout, stderr=stderr)
return check_execute(command, stdout=stdout, stderr=stderr) |
Perform a git pull operation on a path. | def git_pull(path, stdout=sys.stdout, stderr=sys.stderr):
"""Perform a git pull operation on a path."""
command = ['git', '-C', path, 'pull']
return check_execute(command, stdout=stdout, stderr=stderr) |
Perform a git clone operation on a url to a path. | def git_clone(url, path, tree=None, recursive=True,
stdout=sys.stdout, stderr=sys.stderr):
"""Perform a git clone operation on a url to a path."""
returncodes = []
command = ['git', 'clone', url, path]
returncodes.append(check_execute(command, stdout=stdout, stderr=stderr))
if tree:
returncodes.append(git_checkout(tree, path,
force=True,
stdout=stdout, stderr=stderr))
if recursive:
returncodes.append(git_submodule_update(path,
stdout=stdout, stderr=stderr))
return 0 if all(rc == 0 for rc in returncodes) else 1 |
Perform a git checkout operation on a path. | def git_checkout(tree, path, force=False,
stdout=sys.stdout, stderr=sys.stderr):
"""Perform a git checkout operation on a path."""
command = ['git', '-C', path, 'checkout', tree]
if force:
command.insert(4, '-f')
return check_execute(command, stdout=stdout, stderr=stderr) |
Return the current sha of a Git repo at a path. | def git_sha(path, stdout=sys.stdout, stderr=sys.stderr):
"""Return the current sha of a Git repo at a path."""
command = ['git', '-C', path, 'rev-parse', 'HEAD']
return check_execute_output(command, stdout=stdout, stderr=stderr).strip() |
Update a repository to a given sha if necessary. | def git_update(url, configured_sha, path,
incremental=False,
stdout=sys.stdout, stderr=sys.stderr):
"""Update a repository to a given sha if necessary."""
returncodes = []
try:
if not incremental:
git_clean(path, stdout=stdout, stderr=stderr)
current_sha = git_sha(path, stdout=stdout, stderr=stderr)
debug_print('current_sha: ' + current_sha, stderr=stderr)
debug_print('configured_sha: ' + configured_sha, stderr=stderr)
if current_sha != configured_sha:
debug_print('current_sha != configured_sha', stderr=stderr)
command_fetch = ['git', '-C', path, 'fetch']
returncodes.append(check_execute(command_fetch,
stdout=stdout, stderr=stderr))
returncodes.append(git_checkout(configured_sha, path,
force=True,
stdout=stdout, stderr=stderr))
returncodes.append(git_submodule_update(
path, stdout=stdout, stderr=stderr
))
else:
debug_print('current_sha == configured_sha', stderr=stderr)
returncodes.append(git_checkout(configured_sha, path,
force=True,
stdout=stdout, stderr=stderr))
except ExecuteCommandFailure:
debug_print("warning: Unable to update. Falling back to a clone.",
stderr=stderr)
check_execute(['rm', '-rf', path], stdout=stdout, stderr=stderr)
return git_clone(url, path, tree=configured_sha,
stdout=stdout, stderr=stderr)
return 0 if all(rc == 0 for rc in returncodes) else 1 |
Return a path relative to a private workspace. | def private_workspace(path):
"""Return a path relative to a private workspace."""
if 'WORKSPACE' in os.environ:
workspace = os.environ['WORKSPACE']
return os.path.abspath(os.path.join(
os.path.dirname(os.path.dirname(workspace)),
'workspace-private',
os.path.basename(workspace), path
))
else:
return os.path.abspath(path) |
Configure the library for a specific branch.
>>> set_swift_branch('main') | def set_swift_branch(branch):
"""Configure the library for a specific branch.
>>> set_swift_branch('main')
"""
global swift_branch
swift_branch = branch
common.set_swift_branch(branch) |
Return the corresponding stdlib name for a destination. | def get_stdlib_platform_path(swiftc, destination):
"""Return the corresponding stdlib name for a destination."""
platform_stdlib_path = {
'macOS': 'macosx',
'iOS': 'iphonesimulator',
'tvOS': 'appletvsimulator',
'watchOS': 'watchsimulator',
}
stdlib_dir = None
for platform_key in platform_stdlib_path:
if platform_key in destination:
stdlib_dir = platform_stdlib_path[platform_key]
break
assert stdlib_dir is not None
stdlib_path = os.path.join(os.path.dirname(os.path.dirname(swiftc)),
'lib/swift/' + stdlib_dir)
return stdlib_path |
Clean a Swift package manager project. | def clean_swift_package(path, swiftc, sandbox_profile,
stdout=sys.stdout, stderr=sys.stderr):
"""Clean a Swift package manager project."""
swift = os.path.join(os.path.dirname(swiftc), 'swift')
if swift_branch == 'swift-3.0-branch':
command = [swift, 'build', '-C', path, '--clean']
else:
command = [swift, 'package', '--package-path', path, 'clean']
if (swift_branch not in ['swift-3.0-branch',
'swift-3.1-branch']):
command.insert(2, '--disable-sandbox')
return common.check_execute(command, sandbox_profile=sandbox_profile,
stdout=stdout, stderr=stderr) |
Build a Swift package manager project. | def build_swift_package(path, swiftc, swift_version, configuration,
sandbox_profile, stdout=sys.stdout, stderr=sys.stderr,
added_swift_flags=None,
incremental=False,
override_swift_exec=None,
build_tests=False):
"""Build a Swift package manager project."""
swift = os.path.join(os.path.dirname(swiftc), 'swift')
if not incremental:
clean_swift_package(path, swiftc, sandbox_profile,
stdout=stdout, stderr=stderr)
env = os.environ.copy()
env['DYLD_LIBRARY_PATH'] = get_stdlib_platform_path(swiftc, 'macOS')
env['SWIFT_EXEC'] = override_swift_exec or swiftc
command = [swift, 'build', '--package-path', path, '--verbose',
'--configuration', configuration]
if (swift_branch not in ['swift-3.0-branch',
'swift-3.1-branch']):
command.insert(2, '--disable-sandbox')
if build_tests:
command += ['--build-tests']
if sys.platform == "linux":
command += ['--enable-test-discovery']
added_swift_flags += ' -enable-testing'
if swift_version:
if '.' not in swift_version:
swift_version += '.0'
major, minor = swift_version.split('.', 1)
# Need to use float for minor version parsing
# because it's possible that it would be specified
# as e.g. `4.0.3`
if int(major) == 4 and float(minor) == 2.0:
command += ['-Xswiftc', '-swift-version', '-Xswiftc', swift_version]
else:
command += ['-Xswiftc', '-swift-version', '-Xswiftc', major]
if added_swift_flags is not None:
for flag in added_swift_flags.split():
command += ["-Xswiftc", flag]
return common.check_execute(command, timeout=3600,
sandbox_profile=sandbox_profile,
stdout=stdout, stderr=stderr,
env=env) |
Test a Swift package manager project. | def test_swift_package(path, swiftc, sandbox_profile,
stdout=sys.stdout, stderr=sys.stderr,
added_swift_flags=None,
incremental=False,
override_swift_exec=None):
"""Test a Swift package manager project."""
swift = os.path.join(os.path.dirname(swiftc), 'swift')
if not incremental:
clean_swift_package(path, swiftc, sandbox_profile)
env = os.environ
env['SWIFT_EXEC'] = override_swift_exec or swiftc
command = [swift, 'test', '-C', path, '--verbose']
if added_swift_flags is not None:
for flag in added_swift_flags.split():
command += ["-Xswiftc", flag]
if (swift_branch not in ['swift-3.0-branch',
'swift-3.1-branch']):
command.insert(2, '--disable-sandbox')
return common.check_execute(command, timeout=3600,
sandbox_profile=sandbox_profile,
stdout=stdout, stderr=stderr,
env=env) |
Checkout an indexed repository. | def checkout(root_path, repo, commit):
"""Checkout an indexed repository."""
path = os.path.join(root_path, repo['path'])
if repo['repository'] == 'Git':
if os.path.exists(path):
return common.git_update(repo['url'], commit, path)
else:
return common.git_clone(repo['url'], path, tree=commit)
raise common.Unreachable('Unsupported repository: %s' %
repo['repository']) |
Strip resource build phases from a given project. | def strip_resource_phases(repo_path, stdout=sys.stdout, stderr=sys.stderr):
"""Strip resource build phases from a given project."""
command = ['perl', '-i', '-00ne',
'print unless /Begin PBXResourcesBuildPhase/']
for root, dirs, files in os.walk(repo_path):
for filename in files:
if filename == 'project.pbxproj':
pbxfile = os.path.join(root, filename)
common.check_execute(command + [pbxfile],
stdout=stdout, stderr=stderr) |
Call functions corresponding to actions. | def dispatch(root_path, repo, action, swiftc, swift_version,
sandbox_profile_xcodebuild, sandbox_profile_package,
added_swift_flags, added_xcodebuild_flags,
build_config, should_strip_resource_phases=False,
stdout=sys.stdout, stderr=sys.stderr,
incremental=False, time_reporter = None, override_swift_exec=None):
"""Call functions corresponding to actions."""
substitutions = action.copy()
substitutions.update(repo)
if added_swift_flags:
# Support added swift flags specific to the current repository and
# action by passing their fields as keyword arguments to format, e.g.
# so that {path} in '-index-store-path /tmp/index/{path}' is replaced
# with the value of repo's path field.
added_swift_flags = added_swift_flags.format(**substitutions)
if added_xcodebuild_flags:
added_xcodebuild_flags = \
shlex.split(added_xcodebuild_flags.format(**substitutions))
else:
added_xcodebuild_flags = []
if action['action'] == 'BuildSwiftPackage':
if not build_config:
build_config = action['configuration']
build_tests = (action.get('build_tests') == 'true' and build_config == 'debug') \
or (action.get('build_tests_release') and build_config == 'release')
return build_swift_package(os.path.join(root_path, repo['path']),
swiftc, swift_version,
build_config,
sandbox_profile_package,
stdout=stdout, stderr=stderr,
added_swift_flags=added_swift_flags,
incremental=incremental,
override_swift_exec=override_swift_exec,
build_tests=build_tests)
elif action['action'] == 'TestSwiftPackage':
return test_swift_package(os.path.join(root_path, repo['path']),
swiftc,
sandbox_profile_package,
stdout=stdout, stderr=stderr,
added_swift_flags=added_swift_flags,
incremental=incremental,
override_swift_exec=override_swift_exec)
elif re.match(r'^(Build|Test)Xcode(Workspace|Project)(Scheme|Target)$',
action['action']):
match = re.match(
r'^(Build|Test)Xcode(Workspace|Project)(Scheme|Target)$',
action['action']
)
initial_xcodebuild_flags = ['SWIFT_EXEC=%s' % (override_swift_exec or swiftc),
'-IDEPackageSupportDisableManifestSandbox=YES']
if build_config == 'debug':
initial_xcodebuild_flags += ['-configuration', 'Debug']
elif build_config == 'release':
initial_xcodebuild_flags += ['-configuration', 'Release']
elif 'configuration' in action:
initial_xcodebuild_flags += ['-configuration',
action['configuration']]
build_env = {}
if 'environment' in action:
build_env = action['environment']
pretargets = []
if 'pretargets' in action:
pretargets = action['pretargets']
other_swift_flags = []
if swift_version:
if '.' not in swift_version:
swift_version += '.0'
major, minor = swift_version.split('.', 1)
# Need to use float for minor version parsing
# because it's possible that it would be specified
# as e.g. `4.0.3`
if int(major) == 4 and float(minor) == 2.0:
other_swift_flags += ['-swift-version', swift_version]
initial_xcodebuild_flags += ['SWIFT_VERSION=%s' % swift_version]
else:
other_swift_flags += ['-swift-version', major]
initial_xcodebuild_flags += ['SWIFT_VERSION=%s' % major]
if added_swift_flags:
other_swift_flags.append(added_swift_flags)
if other_swift_flags:
other_swift_flags = ['$(OTHER_SWIFT_FLAGS)'] + other_swift_flags
initial_xcodebuild_flags += ['OTHER_SWIFT_FLAGS=%s' % ' '.join(other_swift_flags)]
is_workspace = match.group(2).lower() == 'workspace'
project_path = os.path.join(root_path, repo['path'],
action[match.group(2).lower()])
has_scheme = match.group(3).lower() == 'scheme'
clean_build = True
if 'clean_build' in action:
clean_build = action['clean_build']
xcode_target = \
XcodeTarget(swiftc,
project_path,
action[match.group(3).lower()],
action['destination'],
pretargets,
build_env,
initial_xcodebuild_flags + added_xcodebuild_flags,
is_workspace,
has_scheme,
clean_build,
stdout,
stderr,
action.get("external_build_folder", False))
if should_strip_resource_phases:
strip_resource_phases(os.path.join(root_path, repo['path']),
stdout=stdout, stderr=stderr)
if match.group(1) == 'Build':
return xcode_target.build(sandbox_profile_xcodebuild,
stdout=stdout, stderr=stderr,
incremental=incremental,
time_reporter=time_reporter)
else:
return xcode_target.test(sandbox_profile_xcodebuild,
stdout=stdout, stderr=stderr,
incremental=incremental)
else:
raise common.Unimplemented("Unknown action: %s" % action['action']) |
Return whether the specified swift version/platform/branch/configuration/job is xfailed. | def is_xfailed(xfail_args, compatible_version, platform, swift_branch, build_config, job_type):
"""Return whether the specified swift version/platform/branch/configuration/job is xfailed."""
if isinstance(xfail_args, dict):
xfail_args = [xfail_args]
def is_or_contains(spec, arg):
return arg in spec if isinstance(spec, list) else spec == arg
def matches(spec):
issue = spec['issue'].split()[0]
current = {
'compatibility': compatible_version,
'branch': swift_branch,
'platform': platform,
'job': job_type,
}
if 'configuration' in spec:
if build_config is None:
raise common.Unreachable("'xfail' entry contains 'configuration' "
"but none supplied via '--build-config' or the containing "
"action's 'configuration' field.")
current['configuration'] = build_config.lower()
for key, value in current.items():
if key in spec and not is_or_contains(spec[key], value):
return None
return issue
for spec in xfail_args:
issue = matches(spec)
if issue is not None:
return issue
return None |
Convert an argument string into a boolean. | def str2bool(s):
"""Convert an argument string into a boolean."""
if s.lower() == 'true':
return True
elif s.lower() == 'false':
return False
else:
raise argparse.ArgumentTypeError('true/false boolean value expected.') |
Add common arguments to parser. | def add_arguments(parser):
"""Add common arguments to parser."""
parser.register('type', 'bool', str2bool)
parser.add_argument('--verbose',
action='store_true')
# TODO: remove Linux sandbox hack
if platform.system() == 'Darwin':
parser.add_argument('--swiftc',
metavar='PATH',
help='swiftc executable',
required=True,
type=os.path.abspath)
parser.add_argument('--override-swift-exec',
metavar='PATH',
help='override the SWIFT_EXEC that is used to build the projects',
type=os.path.abspath)
else:
parser.add_argument('--swiftc',
metavar='PATH',
help='swiftc executable',
required=True)
parser.add_argument('--override-swift-exec',
metavar='PATH',
help='override the SWIFT_EXEC that is used to build the projects')
parser.add_argument('--projects',
metavar='PATH',
required=True,
help='JSON project file',
type=os.path.abspath)
parser.add_argument('--swift-version',
metavar='VERS',
help='Swift version mode (default: None)')
parser.add_argument('--include-repos',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to include a repo '
'(example: \'path == "Alamofire"\')')
parser.add_argument('--exclude-repos',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to exclude a repo '
'(example: \'path == "Alamofire"\')')
parser.add_argument('--include-versions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to include a Swift version '
'(example: '
'\'version == "3.0"\')')
parser.add_argument('--exclude-versions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to exclude a Swift version '
'(example: '
'\'version == "3.0"\')')
parser.add_argument('--include-actions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to include an action '
'(example: '
'\'action == "BuildXcodeWorkspaceScheme"\')')
parser.add_argument('--exclude-actions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to exclude an action '
'(example: '
'\'action == "BuildXcodeWorkspaceScheme"\')')
parser.add_argument('--swift-branch',
metavar='BRANCH',
help='Swift branch configuration to use',
default='main')
parser.add_argument('--sandbox-profile-xcodebuild',
metavar='FILE',
help='sandbox xcodebuild build and test operations '
'with profile',
type=os.path.abspath)
parser.add_argument('--sandbox-profile-package',
metavar='FILE',
help='sandbox package build and test operations with '
'profile',
type=os.path.abspath)
parser.add_argument("--test-incremental",
help='test incremental-mode over multiple commits',
action='store_true')
parser.add_argument("--add-swift-flags",
metavar="FLAGS",
help='add flags to each Swift invocation (note: field '
'names from projects.json enclosed in {} will be '
'replaced with their value)',
default='')
parser.add_argument("--add-xcodebuild-flags",
metavar="FLAGS",
help='add flags to each xcodebuild invocation (note: field '
'names from projects.json enclosed in {} will be '
'replaced with their value)',
default='')
parser.add_argument("--skip-clean",
help='skip all git and build clean steps before '
'building projects',
action='store_true'),
parser.add_argument("--build-config",
metavar="NAME",
choices=['debug', 'release'],
dest='build_config',
help='specify "debug" or "release" to override '
'the build configuration in the projects.json file')
parser.add_argument("--strip-resource-phases",
help='strip all resource phases from project file '
'before building (default: true)',
metavar='BOOL',
type='bool',
nargs='?',
const=True,
default=True)
parser.add_argument("--project-cache-path",
help='Path of the dir where all the project binaries will be placed',
metavar='PATH',
type=os.path.abspath,
default='project_cache')
parser.add_argument("--report-time-path",
help='export time for building each xcode build target to the specified json file',
type=os.path.abspath)
parser.add_argument("--clang",
help='clang executable to build Xcode projects',
type=os.path.abspath)
parser.add_argument("--job-type",
help="The type of job to run. This influences which projects are XFailed, for example the stress tester tracks its XFails under a different job type. Defaults to 'source-compat'.",
default='source-compat')
parser.add_argument('--process-count',
type=int,
help='Number of parallel process to spawn when building projects',
default=multiprocessing.cpu_count())
parser.add_argument('--junit',
action='store_true',
help='Write a junit.xml file containing the project build results') |
Add common arguments to parser. | def add_minimal_arguments(parser):
"""Add common arguments to parser."""
parser.add_argument('--verbose',
action='store_true')
parser.add_argument('--projects',
metavar='PATH',
required=True,
help='JSON project file',
type=os.path.abspath)
parser.add_argument('--include-repos',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to include a repo '
'(example: \'path == "Alamofire"\')')
parser.add_argument('--exclude-repos',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to exclude a repo '
'(example: \'path == "Alamofire"\')')
parser.add_argument('--include-versions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to include a Swift version '
'(example: '
'\'version == "3.0"\')')
parser.add_argument('--exclude-versions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to exclude a Swift version '
'(example: '
'\'version == "3.0"\')')
parser.add_argument('--include-actions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to include an action '
'(example: '
'\'action == "BuildXcodeWorkspaceScheme"\')')
parser.add_argument('--exclude-actions',
metavar='PREDICATE',
default=[],
action='append',
help='a Python predicate to determine '
'whether to exclude an action '
'(example: '
'\'action == "BuildXcodeWorkspaceScheme"\')')
parser.add_argument('--swift-branch',
metavar='BRANCH',
help='Swift branch configuration to use',
default='main') |
Evaluate predicate in context of index element fields. | def evaluate_predicate(element, predicate):
"""Evaluate predicate in context of index element fields."""
# pylint: disable=I0011,W0122,W0123
for key in element:
if isinstance(element[key], str):
exec(key + ' = """' + element[key] + '"""')
return eval(predicate) |
Return whether an index element should be included. | def included_element(include_predicates, exclude_predicates, element):
"""Return whether an index element should be included."""
return (not any(evaluate_predicate(element, ep)
for ep in exclude_predicates) and
(include_predicates == [] or
any(evaluate_predicate(element, ip)
for ip in include_predicates))) |
Return first value in dictionary by iterating through keys | def dict_get(dictionary, *args, **kwargs):
"""Return first value in dictionary by iterating through keys"""
for key in args:
try:
return dictionary[key]
except KeyError:
pass
if 'default' in kwargs:
return kwargs['default']
else:
raise KeyError |
Return parsed command line arguments. | def parse_args():
"""Return parsed command line arguments."""
parser = argparse.ArgumentParser()
project.add_arguments(parser)
parser.add_argument('--only-latest-versions', action='store_true')
parser.add_argument('--default-timeout', type=int, help="override the default execute timeout (seconds)")
return parser.parse_args() |
Execute specified indexed project actions. | def main():
"""Execute specified indexed project actions."""
args = parse_args()
if args.default_timeout:
common.set_default_execute_timeout(args.default_timeout)
# DISABLED DUE TO: rdar://59302454.
# To track removing this line: rdar://59302467.
xcodebuild_flags = args.add_xcodebuild_flags
xcodebuild_flags += (' ' if xcodebuild_flags else '') + 'DEBUG_INFORMATION_FORMAT=dwarf'
# Use clang for building xcode projects.
if args.clang:
xcodebuild_flags += ' CC=%s' % args.clang
swift_flags = args.add_swift_flags
time_reporter = None
if args.report_time_path:
time_reporter = project.TimeReporter(args.report_time_path)
with open(args.projects) as projects:
index = json.loads(projects.read())
result = project.ProjectListBuilder(
args.include_repos,
args.exclude_repos,
args.verbose,
args.process_count,
project.ProjectBuilder.factory(
args.include_versions,
args.exclude_versions,
args.verbose,
project.VersionBuilder.factory(
args.include_actions,
args.exclude_actions,
args.verbose,
project.CompatActionBuilder.factory(
args.swiftc,
args.swift_version,
args.swift_branch,
args.job_type,
args.sandbox_profile_xcodebuild,
args.sandbox_profile_package,
swift_flags,
xcodebuild_flags,
args.skip_clean,
args.build_config,
args.strip_resource_phases,
args.only_latest_versions,
args.project_cache_path,
time_reporter,
args.override_swift_exec
),
),
),
index
).build()
common.debug_print(str(result))
if args.junit:
with open('results.xml', 'w') as results:
results.write(result.xml_string())
return 0 if result.result in [project.ResultEnum.PASS,
project.ResultEnum.XFAIL] else 1 |
Return text stripped of trailing whitespace. | def strip_trailing_whitespace(text):
"""Return text stripped of trailing whitespace."""
return re.sub(r'\s+$', '', text, flags=re.M) |
Return parsed command line arguments. | def parse_args():
"""Return parsed command line arguments."""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"project_index",
help="a project index file to check (e.g. projects.json)",
type=os.path.abspath
)
return parser.parse_args() |
Get a yacs CfgNode object with default values. | def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
update_config(config, args)
return config |
Build optimizer, set weight decay of normalization to 0 by default. | def build_optimizer(config, model, simmim=False, is_pretrain=False):
"""
Build optimizer, set weight decay of normalization to 0 by default.
"""
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
if simmim:
if is_pretrain:
parameters = get_pretrain_param_groups(model, skip, skip_keywords)
else:
depths = config.MODEL.SWIN.DEPTHS if config.MODEL.TYPE == 'swin' else config.MODEL.SWINV2.DEPTHS
num_layers = sum(depths)
get_layer_func = partial(get_swin_layer, num_layers=num_layers + 2, depths=depths)
scales = list(config.TRAIN.LAYER_DECAY ** i for i in reversed(range(num_layers + 2)))
parameters = get_finetune_param_groups(model, config.TRAIN.BASE_LR, config.TRAIN.WEIGHT_DECAY, get_layer_func, scales, skip, skip_keywords)
else:
parameters = set_weight_decay(model, skip, skip_keywords)
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
optimizer = None
if opt_lower == 'sgd':
optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'fused_adam':
optimizer = FusedAdam(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'fused_lamb':
optimizer = FusedLAMB(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
return optimizer |
Checks if a file is an allowed extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension | def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in extensions) |
judge if this is a zip path | def is_zip_path(img_or_path):
"""judge if this is a zip path"""
return '.zip@' in img_or_path |
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C) | def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows |
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C) | def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x |
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C) | def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows |
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C) | def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x |
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C) | def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows |
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C) | def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x |
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C) | def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows |
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C) | def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x |
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C) | def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows |
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C) | def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x |
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions. | def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
Convenience routine for guessing which GPU device to run model on | def choose_torch_device() -> str:
"""Convenience routine for guessing which GPU device to run model on"""
if torch.cuda.is_available():
return "cuda"
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return "mps"
return "cpu" |
Returns an autocast compatible device from a torch device | def choose_autocast_device(device):
"""Returns an autocast compatible device from a torch device"""
device_type = device.type # this returns 'mps' on M1
# autocast only for cuda, but GTX 16xx have issues with it
if device_type == "cuda":
device_name = torch.cuda.get_device_name()
if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
return device_type, nullcontext
else:
return device_type, autocast
else:
return "cpu", nullcontext |
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient. | def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output |
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient. | def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output |
Performs all_gather operation on the provided tensors.
Graph remains connected for backward grad computation. | def all_gather_with_grad(tensors):
"""
Performs all_gather operation on the provided tensors.
Graph remains connected for backward grad computation.
"""
# Queue the gathered tensors
world_size = torch.distributed.get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
tensor_all = GatherLayer.apply(tensors)
return torch.cat(tensor_all, dim=0) |
Load weights from .npz checkpoints for official Google Brain Flax implementation | def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
"""Load weights from .npz checkpoints for official Google Brain Flax implementation"""
import numpy as np
def _n2p(w, t=True):
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
w = w.flatten()
if t:
if w.ndim == 4:
w = w.transpose([3, 2, 0, 1])
elif w.ndim == 3:
w = w.transpose([2, 0, 1])
elif w.ndim == 2:
w = w.transpose([1, 0])
return torch.from_numpy(w)
w = np.load(checkpoint_path)
if not prefix and "opt/target/embedding/kernel" in w:
prefix = "opt/target/"
if hasattr(model.patch_embed, "backbone"):
# hybrid
backbone = model.patch_embed.backbone
stem_only = not hasattr(backbone, "stem")
stem = backbone if stem_only else backbone.stem
stem.conv.weight.copy_(
adapt_input_conv(
stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])
)
)
stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
if not stem_only:
for i, stage in enumerate(backbone.stages):
for j, block in enumerate(stage.blocks):
bp = f"{prefix}block{i + 1}/unit{j + 1}/"
for r in range(3):
getattr(block, f"conv{r + 1}").weight.copy_(
_n2p(w[f"{bp}conv{r + 1}/kernel"])
)
getattr(block, f"norm{r + 1}").weight.copy_(
_n2p(w[f"{bp}gn{r + 1}/scale"])
)
getattr(block, f"norm{r + 1}").bias.copy_(
_n2p(w[f"{bp}gn{r + 1}/bias"])
)
if block.downsample is not None:
block.downsample.conv.weight.copy_(
_n2p(w[f"{bp}conv_proj/kernel"])
)
block.downsample.norm.weight.copy_(
_n2p(w[f"{bp}gn_proj/scale"])
)
block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
else:
embed_conv_w = adapt_input_conv(
model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"])
)
model.patch_embed.proj.weight.copy_(embed_conv_w)
model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
if pos_embed_w.shape != model.pos_embed.shape:
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
pos_embed_w,
model.pos_embed,
getattr(model, "num_tokens", 1),
model.patch_embed.grid_size,
)
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
for i, block in enumerate(model.blocks.children()):
block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
block.attn.qkv.weight.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T
for n in ("query", "key", "value")
]
)
)
block.attn.qkv.bias.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1)
for n in ("query", "key", "value")
]
)
)
block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
for r in range(2):
getattr(block.mlp, f"fc{r + 1}").weight.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"])
)
getattr(block.mlp, f"fc{r + 1}").bias.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"])
)
block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"])) |
Overwrite model.train with this function to make sure train/eval mode
does not change anymore. | def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self |
Overwrite model.train with this function to make sure train/eval mode
does not change anymore. | def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self |
Appends dimensions to the end of a tensor until it has target_dims dimensions.
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py | def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
return x[(...,) + (None,) * dims_to_append] |
Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A pytorch tensor. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs. | def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
condition=None,
unconditional_condition=None,
guidance_scale=1.0,
classifier_fn=None,
classifier_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A pytorch tensor. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == "discrete":
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
t_input = get_model_input_time(t_continuous)
if cond is None:
output = model(x, t_input, **model_kwargs)
else:
output = model(x, t_input, cond, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(
t_continuous
), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(
sigma_t, dims
)
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(
t_continuous
), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return -expand_dims(sigma_t, dims) * output
def cond_grad_fn(x, t_input):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
return torch.autograd.grad(log_prob.sum(), x_in)[0]
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return (
noise
- guidance_scale
* expand_dims(sigma_t, dims=cond_grad.dim())
* cond_grad
)
elif guidance_type == "classifier-free":
if guidance_scale == 1.0 or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t_continuous] * 2)
c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn |
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C]. | def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
end_idx = torch.where(
torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1
)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(
y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)
).squeeze(2)
end_y = torch.gather(
y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)
).squeeze(2)
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
return cand |
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. | def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,) * (dims - 1)] |
Zero out the parameters of a module and return it. | def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module |
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need". | def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb |
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
) | def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial**2) * c
model.total_ops += th.DoubleTensor([matmul_ops]) |
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities. | def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas) |
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing. | def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs) |
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings. | def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
else:
embedding = repeat(timesteps, "b -> b d", d=dim)
return embedding |
Zero out the parameters of a module and return it. | def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module |
Scale the parameters of a module and return it. | def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module |
Take the mean over all non-batch dimensions. | def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization. | def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(32, channels) |
Create a 1D, 2D, or 3D convolution module. | def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}") |
Create a linear module. | def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs) |
Create a 1D, 2D, or 3D average pooling module. | def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}") |
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
Compute the KL divergence between two gaussians.
Shapes are automatically broadcasted, so batches can be compared to
scalars, among other use cases. | def normal_kl(mean1, logvar1, mean2, logvar2):
"""
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
Compute the KL divergence between two gaussians.
Shapes are automatically broadcasted, so batches can be compared to
scalars, among other use cases.
"""
tensor = None
for obj in (mean1, logvar1, mean2, logvar2):
if isinstance(obj, torch.Tensor):
tensor = obj
break
assert tensor is not None, "at least one argument must be a Tensor"
# Force variances to be Tensors. Broadcasting helps convert scalars to
# Tensors, but it does not work for torch.exp().
logvar1, logvar2 = [
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
for x in (logvar1, logvar2)
]
return 0.5 * (
-1.0
+ logvar2
- logvar1
+ torch.exp(logvar1 - logvar2)
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
) |
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image | def modcrop_np(img, sf):
"""
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
"""
w, h = img.shape[:2]
im = np.copy(img)
return im[: w - w % sf, : h - h % sf, ...] |
Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper) | def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum() |
generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel | def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
"""generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(
np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]),
np.array([1.0, 0.0]),
)
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k |
shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction | def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x |
x: image, NxcxHxW
k: kernel, Nx1xhxw | def blur(x, k):
"""
x: image, NxcxHxW
k: kernel, Nx1xhxw
"""
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode="replicate")
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x |
"
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf | def gen_kernel(
k_size=np.array([15, 15]),
scale_factor=np.array([4, 4]),
min_var=0.6,
max_var=10.0,
noise_level=0,
):
""" "
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - MU
ZZ_t = ZZ.transpose(0, 1, 3, 2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel |
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py | def fspecial(filter_type, *args, **kwargs):
"""
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
"""
if filter_type == "gaussian":
return fspecial_gaussian(*args, **kwargs)
if filter_type == "laplacian":
return fspecial_laplacian(*args, **kwargs) |
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image | def bicubic_degradation(x, sf=3):
"""
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
"""
x = util.imresize_np(x, scale=1 / sf)
return x |
blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
} | def srmd_degradation(x, k, sf=3):
"""blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
"""
x = ndimage.filters.convolve(
x, np.expand_dims(k, axis=2), mode="wrap"
) # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x |
bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
} | def dpsr_degradation(x, k, sf=3):
"""bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
"""
x = bicubic_degradation(x, sf=sf)
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap")
return x |
blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image | def classical_degradation(x, k, sf=3):
"""blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
"""
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap")
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...] |
USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int): | def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
mask = mask.astype("float32")
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img |
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f"img size ({h1}X{w1}) is too small!")
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(
img,
(int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = (
shuffle_order[idx2],
shuffle_order[idx1],
)
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(
img,
(int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
else:
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve(
img, np.expand_dims(k_shifted, axis=2), mode="mirror"
)
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(
img,
(int(1 / sf * a), int(1 / sf * b)),
interpolation=random.choice([1, 2, 3]),
)
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq |
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | def degradation_bsrgan_variant(image, sf=4, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
h1, w1 = image.shape[:2]
image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
image.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(
image,
(int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = (
shuffle_order[idx2],
shuffle_order[idx1],
)
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
elif i == 1:
image = add_blur(image, sf=sf)
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(
image,
(int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
else:
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve(
image, np.expand_dims(k_shifted, axis=2), mode="mirror"
)
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(
image,
(int(1 / sf * a), int(1 / sf * b)),
interpolation=random.choice([1, 2, 3]),
)
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
example = {"image": image}
return example |
This is an extended degradation model by combining
the degradation models of BSRGAN and Real-ESRGAN
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
use_shuffle: the degradation shuffle
use_sharp: sharpening the img
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | def degradation_bsrgan_plus(
img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None
):
"""
This is an extended degradation model by combining
the degradation models of BSRGAN and Real-ESRGAN
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
use_shuffle: the degradation shuffle
use_sharp: sharpening the img
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
h1, w1 = img.shape[:2]
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f"img size ({h1}X{w1}) is too small!")
if use_sharp:
img = add_sharpening(img)
hq = img.copy()
if random.random() < shuffle_prob:
shuffle_order = random.sample(range(13), 13)
else:
shuffle_order = list(range(13))
# local shuffle for noise, JPEG is always the last one
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_resize(img, sf=sf)
elif i == 2:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 3:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 4:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 5:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
elif i == 6:
img = add_JPEG_noise(img)
elif i == 7:
img = add_blur(img, sf=sf)
elif i == 8:
img = add_resize(img, sf=sf)
elif i == 9:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 10:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 11:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 12:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
else:
print("check the shuffle!")
# resize to desired size
img = cv2.resize(
img,
(int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf, lq_patchsize)
return img, hq |
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image | def modcrop_np(img, sf):
"""
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
"""
w, h = img.shape[:2]
im = np.copy(img)
return im[: w - w % sf, : h - h % sf, ...] |
Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper) | def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum() |
generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel | def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
"""generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(
np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]),
np.array([1.0, 0.0]),
)
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k |
shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction | def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x |
x: image, NxcxHxW
k: kernel, Nx1xhxw | def blur(x, k):
"""
x: image, NxcxHxW
k: kernel, Nx1xhxw
"""
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode="replicate")
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x |
"
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf | def gen_kernel(
k_size=np.array([15, 15]),
scale_factor=np.array([4, 4]),
min_var=0.6,
max_var=10.0,
noise_level=0,
):
""" "
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - MU
ZZ_t = ZZ.transpose(0, 1, 3, 2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel |
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py | def fspecial(filter_type, *args, **kwargs):
"""
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
"""
if filter_type == "gaussian":
return fspecial_gaussian(*args, **kwargs)
if filter_type == "laplacian":
return fspecial_laplacian(*args, **kwargs) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.