response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Split a `node` using RQ (reversed QR) decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`QR = M^*` be the QR Decomposition of :math:`M^*`. This will split the network into 2 nodes. The left node's tensor will be :math:`R^*` (a lower triangular matrix) and the right node's tensor will be :math:`Q^*` (an orthonormal matrix) Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. left_name: The name of the new left node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. edge_name: The name of the new `Edge` connecting the new left and right node. If `None`, a name will be generated automatically. Returns: A tuple containing: left_node: A new node that connects to all of the `left_edges`. Its underlying tensor is :math:`R^*` right_node: A new node that connects to all of the `right_edges`. Its underlying tensor is :math:`Q^*` Raises: AttributeError: If `node` has no backend attribute
def split_node_rq( node: AbstractNode, left_edges: List[Edge], right_edges: List[Edge], left_name: Optional[Text] = None, right_name: Optional[Text] = None, edge_name: Optional[Text] = None, ) -> Tuple[AbstractNode, AbstractNode]: """Split a `node` using RQ (reversed QR) decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`QR = M^*` be the QR Decomposition of :math:`M^*`. This will split the network into 2 nodes. The left node's tensor will be :math:`R^*` (a lower triangular matrix) and the right node's tensor will be :math:`Q^*` (an orthonormal matrix) Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. left_name: The name of the new left node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. edge_name: The name of the new `Edge` connecting the new left and right node. If `None`, a name will be generated automatically. Returns: A tuple containing: left_node: A new node that connects to all of the `left_edges`. Its underlying tensor is :math:`R^*` right_node: A new node that connects to all of the `right_edges`. Its underlying tensor is :math:`Q^*` Raises: AttributeError: If `node` has no backend attribute """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) if node.axis_names and edge_name: left_axis_names = [] right_axis_names = [edge_name] for edge in left_edges: left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) for edge in right_edges: right_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) left_axis_names.append(edge_name) else: left_axis_names = None right_axis_names = None backend = node.backend transp_tensor = node.tensor_from_edge_order(left_edges + right_edges) r, q = backend.rq(transp_tensor, len(left_edges)) left_node = Node(r, name=left_name, axis_names=left_axis_names, backend=backend) left_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in left_edges ] for i, edge in enumerate(left_edges): left_node.add_edge(edge, i) edge.update_axis(left_axes_order[i], node, i, left_node) right_node = Node(q, name=right_name, axis_names=right_axis_names, backend=backend) right_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in right_edges ] for i, edge in enumerate(right_edges): # i + 1 to account for the new edge. right_node.add_edge(edge, i + 1) edge.update_axis(right_axes_order[i], node, i + 1, right_node) connect(left_node.edges[-1], right_node.edges[0], name=edge_name) node.fresh_edges(node.axis_names) return left_node, right_node
Split a node by doing a full singular value decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`U S V^* = M` be the Singular Value Decomposition of :math:`M`. The left most node will be :math:`U` tensor of the SVD, the middle node is the diagonal matrix of the singular values, ordered largest to smallest, and the right most node will be the :math:`V*` tensor of the SVD. The singular value decomposition is truncated if `max_singular_values` or `max_truncation_err` is not `None`. The truncation error is the 2-norm of the vector of truncated singular values. If only `max_truncation_err` is set, as many singular values will be truncated as possible while maintaining: `norm(truncated_singular_values) <= max_truncation_err`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If only `max_singular_values` is set, the number of singular values kept will be `min(max_singular_values, number_of_singular_values)`, so that `max(0, number_of_singular_values - max_singular_values)` are truncated. If both `max_truncation_err` and `max_singular_values` are set, `max_singular_values` takes priority: The truncation error may be larger than `max_truncation_err` if required to satisfy `max_singular_values`. Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. max_singular_values: The maximum number of singular values to keep. max_truncation_err: The maximum allowed truncation error. relative: Multiply `max_truncation_err` with the largest singular value. left_name: The name of the new left node. If None, a name will be generated automatically. middle_name: The name of the new center node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. left_edge_name: The name of the new left `Edge` connecting the new left node (:math:`U`) and the new central node (:math:`S`). If `None`, a name will be generated automatically. right_edge_name: The name of the new right `Edge` connecting the new central node (:math:`S`) and the new right node (:math:`V*`). If `None`, a name will be generated automatically. Returns: A tuple containing: left_node: A new node created that connects to all of the `left_edges`. Its underlying tensor is :math:`U` singular_values_node: A new node that has 2 edges connecting `left_node` and `right_node`. Its underlying tensor is :math:`S` right_node: A new node created that connects to all of the `right_edges`. Its underlying tensor is :math:`V^*` truncated_singular_values: The vector of truncated singular values. Raises: AttributeError: If `node` has no backend attribute
def split_node_full_svd( node: AbstractNode, left_edges: List[Edge], right_edges: List[Edge], max_singular_values: Optional[int] = None, max_truncation_err: Optional[float] = None, relative: Optional[bool] = False, left_name: Optional[Text] = None, middle_name: Optional[Text] = None, right_name: Optional[Text] = None, left_edge_name: Optional[Text] = None, right_edge_name: Optional[Text] = None, ) -> Tuple[AbstractNode, AbstractNode, AbstractNode, Tensor]: """Split a node by doing a full singular value decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`U S V^* = M` be the Singular Value Decomposition of :math:`M`. The left most node will be :math:`U` tensor of the SVD, the middle node is the diagonal matrix of the singular values, ordered largest to smallest, and the right most node will be the :math:`V*` tensor of the SVD. The singular value decomposition is truncated if `max_singular_values` or `max_truncation_err` is not `None`. The truncation error is the 2-norm of the vector of truncated singular values. If only `max_truncation_err` is set, as many singular values will be truncated as possible while maintaining: `norm(truncated_singular_values) <= max_truncation_err`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If only `max_singular_values` is set, the number of singular values kept will be `min(max_singular_values, number_of_singular_values)`, so that `max(0, number_of_singular_values - max_singular_values)` are truncated. If both `max_truncation_err` and `max_singular_values` are set, `max_singular_values` takes priority: The truncation error may be larger than `max_truncation_err` if required to satisfy `max_singular_values`. Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. max_singular_values: The maximum number of singular values to keep. max_truncation_err: The maximum allowed truncation error. relative: Multiply `max_truncation_err` with the largest singular value. left_name: The name of the new left node. If None, a name will be generated automatically. middle_name: The name of the new center node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. left_edge_name: The name of the new left `Edge` connecting the new left node (:math:`U`) and the new central node (:math:`S`). If `None`, a name will be generated automatically. right_edge_name: The name of the new right `Edge` connecting the new central node (:math:`S`) and the new right node (:math:`V*`). If `None`, a name will be generated automatically. Returns: A tuple containing: left_node: A new node created that connects to all of the `left_edges`. Its underlying tensor is :math:`U` singular_values_node: A new node that has 2 edges connecting `left_node` and `right_node`. Its underlying tensor is :math:`S` right_node: A new node created that connects to all of the `right_edges`. Its underlying tensor is :math:`V^*` truncated_singular_values: The vector of truncated singular values. Raises: AttributeError: If `node` has no backend attribute """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) if node.axis_names and left_edge_name and right_edge_name: left_axis_names = [] right_axis_names = [right_edge_name] for edge in left_edges: left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) for edge in right_edges: right_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) left_axis_names.append(left_edge_name) center_axis_names = [left_edge_name, right_edge_name] else: left_axis_names = None center_axis_names = None right_axis_names = None backend = node.backend transp_tensor = node.tensor_from_edge_order(left_edges + right_edges) u, s, vh, trun_vals = backend.svd(transp_tensor, len(left_edges), max_singular_values, max_truncation_err, relative=relative) left_node = Node(u, name=left_name, axis_names=left_axis_names, backend=backend) singular_values_node = Node(backend.diagflat(s), name=middle_name, axis_names=center_axis_names, backend=backend) right_node = Node(vh, name=right_name, axis_names=right_axis_names, backend=backend) left_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in left_edges ] for i, edge in enumerate(left_edges): left_node.add_edge(edge, i) edge.update_axis(left_axes_order[i], node, i, left_node) right_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in right_edges ] for i, edge in enumerate(right_edges): # i + 1 to account for the new edge. right_node.add_edge(edge, i + 1) edge.update_axis(right_axes_order[i], node, i + 1, right_node) connect(left_node.edges[-1], singular_values_node.edges[0], name=left_edge_name) connect(singular_values_node.edges[1], right_node.edges[0], name=right_edge_name) node.fresh_edges(node.axis_names) return left_node, singular_values_node, right_node, trun_vals
Computes all nodes reachable from `node` or `edge.node1` by connected edges. Args: inputs: A `AbstractNode`/`Edge` or collection of `AbstractNodes`/`Edges` Returns: A set of `AbstractNode` objects that can be reached from `node` via connected edges. Raises: TypeError: If inputs contains other then `Edge` or `Node`.
def reachable( inputs: Union[AbstractNode, Iterable[AbstractNode], Edge, Iterable[Edge]] ) -> Set[AbstractNode]: """Computes all nodes reachable from `node` or `edge.node1` by connected edges. Args: inputs: A `AbstractNode`/`Edge` or collection of `AbstractNodes`/`Edges` Returns: A set of `AbstractNode` objects that can be reached from `node` via connected edges. Raises: TypeError: If inputs contains other then `Edge` or `Node`. """ if isinstance(inputs, AbstractNode): inputs = {inputs} if isinstance(inputs, Edge): inputs = {inputs.node1} # pytype: disable=attribute-error processed_inputs = set() for inp in inputs: if isinstance(inp, AbstractNode): processed_inputs |= {inp} elif isinstance(inp, Edge): processed_inputs |= {inp.node1} else: raise TypeError(f"input to `reachable` has to be an iterable of " f"Nodes or Edges, got {type(inp)} instead.") return _reachable(set(processed_inputs))
Check if the network defined by `nodes` fulfills necessary consistency relations. Args: nodes: A list of `AbstractNode` objects. check_connections: Check if the network is connected. Returns: `None` Raises: ValueError: If the network defined by `nodes` is not correctly structured.
def check_correct(nodes: Iterable[AbstractNode], check_connections: Optional[bool] = True) -> None: """Check if the network defined by `nodes` fulfills necessary consistency relations. Args: nodes: A list of `AbstractNode` objects. check_connections: Check if the network is connected. Returns: `None` Raises: ValueError: If the network defined by `nodes` is not correctly structured. """ for node in nodes: for i, edge in enumerate(node.edges): if edge.node1 is not node and edge.node2 is not node: raise ValueError("Edge '{}' does not connect to node '{}'." "Edge's nodes: '{}', '{}'.".format( edge, node, edge.node1, edge.node2)) is_edge_node_consistent = False if edge.node1 is node: if edge.axis1 == i: is_edge_node_consistent = True if edge.node2 is node: if edge.axis2 == i: is_edge_node_consistent = True if not is_edge_node_consistent: raise ValueError( "Edge '{}' does not point to '{}' on the correct axis. " "Edge axes: {}, {}. Node axis: {}.".format(edge, node, edge.axis1, edge.axis2, i)) if check_connections: check_connected(nodes)
Check if all nodes in `nodes` are connected. Args: nodes: A list of `nodes`. Returns: `None` Raises: ValueError: If not all nodes in `nodes` are connected.
def check_connected(nodes: Iterable[AbstractNode]) -> None: """Check if all nodes in `nodes` are connected. Args: nodes: A list of `nodes`. Returns: `None` Raises: ValueError: If not all nodes in `nodes` are connected. """ nodes = list(nodes) if not set(nodes) <= reachable([nodes[0]]): raise ValueError("Non-connected graph")
Return the set of nodes connected to edges.
def get_all_nodes(edges: Iterable[Edge]) -> Set[AbstractNode]: """Return the set of nodes connected to edges.""" nodes = set() for edge in edges: if edge.node1 is not None: nodes |= {edge.node1} if edge.node2 is not None: nodes |= {edge.node2} return nodes
Return the set of edges of all nodes.
def get_all_edges(nodes: Iterable[AbstractNode]) -> Set[Edge]: """Return the set of edges of all nodes.""" edges = set() for node in nodes: edges |= set(node.edges) return edges
Get all of the edges that are "relatively dangling" to the given nodes. A "relatively dangling" edge is an edge that is either actually dangling or is connected to another node that is outside of the given collection of `nodes`. Args: nodes: A set of nodes. Returns: The set of "relatively dangling" edges.
def get_subgraph_dangling(nodes: Iterable[AbstractNode]) -> Set[Edge]: """Get all of the edges that are "relatively dangling" to the given nodes. A "relatively dangling" edge is an edge that is either actually dangling or is connected to another node that is outside of the given collection of `nodes`. Args: nodes: A set of nodes. Returns: The set of "relatively dangling" edges. """ output = set() for edge in get_all_edges(nodes): if edge.is_dangling() or not set(edge.get_nodes()) <= set(nodes): output.add(edge) return output
contract all trace edges of `node`. Args: node: A `AbstractNode` object. Returns: A new `AbstractNode` obtained from contracting all trace edges.
def contract_trace_edges(node: AbstractNode) -> AbstractNode: """contract all trace edges of `node`. Args: node: A `AbstractNode` object. Returns: A new `AbstractNode` obtained from contracting all trace edges. """ res = node for edge in res.edges: if edge.is_trace(): res = contract_parallel(edge) break return res
Constructs the tensor network for a reduced density matrix, if it is pure. The tensor network connected to `traced_out_edges` is assumed to be a pure quantum state (a state vector). This modifies the network so that it describes the reduced density matrix obtained by "tracing out" the specified edges. This is done by making a conjugate copy of the original network and connecting each edge in `traced_out_edges` with its conjugate counterpart. The edges in `edge_dict` corresponding to `traced_out_edges` will be the new non-dangling edges connecting the state with its conjugate. Args: traced_out_edges: A list of dangling edges. Returns: A tuple containing: node_dict: A dictionary mapping the nodes in the original network to their conjugate copies. edge_dict: A dictionary mapping edges in the original network to their conjugate copies.
def reduced_density(traced_out_edges: Iterable[Edge]) -> Tuple[dict, dict]: """Constructs the tensor network for a reduced density matrix, if it is pure. The tensor network connected to `traced_out_edges` is assumed to be a pure quantum state (a state vector). This modifies the network so that it describes the reduced density matrix obtained by "tracing out" the specified edges. This is done by making a conjugate copy of the original network and connecting each edge in `traced_out_edges` with its conjugate counterpart. The edges in `edge_dict` corresponding to `traced_out_edges` will be the new non-dangling edges connecting the state with its conjugate. Args: traced_out_edges: A list of dangling edges. Returns: A tuple containing: node_dict: A dictionary mapping the nodes in the original network to their conjugate copies. edge_dict: A dictionary mapping edges in the original network to their conjugate copies. """ if list(filter(lambda x: not x.is_dangling(), traced_out_edges)): raise ValueError("traced_out_edges must only include dangling edges!") # Get all reachable nodes. old_nodes = reachable(get_all_nodes(traced_out_edges)) # Copy and conjugate all reachable nodes. node_dict, edge_dict = copy(old_nodes, True) for t_edge in traced_out_edges: # Add each edge to the copied nodes as new edge. edge_dict[t_edge] = edge_dict[t_edge] ^ t_edge return node_dict, edge_dict
Change the backend of the nodes. This will convert all `node`'s tensors to the `new_backend`'s Tensor type. Args: nodes: iterable of nodes new_backend (str): The new backend. dtype (datatype): The dtype of the backend. If `None`, a defautl dtype according to config.py will be chosen. Returns: None
def switch_backend(nodes: Iterable[AbstractNode], new_backend: Text) -> None: """Change the backend of the nodes. This will convert all `node`'s tensors to the `new_backend`'s Tensor type. Args: nodes: iterable of nodes new_backend (str): The new backend. dtype (datatype): The dtype of the backend. If `None`, a defautl dtype according to config.py will be chosen. Returns: None """ if new_backend == 'symmetric': if np.all([n.backend.name == 'symmetric' for n in nodes]): return raise ValueError("switching to `symmetric` backend not possible") backend = backend_factory.get_backend(new_backend) for node in nodes: if node.backend.name != "numpy": raise NotImplementedError("Can only switch backends when the current " "backend is 'numpy'. Current backend " "is '{}'".format(node.backend)) node.tensor = backend.convert_to_tensor(node.tensor) node.backend = backend
Get all of the neighbors that are directly connected to the given node. Note: `node` will never be in the returned list, even if `node` has a trace edge. Args: node: A node. Returns: All of the neighboring edges that share an `Edge` with `node`.
def get_neighbors(node: AbstractNode) -> List[AbstractNode]: """Get all of the neighbors that are directly connected to the given node. Note: `node` will never be in the returned list, even if `node` has a trace edge. Args: node: A node. Returns: All of the neighboring edges that share an `Edge` with `node`. """ neighbors = [] neighbors_set = set() for edge in node.edges: if not edge.is_dangling() and not edge.is_trace(): if edge.node1 is node: if edge.node2 not in neighbors_set: neighbors.append(edge.node2) neighbors_set.add(edge.node2) elif edge.node1 not in neighbors_set: neighbors.append(edge.node1) neighbors_set.add(edge.node1) return neighbors
Create a JSON string representing the Tensor Network made up of the given nodes. Nodes and their attributes, edges and their attributes and tensor values are included. Tensors are serialized according the the format used by each tensors backend. For edges spanning included nodes and excluded nodes the edge attributes are preserved in the serialization but the connection to the excluded node is dropped. The original edge is not modified. Args: nodes: A list of nodes making up a tensor network. edge_binding: A dictionary containing {str->edge} bindings. Edges that are not included in the serialized network are ommited from the dictionary. Returns: A string representing the JSON serialized tensor network. Raises: TypeError: If an edge_binding dict is passed with non string keys, or non Edge values.
def nodes_to_json(nodes: List[AbstractNode], edge_binding: Optional[Dict[str, Union[Edge, Iterable[Edge]]]] = None) -> str: """ Create a JSON string representing the Tensor Network made up of the given nodes. Nodes and their attributes, edges and their attributes and tensor values are included. Tensors are serialized according the the format used by each tensors backend. For edges spanning included nodes and excluded nodes the edge attributes are preserved in the serialization but the connection to the excluded node is dropped. The original edge is not modified. Args: nodes: A list of nodes making up a tensor network. edge_binding: A dictionary containing {str->edge} bindings. Edges that are not included in the serialized network are ommited from the dictionary. Returns: A string representing the JSON serialized tensor network. Raises: TypeError: If an edge_binding dict is passed with non string keys, or non Edge values. """ network_dict = { 'nodes': [], 'edges': [], } node_id_dict = {} edge_id_dict = {} # Build serialized Nodes for i, node in enumerate(nodes): node_id_dict[node] = i network_dict['nodes'].append({ 'id': i, 'attributes': node.to_serial_dict(), }) edges = get_all_edges(nodes) # Build serialized edges for i, edge in enumerate(edges): edge_id_dict[edge] = i node_ids = [node_id_dict.get(n) for n in edge.get_nodes()] attributes = edge.to_serial_dict() attributes['axes'] = [ a if node_ids[j] is not None else None for j, a in enumerate(attributes['axes']) ] edge_dict = { 'id': i, 'node_ids': node_ids, 'attributes': attributes, } network_dict['edges'].append(edge_dict) serial_edge_binding = _build_serial_binding(edge_binding, edge_id_dict) if serial_edge_binding: network_dict['edge_binding'] = serial_edge_binding return json.dumps(network_dict)
Create a tensor network from a JSON string representation of a tensor network. Args: json_str: A string representing a JSON serialized tensor network. Returns: A list of nodes making up the tensor network. A dictionary of {str -> (edge,)} bindings. All dictionary values are tuples of Edges.
def nodes_from_json(json_str: str) -> Tuple[List[AbstractNode], Dict[str, Tuple[Edge]]]: """ Create a tensor network from a JSON string representation of a tensor network. Args: json_str: A string representing a JSON serialized tensor network. Returns: A list of nodes making up the tensor network. A dictionary of {str -> (edge,)} bindings. All dictionary values are tuples of Edges. """ network_dict = json.loads(json_str) nodes = [] node_ids = {} edge_lookup = {} edge_binding = {} for n in network_dict['nodes']: node = Node.from_serial_dict(n['attributes']) nodes.append(node) node_ids[n['id']] = node for e in network_dict['edges']: e_nodes = [node_ids.get(n_id) for n_id in e['node_ids']] axes = e['attributes']['axes'] edge = Edge(node1=e_nodes[0], axis1=axes[0], node2=e_nodes[1], axis2=axes[1], name=e['attributes']['name']) edge_lookup[e['id']] = edge for node, axis in zip(e_nodes, axes): if node is not None: node.add_edge(edge, axis, override=True) for k, v in network_dict.get('edge_binding', {}).items(): for e_id in v: edge_binding[k] = edge_binding.get(k, ()) + (edge_lookup[e_id],) return nodes, edge_binding
Redirect `edge` from `old_node` to `new_node`. Routine updates `new_node` and `old_node`. `edge` is added to `new_node`, `old_node` gets a new Edge instead of `edge`. Args: edge: An Edge. new_node: The new `Node` object. old_node: The old `Node` object. Returns: None Raises: ValueError: if `edge` does not point to `old_node`.
def redirect_edge(edge: Edge, new_node: AbstractNode, old_node: AbstractNode) -> None: """ Redirect `edge` from `old_node` to `new_node`. Routine updates `new_node` and `old_node`. `edge` is added to `new_node`, `old_node` gets a new Edge instead of `edge`. Args: edge: An Edge. new_node: The new `Node` object. old_node: The old `Node` object. Returns: None Raises: ValueError: if `edge` does not point to `old_node`. """ if not edge.is_trace(): if edge.is_dangling(): if edge.node1 is not old_node: raise ValueError(f"edge {edge} is not pointing " f"to old_node {old_node}") edge.node1 = new_node axis = edge.axis1 else: if edge.node1 is old_node: edge.node1 = new_node axis = edge.axis1 elif edge.node2 is old_node: edge.node2 = new_node axis = edge.axis2 else: raise ValueError(f"edge {edge} is not pointing " f"to old_node {old_node}") new_node.add_edge(edge, axis, True) new_edge = Edge(old_node, axis) old_node.add_edge(new_edge, axis, True) else: if edge.node1 is not old_node: raise ValueError(f"edge {edge} is not pointing " f"to old_node {old_node}") edge.node1 = new_node edge.node2 = new_node axis1 = edge.axis1 axis2 = edge.axis2 new_node.add_edge(edge, axis1, True) new_node.add_edge(edge, axis2, True) new_edge = Edge(old_node, axis1, None, old_node, axis2) old_node.add_edge(new_edge, axis1, True) old_node.add_edge(new_edge, axis2, True)
Save an iterable of nodes into hdf5 format. Args: nodes: An iterable of connected nodes. All nodes have to connect within `nodes`. path: path to file where network is saved.
def save_nodes(nodes: List[AbstractNode], path: Union[str, BinaryIO]) -> None: """Save an iterable of nodes into hdf5 format. Args: nodes: An iterable of connected nodes. All nodes have to connect within `nodes`. path: path to file where network is saved. """ if reachable(nodes) > set(nodes): raise ValueError( "Some nodes in `nodes` are connected to nodes not contained in `nodes`." " Saving not possible.") if len(set(nodes)) < len(list(nodes)): raise ValueError( 'Some nodes in `nodes` appear more than once. This is not supported') #we need to iterate twice and order matters edges = list(get_all_edges(nodes)) nodes = list(nodes) old_edge_names = {n: edge.name for n, edge in enumerate(edges)} old_node_names = {n: node.name for n, node in enumerate(nodes)} #generate unique names for nodes and edges #for saving them for n, node in enumerate(nodes): node.set_name('node{}'.format(n)) for e, edge in enumerate(edges): edge.set_name('edge{}'.format(e)) with h5py.File(path, 'w') as net_file: nodes_group = net_file.create_group('nodes') node_names_group = net_file.create_group('node_names') node_names_group.create_dataset( 'names', dtype=string_type, data=np.array(list(old_node_names.values()), dtype=object)) edges_group = net_file.create_group('edges') edge_names_group = net_file.create_group('edge_names') edge_names_group.create_dataset( 'names', dtype=string_type, data=np.array(list(old_edge_names.values()), dtype=object)) for n, node in enumerate(nodes): node_group = nodes_group.create_group(node.name) node._save_node(node_group) for edge in node.edges: if edge.node1 == node and edge in edges: edge_group = edges_group.create_group(edge.name) edge._save_edge(edge_group) edges.remove(edge) #name edges and nodes back to their original names for n, node in enumerate(nodes): nodes[n].set_name(old_node_names[n]) for n, edge in enumerate(edges): edges[n].set_name(old_edge_names[n])
Load a set of nodes from disk. Args: path: path to file where network is saved. Returns: An iterable of `Node` objects
def load_nodes(path: str) -> List[AbstractNode]: """Load a set of nodes from disk. Args: path: path to file where network is saved. Returns: An iterable of `Node` objects """ nodes_list = [] edges_list = [] with h5py.File(path, 'r') as net_file: nodes = list(net_file["nodes"].keys()) node_names = { 'node{}'.format(n): v for n, v in enumerate( net_file["node_names"]['names'].asstr(STRING_ENCODING)[()])#pylint: disable=no-member } edge_names = { 'edge{}'.format(n): v for n, v in enumerate( net_file["edge_names"]['names'].asstr(STRING_ENCODING)[()])#pylint: disable=no-member } edges = list(net_file["edges"].keys()) for node_name in nodes: node_data = net_file["nodes/" + node_name] node_type = get_component(node_data['type'].asstr()[()]) nodes_list.append(node_type._load_node(node_data=node_data)) nodes_dict = {node.name: node for node in nodes_list} for edge in edges: edge_data = net_file["edges/" + edge] edges_list.append(Edge._load_edge(edge_data, nodes_dict)) for edge in edges_list: edge.set_name(edge_names[edge.name]) for node in nodes_list: node.set_name(node_names[node.name]) return nodes_list
Create and connect new `tn.Node`s by the given einsum-like topology. Example: ``` a, b, c = tn.from_topology("xy,yz,zx", [a, b, c]) ``` Args: topology: A string that defines the topology. Should be like the left side of an einsum expression. tensors: The tensors needed to create the nodes. Returns: A list of Nodes.
def from_topology(topology, tensors, backend=None): """Create and connect new `tn.Node`s by the given einsum-like topology. Example: ``` a, b, c = tn.from_topology("xy,yz,zx", [a, b, c]) ``` Args: topology: A string that defines the topology. Should be like the left side of an einsum expression. tensors: The tensors needed to create the nodes. Returns: A list of Nodes. """ edge_dict = {} nodes = [] split_list = topology.split(",") if len(split_list) != len(tensors): raise ValueError("topology and number of tensors is mismatched") for local_axes, tensor in zip(split_list, tensors): local_axes_list = list(local_axes) if len(local_axes_list) != len(tensor.shape): raise ValueError(f"{local_axes} does not match shape {tensor.shape}") new_node = Node(tensor, axis_names=local_axes_list, backend=backend) for c in local_axes: if c in edge_dict: edge_dict[c] = edge_dict[c] ^ new_node[c] else: edge_dict[c] = new_node[c] nodes.append(new_node) return nodes
Return a jitted or graph-compiled version of `fun` for JAX backend. For all other backends returns `fun`. Args: fun: Callable backend: The backend. backend_argnum: Labels the argument of the decorated function which specifies the backend. This argument will be treated as static in the sense of static_argnums. If backend_argnum is specified, backend must be None. static_argnums: Label the arguments which will be statically compiled against. xla_backend: Specifies the backend ('gpu', 'cpu'...) against which XLA is to run. donate_argnums: Labels arguments that Jit is allowed to overwrite. args: Arguments to `fun`. kwargs: Keyword arguments to `fun`. Raises: ValueError: If backend_argnum is specified but backend is not None. If backend_argnum is specified but the corresponding argument neither is nor labels a backend. Returns: Callable: jitted/graph-compiled version of `fun`, or just `fun`.
def jit(fun: Callable, backend: Union[Text, AbstractBackend] = None, backend_argnum: Optional[int] = None, static_argnums: Union[int, Iterable[int]] = (), device=None, xla_backend: Optional[str] = None) -> Callable: """ Return a jitted or graph-compiled version of `fun` for JAX backend. For all other backends returns `fun`. Args: fun: Callable backend: The backend. backend_argnum: Labels the argument of the decorated function which specifies the backend. This argument will be treated as static in the sense of static_argnums. If backend_argnum is specified, backend must be None. static_argnums: Label the arguments which will be statically compiled against. xla_backend: Specifies the backend ('gpu', 'cpu'...) against which XLA is to run. donate_argnums: Labels arguments that Jit is allowed to overwrite. args: Arguments to `fun`. kwargs: Keyword arguments to `fun`. Raises: ValueError: If backend_argnum is specified but backend is not None. If backend_argnum is specified but the corresponding argument neither is nor labels a backend. Returns: Callable: jitted/graph-compiled version of `fun`, or just `fun`. """ argnum_mode = False if backend_argnum is not None: if backend is not None: raise ValueError("backend must be None if backend_argnum is specified.") argnum_mode = True static_argnums = tuple(list(static_argnums) + [backend_argnum,]) if not argnum_mode: if backend is None: backend = backend_contextmanager.get_default_backend() backend_obj = backends.backend_factory.get_backend(backend) @functools.wraps(fun) def wrapper(*args, **kwargs): jitted = backend_obj.jit(fun, static_argnums=static_argnums, device=device, backend=xla_backend) return jitted(*args, **kwargs) else: @functools.wraps(fun) def wrapper(*args, **kwargs): backend = args[backend_argnum] try: backend_obj = backends.backend_factory.get_backend(backend) except ValueError as error: errstr = (f"backend_argnum={backend_argnum} was specified" f"but the corresponding argument {args[backend_argnum]}" f"did not specify a backend.") raise ValueError(errstr) from error jitted = backend_obj.jit(fun, static_argnums=static_argnums, device=device, backend=xla_backend) return jitted(*args, **kwargs) return wrapper
Helper to initialize data for the other Jit tests.
def jittest_init(backend): """ Helper to initialize data for the other Jit tests. """ backend_obj = backends.backend_factory.get_backend(backend) def fun(x, A, y): return backend_obj.multiply(x, backend_obj.multiply(A, y)) x = backend_obj.randn((4,), seed=11) y = backend_obj.randn((4,), seed=11) A = backend_obj.randn((4, 4), seed=11) return (x, y, A, fun)
Tests that tn.jit gives the right answer.
def test_jit(backend): """ Tests that tn.jit gives the right answer. """ x, y, A, fun = jittest_init(backend) fun_jit = tensornetwork.jit(fun, backend=backend) res1 = fun(x, A, y) res2 = fun_jit(x, A, y) np.testing.assert_allclose(res1, res2)
Tests that tn.jit gives the right answer when used as a decorator.
def test_jit_ampersand(backend): """ Tests that tn.jit gives the right answer when used as a decorator. """ x, y, A, fun = jittest_init(backend) @functools.partial(tensornetwork.jit, static_argnums=(3,), backend=backend) def fun_jit(x, A, y, dummy): _ = dummy return fun(x, A, y) res1 = fun(x, A, y) res2 = fun_jit(x, A, y, 2) np.testing.assert_allclose(res1, res2)
Tests that tn.jit gives the right answer when given extra arguments.
def test_jit_args(backend): """ Tests that tn.jit gives the right answer when given extra arguments. """ x, y, A, fun = jittest_init(backend) fun_jit = tensornetwork.jit(fun, backend=backend) res1 = fun(x, A, y) res2 = fun_jit(x, A, y) res3 = fun_jit(x, y=y, A=A) np.testing.assert_allclose(res1, res2) np.testing.assert_allclose(res1, res3)
Tests that tn.jit gives the right answer when the backend is supplied via backend_argnum as a string.
def test_jit_backend_argnum_is_string(backend): """ Tests that tn.jit gives the right answer when the backend is supplied via backend_argnum as a string. """ x, y, A, fun = jittest_init(backend) @functools.partial(tensornetwork.jit, backend_argnum=3) def fun_jit(x, A, y, the_backend): _ = the_backend return fun(x, A, y) res1 = fun(x, A, y) res2 = fun_jit(x, A, y, backend) np.testing.assert_allclose(res1, res2)
Tests that tn.jit gives the right answer when the backend is supplied via backend_argnum as a backend object.
def test_jit_backend_argnum_is_obj(backend): """ Tests that tn.jit gives the right answer when the backend is supplied via backend_argnum as a backend object. """ x, y, A, fun = jittest_init(backend) @functools.partial(tensornetwork.jit, backend_argnum=3) def fun_jit(x, A, y, the_backend): _ = the_backend return fun(x, A, y) res1 = fun(x, A, y) backend_obj = backends.backend_factory.get_backend(backend) res2 = fun_jit(x, A, y, backend_obj) np.testing.assert_allclose(res1, res2)
Tests that tn.jit raises ValueError when backend_argnum points to something other than a backend.
def test_jit_backend_argnum_invalid(backend): """ Tests that tn.jit raises ValueError when backend_argnum points to something other than a backend. """ x, y, A, fun = jittest_init(backend) with pytest.raises(ValueError): @functools.partial(tensornetwork.jit, backend_argnum=3) def fun_jit(x, A, y, the_backend): _ = the_backend return fun(x, A, y) _ = fun_jit(x, A, y, 99)
Tests that tn.jit raises ValueError when backend_argnum and backend are both specified.
def test_jit_backend_and_backend_obj_raises_error(backend): """ Tests that tn.jit raises ValueError when backend_argnum and backend are both specified. """ x, y, A, fun = jittest_init(backend) with pytest.raises(ValueError): @functools.partial(tensornetwork.jit, backend_argnum=3, backend=backend) def fun_jit(x, A, y, the_backend): _ = the_backend return fun(x, A, y) _ = fun_jit(x, A, y, backend)
Find the lowest eigenvalues and eigenvectors of a 1d free-fermion Hamiltonian on N sites. The dimension of the hermitian matrix is (2**N, 2**N).
def test_eigsh_free_fermions(N, dtype, param_type): """ Find the lowest eigenvalues and eigenvectors of a 1d free-fermion Hamiltonian on N sites. The dimension of the hermitian matrix is (2**N, 2**N). """ backend = jax_backend.JaxBackend(precision=jax.lax.Precision.HIGHEST) np.random.seed(10) pot, hop = get_ham_params(dtype, N, param_type) P = jnp.diag(np.array([0, -1])).astype(dtype) c = jnp.array([[0, 1], [0, 0]], dtype) n = c.T @ c eye = jnp.eye(2, dtype=dtype) neye = jnp.kron(n, eye) eyen = jnp.kron(eye, n) ccT = jnp.kron(c @ P, c.T) cTc = jnp.kron(c.T, c) @jax.jit def matvec(vec): x = vec.reshape((4, 2**(N - 2))) out = jnp.zeros(x.shape, x.dtype) t1 = neye * pot[0] + eyen * pot[1] / 2 t2 = cTc * hop[0] - ccT * jnp.conj(hop[0]) out += jnp.einsum('ij,ki -> kj', x, t1 + t2) x = x.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape((4, 2**(N - 2))) out = out.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape( (4, 2**(N - 2))) for site in range(1, N - 2): t1 = neye * pot[site] / 2 + eyen * pot[site + 1] / 2 t2 = cTc * hop[site] - ccT * jnp.conj(hop[site]) out += jnp.einsum('ij,ki -> kj', x, t1 + t2) x = x.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape((4, 2**(N - 2))) out = out.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape( (4, 2**(N - 2))) t1 = neye * pot[N - 2] / 2 + eyen * pot[N - 1] t2 = cTc * hop[N - 2] - ccT * jnp.conj(hop[N - 2]) out += jnp.einsum('ij,ki -> kj', x, t1 + t2) x = x.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape((4, 2**(N - 2))) out = out.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape( (4, 2**(N - 2))) x = x.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape(2**N) out = out.reshape((2, 2**(N - 1))).transpose((1, 0)).reshape(2**N) return out.ravel() H = np.diag(pot) + np.diag(hop.conj(), 1) + np.diag(hop, -1) single_particle_energies = np.linalg.eigh(H)[0] many_body_energies = [] for n in range(2**N): many_body_energies.append( np.sum(single_particle_energies[np.nonzero( np.array(list(bin(n)[2:]), dtype=int)[::-1])[0]])) many_body_energies = np.sort(many_body_energies) init = jnp.array(np.random.randn(2**N)).astype(dtype) init /= jnp.linalg.norm(init) ncv = 20 numeig = 3 which = 'SA' tol = 1E-10 maxiter = 30 atol = 1E-8 eta, _ = backend.eigsh( A=matvec, args=[], initial_state=init, num_krylov_vecs=ncv, numeig=numeig, which=which, tol=tol, maxiter=maxiter) np.testing.assert_allclose( eta, many_body_energies[:numeig], atol=atol, rtol=atol)
Helper function to generate jitted lanczos function used in JaxBackend.eigsh_lanczos. The function `jax_lanczos` returned by this higher-order function has the following call signature: ``` eigenvalues, eigenvectors = jax_lanczos(matvec:Callable, arguments: List[Tensor], init: Tensor, ncv: int, neig: int, landelta: float, reortho: bool) ``` `matvec`: A callable implementing the matrix-vector product of a linear operator. `arguments`: Arguments to `matvec` additional to an input vector. `matvec` will be called as `matvec(init, *args)`. `init`: An initial input vector to `matvec`. `ncv`: Number of krylov iterations (i.e. dimension of the Krylov space). `neig`: Number of eigenvalue-eigenvector pairs to be computed. `landelta`: Convergence parameter: if the norm of the current Lanczos vector `reortho`: If `True`, reorthogonalize all krylov vectors at each step. This should be used if `neig>1`. Args: jax: The `jax` module. Returns: Callable: A jitted function that does a lanczos iteration.
def _generate_jitted_eigsh_lanczos(jax: types.ModuleType) -> Callable: """ Helper function to generate jitted lanczos function used in JaxBackend.eigsh_lanczos. The function `jax_lanczos` returned by this higher-order function has the following call signature: ``` eigenvalues, eigenvectors = jax_lanczos(matvec:Callable, arguments: List[Tensor], init: Tensor, ncv: int, neig: int, landelta: float, reortho: bool) ``` `matvec`: A callable implementing the matrix-vector product of a linear operator. `arguments`: Arguments to `matvec` additional to an input vector. `matvec` will be called as `matvec(init, *args)`. `init`: An initial input vector to `matvec`. `ncv`: Number of krylov iterations (i.e. dimension of the Krylov space). `neig`: Number of eigenvalue-eigenvector pairs to be computed. `landelta`: Convergence parameter: if the norm of the current Lanczos vector `reortho`: If `True`, reorthogonalize all krylov vectors at each step. This should be used if `neig>1`. Args: jax: The `jax` module. Returns: Callable: A jitted function that does a lanczos iteration. """ JaxPrecisionType = type(jax.lax.Precision.DEFAULT) @functools.partial(jax.jit, static_argnums=(3, 4, 5, 6, 7)) def jax_lanczos(matvec: Callable, arguments: List, init: jax.ShapedArray, ncv: int, neig: int, landelta: float, reortho: bool, precision: JaxPrecisionType) -> Tuple[jax.ShapedArray, List]: """ Lanczos iteration for symmeric eigenvalue problems. If reortho = False, the Krylov basis is constructed without explicit re-orthogonalization. In infinite precision, all Krylov vectors would be orthogonal. Due to finite precision arithmetic, orthogonality is usually quickly lost. For reortho=True, the Krylov basis is explicitly reorthogonalized. Args: matvec: A callable implementing the matrix-vector product of a linear operator. arguments: Arguments to `matvec` additional to an input vector. `matvec` will be called as `matvec(init, *args)`. init: An initial input vector to `matvec`. ncv: Number of krylov iterations (i.e. dimension of the Krylov space). neig: Number of eigenvalue-eigenvector pairs to be computed. landelta: Convergence parameter: if the norm of the current Lanczos vector falls below `landelta`, iteration is stopped. reortho: If `True`, reorthogonalize all krylov vectors at each step. This should be used if `neig>1`. precision: jax.lax.Precision type used in jax.numpy.vdot Returns: jax.ShapedArray: Eigenvalues List: Eigenvectors int: Number of iterations """ shape = init.shape dtype = init.dtype iterative_classical_gram_schmidt = _iterative_classical_gram_schmidt(jax) mask_slice = (slice(ncv + 2), ) + (None,) * len(shape) def scalar_product(a, b): i1 = list(range(len(a.shape))) i2 = list(range(len(b.shape))) return jax.numpy.tensordot(a.conj(), b, (i1, i2), precision=precision) def norm(a): return jax.numpy.sqrt(scalar_product(a, a)) def body_lanczos(vals): krylov_vectors, alphas, betas, i = vals previous_vector = krylov_vectors[i] def body_while(vals): pv, kv, _ = vals pv = iterative_classical_gram_schmidt( pv, (i > jax.numpy.arange(ncv + 2))[mask_slice] * kv, precision)[0] return [pv, kv, False] def cond_while(vals): return vals[2] previous_vector, krylov_vectors, _ = jax.lax.while_loop( cond_while, body_while, [previous_vector, krylov_vectors, reortho]) beta = norm(previous_vector) normalized_vector = previous_vector / beta Av = matvec(normalized_vector, *arguments) alpha = scalar_product(normalized_vector, Av) alphas = alphas.at[i - 1].set(alpha) betas = betas.at[i].set(beta) def while_next(vals): Av, _ = vals res = Av - normalized_vector * alpha - krylov_vectors[i - 1] * beta return [res, False] def cond_next(vals): return vals[1] next_vector, _ = jax.lax.while_loop( cond_next, while_next, [Av, jax.numpy.logical_not(reortho)]) next_vector = jax.numpy.reshape(next_vector, shape) krylov_vectors = krylov_vectors.at[i].set(normalized_vector) krylov_vectors = krylov_vectors.at[i + 1].set(next_vector) return [krylov_vectors, alphas, betas, i + 1] def cond_fun(vals): betas, i = vals[-2], vals[-1] norm = betas[i - 1] return jax.lax.cond(i <= ncv, lambda x: x[0] > x[1], lambda x: False, [norm, landelta]) # note: ncv + 2 because the first vector is all zeros, and the # last is the unnormalized residual. krylov_vecs = jax.numpy.zeros((ncv + 2,) + shape, dtype=dtype) # NOTE (mganahl): initial vector is normalized inside the loop krylov_vecs = krylov_vecs.at[1].set(init) # betas are the upper and lower diagonal elements # of the projected linear operator # the first two beta-values can be discarded # set betas[0] to 1.0 for initialization of loop # betas[2] is set to the norm of the initial vector. betas = jax.numpy.zeros(ncv + 1, dtype=dtype) betas = betas.at[0].set(1.0) # diagonal elements of the projected linear operator alphas = jax.numpy.zeros(ncv, dtype=dtype) initvals = [krylov_vecs, alphas, betas, 1] krylov_vecs, alphas, betas, numits = jax.lax.while_loop( cond_fun, body_lanczos, initvals) # FIXME (mganahl): if the while_loop stopps early at iteration i, alphas # and betas are 0.0 at positions n >= i - 1. eigh will then wrongly give # degenerate eigenvalues 0.0. JAX does currently not support # dynamic slicing with variable slice sizes, so these beta values # can't be truncated. Thus, if numeig >= i - 1, jitted_lanczos returns # a set of spurious eigen vectors and eigen values. # If algebraically small EVs are desired, one can initialize `alphas` with # large positive values, thus pushing the spurious eigenvalues further # away from the desired ones (similar for algebraically large EVs) #FIXME: replace with eigh_banded once JAX supports it A_tridiag = jax.numpy.diag(alphas) + jax.numpy.diag( betas[2:], 1) + jax.numpy.diag(jax.numpy.conj(betas[2:]), -1) eigvals, U = jax.numpy.linalg.eigh(A_tridiag) eigvals = eigvals.astype(dtype) # expand eigenvectors in krylov basis def body_vector(i, vals): krv, unitary, vectors = vals dim = unitary.shape[1] n, m = jax.numpy.divmod(i, dim) vectors = jax.ops.index_add(vectors, jax.ops.index[n, :], krv[m + 1] * unitary[m, n]) return [krv, unitary, vectors] _vectors = jax.numpy.zeros((neig,) + shape, dtype=dtype) _, _, vectors = jax.lax.fori_loop(0, neig * (krylov_vecs.shape[0] - 1), body_vector, [krylov_vecs, U, _vectors]) return jax.numpy.array(eigvals[0:neig]), [ vectors[n] / norm(vectors[n]) for n in range(neig) ], numits return jax_lanczos
Helper function to generate a jitteed function that computes a lanczos factoriazation of a linear operator. Returns: Callable: A jitted function that does a lanczos factorization.
def _generate_lanczos_factorization(jax: types.ModuleType) -> Callable: """ Helper function to generate a jitteed function that computes a lanczos factoriazation of a linear operator. Returns: Callable: A jitted function that does a lanczos factorization. """ JaxPrecisionType = type(jax.lax.Precision.DEFAULT) @functools.partial(jax.jit, static_argnums=(6, 7, 8, 9)) def _lanczos_fact( matvec: Callable, args: List, v0: jax.ShapedArray, Vm: jax.ShapedArray, alphas: jax.ShapedArray, betas: jax.ShapedArray, start: int, num_krylov_vecs: int, tol: float, precision: JaxPrecisionType ): """ Compute an m-step lanczos factorization of `matvec`, with m <=`num_krylov_vecs`. The factorization will do at most `num_krylov_vecs` steps, and terminate early if an invariat subspace is encountered. The returned arrays `alphas`, `betas` and `Vm` will satisfy the Lanczos recurrence relation ``` matrix @ Vm - Vm @ Hm - fm * em = 0 ``` with `matrix` the matrix representation of `matvec`, `Hm = jnp.diag(alphas) + jnp.diag(betas, -1) + jnp.diag(betas.conj(), 1)` `fm=residual * norm`, and `em` a cartesian basis vector of shape `(1, kv.shape[1])` with `em[0, -1] == 1` and 0 elsewhere. Note that the caller is responsible for dtype consistency between the inputs, i.e. dtypes between all input arrays have to match. Args: matvec: The matrix vector product. args: List of arguments to `matvec`. v0: Initial state to `matvec`. Vm: An array for storing the krylov vectors. The individual vectors are stored as columns. The shape of `krylov_vecs` has to be (num_krylov_vecs + 1, np.ravel(v0).shape[0]). alphas: An array for storing the diagonal elements of the reduced operator. betas: An array for storing the lower diagonal elements of the reduced operator. start: Integer denoting the start position where the first produced krylov_vector should be inserted into `Vm` num_krylov_vecs: Number of krylov iterations, should be identical to `Vm.shape[0] + 1` tol: Convergence parameter. Iteration is terminated if the norm of a krylov-vector falls below `tol`. Returns: jax.ShapedArray: An array of shape `(num_krylov_vecs, np.prod(initial_state.shape))` of krylov vectors. jax.ShapedArray: The diagonal elements of the tridiagonal reduced operator ("alphas") jax.ShapedArray: The lower-diagonal elements of the tridiagonal reduced operator ("betas") jax.ShapedArray: The unnormalized residual of the Lanczos process. float: The norm of the residual. int: The number of performed iterations. bool: if `True`: iteration hit an invariant subspace. if `False`: iteration terminated without encountering an invariant subspace. """ shape = v0.shape iterative_classical_gram_schmidt = _iterative_classical_gram_schmidt(jax) Z = jax.numpy.linalg.norm(v0) #only normalize if norm > tol, else return zero vector v = jax.lax.cond(Z > tol, lambda x: v0 / Z, lambda x: v0 * 0.0, None) Vm = Vm.at[start, :].set(jax.numpy.ravel(v)) betas = jax.lax.cond( start > 0, lambda x: betas.at[start - 1].set(Z), lambda x: betas, start) # body of the arnoldi iteration def body(vals): Vm, alphas, betas, previous_vector, _, i = vals Av = matvec(previous_vector, *args) Av, overlaps = iterative_classical_gram_schmidt( Av.ravel(), (i >= jax.numpy.arange(Vm.shape[0]))[:, None] * Vm, precision) alphas = alphas.at[i].set(overlaps[i]) norm = jax.numpy.linalg.norm(Av) Av = jax.numpy.reshape(Av, shape) # only normalize if norm is larger than threshold, # otherwise return zero vector Av = jax.lax.cond(norm > tol, lambda x: Av/norm, lambda x: Av * 0.0, None) Vm, betas = jax.lax.cond( i < num_krylov_vecs - 1, lambda x: (Vm.at[i + 1, :].set(Av.ravel()), betas.at[i].set(norm)), lambda x: (Vm, betas), None) return [Vm, alphas, betas, Av, norm, i + 1] def cond_fun(vals): # Continue loop while iteration < num_krylov_vecs and norm > tol norm, iteration = vals[4], vals[5] counter_done = (iteration >= num_krylov_vecs) norm_not_too_small = norm > tol continue_iteration = jax.lax.cond(counter_done, lambda x: False, lambda x: norm_not_too_small, None) return continue_iteration initial_values = [Vm, alphas, betas, v, Z, start] final_values = jax.lax.while_loop(cond_fun, body, initial_values) Vm, alphas, betas, residual, norm, it = final_values return Vm, alphas, betas, residual, norm, it, norm < tol return _lanczos_fact
Helper function to create a jitted arnoldi factorization. The function returns a function `_arnoldi_fact` which performs an m-step arnoldi factorization. `_arnoldi_fact` computes an m-step arnoldi factorization of an input callable `matvec`, with m = min(`it`,`num_krylov_vecs`). `_arnoldi_fact` will do at most `num_krylov_vecs` steps. `_arnoldi_fact` returns arrays `kv` and `H` which satisfy the Arnoldi recurrence relation ``` matrix @ Vm - Vm @ Hm - fm * em = 0 ``` with `matrix` the matrix representation of `matvec` and `Vm = jax.numpy.transpose(kv[:it, :])`, `Hm = H[:it, :it]`, `fm = np.expand_dims(kv[it, :] * H[it, it - 1]`,1) and `em` a kartesian basis vector of shape `(1, kv.shape[1])` with `em[0, -1] == 1` and 0 elsewhere. Note that the caller is responsible for dtype consistency between the inputs, i.e. dtypes between all input arrays have to match. Args: matvec: The matrix vector product. This function has to be wrapped into `jax.tree_util.Partial`. `matvec` will be called as `matvec(x, *args)` for an input vector `x`. args: List of arguments to `matvec`. v0: Initial state to `matvec`. Vm: An array for storing the krylov vectors. The individual vectors are stored as columns. The shape of `krylov_vecs` has to be (num_krylov_vecs + 1, np.ravel(v0).shape[0]). H: Matrix of overlaps. The shape has to be (num_krylov_vecs + 1,num_krylov_vecs + 1). start: Integer denoting the start position where the first produced krylov_vector should be inserted into `Vm` num_krylov_vecs: Number of krylov iterations, should be identical to `Vm.shape[0] + 1` tol: Convergence parameter. Iteration is terminated if the norm of a krylov-vector falls below `tol`. Returns: kv: An array of krylov vectors H: A matrix of overlaps it: The number of performed iterations. converged: Whether convergence was achieved.
def _generate_arnoldi_factorization(jax: types.ModuleType) -> Callable: """ Helper function to create a jitted arnoldi factorization. The function returns a function `_arnoldi_fact` which performs an m-step arnoldi factorization. `_arnoldi_fact` computes an m-step arnoldi factorization of an input callable `matvec`, with m = min(`it`,`num_krylov_vecs`). `_arnoldi_fact` will do at most `num_krylov_vecs` steps. `_arnoldi_fact` returns arrays `kv` and `H` which satisfy the Arnoldi recurrence relation ``` matrix @ Vm - Vm @ Hm - fm * em = 0 ``` with `matrix` the matrix representation of `matvec` and `Vm = jax.numpy.transpose(kv[:it, :])`, `Hm = H[:it, :it]`, `fm = np.expand_dims(kv[it, :] * H[it, it - 1]`,1) and `em` a kartesian basis vector of shape `(1, kv.shape[1])` with `em[0, -1] == 1` and 0 elsewhere. Note that the caller is responsible for dtype consistency between the inputs, i.e. dtypes between all input arrays have to match. Args: matvec: The matrix vector product. This function has to be wrapped into `jax.tree_util.Partial`. `matvec` will be called as `matvec(x, *args)` for an input vector `x`. args: List of arguments to `matvec`. v0: Initial state to `matvec`. Vm: An array for storing the krylov vectors. The individual vectors are stored as columns. The shape of `krylov_vecs` has to be (num_krylov_vecs + 1, np.ravel(v0).shape[0]). H: Matrix of overlaps. The shape has to be (num_krylov_vecs + 1,num_krylov_vecs + 1). start: Integer denoting the start position where the first produced krylov_vector should be inserted into `Vm` num_krylov_vecs: Number of krylov iterations, should be identical to `Vm.shape[0] + 1` tol: Convergence parameter. Iteration is terminated if the norm of a krylov-vector falls below `tol`. Returns: kv: An array of krylov vectors H: A matrix of overlaps it: The number of performed iterations. converged: Whether convergence was achieved. """ JaxPrecisionType = type(jax.lax.Precision.DEFAULT) iterative_classical_gram_schmidt = _iterative_classical_gram_schmidt(jax) @functools.partial(jax.jit, static_argnums=(5, 6, 7, 8)) def _arnoldi_fact( matvec: Callable, args: List, v0: jax.ShapedArray, Vm: jax.ShapedArray, H: jax.ShapedArray, start: int, num_krylov_vecs: int, tol: float, precision: JaxPrecisionType ) -> Tuple[jax.ShapedArray, jax.ShapedArray, jax.ShapedArray, float, int, bool]: """ Compute an m-step arnoldi factorization of `matvec`, with m = min(`it`,`num_krylov_vecs`). The factorization will do at most `num_krylov_vecs` steps. The returned arrays `kv` and `H` will satisfy the Arnoldi recurrence relation ``` matrix @ Vm - Vm @ Hm - fm * em = 0 ``` with `matrix` the matrix representation of `matvec` and `Vm = jax.numpy.transpose(kv[:it, :])`, `Hm = H[:it, :it]`, `fm = np.expand_dims(kv[it, :] * H[it, it - 1]`,1) and `em` a cartesian basis vector of shape `(1, kv.shape[1])` with `em[0, -1] == 1` and 0 elsewhere. Note that the caller is responsible for dtype consistency between the inputs, i.e. dtypes between all input arrays have to match. Args: matvec: The matrix vector product. args: List of arguments to `matvec`. v0: Initial state to `matvec`. Vm: An array for storing the krylov vectors. The individual vectors are stored as columns. The shape of `krylov_vecs` has to be (num_krylov_vecs + 1, np.ravel(v0).shape[0]). H: Matrix of overlaps. The shape has to be (num_krylov_vecs + 1,num_krylov_vecs + 1). start: Integer denoting the start position where the first produced krylov_vector should be inserted into `Vm` num_krylov_vecs: Number of krylov iterations, should be identical to `Vm.shape[0] + 1` tol: Convergence parameter. Iteration is terminated if the norm of a krylov-vector falls below `tol`. Returns: jax.ShapedArray: An array of shape `(num_krylov_vecs, np.prod(initial_state.shape))` of krylov vectors. jax.ShapedArray: Upper Hessenberg matrix of shape `(num_krylov_vecs, num_krylov_vecs`) of the Arnoldi processs. jax.ShapedArray: The unnormalized residual of the Arnoldi process. int: The norm of the residual. int: The number of performed iterations. bool: if `True`: iteration hit an invariant subspace. if `False`: iteration terminated without encountering an invariant subspace. """ # Note (mganahl): currently unused, but is very convenient to have # for further development and tests (it's usually more accurate than # classical gs) # Call signature: #```python # initial_vals = [Av.ravel(), Vm, i, H] # Av, Vm, _, H = jax.lax.fori_loop( # 0, i + 1, modified_gram_schmidt_step_arnoldi, initial_vals) #``` def modified_gram_schmidt_step_arnoldi(j, vals): #pylint: disable=unused-variable """ Single step of a modified gram-schmidt orthogonalization. Substantially more accurate than classical gram schmidt Args: j: Integer value denoting the vector to be orthogonalized. vals: A list of variables: `vector`: The current vector to be orthogonalized to all previous ones `Vm`: jax.array of collected krylov vectors `n`: integer denoting the column-position of the overlap <`krylov_vector`|`vector`> within `H`. Returns: updated vals. """ vector, krylov_vectors, n, H = vals v = krylov_vectors[j, :] h = jax.numpy.vdot(v, vector, precision=precision) H = H.at[j, n].set(h) vector = vector - h * v return [vector, krylov_vectors, n, H] shape = v0.shape Z = jax.numpy.linalg.norm(v0) #only normalize if norm > tol, else return zero vector v = jax.lax.cond(Z > tol, lambda x: v0 / Z, lambda x: v0 * 0.0, None) Vm = Vm.at[start, :].set(jax.numpy.ravel(v)) H = jax.lax.cond( start > 0, lambda x: H.at[x, x - 1].set(Z), lambda x: H, start) # body of the arnoldi iteration def body(vals): Vm, H, previous_vector, _, i = vals Av = matvec(previous_vector, *args) Av, overlaps = iterative_classical_gram_schmidt( Av.ravel(), (i >= jax.numpy.arange(Vm.shape[0]))[:, None] * Vm, precision) H = H.at[:, i].set(overlaps) norm = jax.numpy.linalg.norm(Av) Av = jax.numpy.reshape(Av, shape) # only normalize if norm is larger than threshold, # otherwise return zero vector Av = jax.lax.cond(norm > tol, lambda x: Av/norm, lambda x: Av * 0.0, None) Vm, H = jax.lax.cond( i < num_krylov_vecs - 1, lambda x: (Vm.at[i + 1, :].set(Av.ravel()), H.at[i + 1, i].set(norm)), #pylint: disable=line-too-long lambda x: (x[0], x[1]), (Vm, H, Av, i, norm)) return [Vm, H, Av, norm, i + 1] def cond_fun(vals): # Continue loop while iteration < num_krylov_vecs and norm > tol norm, iteration = vals[3], vals[4] counter_done = (iteration >= num_krylov_vecs) norm_not_too_small = norm > tol continue_iteration = jax.lax.cond(counter_done, lambda x: False, lambda x: norm_not_too_small, None) return continue_iteration initial_values = [Vm, H, v, Z, start] final_values = jax.lax.while_loop(cond_fun, body, initial_values) Vm, H, residual, norm, it = final_values return Vm, H, residual, norm, it, norm < tol return _arnoldi_fact
Helper function to generate a jitted function to do an implicitly restarted arnoldi factorization of `matvec`. The returned routine finds the lowest `numeig` eigenvector-eigenvalue pairs of `matvec` by alternating between compression and re-expansion of an initial `num_krylov_vecs`-step Arnoldi factorization. Note: The caller has to ensure that the dtype of the return value of `matvec` matches the dtype of the initial state. Otherwise jax will raise a TypeError. The function signature of the returned function is Args: matvec: A callable representing the linear operator. args: Arguments to `matvec`. `matvec` is called with `matvec(x, *args)` with `x` the input array on which `matvec` should act. initial_state: An starting vector for the iteration. num_krylov_vecs: Number of krylov vectors of the arnoldi factorization. numeig: The number of desired eigenvector-eigenvalue pairs. which: Which eigenvalues to target. Currently supported: `which = 'LR'`. tol: Convergence flag. If the norm of a krylov vector drops below `tol` the iteration is terminated. maxiter: Maximum number of (outer) iteration steps. Returns: eta, U: Two lists containing eigenvalues and eigenvectors. Args: jax: The jax module. Returns: Callable: A function performing an implicitly restarted Arnoldi factorization
def _implicitly_restarted_arnoldi(jax: types.ModuleType) -> Callable: """ Helper function to generate a jitted function to do an implicitly restarted arnoldi factorization of `matvec`. The returned routine finds the lowest `numeig` eigenvector-eigenvalue pairs of `matvec` by alternating between compression and re-expansion of an initial `num_krylov_vecs`-step Arnoldi factorization. Note: The caller has to ensure that the dtype of the return value of `matvec` matches the dtype of the initial state. Otherwise jax will raise a TypeError. The function signature of the returned function is Args: matvec: A callable representing the linear operator. args: Arguments to `matvec`. `matvec` is called with `matvec(x, *args)` with `x` the input array on which `matvec` should act. initial_state: An starting vector for the iteration. num_krylov_vecs: Number of krylov vectors of the arnoldi factorization. numeig: The number of desired eigenvector-eigenvalue pairs. which: Which eigenvalues to target. Currently supported: `which = 'LR'`. tol: Convergence flag. If the norm of a krylov vector drops below `tol` the iteration is terminated. maxiter: Maximum number of (outer) iteration steps. Returns: eta, U: Two lists containing eigenvalues and eigenvectors. Args: jax: The jax module. Returns: Callable: A function performing an implicitly restarted Arnoldi factorization """ JaxPrecisionType = type(jax.lax.Precision.DEFAULT) arnoldi_fact = _generate_arnoldi_factorization(jax) @functools.partial(jax.jit, static_argnums=(3, 4, 5, 6, 7, 8)) def implicitly_restarted_arnoldi_method( matvec: Callable, args: List, initial_state: jax.ShapedArray, num_krylov_vecs: int, numeig: int, which: Text, tol: float, maxiter: int, precision: JaxPrecisionType ) -> Tuple[jax.ShapedArray, List[jax.ShapedArray], int]: """ Implicitly restarted arnoldi factorization of `matvec`. The routine finds the lowest `numeig` eigenvector-eigenvalue pairs of `matvec` by alternating between compression and re-expansion of an initial `num_krylov_vecs`-step Arnoldi factorization. Note: The caller has to ensure that the dtype of the return value of `matvec` matches the dtype of the initial state. Otherwise jax will raise a TypeError. NOTE: Under certain circumstances, the routine can return spurious eigenvalues 0.0: if the Arnoldi iteration terminated early (after numits < num_krylov_vecs iterations) and numeig > numits, then spurious 0.0 eigenvalues will be returned. Args: matvec: A callable representing the linear operator. args: Arguments to `matvec`. `matvec` is called with `matvec(x, *args)` with `x` the input array on which `matvec` should act. initial_state: An starting vector for the iteration. num_krylov_vecs: Number of krylov vectors of the arnoldi factorization. numeig: The number of desired eigenvector-eigenvalue pairs. which: Which eigenvalues to target. Currently supported: `which = 'LR'` (largest real part). tol: Convergence flag. If the norm of a krylov vector drops below `tol` the iteration is terminated. maxiter: Maximum number of (outer) iteration steps. precision: jax.lax.Precision used within lax operations. Returns: jax.ShapedArray: Eigenvalues List: Eigenvectors int: Number of inner krylov iterations of the last arnoldi factorization. """ shape = initial_state.shape dtype = initial_state.dtype dim = np.prod(shape).astype(np.int32) num_expand = num_krylov_vecs - numeig if not numeig <= num_krylov_vecs <= dim: raise ValueError(f"num_krylov_vecs must be between numeig <=" f" num_krylov_vecs <= dim, got " f" numeig = {numeig}, num_krylov_vecs = " f"{num_krylov_vecs}, dim = {dim}.") if numeig > dim: raise ValueError(f"number of requested eigenvalues numeig = {numeig} " f"is larger than the dimension of the operator " f"dim = {dim}") # initialize arrays Vm = jax.numpy.zeros( (num_krylov_vecs, jax.numpy.ravel(initial_state).shape[0]), dtype=dtype) Hm = jax.numpy.zeros((num_krylov_vecs, num_krylov_vecs), dtype=dtype) # perform initial arnoldi factorization Vm, Hm, residual, norm, numits, ar_converged = arnoldi_fact( matvec, args, initial_state, Vm, Hm, 0, num_krylov_vecs, tol, precision) fm = residual.ravel() * norm # generate needed functions shifted_QR = _shifted_QR(jax) check_eigvals_convergence = _check_eigvals_convergence_eig(jax) get_vectors = _get_vectors(jax) # sort_fun returns `num_expand` least relevant eigenvalues # (those to be projected out) if which == 'LR': sort_fun = jax.tree_util.Partial(_LR_sort(jax), num_expand) elif which == 'LM': sort_fun = jax.tree_util.Partial(_LM_sort(jax), num_expand) else: raise ValueError(f"which = {which} not implemented") it = 1 # we already did one arnoldi factorization if maxiter > 1: # cast arrays to correct complex dtype if Vm.dtype == np.float64: dtype = np.complex128 elif Vm.dtype == np.float32: dtype = np.complex64 elif Vm.dtype == np.complex128: dtype = Vm.dtype elif Vm.dtype == np.complex64: dtype = Vm.dtype else: raise TypeError(f'dtype {Vm.dtype} not supported') Vm = Vm.astype(dtype) Hm = Hm.astype(dtype) fm = fm.astype(dtype) def outer_loop(carry): Hm, Vm, fm, it, numits, ar_converged, _, _, = carry evals, _ = jax.numpy.linalg.eig(Hm) shifts, _ = sort_fun(evals) # perform shifted QR iterations to compress arnoldi factorization # Note that ||fk|| typically decreases as one iterates the outer loop # indicating that iram converges. # ||fk|| = \beta_m in reference above Vk, Hk, fk = shifted_QR(Vm, Hm, fm, shifts, numeig) # reset matrices beta_k = jax.numpy.linalg.norm(fk) converged = check_eigvals_convergence(beta_k, Hk, tol, numeig) Vk = Vk.at[numeig:, :].set(0.0) Hk = Hk.at[numeig:, :].set(0.0) Hk = Hk.at[:, numeig:].set(0.0) def do_arnoldi(vals): Vk, Hk, fk, _, _, _, _ = vals # restart Vm, Hm, residual, norm, numits, ar_converged = arnoldi_fact( matvec, args, jax.numpy.reshape(fk, shape), Vk, Hk, numeig, num_krylov_vecs, tol, precision) fm = residual.ravel() * norm return [Vm, Hm, fm, norm, numits, ar_converged, False] def cond_arnoldi(vals): return vals[6] res = jax.lax.while_loop(cond_arnoldi, do_arnoldi, [ Vk, Hk, fk, jax.numpy.linalg.norm(fk), numeig, False, jax.numpy.logical_not(converged) ]) Vm, Hm, fm, norm, numits, ar_converged = res[0:6] out_vars = [ Hm, Vm, fm, it + 1, numits, ar_converged, converged, norm ] return out_vars def cond_fun(carry): it, ar_converged, converged = carry[3], carry[5], carry[ 6] return jax.lax.cond( it < maxiter, lambda x: x, lambda x: False, jax.numpy.logical_not(jax.numpy.logical_or(converged, ar_converged))) converged = False carry = [Hm, Vm, fm, it, numits, ar_converged, converged, norm] res = jax.lax.while_loop(cond_fun, outer_loop, carry) Hm, Vm = res[0], res[1] numits, converged = res[4], res[6] # if `ar_converged` then `norm`is below convergence threshold # set it to 0.0 in this case to prevent `jnp.linalg.eig` from finding a # spurious eigenvalue of order `norm`. Hm = Hm.at[numits, numits - 1].set( jax.lax.cond(converged, lambda x: Hm.dtype.type(0.0), lambda x: x, Hm[numits, numits - 1])) # if the Arnoldi-factorization stopped early (after `numit` iterations) # before exhausting the allowed size of the Krylov subspace, # (i.e. `numit` < 'num_krylov_vecs'), set elements # at positions m, n with m, n >= `numit` to 0.0. # FIXME (mganahl): under certain circumstances, the routine can still # return spurious 0 eigenvalues: if arnoldi terminated early # (after numits < num_krylov_vecs iterations) # and numeig > numits, then spurious 0.0 eigenvalues will be returned Hm = (numits > jax.numpy.arange(num_krylov_vecs))[:, None] * Hm * ( numits > jax.numpy.arange(num_krylov_vecs))[None, :] eigvals, U = jax.numpy.linalg.eig(Hm) inds = sort_fun(eigvals)[1][:numeig] vectors = get_vectors(Vm, U, inds, numeig) return eigvals[inds], [ jax.numpy.reshape(vectors[n, :], shape) for n in range(numeig) ], numits return implicitly_restarted_arnoldi_method
Helper function to generate a jitted function to do an implicitly restarted lanczos factorization of `matvec`. The returned routine finds the lowest `numeig` eigenvector-eigenvalue pairs of `matvec` by alternating between compression and re-expansion of an initial `num_krylov_vecs`-step Lanczos factorization. Note: The caller has to ensure that the dtype of the return value of `matvec` matches the dtype of the initial state. Otherwise jax will raise a TypeError. The function signature of the returned function is Args: matvec: A callable representing the linear operator. args: Arguments to `matvec`. `matvec` is called with `matvec(x, *args)` with `x` the input array on which `matvec` should act. initial_state: An starting vector for the iteration. num_krylov_vecs: Number of krylov vectors of the lanczos factorization. numeig: The number of desired eigenvector-eigenvalue pairs. which: Which eigenvalues to target. Currently supported: `which = 'LR'` or `which = 'SR'`. tol: Convergence flag. If the norm of a krylov vector drops below `tol` the iteration is terminated. maxiter: Maximum number of (outer) iteration steps. Returns: eta, U: Two lists containing eigenvalues and eigenvectors. Args: jax: The jax module. Returns: Callable: A function performing an implicitly restarted Lanczos factorization
def _implicitly_restarted_lanczos(jax: types.ModuleType) -> Callable: """ Helper function to generate a jitted function to do an implicitly restarted lanczos factorization of `matvec`. The returned routine finds the lowest `numeig` eigenvector-eigenvalue pairs of `matvec` by alternating between compression and re-expansion of an initial `num_krylov_vecs`-step Lanczos factorization. Note: The caller has to ensure that the dtype of the return value of `matvec` matches the dtype of the initial state. Otherwise jax will raise a TypeError. The function signature of the returned function is Args: matvec: A callable representing the linear operator. args: Arguments to `matvec`. `matvec` is called with `matvec(x, *args)` with `x` the input array on which `matvec` should act. initial_state: An starting vector for the iteration. num_krylov_vecs: Number of krylov vectors of the lanczos factorization. numeig: The number of desired eigenvector-eigenvalue pairs. which: Which eigenvalues to target. Currently supported: `which = 'LR'` or `which = 'SR'`. tol: Convergence flag. If the norm of a krylov vector drops below `tol` the iteration is terminated. maxiter: Maximum number of (outer) iteration steps. Returns: eta, U: Two lists containing eigenvalues and eigenvectors. Args: jax: The jax module. Returns: Callable: A function performing an implicitly restarted Lanczos factorization """ JaxPrecisionType = type(jax.lax.Precision.DEFAULT) lanczos_fact = _generate_lanczos_factorization(jax) @functools.partial(jax.jit, static_argnums=(3, 4, 5, 6, 7, 8)) def implicitly_restarted_lanczos_method( matvec: Callable, args: List, initial_state: jax.ShapedArray, num_krylov_vecs: int, numeig: int, which: Text, tol: float, maxiter: int, precision: JaxPrecisionType ) -> Tuple[jax.ShapedArray, List[jax.ShapedArray], int]: """ Implicitly restarted lanczos factorization of `matvec`. The routine finds the lowest `numeig` eigenvector-eigenvalue pairs of `matvec` by alternating between compression and re-expansion of an initial `num_krylov_vecs`-step Lanczos factorization. Note: The caller has to ensure that the dtype of the return value of `matvec` matches the dtype of the initial state. Otherwise jax will raise a TypeError. NOTE: Under certain circumstances, the routine can return spurious eigenvalues 0.0: if the Lanczos iteration terminated early (after numits < num_krylov_vecs iterations) and numeig > numits, then spurious 0.0 eigenvalues will be returned. References: http://emis.impa.br/EMIS/journals/ETNA/vol.2.1994/pp1-21.dir/pp1-21.pdf http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter11.pdf Args: matvec: A callable representing the linear operator. args: Arguments to `matvec`. `matvec` is called with `matvec(x, *args)` with `x` the input array on which `matvec` should act. initial_state: An starting vector for the iteration. num_krylov_vecs: Number of krylov vectors of the lanczos factorization. numeig: The number of desired eigenvector-eigenvalue pairs. which: Which eigenvalues to target. Currently supported: `which = 'LR'` (largest real part). tol: Convergence flag. If the norm of a krylov vector drops below `tol` the iteration is terminated. maxiter: Maximum number of (outer) iteration steps. precision: jax.lax.Precision used within lax operations. Returns: jax.ShapedArray: Eigenvalues List: Eigenvectors int: Number of inner krylov iterations of the last lanczos factorization. """ shape = initial_state.shape dtype = initial_state.dtype dim = np.prod(shape).astype(np.int32) num_expand = num_krylov_vecs - numeig #note: the second part of the cond is for testing purposes if num_krylov_vecs <= numeig < dim: raise ValueError(f"num_krylov_vecs must be between numeig <" f" num_krylov_vecs <= dim = {dim}," f" num_krylov_vecs = {num_krylov_vecs}") if numeig > dim: raise ValueError(f"number of requested eigenvalues numeig = {numeig} " f"is larger than the dimension of the operator " f"dim = {dim}") # initialize arrays Vm = jax.numpy.zeros( (num_krylov_vecs, jax.numpy.ravel(initial_state).shape[0]), dtype=dtype) alphas = jax.numpy.zeros(num_krylov_vecs, dtype=dtype) betas = jax.numpy.zeros(num_krylov_vecs - 1, dtype=dtype) # perform initial lanczos factorization Vm, alphas, betas, residual, norm, numits, ar_converged = lanczos_fact( matvec, args, initial_state, Vm, alphas, betas, 0, num_krylov_vecs, tol, precision) fm = residual.ravel() * norm # generate needed functions shifted_QR = _shifted_QR(jax) check_eigvals_convergence = _check_eigvals_convergence_eigh(jax) get_vectors = _get_vectors(jax) # sort_fun returns `num_expand` least relevant eigenvalues # (those to be projected out) if which == 'LA': sort_fun = jax.tree_util.Partial(_LA_sort(jax), num_expand) elif which == 'SA': sort_fun = jax.tree_util.Partial(_SA_sort(jax), num_expand) elif which == 'LM': sort_fun = jax.tree_util.Partial(_LM_sort(jax), num_expand) else: raise ValueError(f"which = {which} not implemented") it = 1 # we already did one lanczos factorization def outer_loop(carry): alphas, betas, Vm, fm, it, numits, ar_converged, _, _, = carry # pack into alphas and betas into tridiagonal matrix Hm = jax.numpy.diag(alphas) + jax.numpy.diag(betas, -1) + jax.numpy.diag( betas.conj(), 1) evals, _ = jax.numpy.linalg.eigh(Hm) shifts, _ = sort_fun(evals) # perform shifted QR iterations to compress lanczos factorization # Note that ||fk|| typically decreases as one iterates the outer loop # indicating that iram converges. # ||fk|| = \beta_m in reference above Vk, Hk, fk = shifted_QR(Vm, Hm, fm, shifts, numeig) # extract new alphas and betas alphas = jax.numpy.diag(Hk) betas = jax.numpy.diag(Hk, -1) alphas = alphas.at[numeig:].set(0.0) betas = betas.at[numeig-1:].set(0.0) beta_k = jax.numpy.linalg.norm(fk) Hktest = Hk[:numeig, :numeig] matnorm = jax.numpy.linalg.norm(Hktest) converged = check_eigvals_convergence(beta_k, Hktest, matnorm, tol) def do_lanczos(vals): Vk, alphas, betas, fk, _, _, _, _ = vals # restart Vm, alphas, betas, residual, norm, numits, ar_converged = lanczos_fact( matvec, args, jax.numpy.reshape(fk, shape), Vk, alphas, betas, numeig, num_krylov_vecs, tol, precision) fm = residual.ravel() * norm return [Vm, alphas, betas, fm, norm, numits, ar_converged, False] def cond_lanczos(vals): return vals[7] res = jax.lax.while_loop(cond_lanczos, do_lanczos, [ Vk, alphas, betas, fk, jax.numpy.linalg.norm(fk), numeig, False, jax.numpy.logical_not(converged) ]) Vm, alphas, betas, fm, norm, numits, ar_converged = res[0:7] out_vars = [ alphas, betas, Vm, fm, it + 1, numits, ar_converged, converged, norm ] return out_vars def cond_fun(carry): it, ar_converged, converged = carry[4], carry[6], carry[7] return jax.lax.cond( it < maxiter, lambda x: x, lambda x: False, jax.numpy.logical_not(jax.numpy.logical_or(converged, ar_converged))) converged = False carry = [alphas, betas, Vm, fm, it, numits, ar_converged, converged, norm] res = jax.lax.while_loop(cond_fun, outer_loop, carry) alphas, betas, Vm = res[0], res[1], res[2] numits, ar_converged, converged = res[5], res[6], res[7] Hm = jax.numpy.diag(alphas) + jax.numpy.diag(betas, -1) + jax.numpy.diag( betas.conj(), 1) # FIXME (mganahl): under certain circumstances, the routine can still # return spurious 0 eigenvalues: if lanczos terminated early # (after numits < num_krylov_vecs iterations) # and numeig > numits, then spurious 0.0 eigenvalues will be returned Hm = (numits > jax.numpy.arange(num_krylov_vecs))[:, None] * Hm * ( numits > jax.numpy.arange(num_krylov_vecs))[None, :] eigvals, U = jax.numpy.linalg.eigh(Hm) inds = sort_fun(eigvals)[1][:numeig] vectors = get_vectors(Vm, U, inds, numeig) return eigvals[inds], [ jax.numpy.reshape(vectors[n, :], shape) for n in range(numeig) ], numits return implicitly_restarted_lanczos_method
Allows Jax (the module) to be passed in as an argument rather than imported, since doing the latter breaks the build. In addition, instantiates certain of the enclosed functions as concrete objects within a Dict, allowing them to be cached. This avoids spurious recompilations that would otherwise be triggered by attempts to pass callables into Jitted functions. The important function here is functions["gmres_m"], which implements GMRES. The other functions are exposed only for testing. Args: ---- jax: The imported Jax module. Returns: ------- functions: A namedtuple of functions: functions.gmres_m = gmres_m functions.gmres_residual = gmres_residual functions.gmres_krylov = gmres_krylov functions.gs_step = _gs_step functions.kth_arnoldi_step = kth_arnoldi_step functions.givens_rotation = givens_rotation
def gmres_wrapper(jax: types.ModuleType): """ Allows Jax (the module) to be passed in as an argument rather than imported, since doing the latter breaks the build. In addition, instantiates certain of the enclosed functions as concrete objects within a Dict, allowing them to be cached. This avoids spurious recompilations that would otherwise be triggered by attempts to pass callables into Jitted functions. The important function here is functions["gmres_m"], which implements GMRES. The other functions are exposed only for testing. Args: ---- jax: The imported Jax module. Returns: ------- functions: A namedtuple of functions: functions.gmres_m = gmres_m functions.gmres_residual = gmres_residual functions.gmres_krylov = gmres_krylov functions.gs_step = _gs_step functions.kth_arnoldi_step = kth_arnoldi_step functions.givens_rotation = givens_rotation """ jnp = jax.numpy JaxPrecisionType = type(jax.lax.Precision.DEFAULT) def gmres_m( A_mv: Callable, A_args: Sequence, b: jax.ShapedArray, x0: jax.ShapedArray, tol: float, atol: float, num_krylov_vectors: int, maxiter: int, precision: JaxPrecisionType) -> Tuple[jax.ShapedArray, float, int, bool]: """ Solve A x = b for x using the m-restarted GMRES method. This is intended to be called via jax_backend.gmres. Given a linear mapping with (n x n) matrix representation A = A_mv(*A_args) gmres_m solves Ax = b (1) where x and b are length-n vectors, using the method of Generalized Minimum RESiduals with M iterations per restart (GMRES_M). Args: A_mv: A function v0 = A_mv(v, *A_args) where v0 and v have the same shape. A_args: A list of positional arguments to A_mv. b: The b in A @ x = b. x0: Initial guess solution. tol, atol: Solution tolerance to achieve, norm(residual) <= max(tol * norm(b), atol). tol is also used to set the threshold at which the Arnoldi factorization terminates. num_krylov_vectors: Size of the Krylov space to build at each restart. maxiter: The Krylov space will be repeatedly rebuilt up to this many times. Returns: x: The approximate solution. beta: Norm of the residual at termination. n_iter: Number of iterations at termination. converged: Whether the desired tolerance was achieved. """ num_krylov_vectors = min(num_krylov_vectors, b.size) x = x0 b_norm = jnp.linalg.norm(b) tol = max(tol * b_norm, atol) for n_iter in range(maxiter): done, beta, x = gmres(A_mv, A_args, b, x, num_krylov_vectors, x0, tol, b_norm, precision) if done: break return x, beta, n_iter, done def gmres(A_mv: Callable, A_args: Sequence, b: jax.ShapedArray, x: jax.ShapedArray, num_krylov_vectors: int, x0: jax.ShapedArray, tol: float, b_norm: float, precision: JaxPrecisionType) -> Tuple[bool, float, jax.ShapedArray]: """ A single restart of GMRES. Args: A_mv: A function `v0 = A_mv(v, *A_args)` where `v0` and `v` have the same shape. A_args: A list of positional arguments to A_mv. b: The `b` in `A @ x = b`. x: Initial guess solution. tol: Solution tolerance to achieve, num_krylov_vectors : Size of the Krylov space to build. Returns: done: Whether convergence was achieved. beta: Magnitude of residual (i.e. the error estimate). x: The approximate solution. """ r, beta = gmres_residual(A_mv, A_args, b, x) k, V, R, beta_vec = gmres_krylov(A_mv, A_args, num_krylov_vectors, x0, r, beta, tol, b_norm, precision) x = gmres_update(k, V, R, beta_vec, x0) done = k < num_krylov_vectors - 1 return done, beta, x @jax.jit def gmres_residual(A_mv: Callable, A_args: Sequence, b: jax.ShapedArray, x: jax.ShapedArray) -> Tuple[jax.ShapedArray, float]: """ Computes the residual vector r and its norm, beta, which is minimized by GMRES. Args: A_mv: A function v0 = A_mv(v, *A_args) where v0 and v have the same shape. A_args: A list of positional arguments to A_mv. b: The b in A @ x = b. x: Initial guess solution. Returns: r: The residual vector. beta: Its magnitude. """ r = b - A_mv(x, *A_args) beta = jnp.linalg.norm(r) return r, beta def gmres_update(k: int, V: jax.ShapedArray, R: jax.ShapedArray, beta_vec: jax.ShapedArray, x0: jax.ShapedArray) -> jax.ShapedArray: """ Updates the solution in response to the information computed by the main GMRES loop. Args: k: The final iteration which was reached by GMRES before convergence. V: The Arnoldi matrix of Krylov vectors. R: The R factor in H = QR where H is the Arnoldi overlap matrix. beta_vec: Stores the Givens factors used to map H into QR. x0: The initial guess solution. Returns: x: The updated solution. """ q = min(k, R.shape[1]) y = jax.scipy.linalg.solve_triangular(R[:q, :q], beta_vec[:q]) x = x0 + V[:, :q] @ y return x @functools.partial(jax.jit, static_argnums=(2, 8)) def gmres_krylov( A_mv: Callable, A_args: Sequence, n_kry: int, x0: jax.ShapedArray, r: jax.ShapedArray, beta: float, tol: float, b_norm: float, precision: JaxPrecisionType ) -> Tuple[int, jax.ShapedArray, jax.ShapedArray, jax.ShapedArray]: """ Builds the Arnoldi decomposition of (A, v), where v is the normalized residual of the current solution estimate. The decomposition is returned as V, R, where V is the usual matrix of Krylov vectors and R is the upper triangular matrix in H = QR, with H the usual matrix of overlaps. Args: A_mv: A function `v0 = A_mv(v, *A_args)` where `v0` and `v` have the same shape. A_args: A list of positional arguments to A_mv. n_kry: Size of the Krylov space to build; this is called num_krylov_vectors in higher level code. x0: Guess solution. r: Residual vector. beta: Magnitude of r. tol: Solution tolerance to achieve. b_norm: Magnitude of b in Ax = b. Returns: k: Counts the number of iterations before convergence. V: The Arnoldi matrix of Krylov vectors. R: From H = QR where H is the Arnoldi matrix of overlaps. beta_vec: Stores Q implicitly as Givens factors. """ n = r.size err = beta v = r / beta # These will store the Givens rotations used to update the QR decompositions # of the Arnoldi matrices. # cos : givens[0, :] # sine: givens[1, :] givens = jnp.zeros((2, n_kry), dtype=x0.dtype) beta_vec = jnp.zeros((n_kry + 1), dtype=x0.dtype) beta_vec = jax.ops.index_update(beta_vec, jax.ops.index[0], beta) V = jnp.zeros((n, n_kry + 1), dtype=x0.dtype) V = jax.ops.index_update(V, jax.ops.index[:, 0], v) R = jnp.zeros((n_kry + 1, n_kry), dtype=x0.dtype) # The variable data for the carry call. Each iteration modifies these # values and feeds the results to the next iteration. k = 0 gmres_variables = (k, V, R, beta_vec, err, # < The actual output we need. givens) # < Modified between iterations. gmres_constants = (tol, A_mv, A_args, b_norm, n_kry) gmres_carry = (gmres_variables, gmres_constants) # The 'x' input for the carry call. Each iteration will receive an ascending # loop index (from the jnp.arange) along with the constant data # in gmres_constants. def gmres_krylov_work(gmres_carry: GmresCarryType) -> GmresCarryType: """ Performs a single iteration of gmres_krylov. See that function for a more detailed description. Args: gmres_carry: The gmres_carry from gmres_krylov. Returns: gmres_carry: The updated gmres_carry. """ gmres_variables, gmres_constants = gmres_carry k, V, R, beta_vec, err, givens = gmres_variables tol, A_mv, A_args, b_norm, _ = gmres_constants V, H = kth_arnoldi_step(k, A_mv, A_args, V, R, tol, precision) R_col, givens = apply_givens_rotation(H[:, k], givens, k) R = jax.ops.index_update(R, jax.ops.index[:, k], R_col[:]) # Update the residual vector. cs, sn = givens[:, k] * beta_vec[k] beta_vec = jax.ops.index_update(beta_vec, jax.ops.index[k], cs) beta_vec = jax.ops.index_update(beta_vec, jax.ops.index[k + 1], sn) err = jnp.abs(sn) / b_norm gmres_variables = (k + 1, V, R, beta_vec, err, givens) return (gmres_variables, gmres_constants) def gmres_krylov_loop_condition(gmres_carry: GmresCarryType) -> bool: """ This function dictates whether the main GMRES while loop will proceed. It is equivalent to: if k < n_kry and err > tol: return True else: return False where k, n_kry, err, and tol are unpacked from gmres_carry. Args: gmres_carry: The gmres_carry from gmres_krylov. Returns: (bool): Whether to continue iterating. """ gmres_constants, gmres_variables = gmres_carry tol = gmres_constants[0] k = gmres_variables[0] err = gmres_variables[4] n_kry = gmres_constants[4] def is_iterating(k, n_kry): return k < n_kry def not_converged(args): err, tol = args return err >= tol return jax.lax.cond(is_iterating(k, n_kry), # Predicate. not_converged, # Called if True. lambda x: False, # Called if False. (err, tol)) # Arguments to calls. gmres_carry = jax.lax.while_loop(gmres_krylov_loop_condition, gmres_krylov_work, gmres_carry) gmres_variables, gmres_constants = gmres_carry k, V, R, beta_vec, err, givens = gmres_variables return (k, V, R, beta_vec) VarType = Tuple[int, jax.ShapedArray, jax.ShapedArray, jax.ShapedArray, float, jax.ShapedArray] ConstType = Tuple[float, Callable, Sequence, jax.ShapedArray, int] GmresCarryType = Tuple[VarType, ConstType] @functools.partial(jax.jit, static_argnums=(6,)) def kth_arnoldi_step( k: int, A_mv: Callable, A_args: Sequence, V: jax.ShapedArray, H: jax.ShapedArray, tol: float, precision: JaxPrecisionType) -> Tuple[jax.ShapedArray, jax.ShapedArray]: """ Performs the kth iteration of the Arnoldi reduction procedure. Args: k: The current iteration. A_mv, A_args: A function A_mv(v, *A_args) performing a linear transformation on v. V: A matrix of size (n, K + 1), K > k such that each column in V[n, :k+1] stores a Krylov vector and V[:, k+1] is all zeroes. H: A matrix of size (K, K), K > k with H[:, k] all zeroes. Returns: V, H: With their k'th columns respectively filled in by a new orthogonalized Krylov vector and new overlaps. """ def _gs_step( r: jax.ShapedArray, v_i: jax.ShapedArray) -> Tuple[jax.ShapedArray, jax.ShapedArray]: """ Performs one iteration of the stabilized Gram-Schmidt procedure, with r to be orthonormalized against {v} = {v_0, v_1, ...}. Args: r: The new vector which is not in the initially orthonormal set. v_i: The i'th vector in that set. Returns: r_i: The updated r which is now orthonormal with v_i. h_i: The overlap of r with v_i. """ h_i = jnp.vdot(v_i, r, precision=precision) r_i = r - h_i * v_i return r_i, h_i v = A_mv(V[:, k], *A_args) v_new, H_k = jax.lax.scan(_gs_step, init=v, xs=V.T) v_norm = jnp.linalg.norm(v_new) r_new = v_new / v_norm # Normalize v unless it is the zero vector. r_new = jax.lax.cond(v_norm > tol, lambda x: x[0] / x[1], lambda x: 0.*x[0], (v_new, v_norm) ) H = jax.ops.index_update(H, jax.ops.index[:, k], H_k) H = jax.ops.index_update(H, jax.ops.index[k+1, k], v_norm) V = jax.ops.index_update(V, jax.ops.index[:, k+1], r_new) return V, H #################################################################### # GIVENS ROTATIONS #################################################################### @jax.jit def apply_rotations(H_col: jax.ShapedArray, givens: jax.ShapedArray, k: int) -> jax.ShapedArray: """ Successively applies each of the rotations stored in givens to H_col. Args: H_col : The vector to be rotated. givens: 2 x K, K > k matrix of rotation factors. k : Iteration number. Returns: H_col : The rotated vector. """ rotation_carry = (H_col, 0, k, givens) def loop_condition(carry): i = carry[1] k = carry[2] return jax.lax.cond(i < k, lambda x: True, lambda x: False, 0) def apply_ith_rotation(carry): H_col, i, k, givens = carry cs = givens[0, i] sn = givens[1, i] H_i = cs * H_col[i] - sn * H_col[i + 1] H_ip1 = sn * H_col[i] + cs * H_col[i + 1] H_col = jax.ops.index_update(H_col, jax.ops.index[i], H_i) H_col = jax.ops.index_update(H_col, jax.ops.index[i + 1], H_ip1) return (H_col, i + 1, k, givens) rotation_carry = jax.lax.while_loop(loop_condition, apply_ith_rotation, rotation_carry) H_col = rotation_carry[0] return H_col @jax.jit def apply_givens_rotation(H_col: jax.ShapedArray, givens: jax.ShapedArray, k: int) -> Tuple[jax.ShapedArray, jax.ShapedArray]: """ Applies the Givens rotations stored in the vectors cs and sn to the vector H_col. Then constructs a new Givens rotation that eliminates H_col's k'th element, yielding the corresponding column of the R in H's QR decomposition. Returns the new column of R along with the new Givens factors. Args: H_col : The column of H to be rotated. givens: A matrix representing the cosine and sine factors of the previous GMRES Givens rotations, in that order (i.e. givens[0, :] -> the cos factor). k : Iteration number. Returns: R_col : The column of R obtained by transforming H_col. givens_k: The new elements of givens that zeroed out the k+1'th element of H_col. """ # This call successively applies each of the # Givens rotations stored in givens[:, :k] to H_col. H_col = apply_rotations(H_col, givens, k) cs_k, sn_k = givens_rotation(H_col[k], H_col[k + 1]) givens = jax.ops.index_update(givens, jax.ops.index[0, k], cs_k) givens = jax.ops.index_update(givens, jax.ops.index[1, k], sn_k) r_k = cs_k * H_col[k] - sn_k * H_col[k + 1] R_col = jax.ops.index_update(H_col, jax.ops.index[k], r_k) R_col = jax.ops.index_update(R_col, jax.ops.index[k + 1], 0.) return R_col, givens @jax.jit def givens_rotation(v1: float, v2: float) -> Tuple[float, float]: """ Given scalars v1 and v2, computes cs = cos(theta) and sn = sin(theta) so that [cs -sn] @ [v1] = [r] [sn cs] [v2] [0] Args: v1, v2: The scalars. Returns: cs, sn: The rotation factors. """ t = jnp.sqrt(v1**2 + v2**2) cs = v1 / t sn = -v2 / t return cs, sn fnames = [ "gmres_m", "gmres_residual", "gmres_krylov", "kth_arnoldi_step", "givens_rotation" ] functions = [ gmres_m, gmres_residual, gmres_krylov, kth_arnoldi_step, givens_rotation ] class Functions: def __init__(self, fun_dict): self.dict = fun_dict def __getattr__(self, name): return self.dict[name] return Functions(dict(zip(fnames, functions)))
GMRES produces the correct result on an analytically solved linear system.
def test_gmres_on_small_known_problem(dtype): """ GMRES produces the correct result on an analytically solved linear system. """ dummy = jax.numpy.zeros(1, dtype=dtype) dtype = dummy.dtype gmres = jitted_functions.gmres_wrapper(jax) A = jax.numpy.array(([[1, 1], [3, -4]]), dtype=dtype) b = jax.numpy.array([3, 2], dtype=dtype) x0 = jax.numpy.ones(2, dtype=dtype) n_kry = 2 maxiter = 1 @jax.tree_util.Partial def A_mv(x): return A @ x tol = A.size*jax.numpy.finfo(dtype).eps x, _, _, _ = gmres.gmres_m(A_mv, [], b, x0, tol, tol, n_kry, maxiter, precision) solution = jax.numpy.array([2., 1.], dtype=dtype) np.testing.assert_allclose(x, solution, atol=tol)
gmres_krylov correctly builds the QR-decomposed Arnoldi decomposition. This function assumes that gmres["kth_arnoldi_step (which is independently tested) is correct.
def test_gmres_krylov(dtype): """ gmres_krylov correctly builds the QR-decomposed Arnoldi decomposition. This function assumes that gmres["kth_arnoldi_step (which is independently tested) is correct. """ dummy = jax.numpy.zeros(1, dtype=dtype) dtype = dummy.dtype gmres = jitted_functions.gmres_wrapper(jax) n = 2 n_kry = n np.random.seed(10) @jax.tree_util.Partial def A_mv(x): return A @ x A = jax.numpy.array(np.random.rand(n, n).astype(dtype)) tol = A.size*jax.numpy.finfo(dtype).eps x0 = jax.numpy.array(np.random.rand(n).astype(dtype)) b = jax.numpy.array(np.random.rand(n), dtype=dtype) r, beta = gmres.gmres_residual(A_mv, [], b, x0) _, V, R, _ = gmres.gmres_krylov(A_mv, [], n_kry, x0, r, beta, tol, jax.numpy.linalg.norm(b), precision) phases = jax.numpy.sign(jax.numpy.diagonal(R[:-1, :])) R = phases.conj()[:, None] * R[:-1, :] Vtest = np.zeros((n, n_kry + 1), dtype=x0.dtype) Vtest[:, 0] = r/beta Vtest = jax.numpy.array(Vtest) Htest = jax.numpy.zeros((n_kry + 1, n_kry), dtype=x0.dtype) for k in range(n_kry): Vtest, Htest = gmres.kth_arnoldi_step(k, A_mv, [], Vtest, Htest, tol, precision) _, Rtest = jax.numpy.linalg.qr(Htest) phases = jax.numpy.sign(jax.numpy.diagonal(Rtest)) Rtest = phases.conj()[:, None] * Rtest np.testing.assert_allclose(V, Vtest, atol=tol) np.testing.assert_allclose(R, Rtest, atol=tol)
The Arnoldi decomposition within GMRES is correct.
def test_gmres_arnoldi_step(dtype): """ The Arnoldi decomposition within GMRES is correct. """ gmres = jitted_functions.gmres_wrapper(jax) dummy = jax.numpy.zeros(1, dtype=dtype) dtype = dummy.dtype n = 4 n_kry = n np.random.seed(10) A = jax.numpy.array(np.random.rand(n, n).astype(dtype)) x0 = jax.numpy.array(np.random.rand(n).astype(dtype)) Q = np.zeros((n, n_kry + 1), dtype=x0.dtype) Q[:, 0] = x0/jax.numpy.linalg.norm(x0) Q = jax.numpy.array(Q) H = jax.numpy.zeros((n_kry + 1, n_kry), dtype=x0.dtype) tol = A.size*jax.numpy.finfo(dtype).eps @jax.tree_util.Partial def A_mv(x): return A @ x for k in range(n_kry): Q, H = gmres.kth_arnoldi_step(k, A_mv, [], Q, H, tol, precision) QAQ = Q[:, :n_kry].conj().T @ A @ Q[:, :n_kry] np.testing.assert_allclose(H[:n_kry, :], QAQ, atol=tol)
gmres["givens_rotation produces the correct rotation factors.
def test_givens(dtype): """ gmres["givens_rotation produces the correct rotation factors. """ gmres = jitted_functions.gmres_wrapper(jax) np.random.seed(10) v = jax.numpy.array(np.random.rand(2).astype(dtype)) cs, sn = gmres.givens_rotation(*v) rot = np.zeros((2, 2), dtype=dtype) rot[0, 0] = cs rot[1, 1] = cs rot[0, 1] = -sn rot[1, 0] = sn rot = jax.numpy.array(rot) result = rot @ v tol = 4*jax.numpy.finfo(dtype).eps np.testing.assert_allclose(result[-1], 0., atol=tol)
Computes the singular value decomposition (SVD) of a tensor. See tensornetwork.backends.tensorflow.decompositions for details.
def svd( np, # TODO: Typing tensor: Tensor, pivot_axis: int, max_singular_values: Optional[int] = None, max_truncation_error: Optional[float] = None, relative: Optional[bool] = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """Computes the singular value decomposition (SVD) of a tensor. See tensornetwork.backends.tensorflow.decompositions for details. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] tensor = np.reshape(tensor, [numpy.prod(left_dims), numpy.prod(right_dims)]) u, s, vh = np.linalg.svd(tensor, full_matrices=False) if max_singular_values is None: max_singular_values = np.size(s) if max_truncation_error is not None: # Cumulative norms of singular values in ascending order. trunc_errs = np.sqrt(np.cumsum(np.square(s[::-1]))) # If relative is true, rescale max_truncation error with the largest # singular value to yield the absolute maximal truncation error. if relative: abs_max_truncation_error = max_truncation_error * s[0] else: abs_max_truncation_error = max_truncation_error # We must keep at least this many singular values to ensure the # truncation error is <= abs_max_truncation_error. num_sing_vals_err = np.count_nonzero( (trunc_errs > abs_max_truncation_error).astype(np.int32)) else: num_sing_vals_err = max_singular_values num_sing_vals_keep = min(max_singular_values, num_sing_vals_err) # tf.svd() always returns the singular values as a vector of float{32,64}. # since tf.math_ops.real is automatically applied to s. This causes # s to possibly not be the same dtype as the original tensor, which can cause # issues for later contractions. To fix it, we recast to the original dtype. s = s.astype(tensor.dtype) s_rest = s[num_sing_vals_keep:] s = s[:num_sing_vals_keep] u = u[:, :num_sing_vals_keep] vh = vh[:num_sing_vals_keep, :] dim_s = s.shape[0] u = np.reshape(u, list(left_dims) + [dim_s]) vh = np.reshape(vh, [dim_s] + list(right_dims)) return u, s, vh, s_rest
Computes the QR decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details.
def qr( np, # TODO: Typing tensor: Tensor, pivot_axis: int, non_negative_diagonal: bool ) -> Tuple[Tensor, Tensor]: """Computes the QR decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] tensor = np.reshape(tensor, [numpy.prod(left_dims), numpy.prod(right_dims)]) q, r = np.linalg.qr(tensor) if non_negative_diagonal: phases = np.sign(np.diagonal(r)) q = q * phases r = phases.conj()[:, None] * r center_dim = q.shape[1] q = np.reshape(q, list(left_dims) + [center_dim]) r = np.reshape(r, [center_dim] + list(right_dims)) return q, r
Computes the RQ (reversed QR) decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details.
def rq( np, # TODO: Typing tensor: Tensor, pivot_axis: int, non_negative_diagonal: bool ) -> Tuple[Tensor, Tensor]: """Computes the RQ (reversed QR) decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] tensor = np.reshape(tensor, [numpy.prod(left_dims), numpy.prod(right_dims)]) q, r = np.linalg.qr(np.conj(np.transpose(tensor))) if non_negative_diagonal: phases = np.sign(np.diagonal(r)) q = q * phases r = phases.conj()[:, None] * r r, q = np.conj(np.transpose(r)), np.conj( np.transpose(q)) #M=r*q at this point center_dim = r.shape[1] r = np.reshape(r, list(left_dims) + [center_dim]) q = np.reshape(q, [center_dim] + list(right_dims)) return r, q
Computes the singular value decomposition (SVD) of a tensor. The SVD is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `u` would have shape (2, 3, 6), `s` would have shape (6), and `vh` would have shape (6, 4, 5). If `max_singular_values` is set to an integer, the SVD is truncated to keep at most this many singular values. If `max_truncation_error > 0`, as many singular values will be truncated as possible, so that the truncation error (the norm of discarded singular values) is at most `max_truncation_error`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If both `max_singular_values` snd `max_truncation_error` are specified, the number of retained singular values will be `min(max_singular_values, nsv_auto_trunc)`, where `nsv_auto_trunc` is the number of singular values that must be kept to maintain a truncation error smaller than `max_truncation_error`. The output consists of three tensors `u, s, vh` such that: ```python u[i1,...,iN, j] * s[j] * vh[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. max_singular_values: The number of singular values to keep, or `None` to keep them all. max_truncation_error: The maximum allowed truncation error or `None` to not do any truncation. relative: Multiply `max_truncation_err` with the largest singular value. Returns: u: Left tensor factor. s: Vector of ordered singular values from largest to smallest. vh: Right tensor factor. s_rest: Vector of discarded singular values (length zero if no truncation).
def svd( torch: Any, tensor: Tensor, pivot_axis: int, max_singular_values: Optional[int] = None, max_truncation_error: Optional[float] = None, relative: Optional[bool] = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """Computes the singular value decomposition (SVD) of a tensor. The SVD is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `u` would have shape (2, 3, 6), `s` would have shape (6), and `vh` would have shape (6, 4, 5). If `max_singular_values` is set to an integer, the SVD is truncated to keep at most this many singular values. If `max_truncation_error > 0`, as many singular values will be truncated as possible, so that the truncation error (the norm of discarded singular values) is at most `max_truncation_error`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If both `max_singular_values` snd `max_truncation_error` are specified, the number of retained singular values will be `min(max_singular_values, nsv_auto_trunc)`, where `nsv_auto_trunc` is the number of singular values that must be kept to maintain a truncation error smaller than `max_truncation_error`. The output consists of three tensors `u, s, vh` such that: ```python u[i1,...,iN, j] * s[j] * vh[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. max_singular_values: The number of singular values to keep, or `None` to keep them all. max_truncation_error: The maximum allowed truncation error or `None` to not do any truncation. relative: Multiply `max_truncation_err` with the largest singular value. Returns: u: Left tensor factor. s: Vector of ordered singular values from largest to smallest. vh: Right tensor factor. s_rest: Vector of discarded singular values (length zero if no truncation). """ left_dims = list(tensor.shape)[:pivot_axis] right_dims = list(tensor.shape)[pivot_axis:] tensor = torch.reshape(tensor, (np.prod(left_dims), np.prod(right_dims))) u, s, v = torch.svd(tensor) if max_singular_values is None: max_singular_values = s.nelement() if max_truncation_error is not None: # Cumulative norms of singular values in ascending order s_sorted, _ = torch.sort(s**2) trunc_errs = torch.sqrt(torch.cumsum(s_sorted, 0)) # If relative is true, rescale max_truncation error with the largest # singular value to yield the absolute maximal truncation error. if relative: abs_max_truncation_error = max_truncation_error * s[0] else: abs_max_truncation_error = max_truncation_error # We must keep at least this many singular values to ensure the # truncation error is <= abs_max_truncation_error. num_sing_vals_err = torch.nonzero( trunc_errs > abs_max_truncation_error).nelement() else: num_sing_vals_err = max_singular_values num_sing_vals_keep = min(max_singular_values, num_sing_vals_err) # we recast to the original dtype. s = s.type(tensor.type()) s_rest = s[num_sing_vals_keep:] s = s[:num_sing_vals_keep] u = u[:, :num_sing_vals_keep] v = v[:, :num_sing_vals_keep] vh = torch.transpose(v, 0, 1) dim_s = s.shape[0] u = torch.reshape(u, left_dims + [dim_s]) vh = torch.reshape(vh, [dim_s] + right_dims) return u, s, vh, s_rest
Computes the QR decomposition of a tensor. The QR decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `q` would have shape (2, 3, 6), and `r` would have shape (6, 4, 5). The output consists of two tensors `Q, R` such that: ```python Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` `R` is an upper triangular matrix, `Q` is an orthonormal matrix Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. Returns: Q: Left tensor factor. R: Right tensor factor.
def qr( torch: Any, tensor: Tensor, pivot_axis: int, non_negative_diagonal: bool = False ) -> Tuple[Tensor, Tensor]: """Computes the QR decomposition of a tensor. The QR decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `q` would have shape (2, 3, 6), and `r` would have shape (6, 4, 5). The output consists of two tensors `Q, R` such that: ```python Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` `R` is an upper triangular matrix, `Q` is an orthonormal matrix Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. Returns: Q: Left tensor factor. R: Right tensor factor. """ left_dims = list(tensor.shape)[:pivot_axis] right_dims = list(tensor.shape)[pivot_axis:] tensor = torch.reshape(tensor, (np.prod(left_dims), np.prod(right_dims))) q, r = torch.qr(tensor) if non_negative_diagonal: phases = torch.sign(torch.diagonal(r)) q = q * phases r = phases[:, None] * r center_dim = q.shape[1] q = torch.reshape(q, list(left_dims) + [center_dim]) r = torch.reshape(r, [center_dim] + list(right_dims)) return q, r
Computes the RQ decomposition of a tensor. The RQ decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `r` would have shape (2, 3, 6), and `q` would have shape (6, 4, 5). The output consists of two tensors `R, Q` such that: ```python R[i1,...,iN, j] * Q[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` `R` is a lower triangular matrix, `Q` is an orthonormal matrix Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a p matrix. Returns: R: Left tensor factor. Q: Right tensor factor.
def rq( torch: Any, tensor: Tensor, pivot_axis: int, non_negative_diagonal: bool = False ) -> Tuple[Tensor, Tensor]: """Computes the RQ decomposition of a tensor. The RQ decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `r` would have shape (2, 3, 6), and `q` would have shape (6, 4, 5). The output consists of two tensors `R, Q` such that: ```python R[i1,...,iN, j] * Q[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` `R` is a lower triangular matrix, `Q` is an orthonormal matrix Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a p matrix. Returns: R: Left tensor factor. Q: Right tensor factor. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] tensor = torch.reshape(tensor, [np.prod(left_dims), np.prod(right_dims)]) #torch has currently no support for complex dtypes q, r = torch.qr(torch.transpose(tensor, 0, 1)) if non_negative_diagonal: phases = torch.sign(torch.diagonal(r)) q = q * phases r = phases[:, None] * r r, q = torch.transpose(r, 0, 1), torch.transpose(q, 0, 1) #M=r*q at this point center_dim = r.shape[1] r = torch.reshape(r, list(left_dims) + [center_dim]) q = torch.reshape(q, [center_dim] + list(right_dims)) return r, q
Computes the singular value decomposition (SVD) of a tensor. See tensornetwork.backends.tensorflow.decompositions for details.
def svd( bt, tensor: BlockSparseTensor, pivot_axis: int, max_singular_values: Optional[int] = None, max_truncation_error: Optional[float] = None, relative: Optional[bool] = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ Computes the singular value decomposition (SVD) of a tensor. See tensornetwork.backends.tensorflow.decompositions for details. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] matrix = bt.reshape(tensor, [np.prod(left_dims), np.prod(right_dims)]) flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, charges, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) u_blocks = [] singvals = [] v_blocks = [] for n, b in enumerate(blocks): out = np.linalg.svd( np.reshape(matrix.data[b], shapes[:, n]), full_matrices=False, compute_uv=True) u_blocks.append(out[0]) singvals.append(out[1]) v_blocks.append(out[2]) orig_num_singvals = np.int64(np.sum([len(s) for s in singvals])) orig_block_size = [len(s) for s in singvals] discarded_singvals = np.zeros(0, dtype=get_real_dtype(tensor.dtype)) if (max_singular_values is not None) and (max_singular_values >= orig_num_singvals): max_singular_values = None if (max_truncation_error is not None) or (max_singular_values is not None): max_D = np.max([len(s) for s in singvals]) if len(singvals) > 0 else 0 #extend singvals of all blocks into a matrix by padding each block with 0 if len(singvals) > 0: extended_singvals = np.stack([ np.append(s, np.zeros(max_D - len(s), dtype=s.dtype)) for s in singvals ], axis=1) else: extended_singvals = np.empty((0, 0), dtype=get_real_dtype(tensor.dtype)) extended_flat_singvals = np.ravel(extended_singvals) #sort singular values inds = np.argsort(extended_flat_singvals, kind='stable') discarded_inds = np.zeros(0, dtype=SIZE_T) if max_truncation_error is not None: if relative and (len(singvals) > 0): max_truncation_error = max_truncation_error * np.max( [s[0] for s in singvals]) kept_inds_mask = np.sqrt( np.cumsum(np.square( extended_flat_singvals[inds]))) > max_truncation_error trunc_inds_mask = np.logical_not(kept_inds_mask) discarded_inds = inds[trunc_inds_mask] inds = inds[kept_inds_mask] if max_singular_values is not None: #if the original number of non-zero singular values #is smaller than `max_singular_values` we need to reset #`max_singular_values` (we were filling in 0.0 into singular #value blocks to facilitate trunction steps, thus we could end up #with more singular values than originally there). if max_singular_values > orig_num_singvals: max_singular_values = orig_num_singvals if max_singular_values < len(inds): discarded_inds = np.append(discarded_inds, inds[:(-1) * max_singular_values]) inds = inds[(-1) * max_singular_values::] if len(inds) == 0: #special case of truncation to 0 dimension; warnings.warn("svd_decomposition truncated to 0 dimensions.") if extended_singvals.shape[1] > 0: #pylint: disable=no-member keep = np.divmod(inds, extended_singvals.shape[1]) disc = np.divmod(discarded_inds, extended_singvals.shape[1]) else: keep = (np.zeros(1, dtype=SIZE_T), np.zeros(1, dtype=SIZE_T)) disc = (np.zeros(0, dtype=SIZE_T), np.zeros(0, dtype=SIZE_T)) newsingvals = [ extended_singvals[keep[0][keep[1] == n], keep[1][keep[1] == n]][::-1] for n in range(extended_singvals.shape[1]) ] discsingvals = [ extended_singvals[disc[0][disc[1] == n], disc[1][disc[1] == n]][::-1] for n in range(extended_singvals.shape[1]) ] new_block_size = [len(s) for s in newsingvals] discsingvals = [ d[:(orig_block_size[n] - new_block_size[n])] for n, d in enumerate(discsingvals) ] singvals = newsingvals discarded_singvals = discsingvals if len(singvals) > 0: left_singval_charge_labels = np.concatenate([ np.full(singvals[n].shape[0], fill_value=n, dtype=np.int16) for n in range(len(singvals)) ]) all_singvals = np.concatenate(singvals) #define the new charges on the two central bonds left_charge_labels = np.concatenate([ np.full(len(singvals[n]), fill_value=n, dtype=np.int16) for n in range(len(u_blocks)) ]) right_charge_labels = np.concatenate([ np.full(len(singvals[n]), fill_value=n, dtype=np.int16) for n in range(len(v_blocks)) ]) all_ublocks = np.concatenate([ np.ravel(np.transpose(u_blocks[n][:, 0:len(singvals[n])])) for n in range(len(u_blocks)) ]) all_vblocks = np.concatenate([ np.ravel(v_blocks[n][0:len(singvals[n]), :]) for n in range(len(v_blocks)) ]) else: left_singval_charge_labels = np.empty(0, dtype=np.int16) all_singvals = np.empty(0, dtype=get_real_dtype(tensor.dtype)) left_charge_labels = np.empty(0, dtype=np.int16) right_charge_labels = np.empty(0, dtype=np.int16) all_ublocks = np.empty(0, dtype=get_real_dtype(tensor.dtype)) all_vblocks = np.empty(0, dtype=get_real_dtype(tensor.dtype)) if len(discarded_singvals) > 0: tmp_labels = [ np.full(discarded_singvals[n].shape[0], fill_value=n, dtype=np.int16) for n in range(len(discarded_singvals)) ] left_discarded_singval_charge_labels = np.concatenate(tmp_labels) all_discarded_singvals = np.concatenate(discarded_singvals) else: left_discarded_singval_charge_labels = np.empty(0, dtype=np.int16) all_discarded_singvals = np.empty(0, dtype=get_real_dtype(tensor.dtype)) left_singval_charge = charges[left_singval_charge_labels] S = ChargeArray(all_singvals, [left_singval_charge], [False]) left_discarded_singval_charge = charges[left_discarded_singval_charge_labels] Sdisc = ChargeArray(all_discarded_singvals, [left_discarded_singval_charge], [False]) new_left_charge = charges[left_charge_labels] new_right_charge = charges[right_charge_labels] #get the indices of the new tensors U,S and V charges_u = [new_left_charge] + [matrix._charges[o] for o in matrix._order[0]] order_u = [[0]] + [list(np.arange(1, len(matrix._order[0]) + 1))] flows_u = [True] + [matrix._flows[o] for o in matrix._order[0]] charges_v = [new_right_charge ] + [matrix._charges[o] for o in matrix._order[1]] flows_v = [False] + [matrix._flows[o] for o in matrix._order[1]] order_v = [[0]] + [list(np.arange(1, len(matrix._order[1]) + 1))] #We fill in data into the transposed U U = BlockSparseTensor( all_ublocks, charges=charges_u, flows=flows_u, order=order_u, check_consistency=False).transpose((1, 0)) V = BlockSparseTensor( all_vblocks, charges=charges_v, flows=flows_v, order=order_v, check_consistency=False) left_shape = left_dims + (S.shape[0],) right_shape = (S.shape[0],) + right_dims return U.reshape(left_shape), S, V.reshape(right_shape), Sdisc
Computes the QR decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details.
def qr(bt, tensor: BlockSparseTensor, pivot_axis: int) -> Tuple[Tensor, Tensor]: """Computes the QR decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] tensor = bt.reshape(tensor, [np.prod(left_dims), np.prod(right_dims)]) q, r = bt.qr(tensor) center_dim = q.shape[1] q = bt.reshape(q, list(left_dims) + [center_dim]) r = bt.reshape(r, [center_dim] + list(right_dims)) return q, r
Computes the RQ (reversed QR) decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details.
def rq(bt, tensor: BlockSparseTensor, pivot_axis: int) -> Tuple[Tensor, Tensor]: """Computes the RQ (reversed QR) decomposition of a tensor. See tensornetwork.backends.tensorflow.decompositions for details. """ left_dims = tensor.shape[:pivot_axis] right_dims = tensor.shape[pivot_axis:] tensor = bt.reshape(tensor, [np.prod(left_dims), np.prod(right_dims)]) q, r = bt.qr(bt.conj(bt.transpose(tensor, (1, 0)))) r, q = bt.conj(bt.transpose(r, (1, 0))), bt.conj(bt.transpose( q, (1, 0))) #M=r*q at this point center_dim = r.shape[1] r = bt.reshape(r, list(left_dims) + [center_dim]) q = bt.reshape(q, [center_dim] + list(right_dims)) return r, q
Computes the singular value decomposition (SVD) of a tensor. The SVD is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `u` would have shape (2, 3, 6), `s` would have shape (6), and `vh` would have shape (6, 4, 5). If `max_singular_values` is set to an integer, the SVD is truncated to keep at most this many singular values. If `max_truncation_error > 0`, as many singular values will be truncated as possible, so that the truncation error (the norm of discarded singular values) is at most `max_truncation_error`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If both `max_singular_values` snd `max_truncation_error` are specified, the number of retained singular values will be `min(max_singular_values, nsv_auto_trunc)`, where `nsv_auto_trunc` is the number of singular values that must be kept to maintain a truncation error smaller than `max_truncation_error`. The output consists of three tensors `u, s, vh` such that: ```python u[i1,...,iN, j] * s[j] * vh[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. max_singular_values: The number of singular values to keep, or `None` to keep them all. max_truncation_error: The maximum allowed truncation error or `None` to not do any truncation. relative: Multiply `max_truncation_err` with the largest singular value. Returns: u: Left tensor factor. s: Vector of ordered singular values from largest to smallest. vh: Right tensor factor. s_rest: Vector of discarded singular values (length zero if no truncation).
def svd( tf: Any, tensor: Tensor, pivot_axis: int, max_singular_values: Optional[int] = None, max_truncation_error: Optional[float] = None, relative: Optional[bool] = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """Computes the singular value decomposition (SVD) of a tensor. The SVD is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `u` would have shape (2, 3, 6), `s` would have shape (6), and `vh` would have shape (6, 4, 5). If `max_singular_values` is set to an integer, the SVD is truncated to keep at most this many singular values. If `max_truncation_error > 0`, as many singular values will be truncated as possible, so that the truncation error (the norm of discarded singular values) is at most `max_truncation_error`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If both `max_singular_values` snd `max_truncation_error` are specified, the number of retained singular values will be `min(max_singular_values, nsv_auto_trunc)`, where `nsv_auto_trunc` is the number of singular values that must be kept to maintain a truncation error smaller than `max_truncation_error`. The output consists of three tensors `u, s, vh` such that: ```python u[i1,...,iN, j] * s[j] * vh[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. max_singular_values: The number of singular values to keep, or `None` to keep them all. max_truncation_error: The maximum allowed truncation error or `None` to not do any truncation. relative: Multiply `max_truncation_err` with the largest singular value. Returns: u: Left tensor factor. s: Vector of ordered singular values from largest to smallest. vh: Right tensor factor. s_rest: Vector of discarded singular values (length zero if no truncation). """ left_dims = tf.shape(tensor)[:pivot_axis] right_dims = tf.shape(tensor)[pivot_axis:] tensor = tf.reshape(tensor, [tf.reduce_prod(left_dims), tf.reduce_prod(right_dims)]) s, u, v = tf.linalg.svd(tensor) if max_singular_values is None: max_singular_values = tf.size(s, out_type=tf.int64) else: max_singular_values = tf.constant(max_singular_values, dtype=tf.int64) if max_truncation_error is not None: # Cumulative norms of singular values in ascending order. trunc_errs = tf.sqrt(tf.cumsum(tf.square(s), reverse=True)) # If relative is true, rescale max_truncation error with the largest # singular value to yield the absolute maximal truncation error. if relative: abs_max_truncation_error = max_truncation_error * s[0] else: abs_max_truncation_error = max_truncation_error # We must keep at least this many singular values to ensure the # truncation error is <= abs_max_truncation_error. num_sing_vals_err = tf.math.count_nonzero( tf.cast(trunc_errs > abs_max_truncation_error, dtype=tf.int32)) else: num_sing_vals_err = max_singular_values num_sing_vals_keep = tf.minimum(max_singular_values, num_sing_vals_err) # tf.svd() always returns the singular values as a vector of float{32,64}. # since tf.math_ops.real is automatically applied to s. This causes # s to possibly not be the same dtype as the original tensor, which can cause # issues for later contractions. To fix it, we recast to the original dtype. s = tf.cast(s, tensor.dtype) s_rest = s[num_sing_vals_keep:] s = s[:num_sing_vals_keep] u = u[:, :num_sing_vals_keep] v = v[:, :num_sing_vals_keep] vh = tf.linalg.adjoint(v) dim_s = tf.shape(s)[0] # must use tf.shape (not s.shape) to compile u = tf.reshape(u, tf.concat([left_dims, [dim_s]], axis=-1)) vh = tf.reshape(vh, tf.concat([[dim_s], right_dims], axis=-1)) return u, s, vh, s_rest
Computes the QR decomposition of a tensor. The QR decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `q` would have shape (2, 3, 6), and `r` would have shape (6, 4, 5). The output consists of two tensors `Q, R` such that: ```python Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. Returns: Q: Left tensor factor. R: Right tensor factor.
def qr( tf: Any, tensor: Tensor, pivot_axis: int, non_negative_diagonal: bool ) -> Tuple[Tensor, Tensor]: """Computes the QR decomposition of a tensor. The QR decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `q` would have shape (2, 3, 6), and `r` would have shape (6, 4, 5). The output consists of two tensors `Q, R` such that: ```python Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. Returns: Q: Left tensor factor. R: Right tensor factor. """ left_dims = tf.shape(tensor)[:pivot_axis] right_dims = tf.shape(tensor)[pivot_axis:] tensor = tf.reshape(tensor, [tf.reduce_prod(left_dims), tf.reduce_prod(right_dims)]) q, r = tf.linalg.qr(tensor) if non_negative_diagonal: phases = tf.math.sign(tf.linalg.diag_part(r)) q = q * phases r = phases[:, None] * r center_dim = tf.shape(q)[1] q = tf.reshape(q, tf.concat([left_dims, [center_dim]], axis=-1)) r = tf.reshape(r, tf.concat([[center_dim], right_dims], axis=-1)) return q, r
Computes the RQ decomposition of a tensor. The QR decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `r` would have shape (2, 3, 6), and `q` would have shape (6, 4, 5). The output consists of two tensors `Q, R` such that: ```python Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. Returns: Q: Left tensor factor. R: Right tensor factor.
def rq( tf: Any, tensor: Tensor, pivot_axis: int, non_negative_diagonal: bool ) -> Tuple[Tensor, Tensor]: """Computes the RQ decomposition of a tensor. The QR decomposition is performed by treating the tensor as a matrix, with an effective left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]` and an effective right (column) index resulting from combining the axes `tensor.shape[pivot_axis:]`. For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then `r` would have shape (2, 3, 6), and `q` would have shape (6, 4, 5). The output consists of two tensors `Q, R` such that: ```python Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM] ``` Note that the output ordering matches numpy.linalg.svd rather than tf.svd. Args: tf: The tensorflow module. tensor: A tensor to be decomposed. pivot_axis: Where to split the tensor's axes before flattening into a matrix. Returns: Q: Left tensor factor. R: Right tensor factor. """ left_dims = tf.shape(tensor)[:pivot_axis] right_dims = tf.shape(tensor)[pivot_axis:] tensor = tf.reshape(tensor, [tf.reduce_prod(left_dims), tf.reduce_prod(right_dims)]) q, r = tf.linalg.qr(tf.math.conj(tf.transpose(tensor))) if non_negative_diagonal: phases = tf.math.sign(tf.linalg.diag_part(r)) q = q * phases r = phases[:, None] * r r, q = tf.math.conj(tf.transpose(r)), tf.math.conj( tf.transpose(q)) #M=r*q at this point center_dim = tf.shape(r)[1] r = tf.reshape(r, tf.concat([left_dims, [center_dim]], axis=-1)) q = tf.reshape(q, tf.concat([[center_dim], right_dims], axis=-1)) return r, q
Tensor contraction of a and b along specified axes. Tensordot (also known as tensor contraction) sums the product of elements from `a` and `b` over the indices specified by `a_axes` and `b_axes`. The lists `a_axes` and `b_axes` specify those pairs of axes along which to contract the tensors. The axis `a_axes[i]` of `a` must have the same dimension as axis `b_axes[i]` of `b` for all `i` in `range(0, len(a_axes))`. The lists `a_axes` and `b_axes` must have identical length and consist of unique integers that specify valid axes for each of the tensors. This operation corresponds to `numpy.tensordot(a, b, axes)`. Example 1: When `a` and `b` are matrices (order 2), the case `axes = 1` is equivalent to matrix multiplication. Example 2: When `a` and `b` are matrices (order 2), the case `axes = [[1], [0]]` is equivalent to matrix multiplication. Example 3: Suppose that \\(a_{ijk}\\) and \\(b_{lmn}\\) represent two tensors of order 3. Then, `contract(a, b, [[0], [2]])` is the order 4 tensor \\(c_{jklm}\\) whose entry corresponding to the indices \\((j,k,l,m)\\) is given by: \\( c_{jklm} = \sum_i a_{ijk} b_{lmi} \\). In general, `order(c) = order(a) + order(b) - 2*len(axes[0])`. Args: tf: The TensorFlow module. This must be passed in instead of imported since we don't assume users have TensorFlow installed. a: `Tensor` of type `float32` or `float64`. b: `Tensor` with the same type as `a`. axes: Either a scalar `N`, or a list or an `int32` `Tensor` of shape [2, k]. If axes is a scalar, sum over the last N axes of a and the first N axes of b in order. If axes is a list or `Tensor` the first and second row contain the set of unique integers specifying axes along which the contraction is computed, for `a` and `b`, respectively. The number of axes for `a` and `b` must be equal. name: A name for the operation (optional). Returns: A `Tensor` with the same type as `a`. Raises: ValueError: If the shapes of `a`, `b`, and `axes` are incompatible. IndexError: If the values in axes exceed the rank of the corresponding tensor.
def tensordot(tf, a, b, axes, name: Optional[Text] = None) -> Tensor: r"""Tensor contraction of a and b along specified axes. Tensordot (also known as tensor contraction) sums the product of elements from `a` and `b` over the indices specified by `a_axes` and `b_axes`. The lists `a_axes` and `b_axes` specify those pairs of axes along which to contract the tensors. The axis `a_axes[i]` of `a` must have the same dimension as axis `b_axes[i]` of `b` for all `i` in `range(0, len(a_axes))`. The lists `a_axes` and `b_axes` must have identical length and consist of unique integers that specify valid axes for each of the tensors. This operation corresponds to `numpy.tensordot(a, b, axes)`. Example 1: When `a` and `b` are matrices (order 2), the case `axes = 1` is equivalent to matrix multiplication. Example 2: When `a` and `b` are matrices (order 2), the case `axes = [[1], [0]]` is equivalent to matrix multiplication. Example 3: Suppose that \\(a_{ijk}\\) and \\(b_{lmn}\\) represent two tensors of order 3. Then, `contract(a, b, [[0], [2]])` is the order 4 tensor \\(c_{jklm}\\) whose entry corresponding to the indices \\((j,k,l,m)\\) is given by: \\( c_{jklm} = \sum_i a_{ijk} b_{lmi} \\). In general, `order(c) = order(a) + order(b) - 2*len(axes[0])`. Args: tf: The TensorFlow module. This must be passed in instead of imported since we don't assume users have TensorFlow installed. a: `Tensor` of type `float32` or `float64`. b: `Tensor` with the same type as `a`. axes: Either a scalar `N`, or a list or an `int32` `Tensor` of shape [2, k]. If axes is a scalar, sum over the last N axes of a and the first N axes of b in order. If axes is a list or `Tensor` the first and second row contain the set of unique integers specifying axes along which the contraction is computed, for `a` and `b`, respectively. The number of axes for `a` and `b` must be equal. name: A name for the operation (optional). Returns: A `Tensor` with the same type as `a`. Raises: ValueError: If the shapes of `a`, `b`, and `axes` are incompatible. IndexError: If the values in axes exceed the rank of the corresponding tensor. """ def _tensordot_should_flip(contraction_axes: List[int], free_axes: List[int]) -> bool: """Helper method to determine axis ordering. We minimize the average distance the indices would have to move under the transposition. Args: contraction_axes: The axes to be contracted. free_axes: The free axes. Returns: should_flip: `True` if `contraction_axes` should be moved to the left, `False` if they should be moved to the right. """ # NOTE: This will fail if the arguments contain any Tensors. if contraction_axes and free_axes: return bool(np.mean(contraction_axes) < np.mean(free_axes)) return False def _tranpose_if_necessary(tensor: Tensor, perm: List[int]) -> Tensor: """Like transpose(), but avoids creating a new tensor if possible. Although the graph optimizer should kill trivial transposes, it is best not to add them in the first place! """ if perm == list(range(len(perm))): return tensor return tf.transpose(tensor, perm) def _reshape_if_necessary(tensor: Tensor, new_shape: List[int]) -> Tensor: """Like reshape(), but avoids creating a new tensor if possible. Assumes shapes are both fully specified. """ cur_shape = tensor.get_shape().as_list() if (len(new_shape) == len(cur_shape) and all(d0 == d1 for d0, d1 in zip(cur_shape, new_shape))): return tensor return tf.reshape(tensor, new_shape) def _tensordot_reshape( a: Tensor, axes: Union[Sequence[int], Tensor], is_right_term=False ) -> Tuple[Tensor, Union[List[int], Tensor], Optional[List[int]], bool]: """Helper method to perform transpose and reshape for contraction op. This method is helpful in reducing `math_ops.tensordot` to `math_ops.matmul` using `array_ops.transpose` and `array_ops.reshape`. The method takes a tensor and performs the correct transpose and reshape operation for a given set of indices. It returns the reshaped tensor as well as a list of indices necessary to reshape the tensor again after matrix multiplication. Args: a: `Tensor`. axes: List or `int32` `Tensor` of unique indices specifying valid axes of `a`. is_right_term: Whether `a` is the right (second) argument to `matmul`. Returns: A tuple `(reshaped_a, free_dims, free_dims_static, transpose_needed)` where `reshaped_a` is the tensor `a` reshaped to allow contraction via `matmul`, `free_dims` is either a list of integers or an `int32` `Tensor`, depending on whether the shape of a is fully specified, and free_dims_static is either a list of integers and None values, or None, representing the inferred static shape of the free dimensions. `transpose_needed` indicates whether `reshaped_a` must be transposed, or not, when calling `matmul`. """ if a.get_shape().is_fully_defined() and isinstance(axes, (list, tuple)): shape_a = a.get_shape().as_list() # NOTE: This will fail if axes contains any tensors axes = [i if i >= 0 else i + len(shape_a) for i in axes] free = [i for i in range(len(shape_a)) if i not in axes] flipped = _tensordot_should_flip(axes, free) free_dims = [shape_a[i] for i in free] prod_free = int(np.prod([shape_a[i] for i in free])) prod_axes = int(np.prod([shape_a[i] for i in axes])) perm = axes + free if flipped else free + axes new_shape = [prod_axes, prod_free] if flipped else [prod_free, prod_axes] transposed_a = _tranpose_if_necessary(a, perm) reshaped_a = _reshape_if_necessary(transposed_a, new_shape) transpose_needed = (not flipped) if is_right_term else flipped return reshaped_a, free_dims, free_dims, transpose_needed if a.get_shape().ndims is not None and isinstance(axes, (list, tuple)): shape_a = a.get_shape().as_list() axes = [i if i >= 0 else i + len(shape_a) for i in axes] free = [i for i in range(len(shape_a)) if i not in axes] flipped = _tensordot_should_flip(axes, free) perm = axes + free if flipped else free + axes axes_dims = [shape_a[i] for i in axes] free_dims = [shape_a[i] for i in free] free_dims_static = free_dims axes = tf.convert_to_tensor(axes, dtype=tf.dtypes.int32, name="axes") free = tf.convert_to_tensor(free, dtype=tf.dtypes.int32, name="free") shape_a = tf.shape(a) transposed_a = _tranpose_if_necessary(a, perm) else: free_dims_static = None shape_a = tf.shape(a) rank_a = tf.rank(a) axes = tf.convert_to_tensor(axes, dtype=tf.dtypes.int32, name="axes") axes = tf.where(axes >= 0, axes, axes + rank_a) free, _ = tf.compat.v1.setdiff1d(tf.range(rank_a), axes) # Matmul does not accept tensors for its transpose arguments, so fall # back to the previous, fixed behavior. # NOTE(amilsted): With a suitable wrapper for `matmul` using e.g. `case` # to match transpose arguments to tensor values, we could also avoid # unneeded tranposes in this case at the expense of a somewhat more # complicated graph. Unclear whether this would be beneficial overall. flipped = is_right_term perm = ( tf.concat([axes, free], 0) if flipped else tf.concat([free, axes], 0)) transposed_a = tf.transpose(a, perm) free_dims = tf.gather(shape_a, free) axes_dims = tf.gather(shape_a, axes) prod_free_dims = tf.reduce_prod(free_dims) prod_axes_dims = tf.reduce_prod(axes_dims) if flipped: new_shape = tf.stack([prod_axes_dims, prod_free_dims]) else: new_shape = tf.stack([prod_free_dims, prod_axes_dims]) reshaped_a = tf.reshape(transposed_a, new_shape) transpose_needed = (not flipped) if is_right_term else flipped return reshaped_a, free_dims, free_dims_static, transpose_needed def _tensordot_axes(a: Tensor, axes) -> Tuple[Any, Any]: """Generates two sets of contraction axes for the two tensor arguments.""" a_shape = a.get_shape() if isinstance(axes, tf.compat.integral_types): if axes < 0: raise ValueError("'axes' must be at least 0.") if a_shape.ndims is not None: if axes > a_shape.ndims: raise ValueError("'axes' must not be larger than the number of " "dimensions of tensor %s." % a) return (list(range(a_shape.ndims - axes, a_shape.ndims)), list(range(axes))) rank = tf.rank(a) return (tf.range(rank - axes, rank, dtype=tf.int32), tf.range(axes, dtype=tf.int32)) if isinstance(axes, (list, tuple)): if len(axes) != 2: raise ValueError("'axes' must be an integer or have length 2.") a_axes = axes[0] b_axes = axes[1] if isinstance(a_axes, tf.compat.integral_types) and \ isinstance(b_axes, tf.compat.integral_types): a_axes = [a_axes] b_axes = [b_axes] # NOTE: This fails if either a_axes and b_axes are Tensors. if len(a_axes) != len(b_axes): raise ValueError( "Different number of contraction axes 'a' and 'b', %s != %s." % (len(a_axes), len(b_axes))) # The contraction indices do not need to be permuted. # Sort axes to avoid unnecessary permutations of a. # NOTE: This fails if either a_axes and b_axes contain Tensors. # pylint: disable=len-as-condition if len(a_axes) > 0: a_axes, b_axes = list(zip(*sorted(zip(a_axes, b_axes)))) return a_axes, b_axes axes = tf.convert_to_tensor(axes, name="axes", dtype=tf.int32) return axes[0], axes[1] with tf.compat.v1.name_scope(name, "Tensordot", [a, b, axes]) as _name: a = tf.convert_to_tensor(a, name="a") b = tf.convert_to_tensor(b, name="b") a_axes, b_axes = _tensordot_axes(a, axes) a_reshape, a_free_dims, a_free_dims_static, a_transp = _tensordot_reshape( a, a_axes) b_reshape, b_free_dims, b_free_dims_static, b_transp = _tensordot_reshape( b, b_axes, is_right_term=True) ab_matmul = tf.matmul( a_reshape, b_reshape, transpose_a=a_transp, transpose_b=b_transp) if isinstance(a_free_dims, list) and isinstance(b_free_dims, list): return tf.reshape(ab_matmul, a_free_dims + b_free_dims, name=_name) a_free_dims = tf.convert_to_tensor(a_free_dims, dtype=tf.dtypes.int32) b_free_dims = tf.convert_to_tensor(b_free_dims, dtype=tf.dtypes.int32) product = tf.reshape( ab_matmul, tf.concat([a_free_dims, b_free_dims], 0), name=_name) if a_free_dims_static is not None and b_free_dims_static is not None: product.set_shape(a_free_dims_static + b_free_dims_static) return product
Compare the shapes of `tensor1` and `tensor2`. Return `True` if the shapes are identical. Args: tensor1, tensor2: Two tensors. Returns: bool: The result of comparing the shapes.
def compare_shapes(tensor1: ChargeArray, tensor2: ChargeArray) -> bool: """ Compare the shapes of `tensor1` and `tensor2`. Return `True` if the shapes are identical. Args: tensor1, tensor2: Two tensors. Returns: bool: The result of comparing the shapes. """ if tensor1.shape != tensor2.shape: return False if len(tensor1._charges) != len(tensor2._charges): return False if not all( charge_equal(c1, c2) for c1, c2 in zip(tensor1._charges, tensor2._charges)): return False if not all(f1 == f2 for f1, f2 in zip(tensor1._flows, tensor2._flows)): return False return True
Compute the outer product of two `BlockSparseTensor`. The first `tensor1.ndim` indices of the resulting tensor are the indices of `tensor1`, the last `tensor2.ndim` indices are those of `tensor2`. Args: tensor1: A tensor. tensor2: A tensor. Returns: BlockSparseTensor: The result of taking the outer product.
def outerproduct(tensor1: BlockSparseTensor, tensor2: BlockSparseTensor) -> BlockSparseTensor: """ Compute the outer product of two `BlockSparseTensor`. The first `tensor1.ndim` indices of the resulting tensor are the indices of `tensor1`, the last `tensor2.ndim` indices are those of `tensor2`. Args: tensor1: A tensor. tensor2: A tensor. Returns: BlockSparseTensor: The result of taking the outer product. """ final_charges = tensor1._charges + tensor2._charges final_flows = list(tensor1._flows) + list(tensor2._flows) order2 = [list(np.asarray(s) + len(tensor1._charges)) for s in tensor2._order] data = np.zeros( compute_num_nonzero(final_charges, final_flows), dtype=tensor1.dtype) if ((len(tensor1.data) > 0) and (len(tensor2.data) > 0)) and (len(data) > 0): # find the location of the zero block in the output final_block_maps, final_block_charges, _ = _find_diagonal_sparse_blocks( final_charges, final_flows, len(tensor1._charges)) index = np.nonzero( final_block_charges == final_block_charges.identity_charges( dim=1))[0][0] data[final_block_maps[index].ravel()] = np.outer(tensor1.data, tensor2.data).ravel() return BlockSparseTensor( data, charges=final_charges, flows=final_flows, order=tensor1._order + order2, check_consistency=False)
Contract two `BlockSparseTensor`s along `axes`. Args: tensor1: First tensor. tensor2: Second tensor. axes: The axes to contract. Returns: BlockSparseTensor: The result of the tensor contraction.
def tensordot( tensor1: BlockSparseTensor, tensor2: BlockSparseTensor, axes: Optional[Union[Sequence[Sequence[int]], Sequence[int], int]] = 2 ) -> BlockSparseTensor: """ Contract two `BlockSparseTensor`s along `axes`. Args: tensor1: First tensor. tensor2: Second tensor. axes: The axes to contract. Returns: BlockSparseTensor: The result of the tensor contraction. """ #process scalar input for `axes` if isinstance(axes, (np.integer, int)): axes = [ np.arange(tensor1.ndim - axes, tensor1.ndim, dtype=np.int16), np.arange(0, axes, dtype=np.int16) ] elif isinstance(axes[0], (np.integer, int)): if len(axes) > 1: raise ValueError("invalid input `axes = {}` to tensordot".format(axes)) axes = [np.array(axes, dtype=np.int16), np.array(axes, dtype=np.int16)] axes1 = axes[0] axes2 = axes[1] if len(axes1) != len(axes2): raise ValueError( "`axes1 = {}` and `axes2 = {}` have to be of same length. ".format( axes1, axes2)) if len(axes1) > len(tensor1.shape): raise ValueError( "`axes1 = {}` is incompatible with `tensor1.shape = {}. ".format( axes1, tensor1.shape)) if len(axes2) > len(tensor2.shape): raise ValueError( "`axes2 = {}` is incompatible with `tensor2.shape = {}. ".format( axes2, tensor2.shape)) #special case outer product if len(axes1) == 0: return outerproduct(tensor1, tensor2) #more checks if max(axes1) >= len(tensor1.shape): raise ValueError( "rank of `tensor1` is smaller than `max(axes1) = {}.`".format( max(axes1))) if max(axes2) >= len(tensor2.shape): raise ValueError( "rank of `tensor2` is smaller than `max(axes2) = {}`".format( max(axes1))) contr_flows_1 = [] contr_flows_2 = [] contr_charges_1 = [] contr_charges_2 = [] for a in axes1: contr_flows_1.extend(tensor1._flows[tensor1._order[a]]) contr_charges_1.extend([tensor1._charges[n] for n in tensor1._order[a]]) for a in axes2: contr_flows_2.extend(tensor2._flows[tensor2._order[a]]) contr_charges_2.extend([tensor2._charges[n] for n in tensor2._order[a]]) if len(contr_charges_2) != len(contr_charges_1): raise ValueError( "`axes1 = {}` and `axes2 = {}` have incompatible elementary" " shapes {} and {}".format(axes1, axes2, [e.dim for e in contr_charges_1], [e.dim for e in contr_charges_2])) if not np.all( np.asarray(contr_flows_1) == np.logical_not(np.asarray(contr_flows_2))): raise ValueError( "`axes1 = {}` and `axes2 = {}` have incompatible elementary" " flows {} and {}".format(axes1, axes2, contr_flows_1, contr_flows_2)) charge_check = [ charge_equal(c1, c2) for c1, c2 in zip(contr_charges_1, contr_charges_2) ] if not np.all(charge_check): inds = np.nonzero(np.logical_not(charge_check))[0] raise ValueError( "`axes = {}` of tensor1 and `axes = {}` of tensor2 have " "incompatible charges {} and {}".format( np.array(axes1)[inds], np.array(axes2)[inds], [contr_charges_1[i] for i in inds], [contr_charges_2[i] for i in inds])) #checks finished #special case inner product (returns an ndim=0 tensor) if (len(axes1) == tensor1.ndim) and (len(axes2) == tensor2.ndim): t1 = tensor1.transpose(axes1).contiguous() t2 = tensor2.transpose(axes2).contiguous() return BlockSparseTensor( data=np.dot(t1.data, t2.data), charges=[], flows=[], order=[], check_consistency=False) #in all other cases we perform a regular tensordot free_axes1 = sorted(set(np.arange(tensor1.ndim)) - set(axes1)) free_axes2 = sorted(set(np.arange(tensor2.ndim)) - set(axes2)) new_order1 = [tensor1._order[n] for n in free_axes1 ] + [tensor1._order[n] for n in axes1] new_order2 = [tensor2._order[n] for n in axes2 ] + [tensor2._order[n] for n in free_axes2] flat_order_1 = flatten(new_order1) flat_order_2 = flatten(new_order2) flat_charges_1, flat_flows_1 = tensor1._charges, tensor1._flows flat_charges_2, flat_flows_2 = tensor2._charges, tensor2._flows left_charges = [] right_charges = [] left_flows = [] right_flows = [] left_order = [] right_order = [] s = 0 for n in free_axes1: left_charges.extend([tensor1._charges[o] for o in tensor1._order[n]]) left_order.append(list(np.arange(s, s + len(tensor1._order[n])))) s += len(tensor1._order[n]) left_flows.extend([tensor1._flows[o] for o in tensor1._order[n]]) s = 0 for n in free_axes2: right_charges.extend([tensor2._charges[o] for o in tensor2._order[n]]) right_order.append( list(len(left_charges) + np.arange(s, s + len(tensor2._order[n])))) s += len(tensor2._order[n]) right_flows.extend([tensor2._flows[o] for o in tensor2._order[n]]) tr_sparse_blocks_1, charges1, shapes_1 = _find_transposed_diagonal_sparse_blocks(#pylint: disable=line-too-long flat_charges_1, flat_flows_1, len(left_charges), flat_order_1) tr_sparse_blocks_2, charges2, shapes_2 = _find_transposed_diagonal_sparse_blocks(#pylint: disable=line-too-long flat_charges_2, flat_flows_2, len(contr_charges_2), flat_order_2) common_charges, label_to_common_1, label_to_common_2 = intersect( charges1.unique_charges, charges2.unique_charges, axis=0, return_indices=True) #Note: `cs` may contain charges that are not present in `common_charges` charges = left_charges + right_charges flows = left_flows + right_flows sparse_blocks, cs, _ = _find_transposed_diagonal_sparse_blocks( charges, flows, len(left_charges), list(range(len(charges)))) num_nonzero_elements = np.int64(np.sum([len(v) for v in sparse_blocks])) #Note that empty is not a viable choice here. data = np.zeros( num_nonzero_elements, dtype=np.result_type(tensor1.dtype, tensor2.dtype)) label_to_common_final = intersect( cs.unique_charges, common_charges, axis=0, return_indices=True)[1] for n in range(common_charges.shape[0]): n1 = label_to_common_1[n] n2 = label_to_common_2[n] nf = label_to_common_final[n] data[sparse_blocks[nf].ravel()] = np.ravel( np.matmul(tensor1.data[tr_sparse_blocks_1[n1].reshape(shapes_1[:, n1])], tensor2.data[tr_sparse_blocks_2[n2].reshape(shapes_2[:, n2])])) res = BlockSparseTensor( data=data, charges=charges, flows=flows, order=left_order + right_order, check_consistency=False) return res
Initialize a 1d np.ndarray using `numpy_initializer` function. Args: numpy_initializer: Callable, should return a 1d np.ndarray. Function call signature: `numpy_initializer(*args, **kwargs)`. comp_num_elements: Callable, computes the number of elements of the returned 1d np.ndarray, using `numel = comp_num_elements(indices)`. indices: List if `Index` objects. *args, **kwargs: Arguments to `numpy_initializer`. Returns: np.ndarray: An initialized numpy array. List[BaseCharge]: A list containing the flattened charges in `indices` List[bool]: The flattened flows of `indices`. List[List]: A list of list of int, the order information needed to initialize a BlockSparseTensor.
def _data_initializer( numpy_initializer: Callable, comp_num_elements: Callable, indices: Sequence[Index], *args, **kwargs ) -> Tuple[np.ndarray, List[BaseCharge], List[bool], List[List[int]]]: """ Initialize a 1d np.ndarray using `numpy_initializer` function. Args: numpy_initializer: Callable, should return a 1d np.ndarray. Function call signature: `numpy_initializer(*args, **kwargs)`. comp_num_elements: Callable, computes the number of elements of the returned 1d np.ndarray, using `numel = comp_num_elements(indices)`. indices: List if `Index` objects. *args, **kwargs: Arguments to `numpy_initializer`. Returns: np.ndarray: An initialized numpy array. List[BaseCharge]: A list containing the flattened charges in `indices` List[bool]: The flattened flows of `indices`. List[List]: A list of list of int, the order information needed to initialize a BlockSparseTensor. """ charges, flows = get_flat_meta_data(indices) num_elements = comp_num_elements(charges, flows) tmp = np.append(0, np.cumsum([len(i.flat_charges) for i in indices])) order = [list(np.arange(tmp[n], tmp[n + 1])) for n in range(len(tmp) - 1)] data = numpy_initializer(num_elements, *args, **kwargs) return data, charges, flows, order
Return charges and flows of flattened `indices`. Args: indices: A list of `Index` objects. Returns: List[BaseCharge]: The flattened charges. List[bool]: The flattened flows.
def get_flat_meta_data(indices: Sequence[Index]) -> Tuple[List, List]: """ Return charges and flows of flattened `indices`. Args: indices: A list of `Index` objects. Returns: List[BaseCharge]: The flattened charges. List[bool]: The flattened flows. """ charges = [] flows = [] for i in indices: flows.extend(i.flat_flows) charges.extend(i.flat_charges) return charges, flows
Compute lookup table for how dense index positions map to sparse index positions, treating only those elements as non-zero whose charges fuse to `target_charges`. Args: charges: List of `BaseCharge` objects. flows: A list of `bool`; the flow directions. target_charges: A `BaseCharge`; the target charges for which the fusion of `charges` is non-zero. Returns: lookup: An np.ndarray of positive numbers between `0` and `len(unique_charges)`. The position of values `n` in `lookup` are positions with charge values `unique_charges[n]`. unique_charges: The unique charges of fusion of `charges` label_to_unique: The integer labels of the unique charges.
def compute_sparse_lookup( charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]], target_charges: BaseCharge) -> Tuple[np.ndarray, BaseCharge, np.ndarray]: """ Compute lookup table for how dense index positions map to sparse index positions, treating only those elements as non-zero whose charges fuse to `target_charges`. Args: charges: List of `BaseCharge` objects. flows: A list of `bool`; the flow directions. target_charges: A `BaseCharge`; the target charges for which the fusion of `charges` is non-zero. Returns: lookup: An np.ndarray of positive numbers between `0` and `len(unique_charges)`. The position of values `n` in `lookup` are positions with charge values `unique_charges[n]`. unique_charges: The unique charges of fusion of `charges` label_to_unique: The integer labels of the unique charges. """ fused_charges = fuse_charges(charges, flows) unique_charges, inverse = unique(fused_charges.charges, return_inverse=True) _, label_to_unique, _ = intersect( unique_charges, target_charges.charges, return_indices=True) # _, label_to_unique, _ = unique_charges.intersect( # target_charges, return_indices=True) tmp = np.full( unique_charges.shape[0], fill_value=-1, dtype=charges[0].label_dtype) obj = charges[0].__new__(type(charges[0])) obj.__init__( charges=unique_charges, charge_labels=None, charge_types=charges[0].charge_types) tmp[label_to_unique] = label_to_unique lookup = tmp[inverse] lookup = lookup[lookup >= 0] return lookup, obj, np.sort(label_to_unique)
For a list of charges, computes all possible fused charges resulting from fusing `charges` and their respective degeneracies Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. Returns: BaseCharge: The unique fused charges. np.ndarray: The degeneracies of each unqiue fused charge.
def compute_fused_charge_degeneracies( charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]]) -> Tuple[BaseCharge, np.ndarray]: """ For a list of charges, computes all possible fused charges resulting from fusing `charges` and their respective degeneracies Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. Returns: BaseCharge: The unique fused charges. np.ndarray: The degeneracies of each unqiue fused charge. """ if len(charges) == 1: return (charges[0] * flows[0]).unique(return_counts=True) dims = [c.dim for c in charges] # for small dims is faster to fuse all and use unique # directly if reduce(mul, dims, 1) < 20000: fused = fuse_charges(charges, flows) return fused.unique(return_counts=True) partition = _find_best_partition(dims) fused_left = fuse_charges(charges[:partition], flows[:partition]) fused_right = fuse_charges(charges[partition:], flows[partition:]) left_unique, left_degens = fused_left.unique(return_counts=True) right_unique, right_degens = fused_right.unique(return_counts=True) fused = left_unique + right_unique unique_charges, charge_labels = fused.unique(return_inverse=True) fused_degeneracies = fuse_degeneracies(left_degens, right_degens) new_ord = np.argsort(charge_labels) all_degens = np.cumsum(fused_degeneracies[new_ord]) cum_degens = all_degens[np.flatnonzero(np.diff(charge_labels[new_ord]))] final_degeneracies = np.append(cum_degens, all_degens[-1]) - np.append( 0, cum_degens) return unique_charges, final_degeneracies
For a list of charges, compute all possible fused charges resulting from fusing `charges`. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. Returns: BaseCharge: The unique fused charges.
def compute_unique_fused_charges( charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]]) -> BaseCharge: """ For a list of charges, compute all possible fused charges resulting from fusing `charges`. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. Returns: BaseCharge: The unique fused charges. """ if len(charges) == 1: return (charges[0] * flows[0]).unique() accumulated_charges = (charges[0] * flows[0]).unique() for n in range(1, len(charges)): leg_charges = charges[n].unique() fused_charges = accumulated_charges + leg_charges * flows[n] accumulated_charges = fused_charges.unique() return accumulated_charges
Compute the number of non-zero elements, given the meta-data of a symmetric tensor. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. Returns: int: The number of non-zero elements.
def compute_num_nonzero(charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]]) -> int: """ Compute the number of non-zero elements, given the meta-data of a symmetric tensor. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. Returns: int: The number of non-zero elements. """ if np.any([len(c) == 0 for c in charges]): return 0 #pylint: disable=line-too-long accumulated_charges, accumulated_degeneracies = compute_fused_charge_degeneracies( charges, flows) res = accumulated_charges == accumulated_charges.identity_charges(dim=1) nz_inds = np.nonzero(res)[0] if len(nz_inds) > 0: return np.squeeze(accumulated_degeneracies[nz_inds][0]) return 0
Add quantum numbers arising from combining two or more charges into a single index, keeping only the quantum numbers that appear in `target_charges`. Equilvalent to using "combine_charges" followed by "reduce", but is generally much more efficient. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. target_charges: n-by-D array of charges which should be kept, with `n` the number of symmetries. return_locations: If `True` return the location of the kept values of the fused charges strides: Index strides with which to compute the retured locations of the kept elements. Defaults to trivial strides (based on row major order). Returns: BaseCharge: the fused index after reduction. np.ndarray: Locations of the fused BaseCharge charges that were kept.
def reduce_charges(charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]], target_charges: np.ndarray, return_locations: Optional[bool] = False, strides: Optional[np.ndarray] = None) -> Any: """ Add quantum numbers arising from combining two or more charges into a single index, keeping only the quantum numbers that appear in `target_charges`. Equilvalent to using "combine_charges" followed by "reduce", but is generally much more efficient. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. target_charges: n-by-D array of charges which should be kept, with `n` the number of symmetries. return_locations: If `True` return the location of the kept values of the fused charges strides: Index strides with which to compute the retured locations of the kept elements. Defaults to trivial strides (based on row major order). Returns: BaseCharge: the fused index after reduction. np.ndarray: Locations of the fused BaseCharge charges that were kept. """ tensor_dims = [len(c) for c in charges] if len(charges) == 1: # reduce single index if strides is None: strides = np.array([1], dtype=SIZE_T) return charges[0].dual(flows[0]).reduce( target_charges, return_locations=return_locations, strides=strides[0]) # find size-balanced partition of charges partition = _find_best_partition(tensor_dims) # compute quantum numbers for each partition left_ind = fuse_charges(charges[:partition], flows[:partition]) right_ind = fuse_charges(charges[partition:], flows[partition:]) # compute combined qnums comb_qnums = fuse_ndarray_charges(left_ind.unique_charges, right_ind.unique_charges, charges[0].charge_types) #special case of empty charges #pylint: disable=unsubscriptable-object if (comb_qnums.shape[0] == 0) or (len(left_ind.charge_labels) == 0) or (len( right_ind.charge_labels) == 0): obj = charges[0].__new__(type(charges[0])) obj.__init__( np.empty((0, charges[0].num_symmetries), dtype=charges[0].dtype), np.empty(0, dtype=charges[0].label_dtype), charges[0].charge_types) if return_locations: return obj, np.empty(0, dtype=SIZE_T) return obj unique_comb_qnums, comb_labels = unique(comb_qnums, return_inverse=True) num_unique = unique_comb_qnums.shape[0] # intersect combined qnums and target_charges reduced_qnums, label_to_unique, _ = intersect( unique_comb_qnums, target_charges, axis=0, return_indices=True) map_to_kept = -np.ones(num_unique, dtype=charges[0].label_dtype) map_to_kept[label_to_unique] = np.arange(len(label_to_unique)) # new_comb_labels is a matrix of shape # (left_ind.num_unique, right_ind.num_unique) # each row new_comb_labels[n,:] contains integers values. # Positions where values > 0 # denote labels of right-charges that are kept. new_comb_labels = map_to_kept[comb_labels].reshape( [left_ind.num_unique, right_ind.num_unique]) reduced_rows = [0] * left_ind.num_unique for n in range(left_ind.num_unique): temp_label = new_comb_labels[n, right_ind.charge_labels] reduced_rows[n] = temp_label[temp_label >= 0] reduced_labels = np.concatenate( [reduced_rows[n] for n in left_ind.charge_labels]) obj = charges[0].__new__(type(charges[0])) obj.__init__(reduced_qnums, reduced_labels, charges[0].charge_types) if return_locations: row_locs = [0] * left_ind.num_unique if strides is not None: # computed locations based on non-trivial strides row_pos = fuse_stride_arrays(tensor_dims[:partition], strides[:partition]) col_pos = fuse_stride_arrays(tensor_dims[partition:], strides[partition:]) for n in range(left_ind.num_unique): temp_label = new_comb_labels[n, right_ind.charge_labels] temp_keep = temp_label >= 0 if strides is not None: row_locs[n] = col_pos[temp_keep] else: row_locs[n] = np.where(temp_keep)[0] if strides is not None: reduced_locs = np.concatenate([ row_pos[n] + row_locs[left_ind.charge_labels[n]] for n in range(left_ind.dim) ]) else: reduced_locs = np.concatenate([ n * right_ind.dim + row_locs[left_ind.charge_labels[n]] for n in range(left_ind.dim) ]) return obj, reduced_locs return obj
Find the location of all non-trivial symmetry blocks from the data vector of of BlockSparseTensor (when viewed as a matrix across some prescribed index bi-partition). Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. partition: location of tensor partition (i.e. such that the tensor is viewed as a matrix between `charges[:partition]` and the remaining charges). Returns: block_maps (List[np.ndarray]): list of integer arrays, which each containing the location of a symmetry block in the data vector. block_qnums (BaseCharge): The charges of the corresponding blocks.n block, with 'n' the number of symmetries and 'm' the number of blocks. block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block.
def _find_diagonal_sparse_blocks( charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]], partition: int) -> Tuple[List, BaseCharge, np.ndarray]: """ Find the location of all non-trivial symmetry blocks from the data vector of of BlockSparseTensor (when viewed as a matrix across some prescribed index bi-partition). Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. partition: location of tensor partition (i.e. such that the tensor is viewed as a matrix between `charges[:partition]` and the remaining charges). Returns: block_maps (List[np.ndarray]): list of integer arrays, which each containing the location of a symmetry block in the data vector. block_qnums (BaseCharge): The charges of the corresponding blocks.n block, with 'n' the number of symmetries and 'm' the number of blocks. block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block. """ cacher = get_cacher() if cacher.do_caching: hash_val = _to_string(charges, flows, partition, list(range(len(charges)))) if hash_val in cacher.cache: return cacher.cache[hash_val] num_inds = len(charges) if partition in (0, num_inds): # special cases (matrix of trivial height or width) num_nonzero = compute_num_nonzero(charges, flows) block_maps = [np.arange(0, num_nonzero, dtype=SIZE_T).ravel()] block_qnums = charges[0].identity_charges(dim=1).charges block_dims = np.array([[1], [num_nonzero]]) if partition == len(flows): block_dims = np.flipud(block_dims) obj = charges[0].__new__(type(charges[0])) obj.__init__(block_qnums, np.arange(1, dtype=charges[0].label_dtype), charges[0].charge_types) return block_maps, obj, block_dims unique_row_qnums, row_degen = compute_fused_charge_degeneracies( charges[:partition], flows[:partition]) unique_col_qnums, col_degen = compute_fused_charge_degeneracies( charges[partition:], np.logical_not(flows[partition:])) block_qnums, row_to_block, col_to_block = intersect( unique_row_qnums.unique_charges, unique_col_qnums.unique_charges, axis=0, return_indices=True) num_blocks = block_qnums.shape[0] if num_blocks == 0: obj = charges[0].__new__(type(charges[0])) obj.__init__( np.zeros((0, charges[0].num_symmetries), dtype=charges[0].dtype), np.arange(0, dtype=charges[0].label_dtype), charges[0].charge_types) return [], obj, np.empty((2, 0), dtype=SIZE_T) # calculate number of non-zero elements in each row of the matrix row_ind = reduce_charges(charges[:partition], flows[:partition], block_qnums) row_num_nz = col_degen[col_to_block[row_ind.charge_labels]] cumulate_num_nz = np.insert(np.cumsum(row_num_nz[0:-1]), 0, 0).astype(SIZE_T) # calculate mappings for the position in datavector of each block if num_blocks < 15: # faster method for small number of blocks row_locs = np.concatenate([ (row_ind.charge_labels == n) for n in range(num_blocks) ]).reshape(num_blocks, row_ind.dim) else: # faster method for large number of blocks row_locs = np.zeros([num_blocks, row_ind.dim], dtype=bool) row_locs[row_ind.charge_labels, np.arange(row_ind.dim)] = np.ones( row_ind.dim, dtype=bool) block_dims = np.array( [[row_degen[row_to_block[n]], col_degen[col_to_block[n]]] for n in range(num_blocks)], dtype=SIZE_T).T #pylint: disable=unsubscriptable-object block_maps = [ np.ravel(cumulate_num_nz[row_locs[n, :]][:, None] + np.arange(block_dims[1, n])[None, :]) for n in range(num_blocks) ] obj = charges[0].__new__(type(charges[0])) obj.__init__(block_qnums, np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype), charges[0].charge_types) if cacher.do_caching: cacher.cache[hash_val] = (block_maps, obj, block_dims) return cacher.cache[hash_val] return block_maps, obj, block_dims
Find the diagonal blocks of a transposed tensor with meta-data `charges` and `flows`. `charges` and `flows` are the charges and flows of the untransposed tensor, `order` is the final transposition, and `tr_partition` is the partition of the transposed tensor according to which the diagonal blocks should be found. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. tr_partition: Location of the transposed tensor partition (i.e. such that the tensor is viewed as a matrix between `charges[order[:partition]]` and `charges[order[partition:]]`). order: Order with which to permute the tensor axes. Returns: block_maps (List[np.ndarray]): list of integer arrays, which each containing the location of a symmetry block in the data vector. block_qnums (BaseCharge): The charges of the corresponding blocks. block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block.
def _find_transposed_diagonal_sparse_blocks( charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]], tr_partition: int, order: Optional[Union[List, np.ndarray]] = None ) -> Tuple[List, BaseCharge, np.ndarray]: """ Find the diagonal blocks of a transposed tensor with meta-data `charges` and `flows`. `charges` and `flows` are the charges and flows of the untransposed tensor, `order` is the final transposition, and `tr_partition` is the partition of the transposed tensor according to which the diagonal blocks should be found. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. tr_partition: Location of the transposed tensor partition (i.e. such that the tensor is viewed as a matrix between `charges[order[:partition]]` and `charges[order[partition:]]`). order: Order with which to permute the tensor axes. Returns: block_maps (List[np.ndarray]): list of integer arrays, which each containing the location of a symmetry block in the data vector. block_qnums (BaseCharge): The charges of the corresponding blocks. block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block. """ flows = np.asarray(flows) cacher = get_cacher() if cacher.do_caching: hash_val = _to_string(charges, flows, tr_partition, order) if hash_val in cacher.cache: return cacher.cache[hash_val] if np.array_equal(order, None) or (np.array_equal( np.array(order), np.arange(len(charges)))): # no transpose order return _find_diagonal_sparse_blocks(charges, flows, tr_partition) # general case: non-trivial transposition is required num_inds = len(charges) tensor_dims = np.array([charges[n].dim for n in range(num_inds)], dtype=int) strides = np.append(np.flip(np.cumprod(np.flip(tensor_dims[1:]))), 1) # compute qnums of row/cols in original tensor orig_partition = _find_best_partition(tensor_dims) orig_width = np.prod(tensor_dims[orig_partition:]) orig_unique_row_qnums = compute_unique_fused_charges(charges[:orig_partition], flows[:orig_partition]) orig_unique_col_qnums, orig_col_degen = compute_fused_charge_degeneracies( charges[orig_partition:], np.logical_not(flows[orig_partition:])) orig_block_qnums, row_map, col_map = intersect( orig_unique_row_qnums.unique_charges, orig_unique_col_qnums.unique_charges, axis=0, return_indices=True) orig_num_blocks = orig_block_qnums.shape[0] if orig_num_blocks == 0: # special case: trivial number of non-zero elements obj = charges[0].__new__(type(charges[0])) obj.__init__( np.empty((0, charges[0].num_symmetries), dtype=charges[0].dtype), np.arange(0, dtype=charges[0].label_dtype), charges[0].charge_types) return [], obj, np.empty((2, 0), dtype=SIZE_T) orig_row_ind = fuse_charges(charges[:orig_partition], flows[:orig_partition]) orig_col_ind = fuse_charges(charges[orig_partition:], np.logical_not(flows[orig_partition:])) inv_row_map = -np.ones( orig_unique_row_qnums.unique_charges.shape[0], dtype=charges[0].label_dtype) inv_row_map[row_map] = np.arange(len(row_map), dtype=charges[0].label_dtype) all_degens = np.append(orig_col_degen[col_map], 0)[inv_row_map[orig_row_ind.charge_labels]] all_cumul_degens = np.cumsum(np.insert(all_degens[:-1], 0, 0)).astype(SIZE_T) dense_to_sparse = np.empty(orig_width, dtype=SIZE_T) for n in range(orig_num_blocks): dense_to_sparse[orig_col_ind.charge_labels == col_map[n]] = np.arange( orig_col_degen[col_map[n]], dtype=SIZE_T) # define properties of new tensor resulting from transposition new_strides = strides[order] new_row_charges = [charges[n] for n in order[:tr_partition]] new_col_charges = [charges[n] for n in order[tr_partition:]] new_row_flows = flows[order[:tr_partition]] new_col_flows = flows[order[tr_partition:]] if tr_partition == 0: # special case: reshape into row vector # compute qnums of row/cols in transposed tensor unique_col_qnums, new_col_degen = compute_fused_charge_degeneracies( new_col_charges, np.logical_not(new_col_flows)) identity_charges = charges[0].identity_charges(dim=1) block_qnums, new_row_map, new_col_map = intersect( identity_charges.unique_charges, unique_col_qnums.unique_charges, axis=0, return_indices=True) block_dims = np.array([[1], new_col_degen[new_col_map]], dtype=SIZE_T) num_blocks = 1 col_ind, col_locs = reduce_charges( new_col_charges, np.logical_not(new_col_flows), block_qnums, return_locations=True, strides=new_strides[tr_partition:]) # find location of blocks in transposed tensor (w.r.t positions in original) #pylint: disable=no-member orig_row_posR, orig_col_posR = np.divmod( col_locs[col_ind.charge_labels == 0], orig_width) block_maps = [(all_cumul_degens[orig_row_posR] + dense_to_sparse[orig_col_posR]).ravel()] obj = charges[0].__new__(type(charges[0])) obj.__init__(block_qnums, np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype), charges[0].charge_types) elif tr_partition == len(charges): # special case: reshape into col vector # compute qnums of row/cols in transposed tensor unique_row_qnums, new_row_degen = compute_fused_charge_degeneracies( new_row_charges, new_row_flows) identity_charges = charges[0].identity_charges(dim=1) block_qnums, new_row_map, new_col_map = intersect( unique_row_qnums.unique_charges, identity_charges.unique_charges, axis=0, return_indices=True) block_dims = np.array([new_row_degen[new_row_map], [1]], dtype=SIZE_T) num_blocks = 1 row_ind, row_locs = reduce_charges( new_row_charges, new_row_flows, block_qnums, return_locations=True, strides=new_strides[:tr_partition]) # find location of blocks in transposed tensor (w.r.t positions in original) #pylint: disable=no-member orig_row_posL, orig_col_posL = np.divmod( row_locs[row_ind.charge_labels == 0], orig_width) block_maps = [(all_cumul_degens[orig_row_posL] + dense_to_sparse[orig_col_posL]).ravel()] obj = charges[0].__new__(type(charges[0])) obj.__init__(block_qnums, np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype), charges[0].charge_types) else: unique_row_qnums, new_row_degen = compute_fused_charge_degeneracies( new_row_charges, new_row_flows) unique_col_qnums, new_col_degen = compute_fused_charge_degeneracies( new_col_charges, np.logical_not(new_col_flows)) block_qnums, new_row_map, new_col_map = intersect( unique_row_qnums.unique_charges, unique_col_qnums.unique_charges, axis=0, return_indices=True) block_dims = np.array( [new_row_degen[new_row_map], new_col_degen[new_col_map]], dtype=SIZE_T) num_blocks = len(new_row_map) row_ind, row_locs = reduce_charges( new_row_charges, new_row_flows, block_qnums, return_locations=True, strides=new_strides[:tr_partition]) col_ind, col_locs = reduce_charges( new_col_charges, np.logical_not(new_col_flows), block_qnums, return_locations=True, strides=new_strides[tr_partition:]) block_maps = [0] * num_blocks for n in range(num_blocks): #pylint: disable=no-member orig_row_posL, orig_col_posL = np.divmod( row_locs[row_ind.charge_labels == n], orig_width) #pylint: disable=no-member orig_row_posR, orig_col_posR = np.divmod( col_locs[col_ind.charge_labels == n], orig_width) block_maps[n] = ( all_cumul_degens[np.add.outer(orig_row_posL, orig_row_posR)] + dense_to_sparse[np.add.outer(orig_col_posL, orig_col_posR)]).ravel() obj = charges[0].__new__(type(charges[0])) obj.__init__(block_qnums, np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype), charges[0].charge_types) if cacher.do_caching: cacher.cache[hash_val] = (block_maps, obj, block_dims) return cacher.cache[hash_val] return block_maps, obj, block_dims
map the input arguments of _find_transposed_diagonal_sparse_blocks to a string. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. tr_partition: Location of the transposed tensor partition (i.e. such that the tensor is viewed as a matrix between `charges[order[:partition]]` and `charges[order[partition:]]`). order: Order with which to permute the tensor axes. Returns: str: The string representation of the input
def _to_string(charges: List[BaseCharge], flows: Union[np.ndarray, List], tr_partition: int, order: List[int]) -> str: """ map the input arguments of _find_transposed_diagonal_sparse_blocks to a string. Args: charges: List of `BaseCharge`, one for each leg of a tensor. flows: A list of bool, one for each leg of a tensor. with values `False` or `True` denoting inflowing and outflowing charge direction, respectively. tr_partition: Location of the transposed tensor partition (i.e. such that the tensor is viewed as a matrix between `charges[order[:partition]]` and `charges[order[partition:]]`). order: Order with which to permute the tensor axes. Returns: str: The string representation of the input """ return ''.join([str(c.charges.tostring()) for c in charges] + [ str(np.array(flows).tostring()), str(tr_partition), str(np.array(order, dtype=np.int16).tostring()) ])
Return a `Cacher` object which can be used to perform caching of block-data for block-sparse tensor contractions.
def get_cacher() -> Cacher: """ Return a `Cacher` object which can be used to perform caching of block-data for block-sparse tensor contractions. """ if len(_INSTANTIATED_CACHERS) == 0: _INSTANTIATED_CACHERS.append(Cacher()) return _INSTANTIATED_CACHERS[0]
Enable caching of block-data for block-sparse contraction. If enabled, all data that is needed to perform binary tensor contractions will be cached in a dictionary for later reuse. Enabling caching can significantly speed tensor contractions, but can lead to substantially larger memory footprints. In particular if the code uses tensor decompositions like QR, SVD eig, eigh or any similar method, enabling caching can cause catastrophic memory clutter, so use caching with great care. The user can at any point clear the cache by calling `tn.block_sparse.clear_cache()`.
def enable_caching() -> None: """ Enable caching of block-data for block-sparse contraction. If enabled, all data that is needed to perform binary tensor contractions will be cached in a dictionary for later reuse. Enabling caching can significantly speed tensor contractions, but can lead to substantially larger memory footprints. In particular if the code uses tensor decompositions like QR, SVD eig, eigh or any similar method, enabling caching can cause catastrophic memory clutter, so use caching with great care. The user can at any point clear the cache by calling `tn.block_sparse.clear_cache()`. """ get_cacher().set_status(True)
Disable caching of block-data for block-sparse tensor contractions. Note that the cache WILL NOT BE CLEARED. Clearing the cache can be achieved by calling `tn.block_sparse.clear_cache()`.
def disable_caching() -> None: """ Disable caching of block-data for block-sparse tensor contractions. Note that the cache WILL NOT BE CLEARED. Clearing the cache can be achieved by calling `tn.block_sparse.clear_cache()`. """ get_cacher().set_status(False)
Clear the cache that stores block-data for block-sparse tensor contractions.
def clear_cache() -> None: """ Clear the cache that stores block-data for block-sparse tensor contractions. """ get_cacher().clear_cache()
Contstructor for charge classes of the ZN symmetry groups. Args: n: The module of the symmetry group. Returns: A charge class of your given ZN symmetry group.
def ZNCharge(n: int) -> Callable: """Contstructor for charge classes of the ZN symmetry groups. Args: n: The module of the symmetry group. Returns: A charge class of your given ZN symmetry group. """ if n < 2: raise ValueError(f"n must be >= 2, found {n}") class ModularCharge(BaseCharge): def __init__(self, charges: Union[List, np.ndarray], charge_labels: Optional[np.ndarray] = None, charge_types: Optional[List[Type["BaseCharge"]]] = None, charge_dtype: Optional[Type[np.number]] = np.int16) -> None: unique_charges = unique(np.ravel(charges)) if not np.all(np.isin(unique_charges, list(range(n)))): raise ValueError(f"Z{n} charges must be in range({n}), found: {unique}") super().__init__( charges, charge_labels, charge_types=[type(self)], charge_dtype=charge_dtype) @staticmethod def fuse(charge1: np.ndarray, charge2: np.ndarray) -> np.ndarray: return np.add.outer(charge1, charge2).ravel() % n @staticmethod def dual_charges(charges: np.ndarray) -> np.ndarray: return (n - charges) % n @staticmethod def identity_charge() -> np.ndarray: return np.int16(0) @classmethod def random(cls, dimension: int, minval: int = 0, maxval: int = n - 1) -> BaseCharge: if maxval >= n: raise ValueError(f"maxval must be less than n={n}, got {maxval}") if minval < 0: raise ValueError(f"minval must be greater than 0, found {minval}") # No need for the mod due to the checks above. charges = np.random.randint(minval, maxval + 1, dimension, dtype=np.int16) return cls(charges=charges) return ModularCharge
Fuse the quantum numbers of two indices under their kronecker addition. Args: charges_A (np.ndarray): n-by-D1 dimensional array integers encoding charges, with n the number of symmetries and D1 the index dimension. charges__B (np.ndarray): n-by-D2 dimensional array of charges. charge_types: A list of types of the charges. Returns: np.ndarray: n-by-(D1 * D2) dimensional array of the fused charges.
def fuse_ndarray_charges(charges_A: np.ndarray, charges_B: np.ndarray, charge_types: List[Type[BaseCharge]]) -> np.ndarray: """ Fuse the quantum numbers of two indices under their kronecker addition. Args: charges_A (np.ndarray): n-by-D1 dimensional array integers encoding charges, with n the number of symmetries and D1 the index dimension. charges__B (np.ndarray): n-by-D2 dimensional array of charges. charge_types: A list of types of the charges. Returns: np.ndarray: n-by-(D1 * D2) dimensional array of the fused charges. """ comb_charges = [0] * len(charge_types) for n, ct in enumerate(charge_types): comb_charges[n] = ct.fuse(charges_A[:, n], charges_B[:, n])[:, None] return np.concatenate(comb_charges, axis=1)
Fuse all `charges` into a new charge. Charges are fused from "right to left", in accordance with row-major order. Args: charges: A list of charges to be fused. flows: A list of flows, one for each element in `charges`. Returns: BaseCharge: The result of fusing `charges`.
def fuse_charges(charges: List[BaseCharge], flows: List[bool]) -> BaseCharge: """ Fuse all `charges` into a new charge. Charges are fused from "right to left", in accordance with row-major order. Args: charges: A list of charges to be fused. flows: A list of flows, one for each element in `charges`. Returns: BaseCharge: The result of fusing `charges`. """ if len(charges) != len(flows): raise ValueError( "`charges` and `flows` are of unequal lengths {} != {}".format( len(charges), len(flows))) fused_charges = charges[0] * flows[0] for n in range(1, len(charges)): fused_charges = fused_charges + charges[n] * flows[n] return fused_charges
Compare two BaseCharges `c1` and `c2`. Return `True` if they are equal, else `False`.
def charge_equal(c1: BaseCharge, c2: BaseCharge) -> bool: """ Compare two BaseCharges `c1` and `c2`. Return `True` if they are equal, else `False`. """ res = True if c1.dim != c2.dim: return False res = True if c1._unique_charges is not None and c2._unique_charges is not None: if c1._unique_charges.shape != c2._unique_charges.shape: res = False elif not np.all(c1._unique_charges == c2._unique_charges): res = False elif not np.all(c1.charge_labels == c2.charge_labels): res = False return res if c1._charges is not None and c2._charges is not None: if c1._charges.shape != c2._charges.shape: res = False elif not np.all(c1._charges == c2._charges): res = False return res if c1.charges.shape != c2.charges.shape: res = False elif not np.all(c1.charges == c2.charges): res = False return res
Fuse two consecutive indices (legs) of a symmetric tensor. Args: left_index: A tensor Index. right_index: A tensor Index. flow: An optional flow of the resulting `Index` object. Returns: Index: The result of fusing `index1` and `index2`.
def fuse_index_pair(left_index: Index, right_index: Index) -> Index: """ Fuse two consecutive indices (legs) of a symmetric tensor. Args: left_index: A tensor Index. right_index: A tensor Index. flow: An optional flow of the resulting `Index` object. Returns: Index: The result of fusing `index1` and `index2`. """ return Index( charges=left_index.flat_charges + right_index.flat_charges, flow=left_index.flat_flows + right_index.flat_flows)
Fuse a list of indices (legs) of a symmetric tensor. Args: indices: A list of tensor Index objects flow: An optional flow of the resulting `Index` object. Returns: Index: The result of fusing `indices`.
def fuse_indices(indices: List[Index]) -> Index: """ Fuse a list of indices (legs) of a symmetric tensor. Args: indices: A list of tensor Index objects flow: An optional flow of the resulting `Index` object. Returns: Index: The result of fusing `indices`. """ index = indices[0] for n in range(1, len(indices)): index = fuse_index_pair(index, indices[n]) return index
Initialize a symmetric tensor with ones. Args: indices: List of `Index` objecst, one for each leg. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor
def ones(indices: Sequence[Index], dtype: Optional[Type[np.number]] = None) -> BlockSparseTensor: """ Initialize a symmetric tensor with ones. Args: indices: List of `Index` objecst, one for each leg. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor """ return BlockSparseTensor.ones(indices, dtype)
Initialize a symmetric tensor with zeros. Args: indices: List of `Index` objecst, one for each leg. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor
def zeros(indices: Sequence[Index], dtype: Optional[Type[np.number]] = None) -> BlockSparseTensor: """ Initialize a symmetric tensor with zeros. Args: indices: List of `Index` objecst, one for each leg. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor """ return BlockSparseTensor.zeros(indices, dtype)
Initialize a random symmetric tensor from random normal distribution. Args: indices: List of `Index` objecst, one for each leg. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor
def randn(indices: Sequence[Index], dtype: Optional[Type[np.number]] = None) -> BlockSparseTensor: """ Initialize a random symmetric tensor from random normal distribution. Args: indices: List of `Index` objecst, one for each leg. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor """ return BlockSparseTensor.randn(indices, dtype)
Initialize a random symmetric tensor from random uniform distribution. Args: indices: List of `Index` objecst, one for each leg. boundaries: Tuple of interval boundaries for the random uniform distribution. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor
def random(indices: Sequence[Index], boundaries: Optional[Tuple[float, float]] = (0.0, 1.0), dtype: Optional[Type[np.number]] = None) -> BlockSparseTensor: """ Initialize a random symmetric tensor from random uniform distribution. Args: indices: List of `Index` objecst, one for each leg. boundaries: Tuple of interval boundaries for the random uniform distribution. dtype: An optional numpy dtype. The dtype of the tensor Returns: BlockSparseTensor """ return BlockSparseTensor.random(indices, boundaries, dtype)
Initialize a symmetric tensor with an uninitialized np.ndarray. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor
def empty_like(tensor: BlockSparseTensor) -> BlockSparseTensor: """ Initialize a symmetric tensor with an uninitialized np.ndarray. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor """ return BlockSparseTensor( np.empty(tensor.data.size, dtype=tensor.dtype), charges=tensor._charges, flows=tensor._flows, order=tensor._order, check_consistency=False)
Initialize a symmetric tensor with ones. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor
def ones_like(tensor: BlockSparseTensor) -> BlockSparseTensor: """ Initialize a symmetric tensor with ones. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor """ return BlockSparseTensor( np.ones(tensor.data.size, dtype=tensor.dtype), charges=tensor._charges, flows=tensor._flows, order=tensor._order, check_consistency=False)
Initialize a symmetric tensor with zeros. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor
def zeros_like(tensor: BlockSparseTensor) -> BlockSparseTensor: """ Initialize a symmetric tensor with zeros. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor """ return BlockSparseTensor( np.zeros(tensor.data.size, dtype=tensor.dtype), charges=tensor._charges, flows=tensor._flows, order=tensor._order, check_consistency=False)
Initialize a symmetric tensor with random gaussian numbers. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor
def randn_like(tensor: BlockSparseTensor) -> BlockSparseTensor: """ Initialize a symmetric tensor with random gaussian numbers. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor """ return BlockSparseTensor( _randn(tensor.data.size, dtype=tensor.dtype), charges=tensor._charges, flows=tensor._flows, order=tensor._order, check_consistency=False)
Initialize a symmetric tensor with random uniform numbers. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor
def random_like( tensor: BlockSparseTensor, boundaries: Tuple = (0, 1)) -> BlockSparseTensor: """ Initialize a symmetric tensor with random uniform numbers. The resulting tensor has the same shape and dtype as `tensor`. Args: tensor: A BlockSparseTensor. Returns: BlockSparseTensor """ return BlockSparseTensor( _random(tensor.data.size, dtype=tensor.dtype, boundaries=boundaries), charges=tensor._charges, flows=tensor._flows, order=tensor._order, check_consistency=False)
The norm of the tensor.
def norm(tensor: BlockSparseTensor) -> float: """ The norm of the tensor. """ return np.linalg.norm(tensor.data)
Return a diagonal `BlockSparseTensor` from a `ChargeArray`, or return the diagonal of a `BlockSparseTensor` as a `ChargeArray`. For input of type `BlockSparseTensor`: The full diagonal is obtained from finding the diagonal blocks of the `BlockSparseTensor`, taking the diagonal elements of those and packing the result into a ChargeArray. Note that the computed diagonal elements are usually different from the diagonal elements obtained from converting the `BlockSparseTensor` to dense storage and taking the diagonal. Note that the flow of the resulting 1d `ChargeArray` object is `False`. Args: tensor: A `ChargeArray`. Returns: ChargeArray: A 1d `CharggeArray` containing the diagonal of `tensor`, or a diagonal matrix of type `BlockSparseTensor` containing `tensor` on its diagonal.
def diag(tensor: ChargeArray) -> Any: """ Return a diagonal `BlockSparseTensor` from a `ChargeArray`, or return the diagonal of a `BlockSparseTensor` as a `ChargeArray`. For input of type `BlockSparseTensor`: The full diagonal is obtained from finding the diagonal blocks of the `BlockSparseTensor`, taking the diagonal elements of those and packing the result into a ChargeArray. Note that the computed diagonal elements are usually different from the diagonal elements obtained from converting the `BlockSparseTensor` to dense storage and taking the diagonal. Note that the flow of the resulting 1d `ChargeArray` object is `False`. Args: tensor: A `ChargeArray`. Returns: ChargeArray: A 1d `CharggeArray` containing the diagonal of `tensor`, or a diagonal matrix of type `BlockSparseTensor` containing `tensor` on its diagonal. """ if tensor.ndim > 2: raise ValueError("`diag` currently only implemented for matrices, " "found `ndim={}".format(tensor.ndim)) if not isinstance(tensor, BlockSparseTensor): if tensor.ndim > 1: raise ValueError( "`diag` currently only implemented for `ChargeArray` with ndim=1, " "found `ndim={}`".format(tensor.ndim)) flat_charges = tensor._charges + tensor._charges flat_flows = list(tensor._flows) + list(np.logical_not(tensor._flows)) flat_order = list(tensor.flat_order) + list( np.asarray(tensor.flat_order) + len(tensor._charges)) tr_partition = len(tensor._order[0]) blocks, charges, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) data = np.zeros( np.int64(np.sum(np.prod(shapes, axis=0))), dtype=tensor.dtype) lookup, unique, labels = compute_sparse_lookup(tensor._charges, tensor._flows, charges) for n, block in enumerate(blocks): label = labels[np.nonzero(unique == charges[n])[0][0]] data[block] = np.ravel( np.diag(tensor.data[np.nonzero(lookup == label)[0]])) order = [ tensor._order[0], list(np.asarray(tensor._order[0]) + len(tensor._charges)) ] new_charges = [tensor._charges[0].copy(), tensor._charges[0].copy()] return BlockSparseTensor( data, charges=new_charges, flows=list(tensor._flows) + list(np.logical_not(tensor._flows)), order=order, check_consistency=False) flat_charges = tensor._charges flat_flows = tensor._flows flat_order = tensor.flat_order tr_partition = len(tensor._order[0]) sparse_blocks, charges, block_shapes = _find_transposed_diagonal_sparse_blocks( #pylint: disable=line-too-long flat_charges, flat_flows, tr_partition, flat_order) shapes = np.min(block_shapes, axis=0) if len(sparse_blocks) > 0: data = np.concatenate([ np.diag(np.reshape(tensor.data[sparse_blocks[n]], block_shapes[:, n])) for n in range(len(sparse_blocks)) ]) charge_labels = np.concatenate([ np.full(shapes[n], fill_value=n, dtype=np.int16) for n in range(len(sparse_blocks)) ]) else: data = np.empty(0, dtype=tensor.dtype) charge_labels = np.empty(0, dtype=np.int16) newcharges = [charges[charge_labels]] flows = [False] return ChargeArray(data, newcharges, flows)
Reshape `tensor` into `shape. `ChargeArray.reshape` works the same as the dense version, with the notable exception that the tensor can only be reshaped into a form compatible with its elementary shape. The elementary shape is the shape determined by ChargeArray._charges. For example, while the following reshaping is possible for regular dense numpy tensor, ``` A = np.random.rand(6,6,6) np.reshape(A, (2,3,6,6)) ``` the same code for ChargeArray ``` q1 = U1Charge(np.random.randint(0,10,6)) q2 = U1Charge(np.random.randint(0,10,6)) q3 = U1Charge(np.random.randint(0,10,6)) i1 = Index(charges=q1,flow=False) i2 = Index(charges=q2,flow=True) i3 = Index(charges=q3,flow=False) A = ChargeArray.randn(indices=[i1,i2,i3]) print(A.shape) #prints (6,6,6) A.reshape((2,3,6,6)) #raises ValueError ``` raises a `ValueError` since (2,3,6,6) is incompatible with the elementary shape (6,6,6) of the tensor. Args: tensor: A symmetric tensor. shape: The new shape. Can either be a list of `Index` or a list of `int`. Returns: ChargeArray: A new tensor reshaped into `shape`
def reshape(tensor: ChargeArray, shape: Sequence[Union[Index, int]]) -> ChargeArray: """ Reshape `tensor` into `shape. `ChargeArray.reshape` works the same as the dense version, with the notable exception that the tensor can only be reshaped into a form compatible with its elementary shape. The elementary shape is the shape determined by ChargeArray._charges. For example, while the following reshaping is possible for regular dense numpy tensor, ``` A = np.random.rand(6,6,6) np.reshape(A, (2,3,6,6)) ``` the same code for ChargeArray ``` q1 = U1Charge(np.random.randint(0,10,6)) q2 = U1Charge(np.random.randint(0,10,6)) q3 = U1Charge(np.random.randint(0,10,6)) i1 = Index(charges=q1,flow=False) i2 = Index(charges=q2,flow=True) i3 = Index(charges=q3,flow=False) A = ChargeArray.randn(indices=[i1,i2,i3]) print(A.shape) #prints (6,6,6) A.reshape((2,3,6,6)) #raises ValueError ``` raises a `ValueError` since (2,3,6,6) is incompatible with the elementary shape (6,6,6) of the tensor. Args: tensor: A symmetric tensor. shape: The new shape. Can either be a list of `Index` or a list of `int`. Returns: ChargeArray: A new tensor reshaped into `shape` """ return tensor.reshape(shape)
Return the complex conjugate of `tensor` in a new `ChargeArray`. Args: tensor: A `ChargeArray` object. Returns: ChargeArray
def conj(tensor: ChargeArray) -> ChargeArray: """ Return the complex conjugate of `tensor` in a new `ChargeArray`. Args: tensor: A `ChargeArray` object. Returns: ChargeArray """ return tensor.conj()
Transpose the tensor into the new order `order`. If `shuffle=False` no data-reshuffling is done. Args: order: The new order of indices. shuffle: If `True`, reshuffle data. Returns: ChargeArray: The transposed tensor.
def transpose(tensor: ChargeArray, order: Sequence[int] = np.asarray([1, 0]), shuffle: Optional[bool] = False) -> ChargeArray: """ Transpose the tensor into the new order `order`. If `shuffle=False` no data-reshuffling is done. Args: order: The new order of indices. shuffle: If `True`, reshuffle data. Returns: ChargeArray: The transposed tensor. """ return tensor.transpose(order, shuffle)
Compute the singular value decomposition of `matrix`. The matrix if factorized into `u * s * vh`, with `u` and `vh` the left and right singular vectors of `matrix`, and `s` its singular values. Args: matrix: A matrix (i.e. an order-2 tensor) of type `BlockSparseTensor` full_matrices: If `True`, expand `u` and `v` to square matrices If `False` return the "economic" svd, i.e. `u.shape[1]=s.shape[0]` and `v.shape[0]=s.shape[1]` compute_uv: If `True`, return `u` and `v`. hermitian: If `True`, assume hermiticity of `matrix`. Returns: If `compute_uv` is `True`: Three BlockSparseTensors `U,S,V`. If `compute_uv` is `False`: A BlockSparseTensors `S` containing the singular values.
def svd(matrix: BlockSparseTensor, full_matrices: Optional[bool] = True, compute_uv: Optional[bool] = True, hermitian: Optional[bool] = False) -> Any: """ Compute the singular value decomposition of `matrix`. The matrix if factorized into `u * s * vh`, with `u` and `vh` the left and right singular vectors of `matrix`, and `s` its singular values. Args: matrix: A matrix (i.e. an order-2 tensor) of type `BlockSparseTensor` full_matrices: If `True`, expand `u` and `v` to square matrices If `False` return the "economic" svd, i.e. `u.shape[1]=s.shape[0]` and `v.shape[0]=s.shape[1]` compute_uv: If `True`, return `u` and `v`. hermitian: If `True`, assume hermiticity of `matrix`. Returns: If `compute_uv` is `True`: Three BlockSparseTensors `U,S,V`. If `compute_uv` is `False`: A BlockSparseTensors `S` containing the singular values. """ if matrix.ndim != 2: raise NotImplementedError("svd currently supports only tensors of order 2.") flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, charges, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) u_blocks = [] singvals = [] v_blocks = [] for n, block in enumerate(blocks): out = np.linalg.svd( np.reshape(matrix.data[block], shapes[:, n]), full_matrices, compute_uv, hermitian) if compute_uv: u_blocks.append(out[0]) singvals.append(out[1]) v_blocks.append(out[2]) else: singvals.append(out) tmp_labels = [ np.full(len(singvals[n]), fill_value=n, dtype=np.int16) for n in range(len(singvals)) ] if len(tmp_labels) > 0: left_singval_charge_labels = np.concatenate(tmp_labels) else: left_singval_charge_labels = np.empty(0, dtype=np.int16) left_singval_charge = charges[left_singval_charge_labels] if len(singvals) > 0: all_singvals = np.concatenate(singvals) else: all_singvals = np.empty(0, dtype=get_real_dtype(matrix.dtype)) S = ChargeArray(all_singvals, [left_singval_charge], [False]) if compute_uv: #define the new charges on the two central bonds tmp_left_labels = [ np.full(u_blocks[n].shape[1], fill_value=n, dtype=np.int16) for n in range(len(u_blocks)) ] if len(tmp_left_labels) > 0: left_charge_labels = np.concatenate(tmp_left_labels) else: left_charge_labels = np.empty(0, dtype=np.int16) tmp_right_labels = [ np.full(v_blocks[n].shape[0], fill_value=n, dtype=np.int16) for n in range(len(v_blocks)) ] if len(tmp_right_labels) > 0: right_charge_labels = np.concatenate(tmp_right_labels) else: right_charge_labels = np.empty(0, dtype=np.int16) new_left_charge = charges[left_charge_labels] new_right_charge = charges[right_charge_labels] charges_u = [new_left_charge ] + [matrix._charges[o] for o in matrix._order[0]] order_u = [[0]] + [list(np.arange(1, len(matrix._order[0]) + 1))] flows_u = [True] + [matrix._flows[o] for o in matrix._order[0]] charges_v = [new_right_charge ] + [matrix._charges[o] for o in matrix._order[1]] flows_v = [False] + [matrix._flows[o] for o in matrix._order[1]] order_v = [[0]] + [list(np.arange(1, len(matrix._order[1]) + 1))] # We fill in data into the transposed U # note that transposing is essentially free if len(u_blocks) > 0: all_u_blocks = np.concatenate([np.ravel(u.T) for u in u_blocks]) all_v_blocks = np.concatenate([np.ravel(v) for v in v_blocks]) else: all_u_blocks = np.empty(0, dtype=matrix.dtype) all_v_blocks = np.empty(0, dtype=matrix.dtype) return BlockSparseTensor( all_u_blocks, charges=charges_u, flows=flows_u, order=order_u, check_consistency=False).transpose((1, 0)), S, BlockSparseTensor( all_v_blocks, charges=charges_v, flows=flows_v, order=order_v, check_consistency=False) return S
Compute the qr decomposition of an `M` by `N` matrix `matrix`. The matrix is factorized into `q*r`, with `q` an orthogonal matrix and `r` an upper triangular matrix. Args: matrix: A matrix (i.e. a rank-2 tensor) of type `BlockSparseTensor` mode : Can take values {'reduced', 'complete', 'r', 'raw'}. If K = min(M, N), then * 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) * 'complete' : returns q, r with dimensions (M, M), (M, N) * 'r' : returns r only with dimensions (K, N) Returns: (BlockSparseTensor,BlockSparseTensor): If mode = `reduced` or `complete` BlockSparseTensor: If mode = `r`.
def qr(matrix: BlockSparseTensor, mode: Text = 'reduced') -> Any: """ Compute the qr decomposition of an `M` by `N` matrix `matrix`. The matrix is factorized into `q*r`, with `q` an orthogonal matrix and `r` an upper triangular matrix. Args: matrix: A matrix (i.e. a rank-2 tensor) of type `BlockSparseTensor` mode : Can take values {'reduced', 'complete', 'r', 'raw'}. If K = min(M, N), then * 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) * 'complete' : returns q, r with dimensions (M, M), (M, N) * 'r' : returns r only with dimensions (K, N) Returns: (BlockSparseTensor,BlockSparseTensor): If mode = `reduced` or `complete` BlockSparseTensor: If mode = `r`. """ if matrix.ndim != 2: raise NotImplementedError("qr currently supports only rank-2 tensors.") if mode not in ('reduced', 'complete', 'raw', 'r'): raise ValueError('unknown value {} for input `mode`'.format(mode)) if mode == 'raw': raise NotImplementedError('mode `raw` currenntly not supported') flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, charges, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) q_blocks = [] r_blocks = [] for n, block in enumerate(blocks): out = np.linalg.qr(np.reshape(matrix.data[block], shapes[:, n]), mode) if mode in ('reduced', 'complete'): q_blocks.append(out[0]) r_blocks.append(out[1]) else: r_blocks.append(out) tmp_r_charge_labels = [ np.full(r_blocks[n].shape[0], fill_value=n, dtype=np.int16) for n in range(len(r_blocks)) ] if len(tmp_r_charge_labels) > 0: left_r_charge_labels = np.concatenate(tmp_r_charge_labels) else: left_r_charge_labels = np.empty(0, dtype=np.int16) left_r_charge = charges[left_r_charge_labels] charges_r = [left_r_charge] + [matrix._charges[o] for o in matrix._order[1]] flows_r = [False] + [matrix._flows[o] for o in matrix._order[1]] order_r = [[0]] + [list(np.arange(1, len(matrix._order[1]) + 1))] if len(r_blocks) > 0: all_r_blocks = np.concatenate([np.ravel(r) for r in r_blocks]) else: all_r_blocks = np.empty(0, dtype=matrix.dtype) R = BlockSparseTensor( all_r_blocks, charges=charges_r, flows=flows_r, order=order_r, check_consistency=False) if mode in ('reduced', 'complete'): tmp_right_q_charge_labels = [ np.full(q_blocks[n].shape[1], fill_value=n, dtype=np.int16) for n in range(len(q_blocks)) ] if len(tmp_right_q_charge_labels) > 0: right_q_charge_labels = np.concatenate(tmp_right_q_charge_labels) else: right_q_charge_labels = np.empty(0, dtype=np.int16) right_q_charge = charges[right_q_charge_labels] charges_q = [ right_q_charge, ] + [matrix._charges[o] for o in matrix._order[0]] order_q = [[0]] + [list(np.arange(1, len(matrix._order[0]) + 1))] flows_q = [True] + [matrix._flows[o] for o in matrix._order[0]] if len(q_blocks) > 0: all_q_blocks = np.concatenate([np.ravel(q.T) for q in q_blocks]) else: all_q_blocks = np.empty(0, dtype=matrix.dtype) return BlockSparseTensor( all_q_blocks, charges=charges_q, flows=flows_q, order=order_q, check_consistency=False).transpose((1, 0)), R return R
Compute the eigen decomposition of a hermitian `M` by `M` matrix `matrix`. Args: matrix: A matrix (i.e. a rank-2 tensor) of type `BlockSparseTensor` Returns: (ChargeArray,BlockSparseTensor): The eigenvalues and eigenvectors
def eigh(matrix: BlockSparseTensor, UPLO: Optional[Text] = 'L') -> Tuple[ChargeArray, BlockSparseTensor]: """ Compute the eigen decomposition of a hermitian `M` by `M` matrix `matrix`. Args: matrix: A matrix (i.e. a rank-2 tensor) of type `BlockSparseTensor` Returns: (ChargeArray,BlockSparseTensor): The eigenvalues and eigenvectors """ if matrix.ndim != 2: raise NotImplementedError("eigh currently supports only rank-2 tensors.") flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, charges, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) eigvals = [] v_blocks = [] for n, block in enumerate(blocks): e, v = np.linalg.eigh(np.reshape(matrix.data[block], shapes[:, n]), UPLO) eigvals.append(e) v_blocks.append(v) tmp_labels = [ np.full(len(eigvals[n]), fill_value=n, dtype=np.int16) for n in range(len(eigvals)) ] if len(tmp_labels) > 0: eigvalscharge_labels = np.concatenate(tmp_labels) else: eigvalscharge_labels = np.empty(0, dtype=np.int16) eigvalscharge = charges[eigvalscharge_labels] if len(eigvals) > 0: all_eigvals = np.concatenate(eigvals) else: all_eigvals = np.empty(0, dtype=get_real_dtype(matrix.dtype)) E = ChargeArray(all_eigvals, [eigvalscharge], [False]) charges_v = [eigvalscharge] + [matrix._charges[o] for o in matrix._order[0]] order_v = [[0]] + [list(np.arange(1, len(matrix._order[0]) + 1))] flows_v = [True] + [matrix._flows[o] for o in matrix._order[0]] if len(v_blocks) > 0: all_v_blocks = np.concatenate([np.ravel(v.T) for v in v_blocks]) else: all_v_blocks = np.empty(0, dtype=matrix.dtype) V = BlockSparseTensor( all_v_blocks, charges=charges_v, flows=flows_v, order=order_v, check_consistency=False).transpose() return E, V
Compute the eigen decomposition of an `M` by `M` matrix `matrix`. Args: matrix: A matrix (i.e. a rank-2 tensor) of type `BlockSparseTensor` Returns: (ChargeArray,BlockSparseTensor): The eigenvalues and eigenvectors
def eig(matrix: BlockSparseTensor) -> Tuple[ChargeArray, BlockSparseTensor]: """ Compute the eigen decomposition of an `M` by `M` matrix `matrix`. Args: matrix: A matrix (i.e. a rank-2 tensor) of type `BlockSparseTensor` Returns: (ChargeArray,BlockSparseTensor): The eigenvalues and eigenvectors """ if matrix.ndim != 2: raise NotImplementedError("eig currently supports only rank-2 tensors.") flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, charges, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) eigvals = [] v_blocks = [] for n, block in enumerate(blocks): e, v = np.linalg.eig(np.reshape(matrix.data[block], shapes[:, n])) eigvals.append(e) v_blocks.append(v) tmp_labels = [ np.full(len(eigvals[n]), fill_value=n, dtype=np.int16) for n in range(len(eigvals)) ] if len(tmp_labels) > 0: eigvalscharge_labels = np.concatenate(tmp_labels) else: eigvalscharge_labels = np.empty(0, dtype=np.int16) eigvalscharge = charges[eigvalscharge_labels] if len(eigvals) > 0: all_eigvals = np.concatenate(eigvals) else: all_eigvals = np.empty(0, dtype=get_real_dtype(matrix.dtype)) E = ChargeArray(all_eigvals, [eigvalscharge], [False]) charges_v = [eigvalscharge] + [matrix._charges[o] for o in matrix._order[0]] order_v = [[0]] + [list(np.arange(1, len(matrix._order[0]) + 1))] flows_v = [True] + [matrix._flows[o] for o in matrix._order[0]] if len(v_blocks) > 0: all_v_blocks = np.concatenate([np.ravel(v.T) for v in v_blocks]) else: all_v_blocks = np.empty(0, dtype=matrix.dtype) V = BlockSparseTensor( all_v_blocks, charges=charges_v, flows=flows_v, order=order_v, check_consistency=False).transpose() return E, V
Compute the matrix inverse of `matrix`. Returns: BlockSparseTensor: The inverse of `matrix`.
def inv(matrix: BlockSparseTensor) -> BlockSparseTensor: """ Compute the matrix inverse of `matrix`. Returns: BlockSparseTensor: The inverse of `matrix`. """ if matrix.ndim != 2: raise ValueError("`inv` can only be taken for matrices, " "found tensor.ndim={}".format(matrix.ndim)) flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, _, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) data = np.empty(np.sum(np.prod(shapes, axis=0)), dtype=matrix.dtype) for n, block in enumerate(blocks): data[block] = np.ravel( np.linalg.inv(np.reshape(matrix.data[block], shapes[:, n])).T) #pylint: disable=line-too-long return BlockSparseTensor( data=data, charges=matrix._charges, flows=np.logical_not(matrix._flows), order=matrix._order, check_consistency=False).transpose((1, 0))
Return an identity matrix. Args: column_index: The column index of the matrix. row_index: The row index of the matrix. dtype: The dtype of the matrix. Returns: BlockSparseTensor
def eye(column_index: Index, row_index: Optional[Index] = None, dtype: Optional[Type[np.number]] = None) -> BlockSparseTensor: """ Return an identity matrix. Args: column_index: The column index of the matrix. row_index: The row index of the matrix. dtype: The dtype of the matrix. Returns: BlockSparseTensor """ if row_index is None: row_index = column_index.copy().flip_flow() if dtype is None: dtype = np.float64 blocks, _, shapes = _find_diagonal_sparse_blocks( column_index.flat_charges + row_index.flat_charges, column_index.flat_flows + row_index.flat_flows, len(column_index.flat_charges)) data = np.empty(np.int64(np.sum(np.prod(shapes, axis=0))), dtype=dtype) for n, block in enumerate(blocks): data[block] = np.ravel(np.eye(shapes[0, n], shapes[1, n], dtype=dtype)) order = [list(np.arange(0, len(column_index.flat_charges)))] + [ list( np.arange( len(column_index.flat_charges), len(column_index.flat_charges) + len(row_index.flat_charges))) ] return BlockSparseTensor( data=data, charges=column_index.flat_charges + row_index.flat_charges, flows=column_index.flat_flows + row_index.flat_flows, order=order, check_consistency=False)
Compute the trace of a matrix or tensor. If input has `ndim>2`, take the trace over the last two dimensions. Args: tensor: A `BlockSparseTensor`. axes: The axes over which the trace should be computed. Defaults to the last two indices of the tensor. Returns: BlockSparseTensor: The result of taking the trace.
def trace(tensor: BlockSparseTensor, axes: Optional[Sequence[int]] = None) -> BlockSparseTensor: """ Compute the trace of a matrix or tensor. If input has `ndim>2`, take the trace over the last two dimensions. Args: tensor: A `BlockSparseTensor`. axes: The axes over which the trace should be computed. Defaults to the last two indices of the tensor. Returns: BlockSparseTensor: The result of taking the trace. """ if tensor.ndim > 1: if axes is None: axes = (tensor.ndim - 2, tensor.ndim - 1) if len(axes) != 2: raise ValueError(f"`len(axes)` has to be 2, found `axes = {axes}`") if not np.array_equal(tensor.flows[axes[0]], np.logical_not(tensor.flows[axes[1]])): raise ValueError( f"trace indices for axes {axes} have non-matching flows.") sparse_shape = tensor.sparse_shape if sparse_shape[axes[0]].copy().flip_flow() != sparse_shape[axes[1]]: raise ValueError(f"trace indices for axes {axes} are not matching") #flatten the shape of `tensor` out = tensor.reshape( flatten([[tensor._charges[n].dim for n in o] for o in tensor._order])) _, _, labels0 = np.intersect1d( tensor._order[axes[0]], flatten(out._order), return_indices=True) _, _, labels1 = np.intersect1d( tensor._order[axes[1]], flatten(out._order), return_indices=True) a0 = list(labels0[np.argsort(tensor._order[axes[0]])]) a1 = list(labels1[np.argsort(tensor._order[axes[1]])]) while len(a0) > 0: i = a0.pop(0) j = a1.pop(0) identity = eye( Index([out._charges[out._order[i][0]]], [not out._flows[out._order[i][0]]])) #pylint: disable=line-too-long out = tensordot(out, identity, ([i, j], [0, 1])) # pytype: disable=wrong-arg-types a0ar = np.asarray(a0) mask_min = a0ar > np.min([i, j]) mask_max = a0ar > np.max([i, j]) a0ar[np.logical_and(mask_min, mask_max)] -= 2 a0ar[np.logical_xor(mask_min, mask_max)] -= 1 a1ar = np.asarray(a1) mask_min = a1ar > np.min([i, j]) mask_max = a1ar > np.max([i, j]) a1ar[np.logical_and(mask_min, mask_max)] -= 2 a1ar[np.logical_xor(mask_min, mask_max)] -= 1 a0 = list(a0ar) a1 = list(a1ar) if out.ndim == 0: return out.item() return out # pytype: disable=bad-return-type raise ValueError("trace can only be taken for tensors with ndim > 1")
Compute the Moore-Penrose pseudo inverse of `matrix`. Args: rcond: Pseudo inverse cutoff. Returns: BlockSparseTensor: The pseudo inverse of `matrix`.
def pinv(matrix: BlockSparseTensor, rcond: Optional[float] = 1E-15, hermitian: Optional[bool] = False) -> BlockSparseTensor: """ Compute the Moore-Penrose pseudo inverse of `matrix`. Args: rcond: Pseudo inverse cutoff. Returns: BlockSparseTensor: The pseudo inverse of `matrix`. """ if matrix.ndim != 2: raise ValueError("`pinv` can only be taken for matrices, " "found tensor.ndim={}".format(matrix.ndim)) flat_charges = matrix._charges flat_flows = matrix._flows flat_order = matrix.flat_order tr_partition = len(matrix._order[0]) blocks, _, shapes = _find_transposed_diagonal_sparse_blocks( flat_charges, flat_flows, tr_partition, flat_order) data = np.empty(np.sum(np.prod(shapes, axis=0)), dtype=matrix.dtype) for n, block in enumerate(blocks): data[block] = np.ravel( np.linalg.pinv( np.reshape(matrix.data[block], shapes[:, n]), rcond=rcond, hermitian=hermitian).T) #pylint: disable=line-too-long return BlockSparseTensor( data=data, charges=matrix._charges, flows=np.logical_not(matrix._flows), order=matrix._order, check_consistency=False).transpose((1, 0))
Initialize a 1d np.ndarray of length `size` of dtype `dtype` with random gaussian values. Args: size: The length of the array. dtype: The desired dtype. Returns: np.ndarray: The data array.
def _randn(size: int, dtype: Type[np.number] = np.float64) -> np.ndarray: """ Initialize a 1d np.ndarray of length `size` of dtype `dtype` with random gaussian values. Args: size: The length of the array. dtype: The desired dtype. Returns: np.ndarray: The data array. """ data = np.random.randn(size).astype(dtype) if ((np.dtype(dtype) is np.dtype(np.complex128)) or (np.dtype(dtype) is np.dtype(np.complex64))): data += 1j * np.random.randn(size).astype(dtype) return data
Initialize a 1d np.ndarray of length `size` of dtype `dtype` with random uniform values. Args: size: The length of the array. dtype: The desired dtype. boundaries: The boundaries of the interval where numbers are drawn from. Returns: np.ndarray: The data array.
def _random(size: int, dtype: Type[np.number] = np.float64, boundaries: Tuple = (0, 1)) -> np.ndarray: """ Initialize a 1d np.ndarray of length `size` of dtype `dtype` with random uniform values. Args: size: The length of the array. dtype: The desired dtype. boundaries: The boundaries of the interval where numbers are drawn from. Returns: np.ndarray: The data array. """ data = np.random.uniform(boundaries[0], boundaries[1], size).astype(dtype) if ((np.dtype(dtype) is np.dtype(np.complex128)) or (np.dtype(dtype) is np.dtype(np.complex64))): data += 1j * np.random.uniform(boundaries[0], boundaries[1], size).astype(dtype) return data
Flatten a list of lists into a single list. Args: list_of_lists: A list of lists. Returns: list: The flattened input.
def flatten(list_of_list: List[List]) -> np.ndarray: """ Flatten a list of lists into a single list. Args: list_of_lists: A list of lists. Returns: list: The flattened input. """ return np.array([l for sublist in list_of_list for l in sublist])
Compute linear positions of tensor elements of a tensor with dimensions `dims` according to `strides`. Args: dims: An np.ndarray of (original) tensor dimensions. strides: An np.ndarray of (possibly permuted) strides. Returns: np.ndarray: Linear positions of tensor elements according to `strides`.
def fuse_stride_arrays(dims: Union[List[int], np.ndarray], strides: Union[List[int], np.ndarray]) -> np.ndarray: """ Compute linear positions of tensor elements of a tensor with dimensions `dims` according to `strides`. Args: dims: An np.ndarray of (original) tensor dimensions. strides: An np.ndarray of (possibly permuted) strides. Returns: np.ndarray: Linear positions of tensor elements according to `strides`. """ return fuse_ndarrays([ np.arange(0, strides[n] * dims[n], strides[n], dtype=SIZE_T) for n in range(len(dims)) ])