Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
< 1K
Tags:
text-retrieval
task_categories: | |
- text-retrieval | |
task_ids: | |
- document-retrieval | |
config_names: | |
- corpus | |
tags: | |
- text-retrieval | |
dataset_info: | |
- config_name: default | |
features: | |
- name: query-id | |
dtype: string | |
- name: corpus-id | |
dtype: string | |
- name: score | |
dtype: float64 | |
- config_name: corpus | |
features: | |
- name: id | |
dtype: string | |
- name: title | |
dtype: string | |
- name: text | |
dtype: string | |
- config_name: queries | |
features: | |
- name: id | |
dtype: string | |
- name: text | |
dtype: string | |
configs: | |
- config_name: default | |
data_files: | |
- split: test | |
path: relevance.jsonl | |
- config_name: corpus | |
data_files: | |
- split: corpus | |
path: corpus.jsonl | |
- config_name: queries | |
data_files: | |
- split: queries | |
path: queries.jsonl | |
This dataset comprises approximately 3,000 Supreme Court of India case documents and is designed to evaluae the retrieval of relevant prior cases for given legal situations. It includes 50 queries, each outlining a specific scenario. We include this dataset in the benchmark because the documents are reasonably challenging, the queries are non-synthetic, and the labels are of high quality. | |
**Usage** | |
``` | |
import datasets | |
# Download the dataset | |
queries = datasets.load_dataset("embedding-benchmark/AILACasedocs", "queries") | |
documents = datasets.load_dataset("embedding-benchmark/AILACasedocs", "corpus") | |
pair_labels = datasets.load_dataset("embedding-benchmark/AILACasedocs", "default") | |
``` |