Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
< 1K
Tags:
text-retrieval
Dataset Viewer
query-id
stringlengths 5
5
| corpus-id
stringlengths 10
10
| score
float64 1
1
|
---|---|---|
00000
|
gAk7Gdp0CX
| 1 |
00001
|
AwFv0Yg7NZ
| 1 |
00002
|
eNo41eoPni
| 1 |
00003
|
8JHUdKF0j7
| 1 |
00004
|
TtLFxJpRa5
| 1 |
00005
|
ld6DYyeNdj
| 1 |
00006
|
CtlRJoWcUR
| 1 |
00007
|
DO4lKNEfvu
| 1 |
00008
|
YsP6ihgIqL
| 1 |
00009
|
qWCA79ISjs
| 1 |
00010
|
BnD3XkfFNu
| 1 |
00011
|
TP9gyv1plB
| 1 |
00012
|
u8zF9OHzlw
| 1 |
00013
|
ZESFqZ8pIx
| 1 |
00014
|
nuVxUZpfbH
| 1 |
00015
|
9OBGhnuKon
| 1 |
00016
|
6JDWYlgAAC
| 1 |
00017
|
3npgW2zMj5
| 1 |
00018
|
nuVxUZpfbH
| 1 |
00019
|
f7ZJ69PqcU
| 1 |
00020
|
QMgV0Lh8Wv
| 1 |
00021
|
B19sMLT6mn
| 1 |
00022
|
QR6FEecAtp
| 1 |
00023
|
TtLFxJpRa5
| 1 |
00024
|
YsP6ihgIqL
| 1 |
00025
|
4HZKjht3X1
| 1 |
00026
|
OjkeaBKsoR
| 1 |
00027
|
qWCA79ISjs
| 1 |
00028
|
gMXAdx9G81
| 1 |
00029
|
nnBbuQzkCh
| 1 |
00030
|
SmNqE40fAr
| 1 |
00031
|
td26fEeVVh
| 1 |
00032
|
Y7gbtP7ySe
| 1 |
00033
|
QsKDGAUuRq
| 1 |
00034
|
aVNqTIAae2
| 1 |
00035
|
NbrnTP3fAb
| 1 |
00036
|
td26fEeVVh
| 1 |
00037
|
QMgV0Lh8Wv
| 1 |
00038
|
22wjZRL9Oa
| 1 |
00039
|
18Y2bTu5X1
| 1 |
00040
|
f7ZJ69PqcU
| 1 |
00041
|
SmNqE40fAr
| 1 |
00042
|
850kEnydx9
| 1 |
00043
|
VHWGaub52Z
| 1 |
00044
|
nuVxUZpfbH
| 1 |
00045
|
YqWg21nYCs
| 1 |
00046
|
9vOWOU6mbj
| 1 |
00047
|
Y7gbtP7ySe
| 1 |
00048
|
nnBbuQzkCh
| 1 |
00049
|
AwFv0Yg7NZ
| 1 |
The dataset comprises descriptions of 197 Supreme Court of India statutes, designed to facilitate the retrieval of relevant prior statutes for given legal situations. It includes 50 queries, each outlining a specific scenario. We include this dataset in the benchmark because the documents are reasonably challenging, the queries are non-synthetic, and the labels are of high quality.
Usage
import datasets
# Download the dataset
queries = datasets.load_dataset("embedding-benchmark/AILAStatutes", "queries")
documents = datasets.load_dataset("embedding-benchmark/AILAStatutes", "corpus")
pair_labels = datasets.load_dataset("embedding-benchmark/AILAStatutes", "default")
- Downloads last month
- 49