Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
10K - 100K
Tags:
text-retrieval
task_categories: | |
- text-retrieval | |
task_ids: | |
- document-retrieval | |
config_names: | |
- corpus | |
tags: | |
- text-retrieval | |
dataset_info: | |
- config_name: default | |
features: | |
- name: query-id | |
dtype: string | |
- name: corpus-id | |
dtype: string | |
- name: score | |
dtype: float64 | |
- config_name: corpus | |
features: | |
- name: id | |
dtype: string | |
- name: text | |
dtype: string | |
- config_name: queries | |
features: | |
- name: id | |
dtype: string | |
- name: text | |
dtype: string | |
configs: | |
- config_name: default | |
data_files: | |
- split: test | |
path: relevance.jsonl | |
- config_name: corpus | |
data_files: | |
- split: corpus | |
path: corpus.jsonl | |
- config_name: queries | |
data_files: | |
- split: queries | |
path: queries.jsonl | |
APPS is a benchmark for code generation with 10000 problems. It can be used to evaluate the ability of language models to generate code from natural language specifications. To create the APPS dataset, the authors manually curated problems from open-access sites where programmers share problems with each other, including Codewars, AtCoder, Kattis, and Codeforces. | |
**Usage** | |
``` | |
import datasets | |
# Download the dataset | |
queries = datasets.load_dataset("embedding-benchmark/APPS", "queries") | |
documents = datasets.load_dataset("embedding-benchmark/APPS", "corpus") | |
pair_labels = datasets.load_dataset("embedding-benchmark/APPS", "default") | |
``` |