Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
1K - 10K
Tags:
text-retrieval
metadata
task_categories:
- text-retrieval
task_ids:
- document-retrieval
config_names:
- corpus
tags:
- text-retrieval
dataset_info:
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
- config_name: corpus
features:
- name: id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- config_name: queries
features:
- name: id
dtype: string
- name: text
dtype: string
configs:
- config_name: default
data_files:
- split: test
path: relevance.jsonl
- config_name: corpus
data_files:
- split: corpus
path: corpus.jsonl
- config_name: queries
data_files:
- split: queries
path: queries.jsonl
The dataset comprises 446 pairs of legal text excerpts and their corresponding plain English summaries, sourced from reputable websites dedicated to clarifying legal documents. The summaries have been manually reviewed for quality, ensuring that the data is clean and suitable for evaluating legal retrieval.
Usage
import datasets
# Download the dataset
queries = datasets.load_dataset("embedding-benchmark/LegalSummarization", "queries")
documents = datasets.load_dataset("embedding-benchmark/LegalSummarization", "corpus")
pair_labels = datasets.load_dataset("embedding-benchmark/LegalSummarization", "default")