File size: 31,641 Bytes
6343f32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import random
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
import copy
import json
import pickle
from math import floor, ceil
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
import traceback
from maze_loader import MazeLoader

from rooms import NameGenerator


class MazeGenerator:
    """A class for generating mazes with locked doors and distributed keys.

    The maze is generated using Kruskal's algorithm and includes features like:
    - Locked doors requiring keys
    - Keys distributed throughout the maze
    - Sub-problems with reduced complexity
    """

    def __init__(
        self,
        N,  # number of rows
        M,  # number of columns
        rescue_agent="Bob",  # the name of the rescue agent
        victim="Alice",  # the name of the victim
        max_big_loop_count=5,  # retry logic parameter
        max_retry_count=10,  # retry logic parameter
        N_locked_doors=2,  # the number of locked doors in the maze for the most difficult sub-problem
        generate_sub_problems=True,  # whether to generate sub-problems from the original problem (reduced N_locked_doors without changing the maze pattern)
        verbose=True,  # whether to print the maze parameters
        random_seeds=None,
        # shuffle_room_names=False,
        shuffle_key_ids=False,
    ):

        # random_seeds = {'random_room_name_pool': 1744527184380, 'key_ids': 1744527184480, 'maze_generation': 1744527184580, 'door_distribution': 1744527184680, 'problem_generation': 22869, 'end_room': 993550, 'remove_key': 1744527184980, 'remove_key_1': 63332129, 'remove_key_2': 3892716716, 'remove_key_3': 4053259202, 'remove_key_4': 2836627271, 'remove_key_5': 2154501613, 'remove_key_6': 3371613490, 'remove_key_7': 638681366}
        if random_seeds is None:
            self.random_seeds = {
                "key_ids": random.randint(100, 2**32 - 1),
                "maze_generation": random.randint(100, 2**32 - 1),
                "door_distribution": random.randint(100, 2**32 - 1),
                "problem_generation": random.randint(100, 2**32 - 1),
                "end_room": random.randint(100, 2**32 - 1),
                "remove_key": random.randint(100, 2**32 - 1),
            }
        else:
            self.random_seeds = random_seeds
        self.name_generator = NameGenerator(N, M)
        self.N = N  # Number of rows
        self.M = M  # Number of columns
        self.rescue_agent = rescue_agent
        self.victim = victim
        self.max_big_loop_count = max_big_loop_count
        self.max_retry_count = max_retry_count
        self.N_locked_doors = N_locked_doors  # the number of locked doors in the maze for the most difficult sub-problem
        self.generate_sub_problems = generate_sub_problems  # whether to generate sub-problems from the original problem (N_locked_doors)
        self.verbose = verbose
        self.shuffle_key_ids = shuffle_key_ids
        self.parent = {}  # Disjoint set for Kruskal's algorithm
        self.rank = {}  # Rank for union-find
        self.edges = []  # List of possible edges
        self.maze = np.ones((2 * N + 1, 2 * M + 1))  # Initialize grid with walls
        self.connected_cells = defaultdict(dict)
        self.room_name = {}
        self.doors = {}
        # self.key_ids = #["0"*(6-len(str(i))) + f"{i}" for i in range(100000)]
        self.key_ids = [f"{i}" for i in range(1, 10000)][::-1]
        self.keys_locations = {}
        # self.random_room_name_pool = ["R" + "0"*(6-len(str(i))) + f"{i}" for i in range(100000)]
        # room_index_max = ceil((N * M) / 26) if N * M > 26 else 0
        # self.random_room_name_pool = generate_letter_number_list(room_index_max)
        # print(len(self.random_room_name_pool), room_index_max)
        # if random_seeds is None:
        self.random_seeds.update(
            {
                f"remove_key_{i+1}": random.randint(100, 2**32 - 1)
                for i, _ in enumerate(range(self.N_locked_doors))
            }
        )
        self.did_succeed = False
        if verbose:
            self.print_maze_parameters()

        random.seed(self.random_seeds["key_ids"])
        if self.shuffle_key_ids:
            random.shuffle(self.key_ids)

    def print_maze_parameters(self):
        """Print the current maze generation parameters."""
        print("\033[93m" + "the random seeds are: " + "\033[0m", self.random_seeds)
        print("maze parameters are: ")
        print(f"N: {self.N}")
        print(f"M: {self.M}")
        print(f"rescue_agent: {self.rescue_agent}")
        print(f"victim: {self.victim}")
        print(f"max_big_loop_count: {self.max_big_loop_count}")
        print(f"max_retry_count: {self.max_retry_count}")
        print(f"N_locked_doors: {self.N_locked_doors}")
        print(f"generate_sub_problems: {self.generate_sub_problems}")

    def find(self, node):
        """Find the root of the set containing node (with path compression).
        This is used in the union function"""
        if self.parent[node] != node:
            self.parent[node] = self.find(self.parent[node])
        return self.parent[node]

    def union(self, node1, node2):
        """Union by rank - used in kruskal's algorithm"""
        root1 = self.find(node1)
        root2 = self.find(node2)

        if root1 != root2:
            if self.rank[root1] > self.rank[root2]:
                self.parent[root2] = root1
            elif self.rank[root1] < self.rank[root2]:
                self.parent[root1] = root2
            else:
                self.parent[root2] = root1
                self.rank[root1] += 1
            return True
        return False

    def assign_room_name(self, cell):
        return self.name_generator.get_name(cell)

    def generate_edges(self):
        """Generate edges between adjacent cells."""
        for r in range(self.N):
            for c in range(self.M):
                node = (r, c)
                self.parent[node] = node
                self.rank[node] = 0
                if r < self.N - 1:  # Vertical edge
                    self.edges.append(((r, c), (r + 1, c)))
                if c < self.M - 1:  # Horizontal edge
                    self.edges.append(((r, c), (r, c + 1)))
                self.room_name[node] = self.assign_room_name(node)

    def generate_maze_with_doors(self):
        """Generate the maze using Kruskal's algorithm."""
        if self.verbose:
            print("generating the maze with doors...")
        self.generate_edges()
        random.seed(self.random_seeds["maze_generation"])
        random.shuffle(self.edges)  # Shuffle edges for randomness
        random.seed(self.random_seeds["door_distribution"])
        ps = [(random.random(), random.random()) for _ in range(len(self.edges))]
        for (cell1, cell2), p in zip(self.edges, ps):
            if self.union(cell1, cell2):  # Connect disjoint sets
                # Convert lattice coordinates to maze coordinates
                wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
                wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
                self.maze[2 * cell1[0] + 1, 2 * cell1[1] + 1] = 0  # Mark cell as open
                self.maze[2 * cell2[0] + 1, 2 * cell2[1] + 1] = 0  # Mark cell as open
                self.maze[wall_r, wall_c] = 0  # Remove wall
                self.connected_cells[cell1][cell2] = 1
                self.connected_cells[cell2][cell1] = 1
                status = "open"
                self.maze[
                    wall_r, wall_c
                ] = 4  # 3 if status == 'closed but unlocked' else 4
                self.doors[(cell1, cell2)] = (status, self.key_ids.pop())
                self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)]

    def flush_checkpoints(self, checkpoints, removed_key_count):
        while len(checkpoints) > 1:
            rooms_in_path = self.find_shortest_path(checkpoints[0], checkpoints[1])
            if rooms_in_path is None:
                rooms_in_path = []
            for sub_room in rooms_in_path[
                :-1
            ]:  # we ensure we are not double counting the rooms
                self.standardized_problem_solution_backward[removed_key_count] += [
                    ("move_to", sub_room)
                ]
            checkpoints.pop(0)

    def standardize_sub_problems_and_solutions(self):
        # use the strategy backward to generate the standardized problem and solution in the final desired format
        self.standardized_problem_solution_backward = defaultdict(list)
        removed_key_count = 0
        self.sub_maze_configurations = {}
        self.sub_problem_maze = copy.deepcopy(self.maze_original)
        self.sub_problem_doors = copy.deepcopy(self.doors_original)
        self.connected_cells = dict(self.connected_cells)
        number_of_unlocking_actions_required = (
            len(self.strategy_backward_original) - 2
        ) // 2
        while removed_key_count <= (len(self.strategy_backward_original) - 2) // 2:
            checkpoints = []
            for i, (room, context, action) in enumerate(self.strategy_backward):
                if action.split(":")[0] == "end_room":
                    self.standardized_problem_solution_backward[removed_key_count] += [
                        ("rescue", self.victim)
                    ]
                    checkpoints.append(room)
                elif action.split(":")[0] == "unlock_door":
                    checkpoints.append(room)
                    checkpoints.append(context)
                    self.flush_checkpoints(checkpoints, removed_key_count)
                    self.standardized_problem_solution_backward[removed_key_count] += [
                        ("unlock_and_open_door_to", room)
                    ]
                    self.standardized_problem_solution_backward[removed_key_count] += [
                        ("use_key", self.doors[(room, context)][1])
                    ]
                elif action.split(":")[0] == "pick_up_key":
                    checkpoints.append(room)
                    self.flush_checkpoints(checkpoints, removed_key_count)
                    self.standardized_problem_solution_backward[removed_key_count] += [
                        ("pick_up_key", action.split(":")[1])
                    ]
                elif action.split(":")[0] == "start_room":
                    checkpoints.append(room)
                    self.flush_checkpoints(checkpoints, removed_key_count)
                    self.standardized_problem_solution_backward[removed_key_count] += [
                        ("start", room)
                    ]
                self.flush_checkpoints(checkpoints, removed_key_count)

            self.sub_maze_configurations[removed_key_count] = {
                "maze": self.sub_problem_maze.astype(int).tolist(),
                "doors": copy.deepcopy(self.sub_problem_doors),
                "keys_locations": copy.deepcopy(self.keys_locations),
                "number_of_unlocking_actions_required": number_of_unlocking_actions_required,
            }
            # if the flag is not set, we stop the process after generating the first sub-problem (with N_locked_doors locked doors)
            if not self.generate_sub_problems:
                break

            removed_key_count += 1
            if len(self.on_optimal_path_locked_doors_indices) == 0:
                break

            random.seed(self.random_seeds[f"remove_key_{removed_key_count}"])
            # ss = random.randint(0, floor((len(self.strategy_backward) - 2) / 2) - 1)

            ss = self.on_optimal_path_locked_doors_indices.pop(0)

            cell1, cell2 = (
                self.drs[ss][0],
                self.drs[ss][1],
            )
            status = "open"
            self.sub_problem_doors[(cell1, cell2)] = (
                status,
                self.sub_problem_doors[(cell1, cell2)][1],
            )
            self.sub_problem_doors[(cell2, cell1)] = self.sub_problem_doors[
                (cell1, cell2)
            ]
            # updating the maze and doors to reflect that
            wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
            wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
            self.sub_problem_maze[wall_r, wall_c] = 4
            # don't need to change the key locations and can keep that as noise
            # we remove the locked door knowing that the backward strategy pattern is
            # inverse of ['start_room'] +['pick_up_key', 'unlock_door'] * N_locked_doors + ['end_room']
            self.drs[ss] = (
                self.drs[ss][0],
                self.drs[ss][1],
                "open",
                self.drs[ss][3],
                False,
            )
            (
                extra_removed_keys,
                number_of_unlocking_actions_required,
            ) = self.remove_redundant_steps_from_strategy_backward(
                ss
            )  # if the rooms associated with a removed locked door is not on the optimal path, we remove it
            removed_key_count += extra_removed_keys

            if not removed_key_count <= (len(self.strategy_backward_original) - 2) // 2:
                break

    def remove_redundant_steps_from_strategy_backward(self, ss):
        # prouning the ground truth to ensure optimality by tweaking the strategy backward
        """
        get the list of all locked doors in the original backward strategy in the following format:
        drs = [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...]
        when changing status of an item to open (as part of sub problem generation logic)
        set drs[s]['included_in_gt_or_not'] = False, check prevoius item (s = s-1)
         if drs[s]['is_on_optimal_path'] = False , set drs[s]['included_in_gt_or_not'] = False
         and set s = s-1 and do the check again
         if drs[s]['is_on_optimal_path'] = True, stop the process
        return the number of extra removed keys
        """
        inds_to_drop = []
        # drop the opened door from the strategy backward
        dr = self.drs[ss]
        for i, item in enumerate(self.strategy_backward):
            if (item[0] == dr[0] and item[1] == dr[1]) or (
                item[0] == dr[1] and item[1] == dr[0]
            ):
                inds_to_drop.append(i)
        i = ss + 1
        if i >= len(self.drs):
            self.strategy_backward = [
                self.strategy_backward[i]
                for i in range(len(self.strategy_backward))
                if i not in inds_to_drop and i - 1 not in inds_to_drop
            ]
            number_of_unlocking_actions_required = (
                len(self.strategy_backward) - 2
            ) // 2
            return 0, number_of_unlocking_actions_required
        is_on_optimal_path = self.drs[i][3]
        extra_removed_keys = 0

        while i < len(self.drs) and ((not is_on_optimal_path)):
            dr = self.drs[i]
            self.drs[i] = (dr[0], dr[1], dr[2], False, False)
            # drop the removed door from the ground truth from the strategy backward
            for j, item in enumerate(self.strategy_backward):
                if (item[0] == dr[0] and item[1] == dr[1]) or (
                    item[0] == dr[1] and item[1] == dr[0]
                ):
                    inds_to_drop.append(j)
            extra_removed_keys += 1

            i += 1
            if i >= len(self.drs):
                break
            is_on_optimal_path = self.drs[i][3]
        # remove both unlock and pickup from the strategy backward for dropped doors
        self.strategy_backward = [
            self.strategy_backward[i]
            for i in range(len(self.strategy_backward))
            if i not in inds_to_drop and i - 1 not in inds_to_drop
        ]
        number_of_unlocking_actions_required = (len(self.strategy_backward) - 2) // 2
        return extra_removed_keys, number_of_unlocking_actions_required

    def generate_distributed_keys_rescue_positive_problem(self):
        # positive means that the problem is solvable
        # there are locked doors between start_room and end_room
        # these locked doors have keys distributed throughout the maze
        # Alex needs to find the keys and open the doors on its path to rescue Maggie
        # Not all keys open all doors
        # circular dependency can exist: when the key to open a
        # locked door to room A is in a room B that is on the path to it has a locked door
        # but the key to open that locked door is in room A -
        # there is a circular dependency and it makes it impossible to rescue Maggie

        ### GENERATION PROCESS #########################################################
        # We use a reverse back in time to build the problem configuration
        # We move back in time from the moment Maggie is rescued to the moment Alex starts the rescue
        # Initially all the rooms are unlocked
        ################################################################################
        # 1. Pick a random room as the episode's final state (Maggie's location - Alex's final location):
        self.maze_original = copy.deepcopy(self.maze)
        self.doors_original = copy.deepcopy(self.doors)
        self.keys_locations_original = copy.deepcopy(self.keys_locations)
        self.random_seeds["problem_generation"] = random.randint(0, 1000000)
        random.seed(self.random_seeds["problem_generation"])
        succeeded = False
        big_loop_count = 0
        while not succeeded:
            self.all_originally_locked_doors_on_optimal_path = []
            self.strategy_backward = []
            self.drs = []
            big_loop_count += 1
            if big_loop_count > self.max_big_loop_count:
                return False
            self.keys_locations = {}
            self.random_seeds["end_room"] = random.randint(0, 1000000)
            random.seed(self.random_seeds["end_room"])
            end_room = random.choice(list(self.room_name.keys()))
            current_room = copy.deepcopy(end_room)
            self.end_room = end_room
            step_count = 0
            while True:
                if step_count == 0:
                    self.strategy_backward += [(current_room, current_room, "end_room")]
                step_count += 1
                # 2. Select a random previous room from the list of all rooms accessible from current room.
                # Alex moves back in time by going to a randomly selected previous room in the maze:
                accessible_rooms = self.list_of_all_currently_accessible_rooms(
                    current_room
                )
                if self.N_locked_doors==0:
                    start_room = accessible_rooms[
                            random.randint(0, len(accessible_rooms) - 1)
                        ][0]
                    self.start_room = start_room
                    self.strategy_backward += [(start_room, start_room, "start_room")]
                    succeeded = True
                    break
                retry_count = 0
                all_doors_on_path = []
                while (
                    retry_count < self.max_retry_count and len(all_doors_on_path) == 0
                ):
                    if len(accessible_rooms) != 0:
                        previous_room = accessible_rooms[
                            random.randint(0, len(accessible_rooms) - 1)
                        ][0]
                        # 3. Alex locks a randomly selected door on the way back to the previous room
                        # from all the blue doors it encounters:
                        all_doors_on_path = self.get_all_doors_on_path(
                            current_room, previous_room
                        )
                        if len(all_doors_on_path) == 0:
                            # need to ensure we choose a path that has at least one blue or green door
                            if self.verbose:
                                print(
                                    f"no doors found between {current_room} and {previous_room} - retrying..."
                                )
                    retry_count += 1
                if retry_count == self.max_retry_count:
                    self.maze = copy.deepcopy(self.maze_original)
                    self.doors = copy.deepcopy(self.doors_original)
                    self.keys_locations = copy.deepcopy(self.keys_locations_original)
                    break

                cell1, cell2 = random.choice(all_doors_on_path)
                self.strategy_backward += [(cell1, cell2, "unlock_door")]
                self.drs.append((cell1, cell2, "closed and locked", None, True))
                self.all_originally_locked_doors_on_optimal_path.append((cell1, cell2))
                self.doors[(cell1, cell2)] = (
                    "closed and locked",
                    self.doors[(cell1, cell2)][1],
                )
                self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)]
                wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
                wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
                self.maze[wall_r, wall_c] = 2  # 2 is the value for locked doors
                # 4. Alex then leaves the associated key to this locked door in the selected previous room:
                self.keys_locations[self.doors[(cell1, cell2)][1]] = previous_room
                self.strategy_backward += [
                    (
                        previous_room,
                        (cell1, cell2),
                        f"pick_up_key:{self.doors[(cell1, cell2)][1]}",
                    )
                ]
                current_room = copy.deepcopy(previous_room)
                # 5. repeat the steps from 2 to 4 (while loop) until N keys are distributed and user goes to a final
                # randomly accessible room
                if len(self.keys_locations) == self.N_locked_doors:
                    accessible_rooms = self.list_of_all_currently_accessible_rooms(
                        current_room
                    )
                    if len(accessible_rooms) == 0:
                        start_room = current_room
                    else:
                        start_room = accessible_rooms.pop(
                            random.randint(0, len(accessible_rooms) - 1)
                        )[0]
                    self.start_room = start_room
                    self.strategy_backward += [(start_room, start_room, "start_room")]
                    succeeded = True
                    break

            # no already locked doors should be traversed - the final room becomes the start room
            # the process stops after N keys are distributed and user goes to a final randomly accessible room
        if succeeded:
            self.maze_original = copy.deepcopy(self.maze)
            self.doors_original = copy.deepcopy(self.doors)
            self.keys_locations_original = copy.deepcopy(self.keys_locations)
            self.strategy_backward_original = copy.deepcopy(self.strategy_backward)
            self.drs_set_3rd_item()
            self.standardize_sub_problems_and_solutions()
            self.did_succeed = True
            return True
        else:
            return False

    def drs_set_3rd_item(self):
        # [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...]
        self.on_optimal_path_locked_doors_indices = []
        optimal_path = self.find_shortest_path(self.start_room, self.end_room)
        for i, dr in enumerate(self.drs):
            # self.drs[i][3]-> is_on_optimal_path
            is_on_optimal_path = dr[0] in optimal_path and dr[1] in optimal_path
            self.drs[i] = (dr[0], dr[1], dr[2], is_on_optimal_path, dr[4])
            if is_on_optimal_path:
                self.on_optimal_path_locked_doors_indices.append(i)
        return None

    def list_of_all_currently_accessible_rooms(
        self, current_room, previous_room=None, steps=0
    ):
        # consideriing the current room and the maze structure as well as status of all the doors
        # return a list of all the rooms that are accessible from the current room
        if previous_room is None:
            self.accessible_rooms = []
        adjacent_cells = list(self.connected_cells[current_room].keys())
        for cell in adjacent_cells:
            if cell == previous_room:
                continue
            if (current_room, cell) not in self.doors.keys() or self.doors[
                (current_room, cell)
            ][0] == "open":
                self.accessible_rooms.append((cell, steps + 1))
                self.list_of_all_currently_accessible_rooms(
                    cell, previous_room=current_room, steps=steps + 1
                )
        return self.accessible_rooms

    def find_shortest_path(self, room_A, room_B, path=[]):

        if room_A == room_B:
            return path + [room_B]
        adjacent_cells = [
            cell
            for cell in list(self.connected_cells[room_A].keys())
            if cell not in path and cell != room_A
        ]
        for cell in adjacent_cells:
            res = self.find_shortest_path(cell, room_B, path=path + [room_A])
            if res is not None:
                return res
        return None

    def get_all_doors_on_path(self, room_A, room_B):
        if room_A == room_B:
            return []
        path = self.find_shortest_path(room_A, room_B)
        if path is None:
            return []
        return [
            (path[i], path[i + 1])
            for i in range(len(path) - 1)
            if (path[i], path[i + 1]) in self.doors.keys()
            and self.doors[(path[i], path[i + 1])][0] == "open"
        ]

    def display_maze(self):
        """Display the maze using Matplotlib."""
        fig, ax = plt.subplots(figsize=(self.M / 2, self.N / 2))
        # Create a custom colormap with red for locked doors
        # create cmap to show black for walls (1 value), white for open space (0 value), and red for locked doors (2 value)
        cmap = plt.cm.colors.ListedColormap(["white", "black", "red", "blue", "green"])
        ax.imshow(self.maze, cmap=cmap, interpolation="nearest")
        ax.set_xticks([]), ax.set_yticks([])
        plt.show()

    def save_maze(self):
        # create the directory if it doesn't exist
        os.makedirs(
            f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}"
            f"_{self.generate_sub_problems}",
            exist_ok=True,
        )

        filename = (
            f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}"
            f"_{self.generate_sub_problems}/{self.random_seeds['problem_generation']}.pkl"
        )
        data = {}
        data["world_parameters"] = {
            "N": self.N,
            "M": self.M,
            "N_keys": len(self.keys_locations),
            "N_locked_doors": self.N_locked_doors,
            "rescue_agent": self.rescue_agent,
            "victim": self.victim,
            "random_seeds": self.random_seeds,
        }

        data.update(
            {
                "start_room": self.start_room,
                "end_room": self.end_room,
                "standardized_problem_solution": self.standardized_problem_solution_backward,
                "sub_maze_configurations": self.sub_maze_configurations,  # if any key values are ndarray,  convert to list
                "connected_cells": self.connected_cells,
                "room_name": self.room_name,
            }
        )

        pickle.dump(data, open(filename, "wb"))
        return filename, None


def single_run(N, M, N_locked_doors, display_maze=False, verbose=False):
    try:
        print(f"Starting run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors}")
        succeeded = False
        counter = 0

        while not succeeded:
            counter += 1
            maze = MazeGenerator(
                N=N,
                M=M,
                rescue_agent="Alex",
                victim="Maggie",
                max_big_loop_count=500,
                max_retry_count=100,
                N_locked_doors=N_locked_doors,
                generate_sub_problems=True,
                verbose=verbose,
            )
            maze.generate_maze_with_doors()
            maze.generate_distributed_keys_rescue_positive_problem()
            succeeded = maze.did_succeed

            if counter > 100:
                print(f"Failed to generate {N}, M: {M}, N_locked_doors: {N_locked_doors}")
                break

        if succeeded:
            if display_maze:
                maze.display_maze()

            # Save the maze data
            filename, maze_file = maze.save_maze()

            if maze_file:
                maze_id = os.path.splitext(os.path.basename(maze_file))[0]
                maze_dir = os.path.dirname(maze_file)
                plots_dir = os.path.join(maze_dir, "plots")
                os.makedirs(plots_dir, exist_ok=True)

                maze_loader = MazeLoader(maze_file, hide_coordinates=True)
                plot_path = os.path.join(plots_dir, f"{maze_id}.png")
                maze_loader.pretty_plot(save_path=plot_path)
                print(f"Saved maze visualization to {plot_path}")

            return (
                f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} succeeded",
                filename,
            )
        else:
            return (
                f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} maxed out retry count",
                None,
            )

    except Exception as e:
        print(traceback.print_exc())
        raise Exception(
            f"Run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} failed"
        )


def run_maze_generation(NMs, num_instances_per_parameter_combination=1):
    fs = []
    generated_maze_files = []
    with ThreadPoolExecutor(max_workers=60) as executor:
        for i in range(num_instances_per_parameter_combination):
            print(
                f"Running instance {i+1} of {num_instances_per_parameter_combination}..."
            )
            for N, M, N_locked_doors in NMs:
                fs.append(
                    executor.submit(
                        single_run,
                        N,
                        M,
                        N_locked_doors,
                        display_maze=False,
                        verbose=False,
                    )
                )

        for f in as_completed(fs):
            if f.exception() is None:
                res = f.result()
                print(res[0])
                if res[1] is not None:
                    generated_maze_files.append(res[1])

    return generated_maze_files


if __name__ == "__main__":

    NMs = [(j,j) for j in range(6, 22, 2)]
    
    NMs = [(it[0], it[1], i) for it in NMs for i in range(9,11)]
    print(NMs)
    generated_maze_files = run_maze_generation(
        NMs, num_instances_per_parameter_combination=1000
    )
    print(generated_maze_files)
    # fix weird behavior you are seeing with 8,8,6 reduced key count to 1 for maze_8_8_6_0.5_0.0_True/745275.pkl

# cognetive load is constraints on key lock distributions
# can we introduce a "time pressure" on cognetive load
# starting with small problems and deeply understanding the behaviors
# constraint reduction behavior of the model - as we reduce the number of keys distributed
#