File size: 31,641 Bytes
6343f32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
import random
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
import copy
import json
import pickle
from math import floor, ceil
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
import traceback
from maze_loader import MazeLoader
from rooms import NameGenerator
class MazeGenerator:
"""A class for generating mazes with locked doors and distributed keys.
The maze is generated using Kruskal's algorithm and includes features like:
- Locked doors requiring keys
- Keys distributed throughout the maze
- Sub-problems with reduced complexity
"""
def __init__(
self,
N, # number of rows
M, # number of columns
rescue_agent="Bob", # the name of the rescue agent
victim="Alice", # the name of the victim
max_big_loop_count=5, # retry logic parameter
max_retry_count=10, # retry logic parameter
N_locked_doors=2, # the number of locked doors in the maze for the most difficult sub-problem
generate_sub_problems=True, # whether to generate sub-problems from the original problem (reduced N_locked_doors without changing the maze pattern)
verbose=True, # whether to print the maze parameters
random_seeds=None,
# shuffle_room_names=False,
shuffle_key_ids=False,
):
# random_seeds = {'random_room_name_pool': 1744527184380, 'key_ids': 1744527184480, 'maze_generation': 1744527184580, 'door_distribution': 1744527184680, 'problem_generation': 22869, 'end_room': 993550, 'remove_key': 1744527184980, 'remove_key_1': 63332129, 'remove_key_2': 3892716716, 'remove_key_3': 4053259202, 'remove_key_4': 2836627271, 'remove_key_5': 2154501613, 'remove_key_6': 3371613490, 'remove_key_7': 638681366}
if random_seeds is None:
self.random_seeds = {
"key_ids": random.randint(100, 2**32 - 1),
"maze_generation": random.randint(100, 2**32 - 1),
"door_distribution": random.randint(100, 2**32 - 1),
"problem_generation": random.randint(100, 2**32 - 1),
"end_room": random.randint(100, 2**32 - 1),
"remove_key": random.randint(100, 2**32 - 1),
}
else:
self.random_seeds = random_seeds
self.name_generator = NameGenerator(N, M)
self.N = N # Number of rows
self.M = M # Number of columns
self.rescue_agent = rescue_agent
self.victim = victim
self.max_big_loop_count = max_big_loop_count
self.max_retry_count = max_retry_count
self.N_locked_doors = N_locked_doors # the number of locked doors in the maze for the most difficult sub-problem
self.generate_sub_problems = generate_sub_problems # whether to generate sub-problems from the original problem (N_locked_doors)
self.verbose = verbose
self.shuffle_key_ids = shuffle_key_ids
self.parent = {} # Disjoint set for Kruskal's algorithm
self.rank = {} # Rank for union-find
self.edges = [] # List of possible edges
self.maze = np.ones((2 * N + 1, 2 * M + 1)) # Initialize grid with walls
self.connected_cells = defaultdict(dict)
self.room_name = {}
self.doors = {}
# self.key_ids = #["0"*(6-len(str(i))) + f"{i}" for i in range(100000)]
self.key_ids = [f"{i}" for i in range(1, 10000)][::-1]
self.keys_locations = {}
# self.random_room_name_pool = ["R" + "0"*(6-len(str(i))) + f"{i}" for i in range(100000)]
# room_index_max = ceil((N * M) / 26) if N * M > 26 else 0
# self.random_room_name_pool = generate_letter_number_list(room_index_max)
# print(len(self.random_room_name_pool), room_index_max)
# if random_seeds is None:
self.random_seeds.update(
{
f"remove_key_{i+1}": random.randint(100, 2**32 - 1)
for i, _ in enumerate(range(self.N_locked_doors))
}
)
self.did_succeed = False
if verbose:
self.print_maze_parameters()
random.seed(self.random_seeds["key_ids"])
if self.shuffle_key_ids:
random.shuffle(self.key_ids)
def print_maze_parameters(self):
"""Print the current maze generation parameters."""
print("\033[93m" + "the random seeds are: " + "\033[0m", self.random_seeds)
print("maze parameters are: ")
print(f"N: {self.N}")
print(f"M: {self.M}")
print(f"rescue_agent: {self.rescue_agent}")
print(f"victim: {self.victim}")
print(f"max_big_loop_count: {self.max_big_loop_count}")
print(f"max_retry_count: {self.max_retry_count}")
print(f"N_locked_doors: {self.N_locked_doors}")
print(f"generate_sub_problems: {self.generate_sub_problems}")
def find(self, node):
"""Find the root of the set containing node (with path compression).
This is used in the union function"""
if self.parent[node] != node:
self.parent[node] = self.find(self.parent[node])
return self.parent[node]
def union(self, node1, node2):
"""Union by rank - used in kruskal's algorithm"""
root1 = self.find(node1)
root2 = self.find(node2)
if root1 != root2:
if self.rank[root1] > self.rank[root2]:
self.parent[root2] = root1
elif self.rank[root1] < self.rank[root2]:
self.parent[root1] = root2
else:
self.parent[root2] = root1
self.rank[root1] += 1
return True
return False
def assign_room_name(self, cell):
return self.name_generator.get_name(cell)
def generate_edges(self):
"""Generate edges between adjacent cells."""
for r in range(self.N):
for c in range(self.M):
node = (r, c)
self.parent[node] = node
self.rank[node] = 0
if r < self.N - 1: # Vertical edge
self.edges.append(((r, c), (r + 1, c)))
if c < self.M - 1: # Horizontal edge
self.edges.append(((r, c), (r, c + 1)))
self.room_name[node] = self.assign_room_name(node)
def generate_maze_with_doors(self):
"""Generate the maze using Kruskal's algorithm."""
if self.verbose:
print("generating the maze with doors...")
self.generate_edges()
random.seed(self.random_seeds["maze_generation"])
random.shuffle(self.edges) # Shuffle edges for randomness
random.seed(self.random_seeds["door_distribution"])
ps = [(random.random(), random.random()) for _ in range(len(self.edges))]
for (cell1, cell2), p in zip(self.edges, ps):
if self.union(cell1, cell2): # Connect disjoint sets
# Convert lattice coordinates to maze coordinates
wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
self.maze[2 * cell1[0] + 1, 2 * cell1[1] + 1] = 0 # Mark cell as open
self.maze[2 * cell2[0] + 1, 2 * cell2[1] + 1] = 0 # Mark cell as open
self.maze[wall_r, wall_c] = 0 # Remove wall
self.connected_cells[cell1][cell2] = 1
self.connected_cells[cell2][cell1] = 1
status = "open"
self.maze[
wall_r, wall_c
] = 4 # 3 if status == 'closed but unlocked' else 4
self.doors[(cell1, cell2)] = (status, self.key_ids.pop())
self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)]
def flush_checkpoints(self, checkpoints, removed_key_count):
while len(checkpoints) > 1:
rooms_in_path = self.find_shortest_path(checkpoints[0], checkpoints[1])
if rooms_in_path is None:
rooms_in_path = []
for sub_room in rooms_in_path[
:-1
]: # we ensure we are not double counting the rooms
self.standardized_problem_solution_backward[removed_key_count] += [
("move_to", sub_room)
]
checkpoints.pop(0)
def standardize_sub_problems_and_solutions(self):
# use the strategy backward to generate the standardized problem and solution in the final desired format
self.standardized_problem_solution_backward = defaultdict(list)
removed_key_count = 0
self.sub_maze_configurations = {}
self.sub_problem_maze = copy.deepcopy(self.maze_original)
self.sub_problem_doors = copy.deepcopy(self.doors_original)
self.connected_cells = dict(self.connected_cells)
number_of_unlocking_actions_required = (
len(self.strategy_backward_original) - 2
) // 2
while removed_key_count <= (len(self.strategy_backward_original) - 2) // 2:
checkpoints = []
for i, (room, context, action) in enumerate(self.strategy_backward):
if action.split(":")[0] == "end_room":
self.standardized_problem_solution_backward[removed_key_count] += [
("rescue", self.victim)
]
checkpoints.append(room)
elif action.split(":")[0] == "unlock_door":
checkpoints.append(room)
checkpoints.append(context)
self.flush_checkpoints(checkpoints, removed_key_count)
self.standardized_problem_solution_backward[removed_key_count] += [
("unlock_and_open_door_to", room)
]
self.standardized_problem_solution_backward[removed_key_count] += [
("use_key", self.doors[(room, context)][1])
]
elif action.split(":")[0] == "pick_up_key":
checkpoints.append(room)
self.flush_checkpoints(checkpoints, removed_key_count)
self.standardized_problem_solution_backward[removed_key_count] += [
("pick_up_key", action.split(":")[1])
]
elif action.split(":")[0] == "start_room":
checkpoints.append(room)
self.flush_checkpoints(checkpoints, removed_key_count)
self.standardized_problem_solution_backward[removed_key_count] += [
("start", room)
]
self.flush_checkpoints(checkpoints, removed_key_count)
self.sub_maze_configurations[removed_key_count] = {
"maze": self.sub_problem_maze.astype(int).tolist(),
"doors": copy.deepcopy(self.sub_problem_doors),
"keys_locations": copy.deepcopy(self.keys_locations),
"number_of_unlocking_actions_required": number_of_unlocking_actions_required,
}
# if the flag is not set, we stop the process after generating the first sub-problem (with N_locked_doors locked doors)
if not self.generate_sub_problems:
break
removed_key_count += 1
if len(self.on_optimal_path_locked_doors_indices) == 0:
break
random.seed(self.random_seeds[f"remove_key_{removed_key_count}"])
# ss = random.randint(0, floor((len(self.strategy_backward) - 2) / 2) - 1)
ss = self.on_optimal_path_locked_doors_indices.pop(0)
cell1, cell2 = (
self.drs[ss][0],
self.drs[ss][1],
)
status = "open"
self.sub_problem_doors[(cell1, cell2)] = (
status,
self.sub_problem_doors[(cell1, cell2)][1],
)
self.sub_problem_doors[(cell2, cell1)] = self.sub_problem_doors[
(cell1, cell2)
]
# updating the maze and doors to reflect that
wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
self.sub_problem_maze[wall_r, wall_c] = 4
# don't need to change the key locations and can keep that as noise
# we remove the locked door knowing that the backward strategy pattern is
# inverse of ['start_room'] +['pick_up_key', 'unlock_door'] * N_locked_doors + ['end_room']
self.drs[ss] = (
self.drs[ss][0],
self.drs[ss][1],
"open",
self.drs[ss][3],
False,
)
(
extra_removed_keys,
number_of_unlocking_actions_required,
) = self.remove_redundant_steps_from_strategy_backward(
ss
) # if the rooms associated with a removed locked door is not on the optimal path, we remove it
removed_key_count += extra_removed_keys
if not removed_key_count <= (len(self.strategy_backward_original) - 2) // 2:
break
def remove_redundant_steps_from_strategy_backward(self, ss):
# prouning the ground truth to ensure optimality by tweaking the strategy backward
"""
get the list of all locked doors in the original backward strategy in the following format:
drs = [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...]
when changing status of an item to open (as part of sub problem generation logic)
set drs[s]['included_in_gt_or_not'] = False, check prevoius item (s = s-1)
if drs[s]['is_on_optimal_path'] = False , set drs[s]['included_in_gt_or_not'] = False
and set s = s-1 and do the check again
if drs[s]['is_on_optimal_path'] = True, stop the process
return the number of extra removed keys
"""
inds_to_drop = []
# drop the opened door from the strategy backward
dr = self.drs[ss]
for i, item in enumerate(self.strategy_backward):
if (item[0] == dr[0] and item[1] == dr[1]) or (
item[0] == dr[1] and item[1] == dr[0]
):
inds_to_drop.append(i)
i = ss + 1
if i >= len(self.drs):
self.strategy_backward = [
self.strategy_backward[i]
for i in range(len(self.strategy_backward))
if i not in inds_to_drop and i - 1 not in inds_to_drop
]
number_of_unlocking_actions_required = (
len(self.strategy_backward) - 2
) // 2
return 0, number_of_unlocking_actions_required
is_on_optimal_path = self.drs[i][3]
extra_removed_keys = 0
while i < len(self.drs) and ((not is_on_optimal_path)):
dr = self.drs[i]
self.drs[i] = (dr[0], dr[1], dr[2], False, False)
# drop the removed door from the ground truth from the strategy backward
for j, item in enumerate(self.strategy_backward):
if (item[0] == dr[0] and item[1] == dr[1]) or (
item[0] == dr[1] and item[1] == dr[0]
):
inds_to_drop.append(j)
extra_removed_keys += 1
i += 1
if i >= len(self.drs):
break
is_on_optimal_path = self.drs[i][3]
# remove both unlock and pickup from the strategy backward for dropped doors
self.strategy_backward = [
self.strategy_backward[i]
for i in range(len(self.strategy_backward))
if i not in inds_to_drop and i - 1 not in inds_to_drop
]
number_of_unlocking_actions_required = (len(self.strategy_backward) - 2) // 2
return extra_removed_keys, number_of_unlocking_actions_required
def generate_distributed_keys_rescue_positive_problem(self):
# positive means that the problem is solvable
# there are locked doors between start_room and end_room
# these locked doors have keys distributed throughout the maze
# Alex needs to find the keys and open the doors on its path to rescue Maggie
# Not all keys open all doors
# circular dependency can exist: when the key to open a
# locked door to room A is in a room B that is on the path to it has a locked door
# but the key to open that locked door is in room A -
# there is a circular dependency and it makes it impossible to rescue Maggie
### GENERATION PROCESS #########################################################
# We use a reverse back in time to build the problem configuration
# We move back in time from the moment Maggie is rescued to the moment Alex starts the rescue
# Initially all the rooms are unlocked
################################################################################
# 1. Pick a random room as the episode's final state (Maggie's location - Alex's final location):
self.maze_original = copy.deepcopy(self.maze)
self.doors_original = copy.deepcopy(self.doors)
self.keys_locations_original = copy.deepcopy(self.keys_locations)
self.random_seeds["problem_generation"] = random.randint(0, 1000000)
random.seed(self.random_seeds["problem_generation"])
succeeded = False
big_loop_count = 0
while not succeeded:
self.all_originally_locked_doors_on_optimal_path = []
self.strategy_backward = []
self.drs = []
big_loop_count += 1
if big_loop_count > self.max_big_loop_count:
return False
self.keys_locations = {}
self.random_seeds["end_room"] = random.randint(0, 1000000)
random.seed(self.random_seeds["end_room"])
end_room = random.choice(list(self.room_name.keys()))
current_room = copy.deepcopy(end_room)
self.end_room = end_room
step_count = 0
while True:
if step_count == 0:
self.strategy_backward += [(current_room, current_room, "end_room")]
step_count += 1
# 2. Select a random previous room from the list of all rooms accessible from current room.
# Alex moves back in time by going to a randomly selected previous room in the maze:
accessible_rooms = self.list_of_all_currently_accessible_rooms(
current_room
)
if self.N_locked_doors==0:
start_room = accessible_rooms[
random.randint(0, len(accessible_rooms) - 1)
][0]
self.start_room = start_room
self.strategy_backward += [(start_room, start_room, "start_room")]
succeeded = True
break
retry_count = 0
all_doors_on_path = []
while (
retry_count < self.max_retry_count and len(all_doors_on_path) == 0
):
if len(accessible_rooms) != 0:
previous_room = accessible_rooms[
random.randint(0, len(accessible_rooms) - 1)
][0]
# 3. Alex locks a randomly selected door on the way back to the previous room
# from all the blue doors it encounters:
all_doors_on_path = self.get_all_doors_on_path(
current_room, previous_room
)
if len(all_doors_on_path) == 0:
# need to ensure we choose a path that has at least one blue or green door
if self.verbose:
print(
f"no doors found between {current_room} and {previous_room} - retrying..."
)
retry_count += 1
if retry_count == self.max_retry_count:
self.maze = copy.deepcopy(self.maze_original)
self.doors = copy.deepcopy(self.doors_original)
self.keys_locations = copy.deepcopy(self.keys_locations_original)
break
cell1, cell2 = random.choice(all_doors_on_path)
self.strategy_backward += [(cell1, cell2, "unlock_door")]
self.drs.append((cell1, cell2, "closed and locked", None, True))
self.all_originally_locked_doors_on_optimal_path.append((cell1, cell2))
self.doors[(cell1, cell2)] = (
"closed and locked",
self.doors[(cell1, cell2)][1],
)
self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)]
wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0])
wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1])
self.maze[wall_r, wall_c] = 2 # 2 is the value for locked doors
# 4. Alex then leaves the associated key to this locked door in the selected previous room:
self.keys_locations[self.doors[(cell1, cell2)][1]] = previous_room
self.strategy_backward += [
(
previous_room,
(cell1, cell2),
f"pick_up_key:{self.doors[(cell1, cell2)][1]}",
)
]
current_room = copy.deepcopy(previous_room)
# 5. repeat the steps from 2 to 4 (while loop) until N keys are distributed and user goes to a final
# randomly accessible room
if len(self.keys_locations) == self.N_locked_doors:
accessible_rooms = self.list_of_all_currently_accessible_rooms(
current_room
)
if len(accessible_rooms) == 0:
start_room = current_room
else:
start_room = accessible_rooms.pop(
random.randint(0, len(accessible_rooms) - 1)
)[0]
self.start_room = start_room
self.strategy_backward += [(start_room, start_room, "start_room")]
succeeded = True
break
# no already locked doors should be traversed - the final room becomes the start room
# the process stops after N keys are distributed and user goes to a final randomly accessible room
if succeeded:
self.maze_original = copy.deepcopy(self.maze)
self.doors_original = copy.deepcopy(self.doors)
self.keys_locations_original = copy.deepcopy(self.keys_locations)
self.strategy_backward_original = copy.deepcopy(self.strategy_backward)
self.drs_set_3rd_item()
self.standardize_sub_problems_and_solutions()
self.did_succeed = True
return True
else:
return False
def drs_set_3rd_item(self):
# [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...]
self.on_optimal_path_locked_doors_indices = []
optimal_path = self.find_shortest_path(self.start_room, self.end_room)
for i, dr in enumerate(self.drs):
# self.drs[i][3]-> is_on_optimal_path
is_on_optimal_path = dr[0] in optimal_path and dr[1] in optimal_path
self.drs[i] = (dr[0], dr[1], dr[2], is_on_optimal_path, dr[4])
if is_on_optimal_path:
self.on_optimal_path_locked_doors_indices.append(i)
return None
def list_of_all_currently_accessible_rooms(
self, current_room, previous_room=None, steps=0
):
# consideriing the current room and the maze structure as well as status of all the doors
# return a list of all the rooms that are accessible from the current room
if previous_room is None:
self.accessible_rooms = []
adjacent_cells = list(self.connected_cells[current_room].keys())
for cell in adjacent_cells:
if cell == previous_room:
continue
if (current_room, cell) not in self.doors.keys() or self.doors[
(current_room, cell)
][0] == "open":
self.accessible_rooms.append((cell, steps + 1))
self.list_of_all_currently_accessible_rooms(
cell, previous_room=current_room, steps=steps + 1
)
return self.accessible_rooms
def find_shortest_path(self, room_A, room_B, path=[]):
if room_A == room_B:
return path + [room_B]
adjacent_cells = [
cell
for cell in list(self.connected_cells[room_A].keys())
if cell not in path and cell != room_A
]
for cell in adjacent_cells:
res = self.find_shortest_path(cell, room_B, path=path + [room_A])
if res is not None:
return res
return None
def get_all_doors_on_path(self, room_A, room_B):
if room_A == room_B:
return []
path = self.find_shortest_path(room_A, room_B)
if path is None:
return []
return [
(path[i], path[i + 1])
for i in range(len(path) - 1)
if (path[i], path[i + 1]) in self.doors.keys()
and self.doors[(path[i], path[i + 1])][0] == "open"
]
def display_maze(self):
"""Display the maze using Matplotlib."""
fig, ax = plt.subplots(figsize=(self.M / 2, self.N / 2))
# Create a custom colormap with red for locked doors
# create cmap to show black for walls (1 value), white for open space (0 value), and red for locked doors (2 value)
cmap = plt.cm.colors.ListedColormap(["white", "black", "red", "blue", "green"])
ax.imshow(self.maze, cmap=cmap, interpolation="nearest")
ax.set_xticks([]), ax.set_yticks([])
plt.show()
def save_maze(self):
# create the directory if it doesn't exist
os.makedirs(
f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}"
f"_{self.generate_sub_problems}",
exist_ok=True,
)
filename = (
f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}"
f"_{self.generate_sub_problems}/{self.random_seeds['problem_generation']}.pkl"
)
data = {}
data["world_parameters"] = {
"N": self.N,
"M": self.M,
"N_keys": len(self.keys_locations),
"N_locked_doors": self.N_locked_doors,
"rescue_agent": self.rescue_agent,
"victim": self.victim,
"random_seeds": self.random_seeds,
}
data.update(
{
"start_room": self.start_room,
"end_room": self.end_room,
"standardized_problem_solution": self.standardized_problem_solution_backward,
"sub_maze_configurations": self.sub_maze_configurations, # if any key values are ndarray, convert to list
"connected_cells": self.connected_cells,
"room_name": self.room_name,
}
)
pickle.dump(data, open(filename, "wb"))
return filename, None
def single_run(N, M, N_locked_doors, display_maze=False, verbose=False):
try:
print(f"Starting run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors}")
succeeded = False
counter = 0
while not succeeded:
counter += 1
maze = MazeGenerator(
N=N,
M=M,
rescue_agent="Alex",
victim="Maggie",
max_big_loop_count=500,
max_retry_count=100,
N_locked_doors=N_locked_doors,
generate_sub_problems=True,
verbose=verbose,
)
maze.generate_maze_with_doors()
maze.generate_distributed_keys_rescue_positive_problem()
succeeded = maze.did_succeed
if counter > 100:
print(f"Failed to generate {N}, M: {M}, N_locked_doors: {N_locked_doors}")
break
if succeeded:
if display_maze:
maze.display_maze()
# Save the maze data
filename, maze_file = maze.save_maze()
if maze_file:
maze_id = os.path.splitext(os.path.basename(maze_file))[0]
maze_dir = os.path.dirname(maze_file)
plots_dir = os.path.join(maze_dir, "plots")
os.makedirs(plots_dir, exist_ok=True)
maze_loader = MazeLoader(maze_file, hide_coordinates=True)
plot_path = os.path.join(plots_dir, f"{maze_id}.png")
maze_loader.pretty_plot(save_path=plot_path)
print(f"Saved maze visualization to {plot_path}")
return (
f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} succeeded",
filename,
)
else:
return (
f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} maxed out retry count",
None,
)
except Exception as e:
print(traceback.print_exc())
raise Exception(
f"Run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} failed"
)
def run_maze_generation(NMs, num_instances_per_parameter_combination=1):
fs = []
generated_maze_files = []
with ThreadPoolExecutor(max_workers=60) as executor:
for i in range(num_instances_per_parameter_combination):
print(
f"Running instance {i+1} of {num_instances_per_parameter_combination}..."
)
for N, M, N_locked_doors in NMs:
fs.append(
executor.submit(
single_run,
N,
M,
N_locked_doors,
display_maze=False,
verbose=False,
)
)
for f in as_completed(fs):
if f.exception() is None:
res = f.result()
print(res[0])
if res[1] is not None:
generated_maze_files.append(res[1])
return generated_maze_files
if __name__ == "__main__":
NMs = [(j,j) for j in range(6, 22, 2)]
NMs = [(it[0], it[1], i) for it in NMs for i in range(9,11)]
print(NMs)
generated_maze_files = run_maze_generation(
NMs, num_instances_per_parameter_combination=1000
)
print(generated_maze_files)
# fix weird behavior you are seeing with 8,8,6 reduced key count to 1 for maze_8_8_6_0.5_0.0_True/745275.pkl
# cognetive load is constraints on key lock distributions
# can we introduce a "time pressure" on cognetive load
# starting with small problems and deeply understanding the behaviors
# constraint reduction behavior of the model - as we reduce the number of keys distributed
#
|