File size: 8,817 Bytes
62f385b
 
 
 
 
 
c357497
62f385b
 
 
 
 
c357497
62f385b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea2063
62f385b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: cc-by-4.0
language:
  - en
tags:
  - Large Language Models
  - LLM Evaluation
  - Sequential Reasoning
  - Scaling Laws
  - Synthetic Benchmarks
  - Commonsense Reasoning
  - Spatial Reasoning
  - Knowledge Graphs
---

# SeqBench: A Tunable Benchmark to Quantify Sequential Reasoning Limits of LLMs

## Description

SeqBench is a programmatically generated benchmark designed to rigorously evaluate and analyze the sequential reasoning capabilities of language models. Task instances involve pathfinding in 2D grid environments, requiring models to perform multi-step inference over a combination of relevant and distracting textual facts.

The benchmark allows for fine-grained, orthogonal control over key complexity dimensions:

1.  **Logical Depth (L)**: The number of actions in the ground-truth optimal solution.
2.  **Backtracking Count (B)**: The number of locked doors on the optimal path that necessitate detours to find corresponding keys.
3.  **Noise Ratio (N)**: The proportion of distracting (irrelevant) facts relative to supporting (relevant) facts in the problem description.

This dataset (`seqBench_compact.jsonl.gz`) contains **7079 instances**, sampled to provide broad coverage across these complexity dimensions.

Each instance provides:
-   `instance_id`: A unique identifier for the specific problem variant.
-   `context`: The natural language problem description presented to the model.
-   `completion`: The ground-truth sequence of actions representing the optimal solution.
-   `complexity_parameters`: A dictionary containing the specific L, B, and N values for the instance.
-   `instance_metadata`: Additional information, including maze dimensions and agent/target names.
-   `structural_details`: A JSON string detailing the underlying base maze configuration. This includes room coordinate mappings, adjacency lists, door/key states, and all canonical facts (before noise application).

## Dataset Structure and Schema

The dataset is provided in gzipped JSONL format (`seqBench_compact.jsonl.gz`). Each line is a JSON object representing a single problem instance with the following fields:

*   **`instance_id`** (`string`): Unique identifier for the problem instance.
*   **`context`** (`string`): Textual problem description.
*   **`completion`** (`string`): Expected sequence of actions (e.g., ` "['action1: param1', 'action2: param2', ...]" `).
*   **`complexity_parameters`** (`object`):
    *   `logical_depth_L` (`int64`): Logical Depth (L).
    *   `backtracking_count_B` (`int64`): Backtracking Count (B).
    *   `noise_ratio_N` (`float64`): Applied Noise Ratio (N).
*   **`instance_metadata`** (`object`):
    *   `maze_rows` (`int64`): Number of rows in the maze grid.
    *   `maze_cols` (`int64`): Number of columns in the maze grid.
    *   `agent_name` (`string`): Agent's name.
    *   `target_name` (`string`): Target/victim's name.
*   **`structural_details`** (`string`): A JSON string containing:
    *   `mappings` (`object`):
        *   `coordinate_to_name` (`object`): Maps coordinate strings (e.g., "3,6") to original room identifiers (e.g., "D5").
    *   `structure` (`object`):
        *   `adjacency_list` (`object`): Maps coordinate strings to a list of directly connected coordinate strings.
        *   `door_details` (`object`): Maps a door identifier string (lexicographically sorted coordinate strings joined by "_", e.g., "3,6_3,7") to an object: `{"status": "open" | "closed and locked", "key_id": "string"}`.
        *   `key_locations` (`object`): Maps a `key_id` string to the coordinate string of the room containing the key.
        *   `start_room_coord` (`string`): Coordinate string of the agent's starting room.
        *   `end_room_coord` (`string`): Coordinate string of the victim's room.
    *   `canonical_facts` (`list`): A list of objects, where each object represents a true factual statement about the base maze (before noise/shuffling). Each fact object has: `{"type": "string", "args": list_of_strings, "supporting": boolean}`. The `args` are specific to the `type` (e.g., for "connected_rooms", args might be `["coord1_str", "coord2_str", "status_str"]`).

A machine-readable metadata file (`croissant.json`) is included in the metadata/ directory of the main repository to facilitate dataset discovery and integration.

## Using `structural_details`

The `structural_details` field offers a ground-truth representation of the maze.

```python
import gzip
import json

# Example: Load the first instance and inspect its structural_details
file_path = "seqBench_compact.jsonl.gz" # Path to your dataset file
instance_data = None
try:
    with gzip.open(file_path, "rt", encoding="utf-8") as f:
        first_line = f.readline()
        if first_line:
            instance_data = json.loads(first_line)
except FileNotFoundError:
    print(f"Error: Dataset file not found at {file_path}")
except Exception as e:
    print(f"Error loading dataset: {e}")

if instance_data:
    print(f"Instance ID: {instance_data.get('instance_id', 'N/A')}")
    
    # Parse the structural_details string
    structural_details_str = instance_data.get("structural_details")
    if structural_details_str:
        structural_details = json.loads(structural_details_str)
        
        structure = structural_details.get("structure", {})
        start_coord_str = structure.get("start_room_coord")
        print(f"Start Room Coordinate String: {start_coord_str}")
        
        # Example: Door details for a hypothetical door
        # Note: Door keys are formed by sorting coordinate strings and joining with '_'
        coord1_str, coord2_str = "3,6", "3,7" # Replace with actual coordinates you want to check
        door_dict_key = "_".join(sorted([coord1_str, coord2_str]))
        door_info = structure.get("door_details", {}).get(door_dict_key)
        if door_info:
            print(f"Door info for {door_dict_key}: {door_info}")
        else:
            print(f"No direct door entry for {door_dict_key} (may not exist or names are different).")
        
        print(f"Key locations: {structure.get('key_locations', {})}")
        
        # print("First canonical fact:", structural_details.get("canonical_facts", [{}])[0])
    else:
        print("structural_details field is missing or empty.")

# For a deeper understanding of the data generation pipeline and semantics, 
# refer to the scripts (`maze.py`, `maze_loader.py`, `rooms.py`)
# available in the main project repository.
```

## Dataset Statistics (for `seqBench_compact.jsonl.gz`)

*   **Total Instances:** 7079
*   **Logical Depth (L):**
    *   Range: [3, 774]
    *   Distribution: Instances span a wide range of L values. For L-bins of size 5 (e.g., L0-4, L5-9, etc.), there are typically 30-80 instances per bin in the lower to mid L-ranges.
*   **Backtracking Count (B):**
    *   Range: [0, 6]
    *   Distribution:
        *   B = 0: 441 instances
        *   B = 1: 438 instances
        *   B = 2: 565 instances
        *   B = 3: 790 instances
        *   B = 4: 1046 instances
        *   B = 5: 1601 instances
        *   B = 6: 2198 instances
*   **Noise Ratio (N):**
    *   Range: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
    *   Distribution: Instances are approximately evenly distributed across the 6 noise levels, each with roughly 1180 instances.
*   **Combined Complexity:** The dataset is sampled to ensure coverage across (B, N) combinations (typically 60-380 instances per pair) and (L-bin, N) combinations (aiming for approximately 10 instances per L-bin of size 5 for each N, varying with the natural distribution of L).

## Generation Process

The benchmark instances are generated through a multi-stage process:
1.  **Base Maze Generation**: Acyclic maze graphs are programmatically created on N x M grids.
2.  **Rewind Construction**: A target number of backtracking maneuvers (B_target) are embedded by working backward from a goal room, strategically placing keys and locked doors.
3.  **NLP Formulation**: For each base maze configuration, a list of canonical facts describing the environment and task is derived.
4.  **Noise Application**: A specified `noise_ratio_N` is used to select a proportion of distracting (irrelevant) facts to include alongside supporting (relevant) facts, forming the final `context`.

## Citation
Please cite this work as:
```bibtex
@misc{anonymous2025seqbench,
  author    = {Anonymous Submission},
  title     = {SeqBench: A Tunable Benchmark to Quantify Sequential Reasoning Limits of LLMs},
  year      = {2025},
  publisher = {Proceedings of the Conference on Empirical Methods in Natural Language Processing},
  note      = {Special Theme: Interdisciplinary Recontextualization of NLP},
  comment   = {Dataset accessible at https://huggingface.co/datasets/emnlp-submission/seqBench}
}
```