|
import pickle |
|
import random |
|
import math |
|
import os |
|
from rooms import NameGenerator |
|
|
|
|
|
class MazeLoader: |
|
""" |
|
Loads a maze that can be plotted and used to generate a natural language problem. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
filename, |
|
shuffle_description=True, |
|
hide_coordinates=False, |
|
removed_key_count=None, |
|
solvable=True, |
|
): |
|
self.solvable = solvable |
|
self.filename = filename |
|
self.data = pickle.load(open(filename, "rb")) |
|
self.shuffle_description = shuffle_description |
|
self.hide_coordinates = hide_coordinates |
|
self.removed_key_count = removed_key_count |
|
if self.removed_key_count is None: |
|
self.removed_key_count = 0 |
|
|
|
if removed_key_count not in self.data["sub_maze_configurations"].keys(): |
|
raise ValueError( |
|
f"Removed key count {removed_key_count} is not in the sub_maze_configurations keys" |
|
) |
|
|
|
self.room_name = self.data["room_name"] |
|
self.maze = self.data["sub_maze_configurations"][self.removed_key_count]["maze"] |
|
self.doors = self.data["sub_maze_configurations"][self.removed_key_count][ |
|
"doors" |
|
] |
|
self.keys_locations = self.data["sub_maze_configurations"][ |
|
self.removed_key_count |
|
]["keys_locations"] |
|
self.connected_cells = self.data["connected_cells"] |
|
self.num_locked_doors = ( |
|
self.data["world_parameters"]["N_locked_doors"] - self.removed_key_count |
|
) |
|
self.N = self.data["world_parameters"]["N"] |
|
self.M = self.data["world_parameters"]["M"] |
|
name_generator = NameGenerator(self.N, self.M) |
|
self.R = lambda x: name_generator.get_name(x) |
|
|
|
if not self.solvable: |
|
print("Maze is not solvable") |
|
|
|
first_key, last_key = self.get_first_and_last_key() |
|
self.swap_key_locations(first_key, last_key) |
|
self.solution = None |
|
else: |
|
self.solution = self.data["standardized_problem_solution"][ |
|
self.removed_key_count |
|
][::-1] |
|
self.solution_with_room_names = [ |
|
(item[0], self.room_name[item[1]]) |
|
if item[0].split("_")[-1] in ["to", "start"] |
|
else item |
|
for item in self.solution |
|
] |
|
self.solution_with_friendly_room_names = [ |
|
(item[0], self.R(item[1])) |
|
if item[0].split("_")[-1] in ["to", "start"] |
|
else item |
|
for item in self.solution |
|
] |
|
|
|
|
|
self.used_keys = [item[1] for item in self.solution if item[0] == "use_key"] |
|
self.used_path = ( |
|
[self.data["start_room"]] |
|
+ [item[1] for item in self.solution if item[0] == "move_to"] |
|
+ [self.data["end_room"]] |
|
) |
|
self.used_connections = list(zip(self.used_path[:-1], self.used_path[1:])) |
|
|
|
def compile_description(self, args, mode, friendly=False): |
|
|
|
if mode == "door": |
|
cell1, cell2 = args |
|
status = self.doors[(cell1, cell2)][0] |
|
if friendly: |
|
room1, room2 = self.R(cell1), self.R(cell2) |
|
else: |
|
room1, room2 = self.room_name[cell1], self.room_name[cell2] |
|
return f"Room {room1} has a door to room {room2}. " |
|
elif mode == "key_door_relation": |
|
cell1, cell2 = args[:2] |
|
if friendly: |
|
room1, room2 = self.R(cell1), self.R(cell2) |
|
else: |
|
room1, room2 = self.room_name[cell1], self.room_name[cell2] |
|
return ( |
|
f"""The locked door between {room1} and {room2} requires key {self.doors[(cell1, cell2)][1]}. """ |
|
if self.doors[(cell1, cell2)][0] == "closed and locked" |
|
else "" |
|
) |
|
elif mode == "connected_rooms": |
|
cell1, cell2, door_status = args |
|
if not self.hide_coordinates: |
|
location_description1 = " at " + str(cell1) |
|
location_description2 = " at " + str(cell2) |
|
else: |
|
location_description1 = "" |
|
location_description2 = "" |
|
if friendly: |
|
roomA, roomB = self.R(cell1), self.R(cell2) |
|
else: |
|
roomA, roomB = self.room_name[cell1], self.room_name[cell2] |
|
|
|
return ( |
|
f"""Room {roomA}{location_description1}""" |
|
+ f""" and {roomB}{location_description2} are connected by a{'n' if door_status == 'open' else ''} {door_status} door. """ |
|
) |
|
elif mode == "key_location": |
|
key_id, room = args |
|
if friendly: |
|
room1 = self.R(room) |
|
else: |
|
room1 = self.room_name[room] |
|
return f"""Key {key_id} is in room {room1}. """ |
|
elif mode == "rescue_agent_location": |
|
room = args |
|
if friendly: |
|
room1 = self.R(room) |
|
else: |
|
room1 = self.room_name[room] |
|
return f"{self.rescue_agent} is in room {room1}. " |
|
elif mode == "victim_location": |
|
room = args |
|
if friendly: |
|
room1 = self.R(room) |
|
else: |
|
room1 = self.room_name[room] |
|
return f"{self.victim} is in room {room1}. " |
|
|
|
def encode_problem_into_nlp(self, shuffle_ratio=0.5, noise_ratio=0.5): |
|
""" |
|
Encodes the problem into a natural language problem. |
|
The facts can be of the following types: |
|
connected_rooms: |
|
1. Room A and B are connected by an open door. (for regular connections) |
|
2. Room A and B are connected by a closed and locked door. (for locked doors) |
|
key_door_relation: |
|
3. The locked door between Room A and Room B requires key 5. (for key door relations) |
|
key_location: |
|
4. Key 5 is in Room C. (for key locations) |
|
rescue_agent_location: |
|
5. The rescue agent is in Room A. (for rescue agent location) |
|
victim_location: |
|
6. The victim is in Room A. (for victim location) |
|
""" |
|
|
|
|
|
self.nlp_problem = [] |
|
covered_cells = set() |
|
for cell in sorted(self.connected_cells.keys()): |
|
for neighbor in sorted(self.connected_cells[cell]): |
|
if (cell, neighbor) in covered_cells or cell == neighbor: |
|
continue |
|
if (cell, neighbor) in self.used_connections or ( |
|
neighbor, |
|
cell, |
|
) in self.used_connections: |
|
supporting = True |
|
else: |
|
supporting = False |
|
door_status = self.doors[(cell, neighbor)][0] |
|
key_id = self.doors[(cell, neighbor)][1] |
|
self.nlp_problem.append( |
|
((cell, neighbor, door_status), "connected_rooms", supporting) |
|
) |
|
|
|
if door_status == "closed and locked" and supporting: |
|
supporting1 = True |
|
else: |
|
supporting1 = False |
|
if door_status == "closed and locked": |
|
self.nlp_problem.append( |
|
((cell, neighbor, key_id), "key_door_relation", supporting1) |
|
) |
|
|
|
if key_id in self.used_keys: |
|
supporting2 = True |
|
else: |
|
supporting2 = False |
|
if door_status == "closed and locked": |
|
self.nlp_problem.append( |
|
( |
|
(key_id, self.keys_locations[key_id]), |
|
"key_location", |
|
supporting2, |
|
) |
|
) |
|
|
|
covered_cells.add((cell, neighbor)) |
|
covered_cells.add((neighbor, cell)) |
|
|
|
self.victim = self.data["world_parameters"]["victim"] |
|
self.rescue_agent = self.data["world_parameters"]["rescue_agent"] |
|
|
|
self.nlp_problem = [ |
|
item[1] |
|
for item in sorted( |
|
[(i, it) for i, it in enumerate(self.nlp_problem[::-1])], |
|
key=lambda x: (x[1][2], x[0]), |
|
reverse=True, |
|
) |
|
] |
|
|
|
N_minus = len([item for item in self.nlp_problem if item[2] == False]) |
|
|
|
N_plus = len(self.nlp_problem) - N_minus |
|
|
|
N_minus_x = int(N_minus * (1 - noise_ratio)) - 1 |
|
if N_minus_x > 0: |
|
self.nlp_problem = self.nlp_problem[:-N_minus_x] |
|
|
|
x = int((N_plus) * (1 - shuffle_ratio)) |
|
ordered_part = self.nlp_problem[:x] |
|
shuffle_part = self.nlp_problem[x:] |
|
random.shuffle(shuffle_part) |
|
self.nlp_problem = ordered_part + shuffle_part |
|
self.nlp_problem.append( |
|
(self.data["start_room"], "rescue_agent_location", True) |
|
) |
|
self.nlp_problem.append((self.data["end_room"], "victim_location", True)) |
|
natural_language_problem = [] |
|
natural_language_problem_friendly = [] |
|
for item in self.nlp_problem: |
|
natural_language_problem += [self.compile_description(item[0], item[1])] |
|
natural_language_problem_friendly += [ |
|
self.compile_description(item[0], item[1], friendly=True) |
|
] |
|
N_minus = len([item for item in self.nlp_problem if item[2] == False]) |
|
N_plus = len(self.nlp_problem) - N_minus |
|
self.support_weight = round(N_plus / float(N_plus + N_minus), 2) |
|
self.shuffle_entropy = self.measure_distraction_entropy() |
|
return ( |
|
self.nlp_problem, |
|
"".join(natural_language_problem), |
|
"".join(natural_language_problem_friendly), |
|
self.support_weight, |
|
self.shuffle_entropy, |
|
) |
|
|
|
def measure_distraction_entropy(self): |
|
entropy = 0 |
|
count = 0 |
|
for i in range(0, len(self.nlp_problem), 2): |
|
first_fact = self.nlp_problem[i][-1] |
|
second_fact = ( |
|
self.nlp_problem[i + 1][-1] if i + 1 < len(self.nlp_problem) else None |
|
) |
|
if second_fact is None: |
|
continue |
|
count += 1 |
|
if first_fact != second_fact and ( |
|
first_fact == True or second_fact == True |
|
): |
|
entropy -= math.log(0.5) |
|
return entropy / float(count) |
|
|
|
def get_first_and_last_key(self): |
|
pass |
|
|
|
def swap_key_locations(self, first_key, last_key): |
|
pass |
|
|
|
|
|
def single_file_load( |
|
folder_name="maze_5_5_3_0.5_0.0_True", |
|
file_name=None, |
|
removed_key_count=0, |
|
hide_coordinates=True, |
|
): |
|
solvable = True |
|
folder = f"generated_data/{folder_name}/" |
|
if file_name is None: |
|
for file in os.listdir(folder): |
|
maze_loader = MazeLoader( |
|
folder + file, |
|
removed_key_count=removed_key_count, |
|
solvable=solvable, |
|
hide_coordinates=hide_coordinates, |
|
) |
|
break |
|
else: |
|
maze_loader = MazeLoader( |
|
folder + file_name, |
|
removed_key_count=removed_key_count, |
|
solvable=solvable, |
|
hide_coordinates=hide_coordinates, |
|
) |
|
|
|
nlp = maze_loader.encode_problem_into_nlp(shuffle_ratio=0.2, noise_ratio=0.0) |
|
facts = nlp[1] |
|
solution = maze_loader.solution_with_room_names |
|
return facts, solution, maze_loader, file_name if file_name is not None else file |
|
|
|
|
|
if __name__ == "__main__": |
|
removed_key_count = 4 |
|
solvable = True |
|
hide_coordinates = True |
|
folder = "generated_data/maze_7_7_7_True/" |
|
|
|
for file in os.listdir(folder): |
|
if file not in ["874841.pkl"]: |
|
continue |
|
maze_loader = MazeLoader( |
|
folder + file, |
|
removed_key_count=removed_key_count, |
|
solvable=solvable, |
|
hide_coordinates=hide_coordinates, |
|
) |
|
break |
|
from plot import pretty_plot_maze |
|
|
|
|
|
|
|
nlp = maze_loader.encode_problem_into_nlp(shuffle_ratio=0.2, noise_ratio=1.0) |
|
|
|
print(f"\033[91mProvided Facts:\033[0m {nlp[2]}") |
|
print(f"\033[92mSolution:\033[0m {maze_loader.solution_with_room_names}") |
|
|
|
|
|
|
|
|