emnlp-submission commited on
Commit
8311f95
·
verified ·
1 Parent(s): 6343f32

Upload maze_loader.py

Browse files
Files changed (1) hide show
  1. scripts /maze_loader.py +335 -0
scripts /maze_loader.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import random
3
+ import math
4
+ import os
5
+ from rooms import NameGenerator
6
+
7
+
8
+ class MazeLoader:
9
+ """
10
+ Loads a maze that can be plotted and used to generate a natural language problem.
11
+ """
12
+
13
+ def __init__(
14
+ self,
15
+ filename,
16
+ shuffle_description=True,
17
+ hide_coordinates=False,
18
+ removed_key_count=None,
19
+ solvable=True,
20
+ ):
21
+ self.solvable = solvable
22
+ self.filename = filename
23
+ self.data = pickle.load(open(filename, "rb"))
24
+ self.shuffle_description = shuffle_description
25
+ self.hide_coordinates = hide_coordinates
26
+ self.removed_key_count = removed_key_count
27
+ if self.removed_key_count is None:
28
+ self.removed_key_count = 0
29
+
30
+ if removed_key_count not in self.data["sub_maze_configurations"].keys():
31
+ raise ValueError(
32
+ f"Removed key count {removed_key_count} is not in the sub_maze_configurations keys"
33
+ )
34
+
35
+ self.room_name = self.data["room_name"]
36
+ self.maze = self.data["sub_maze_configurations"][self.removed_key_count]["maze"]
37
+ self.doors = self.data["sub_maze_configurations"][self.removed_key_count][
38
+ "doors"
39
+ ]
40
+ self.keys_locations = self.data["sub_maze_configurations"][
41
+ self.removed_key_count
42
+ ]["keys_locations"]
43
+ self.connected_cells = self.data["connected_cells"]
44
+ self.num_locked_doors = (
45
+ self.data["world_parameters"]["N_locked_doors"] - self.removed_key_count
46
+ )
47
+ self.N = self.data["world_parameters"]["N"]
48
+ self.M = self.data["world_parameters"]["M"]
49
+ name_generator = NameGenerator(self.N, self.M)
50
+ self.R = lambda x: name_generator.get_name(x)
51
+
52
+ if not self.solvable:
53
+ print("Maze is not solvable")
54
+ # get keys to first and last locked doors
55
+ first_key, last_key = self.get_first_and_last_key()
56
+ self.swap_key_locations(first_key, last_key)
57
+ self.solution = None
58
+ else:
59
+ self.solution = self.data["standardized_problem_solution"][
60
+ self.removed_key_count
61
+ ][::-1]
62
+ self.solution_with_room_names = [
63
+ (item[0], self.room_name[item[1]])
64
+ if item[0].split("_")[-1] in ["to", "start"]
65
+ else item
66
+ for item in self.solution
67
+ ]
68
+ self.solution_with_friendly_room_names = [
69
+ (item[0], self.R(item[1]))
70
+ if item[0].split("_")[-1] in ["to", "start"]
71
+ else item
72
+ for item in self.solution
73
+ ]
74
+
75
+ # we keep the definition of supporting facts in the original solvable problem even if the maze is not solvable as the same path still needs to be used to make the conclusion
76
+ self.used_keys = [item[1] for item in self.solution if item[0] == "use_key"]
77
+ self.used_path = (
78
+ [self.data["start_room"]]
79
+ + [item[1] for item in self.solution if item[0] == "move_to"]
80
+ + [self.data["end_room"]]
81
+ )
82
+ self.used_connections = list(zip(self.used_path[:-1], self.used_path[1:]))
83
+
84
+ def compile_description(self, args, mode, friendly=False):
85
+
86
+ if mode == "door":
87
+ cell1, cell2 = args
88
+ status = self.doors[(cell1, cell2)][0]
89
+ if friendly:
90
+ room1, room2 = self.R(cell1), self.R(cell2)
91
+ else:
92
+ room1, room2 = self.room_name[cell1], self.room_name[cell2]
93
+ return f"Room {room1} has a door to room {room2}. "
94
+ elif mode == "key_door_relation":
95
+ cell1, cell2 = args[:2]
96
+ if friendly:
97
+ room1, room2 = self.R(cell1), self.R(cell2)
98
+ else:
99
+ room1, room2 = self.room_name[cell1], self.room_name[cell2]
100
+ return (
101
+ f"""The locked door between {room1} and {room2} requires key {self.doors[(cell1, cell2)][1]}. """
102
+ if self.doors[(cell1, cell2)][0] == "closed and locked"
103
+ else ""
104
+ )
105
+ elif mode == "connected_rooms":
106
+ cell1, cell2, door_status = args
107
+ if not self.hide_coordinates:
108
+ location_description1 = " at " + str(cell1)
109
+ location_description2 = " at " + str(cell2)
110
+ else:
111
+ location_description1 = ""
112
+ location_description2 = ""
113
+ if friendly:
114
+ roomA, roomB = self.R(cell1), self.R(cell2)
115
+ else:
116
+ roomA, roomB = self.room_name[cell1], self.room_name[cell2]
117
+
118
+ return (
119
+ f"""Room {roomA}{location_description1}"""
120
+ + f""" and {roomB}{location_description2} are connected by a{'n' if door_status == 'open' else ''} {door_status} door. """
121
+ )
122
+ elif mode == "key_location":
123
+ key_id, room = args
124
+ if friendly:
125
+ room1 = self.R(room)
126
+ else:
127
+ room1 = self.room_name[room]
128
+ return f"""Key {key_id} is in room {room1}. """
129
+ elif mode == "rescue_agent_location":
130
+ room = args
131
+ if friendly:
132
+ room1 = self.R(room)
133
+ else:
134
+ room1 = self.room_name[room]
135
+ return f"{self.rescue_agent} is in room {room1}. "
136
+ elif mode == "victim_location":
137
+ room = args
138
+ if friendly:
139
+ room1 = self.R(room)
140
+ else:
141
+ room1 = self.room_name[room]
142
+ return f"{self.victim} is in room {room1}. "
143
+
144
+ def encode_problem_into_nlp(self, shuffle_ratio=0.5, noise_ratio=0.5):
145
+ """
146
+ Encodes the problem into a natural language problem.
147
+ The facts can be of the following types:
148
+ connected_rooms:
149
+ 1. Room A and B are connected by an open door. (for regular connections)
150
+ 2. Room A and B are connected by a closed and locked door. (for locked doors)
151
+ key_door_relation:
152
+ 3. The locked door between Room A and Room B requires key 5. (for key door relations)
153
+ key_location:
154
+ 4. Key 5 is in Room C. (for key locations)
155
+ rescue_agent_location:
156
+ 5. The rescue agent is in Room A. (for rescue agent location)
157
+ victim_location:
158
+ 6. The victim is in Room A. (for victim location)
159
+ """
160
+
161
+ # I. connected_rooms
162
+ self.nlp_problem = []
163
+ covered_cells = set()
164
+ for cell in sorted(self.connected_cells.keys()):
165
+ for neighbor in sorted(self.connected_cells[cell]):
166
+ if (cell, neighbor) in covered_cells or cell == neighbor:
167
+ continue
168
+ if (cell, neighbor) in self.used_connections or (
169
+ neighbor,
170
+ cell,
171
+ ) in self.used_connections:
172
+ supporting = True
173
+ else:
174
+ supporting = False
175
+ door_status = self.doors[(cell, neighbor)][0]
176
+ key_id = self.doors[(cell, neighbor)][1]
177
+ self.nlp_problem.append(
178
+ ((cell, neighbor, door_status), "connected_rooms", supporting)
179
+ )
180
+ # II. key_door_relation
181
+ if door_status == "closed and locked" and supporting:
182
+ supporting1 = True
183
+ else:
184
+ supporting1 = False
185
+ if door_status == "closed and locked":
186
+ self.nlp_problem.append(
187
+ ((cell, neighbor, key_id), "key_door_relation", supporting1)
188
+ )
189
+ # III. key_location
190
+ if key_id in self.used_keys:
191
+ supporting2 = True
192
+ else:
193
+ supporting2 = False
194
+ if door_status == "closed and locked":
195
+ self.nlp_problem.append(
196
+ (
197
+ (key_id, self.keys_locations[key_id]),
198
+ "key_location",
199
+ supporting2,
200
+ )
201
+ )
202
+
203
+ covered_cells.add((cell, neighbor))
204
+ covered_cells.add((neighbor, cell))
205
+
206
+ self.victim = self.data["world_parameters"]["victim"]
207
+ self.rescue_agent = self.data["world_parameters"]["rescue_agent"]
208
+ # ordering the facts by supporting facts first
209
+ self.nlp_problem = [
210
+ item[1]
211
+ for item in sorted(
212
+ [(i, it) for i, it in enumerate(self.nlp_problem[::-1])],
213
+ key=lambda x: (x[1][2], x[0]),
214
+ reverse=True,
215
+ )
216
+ ]
217
+ # number of distracting facts
218
+ N_minus = len([item for item in self.nlp_problem if item[2] == False])
219
+ # number of supporting facts
220
+ N_plus = len(self.nlp_problem) - N_minus
221
+ # number of distracting facts to remove
222
+ N_minus_x = int(N_minus * (1 - noise_ratio)) - 1
223
+ if N_minus_x > 0:
224
+ self.nlp_problem = self.nlp_problem[:-N_minus_x]
225
+
226
+ x = int((N_plus) * (1 - shuffle_ratio))
227
+ ordered_part = self.nlp_problem[:x]
228
+ shuffle_part = self.nlp_problem[x:]
229
+ random.shuffle(shuffle_part)
230
+ self.nlp_problem = ordered_part + shuffle_part
231
+ self.nlp_problem.append(
232
+ (self.data["start_room"], "rescue_agent_location", True)
233
+ )
234
+ self.nlp_problem.append((self.data["end_room"], "victim_location", True))
235
+ natural_language_problem = []
236
+ natural_language_problem_friendly = []
237
+ for item in self.nlp_problem:
238
+ natural_language_problem += [self.compile_description(item[0], item[1])]
239
+ natural_language_problem_friendly += [
240
+ self.compile_description(item[0], item[1], friendly=True)
241
+ ]
242
+ N_minus = len([item for item in self.nlp_problem if item[2] == False])
243
+ N_plus = len(self.nlp_problem) - N_minus
244
+ self.support_weight = round(N_plus / float(N_plus + N_minus), 2)
245
+ self.shuffle_entropy = self.measure_distraction_entropy()
246
+ return (
247
+ self.nlp_problem,
248
+ "".join(natural_language_problem),
249
+ "".join(natural_language_problem_friendly),
250
+ self.support_weight,
251
+ self.shuffle_entropy,
252
+ )
253
+
254
+ def measure_distraction_entropy(self):
255
+ entropy = 0
256
+ count = 0
257
+ for i in range(0, len(self.nlp_problem), 2):
258
+ first_fact = self.nlp_problem[i][-1]
259
+ second_fact = (
260
+ self.nlp_problem[i + 1][-1] if i + 1 < len(self.nlp_problem) else None
261
+ )
262
+ if second_fact is None:
263
+ continue
264
+ count += 1
265
+ if first_fact != second_fact and (
266
+ first_fact == True or second_fact == True
267
+ ):
268
+ entropy -= math.log(0.5)
269
+ return entropy / float(count)
270
+
271
+ def get_first_and_last_key(self):
272
+ pass
273
+
274
+ def swap_key_locations(self, first_key, last_key):
275
+ pass
276
+
277
+
278
+ def single_file_load(
279
+ folder_name="maze_5_5_3_0.5_0.0_True",
280
+ file_name=None,
281
+ removed_key_count=0,
282
+ hide_coordinates=True,
283
+ ):
284
+ solvable = True
285
+ folder = f"generated_data/{folder_name}/"
286
+ if file_name is None:
287
+ for file in os.listdir(folder):
288
+ maze_loader = MazeLoader(
289
+ folder + file,
290
+ removed_key_count=removed_key_count,
291
+ solvable=solvable,
292
+ hide_coordinates=hide_coordinates,
293
+ )
294
+ break
295
+ else:
296
+ maze_loader = MazeLoader(
297
+ folder + file_name,
298
+ removed_key_count=removed_key_count,
299
+ solvable=solvable,
300
+ hide_coordinates=hide_coordinates,
301
+ )
302
+
303
+ nlp = maze_loader.encode_problem_into_nlp(shuffle_ratio=0.2, noise_ratio=0.0)
304
+ facts = nlp[1]
305
+ solution = maze_loader.solution_with_room_names
306
+ return facts, solution, maze_loader, file_name if file_name is not None else file
307
+
308
+
309
+ if __name__ == "__main__":
310
+ removed_key_count = 4
311
+ solvable = True
312
+ hide_coordinates = True
313
+ folder = "generated_data/maze_7_7_7_True/"
314
+
315
+ for file in os.listdir(folder):
316
+ if file not in ["874841.pkl"]:
317
+ continue
318
+ maze_loader = MazeLoader(
319
+ folder + file,
320
+ removed_key_count=removed_key_count,
321
+ solvable=solvable,
322
+ hide_coordinates=hide_coordinates,
323
+ )
324
+ break
325
+ from plot import pretty_plot_maze
326
+
327
+ # pretty_plot_maze(maze_loader)
328
+
329
+ nlp = maze_loader.encode_problem_into_nlp(shuffle_ratio=0.2, noise_ratio=1.0)
330
+ # colored print
331
+ print(f"\033[91mProvided Facts:\033[0m {nlp[2]}")
332
+ print(f"\033[92mSolution:\033[0m {maze_loader.solution_with_room_names}")
333
+ # print("Problem Prompt NLP: Compact List format", nlp[0])
334
+ # print("Distraction Weight: ", nlp[2])
335
+ # print("Shuffle Entropy: ", nlp[3])