nielsr HF Staff commited on
Commit
d9d3670
·
verified ·
1 Parent(s): f5b38cb

Add comprehensive dataset card for Multi-View 3D Point Tracking datasets

Browse files

This PR adds a comprehensive dataset card for the Multi-View 3D Point Tracking datasets.

It includes:
- A link to the paper: [Multi-View 3D Point Tracking](https://huggingface.co/papers/2508.21060)
- Links to the project page and GitHub repository.
- Metadata including `task_categories: keypoint-detection` and relevant `tags` such as `3d-tracking`, `multi-view`, `point-cloud`, `computer-vision`, `robotics`, `synthetic-data`, `real-world-data`, `pytorch`, and `pytorch-hub`.
- The paper abstract for a quick overview.
- Detailed information about the included datasets (MV-Kubric, Panoptic Studio, DexYCB) along with their download instructions.
- A "Sample Usage" section with a Python code snippet, directly from the GitHub README, demonstrating how to use the associated MVTracker model with sample data.
- The BibTeX citation for the paper.

Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - keypoint-detection
4
+ tags:
5
+ - 3d-tracking
6
+ - multi-view
7
+ - point-cloud
8
+ - computer-vision
9
+ - robotics
10
+ - synthetic-data
11
+ - real-world-data
12
+ - pytorch
13
+ - pytorch-hub
14
+ language: en
15
+ ---
16
+
17
+ # Multi-View 3D Point Tracking Datasets
18
+
19
+ This repository hosts the training and evaluation datasets associated with the paper [**Multi-View 3D Point Tracking**](https://huggingface.co/papers/2508.21060).
20
+
21
+ **Project Page:** [https://ethz-vlg.github.io/mvtracker/](https://ethz-vlg.github.io/mvtracker/)
22
+ **Code/Github Repository:** [https://github.com/ethz-vlg/mvtracker](https://github.com/ethz-vlg/mvtracker)
23
+
24
+ ## Abstract
25
+
26
+ We introduce the first data-driven multi-view 3D point tracker, designed to track arbitrary points in dynamic scenes using multiple camera views. Unlike existing monocular trackers, which struggle with depth ambiguities and occlusion, or prior multi-camera methods that require over 20 cameras and tedious per-sequence optimization, our feed-forward model directly predicts 3D correspondences using a practical number of cameras (e.g., four), enabling robust and accurate online tracking. Given known camera poses and either sensor-based or estimated multi-view depth, our tracker fuses multi-view features into a unified point cloud and applies k-nearest-neighbors correlation alongside a transformer-based update to reliably estimate long-range 3D correspondences, even under occlusion. We train on 5K synthetic multi-view Kubric sequences and evaluate on two real-world benchmarks: Panoptic Studio and DexYCB, achieving median trajectory errors of 3.1 cm and 2.0 cm, respectively. Our method generalizes well to diverse camera setups of 1-8 views with varying vantage points and video lengths of 24-150 frames. By releasing our tracker alongside training and evaluation datasets, we aim to set a new standard for multi-view 3D tracking research and provide a practical tool for real-world applications.
27
+
28
+ ## Dataset Details
29
+
30
+ To benchmark multi-view 3D point tracking, we provide preprocessed versions of three datasets:
31
+
32
+ - **MV-Kubric**: a synthetic training dataset adapted from single-view Kubric into a multi-view setting.
33
+ - **Panoptic Studio**: evaluation benchmark with real-world activities such as basketball, juggling, and toy play (10 sequences).
34
+ - **DexYCB**: evaluation benchmark with real-world hand–object interactions (10 sequences).
35
+
36
+ You can download and extract them as (~72 GB after extraction):
37
+
38
+ ```bash
39
+ # MV-Kubric (simulated + DUSt3R depths)
40
+ wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/kubric-multiview--test.tar.gz -P datasets/
41
+ wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/kubric-multiview--test--dust3r-depth.tar.gz -P datasets/
42
+ tar -xvzf datasets/kubric-multiview--test.tar.gz -C datasets/
43
+ tar -xvzf datasets/kubric-multiview--test--dust3r-depth.tar.gz -C datasets/
44
+ rm datasets/kubric-multiview*.tar.gz
45
+
46
+ # Panoptic Studio (optimization-based depth from Dynamic3DGS)
47
+ wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/panoptic-multiview.tar.gz -P datasets/
48
+ tar -xvzf datasets/panoptic-multiview.tar.gz -C datasets/
49
+ rm datasets/panoptic-multiview.tar.gz
50
+
51
+ # DexYCB (Kinect + DUSt3R depths)
52
+ wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/dex-ycb-multiview.tar.gz -P datasets/
53
+ wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/dex-ycb-multiview--dust3r-depth.tar.gz -P datasets/
54
+ tar -xvzf datasets/dex-ycb-multiview.tar.gz -C datasets/
55
+ tar -xvzf datasets/dex-ycb-multiview--dust3r-depth.tar.gz -C datasets/
56
+ rm datasets/dex-ycb-multiview*.tar.gz
57
+ ```
58
+
59
+ For licensing and usage terms, please refer to the original datasets from which these preprocessed versions are derived.
60
+
61
+ ## Sample Usage
62
+
63
+ This dataset repository contains the data for the MVTracker model. With minimal dependencies in place (as described in the [GitHub repository](https://github.com/ethz-vlg/mvtracker#quick-start)), you can try MVTracker directly via **PyTorch Hub**:
64
+
65
+ ```python
66
+ import torch
67
+ import numpy as np
68
+ from huggingface_hub import hf_hub_download
69
+
70
+ device = "cuda" if torch.cuda.is_available() else "cpu"
71
+ mvtracker = torch.hub.load("ethz-vlg/mvtracker", "mvtracker", pretrained=True, device=device)
72
+
73
+ # Example input from demo sample (downloaded automatically)
74
+ sample = np.load(hf_hub_download("ethz-vlg/mvtracker", "data_sample.npz"))
75
+ rgbs = torch.from_numpy(sample["rgbs"]).float()
76
+ depths = torch.from_numpy(sample["depths"]).float()
77
+ intrs = torch.from_numpy(sample["intrs"]).float()
78
+ extrs = torch.from_numpy(sample["extrs"]).float()
79
+ query_points = torch.from_numpy(sample["query_points"]).float()
80
+
81
+ with torch.no_grad():
82
+ results = mvtracker(
83
+ rgbs=rgbs[None].to(device) / 255.0,
84
+ depths=depths[None].to(device),
85
+ intrs=intrs[None].to(device),
86
+ extrs=extrs[None].to(device),
87
+ query_points_3d=query_points[None].to(device),
88
+ )
89
+
90
+ pred_tracks = results["traj_e"].cpu() # [T,N,3]
91
+ pred_vis = results["vis_e"].cpu() # [T,N]
92
+ print(pred_tracks.shape, pred_vis.shape)
93
+ ```
94
+
95
+ ## Citation
96
+
97
+ If you find our repository useful, please consider giving it a star ⭐ and citing our work:
98
+
99
+ ```bibtex
100
+ @inproceedings{rajic2025mvtracker,
101
+ title = {Multi-View 3D Point Tracking},
102
+ author = {Raji{\v{c}}, Frano and Xu, Haofei and Mihajlovic, Marko and Li, Siyuan and Demir, Irem and G{\"u}ndo{\u{g}}du, Emircan and Ke, Lei and Prokudin, Sergey and Pollefeys, Marc and Tang, Siyu},
103
+ booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
104
+ year = {2025}
105
+ }
106
+ ```