sha
stringlengths 40
40
| text
stringlengths 1
13.4M
| id
stringlengths 2
117
| tags
listlengths 1
7.91k
| created_at
stringlengths 25
25
| metadata
stringlengths 2
875k
| last_modified
stringlengths 25
25
| arxiv
listlengths 0
25
| languages
listlengths 0
7.91k
| tags_str
stringlengths 17
159k
| text_str
stringlengths 1
447k
| text_lists
listlengths 0
352
| processed_texts
listlengths 1
353
| tokens_length
listlengths 1
353
| input_texts
listlengths 1
40
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
333b5b44152e4350750e73ed82f18a97b6a53ec3
|
# Dataset Card for "Open-Platypus-Chat-Judged"
This is [Open-Platypus-Chat](https://huggingface.co/datasets/chargoddard/Open-Platypus-Chat), judged for quality by [TheBloke/OpenOrca-Platypus2-13B-GPTQ](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GPTQ). Each row is annotated with a score on a scale of 1 to 5 and a brief explanation of why it was given that score.
As the "judge" was a relatively quite small model, and quantized at that, the ratings are far from perfect. This is from the first iteration of an experiment in dataset refinement. Definitely do not take this dataset as ground truth.
<sub>Or do. I'm a dataset card, not a cop.</sub>
|
chargoddard/Open-Platypus-Chat-Judged
|
[
"size_categories:10K<n<100K",
"region:us"
] |
2023-08-19T06:17:41+00:00
|
{"size_categories": ["10K<n<100K"], "dataset_info": [{"config_name": "best_rated", "features": [{"name": "id", "dtype": "string"}, {"name": "rating", "struct": [{"name": "analysis", "dtype": "string"}, {"name": "judge", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 16455644.962765958, "num_examples": 10236}], "download_size": 7071171, "dataset_size": 16455644.962765958}, {"config_name": "default", "features": [{"name": "id", "dtype": "string"}, {"name": "rating", "struct": [{"name": "analysis", "dtype": "string"}, {"name": "judge", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 39894811, "num_examples": 24816}], "download_size": 18554361, "dataset_size": 39894811}, {"config_name": "worst_rated", "features": [{"name": "id", "dtype": "string"}, {"name": "rating", "struct": [{"name": "analysis", "dtype": "string"}, {"name": "judge", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 236320.80984042553, "num_examples": 147}], "download_size": 125546, "dataset_size": 236320.80984042553}], "configs": [{"config_name": "best_rated", "data_files": [{"split": "train", "path": "best_rated/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "worst_rated", "data_files": [{"split": "train", "path": "worst_rated/train-*"}]}]}
|
2023-08-19T07:20:10+00:00
|
[] |
[] |
TAGS
#size_categories-10K<n<100K #region-us
|
# Dataset Card for "Open-Platypus-Chat-Judged"
This is Open-Platypus-Chat, judged for quality by TheBloke/OpenOrca-Platypus2-13B-GPTQ. Each row is annotated with a score on a scale of 1 to 5 and a brief explanation of why it was given that score.
As the "judge" was a relatively quite small model, and quantized at that, the ratings are far from perfect. This is from the first iteration of an experiment in dataset refinement. Definitely do not take this dataset as ground truth.
<sub>Or do. I'm a dataset card, not a cop.</sub>
|
[
"# Dataset Card for \"Open-Platypus-Chat-Judged\"\n\nThis is Open-Platypus-Chat, judged for quality by TheBloke/OpenOrca-Platypus2-13B-GPTQ. Each row is annotated with a score on a scale of 1 to 5 and a brief explanation of why it was given that score.\n\nAs the \"judge\" was a relatively quite small model, and quantized at that, the ratings are far from perfect. This is from the first iteration of an experiment in dataset refinement. Definitely do not take this dataset as ground truth.\n\n<sub>Or do. I'm a dataset card, not a cop.</sub>"
] |
[
"TAGS\n#size_categories-10K<n<100K #region-us \n",
"# Dataset Card for \"Open-Platypus-Chat-Judged\"\n\nThis is Open-Platypus-Chat, judged for quality by TheBloke/OpenOrca-Platypus2-13B-GPTQ. Each row is annotated with a score on a scale of 1 to 5 and a brief explanation of why it was given that score.\n\nAs the \"judge\" was a relatively quite small model, and quantized at that, the ratings are far from perfect. This is from the first iteration of an experiment in dataset refinement. Definitely do not take this dataset as ground truth.\n\n<sub>Or do. I'm a dataset card, not a cop.</sub>"
] |
[
18,
160
] |
[
"passage: TAGS\n#size_categories-10K<n<100K #region-us \n# Dataset Card for \"Open-Platypus-Chat-Judged\"\n\nThis is Open-Platypus-Chat, judged for quality by TheBloke/OpenOrca-Platypus2-13B-GPTQ. Each row is annotated with a score on a scale of 1 to 5 and a brief explanation of why it was given that score.\n\nAs the \"judge\" was a relatively quite small model, and quantized at that, the ratings are far from perfect. This is from the first iteration of an experiment in dataset refinement. Definitely do not take this dataset as ground truth.\n\n<sub>Or do. I'm a dataset card, not a cop.</sub>"
] |
e670ab79bbc5b1afb3c17b75ddfe1d74daadf825
|
# Dataset Card for "shapenet55"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jxie/shapenet55
|
[
"region:us"
] |
2023-08-19T07:23:18+00:00
|
{"dataset_info": {"features": [{"name": "inputs", "sequence": {"sequence": "float64"}}, {"name": "labels", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 12035988360, "num_examples": 52470}], "download_size": 9149702428, "dataset_size": 12035988360}}
|
2023-08-19T07:39:24+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "shapenet55"
More Information needed
|
[
"# Dataset Card for \"shapenet55\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"shapenet55\"\n\nMore Information needed"
] |
[
6,
14
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"shapenet55\"\n\nMore Information needed"
] |
cb4b480a9ac79fc2c245a628a9dfd2a6d65cd1b6
|
# Dataset of shigure/時雨 (Kantai Collection)
This is the dataset of shigure/時雨 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blue_eyes, ahoge, braid, long_hair, single_braid, hair_ornament, hair_over_shoulder, brown_hair, black_hair, hair_between_eyes, ribbon`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:------------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 570.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shigure_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 352.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shigure_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1228 | 747.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shigure_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 513.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shigure_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1228 | 1007.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shigure_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/shigure_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, blush, hair_flaps, looking_at_viewer, navel, solo, medium_breasts, cleavage, underwear_only, black_bra, black_panties, collarbone, bow, cowboy_shot, on_back, smile |
| 1 | 31 |  |  |  |  |  | 1girl, hair_flaps, solo, looking_at_viewer, black_bikini, blush, medium_breasts, cleavage, navel, smile, sailor_bikini, adapted_costume, collarbone |
| 2 | 5 |  |  |  |  |  | 1girl, black_gloves, black_serafuku, fingerless_gloves, hair_flaps, simple_background, solo, white_background, looking_at_viewer, smile, upper_body, red_neckerchief, necktie, open_mouth |
| 3 | 8 |  |  |  |  |  | 1girl, black_serafuku, hair_flaps, solo, upper_body, looking_at_viewer, red_neckerchief, simple_background, white_background, white_sailor_collar, short_sleeves, smile |
| 4 | 20 |  |  |  |  |  | 1girl, black_serafuku, black_skirt, hair_flaps, pleated_skirt, red_neckerchief, solo, black_gloves, white_background, fingerless_gloves, simple_background, smile, looking_at_viewer, cowboy_shot, red_necktie, short_sleeves, white_sailor_collar, black_shirt, blush |
| 5 | 15 |  |  |  |  |  | 1girl, serafuku, solo, pleated_skirt, looking_at_viewer, fingerless_gloves, hair_flaps, blush |
| 6 | 7 |  |  |  |  |  | 1girl, hair_flaps, portrait, simple_background, solo, white_background, looking_at_viewer, grey_background, open_mouth |
| 7 | 16 |  |  |  |  |  | 1girl, hair_flaps, long_sleeves, official_alternate_costume, sleeveless_shirt, solo, white_shirt, looking_at_viewer, off-shoulder_shirt, black_shirt, blush, smile, blue_skirt, bare_shoulders, red_ribbon, simple_background, bangs, black_thighhighs, turtleneck, medium_breasts, open_mouth, white_background, bag, denim_skirt |
| 8 | 8 |  |  |  |  |  | 1girl, hair_flaps, solo, bridal_veil, looking_at_viewer, smile, wedding_dress, bare_shoulders, blush, white_dress, breasts, hair_flower, wedding_ring, bouquet, elbow_gloves, hair_ribbon, petals, upper_body, white_gloves |
| 9 | 18 |  |  |  |  |  | 1girl, solo, hair_flaps, alternate_costume, smile, blush, looking_at_viewer, wide_sleeves, holding, obi, floral_print, long_sleeves, open_mouth, upper_body, hair_flower, yukata |
| 10 | 9 |  |  |  |  |  | 1girl, solo, alternate_costume, day, outdoors, white_dress, blush, hair_flaps, looking_at_viewer, smile, straw_hat, sun_hat, cloud, flower, sundress, blue_sky, sleeveless_dress, bare_shoulders, hair_ribbon, hand_on_headwear, jewelry, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | hair_flaps | looking_at_viewer | navel | solo | medium_breasts | cleavage | underwear_only | black_bra | black_panties | collarbone | bow | cowboy_shot | on_back | smile | black_bikini | sailor_bikini | adapted_costume | black_gloves | black_serafuku | fingerless_gloves | simple_background | white_background | upper_body | red_neckerchief | necktie | open_mouth | white_sailor_collar | short_sleeves | black_skirt | pleated_skirt | red_necktie | black_shirt | serafuku | portrait | grey_background | long_sleeves | official_alternate_costume | sleeveless_shirt | white_shirt | off-shoulder_shirt | blue_skirt | bare_shoulders | red_ribbon | bangs | black_thighhighs | turtleneck | bag | denim_skirt | bridal_veil | wedding_dress | white_dress | breasts | hair_flower | wedding_ring | bouquet | elbow_gloves | hair_ribbon | petals | white_gloves | alternate_costume | wide_sleeves | holding | obi | floral_print | yukata | day | outdoors | straw_hat | sun_hat | cloud | flower | sundress | blue_sky | sleeveless_dress | hand_on_headwear | jewelry |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------|:-------------|:--------------------|:--------|:-------|:-----------------|:-----------|:-----------------|:------------|:----------------|:-------------|:------|:--------------|:----------|:--------|:---------------|:----------------|:------------------|:---------------|:-----------------|:--------------------|:--------------------|:-------------------|:-------------|:------------------|:----------|:-------------|:----------------------|:----------------|:--------------|:----------------|:--------------|:--------------|:-----------|:-----------|:------------------|:---------------|:-----------------------------|:-------------------|:--------------|:---------------------|:-------------|:-----------------|:-------------|:--------|:-------------------|:-------------|:------|:--------------|:--------------|:----------------|:--------------|:----------|:--------------|:---------------|:----------|:---------------|:--------------|:---------|:---------------|:--------------------|:---------------|:----------|:------|:---------------|:---------|:------|:-----------|:------------|:----------|:--------|:---------|:-----------|:-----------|:-------------------|:-------------------|:----------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 31 |  |  |  |  |  | X | X | X | X | X | X | X | X | | | | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | | X | X | | X | | | | | | | | | | X | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 8 |  |  |  |  |  | X | | X | X | | X | | | | | | | | | | X | | | | | X | | X | X | X | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 20 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | X | | X | | | | X | X | X | X | X | | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 15 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | | | | | | | X | | | | | | | | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | X | | X | X | | X | | | | | | | | | | | | | | | | | X | X | | | | X | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 16 |  |  |  |  |  | X | X | X | X | | X | X | | | | | | | | | X | | | | | | | X | X | | | | X | | | | | | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 8 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 9 | 18 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | X | | | | | | | | | X | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | X | X | | | | | | | | | | | |
| 10 | 9 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | X | | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/shigure_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T07:28:04+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:24:51+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of shigure/時雨 (Kantai Collection)
=========================================
This is the dataset of shigure/時雨 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blue\_eyes, ahoge, braid, long\_hair, single\_braid, hair\_ornament, hair\_over\_shoulder, brown\_hair, black\_hair, hair\_between\_eyes, ribbon', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
1d9063ea6903bf2dd5da77b082a747a06237b70f
|
# Dataset Card for "actresses"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
deeplearning-tide/actresses
|
[
"region:us"
] |
2023-08-19T07:36:44+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "val", "path": "data/val-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "keira", "1": "nathalie", "2": "others"}}}}], "splits": [{"name": "train", "num_bytes": 137979476.0, "num_examples": 429}, {"name": "val", "num_bytes": 54519033.0, "num_examples": 168}, {"name": "test", "num_bytes": 54024602.0, "num_examples": 168}], "download_size": 246545069, "dataset_size": 246523111.0}}
|
2023-08-19T08:04:16+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "actresses"
More Information needed
|
[
"# Dataset Card for \"actresses\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"actresses\"\n\nMore Information needed"
] |
[
6,
13
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"actresses\"\n\nMore Information needed"
] |
07cc8a02c0d225512590c34048337990ac964dd0
|
# Dataset Card for "generate_sub_2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Jing24/generate_sub_2
|
[
"region:us"
] |
2023-08-19T07:36:49+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "struct": [{"name": "answer_start", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}], "splits": [{"name": "train", "num_bytes": 57007597, "num_examples": 62522}], "download_size": 10151425, "dataset_size": 57007597}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T07:36:50+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "generate_sub_2"
More Information needed
|
[
"# Dataset Card for \"generate_sub_2\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"generate_sub_2\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"generate_sub_2\"\n\nMore Information needed"
] |
8536a0e88115c85053caded0c71c23543469fd1b
|
# Demo Data for "Global spatiotemporal structure and its deviations of neural activities in mice: a resting-state waves perspective"
## Dependencies
* Python.
* Python packages in "requirements.txt".
## How to run it
* Install Python.
* Install all required Python packages using something like ```pip install -r requirements.txt```.
* You can just run ```python demo.py``` to get a demo result. Or if you prefer jupyter, simply open ```demo.ipynb```.
Please refer to ```demo.ipynb``` for instructions on how to execute the code on your data and to view the expected outputs. Please note that lines 24 to 26 in ```demo.py``` may take a few minutes to execute, so please be patient.
## Tested on
* Arch Linux (6.4.10-arch1-1).
* Python 3.11.3.
* At least 128G memory if you want compute FC of all pixel pairs (using ```rsfc.full_image_pipeline``` function).
|
iliang/NeuralActivityDemo
|
[
"region:us"
] |
2023-08-19T07:37:18+00:00
|
{}
|
2023-08-19T08:41:50+00:00
|
[] |
[] |
TAGS
#region-us
|
# Demo Data for "Global spatiotemporal structure and its deviations of neural activities in mice: a resting-state waves perspective"
## Dependencies
* Python.
* Python packages in "URL".
## How to run it
* Install Python.
* Install all required Python packages using something like .
* You can just run to get a demo result. Or if you prefer jupyter, simply open .
Please refer to for instructions on how to execute the code on your data and to view the expected outputs. Please note that lines 24 to 26 in may take a few minutes to execute, so please be patient.
## Tested on
* Arch Linux (6.4.10-arch1-1).
* Python 3.11.3.
* At least 128G memory if you want compute FC of all pixel pairs (using function).
|
[
"# Demo Data for \"Global spatiotemporal structure and its deviations of neural activities in mice: a resting-state waves perspective\"",
"## Dependencies\n * Python.\n * Python packages in \"URL\".",
"## How to run it\n\n* Install Python.\n* Install all required Python packages using something like .\n* You can just run to get a demo result. Or if you prefer jupyter, simply open .\n\nPlease refer to for instructions on how to execute the code on your data and to view the expected outputs. Please note that lines 24 to 26 in may take a few minutes to execute, so please be patient.",
"## Tested on\n * Arch Linux (6.4.10-arch1-1).\n * Python 3.11.3.\n * At least 128G memory if you want compute FC of all pixel pairs (using function)."
] |
[
"TAGS\n#region-us \n",
"# Demo Data for \"Global spatiotemporal structure and its deviations of neural activities in mice: a resting-state waves perspective\"",
"## Dependencies\n * Python.\n * Python packages in \"URL\".",
"## How to run it\n\n* Install Python.\n* Install all required Python packages using something like .\n* You can just run to get a demo result. Or if you prefer jupyter, simply open .\n\nPlease refer to for instructions on how to execute the code on your data and to view the expected outputs. Please note that lines 24 to 26 in may take a few minutes to execute, so please be patient.",
"## Tested on\n * Arch Linux (6.4.10-arch1-1).\n * Python 3.11.3.\n * At least 128G memory if you want compute FC of all pixel pairs (using function)."
] |
[
6,
32,
15,
89,
41
] |
[
"passage: TAGS\n#region-us \n# Demo Data for \"Global spatiotemporal structure and its deviations of neural activities in mice: a resting-state waves perspective\"## Dependencies\n * Python.\n * Python packages in \"URL\".## How to run it\n\n* Install Python.\n* Install all required Python packages using something like .\n* You can just run to get a demo result. Or if you prefer jupyter, simply open .\n\nPlease refer to for instructions on how to execute the code on your data and to view the expected outputs. Please note that lines 24 to 26 in may take a few minutes to execute, so please be patient.## Tested on\n * Arch Linux (6.4.10-arch1-1).\n * Python 3.11.3.\n * At least 128G memory if you want compute FC of all pixel pairs (using function)."
] |
75dfb36a44cc16356cdd898de22e727cbd0f704b
|
# Dataset Card for "triplet_sbert_law2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
nc33/triplet_sbert_law2
|
[
"region:us"
] |
2023-08-19T07:48:30+00:00
|
{"dataset_info": {"config_name": "train", "features": [{"name": "question", "dtype": "string"}, {"name": "positive", "dtype": "string"}, {"name": "negative", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1133470947, "num_examples": 335510}], "download_size": 93896594, "dataset_size": 1133470947}, "configs": [{"config_name": "train", "data_files": [{"split": "train", "path": "train/train-*"}]}]}
|
2023-08-20T14:05:30+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "triplet_sbert_law2"
More Information needed
|
[
"# Dataset Card for \"triplet_sbert_law2\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"triplet_sbert_law2\"\n\nMore Information needed"
] |
[
6,
18
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"triplet_sbert_law2\"\n\nMore Information needed"
] |
e19b34d54d4b8c9d0c52d46a0d8eb92f14c2e7fa
|
# Dataset of shimakaze/島風 (Kantai Collection)
This is the dataset of shimakaze/島風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blonde_hair, long_hair, hairband, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:------------|:----------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 584.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shimakaze_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 372.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shimakaze_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1226 | 767.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shimakaze_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 533.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shimakaze_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1226 | 1003.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shimakaze_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/shimakaze_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, elbow_gloves, solo, striped_thighhighs, white_gloves, black_panties, looking_at_viewer, skirt, navel, brown_eyes, blush, yellow_eyes, midriff |
| 1 | 5 |  |  |  |  |  | 1girl, :3, >_<, black_panties, brown_eyes, closed_eyes, elbow_gloves, lifebuoy, looking_at_viewer, skirt, solo, striped_thighhighs, white_gloves, anchor, blush, navel, midriff, yellow_eyes |
| 2 | 5 |  |  |  |  |  | 1girl, black_panties, elbow_gloves, highleg_panties, navel, skirt, striped_thighhighs, white_gloves, looking_at_viewer, solo, midriff |
| 3 | 5 |  |  |  |  |  | 1girl, elbow_gloves, skirt, solo, striped_thighhighs, white_gloves, blue_eyes, looking_at_viewer, navel, black_panties |
| 4 | 9 |  |  |  |  |  | 1girl, black_panties, crop_top, elbow_gloves, highleg_panties, looking_at_viewer, sailor_collar, solo, white_gloves, pleated_skirt, serafuku, striped_thighhighs, blue_skirt, simple_background, miniskirt, white_background, microskirt, grey_eyes, navel |
| 5 | 13 |  |  |  |  |  | 1girl, black_neckerchief, black_panties, blue_skirt, crop_top, elbow_gloves, miniskirt, pleated_skirt, serafuku, solo, white_gloves, highleg_panties, microskirt, looking_at_viewer, simple_background, striped_thighhighs, anchor_hair_ornament, black_hairband, blue_sailor_collar, grey_eyes, hair_between_eyes, navel, white_background, blush, sleeveless |
| 6 | 6 |  |  |  |  |  | 1girl, elbow_gloves, looking_at_viewer, solo, upper_body, black_neckerchief, blue_sailor_collar, serafuku, simple_background, white_gloves, black_hairband, open_mouth, brown_eyes, sleeveless, white_background |
| 7 | 6 |  |  |  |  |  | 1girl, blush, elbow_gloves, looking_at_viewer, solo, white_gloves, brown_eyes |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | solo | striped_thighhighs | white_gloves | black_panties | looking_at_viewer | skirt | navel | brown_eyes | blush | yellow_eyes | midriff | :3 | >_< | closed_eyes | lifebuoy | anchor | highleg_panties | blue_eyes | crop_top | sailor_collar | pleated_skirt | serafuku | blue_skirt | simple_background | miniskirt | white_background | microskirt | grey_eyes | black_neckerchief | anchor_hair_ornament | black_hairband | blue_sailor_collar | hair_between_eyes | sleeveless | upper_body | open_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:-------|:---------------------|:---------------|:----------------|:--------------------|:--------|:--------|:-------------|:--------|:--------------|:----------|:-----|:------|:--------------|:-----------|:---------|:------------------|:------------|:-----------|:----------------|:----------------|:-----------|:-------------|:--------------------|:------------|:-------------------|:-------------|:------------|:--------------------|:-----------------------|:-----------------|:---------------------|:--------------------|:-------------|:-------------|:-------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | |
| 4 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | | X | | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 5 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | | X | | X | | | | | | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | |
| 6 | 6 |  |  |  |  |  | X | X | X | | X | | X | | | X | | | | | | | | | | | | | | X | | X | | X | | | X | | X | X | | X | X | X |
| 7 | 6 |  |  |  |  |  | X | X | X | | X | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
CyberHarem/shimakaze_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T08:13:15+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:18:19+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of shimakaze/島風 (Kantai Collection)
===========================================
This is the dataset of shimakaze/島風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, hairband, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
2e76f2a97bfee93291e9225700f555e9a7244544
|
# Dataset of kashima/鹿島 (Kantai Collection)
This is the dataset of kashima/鹿島 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `twintails, grey_hair, wavy_hair, blue_eyes, breasts, long_hair, hat, large_breasts, beret`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 561.46 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashima_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 374.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashima_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1266 | 827.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashima_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 519.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashima_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1266 | 1.04 GiB | [Download](https://huggingface.co/datasets/CyberHarem/kashima_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kashima_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, looking_at_viewer, smile, solo, alternate_costume, blush, hair_flower, kimono, floral_print, obi |
| 1 | 5 |  |  |  |  |  | 1girl, looking_at_viewer, solo, upper_body, white_background, white_hair, alternate_costume, blush, dress, simple_background, closed_mouth, hair_between_eyes, hair_ribbon, long_sleeves, short_sleeves, smile |
| 2 | 8 |  |  |  |  |  | 1girl, epaulettes, looking_at_viewer, military_uniform, smile, solo, white_gloves, blush, upper_body, red_neckerchief, simple_background, white_background |
| 3 | 12 |  |  |  |  |  | 1girl, epaulettes, looking_at_viewer, military_uniform, solo, white_gloves, smile, pleated_skirt, simple_background, miniskirt, white_background |
| 4 | 7 |  |  |  |  |  | 1girl, epaulettes, long_sleeves, looking_at_viewer, military_uniform, miniskirt, pleated_skirt, smile, solo, white_gloves, frilled_sleeves, red_neckerchief, simple_background, white_background, blush, jacket |
| 5 | 11 |  |  |  |  |  | 1girl, black_headwear, epaulettes, long_sleeves, looking_at_viewer, military_uniform, red_neckerchief, sidelocks, solo, white_jacket, buttons, military_jacket, simple_background, pleated_skirt, smile, white_background, white_gloves, frilled_sleeves, miniskirt, black_skirt, cowboy_shot, blush, hair_between_eyes, upper_body |
| 6 | 8 |  |  |  |  |  | 1girl, employee_uniform, skirt, smile, solo, open_mouth, blush |
| 7 | 13 |  |  |  |  |  | 1girl, cat_cutout, cat_lingerie, choker, cleavage_cutout, jingle_bell, looking_at_viewer, neck_bell, solo, blush, smile, black_bra, black_panties, underwear_only, cat_ear_panties, side-tie_panties, cat_ears, navel, collarbone, grey_eyes, cat_tail, simple_background |
| 8 | 10 |  |  |  |  |  | 1girl, santa_costume, capelet, christmas, hair_bell, solo, looking_at_viewer, santa_hat, smile, blush, aran_sweater, fur_trim, gift_box, skirt |
| 9 | 13 |  |  |  |  |  | 1girl, blush, cleavage, solo, looking_at_viewer, collarbone, smile, open_mouth, front-tie_top, navel, side-tie_bikini_bottom, outdoors, black_bikini, blue_sky, cloud, day, hair_between_eyes, jacket, ocean, open_clothes, bangs, beach, sidelocks, white_bikini |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | smile | solo | alternate_costume | blush | hair_flower | kimono | floral_print | obi | upper_body | white_background | white_hair | dress | simple_background | closed_mouth | hair_between_eyes | hair_ribbon | long_sleeves | short_sleeves | epaulettes | military_uniform | white_gloves | red_neckerchief | pleated_skirt | miniskirt | frilled_sleeves | jacket | black_headwear | sidelocks | white_jacket | buttons | military_jacket | black_skirt | cowboy_shot | employee_uniform | skirt | open_mouth | cat_cutout | cat_lingerie | choker | cleavage_cutout | jingle_bell | neck_bell | black_bra | black_panties | underwear_only | cat_ear_panties | side-tie_panties | cat_ears | navel | collarbone | grey_eyes | cat_tail | santa_costume | capelet | christmas | hair_bell | santa_hat | aran_sweater | fur_trim | gift_box | cleavage | front-tie_top | side-tie_bikini_bottom | outdoors | black_bikini | blue_sky | cloud | day | ocean | open_clothes | bangs | beach | white_bikini |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:--------|:-------|:--------------------|:--------|:--------------|:---------|:---------------|:------|:-------------|:-------------------|:-------------|:--------|:--------------------|:---------------|:--------------------|:--------------|:---------------|:----------------|:-------------|:-------------------|:---------------|:------------------|:----------------|:------------|:------------------|:---------|:-----------------|:------------|:---------------|:----------|:------------------|:--------------|:--------------|:-------------------|:--------|:-------------|:-------------|:---------------|:---------|:------------------|:--------------|:------------|:------------|:----------------|:-----------------|:------------------|:-------------------|:-----------|:--------|:-------------|:------------|:-----------|:----------------|:----------|:------------|:------------|:------------|:---------------|:-----------|:-----------|:-----------|:----------------|:-------------------------|:-----------|:---------------|:-----------|:--------|:------|:--------|:---------------|:--------|:--------|:---------------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 8 |  |  |  |  |  | X | X | X | X | | X | | | | | X | X | | | X | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 12 |  |  |  |  |  | X | X | X | X | | | | | | | | X | | | X | | | | | | X | X | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | X | X | X | | X | | | | | | X | | | X | | | | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 11 |  |  |  |  |  | X | X | X | X | | X | | | | | X | X | | | X | | X | | X | | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 8 |  |  |  |  |  | X | | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 13 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 8 | 10 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 9 | 13 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | | X | | | | | | | | | | | X | | X | | | | | | | | X | | | | | | | | | | | | | X | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/kashima_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T08:16:49+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:15:32+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kashima/鹿島 (Kantai Collection)
=========================================
This is the dataset of kashima/鹿島 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'twintails, grey\_hair, wavy\_hair, blue\_eyes, breasts, long\_hair, hat, large\_breasts, beret', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
34d62dd4b946575bfd015825ca084b9226d23b14
|
# Dataset of hibiki/響 (Kantai Collection)
This is the dataset of hibiki/響 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, blue_eyes, hair_between_eyes, hat, grey_hair, white_hair, flat_cap`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 649.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hibiki_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 365.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hibiki_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1295 | 837.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hibiki_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 567.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hibiki_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1295 | 1.15 GiB | [Download](https://huggingface.co/datasets/CyberHarem/hibiki_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/hibiki_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, anchor_symbol, black_skirt, long_sleeves, pleated_skirt, red_neckerchief, serafuku, simple_background, solo, white_background, black_sailor_collar, looking_at_viewer, black_headwear, blush, collarbone |
| 1 | 14 |  |  |  |  |  | 1girl, looking_at_viewer, serafuku, simple_background, solo, upper_body, anchor_symbol, black_sailor_collar, red_neckerchief, white_background, long_sleeves, black_headwear, blush, open_mouth, closed_mouth |
| 2 | 17 |  |  |  |  |  | 1girl, black_thighhighs, looking_at_viewer, serafuku, solo, hammer_and_sickle, blush, star_(symbol), pleated_skirt, sitting, long_sleeves, smile |
| 3 | 12 |  |  |  |  |  | 1girl, solo, blush, enmaided, looking_at_viewer, maid_apron, maid_headdress, white_background, cat_ears, frills, short_sleeves, thighhighs |
| 4 | 7 |  |  |  |  |  | 1girl, solo, alternate_costume, blush, floral_print, looking_at_viewer, obi, long_sleeves, smile, bangs, closed_mouth, holding, print_kimono, sitting, wide_sleeves, hair_ornament, upper_body, yukata |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | anchor_symbol | black_skirt | long_sleeves | pleated_skirt | red_neckerchief | serafuku | simple_background | solo | white_background | black_sailor_collar | looking_at_viewer | black_headwear | blush | collarbone | upper_body | open_mouth | closed_mouth | black_thighhighs | hammer_and_sickle | star_(symbol) | sitting | smile | enmaided | maid_apron | maid_headdress | cat_ears | frills | short_sleeves | thighhighs | alternate_costume | floral_print | obi | bangs | holding | print_kimono | wide_sleeves | hair_ornament | yukata |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------------|:--------------|:---------------|:----------------|:------------------|:-----------|:--------------------|:-------|:-------------------|:----------------------|:--------------------|:-----------------|:--------|:-------------|:-------------|:-------------|:---------------|:-------------------|:--------------------|:----------------|:----------|:--------|:-----------|:-------------|:-----------------|:-----------|:---------|:----------------|:-------------|:--------------------|:---------------|:------|:--------|:----------|:---------------|:---------------|:----------------|:---------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 14 |  |  |  |  |  | X | X | | X | | X | X | X | X | X | X | X | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 2 | 17 |  |  |  |  |  | X | | | X | X | | X | | X | | | X | | X | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | |
| 3 | 12 |  |  |  |  |  | X | | | | | | | | X | X | | X | | X | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | | | X | | | | | X | | | X | | X | | X | | X | | | | X | X | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/hibiki_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T08:56:28+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:30:02+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of hibiki/響 (Kantai Collection)
=======================================
This is the dataset of hibiki/響 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, blue\_eyes, hair\_between\_eyes, hat, grey\_hair, white\_hair, flat\_cap', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
09028a8400380a6c64cefc3ee4d92a5a08bedfaa
|
# Dataset of hamakaze/浜風 (Kantai Collection)
This is the dataset of hamakaze/浜風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `short_hair, blue_eyes, grey_hair, hair_ornament, hairclip, hair_over_one_eye, breasts, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 507.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hamakaze_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 324.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hamakaze_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1189 | 681.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hamakaze_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 464.36 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hamakaze_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1189 | 900.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hamakaze_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/hamakaze_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 10 |  |  |  |  |  | 1girl, looking_at_viewer, serafuku, simple_background, solo, upper_body, white_background, sailor_collar, yellow_neckerchief, blush, short_sleeves, smile |
| 1 | 11 |  |  |  |  |  | 1girl, looking_at_viewer, serafuku, short_sleeves, solo, yellow_neckerchief, blush, upper_body, white_gloves, smile, simple_background, collarbone |
| 2 | 14 |  |  |  |  |  | 1girl, black_pantyhose, pleated_skirt, serafuku, short_sleeves, solo, simple_background, white_background, yellow_neckerchief, white_gloves, looking_at_viewer, grey_skirt, blush, eyes_visible_through_hair, blue_sailor_collar, sitting |
| 3 | 10 |  |  |  |  |  | 1girl, serafuku, short_sleeves, solo, white_background, white_gloves, black_pantyhose, pleated_skirt, simple_background, looking_at_viewer |
| 4 | 11 |  |  |  |  |  | 1girl, black_pantyhose, pleated_skirt, serafuku, short_sleeves, solo, white_gloves, looking_at_viewer, neckerchief, smile, blush |
| 5 | 5 |  |  |  |  |  | 1girl, black_pantyhose, looking_at_viewer, panties_under_pantyhose, serafuku, short_sleeves, solo, white_gloves, pleated_skirt, blush |
| 6 | 7 |  |  |  |  |  | 1girl, alternate_costume, blush, looking_at_viewer, simple_background, solo, ribbed_sweater, turtleneck, white_background, long_sleeves, black_pantyhose, dress, open_mouth |
| 7 | 10 |  |  |  |  |  | 1girl, cleavage, looking_at_viewer, solo, blush, simple_background, collarbone, white_background, navel, eyes_visible_through_hair, halterneck, side-tie_bikini_bottom, white_bikini |
| 8 | 10 |  |  |  |  |  | 1girl, day, outdoors, solo, cleavage, cloud, ocean, looking_at_viewer, beach, collarbone, navel, side-tie_bikini_bottom, blue_sky, smile, blush, cowboy_shot, sitting, tree, water, white_bikini |
| 9 | 26 |  |  |  |  |  | 1girl, solo, yukata, looking_at_viewer, hair_flower, obi, food, blush, squid |
| 10 | 8 |  |  |  |  |  | 1girl, cat_ears, solo, blush, cat_cutout, cat_lingerie, cleavage_cutout, looking_at_viewer, underwear_only, black_bra, black_panties, cat_ear_panties, navel, side-tie_panties, simple_background, white_background, cat_tail, choker, collarbone, jingle_bell, neck_bell, eyes_visible_through_hair, fake_animal_ears, kemonomimi_mode, wavy_mouth, white_hair |
| 11 | 5 |  |  |  |  |  | 1girl, blush, cleavage, looking_at_viewer, maid_headdress, solo, enmaided, frills, simple_background, eyes_visible_through_hair, upper_body, white_background, cosplay, detached_sleeves, hair_ribbon, hand_on_own_chest, maid_apron, roswaal_mansion_maid_uniform, x_hair_ornament |
| 12 | 6 |  |  |  |  |  | 1girl, fake_animal_ears, looking_at_viewer, playboy_bunny, rabbit_ears, solo, black_leotard, black_pantyhose, bowtie, cleavage, detached_collar, simple_background, wrist_cuffs, bare_shoulders, blush, white_background, rabbit_tail |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | serafuku | simple_background | solo | upper_body | white_background | sailor_collar | yellow_neckerchief | blush | short_sleeves | smile | white_gloves | collarbone | black_pantyhose | pleated_skirt | grey_skirt | eyes_visible_through_hair | blue_sailor_collar | sitting | neckerchief | panties_under_pantyhose | alternate_costume | ribbed_sweater | turtleneck | long_sleeves | dress | open_mouth | cleavage | navel | halterneck | side-tie_bikini_bottom | white_bikini | day | outdoors | cloud | ocean | beach | blue_sky | cowboy_shot | tree | water | yukata | hair_flower | obi | food | squid | cat_ears | cat_cutout | cat_lingerie | cleavage_cutout | underwear_only | black_bra | black_panties | cat_ear_panties | side-tie_panties | cat_tail | choker | jingle_bell | neck_bell | fake_animal_ears | kemonomimi_mode | wavy_mouth | white_hair | maid_headdress | enmaided | frills | cosplay | detached_sleeves | hair_ribbon | hand_on_own_chest | maid_apron | roswaal_mansion_maid_uniform | x_hair_ornament | playboy_bunny | rabbit_ears | black_leotard | bowtie | detached_collar | wrist_cuffs | bare_shoulders | rabbit_tail |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------------------|:-----------|:--------------------|:-------|:-------------|:-------------------|:----------------|:---------------------|:--------|:----------------|:--------|:---------------|:-------------|:------------------|:----------------|:-------------|:----------------------------|:---------------------|:----------|:--------------|:--------------------------|:--------------------|:-----------------|:-------------|:---------------|:--------|:-------------|:-----------|:--------|:-------------|:-------------------------|:---------------|:------|:-----------|:--------|:--------|:--------|:-----------|:--------------|:-------|:--------|:---------|:--------------|:------|:-------|:--------|:-----------|:-------------|:---------------|:------------------|:-----------------|:------------|:----------------|:------------------|:-------------------|:-----------|:---------|:--------------|:------------|:-------------------|:------------------|:-------------|:-------------|:-----------------|:-----------|:---------|:----------|:-------------------|:--------------|:--------------------|:-------------|:-------------------------------|:------------------|:----------------|:--------------|:----------------|:---------|:------------------|:--------------|:-----------------|:--------------|
| 0 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | X | X | X | X | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 14 |  |  |  |  |  | X | X | X | X | X | | X | | X | X | X | | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | X | X | X | X | | X | | | | X | | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 11 |  |  |  |  |  | X | X | X | | X | | | | | X | X | X | X | | X | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | X | X | | X | | | | | X | X | | X | | X | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | | X | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 10 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | X | | | | X | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 10 |  |  |  |  |  | X | X | | | X | | | | | X | | X | | X | | | | | | X | | | | | | | | | X | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 26 |  |  |  |  |  | X | X | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 8 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | X | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 11 | 5 |  |  |  |  |  | X | X | | X | X | X | X | | | X | | | | | | | | X | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 12 | 6 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X |
|
CyberHarem/hamakaze_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T09:01:35+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T18:57:03+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of hamakaze/浜風 (Kantai Collection)
==========================================
This is the dataset of hamakaze/浜風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'short\_hair, blue\_eyes, grey\_hair, hair\_ornament, hairclip, hair\_over\_one\_eye, breasts, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
028bdc05cc8dc34c8b2893ef9c738bd7870dd195
|
# Dataset of haruna/榛名/榛名 (Kantai Collection)
This is the dataset of haruna/榛名/榛名 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, black_hair, hairband, brown_eyes, hair_ornament, hairclip, breasts, headgear, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 743.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/haruna_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 425.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/haruna_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1259 | 902.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/haruna_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 656.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/haruna_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1259 | 1.23 GiB | [Download](https://huggingface.co/datasets/CyberHarem/haruna_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/haruna_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 19 |  |  |  |  |  | 1girl, bare_shoulders, detached_sleeves, japanese_clothes, nontraditional_miko, skirt, solo, ribbon-trimmed_sleeves, thigh_boots, zettai_ryouiki, black_thighhighs, smile, looking_at_viewer, blush, open_mouth |
| 1 | 6 |  |  |  |  |  | 1girl, bare_shoulders, black_thighhighs, detached_sleeves, japanese_clothes, nontraditional_miko, skirt, solo, thigh_boots, looking_at_viewer, zettai_ryouiki, sitting |
| 2 | 6 |  |  |  |  |  | 1girl, bare_shoulders, detached_sleeves, japanese_clothes, looking_at_viewer, nontraditional_miko, ribbon-trimmed_sleeves, solo, skirt, open_mouth, blush, white_background |
| 3 | 10 |  |  |  |  |  | 1girl, detached_sleeves, japanese_clothes, looking_at_viewer, nontraditional_miko, solo, bare_shoulders, smile, skirt, blush, white_background |
| 4 | 5 |  |  |  |  |  | 1girl, bare_shoulders, blush, detached_sleeves, hair_between_eyes, japanese_clothes, looking_at_viewer, nontraditional_miko, red_skirt, ribbon-trimmed_sleeves, solo, wide_sleeves, open_mouth, smile, thigh_boots, thighhighs, cherry_blossoms, cowboy_shot, petals |
| 5 | 7 |  |  |  |  |  | 1girl, cleavage, navel, smile, solo, looking_at_viewer, white_bikini, front-tie_top, sarong, blush, collarbone, open_mouth |
| 6 | 9 |  |  |  |  |  | 1girl, blush, cleavage, looking_at_viewer, smile, solo, collarbone, day, navel, outdoors, white_bikini, blue_sky, cowboy_shot, hair_between_eyes, beach, cloud, ocean, white_sarong |
| 7 | 8 |  |  |  |  |  | 1girl, blue_sky, cleavage, cloud, collarbone, day, looking_at_viewer, outdoors, solo, navel, smile, white_jacket, hair_between_eyes, blush, open_jacket, white_bikini, cowboy_shot, open_mouth, black_bikini, frilled_bikini, hood, ocean, sunlight, upper_body |
| 8 | 7 |  |  |  |  |  | 1girl, blush, smile, solo, obi, alternate_costume, floral_print, hair_between_eyes, holding, looking_at_viewer, red_kimono, wide_sleeves, flower, long_sleeves, open_mouth, print_kimono, upper_body, wedding_ring |
| 9 | 11 |  |  |  |  |  | 1girl, santa_costume, solo, blush, red_gloves, smile, cleavage, open_mouth, hair_between_eyes, looking_at_viewer, red_dress, upper_body, alternate_costume, christmas, fingerless_gloves, fur-trimmed_capelet, fur-trimmed_dress, red_capelet, belt, bare_shoulders, holding |
| 10 | 12 |  |  |  |  |  | 1girl, black_shirt, blush, white_hairband, white_jacket, hair_between_eyes, solo, black_pantyhose, grey_skirt, looking_at_viewer, long_sleeves, official_alternate_costume, smile, anchor_necklace, black_skirt, sitting |
| 11 | 6 |  |  |  |  |  | 1girl, detached_collar, fake_animal_ears, looking_at_viewer, playboy_bunny, rabbit_ears, solo, strapless_leotard, wrist_cuffs, bowtie, cleavage, alternate_costume, blush, cowboy_shot, rabbit_tail, covered_navel, fishnet_pantyhose, hair_between_eyes, red_leotard, simple_background, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | detached_sleeves | japanese_clothes | nontraditional_miko | skirt | solo | ribbon-trimmed_sleeves | thigh_boots | zettai_ryouiki | black_thighhighs | smile | looking_at_viewer | blush | open_mouth | sitting | white_background | hair_between_eyes | red_skirt | wide_sleeves | thighhighs | cherry_blossoms | cowboy_shot | petals | cleavage | navel | white_bikini | front-tie_top | sarong | collarbone | day | outdoors | blue_sky | beach | cloud | ocean | white_sarong | white_jacket | open_jacket | black_bikini | frilled_bikini | hood | sunlight | upper_body | obi | alternate_costume | floral_print | holding | red_kimono | flower | long_sleeves | print_kimono | wedding_ring | santa_costume | red_gloves | red_dress | christmas | fingerless_gloves | fur-trimmed_capelet | fur-trimmed_dress | red_capelet | belt | black_shirt | white_hairband | black_pantyhose | grey_skirt | official_alternate_costume | anchor_necklace | black_skirt | detached_collar | fake_animal_ears | playboy_bunny | rabbit_ears | strapless_leotard | wrist_cuffs | bowtie | rabbit_tail | covered_navel | fishnet_pantyhose | red_leotard | simple_background |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:-----------------|:-------------------|:-------------------|:----------------------|:--------|:-------|:-------------------------|:--------------|:-----------------|:-------------------|:--------|:--------------------|:--------|:-------------|:----------|:-------------------|:--------------------|:------------|:---------------|:-------------|:------------------|:--------------|:---------|:-----------|:--------|:---------------|:----------------|:---------|:-------------|:------|:-----------|:-----------|:--------|:--------|:--------|:---------------|:---------------|:--------------|:---------------|:-----------------|:-------|:-----------|:-------------|:------|:--------------------|:---------------|:----------|:-------------|:---------|:---------------|:---------------|:---------------|:----------------|:-------------|:------------|:------------|:--------------------|:----------------------|:--------------------|:--------------|:-------|:--------------|:-----------------|:------------------|:-------------|:-----------------------------|:------------------|:--------------|:------------------|:-------------------|:----------------|:--------------|:--------------------|:--------------|:---------|:--------------|:----------------|:--------------------|:--------------|:--------------------|
| 0 | 19 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | | X | X | X | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | | | | | X | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | | | | | X | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | X | X | X | X | | X | X | X | | | X | X | X | X | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | | | | | | X | | | | | X | X | X | X | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 9 |  |  |  |  |  | X | | | | | | X | | | | | X | X | X | | | | X | | | | | X | | X | X | X | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 8 |  |  |  |  |  | X | | | | | | X | | | | | X | X | X | X | | | X | | | | | X | | X | X | X | | | X | X | X | X | | X | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 7 |  |  |  |  |  | X | | | | | | X | | | | | X | X | X | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 11 |  |  |  |  |  | X | X | | | | | X | | | | | X | X | X | X | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | X | | X | | X | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | |
| 10 | 12 |  |  |  |  |  | X | | | | | | X | | | | | X | X | X | | X | | X | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | X | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 11 | 6 |  |  |  |  |  | X | | | | | | X | | | | | | X | X | | | X | X | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/haruna_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T09:38:55+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:25:02+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of haruna/榛名/榛名 (Kantai Collection)
===========================================
This is the dataset of haruna/榛名/榛名 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, black\_hair, hairband, brown\_eyes, hair\_ornament, hairclip, breasts, headgear, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
3b03fc64420ef7382f953e6822736b4e50751559
|
# Dataset of yuudachi/夕立 (Kantai Collection)
This is the dataset of yuudachi/夕立 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, blonde_hair, hair_ribbon, ribbon, hair_ornament, hairclip, red_eyes, black_ribbon`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 602.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuudachi_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 376.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuudachi_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1242 | 801.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuudachi_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 547.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuudachi_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1242 | 1.04 GiB | [Download](https://huggingface.co/datasets/CyberHarem/yuudachi_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yuudachi_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 10 |  |  |  |  |  | 1girl, hair_flaps, scarf, serafuku, smile, solo, open_mouth, torpedo, looking_at_viewer, pleated_skirt, fingerless_gloves |
| 1 | 5 |  |  |  |  |  | 1girl, hair_bow, hair_flaps, scarf, serafuku, skirt, smile, solo, torpedo, fingerless_gloves, open_mouth, looking_at_viewer |
| 2 | 12 |  |  |  |  |  | 1girl, black_gloves, black_serafuku, fingerless_gloves, hair_flaps, red_neckerchief, solo, white_scarf, black_skirt, looking_at_viewer, pleated_skirt, short_sleeves, smile, open_mouth |
| 3 | 7 |  |  |  |  |  | 1girl, black_gloves, black_serafuku, black_skirt, fingerless_gloves, hair_flaps, pleated_skirt, red_neckerchief, solo, white_scarf, gradient_hair, looking_at_viewer, open_mouth, short_sleeves, simple_background, torpedo, white_background, cowboy_shot, blush, fang, smile |
| 4 | 6 |  |  |  |  |  | 1girl, black_serafuku, hair_flaps, looking_at_viewer, red_neckerchief, smile, upper_body, white_scarf, short_sleeves, solo, open_mouth, simple_background, white_background |
| 5 | 9 |  |  |  |  |  | 1girl, black_serafuku, black_skirt, hair_flaps, paw_gloves, pleated_skirt, red_neckerchief, solo, animal_hood, looking_at_viewer, open_mouth, short_sleeves, blush, smile, fang, white_background, wolf_tail, simple_background |
| 6 | 6 |  |  |  |  |  | 1girl, braid, cleavage, hair_flaps, looking_at_viewer, medium_breasts, sailor_bikini, solo, white_scarf, navel, smile, bikini_skirt, black_bikini, open_mouth, black_skirt |
| 7 | 13 |  |  |  |  |  | 1girl, blush, hair_flaps, solo, alternate_costume, smile, looking_at_viewer, shirt, long_sleeves, pleated_skirt, black_skirt, jacket, leaf, outdoors, autumn_leaves, breasts |
| 8 | 8 |  |  |  |  |  | 1girl, alternate_costume, hair_flaps, solo, open_mouth, looking_at_viewer, smile, obi, floral_print, new_year, red_kimono, blush, white_scarf |
| 9 | 5 |  |  |  |  |  | 1girl, hair_flaps, looking_at_viewer, simple_background, solo, underwear_only, white_bra, white_panties, blush, bow_panties, cowboy_shot, gradient_hair, grey_background, navel, open_mouth, ass, bangs, bow_bra, cleavage, from_behind, looking_back, medium_breasts, small_breasts, white_scarf |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hair_flaps | scarf | serafuku | smile | solo | open_mouth | torpedo | looking_at_viewer | pleated_skirt | fingerless_gloves | hair_bow | skirt | black_gloves | black_serafuku | red_neckerchief | white_scarf | black_skirt | short_sleeves | gradient_hair | simple_background | white_background | cowboy_shot | blush | fang | upper_body | paw_gloves | animal_hood | wolf_tail | braid | cleavage | medium_breasts | sailor_bikini | navel | bikini_skirt | black_bikini | alternate_costume | shirt | long_sleeves | jacket | leaf | outdoors | autumn_leaves | breasts | obi | floral_print | new_year | red_kimono | underwear_only | white_bra | white_panties | bow_panties | grey_background | ass | bangs | bow_bra | from_behind | looking_back | small_breasts |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:--------|:-----------|:--------|:-------|:-------------|:----------|:--------------------|:----------------|:--------------------|:-----------|:--------|:---------------|:-----------------|:------------------|:--------------|:--------------|:----------------|:----------------|:--------------------|:-------------------|:--------------|:--------|:-------|:-------------|:-------------|:--------------|:------------|:--------|:-----------|:-----------------|:----------------|:--------|:---------------|:---------------|:--------------------|:--------|:---------------|:---------|:-------|:-----------|:----------------|:----------|:------|:---------------|:-----------|:-------------|:-----------------|:------------|:----------------|:--------------|:------------------|:------|:--------|:----------|:--------------|:---------------|:----------------|
| 0 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 12 |  |  |  |  |  | X | X | | | X | X | X | | X | X | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 7 |  |  |  |  |  | X | X | | | X | X | X | X | X | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | | | X | X | X | | X | | | | | | X | X | X | | X | | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 9 |  |  |  |  |  | X | X | | | X | X | X | | X | X | | | | | X | X | | X | X | | X | X | | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 6 |  |  |  |  |  | X | X | | | X | X | X | | X | | | | | | | | X | X | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 13 |  |  |  |  |  | X | X | | | X | X | | | X | X | | | | | | | | X | | | | | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 8 | 8 |  |  |  |  |  | X | X | | | X | X | X | | X | | | | | | | | X | | | | | | | X | | | | | | | | | | | | | X | | | | | | | | X | X | X | X | | | | | | | | | | | |
| 9 | 5 |  |  |  |  |  | X | X | | | | X | X | | X | | | | | | | | X | | | X | X | | X | X | | | | | | | X | X | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/yuudachi_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T09:46:29+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:05:04+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yuudachi/夕立 (Kantai Collection)
==========================================
This is the dataset of yuudachi/夕立 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, blonde\_hair, hair\_ribbon, ribbon, hair\_ornament, hairclip, red\_eyes, black\_ribbon', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
a296ae798154cd746c574f2668a04d99798702c1
|
# Dataset Card for "en2ko_hiphop"
## Copyright Disclaimer
The dataset "en2ko_hiphop" was curated from publicly available sources and is believed to be in the public domain. The translations provided in this dataset are the work of volunteers and members of the community, and they have been collected and curated to facilitate research and analysis. However, it is important to acknowledge that copyright issues cannot be entirely ruled out. Therefore, users of the dataset should exercise caution when using it. The author of en2ko_hiphop does not assume any legal responsibility for the use of the dataset. If you have any questions or concerns regarding the dataset's copyright status, please contact the author at [email protected].
## Acknowledgements
I gratefully acknowledge DanceD(http://danced.co.kr/) of Korean Hiphop community HIPHOPLE(https://hiphople.com/). All English-to-Korean translations have been provided by DanceD.
|
sungmogi/en2ko_hiphop
|
[
"task_categories:translation",
"size_categories:10K<n<100K",
"language:en",
"language:ko",
"region:us"
] |
2023-08-19T09:48:51+00:00
|
{"language": ["en", "ko"], "size_categories": ["10K<n<100K"], "task_categories": ["translation"], "pretty_name": "en2ko_hiphop", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "valid", "path": "data/valid-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "translation", "struct": [{"name": "en", "dtype": "string"}, {"name": "ko", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5061272.804687347, "num_examples": 46158}, {"name": "test", "num_bytes": 281254.92317741335, "num_examples": 2565}, {"name": "valid", "num_bytes": 281145.272135239, "num_examples": 2564}], "download_size": 4172120, "dataset_size": 5623673}}
|
2023-08-27T07:28:05+00:00
|
[] |
[
"en",
"ko"
] |
TAGS
#task_categories-translation #size_categories-10K<n<100K #language-English #language-Korean #region-us
|
# Dataset Card for "en2ko_hiphop"
## Copyright Disclaimer
The dataset "en2ko_hiphop" was curated from publicly available sources and is believed to be in the public domain. The translations provided in this dataset are the work of volunteers and members of the community, and they have been collected and curated to facilitate research and analysis. However, it is important to acknowledge that copyright issues cannot be entirely ruled out. Therefore, users of the dataset should exercise caution when using it. The author of en2ko_hiphop does not assume any legal responsibility for the use of the dataset. If you have any questions or concerns regarding the dataset's copyright status, please contact the author at [email protected].
## Acknowledgements
I gratefully acknowledge DanceD(URL of Korean Hiphop community HIPHOPLE(URL All English-to-Korean translations have been provided by DanceD.
|
[
"# Dataset Card for \"en2ko_hiphop\"",
"## Copyright Disclaimer\n\nThe dataset \"en2ko_hiphop\" was curated from publicly available sources and is believed to be in the public domain. The translations provided in this dataset are the work of volunteers and members of the community, and they have been collected and curated to facilitate research and analysis. However, it is important to acknowledge that copyright issues cannot be entirely ruled out. Therefore, users of the dataset should exercise caution when using it. The author of en2ko_hiphop does not assume any legal responsibility for the use of the dataset. If you have any questions or concerns regarding the dataset's copyright status, please contact the author at [email protected].",
"## Acknowledgements\n\nI gratefully acknowledge DanceD(URL of Korean Hiphop community HIPHOPLE(URL All English-to-Korean translations have been provided by DanceD."
] |
[
"TAGS\n#task_categories-translation #size_categories-10K<n<100K #language-English #language-Korean #region-us \n",
"# Dataset Card for \"en2ko_hiphop\"",
"## Copyright Disclaimer\n\nThe dataset \"en2ko_hiphop\" was curated from publicly available sources and is believed to be in the public domain. The translations provided in this dataset are the work of volunteers and members of the community, and they have been collected and curated to facilitate research and analysis. However, it is important to acknowledge that copyright issues cannot be entirely ruled out. Therefore, users of the dataset should exercise caution when using it. The author of en2ko_hiphop does not assume any legal responsibility for the use of the dataset. If you have any questions or concerns regarding the dataset's copyright status, please contact the author at [email protected].",
"## Acknowledgements\n\nI gratefully acknowledge DanceD(URL of Korean Hiphop community HIPHOPLE(URL All English-to-Korean translations have been provided by DanceD."
] |
[
36,
13,
155,
40
] |
[
"passage: TAGS\n#task_categories-translation #size_categories-10K<n<100K #language-English #language-Korean #region-us \n# Dataset Card for \"en2ko_hiphop\"## Copyright Disclaimer\n\nThe dataset \"en2ko_hiphop\" was curated from publicly available sources and is believed to be in the public domain. The translations provided in this dataset are the work of volunteers and members of the community, and they have been collected and curated to facilitate research and analysis. However, it is important to acknowledge that copyright issues cannot be entirely ruled out. Therefore, users of the dataset should exercise caution when using it. The author of en2ko_hiphop does not assume any legal responsibility for the use of the dataset. If you have any questions or concerns regarding the dataset's copyright status, please contact the author at [email protected].## Acknowledgements\n\nI gratefully acknowledge DanceD(URL of Korean Hiphop community HIPHOPLE(URL All English-to-Korean translations have been provided by DanceD."
] |
7d80a40bedaf20a1f35b38be3d140cf22cea8feb
|
# Dataset Card for "generate_sub_3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Jing24/generate_sub_3
|
[
"region:us"
] |
2023-08-19T09:54:56+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "struct": [{"name": "answer_start", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}], "splits": [{"name": "train", "num_bytes": 50105322, "num_examples": 54802}], "download_size": 8946878, "dataset_size": 50105322}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T09:54:57+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "generate_sub_3"
More Information needed
|
[
"# Dataset Card for \"generate_sub_3\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"generate_sub_3\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"generate_sub_3\"\n\nMore Information needed"
] |
08889c0ef66cec310a865c6552a5ff5f5087c779
|
# Dataset Card for "PIPPA_TavernFormat"
Converted from the deduped version (pippa_deduped.jsonl) of [PygmalionAI/PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA?not-for-all-audiences=true).
Since the CAI format and the Tavern format does not align exactly, there maybe some mismatches between fields, especially character description and personality.
|
larryvrh/PIPPA-TavernFormat
|
[
"task_categories:conversational",
"size_categories:10K<n<100K",
"language:en",
"license:agpl-3.0",
"not-for-all-audiences",
"roleplay",
"conversational",
"region:us"
] |
2023-08-19T10:01:48+00:00
|
{"language": ["en"], "license": "agpl-3.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "dataset_info": {"features": [{"name": "categories", "sequence": "string"}, {"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "first_msg", "dtype": "string"}, {"name": "personality", "dtype": "string"}, {"name": "example_dialogues", "sequence": "string"}, {"name": "conversation", "list": [{"name": "is_human", "dtype": "bool"}, {"name": "message", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 174673097, "num_examples": 11841}], "download_size": 88204818, "dataset_size": 174673097}, "tags": ["not-for-all-audiences", "roleplay", "conversational"]}
|
2023-08-19T10:11:08+00:00
|
[] |
[
"en"
] |
TAGS
#task_categories-conversational #size_categories-10K<n<100K #language-English #license-agpl-3.0 #not-for-all-audiences #roleplay #conversational #region-us
|
# Dataset Card for "PIPPA_TavernFormat"
Converted from the deduped version (pippa_deduped.jsonl) of PygmalionAI/PIPPA.
Since the CAI format and the Tavern format does not align exactly, there maybe some mismatches between fields, especially character description and personality.
|
[
"# Dataset Card for \"PIPPA_TavernFormat\"\n\nConverted from the deduped version (pippa_deduped.jsonl) of PygmalionAI/PIPPA.\n\nSince the CAI format and the Tavern format does not align exactly, there maybe some mismatches between fields, especially character description and personality."
] |
[
"TAGS\n#task_categories-conversational #size_categories-10K<n<100K #language-English #license-agpl-3.0 #not-for-all-audiences #roleplay #conversational #region-us \n",
"# Dataset Card for \"PIPPA_TavernFormat\"\n\nConverted from the deduped version (pippa_deduped.jsonl) of PygmalionAI/PIPPA.\n\nSince the CAI format and the Tavern format does not align exactly, there maybe some mismatches between fields, especially character description and personality."
] |
[
57,
78
] |
[
"passage: TAGS\n#task_categories-conversational #size_categories-10K<n<100K #language-English #license-agpl-3.0 #not-for-all-audiences #roleplay #conversational #region-us \n# Dataset Card for \"PIPPA_TavernFormat\"\n\nConverted from the deduped version (pippa_deduped.jsonl) of PygmalionAI/PIPPA.\n\nSince the CAI format and the Tavern format does not align exactly, there maybe some mismatches between fields, especially character description and personality."
] |
b3af6537fee4a7400d21e13b56e330b1a9267ad2
|
# MedChatZH
## MedChatZH中文微调参数
基于Baichuan-7B在中医书籍数据和医疗指令对话数据上训练,使其具备较强的中文医疗对话能力,**能够理解中医问题**。
Github:[**MedChatZH-7B**](https://github.com/tyang816/MedChatZH)
## 🚀 结果
| 问题 | 回答 |
| :----------------------------------------------------------- | ------------------------------------------------------------ |
| 中医治脱发有效吗脱发5、6年了,明显比以前少了很多,脱发位置比较均衡,没有突出掉的比较多的地方,我的发质比较硬,头发生长也较快。 | 中药治疗脱发的效果因人而异,但对于您这种头发质量好且生长速度快的患者来说,中药可能是一个不错的选择。一些常用的中药方剂包括六味地黄丸、四物汤等,这些药物可以滋养肝肾,促进血液循环和毛囊营养供应,从而改善脱发问题。此外,还可以通过针灸、艾灸等方式进行辅助治疗。但是需要注意的是,中药治疗需要长期坚持才能见效,同时还需要注意饮食和生活习惯等方面的问题,以达到更好的疗效。建议您咨询专业的中医医生或皮肤科医生,根据个人情况制定个性化的治疗方案。 |
| 脑萎缩中医如何治疗?中医治疗脑萎缩好吗?脑萎缩中医如何治疗?中医治疗脑萎缩好吗? | 中药、针灸和推拿等。中药可以根据患者的具体情况进行配方,以达到调节身体机能的目的;针灸可以通过刺激穴位来改善血液循环和神经功能;推拿则可以通过按摩头部和颈部肌肉来缓解疼痛和僵硬感。需要注意的是,中医治疗需要长期坚持才能取得良好的效果,同时还需要结合其他康复措施和生活方式改变,如合理饮食、适量运动、保持心情愉悦等等。如果您有任何疑问或不适,请及时咨询医生。 |
| 中药治疗肺癌效果好吗?麻烦医生了中药治疗肺癌效果好吗?我家老人肺癌晚期,听人说中医可以治疗肺癌真的吗?效果怎么样? | 中药在治疗肺癌方面有一定的作用。但是需要注意的是,中药并不是所有人都适用的,需要根据患者的具体情况来选择合适的药物和剂量。此外,中药的疗效也需要长期观察才能确定。对于您家老人的肺癌晚期,建议及时就医并进行综合治疗,包括手术、放化疗等方法。同时也可以考虑结合中医药辅助治疗,但一定要在专业医师指导下进行。希望您的家人早日康复。 |
| 最近脸上总是冒出小痘痘……为什么呢?我用的是不吃晚饭减肥,其他都正常的。但是大便的情况很不好,我很头疼的,便秘情况太严重了。最近脸上总是冒出痘痘,额头、脸颊、法令纹那一边一个,还有点疼,有白色的浓…… | 你好,根据你的描述,你可能患有痤疮和便秘的问题。长期不吃饭会导致身体缺乏营养物质,从而影响皮肤的健康状况。建议你在饮食方面要注意均衡摄入各种食物,尤其是蛋白质、维生素A、B族以及矿物质等。此外,你可以尝试一些中药调理,如黄连上清丸或龙胆泻肝丸来缓解症状。对于痤疮问题,可以使用外用药膏进行治疗,例如维甲酸类药物或者过氧化苯甲酰凝胶等。如果症状较为严重,也可以考虑口服抗生素。至于便秘问题,可以通过增加膳食纤维摄入量、多喝水等方式改善。同时,避免过度用力排便也是非常重要的。如果你仍然感到不适,请及时就医并咨询专业医生的意见。希望我的回答能对你有所帮助。 |
## **🔥 引用**
如果您使用了我们的模型、代码或数据,请引用:
```
@article{tan2023medchatzh,
title={MedChatZH: a Better Medical Adviser Learns from Better Instructions},
author={Tan, Yang and Li, Mingchen and Huang, Zijie and Yu, Huiqun and Fan, Guisheng},
journal={arXiv preprint arXiv:2309.01114},
year={2023}
}
```
也请同时引用BELLE、LLaMA等项目
## **🐼 使用限制**
- **本项目模型与数据集及其衍生物仅用于研究目的,不得用于商业,以及其他会对社会带来危害的用途。**
- **本项目不代表任何一方的立场、利益或想法,无关任何团体的任何类型的主张,因使用本项目模型、数据集等带来的任何损害、纠纷,本项目不承担任何责任。**
- 在涉及事实性的指令上可能会产生违背事实的错误回答。
- 对于具备危害性的指令无法很好的鉴别,由此会产生危害性言论。
- 在一些涉及推理、代码等场景下模型的能力仍有待提高。
|
tyang816/MedChatZH
|
[
"task_categories:question-answering",
"size_categories:100K<n<1M",
"language:zh",
"license:apache-2.0",
"medical",
"biology",
"region:us"
] |
2023-08-19T10:15:06+00:00
|
{"language": ["zh"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering"], "tags": ["medical", "biology"]}
|
2024-01-31T06:02:03+00:00
|
[] |
[
"zh"
] |
TAGS
#task_categories-question-answering #size_categories-100K<n<1M #language-Chinese #license-apache-2.0 #medical #biology #region-us
|
MedChatZH
=========
MedChatZH中文微调参数
---------------
基于Baichuan-7B在中医书籍数据和医疗指令对话数据上训练,使其具备较强的中文医疗对话能力,能够理解中医问题。
Github:MedChatZH-7B
结果
--
引用
--
如果您使用了我们的模型、代码或数据,请引用:
也请同时引用BELLE、LLaMA等项目
使用限制
----
* 本项目模型与数据集及其衍生物仅用于研究目的,不得用于商业,以及其他会对社会带来危害的用途。
* 本项目不代表任何一方的立场、利益或想法,无关任何团体的任何类型的主张,因使用本项目模型、数据集等带来的任何损害、纠纷,本项目不承担任何责任。
* 在涉及事实性的指令上可能会产生违背事实的错误回答。
* 对于具备危害性的指令无法很好的鉴别,由此会产生危害性言论。
* 在一些涉及推理、代码等场景下模型的能力仍有待提高。
|
[] |
[
"TAGS\n#task_categories-question-answering #size_categories-100K<n<1M #language-Chinese #license-apache-2.0 #medical #biology #region-us \n"
] |
[
49
] |
[
"passage: TAGS\n#task_categories-question-answering #size_categories-100K<n<1M #language-Chinese #license-apache-2.0 #medical #biology #region-us \n"
] |
1b0eb93fae15765b9825c615477b4e7b7aa86134
|
# Dataset of kongou/金剛 (Kantai Collection)
This is the dataset of kongou/金剛 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, long_hair, hairband, ahoge, hair_bun, double_bun, headgear, purple_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 584.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kongou_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 375.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kongou_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1173 | 778.36 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kongou_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 529.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kongou_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1173 | 1.01 GiB | [Download](https://huggingface.co/datasets/CyberHarem/kongou_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kongou_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 15 |  |  |  |  |  | 1girl, bare_shoulders, japanese_clothes, nontraditional_miko, solo, detached_sleeves, smile, open_mouth, looking_at_viewer, brown_eyes |
| 1 | 5 |  |  |  |  |  | 1girl, bare_shoulders, blush, detached_sleeves, japanese_clothes, looking_at_viewer, nontraditional_miko, skirt, smile, solo, thighhighs, hair_ornament, wariza |
| 2 | 6 |  |  |  |  |  | 1girl, bare_shoulders, detached_sleeves, japanese_clothes, nontraditional_miko, open_mouth, solo, :d, looking_at_viewer, ribbon-trimmed_sleeves, skirt |
| 3 | 29 |  |  |  |  |  | 1girl, detached_sleeves, japanese_clothes, nontraditional_miko, skirt, smile, solo, open_mouth, ribbon-trimmed_sleeves, bare_shoulders, zettai_ryouiki, thigh_boots, blush, black_thighhighs, hair_ornament, looking_at_viewer |
| 4 | 13 |  |  |  |  |  | 1girl, detached_sleeves, japanese_clothes, nontraditional_miko, skirt, solo, thighhighs, smile, thigh_boots, bare_shoulders, hair_ornament, zettai_ryouiki, blue_eyes, open_mouth, looking_at_viewer |
| 5 | 8 |  |  |  |  |  | 1girl, detached_sleeves, japanese_clothes, looking_at_viewer, nontraditional_miko, ribbon-trimmed_sleeves, solo, bare_shoulders, open_mouth, skirt, white_background, wide_sleeves, blue_eyes, simple_background, smile, thighhighs |
| 6 | 15 |  |  |  |  |  | 1girl, detached_sleeves, japanese_clothes, looking_at_viewer, nontraditional_miko, ribbon-trimmed_sleeves, solo, upper_body, simple_background, smile, white_background, open_mouth, blush |
| 7 | 9 |  |  |  |  |  | 1girl, black_skirt, detached_sleeves, hakama_short_skirt, nontraditional_miko, ribbon-trimmed_sleeves, solo, looking_at_viewer, simple_background, smile, white_background, thigh_boots, thighhighs, blush, cowboy_shot, frills, large_breasts, open_mouth, pleated_skirt, wide_sleeves |
| 8 | 10 |  |  |  |  |  | 1girl, detached_sleeves, machinery, nontraditional_miko, ribbon-trimmed_sleeves, rigging, solo, thigh_boots, smile, turret, black_skirt, white_background, cannon, open_mouth, simple_background, looking_at_viewer, black_thighhighs, hakama_short_skirt, large_breasts, pleated_skirt |
| 9 | 5 |  |  |  |  |  | 1girl, alternate_costume, floral_print, looking_at_viewer, smile, solo, obi, upper_body, blush, hair_flower, red_kimono, alternate_hairstyle, breasts, closed_mouth, fur_trim, long_sleeves, print_kimono, wide_sleeves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | japanese_clothes | nontraditional_miko | solo | detached_sleeves | smile | open_mouth | looking_at_viewer | brown_eyes | blush | skirt | thighhighs | hair_ornament | wariza | :d | ribbon-trimmed_sleeves | zettai_ryouiki | thigh_boots | black_thighhighs | blue_eyes | white_background | wide_sleeves | simple_background | upper_body | black_skirt | hakama_short_skirt | cowboy_shot | frills | large_breasts | pleated_skirt | machinery | rigging | turret | cannon | alternate_costume | floral_print | obi | hair_flower | red_kimono | alternate_hairstyle | breasts | closed_mouth | fur_trim | long_sleeves | print_kimono |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:-------------------|:----------------------|:-------|:-------------------|:--------|:-------------|:--------------------|:-------------|:--------|:--------|:-------------|:----------------|:---------|:-----|:-------------------------|:-----------------|:--------------|:-------------------|:------------|:-------------------|:---------------|:--------------------|:-------------|:--------------|:---------------------|:--------------|:---------|:----------------|:----------------|:------------|:----------|:---------|:---------|:--------------------|:---------------|:------|:--------------|:-------------|:----------------------|:----------|:---------------|:-----------|:---------------|:---------------|
| 0 | 15 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | X | X | X | X | | X | X | | | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 29 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | X | X | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | X | X | X | | | | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | X | X | | | | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 15 |  |  |  |  |  | X | | X | X | X | X | X | X | X | | X | | | | | | X | | | | | X | | X | X | | | | | | | | | | | | | | | | | | | | | |
| 7 | 9 |  |  |  |  |  | X | | | X | X | X | X | X | X | | X | | X | | | | X | | X | | | X | X | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 8 | 10 |  |  |  |  |  | X | | | X | X | X | X | X | X | | | | | | | | X | | X | X | | X | | X | | X | X | | | X | X | X | X | X | X | | | | | | | | | | | |
| 9 | 5 |  |  |  |  |  | X | | | | X | | X | | X | | X | | | | | | | | | | | | X | | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/kongou_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T10:19:08+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:13:33+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kongou/金剛 (Kantai Collection)
========================================
This is the dataset of kongou/金剛 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, long\_hair, hairband, ahoge, hair\_bun, double\_bun, headgear, purple\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
5826766ca8344ee7e7cf1e9f69ddcdda918f9c2b
|
## Megacode-best
Megacode-best is a filtered and deduped version of [megacode-2 dataset](https://huggingface.co/datasets/rombodawg/2XUNCENSORED_MegaCodeTraining188k). In my analysis, I found many similar instruction in the original dataset which I wanted to filter out to avoid overfitting and improve generalisation.
Filtering technique
1. GTE-base embeddings + Cosine similarity deduplication
GTE-base was chosen over bge-base models because GTE-models are trained on 20M code tokens and showed better results in similarity search.
The total number of samples was reduced to 66k which is almost 1/3rd of the original dataset size.
This dataset was used to train the latest [Open-assistant code llama 2](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
shahules786/megacode-best
|
[
"region:us"
] |
2023-08-19T10:31:20+00:00
|
{"dataset_info": {"features": [{"name": "conversation", "struct": [{"name": "samples", "list": [{"name": "ASSISTANT", "dtype": "string"}, {"name": "USER", "dtype": "string"}]}]}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 376370658, "num_examples": 66951}], "download_size": 88693772, "dataset_size": 376370658}}
|
2023-08-28T14:01:19+00:00
|
[] |
[] |
TAGS
#region-us
|
## Megacode-best
Megacode-best is a filtered and deduped version of megacode-2 dataset. In my analysis, I found many similar instruction in the original dataset which I wanted to filter out to avoid overfitting and improve generalisation.
Filtering technique
1. GTE-base embeddings + Cosine similarity deduplication
GTE-base was chosen over bge-base models because GTE-models are trained on 20M code tokens and showed better results in similarity search.
The total number of samples was reduced to 66k which is almost 1/3rd of the original dataset size.
This dataset was used to train the latest Open-assistant code llama 2
|
[
"## Megacode-best\n\nMegacode-best is a filtered and deduped version of megacode-2 dataset. In my analysis, I found many similar instruction in the original dataset which I wanted to filter out to avoid overfitting and improve generalisation. \nFiltering technique\n1. GTE-base embeddings + Cosine similarity deduplication \n\nGTE-base was chosen over bge-base models because GTE-models are trained on 20M code tokens and showed better results in similarity search. \n\nThe total number of samples was reduced to 66k which is almost 1/3rd of the original dataset size. \n\nThis dataset was used to train the latest Open-assistant code llama 2"
] |
[
"TAGS\n#region-us \n",
"## Megacode-best\n\nMegacode-best is a filtered and deduped version of megacode-2 dataset. In my analysis, I found many similar instruction in the original dataset which I wanted to filter out to avoid overfitting and improve generalisation. \nFiltering technique\n1. GTE-base embeddings + Cosine similarity deduplication \n\nGTE-base was chosen over bge-base models because GTE-models are trained on 20M code tokens and showed better results in similarity search. \n\nThe total number of samples was reduced to 66k which is almost 1/3rd of the original dataset size. \n\nThis dataset was used to train the latest Open-assistant code llama 2"
] |
[
6,
153
] |
[
"passage: TAGS\n#region-us \n## Megacode-best\n\nMegacode-best is a filtered and deduped version of megacode-2 dataset. In my analysis, I found many similar instruction in the original dataset which I wanted to filter out to avoid overfitting and improve generalisation. \nFiltering technique\n1. GTE-base embeddings + Cosine similarity deduplication \n\nGTE-base was chosen over bge-base models because GTE-models are trained on 20M code tokens and showed better results in similarity search. \n\nThe total number of samples was reduced to 66k which is almost 1/3rd of the original dataset size. \n\nThis dataset was used to train the latest Open-assistant code llama 2"
] |
68b436f3f2a3e1d2610d36750a5572dbd5a7db6a
|
# Dataset of yamato/大和/大和 (Kantai Collection)
This is the dataset of yamato/大和/大和 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, brown_hair, ponytail, hair_ornament, hair_flower, very_long_hair, breasts, brown_eyes, large_breasts, headgear`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 760.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamato_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 455.06 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamato_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1216 | 929.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamato_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 686.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamato_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1216 | 1.24 GiB | [Download](https://huggingface.co/datasets/CyberHarem/yamato_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yamato_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, flower, looking_at_viewer, solo, detached_sleeves, miniskirt, oil-paper_umbrella, smile, turret, cherry_blossoms, machinery, single_thighhigh |
| 1 | 5 |  |  |  |  |  | 1girl, cherry_blossoms, detached_sleeves, flower, looking_at_viewer, oil-paper_umbrella, red_umbrella, skirt, smile, solo, blush, single_thighhigh, open_mouth |
| 2 | 8 |  |  |  |  |  | 1girl, detached_sleeves, flower, looking_at_viewer, solo, blush, cherry_blossoms, smile, open_mouth, upper_body |
| 3 | 11 |  |  |  |  |  | 1girl, flower, obi, solo, smile, cherry_blossoms, hair_between_eyes, upper_body, wide_sleeves, hair_intakes, long_sleeves, white_kimono, blush, looking_at_viewer, alternate_costume, closed_mouth, floral_print, sidelocks, holding_umbrella, oil-paper_umbrella, red_umbrella |
| 4 | 10 |  |  |  |  |  | 1girl, flower, kimono, solo, alternate_costume, cherry_blossoms, smile, looking_at_viewer, oil-paper_umbrella, red_eyes, floral_print |
| 5 | 8 |  |  |  |  |  | 1girl, brown_sweater, hair_between_eyes, long_sleeves, ribbed_sweater, smile, solo, white_pants, blush, collarbone, pink_flower, open_mouth, simple_background, white_background, closed_mouth, looking_at_viewer, sidelocks |
| 6 | 5 |  |  |  |  |  | 1girl, cherry_blossoms, flower, hair_intakes, long_coat, metal_collar, pleated_skirt, shoulder_cutout, sidelocks, sleeveless_coat, solo, white_coat, white_skirt, clothes_writing, thigh_boots, asymmetrical_legwear, black_thighhighs, full_body, long_sleeves, sakuramon, coat_on_shoulders, knee_boots, red_footwear |
| 7 | 7 |  |  |  |  |  | 1girl, hair_intakes, holding_umbrella, long_coat, long_sleeves, metal_collar, oil-paper_umbrella, pleated_skirt, red_umbrella, shoulder_cutout, sidelocks, solo, white_coat, white_skirt, smile, cherry_blossoms, closed_mouth, cowboy_shot, sleeveless_coat, white_umbrella, hair_between_eyes, black_thighhighs, pink_flower |
| 8 | 12 |  |  |  |  |  | 1girl, hair_between_eyes, solo, blush, pink_flower, white_bikini, cleavage, looking_at_viewer, navel, smile, collarbone, hair_intakes, cowboy_shot, oil-paper_umbrella, red_umbrella, sarong, closed_mouth, holding_umbrella, thigh_strap |
| 9 | 6 |  |  |  |  |  | 1girl, cherry_blossoms, flower, naval_uniform, long_sleeves, solo, white_gloves, upper_body, smile, white_jacket |
| 10 | 5 |  |  |  |  |  | cleavage, detached_collar, playboy_bunny, 1girl, black_leotard, black_pantyhose, fake_animal_ears, rabbit_ears, solo, strapless_leotard, wrist_cuffs, alternate_costume, blush, bowtie, cherry_blossoms, cowboy_shot, pink_flower, fake_tail, fishnets, hair_between_eyes, looking_at_viewer, shiny_clothes, sidelocks, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | flower | looking_at_viewer | solo | detached_sleeves | miniskirt | oil-paper_umbrella | smile | turret | cherry_blossoms | machinery | single_thighhigh | red_umbrella | skirt | blush | open_mouth | upper_body | obi | hair_between_eyes | wide_sleeves | hair_intakes | long_sleeves | white_kimono | alternate_costume | closed_mouth | floral_print | sidelocks | holding_umbrella | kimono | red_eyes | brown_sweater | ribbed_sweater | white_pants | collarbone | pink_flower | simple_background | white_background | long_coat | metal_collar | pleated_skirt | shoulder_cutout | sleeveless_coat | white_coat | white_skirt | clothes_writing | thigh_boots | asymmetrical_legwear | black_thighhighs | full_body | sakuramon | coat_on_shoulders | knee_boots | red_footwear | cowboy_shot | white_umbrella | white_bikini | cleavage | navel | sarong | thigh_strap | naval_uniform | white_gloves | white_jacket | detached_collar | playboy_bunny | black_leotard | black_pantyhose | fake_animal_ears | rabbit_ears | strapless_leotard | wrist_cuffs | bowtie | fake_tail | fishnets | shiny_clothes |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:---------|:--------------------|:-------|:-------------------|:------------|:---------------------|:--------|:---------|:------------------|:------------|:-------------------|:---------------|:--------|:--------|:-------------|:-------------|:------|:--------------------|:---------------|:---------------|:---------------|:---------------|:--------------------|:---------------|:---------------|:------------|:-------------------|:---------|:-----------|:----------------|:-----------------|:--------------|:-------------|:--------------|:--------------------|:-------------------|:------------|:---------------|:----------------|:------------------|:------------------|:-------------|:--------------|:------------------|:--------------|:-----------------------|:-------------------|:------------|:------------|:--------------------|:-------------|:---------------|:--------------|:-----------------|:---------------|:-----------|:--------|:---------|:--------------|:----------------|:---------------|:---------------|:------------------|:----------------|:----------------|:------------------|:-------------------|:--------------|:--------------------|:--------------|:---------|:------------|:-----------|:----------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | | X | X | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 8 |  |  |  |  |  | X | X | X | X | X | | | X | | X | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | X | X | X | X | | | X | X | | X | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 10 |  |  |  |  |  | X | X | X | X | | | X | X | | X | | | | | | | | | | | | | | X | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 8 |  |  |  |  |  | X | | X | X | | | | X | | | | | | | X | X | | | X | | | X | | | X | | X | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | X | | X | | | | | | X | | | | | | | | | | | X | X | | | | | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 7 |  |  |  |  |  | X | | | X | | | X | X | | X | | | X | | | | | | X | | X | X | | | X | | X | X | | | | | | | X | | | X | X | X | X | X | X | X | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | |
| 8 | 12 |  |  |  |  |  | X | | X | X | | | X | X | | | | | X | | X | | | | X | | X | | | | X | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | X | | X | X | X | X | X | | | | | | | | | | | | | | | |
| 9 | 6 |  |  |  |  |  | X | X | | X | | | | X | | X | | | | | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | |
| 10 | 5 |  |  |  |  |  | X | | X | X | | | | X | | X | | | | | X | | | | X | | | | | X | | | X | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/yamato_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T10:33:13+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:19:04+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yamato/大和/大和 (Kantai Collection)
===========================================
This is the dataset of yamato/大和/大和 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, brown\_hair, ponytail, hair\_ornament, hair\_flower, very\_long\_hair, breasts, brown\_eyes, large\_breasts, headgear', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
54b6cc08a0282f5f1361fbb3fe23a095cce9db79
|
# Dataset Card for "persian-qa-translated"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
pourmand1376/persian-qa-translated
|
[
"task_categories:question-answering",
"task_categories:translation",
"task_categories:text-generation",
"size_categories:100K<n<1M",
"language:fa",
"language:en",
"license:apache-2.0",
"region:us"
] |
2023-08-19T10:45:25+00:00
|
{"language": ["fa", "en"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering", "translation", "text-generation"], "pretty_name": "Persian QA Translated", "dataset_info": {"features": [{"name": "input", "dtype": "float64"}, {"name": "instruction", "dtype": "string"}, {"name": "original_instruction", "dtype": "string"}, {"name": "original_output", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 360540755, "num_examples": 153127}], "download_size": 186783724, "dataset_size": 360540755}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T10:52:23+00:00
|
[] |
[
"fa",
"en"
] |
TAGS
#task_categories-question-answering #task_categories-translation #task_categories-text-generation #size_categories-100K<n<1M #language-Persian #language-English #license-apache-2.0 #region-us
|
# Dataset Card for "persian-qa-translated"
More Information needed
|
[
"# Dataset Card for \"persian-qa-translated\"\n\nMore Information needed"
] |
[
"TAGS\n#task_categories-question-answering #task_categories-translation #task_categories-text-generation #size_categories-100K<n<1M #language-Persian #language-English #license-apache-2.0 #region-us \n",
"# Dataset Card for \"persian-qa-translated\"\n\nMore Information needed"
] |
[
67,
18
] |
[
"passage: TAGS\n#task_categories-question-answering #task_categories-translation #task_categories-text-generation #size_categories-100K<n<1M #language-Persian #language-English #license-apache-2.0 #region-us \n# Dataset Card for \"persian-qa-translated\"\n\nMore Information needed"
] |
faf9080084f0855af9f7573459685cdebc3abbdf
|
Base dataset : [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1)
We selected the dataset with "english" language & has rank = 1st.
Finally, we translate it to Indonesian with [Marian NMT](https://marian-nmt.github.io) and pretrained model from [Helsinki-NLP/opus-mt-en-id](https://huggingface.co/Helsinki-NLP/opus-mt-en-id).
## CITATION
```
@InProceedings{mariannmt,
title = {Marian: Fast Neural Machine Translation in {C++}},
author = {Junczys-Dowmunt, Marcin and Grundkiewicz, Roman and
Dwojak, Tomasz and Hoang, Hieu and Heafield, Kenneth and
Neckermann, Tom and Seide, Frank and Germann, Ulrich and
Fikri Aji, Alham and Bogoychev, Nikolay and
Martins, Andr\'{e} F. T. and Birch, Alexandra},
booktitle = {Proceedings of ACL 2018, System Demonstrations},
pages = {116--121},
publisher = {Association for Computational Linguistics},
year = {2018},
month = {July},
address = {Melbourne, Australia},
url = {http://www.aclweb.org/anthology/P18-4020}
}
@InProceedings{TiedemannThottingal:EAMT2020,
author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
year = {2020},
address = {Lisbon, Portugal}
}
```
|
Ichsan2895/OASST_Top1_Indonesian
|
[
"task_categories:question-answering",
"size_categories:1K<n<10K",
"language:id",
"language:en",
"license:cc-by-sa-4.0",
"region:us"
] |
2023-08-19T10:58:40+00:00
|
{"language": ["id", "en"], "license": "cc-by-sa-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["question-answering"]}
|
2023-08-19T12:15:17+00:00
|
[] |
[
"id",
"en"
] |
TAGS
#task_categories-question-answering #size_categories-1K<n<10K #language-Indonesian #language-English #license-cc-by-sa-4.0 #region-us
|
Base dataset : OpenAssistant/oasst1
We selected the dataset with "english" language & has rank = 1st.
Finally, we translate it to Indonesian with Marian NMT and pretrained model from Helsinki-NLP/opus-mt-en-id.
## CITATION
|
[
"## CITATION"
] |
[
"TAGS\n#task_categories-question-answering #size_categories-1K<n<10K #language-Indonesian #language-English #license-cc-by-sa-4.0 #region-us \n",
"## CITATION"
] |
[
50,
4
] |
[
"passage: TAGS\n#task_categories-question-answering #size_categories-1K<n<10K #language-Indonesian #language-English #license-cc-by-sa-4.0 #region-us \n## CITATION"
] |
4790943e56ebac4626f0717e00a13e8d956645c2
|
Base model : [FreedomIntelligence/alpaca-gpt4-indonesian](https://huggingface.co/datasets/FreedomIntelligence/alpaca-gpt4-indonesian)
We wrangled the original dataset format to 'input' & 'output' format. For example:
BEFORE:
```
[ { "from": "human",
"value": "Saranlah slogan untuk kampanye daur ulang\n" },
{ "from": "gpt",
"value": "1. \"Kurangi, gunakan kembali, daur ulang: Bersama untuk masa depan yang lebih hijau.\"\n2. \
"Daur ulanglah hari ini, untuk masa depan yang lebih baik.\"\n3. \"Ubah sampahmu menjadi harta karun - Daur ulang!\"\n4. \
"Daur ulang untuk siklus kehidupan.\"\n5. \"Simpan sumber daya, daur ulang lebih banyak.\""
}
]
```
AFTER:
| input | output |
| ---- | ---- |
| Saranlah slogan untuk kampanye daur ulang\n | 1. "Kurangi, gunakan kembali, daur ulang: Bersama untuk masa depan yang lebih hijau.\"\n2. "Daur ulanglah hari ini, untuk masa depan yang lebih baik.\"\n3. \"Ubah sampahmu menjadi harta karun - Daur ulang!\"\n4. "Daur ulang untuk siklus kehidupan.\"\n5. \"Simpan sumber daya, daur ulang lebih banyak. |
## CITATION
```
@article{peng2023instruction,
title={Instruction Tuning with GPT-4},
author={Peng, Baolin and Li, Chunyuan and He, Pengcheng and Galley, Michel and Gao, Jianfeng},
journal={arXiv preprint arXiv:2304.03277},
year={2023}
}
@software{Chen_MultilingualSIFT_Multilingual_Supervised_2023,
author = {Chen, Zhihong and Yan, Shuo and Liang, Juhao and Jiang, Feng and Wu, Xiangbo and Yu, Fei and Chen, Guiming Hardy and Chen, Junying and Zhang, Hongbo and Li Jianquan and Wan Xiang and Wang, Benyou},
month = july,
title = {{MultilingualSIFT: Multilingual Supervised Instruction Fine-tuning}},
url = {https://github.com/FreedomIntelligence/MultilingualSIFT.git},
version = {0.1},
year = {2023}
}
```
|
Ichsan2895/alpaca-gpt4-indonesian
|
[
"task_categories:question-answering",
"size_categories:10K<n<100K",
"language:id",
"license:cc-by-sa-4.0",
"region:us"
] |
2023-08-19T11:03:55+00:00
|
{"language": ["id"], "license": "cc-by-sa-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"]}
|
2023-08-19T12:08:53+00:00
|
[] |
[
"id"
] |
TAGS
#task_categories-question-answering #size_categories-10K<n<100K #language-Indonesian #license-cc-by-sa-4.0 #region-us
|
Base model : FreedomIntelligence/alpaca-gpt4-indonesian
We wrangled the original dataset format to 'input' & 'output' format. For example:
BEFORE:
AFTER:
CITATION
--------
|
[] |
[
"TAGS\n#task_categories-question-answering #size_categories-10K<n<100K #language-Indonesian #license-cc-by-sa-4.0 #region-us \n"
] |
[
46
] |
[
"passage: TAGS\n#task_categories-question-answering #size_categories-10K<n<100K #language-Indonesian #license-cc-by-sa-4.0 #region-us \n"
] |
b965a93b6e158072ad52fed82791e5c3a0f2d2e1
|
# Dataset of kaga/加賀 (Kantai Collection)
This is the dataset of kaga/加賀 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, side_ponytail, brown_eyes, short_hair, long_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 458.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kaga_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 317.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kaga_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1142 | 636.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kaga_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 427.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kaga_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1142 | 812.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kaga_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kaga_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 45 |  |  |  |  |  | 1girl, bow_(weapon), muneate, solo, yugake, arrow_(projectile), single_glove, tasuki, black_thighhighs, flight_deck, quiver, hakama_short_skirt, looking_at_viewer |
| 1 | 10 |  |  |  |  |  | 1girl, black_thighhighs, japanese_clothes, muneate, skirt, solo, looking_at_viewer, sitting, tasuki, white_background |
| 2 | 19 |  |  |  |  |  | 1girl, hakama_short_skirt, solo, tasuki, looking_at_viewer, muneate, blue_hakama, simple_background, black_thighhighs, white_background |
| 3 | 5 |  |  |  |  |  | 1girl, black_thighhighs, cleavage, japanese_clothes, large_breasts, looking_at_viewer, skirt, solo, blush, off_shoulder, wariza, bare_shoulders, medium_breasts |
| 4 | 8 |  |  |  |  |  | 1girl, japanese_clothes, solo, muneate, looking_at_viewer, upper_body |
| 5 | 7 |  |  |  |  |  | 1girl, japanese_clothes, looking_at_viewer, simple_background, solo, tasuki, upper_body, muneate, white_background, hair_between_eyes, alternate_hairstyle, hair_down |
| 6 | 10 |  |  |  |  |  | 1girl, artist_name, blue_hakama, chibi, hair_between_eyes, hakama_short_skirt, solo, tasuki, blush, black_thighhighs, seiza, minigirl, eating, food, holding |
| 7 | 10 |  |  |  |  |  | 1girl, artist_name, chibi, hair_between_eyes, japanese_clothes, open_mouth, tasuki, solo, :d, blush, closed_eyes |
| 8 | 11 |  |  |  |  |  | 1girl, solo, hair_between_eyes, large_breasts, collarbone, looking_at_viewer, alternate_costume, blush, simple_background, white_background, long_sleeves, closed_mouth, upper_body, blue_sweater, cleavage |
| 9 | 20 |  |  |  |  |  | 1girl, solo, alternate_costume, looking_at_viewer, blue_kimono, hair_flower, obi, floral_print, blush, upper_body, oil-paper_umbrella |
| 10 | 5 |  |  |  |  |  | 1girl, black_dress, blush, enmaided, looking_at_viewer, solo, white_apron, hair_between_eyes, maid_apron, maid_headdress, cowboy_shot, large_breasts, closed_mouth, frills, long_sleeves, puffy_short_sleeves, simple_background, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bow_(weapon) | muneate | solo | yugake | arrow_(projectile) | single_glove | tasuki | black_thighhighs | flight_deck | quiver | hakama_short_skirt | looking_at_viewer | japanese_clothes | skirt | sitting | white_background | blue_hakama | simple_background | cleavage | large_breasts | blush | off_shoulder | wariza | bare_shoulders | medium_breasts | upper_body | hair_between_eyes | alternate_hairstyle | hair_down | artist_name | chibi | seiza | minigirl | eating | food | holding | open_mouth | :d | closed_eyes | collarbone | alternate_costume | long_sleeves | closed_mouth | blue_sweater | blue_kimono | hair_flower | obi | floral_print | oil-paper_umbrella | black_dress | enmaided | white_apron | maid_apron | maid_headdress | cowboy_shot | frills | puffy_short_sleeves |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:---------------|:----------|:-------|:---------|:---------------------|:---------------|:---------|:-------------------|:--------------|:---------|:---------------------|:--------------------|:-------------------|:--------|:----------|:-------------------|:--------------|:--------------------|:-----------|:----------------|:--------|:---------------|:---------|:-----------------|:-----------------|:-------------|:--------------------|:----------------------|:------------|:--------------|:--------|:--------|:-----------|:---------|:-------|:----------|:-------------|:-----|:--------------|:-------------|:--------------------|:---------------|:---------------|:---------------|:--------------|:--------------|:------|:---------------|:---------------------|:--------------|:-----------|:--------------|:-------------|:-----------------|:--------------|:---------|:----------------------|
| 0 | 45 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | | X | X | | | | X | X | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 19 |  |  |  |  |  | X | | X | X | | | | X | X | | | X | X | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | | | X | | | | | X | | | | X | X | X | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 8 |  |  |  |  |  | X | | X | X | | | | | | | | | X | X | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | | X | X | | | | X | | | | | X | X | | | X | | X | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 10 |  |  |  |  |  | X | | | X | | | | X | X | | | X | | | | | | X | | | | X | | | | | | X | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 7 | 10 |  |  |  |  |  | X | | | X | | | | X | | | | | | X | | | | | | | | X | | | | | | X | | | X | X | | | | | | X | X | X | | | | | | | | | | | | | | | | | | |
| 8 | 11 |  |  |  |  |  | X | | | X | | | | | | | | | X | | | | X | | X | X | X | X | | | | | X | X | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | |
| 9 | 20 |  |  |  |  |  | X | | | X | | | | | | | | | X | | | | | | | | | X | | | | | X | | | | | | | | | | | | | | | X | | | | X | X | X | X | X | | | | | | | | |
| 10 | 5 |  |  |  |  |  | X | | | X | | | | | | | | | X | | | | X | | X | | X | X | | | | | | X | | | | | | | | | | | | | | | X | X | | | | | | | X | X | X | X | X | X | X | X |
|
CyberHarem/kaga_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T11:09:24+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:11:39+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kaga/加賀 (Kantai Collection)
======================================
This is the dataset of kaga/加賀 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, side\_ponytail, brown\_eyes, short\_hair, long\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
3dc7ce07678e73866885afec51296878b8968b79
|
# Dataset of fubuki/吹雪/吹雪 (Kantai Collection)
This is the dataset of fubuki/吹雪/吹雪 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `black_hair, ponytail, short_ponytail, sidelocks, low_ponytail, green_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 491.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fubuki_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 300.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fubuki_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1142 | 614.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fubuki_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 439.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fubuki_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1142 | 830.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fubuki_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/fubuki_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, serafuku, solo, upper_body, white_background, black_sailor_collar, long_hair, looking_at_viewer, simple_background, smile, anchor_symbol, open_mouth, blue_neckerchief |
| 1 | 6 |  |  |  |  |  | 1girl, serafuku, smile, solo, upper_body, blush, looking_at_viewer, sailor_collar, simple_background, white_background |
| 2 | 9 |  |  |  |  |  | 1girl, blue_sailor_collar, blue_skirt, pleated_skirt, serafuku, solo, looking_at_viewer, cowboy_shot, open_mouth, smile |
| 3 | 29 |  |  |  |  |  | 1girl, pleated_skirt, serafuku, solo, black_sailor_collar, black_skirt, looking_at_viewer, cowboy_shot, simple_background, white_background, long_hair, anchor_symbol, blue_neckerchief, smile, black_eyes |
| 4 | 5 |  |  |  |  |  | 1girl, black_socks, blue_sailor_collar, blue_skirt, kneehighs, looking_at_viewer, pleated_skirt, serafuku, solo, simple_background, sitting, white_background, dated, machinery, rigging, short_sleeves, smokestack |
| 5 | 6 |  |  |  |  |  | 1girl, black_eyes, black_socks, blue_sailor_collar, blue_skirt, kneehighs, pleated_skirt, serafuku, solo, full_body, looking_at_viewer, open_mouth, simple_background |
| 6 | 23 |  |  |  |  |  | 1girl, serafuku, solo, pleated_skirt, machinery, turret, open_mouth, brown_eyes, cannon, looking_at_viewer |
| 7 | 19 |  |  |  |  |  | 1girl, blue_dress, polka_dot_dress, solo, white_jacket, hooded_jacket, hoodie, looking_at_viewer, cowboy_shot, drawstring, smile, backpack, anchor_symbol, black_eyes, open_mouth, simple_background, white_background, official_alternate_costume |
| 8 | 6 |  |  |  |  |  | 1girl, alternate_costume, anchor_symbol, black_footwear, blue_dress, full_body, grey_socks, hooded_jacket, hoodie, looking_at_viewer, polka_dot_dress, shoes, solo, white_jacket, backpack, blush, long_sleeves, open_mouth, simple_background, smile, casual, drawstring, grey_background, standing, white_background, white_socks |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | serafuku | solo | upper_body | white_background | black_sailor_collar | long_hair | looking_at_viewer | simple_background | smile | anchor_symbol | open_mouth | blue_neckerchief | blush | sailor_collar | blue_sailor_collar | blue_skirt | pleated_skirt | cowboy_shot | black_skirt | black_eyes | black_socks | kneehighs | sitting | dated | machinery | rigging | short_sleeves | smokestack | full_body | turret | brown_eyes | cannon | blue_dress | polka_dot_dress | white_jacket | hooded_jacket | hoodie | drawstring | backpack | official_alternate_costume | alternate_costume | black_footwear | grey_socks | shoes | long_sleeves | casual | grey_background | standing | white_socks |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:-------|:-------------|:-------------------|:----------------------|:------------|:--------------------|:--------------------|:--------|:----------------|:-------------|:-------------------|:--------|:----------------|:---------------------|:-------------|:----------------|:--------------|:--------------|:-------------|:--------------|:------------|:----------|:--------|:------------|:----------|:----------------|:-------------|:------------|:---------|:-------------|:---------|:-------------|:------------------|:---------------|:----------------|:---------|:-------------|:-----------|:-----------------------------|:--------------------|:-----------------|:-------------|:--------|:---------------|:---------|:------------------|:-----------|:--------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | X | X | | | X | X | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 9 |  |  |  |  |  | X | X | X | | | | | X | | X | | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 29 |  |  |  |  |  | X | X | X | | X | X | X | X | X | X | X | | X | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | X | X | | X | | | X | X | | | | | | | X | X | X | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | X | X | | | | | X | X | | | X | | | | X | X | X | | | X | X | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | |
| 6 | 23 |  |  |  |  |  | X | X | X | | | | | X | | | | X | | | | | | X | | | | | | | | X | | | | | X | X | X | | | | | | | | | | | | | | | | | |
| 7 | 19 |  |  |  |  |  | X | | X | | X | | | X | X | X | X | X | | | | | | | X | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | |
| 8 | 6 |  |  |  |  |  | X | | X | | X | | | X | X | X | X | X | | X | | | | | | | | | | | | | | | | X | | | | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/fubuki_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T11:18:58+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:12:32+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of fubuki/吹雪/吹雪 (Kantai Collection)
===========================================
This is the dataset of fubuki/吹雪/吹雪 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'black\_hair, ponytail, short\_ponytail, sidelocks, low\_ponytail, green\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
ce0909710d3f24592edaa804f01c2d8dfddda24d
|
# Dataset Card for "clothing"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
krishi/clothing
|
[
"region:us"
] |
2023-08-19T11:35:15+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 41259319.0, "num_examples": 20}], "download_size": 41261925, "dataset_size": 41259319.0}}
|
2023-08-19T11:35:25+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "clothing"
More Information needed
|
[
"# Dataset Card for \"clothing\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"clothing\"\n\nMore Information needed"
] |
[
6,
12
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"clothing\"\n\nMore Information needed"
] |
00f1ca249efb7c246a4ef49e425d8d9acc3dc04a
|
# Dataset Card for "elderly_CV"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
aviroes/elderly_CV
|
[
"region:us"
] |
2023-08-19T11:42:53+00:00
|
{"dataset_info": {"features": [{"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}, {"name": "sentence", "dtype": "string"}, {"name": "up_votes", "dtype": "int64"}, {"name": "down_votes", "dtype": "int64"}, {"name": "age", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "segment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 432633690.18249494, "num_examples": 12237}], "download_size": 547583971, "dataset_size": 432633690.18249494}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T11:43:32+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "elderly_CV"
More Information needed
|
[
"# Dataset Card for \"elderly_CV\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"elderly_CV\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"elderly_CV\"\n\nMore Information needed"
] |
36ab57f99cf49d63284e670e38c9b38a3d044d3a
|
# Dataset of amatsukaze/天津風 (Kantai Collection)
This is the dataset of amatsukaze/天津風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, two_side_up, brown_eyes, grey_hair, white_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 584.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/amatsukaze_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 372.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/amatsukaze_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1240 | 784.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/amatsukaze_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 536.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/amatsukaze_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1240 | 1.01 GiB | [Download](https://huggingface.co/datasets/CyberHarem/amatsukaze_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/amatsukaze_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, blush, choker, hair_tubes, looking_at_viewer, sailor_dress, solo, white_background, simple_background, upper_body, hairband |
| 1 | 13 |  |  |  |  |  | 1girl, hair_tubes, sailor_dress, solo, brown_dress, looking_at_viewer, upper_body, white_sailor_collar, simple_background, smokestack_hair_ornament, mini_hat, white_background, blush, choker, closed_mouth, smile, grey_neckerchief, hair_between_eyes, lifebuoy_ornament |
| 2 | 6 |  |  |  |  |  | 1girl, garter_straps, hair_tubes, looking_at_viewer, sailor_dress, short_dress, single_glove, solo, white_gloves, zettai_ryouiki, blush, open_mouth, striped_thighhighs |
| 3 | 10 |  |  |  |  |  | 1girl, garter_straps, looking_at_viewer, sailor_dress, short_dress, solo, zettai_ryouiki, open_mouth, blush, hair_tubes, striped_thighhighs |
| 4 | 6 |  |  |  |  |  | 1girl, blush, gift_box, hair_tubes, heart, sailor_dress, solo, valentine, hat, holding_gift, long_sleeves, hair_between_eyes, upper_body, white_sailor_collar, black_dress, brown_dress, looking_at_viewer |
| 5 | 7 |  |  |  |  |  | 1girl, hair_between_eyes, hair_tubes, hoodie, solo, blush, long_sleeves, official_alternate_costume, open_mouth, coat, jacket, looking_at_viewer, black_thighhighs, cowboy_shot, simple_background, white_background, bento, holding, white_dress |
| 6 | 8 |  |  |  |  |  | 1girl, alternate_costume, blush, hair_tubes, solo, looking_at_viewer, smile, hair_between_eyes, open_mouth, upper_body, wide_sleeves, floral_print, long_sleeves, obi, hair_ornament, holding, print_kimono, red_kimono, yukata |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | choker | hair_tubes | looking_at_viewer | sailor_dress | solo | white_background | simple_background | upper_body | hairband | brown_dress | white_sailor_collar | smokestack_hair_ornament | mini_hat | closed_mouth | smile | grey_neckerchief | hair_between_eyes | lifebuoy_ornament | garter_straps | short_dress | single_glove | white_gloves | zettai_ryouiki | open_mouth | striped_thighhighs | gift_box | heart | valentine | hat | holding_gift | long_sleeves | black_dress | hoodie | official_alternate_costume | coat | jacket | black_thighhighs | cowboy_shot | bento | holding | white_dress | alternate_costume | wide_sleeves | floral_print | obi | hair_ornament | print_kimono | red_kimono | yukata |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:---------|:-------------|:--------------------|:---------------|:-------|:-------------------|:--------------------|:-------------|:-----------|:--------------|:----------------------|:---------------------------|:-----------|:---------------|:--------|:-------------------|:--------------------|:--------------------|:----------------|:--------------|:---------------|:---------------|:-----------------|:-------------|:---------------------|:-----------|:--------|:------------|:------|:---------------|:---------------|:--------------|:---------|:-----------------------------|:-------|:---------|:-------------------|:--------------|:--------|:----------|:--------------|:--------------------|:---------------|:---------------|:------|:----------------|:---------------|:-------------|:---------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | | X | X | X | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | X | | X | X | X | X | | | | | | | | | | | | | | X | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | | X | X | X | X | | | X | | X | X | | | | | | X | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | X | | X | X | | X | X | X | | | | | | | | | | X | | | | | | | X | | | | | | | X | | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 6 | 8 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | | | | X | | X | | | | | | | X | | | | | | | X | | | | | | | | | X | | X | X | X | X | X | X | X | X |
|
CyberHarem/amatsukaze_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T11:49:59+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T21:44:11+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of amatsukaze/天津風 (Kantai Collection)
=============================================
This is the dataset of amatsukaze/天津風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, two\_side\_up, brown\_eyes, grey\_hair, white\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
d4fc3f6e2ff185bda6b49f5d44906dfd13c99e96
|
# Dataset of suzuya/鈴谷 (Kantai Collection)
This is the dataset of suzuya/鈴谷 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, hair_ornament, hairclip, aqua_hair, breasts, green_eyes, aqua_eyes, green_hair, large_breasts, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 556.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/suzuya_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 354.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/suzuya_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1188 | 745.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/suzuya_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 507.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/suzuya_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1188 | 988.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/suzuya_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/suzuya_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, looking_at_viewer, school_uniform, solo, upper_body, blazer, brown_jacket, cardigan, smile, simple_background, red_bowtie, long_sleeves, white_background, white_shirt, blush, open_mouth |
| 1 | 37 |  |  |  |  |  | 1girl, brown_jacket, brown_skirt, cardigan, pleated_skirt, school_uniform, solo, looking_at_viewer, blazer, smile, frilled_skirt, blush, long_sleeves, red_bowtie, white_background, brown_thighhighs, simple_background, open_clothes, white_shirt, cowboy_shot, open_mouth |
| 2 | 5 |  |  |  |  |  | 1girl, ascot, looking_at_viewer, pleated_skirt, school_uniform, solo, brown_thighhighs, grin, jacket, blush |
| 3 | 18 |  |  |  |  |  | 1girl, looking_at_viewer, school_uniform, solo, smile, skirt, open_mouth, turret, brown_thighhighs, cannon, ascot |
| 4 | 5 |  |  |  |  |  | 1girl, ascot, blush, looking_at_viewer, school_uniform, solo, jacket, open_mouth, upper_body |
| 5 | 5 |  |  |  |  |  | 1girl, brown_skirt, brown_thighhighs, looking_at_viewer, pleated_skirt, school_uniform, short_sleeves, solo, white_shirt, blush, frilled_skirt, simple_background, sitting, white_background, black_footwear, blouse, bowtie, loafers, open_mouth, smile |
| 6 | 6 |  |  |  |  |  | 1girl, alternate_costume, blush, open_mouth, ribbed_sweater, upper_body, long_sleeves, looking_at_viewer, smile, solo, simple_background, turtleneck, white_background |
| 7 | 12 |  |  |  |  |  | 1girl, christmas, detached_collar, red_dress, santa_costume, solo, looking_at_viewer, detached_sleeves, smile, arm_warmers, fur_trim, cleavage, blush, sack, thighhighs, ascot, bare_shoulders, simple_background |
| 8 | 9 |  |  |  |  |  | 1girl, bikini, looking_at_viewer, solo, cleavage, hair_flower, navel, day, outdoors, smile, collarbone, blush, cloud, hibiscus, ocean, blue_sky, open_mouth |
| 9 | 15 |  |  |  |  |  | 1girl, looking_at_viewer, solo, alternate_costume, hair_flower, obi, blush, smile, floral_print, yukata, alternate_hairstyle |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | school_uniform | solo | upper_body | blazer | brown_jacket | cardigan | smile | simple_background | red_bowtie | long_sleeves | white_background | white_shirt | blush | open_mouth | brown_skirt | pleated_skirt | frilled_skirt | brown_thighhighs | open_clothes | cowboy_shot | ascot | grin | jacket | skirt | turret | cannon | short_sleeves | sitting | black_footwear | blouse | bowtie | loafers | alternate_costume | ribbed_sweater | turtleneck | christmas | detached_collar | red_dress | santa_costume | detached_sleeves | arm_warmers | fur_trim | cleavage | sack | thighhighs | bare_shoulders | bikini | hair_flower | navel | day | outdoors | collarbone | cloud | hibiscus | ocean | blue_sky | obi | floral_print | yukata | alternate_hairstyle |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-----------------|:-------|:-------------|:---------|:---------------|:-----------|:--------|:--------------------|:-------------|:---------------|:-------------------|:--------------|:--------|:-------------|:--------------|:----------------|:----------------|:-------------------|:---------------|:--------------|:--------|:-------|:---------|:--------|:---------|:---------|:----------------|:----------|:-----------------|:---------|:---------|:----------|:--------------------|:-----------------|:-------------|:------------|:------------------|:------------|:----------------|:-------------------|:--------------|:-----------|:-----------|:-------|:-------------|:-----------------|:---------|:--------------|:--------|:------|:-----------|:-------------|:--------|:-----------|:--------|:-----------|:------|:---------------|:---------|:----------------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 37 |  |  |  |  |  | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | | | | | | | | | | | X | | | X | | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 18 |  |  |  |  |  | X | X | X | X | | | | | X | | | | | | | X | | | | X | | | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | X | X | X | X | | | | | | | | | | X | X | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | X | X | X | | | | | X | X | | | X | X | X | X | X | X | X | X | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 6 |  |  |  |  |  | X | X | | X | X | | | | X | X | | X | X | | X | X | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 12 |  |  |  |  |  | X | X | | X | | | | | X | X | | | | | X | | | | | | | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 8 | 9 |  |  |  |  |  | X | X | | X | | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | X | X | X | X | X | X | X | X | X | | | | |
| 9 | 15 |  |  |  |  |  | X | X | | X | | | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | | | | X | X | X | X |
|
CyberHarem/suzuya_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T12:04:10+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T18:53:25+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of suzuya/鈴谷 (Kantai Collection)
========================================
This is the dataset of suzuya/鈴谷 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, hair\_ornament, hairclip, aqua\_hair, breasts, green\_eyes, aqua\_eyes, green\_hair, large\_breasts, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
f826910c54449b1cd441e3c91c45574c18266e27
|
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [PUBMED_QA homepage](https://pubmedqa.github.io/ )
- **Repository:** [PUBMED_QA repository](https://github.com/pubmedqa/pubmedqa)
- **Paper:** [PUBMED_QA: A Dataset for Biomedical Research Question Answering](https://arxiv.org/abs/1909.06146)
- **Leaderboard:** [PUBMED_QA: Leaderboard](https://pubmedqa.github.io/)
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@tuner007](https://github.com/tuner007) for adding this dataset.
|
highnote/pubmed_qa
|
[
"task_categories:question-answering",
"task_ids:multiple-choice-qa",
"annotations_creators:expert-generated",
"annotations_creators:machine-generated",
"language_creators:expert-generated",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"size_categories:10K<n<100K",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:en",
"license:mit",
"arxiv:1909.06146",
"region:us"
] |
2023-08-19T12:28:27+00:00
|
{"annotations_creators": ["expert-generated", "machine-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M", "10K<n<100K", "1K<n<10K"], "source_datasets": ["original"], "task_categories": ["question-answering"], "task_ids": ["multiple-choice-qa"], "paperswithcode_id": "pubmedqa", "pretty_name": "PubMedQA", "config_names": ["pqa_artificial", "pqa_labeled", "pqa_unlabeled"], "dataset_info": [{"config_name": "pqa_labeled", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}, {"name": "reasoning_required_pred", "dtype": "string"}, {"name": "reasoning_free_pred", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}, {"name": "final_decision", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2089200, "num_examples": 1000}], "download_size": 687882700, "dataset_size": 2089200}, {"config_name": "pqa_unlabeled", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 125938502, "num_examples": 61249}], "download_size": 687882700, "dataset_size": 125938502}, {"config_name": "pqa_artificial", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}, {"name": "final_decision", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 443554667, "num_examples": 211269}], "download_size": 687882700, "dataset_size": 443554667}], "duplicated_from": "pubmed_qa"}
|
2023-08-19T12:28:27+00:00
|
[
"1909.06146"
] |
[
"en"
] |
TAGS
#task_categories-question-answering #task_ids-multiple-choice-qa #annotations_creators-expert-generated #annotations_creators-machine-generated #language_creators-expert-generated #multilinguality-monolingual #size_categories-100K<n<1M #size_categories-10K<n<100K #size_categories-1K<n<10K #source_datasets-original #language-English #license-mit #arxiv-1909.06146 #region-us
|
# Dataset Card for [Dataset Name]
## Table of Contents
- Dataset Description
- Dataset Summary
- Supported Tasks and Leaderboards
- Languages
- Dataset Structure
- Data Instances
- Data Fields
- Data Splits
- Dataset Creation
- Curation Rationale
- Source Data
- Annotations
- Personal and Sensitive Information
- Considerations for Using the Data
- Social Impact of Dataset
- Discussion of Biases
- Other Known Limitations
- Additional Information
- Dataset Curators
- Licensing Information
- Citation Information
- Contributions
## Dataset Description
- Homepage: PUBMED_QA homepage
- Repository: PUBMED_QA repository
- Paper: PUBMED_QA: A Dataset for Biomedical Research Question Answering
- Leaderboard: PUBMED_QA: Leaderboard
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
Thanks to @tuner007 for adding this dataset.
|
[
"# Dataset Card for [Dataset Name]",
"## Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions",
"## Dataset Description\n\n- Homepage: PUBMED_QA homepage\n- Repository: PUBMED_QA repository\n- Paper: PUBMED_QA: A Dataset for Biomedical Research Question Answering\n- Leaderboard: PUBMED_QA: Leaderboard",
"### Dataset Summary",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions\n\nThanks to @tuner007 for adding this dataset."
] |
[
"TAGS\n#task_categories-question-answering #task_ids-multiple-choice-qa #annotations_creators-expert-generated #annotations_creators-machine-generated #language_creators-expert-generated #multilinguality-monolingual #size_categories-100K<n<1M #size_categories-10K<n<100K #size_categories-1K<n<10K #source_datasets-original #language-English #license-mit #arxiv-1909.06146 #region-us \n",
"# Dataset Card for [Dataset Name]",
"## Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions",
"## Dataset Description\n\n- Homepage: PUBMED_QA homepage\n- Repository: PUBMED_QA repository\n- Paper: PUBMED_QA: A Dataset for Biomedical Research Question Answering\n- Leaderboard: PUBMED_QA: Leaderboard",
"### Dataset Summary",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions\n\nThanks to @tuner007 for adding this dataset."
] |
[
137,
10,
120,
59,
6,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
17
] |
[
"passage: TAGS\n#task_categories-question-answering #task_ids-multiple-choice-qa #annotations_creators-expert-generated #annotations_creators-machine-generated #language_creators-expert-generated #multilinguality-monolingual #size_categories-100K<n<1M #size_categories-10K<n<100K #size_categories-1K<n<10K #source_datasets-original #language-English #license-mit #arxiv-1909.06146 #region-us \n# Dataset Card for [Dataset Name]## Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions## Dataset Description\n\n- Homepage: PUBMED_QA homepage\n- Repository: PUBMED_QA repository\n- Paper: PUBMED_QA: A Dataset for Biomedical Research Question Answering\n- Leaderboard: PUBMED_QA: Leaderboard### Dataset Summary### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions\n\nThanks to @tuner007 for adding this dataset."
] |
7f0bb481f38b3fbd6193501491b172a6fc388eb0
|
# Dataset of akagi/赤城/赤城 (Kantai Collection)
This is the dataset of akagi/赤城/赤城 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, brown_hair, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 493.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akagi_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 323.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akagi_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1090 | 628.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akagi_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 451.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akagi_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1090 | 824.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akagi_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/akagi_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 17 |  |  |  |  |  | 1girl, arrow_(projectile), bow_(weapon), muneate, solo, quiver, tasuki, white_thighhighs, yugake, hakama_short_skirt, single_glove, flight_deck, looking_at_viewer, white_background, smile |
| 1 | 7 |  |  |  |  |  | 1girl, arrow_(projectile), flight_deck, hakama_short_skirt, holding_bow_(weapon), muneate, quiver, single_glove, solo, straight_hair, tasuki, yugake, brown_gloves, red_hakama, white_background, looking_at_viewer, simple_background, smile, red_skirt, thighhighs |
| 2 | 6 |  |  |  |  |  | 1girl, arrow_(projectile), bow_(weapon), japanese_clothes, muneate, skirt, solo, white_thighhighs, yugake, smile, flight_deck, tasuki, white_background, looking_at_viewer, quiver |
| 3 | 10 |  |  |  |  |  | 1girl, aiming, drawing_bow, muneate, single_glove, solo, yugake, tasuki, kyuudou, outstretched_arm, holding_arrow, hakama_short_skirt, quiver, flight_deck |
| 4 | 5 |  |  |  |  |  | 1girl, hakama_short_skirt, looking_at_viewer, muneate, simple_background, smile, solo, straight_hair, tasuki, white_background, cowboy_shot, red_hakama, twitter_username |
| 5 | 6 |  |  |  |  |  | 1girl, japanese_clothes, muneate, simple_background, solo, tasuki, upper_body, white_background, looking_at_viewer, smile, blush |
| 6 | 15 |  |  |  |  |  | 1girl, japanese_clothes, muneate, solo, chopsticks, rice_on_face, eating, looking_at_viewer, rice_bowl, smile, blush |
| 7 | 6 |  |  |  |  |  | 1girl, food, looking_at_viewer, muneate, rice_bowl, solo, chopsticks, white_thighhighs, eating, hakama_skirt |
| 8 | 12 |  |  |  |  |  | 1girl, solo, alternate_costume, black_serafuku, looking_at_viewer, pleated_skirt, white_neckerchief, black_skirt, smile, straight_hair, white_background, black_sailor_collar, cowboy_shot, short_sleeves, simple_background, black_shirt |
| 9 | 6 |  |  |  |  |  | 1girl, alternate_costume, red_kimono, solo, blush, hair_flower, looking_at_viewer, floral_print, obi, smile, hair_between_eyes, open_mouth, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | arrow_(projectile) | bow_(weapon) | muneate | solo | quiver | tasuki | white_thighhighs | yugake | hakama_short_skirt | single_glove | flight_deck | looking_at_viewer | white_background | smile | holding_bow_(weapon) | straight_hair | brown_gloves | red_hakama | simple_background | red_skirt | thighhighs | japanese_clothes | skirt | aiming | drawing_bow | kyuudou | outstretched_arm | holding_arrow | cowboy_shot | twitter_username | upper_body | blush | chopsticks | rice_on_face | eating | rice_bowl | food | hakama_skirt | alternate_costume | black_serafuku | pleated_skirt | white_neckerchief | black_skirt | black_sailor_collar | short_sleeves | black_shirt | red_kimono | hair_flower | floral_print | obi | hair_between_eyes | open_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------------|:---------------|:----------|:-------|:---------|:---------|:-------------------|:---------|:---------------------|:---------------|:--------------|:--------------------|:-------------------|:--------|:-----------------------|:----------------|:---------------|:-------------|:--------------------|:------------|:-------------|:-------------------|:--------|:---------|:--------------|:----------|:-------------------|:----------------|:--------------|:-------------------|:-------------|:--------|:-------------|:---------------|:---------|:------------|:-------|:---------------|:--------------------|:-----------------|:----------------|:--------------------|:--------------|:----------------------|:----------------|:--------------|:-------------|:--------------|:---------------|:------|:--------------------|:-------------|
| 0 | 17 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | X | X | X | X | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | | | X | X | X | X | | X | X | X | X | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | | | X | X | | X | | | X | | | X | X | X | | X | | X | X | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | | | X | X | | X | | | | | | X | X | X | | | | | X | | | X | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | |
| 6 | 15 |  |  |  |  |  | X | | | X | X | | | | | | | | X | | X | | | | | | | | X | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | |
| 7 | 6 |  |  |  |  |  | X | | | X | X | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | X | | X | X | X | X | | | | | | | | | | | | | | |
| 8 | 12 |  |  |  |  |  | X | | | | X | | | | | | | | X | X | X | | X | | | X | | | | | | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | |
| 9 | 6 |  |  |  |  |  | X | | | | X | | | | | | | | X | | X | | | | | | | | | | | | | | | | | X | X | | | | | | | X | | | | | | | | X | X | X | X | X | X |
|
CyberHarem/akagi_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T12:47:34+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:10:56+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of akagi/赤城/赤城 (Kantai Collection)
==========================================
This is the dataset of akagi/赤城/赤城 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, brown\_hair, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
5c68be700d18970bb902d9ac00519f68b9dd57e7
|
# Dataset of tenryuu/天龍 (Kantai Collection)
This is the dataset of tenryuu/天龍 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `purple_hair, eyepatch, short_hair, yellow_eyes, headgear, breasts, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 487.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tenryuu_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 324.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tenryuu_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1248 | 695.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tenryuu_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 452.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tenryuu_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1248 | 890.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tenryuu_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/tenryuu_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 23 |  |  |  |  |  | 1girl, solo, looking_at_viewer, white_bikini, cleavage, navel, smile, collarbone, simple_background, necktie |
| 1 | 7 |  |  |  |  |  | 1girl, checkered_necktie, solo, white_background, looking_at_viewer, simple_background, school_uniform, smile, upper_body, blush, gloves |
| 2 | 7 |  |  |  |  |  | 1girl, checkered_necktie, looking_at_viewer, school_uniform, solo, blush, partially_fingerless_gloves, smile, skirt |
| 3 | 7 |  |  |  |  |  | 1girl, black_thighhighs, fingerless_gloves, left-handed, looking_at_viewer, school_uniform, skirt, smile, solo, sword, boots, checkered_necktie |
| 4 | 6 |  |  |  |  |  | 1girl, fingerless_gloves, looking_at_viewer, necktie, school_uniform, skirt, solo, black_thighhighs, sword, grin |
| 5 | 6 |  |  |  |  |  | 1girl, simple_background, solo, upper_body, white_background, black_gloves, dated, partially_fingerless_gloves, school_uniform, shirt, checkered_necktie, looking_at_viewer |
| 6 | 10 |  |  |  |  |  | 1girl, black_jacket, black_skirt, black_thighhighs, breast_pocket, checkered_necktie, fur-trimmed_jacket, looking_at_viewer, simple_background, sleeveless_shirt, solo, black_gloves, holding_sword, partially_fingerless_gloves, smile, white_background, white_shirt, cowboy_shot, high-waist_skirt, open_clothes, closed_mouth, off_shoulder, pleated_skirt |
| 7 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, smile, solo, alternate_costume, obi, new_year, upper_body, blush, floral_print, red_kimono |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | white_bikini | cleavage | navel | smile | collarbone | simple_background | necktie | checkered_necktie | white_background | school_uniform | upper_body | blush | gloves | partially_fingerless_gloves | skirt | black_thighhighs | fingerless_gloves | left-handed | sword | boots | grin | black_gloves | dated | shirt | black_jacket | black_skirt | breast_pocket | fur-trimmed_jacket | sleeveless_shirt | holding_sword | white_shirt | cowboy_shot | high-waist_skirt | open_clothes | closed_mouth | off_shoulder | pleated_skirt | alternate_costume | obi | new_year | floral_print | red_kimono |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:---------------|:-----------|:--------|:--------|:-------------|:--------------------|:----------|:--------------------|:-------------------|:-----------------|:-------------|:--------|:---------|:------------------------------|:--------|:-------------------|:--------------------|:--------------|:--------|:--------|:-------|:---------------|:--------|:--------|:---------------|:--------------|:----------------|:---------------------|:-------------------|:----------------|:--------------|:--------------|:-------------------|:---------------|:---------------|:---------------|:----------------|:--------------------|:------|:-----------|:---------------|:-------------|
| 0 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | | | | X | | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | X | X | | | | X | | | | X | | X | | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 7 |  |  |  |  |  | X | X | X | | | | X | | | | X | | X | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | X | | | | | | | X | | | X | | | | | X | X | X | | X | | X | | | | | | | | | | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | X | X | | | | | | X | | X | X | X | X | | | X | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | |
| 6 | 10 |  |  |  |  |  | X | X | X | | | | X | | X | | X | X | | | | | X | | X | | | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | |
| 7 | 6 |  |  |  |  |  | X | X | X | | | | X | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X |
|
CyberHarem/tenryuu_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T12:50:48+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:11:13+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of tenryuu/天龍 (Kantai Collection)
=========================================
This is the dataset of tenryuu/天龍 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'purple\_hair, eyepatch, short\_hair, yellow\_eyes, headgear, breasts, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
ab2910404dd75270e1dfdd5d05727e6429d583db
|
# Dataset Card for "rlhf-reward-single-round"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
samxm111/rlhf-reward-single-round
|
[
"region:us"
] |
2023-08-19T13:02:52+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13533459, "num_examples": 20000}, {"name": "test", "num_bytes": 3460316, "num_examples": 5014}], "download_size": 0, "dataset_size": 16993775}}
|
2023-08-19T13:24:50+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "rlhf-reward-single-round"
More Information needed
|
[
"# Dataset Card for \"rlhf-reward-single-round\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"rlhf-reward-single-round\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"rlhf-reward-single-round\"\n\nMore Information needed"
] |
6a9306eebade0bba9a4f91e11a65c92fbfbc0f6f
|
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:** https://github.com/hendrycks/math/blob/main/README.md
- **Repository:** https://github.com/hendrycks/math
- **Paper:** https://arxiv.org/abs/2103.03874
### Dataset Summary
MATH contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanation
This dataset card aims to be a base template for new datasets.
### Languages
[English]
## Dataset Structure
### Data Instances
7 sub-datasets
### Data Splits
training: 7500
test: 5000
## Additional Information
### Licensing Information
MIT but check the [Legal Compliance](https://arxiv.org/pdf/2103.03874.pdf) section in appendix B of the paper as well as the [repo](https://github.com/hendrycks/math/blob/main/LICENSE).
### Citation Information
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},
journal={NeurIPS},
year={2021}
}
|
baber/hendrycks_math
|
[
"task_categories:text-generation",
"size_categories:10K<n<100K",
"language:en",
"license:mit",
"arxiv:2103.03874",
"region:us"
] |
2023-08-19T13:28:52+00:00
|
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "pretty_name": "MATH"}
|
2023-08-25T20:15:56+00:00
|
[
"2103.03874"
] |
[
"en"
] |
TAGS
#task_categories-text-generation #size_categories-10K<n<100K #language-English #license-mit #arxiv-2103.03874 #region-us
|
# Dataset Card for Dataset Name
## Dataset Description
- Homepage: URL
- Repository: URL
- Paper: URL
### Dataset Summary
MATH contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanation
This dataset card aims to be a base template for new datasets.
### Languages
[English]
## Dataset Structure
### Data Instances
7 sub-datasets
### Data Splits
training: 7500
test: 5000
## Additional Information
### Licensing Information
MIT but check the Legal Compliance section in appendix B of the paper as well as the repo.
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},
journal={NeurIPS},
year={2021}
}
|
[
"# Dataset Card for Dataset Name",
"## Dataset Description\n\n- Homepage: URL\n- Repository: URL\n- Paper: URL",
"### Dataset Summary\n\nMATH contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanation\nThis dataset card aims to be a base template for new datasets.",
"### Languages\n\n[English]",
"## Dataset Structure",
"### Data Instances\n\n7 sub-datasets",
"### Data Splits\n\ntraining: 7500\ntest: 5000",
"## Additional Information",
"### Licensing Information\n\nMIT but check the Legal Compliance section in appendix B of the paper as well as the repo.\n\n\n\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},\n journal={NeurIPS},\n year={2021}\n}"
] |
[
"TAGS\n#task_categories-text-generation #size_categories-10K<n<100K #language-English #license-mit #arxiv-2103.03874 #region-us \n",
"# Dataset Card for Dataset Name",
"## Dataset Description\n\n- Homepage: URL\n- Repository: URL\n- Paper: URL",
"### Dataset Summary\n\nMATH contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanation\nThis dataset card aims to be a base template for new datasets.",
"### Languages\n\n[English]",
"## Dataset Structure",
"### Data Instances\n\n7 sub-datasets",
"### Data Splits\n\ntraining: 7500\ntest: 5000",
"## Additional Information",
"### Licensing Information\n\nMIT but check the Legal Compliance section in appendix B of the paper as well as the repo.\n\n\n\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},\n journal={NeurIPS},\n year={2021}\n}"
] |
[
47,
8,
18,
64,
7,
6,
12,
12,
5,
112
] |
[
"passage: TAGS\n#task_categories-text-generation #size_categories-10K<n<100K #language-English #license-mit #arxiv-2103.03874 #region-us \n# Dataset Card for Dataset Name## Dataset Description\n\n- Homepage: URL\n- Repository: URL\n- Paper: URL### Dataset Summary\n\nMATH contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanation\nThis dataset card aims to be a base template for new datasets.### Languages\n\n[English]## Dataset Structure### Data Instances\n\n7 sub-datasets### Data Splits\n\ntraining: 7500\ntest: 5000## Additional Information### Licensing Information\n\nMIT but check the Legal Compliance section in appendix B of the paper as well as the repo.\n\n\n\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},\n journal={NeurIPS},\n year={2021}\n}"
] |
210900f3b51f90cbe0ddb1775cd2c3594c7ad947
|
# Dataset of prinz_eugen/プリンツ・オイゲン (Kantai Collection)
This is the dataset of prinz_eugen/プリンツ・オイゲン (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blonde_hair, long_hair, twintails, hair_ornament, anchor_hair_ornament, hat, peaked_cap, breasts, low_twintails, aqua_eyes, large_breasts, blue_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:------------|:------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 539.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/prinz_eugen_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 335.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/prinz_eugen_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1264 | 752.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/prinz_eugen_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 488.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/prinz_eugen_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1264 | 1005.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/prinz_eugen_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/prinz_eugen_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, long_sleeves, looking_at_viewer, military_uniform, pleated_skirt, solo, white_gloves, smile, iron_cross, simple_background, black_skirt, white_background, blush, microskirt |
| 1 | 12 |  |  |  |  |  | 1girl, long_sleeves, military_hat, military_uniform, pleated_skirt, smile, solo, white_background, white_gloves, black_skirt, black_thighhighs, iron_cross, simple_background, looking_at_viewer, microskirt, open_mouth, blush, full_body |
| 2 | 21 |  |  |  |  |  | 1girl, long_sleeves, military_uniform, solo, iron_cross, looking_at_viewer, smile, blush, white_gloves, upper_body, simple_background, white_background, military_hat, hair_between_eyes |
| 3 | 9 |  |  |  |  |  | 1girl, military_uniform, skirt, solo, white_gloves, blush, white_panties, black_thighhighs, looking_at_viewer, open_mouth, smile |
| 4 | 6 |  |  |  |  |  | 1girl, green_eyes, looking_at_viewer, solo, blush, cloud, day, outdoors, ocean, open_mouth, smile, water, ass, blue_sky, hair_between_eyes, looking_back, navel, side-tie_bikini_bottom |
| 5 | 7 |  |  |  |  |  | 1girl, bangs, blush, cat_ears, looking_at_viewer, solo, fang, hair_between_eyes, open_mouth, sweat, :d, animal_ear_fluff, bare_shoulders, buruma, collarbone, cowboy_shot, green_eyes, simple_background, cat_girl, cleavage, fingernails, kemonomimi_mode, navel, shiny_skin, sports_bikini, sports_bra, stomach, armpits, bare_arms, shiny_hair |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | long_sleeves | looking_at_viewer | military_uniform | pleated_skirt | solo | white_gloves | smile | iron_cross | simple_background | black_skirt | white_background | blush | microskirt | military_hat | black_thighhighs | open_mouth | full_body | upper_body | hair_between_eyes | skirt | white_panties | green_eyes | cloud | day | outdoors | ocean | water | ass | blue_sky | looking_back | navel | side-tie_bikini_bottom | bangs | cat_ears | fang | sweat | :d | animal_ear_fluff | bare_shoulders | buruma | collarbone | cowboy_shot | cat_girl | cleavage | fingernails | kemonomimi_mode | shiny_skin | sports_bikini | sports_bra | stomach | armpits | bare_arms | shiny_hair |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------------------|:-------------------|:----------------|:-------|:---------------|:--------|:-------------|:--------------------|:--------------|:-------------------|:--------|:-------------|:---------------|:-------------------|:-------------|:------------|:-------------|:--------------------|:--------|:----------------|:-------------|:--------|:------|:-----------|:--------|:--------|:------|:-----------|:---------------|:--------|:-------------------------|:--------|:-----------|:-------|:--------|:-----|:-------------------|:-----------------|:---------|:-------------|:--------------|:-----------|:-----------|:--------------|:------------------|:-------------|:----------------|:-------------|:----------|:----------|:------------|:-------------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 21 |  |  |  |  |  | X | X | X | X | | X | X | X | X | X | | X | X | | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 9 |  |  |  |  |  | X | | X | X | | X | X | X | | | | | X | | | X | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | | X | | | X | | X | | | | | X | | | | X | | | X | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | | X | | | X | | | | X | | | X | | | | X | | | X | | | X | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/prinz_eugen_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T13:32:29+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T00:07:00+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of prinz\_eugen/プリンツ・オイゲン (Kantai Collection)
=====================================================
This is the dataset of prinz\_eugen/プリンツ・オイゲン (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, twintails, hair\_ornament, anchor\_hair\_ornament, hat, peaked\_cap, breasts, low\_twintails, aqua\_eyes, large\_breasts, blue\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
3cdf0c2f68e3db864395ede0e6409360ddec0d99
|
# Dataset of sendai/川内/川内 (Kantai Collection)
This is the dataset of sendai/川内/川内 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `two_side_up, brown_eyes, short_hair, brown_hair, hair_ornament, bangs, black_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:------------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 567.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sendai_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 362.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sendai_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1248 | 764.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sendai_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 516.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sendai_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1248 | 1005.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sendai_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/sendai_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, elbow_gloves, solo, serafuku, smile, torpedo, white_scarf, looking_at_viewer, skirt, fingerless_gloves, single_thighhigh |
| 1 | 7 |  |  |  |  |  | 1girl, double-breasted, elbow_gloves, serafuku, solo, fingerless_gloves, looking_at_viewer, smile, white_scarf, black_gloves, blush, skirt |
| 2 | 5 |  |  |  |  |  | 1girl, black_gloves, black_neckerchief, double-breasted, elbow_gloves, serafuku, smile, solo, upper_body, white_scarf, fingerless_gloves, looking_at_viewer, simple_background, white_background, blush, white_sailor_collar, hair_between_eyes, open_mouth |
| 3 | 6 |  |  |  |  |  | 1girl, black_gloves, black_neckerchief, black_skirt, black_thighhighs, cowboy_shot, double-breasted, elbow_gloves, fingerless_gloves, looking_at_viewer, serafuku, single_thighhigh, solo, white_scarf, pleated_skirt, smile, open_mouth |
| 4 | 5 |  |  |  |  |  | 1girl, elbow_gloves, serafuku, solo, looking_at_viewer, open_mouth, :d, black_gloves, pleated_skirt, blush, neckerchief |
| 5 | 5 |  |  |  |  |  | 1girl, alternate_costume, looking_at_viewer, school_uniform, solo, :d, blush, hair_between_eyes, long_sleeves, open_mouth, pleated_skirt, red_bowtie, simple_background, twitter_username, white_scarf, black_jacket, blazer, blue_skirt, cardigan, cowboy_shot, grey_skirt, holding_food, open_clothes, plaid, white_background, white_shirt |
| 6 | 18 |  |  |  |  |  | 1girl, alternate_costume, kimono, looking_at_viewer, solo, smile, hair_between_eyes, obi, wide_sleeves, blush, long_sleeves, floral_print, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | solo | serafuku | smile | torpedo | white_scarf | looking_at_viewer | skirt | fingerless_gloves | single_thighhigh | double-breasted | black_gloves | blush | black_neckerchief | upper_body | simple_background | white_background | white_sailor_collar | hair_between_eyes | open_mouth | black_skirt | black_thighhighs | cowboy_shot | pleated_skirt | :d | neckerchief | alternate_costume | school_uniform | long_sleeves | red_bowtie | twitter_username | black_jacket | blazer | blue_skirt | cardigan | grey_skirt | holding_food | open_clothes | plaid | white_shirt | kimono | obi | wide_sleeves | floral_print |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:-------|:-----------|:--------|:----------|:--------------|:--------------------|:--------|:--------------------|:-------------------|:------------------|:---------------|:--------|:--------------------|:-------------|:--------------------|:-------------------|:----------------------|:--------------------|:-------------|:--------------|:-------------------|:--------------|:----------------|:-----|:--------------|:--------------------|:-----------------|:---------------|:-------------|:-------------------|:---------------|:---------|:-------------|:-----------|:-------------|:---------------|:---------------|:--------|:--------------|:---------|:------|:---------------|:---------------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | X | X | | X | X | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | X | | X | X | | X | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | X | X | X | X | | X | X | | X | X | X | X | | X | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | X | X | X | | | | X | | | | | X | X | | | | | | | X | | | | X | X | X | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | | X | | | | X | X | | | | | | X | | | X | X | | X | X | | | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | |
| 6 | 18 |  |  |  |  |  | X | | X | | X | | | X | | | | | | X | | | | | | X | X | | | | | | | X | | X | | | | | | | | | | | | X | X | X | X |
|
CyberHarem/sendai_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T13:36:08+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T23:46:31+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of sendai/川内/川内 (Kantai Collection)
===========================================
This is the dataset of sendai/川内/川内 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'two\_side\_up, brown\_eyes, short\_hair, brown\_hair, hair\_ornament, bangs, black\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
b22c3ef0d5d912dadad449dda1414fe1680a208d
|
# Dataset Card for "mascir_elderly_voice"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
aviroes/mascir_elderly_voice
|
[
"region:us"
] |
2023-08-19T13:56:17+00:00
|
{"dataset_info": {"features": [{"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}, {"name": "sentence", "dtype": "string"}, {"name": "up_votes", "dtype": "int64"}, {"name": "down_votes", "dtype": "int64"}, {"name": "age", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "segment", "dtype": "string"}], "splits": [{"name": "validated", "num_bytes": 744166102.2652498, "num_examples": 21211}], "download_size": 877313436, "dataset_size": 744166102.2652498}, "configs": [{"config_name": "default", "data_files": [{"split": "validated", "path": "data/validated-*"}]}]}
|
2023-08-19T13:57:14+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "mascir_elderly_voice"
More Information needed
|
[
"# Dataset Card for \"mascir_elderly_voice\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"mascir_elderly_voice\"\n\nMore Information needed"
] |
[
6,
19
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"mascir_elderly_voice\"\n\nMore Information needed"
] |
a07af16eef78290d396a24ae5ebd4fbb9968a792
|
# Dataset Card for "cars_model_prompts_SDXL"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Falah/cars_model_prompts_SDXL
|
[
"region:us"
] |
2023-08-19T14:01:21+00:00
|
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 510779151, "num_examples": 1000000}], "download_size": 68860564, "dataset_size": 510779151}}
|
2023-08-20T09:10:54+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "cars_model_prompts_SDXL"
More Information needed
|
[
"# Dataset Card for \"cars_model_prompts_SDXL\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"cars_model_prompts_SDXL\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"cars_model_prompts_SDXL\"\n\nMore Information needed"
] |
7d1e8dcfbee9e34414a9c50f5415c606431eb2b7
|
# Dataset Card for "vishing_data_3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
BaekRok/vishing_data_3
|
[
"region:us"
] |
2023-08-19T14:01:23+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "labels", "list": [{"name": "start", "dtype": "float64"}, {"name": "text", "dtype": "string"}, {"name": "end", "dtype": "float64"}, {"name": "speaker", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "seg_num", "dtype": "int64"}, {"name": "total_seg", "dtype": "int64"}]}, {"name": "prob", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 63272599622.8, "num_examples": 16496}, {"name": "validation", "num_bytes": 8038911926.9, "num_examples": 2071}, {"name": "test", "num_bytes": 8566637155.26, "num_examples": 2156}], "download_size": 7301508547, "dataset_size": 79878148704.95999}}
|
2023-08-19T22:03:44+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "vishing_data_3"
More Information needed
|
[
"# Dataset Card for \"vishing_data_3\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"vishing_data_3\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"vishing_data_3\"\n\nMore Information needed"
] |
6f01b0aef80a456b2e150de8f186143afeac68ba
|
# Dataset Card for "italian-dataset-deepl"
English to italian translation made with Deepl API of waste-classification-v2 dataset (500 first rows).
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
thomasavare/italian-dataset-deepl
|
[
"language:en",
"language:it",
"region:us"
] |
2023-08-19T14:12:08+00:00
|
{"language": ["en", "it"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "english", "dtype": "string"}, {"name": "italian", "dtype": "string"}, {"name": "Class", "dtype": "string"}, {"name": "Class_index", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 62294, "num_examples": 500}], "download_size": 22849, "dataset_size": 62294}}
|
2023-11-22T23:58:43+00:00
|
[] |
[
"en",
"it"
] |
TAGS
#language-English #language-Italian #region-us
|
# Dataset Card for "italian-dataset-deepl"
English to italian translation made with Deepl API of waste-classification-v2 dataset (500 first rows).
More Information needed
|
[
"# Dataset Card for \"italian-dataset-deepl\"\n\nEnglish to italian translation made with Deepl API of waste-classification-v2 dataset (500 first rows).\n\nMore Information needed"
] |
[
"TAGS\n#language-English #language-Italian #region-us \n",
"# Dataset Card for \"italian-dataset-deepl\"\n\nEnglish to italian translation made with Deepl API of waste-classification-v2 dataset (500 first rows).\n\nMore Information needed"
] |
[
15,
45
] |
[
"passage: TAGS\n#language-English #language-Italian #region-us \n# Dataset Card for \"italian-dataset-deepl\"\n\nEnglish to italian translation made with Deepl API of waste-classification-v2 dataset (500 first rows).\n\nMore Information needed"
] |
0ffae814ddf045d93191786a59c54e9baa57a141
|
# Dataset of murakumo/叢雲 (Kantai Collection)
This is the dataset of murakumo/叢雲 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, ribbon, hair_ribbon, headgear, grey_hair, bangs, sidelocks, orange_eyes, tress_ribbon, blunt_bangs, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 570.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakumo_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 359.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakumo_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1230 | 778.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakumo_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 524.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakumo_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1230 | 1.00 GiB | [Download](https://huggingface.co/datasets/CyberHarem/murakumo_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/murakumo_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, black_pantyhose, gloves, necktie, solo, thighband_pantyhose, looking_at_viewer, sailor_dress, smile, white_hair |
| 1 | 7 |  |  |  |  |  | 1girl, black_pantyhose, red_necktie, short_eyebrows, solo, gloves, strapless_dress, thighband_pantyhose, white_background, looking_at_viewer, simple_background, sailor_dress, open_mouth, white_dress |
| 2 | 5 |  |  |  |  |  | 1girl, solo, looking_at_viewer, red_eyes, sailor_dress, serafuku, blue_hair, blush, upper_body |
| 3 | 7 |  |  |  |  |  | 1girl, blush, medium_breasts, navel, solo, looking_at_viewer, nipples, nude, very_long_hair, arms_up, blue_hair, collarbone, pussy, red_eyes |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | black_pantyhose | gloves | necktie | solo | thighband_pantyhose | looking_at_viewer | sailor_dress | smile | white_hair | red_necktie | short_eyebrows | strapless_dress | white_background | simple_background | open_mouth | white_dress | red_eyes | serafuku | blue_hair | blush | upper_body | medium_breasts | navel | nipples | nude | very_long_hair | arms_up | collarbone | pussy |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:------------------|:---------|:----------|:-------|:----------------------|:--------------------|:---------------|:--------|:-------------|:--------------|:-----------------|:------------------|:-------------------|:--------------------|:-------------|:--------------|:-----------|:-----------|:------------|:--------|:-------------|:-----------------|:--------|:----------|:-------|:-----------------|:----------|:-------------|:--------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | | X | X | X | X | | | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | | | | X | | X | X | | | | | | | | | | X | X | X | X | X | | | | | | | | |
| 3 | 7 |  |  |  |  |  | X | | | | X | | X | | | | | | | | | | | X | | X | X | | X | X | X | X | X | X | X | X |
|
CyberHarem/murakumo_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T14:12:13+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:14:04+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of murakumo/叢雲 (Kantai Collection)
==========================================
This is the dataset of murakumo/叢雲 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, ribbon, hair\_ribbon, headgear, grey\_hair, bangs, sidelocks, orange\_eyes, tress\_ribbon, blunt\_bangs, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
02c7a8cfec7ed96af9130cfd50e7d1005c291eb3
|
# Dataset Card for "sci_fi_fighter_plane_prompts_SDXL"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Falah/sci_fi_fighter_plane_prompts_SDXL
|
[
"region:us"
] |
2023-08-19T14:13:37+00:00
|
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 581050176, "num_examples": 1000000}], "download_size": 76478423, "dataset_size": 581050176}}
|
2023-08-19T14:13:48+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "sci_fi_fighter_plane_prompts_SDXL"
More Information needed
|
[
"# Dataset Card for \"sci_fi_fighter_plane_prompts_SDXL\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"sci_fi_fighter_plane_prompts_SDXL\"\n\nMore Information needed"
] |
[
6,
25
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"sci_fi_fighter_plane_prompts_SDXL\"\n\nMore Information needed"
] |
70a1ea702023829537c9ad1df4c9e52f1e01504f
|
# Dataset of inazuma/電/이나즈마 (Kantai Collection)
This is the dataset of inazuma/電/이나즈마 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, folded_ponytail, brown_eyes, long_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 432.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/inazuma_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 314.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/inazuma_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1200 | 669.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/inazuma_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 409.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/inazuma_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1200 | 828.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/inazuma_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/inazuma_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 29 |  |  |  |  |  | 1girl, serafuku, solo, black_skirt, long_sleeves, pleated_skirt, red_neckerchief, looking_at_viewer, black_sailor_collar, anchor_symbol, hair_between_eyes, blush, white_background, simple_background, smile, white_shirt, cowboy_shot, open_mouth |
| 1 | 19 |  |  |  |  |  | 1girl, looking_at_viewer, serafuku, solo, open_mouth, neckerchief, blush, smile, pleated_skirt |
| 2 | 7 |  |  |  |  |  | 1girl, looking_at_viewer, red_neckerchief, serafuku, solo, upper_body, anchor_symbol, black_sailor_collar, long_sleeves, hair_between_eyes, blush, simple_background, smile, white_background |
| 3 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, serafuku, skirt, smile, solo, blush, wariza |
| 4 | 6 |  |  |  |  |  | 1girl, cat_ears, cat_tail, looking_at_viewer, open_mouth, serafuku, solo, blush, kemonomimi_mode, neckerchief, pleated_skirt, smile |
| 5 | 10 |  |  |  |  |  | open_mouth, serafuku, 2girls, hairclip, short_hair, fang, red_neckerchief, blush, hat, pleated_skirt, solo_focus, :d, looking_at_viewer, long_sleeves |
| 6 | 11 |  |  |  |  |  | 1girl, solo, alternate_costume, looking_at_viewer, smile, blush, open_mouth, yukata, obi, floral_print |
| 7 | 7 |  |  |  |  |  | 1girl, apron, looking_at_viewer, solo, enmaided, blush, maid_headdress, heart, open_mouth, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | serafuku | solo | black_skirt | long_sleeves | pleated_skirt | red_neckerchief | looking_at_viewer | black_sailor_collar | anchor_symbol | hair_between_eyes | blush | white_background | simple_background | smile | white_shirt | cowboy_shot | open_mouth | neckerchief | upper_body | skirt | wariza | cat_ears | cat_tail | kemonomimi_mode | 2girls | hairclip | short_hair | fang | hat | solo_focus | :d | alternate_costume | yukata | obi | floral_print | apron | enmaided | maid_headdress | heart |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:-------|:--------------|:---------------|:----------------|:------------------|:--------------------|:----------------------|:----------------|:--------------------|:--------|:-------------------|:--------------------|:--------|:--------------|:--------------|:-------------|:--------------|:-------------|:--------|:---------|:-----------|:-----------|:------------------|:---------|:-----------|:-------------|:-------|:------|:-------------|:-----|:--------------------|:---------|:------|:---------------|:--------|:-----------|:-----------------|:--------|
| 0 | 29 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 19 |  |  |  |  |  | X | X | X | | | X | | X | | | | X | | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | X | X | | X | | X | X | X | X | X | X | X | X | X | | | | | X | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | X | X | | | | | X | | | | X | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | X | | | X | | X | | | | X | | | X | | | X | X | | | | X | X | X | | | | | | | | | | | | | | | |
| 5 | 10 |  |  |  |  |  | | X | | | X | X | X | X | | | | X | | | | | | X | | | | | | | | X | X | X | X | X | X | X | | | | | | | | |
| 6 | 11 |  |  |  |  |  | X | | X | | | | | X | | | | X | | | X | | | X | | | | | | | | | | | | | | | X | X | X | X | | | | |
| 7 | 7 |  |  |  |  |  | X | | X | | | | | X | | | | X | | | X | | | X | | | | | | | | | | | | | | | | | | | X | X | X | X |
|
CyberHarem/inazuma_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T14:17:38+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:12:06+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of inazuma/電/이나즈마 (Kantai Collection)
=============================================
This is the dataset of inazuma/電/이나즈마 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, folded\_ponytail, brown\_eyes, long\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
da32b487e5340d52ce7f3de7ce58f9013ca1defa
|
This is the shuffled version of medtext_1, so the datapoints are in random order and not sorted by category. This is to prevent catastrophic forgetting by category.
This is a medical diagnosis dataset containing over 1000 top notch textbook quality patient presentations and diagnosis/treatments. The 100 most common diseases and the 30 most common injuries people go to the hospital with, are, among others, fully captured in the dataset, with multiple datapoints for each ranging from mild to complicated to severe. Full list below. The dataset also contains completions about the nature of the AI itself, that it never can replace a doctor and always emphasizes to go to a professional and some nonsensical or doubtful presentations. A model trained on this dataset explicitly tells when it CANNOT answer with confidence or if the presentation is insufficient. This is to prevent hallucinations.
Medtext is a free to use (CC BY 4.0) dataset of over 1000 patient presentations and their diagnosis/treatment plans.
This is original data, converted into uniform datapoints using GPT-4.
We then pulled 10 random examples of the dataset and showed them to 3 different doctors, 2 of them involved and 1 of them uninvolved, and they all categorize the quality as „textbook quality“.
It’s content includes:
NOISE/DATA POLLUTION
*Dismissing of non-medical or non-psychological issues
*specifically asking for more information / admitting no possible diagnosis with confidence if insufficient data
*conflicting/contradicting and irrelevant information
*cases where symptoms are misleading to seemingly obvious diagnosis but actually being something different
*information about the model (What are you? What can you do? Are you able to replace a doctor? This is to make the model humble and always emphasize that it can never replace a professional and it is just there to do some substitute analysis)
MISC
*emergency cases / first aid / almost fatal njuries that require emergency surgery
*injuries from crimes
*sexual injuries and STDs
*Infant specific cases
*Gynecological and urological cases
*genetic anomalies
*Previous medical mishandling
*Abuse/Overdosing/Misuse of drugs
*Cross side effects of drugs
ANALYSIS
*Textual analysis of blood tests, ultrasound, CT, MRI and X-ray examinations.
INJURIES:
* Sprains and strains
* Fractures
* Contusions (bruises)
* Cuts and lacerations
* Concussions
* Burns
* Dislocations
* Abrasions (scrapes)
* Whiplash injuries
* Eye injuries
* Puncture wounds
* Bites and stings
* Back injuries
* Broken nose
* Knee injuries
* Ankle injuries
* Shoulder injuries
* Wrist injuries
* Chest injuries
* Head injuries
DISEASES:
* Acne
* Allergies
* Alzheimer's Disease
* Anemia
* Angina
* Anxiety Disorders
* Arthritis
* Asthma
* Atherosclerosis
* Athlete's Foot
* Attention Deficit Hyperactivity Disorder (ADHD)
* Autism Spectrum Disorder
* Back Pain
* Bipolar Disorder
* Bronchitis
* Cataracts
* Chickenpox
* Chronic Obstructive Pulmonary Disease (COPD)
* Common Cold
* Conjunctivitis (Pink Eye)
* Constipation
* Coronary Heart Disease
* Cystitis
* Dementia
* Depression
* Diabetes Type 1
* Diabetes Type 2
* Diarrhea
* Diverticulitis
* Dizziness (Vertigo)
* Ear Infections
* Eczema
* Endometriosis
* Erectile Dysfunction
* Fibromyalgia
* Flu (Influenza)
* Food Poisoning
* Gallstones
* Gastroenteritis
* Gastroesophageal Reflux Disease (GERD)
* Gout
* Hay Fever (Allergic Rhinitis)
* Headaches
* Heart Failure
* Hemorrhoids
* Hepatitis B
* Hepatitis C
* Herpes Simplex Virus (HSV)
* High Blood Pressure (Hypertension)
* High Cholesterol (Hypercholesterolemia)
* HIV/AIDS
* Hyperthyroidism (Overactive Thyroid)
* Hypothyroidism (Underactive Thyroid)
* Inflammatory Bowel Disease (Including Crohn's and Ulcerative Colitis)
* Insomnia
* Iron Deficiency Anemia
* Irritable Bowel Syndrome (IBS)
* Kidney Stones
* Lactose Intolerance
* Lyme Disease
* Macular Degeneration
* Malaria
* Menopause
* Migraine
* Multiple Sclerosis
* Obesity
* Osteoarthritis
* Osteoporosis
* Otitis Media (Middle Ear Infection)
* Pancreatitis
* Parkinson's Disease
* Peptic Ulcers
* Periodontal Disease
* Pneumonia
* Polycystic Ovary Syndrome (PCOS)
* Prostate Enlargement (Benign Prostatic Hyperplasia)
* Psoriasis
* Pulmonary Embolism
* Restless Legs Syndrome
* Rheumatoid Arthritis
* Rosacea
* Schizophrenia
* Sciatica
* Scoliosis
* Seasonal Affective Disorder (SAD)
* Sinusitis
* Skin Cancer
* Sleep Apnea
* Strokes
* Tendonitis
* Tonsillitis
* Tuberculosis
* Urinary Tract Infection (UTI)
* Varicose Veins
* Vitiligo
* Yeast Infection (Candidiasis)
* Zika Virus
# Dataset card from [BI55/MedText](https://huggingface.co/datasets/BI55/MedText)
|
Photolens/MedText-llama-2
|
[
"license:cc-by-4.0",
"region:us"
] |
2023-08-19T14:18:38+00:00
|
{"license": "cc-by-4.0", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 971728, "num_examples": 1412}], "download_size": 499669, "dataset_size": 971728}}
|
2023-08-19T17:26:13+00:00
|
[] |
[] |
TAGS
#license-cc-by-4.0 #region-us
|
This is the shuffled version of medtext_1, so the datapoints are in random order and not sorted by category. This is to prevent catastrophic forgetting by category.
This is a medical diagnosis dataset containing over 1000 top notch textbook quality patient presentations and diagnosis/treatments. The 100 most common diseases and the 30 most common injuries people go to the hospital with, are, among others, fully captured in the dataset, with multiple datapoints for each ranging from mild to complicated to severe. Full list below. The dataset also contains completions about the nature of the AI itself, that it never can replace a doctor and always emphasizes to go to a professional and some nonsensical or doubtful presentations. A model trained on this dataset explicitly tells when it CANNOT answer with confidence or if the presentation is insufficient. This is to prevent hallucinations.
Medtext is a free to use (CC BY 4.0) dataset of over 1000 patient presentations and their diagnosis/treatment plans.
This is original data, converted into uniform datapoints using GPT-4.
We then pulled 10 random examples of the dataset and showed them to 3 different doctors, 2 of them involved and 1 of them uninvolved, and they all categorize the quality as „textbook quality“.
It’s content includes:
NOISE/DATA POLLUTION
*Dismissing of non-medical or non-psychological issues
*specifically asking for more information / admitting no possible diagnosis with confidence if insufficient data
*conflicting/contradicting and irrelevant information
*cases where symptoms are misleading to seemingly obvious diagnosis but actually being something different
*information about the model (What are you? What can you do? Are you able to replace a doctor? This is to make the model humble and always emphasize that it can never replace a professional and it is just there to do some substitute analysis)
MISC
*emergency cases / first aid / almost fatal njuries that require emergency surgery
*injuries from crimes
*sexual injuries and STDs
*Infant specific cases
*Gynecological and urological cases
*genetic anomalies
*Previous medical mishandling
*Abuse/Overdosing/Misuse of drugs
*Cross side effects of drugs
ANALYSIS
*Textual analysis of blood tests, ultrasound, CT, MRI and X-ray examinations.
INJURIES:
* Sprains and strains
* Fractures
* Contusions (bruises)
* Cuts and lacerations
* Concussions
* Burns
* Dislocations
* Abrasions (scrapes)
* Whiplash injuries
* Eye injuries
* Puncture wounds
* Bites and stings
* Back injuries
* Broken nose
* Knee injuries
* Ankle injuries
* Shoulder injuries
* Wrist injuries
* Chest injuries
* Head injuries
DISEASES:
* Acne
* Allergies
* Alzheimer's Disease
* Anemia
* Angina
* Anxiety Disorders
* Arthritis
* Asthma
* Atherosclerosis
* Athlete's Foot
* Attention Deficit Hyperactivity Disorder (ADHD)
* Autism Spectrum Disorder
* Back Pain
* Bipolar Disorder
* Bronchitis
* Cataracts
* Chickenpox
* Chronic Obstructive Pulmonary Disease (COPD)
* Common Cold
* Conjunctivitis (Pink Eye)
* Constipation
* Coronary Heart Disease
* Cystitis
* Dementia
* Depression
* Diabetes Type 1
* Diabetes Type 2
* Diarrhea
* Diverticulitis
* Dizziness (Vertigo)
* Ear Infections
* Eczema
* Endometriosis
* Erectile Dysfunction
* Fibromyalgia
* Flu (Influenza)
* Food Poisoning
* Gallstones
* Gastroenteritis
* Gastroesophageal Reflux Disease (GERD)
* Gout
* Hay Fever (Allergic Rhinitis)
* Headaches
* Heart Failure
* Hemorrhoids
* Hepatitis B
* Hepatitis C
* Herpes Simplex Virus (HSV)
* High Blood Pressure (Hypertension)
* High Cholesterol (Hypercholesterolemia)
* HIV/AIDS
* Hyperthyroidism (Overactive Thyroid)
* Hypothyroidism (Underactive Thyroid)
* Inflammatory Bowel Disease (Including Crohn's and Ulcerative Colitis)
* Insomnia
* Iron Deficiency Anemia
* Irritable Bowel Syndrome (IBS)
* Kidney Stones
* Lactose Intolerance
* Lyme Disease
* Macular Degeneration
* Malaria
* Menopause
* Migraine
* Multiple Sclerosis
* Obesity
* Osteoarthritis
* Osteoporosis
* Otitis Media (Middle Ear Infection)
* Pancreatitis
* Parkinson's Disease
* Peptic Ulcers
* Periodontal Disease
* Pneumonia
* Polycystic Ovary Syndrome (PCOS)
* Prostate Enlargement (Benign Prostatic Hyperplasia)
* Psoriasis
* Pulmonary Embolism
* Restless Legs Syndrome
* Rheumatoid Arthritis
* Rosacea
* Schizophrenia
* Sciatica
* Scoliosis
* Seasonal Affective Disorder (SAD)
* Sinusitis
* Skin Cancer
* Sleep Apnea
* Strokes
* Tendonitis
* Tonsillitis
* Tuberculosis
* Urinary Tract Infection (UTI)
* Varicose Veins
* Vitiligo
* Yeast Infection (Candidiasis)
* Zika Virus
# Dataset card from BI55/MedText
|
[
"# Dataset card from BI55/MedText"
] |
[
"TAGS\n#license-cc-by-4.0 #region-us \n",
"# Dataset card from BI55/MedText"
] |
[
15,
10
] |
[
"passage: TAGS\n#license-cc-by-4.0 #region-us \n# Dataset card from BI55/MedText"
] |
c760f9f878f00b481548c334e32e66eb5419307e
|
# Dataset Card for "action_actor_prompts_SDXL"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Falah/action_actor_prompts_SDXL
|
[
"region:us"
] |
2023-08-19T14:23:57+00:00
|
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 709387340, "num_examples": 1000000}], "download_size": 85090582, "dataset_size": 709387340}}
|
2023-08-19T14:24:07+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "action_actor_prompts_SDXL"
More Information needed
|
[
"# Dataset Card for \"action_actor_prompts_SDXL\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"action_actor_prompts_SDXL\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"action_actor_prompts_SDXL\"\n\nMore Information needed"
] |
5bd2c6cb48ce453a099d4619378660393b1d2410
|
Dataset with English words classified along CEFR categories, tokenized forms based on sentencepiece tokenizer.
License based on foundational dataset, accessible at: http://www.englishprofile.org/wordlists/terms-of-use
|
miesepeter/CEFR_vocab_tokens
|
[
"license:other",
"region:us"
] |
2023-08-19T14:42:01+00:00
|
{"license": "other"}
|
2023-09-09T21:33:16+00:00
|
[] |
[] |
TAGS
#license-other #region-us
|
Dataset with English words classified along CEFR categories, tokenized forms based on sentencepiece tokenizer.
License based on foundational dataset, accessible at: URL
|
[] |
[
"TAGS\n#license-other #region-us \n"
] |
[
11
] |
[
"passage: TAGS\n#license-other #region-us \n"
] |
d31998f5fee56b1c1774492f3848715ce25ba07c
|
# Dataset of atago/愛宕 (Kantai Collection)
This is the dataset of atago/愛宕 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blonde_hair, long_hair, breasts, large_breasts, hat, green_eyes, beret, blue_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 620.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/atago_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 382.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/atago_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1203 | 794.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/atago_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 560.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/atago_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1203 | 1.05 GiB | [Download](https://huggingface.co/datasets/CyberHarem/atago_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/atago_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, black_gloves, blush, looking_at_viewer, military_uniform, open_mouth, simple_background, smile, solo, white_background, black_pantyhose, blue_headwear |
| 1 | 14 |  |  |  |  |  | 1girl, black_gloves, blush, looking_at_viewer, military_uniform, open_mouth, smile, solo, black_pantyhose |
| 2 | 5 |  |  |  |  |  | 1girl, black_gloves, blush, looking_at_viewer, military_uniform, panties_under_pantyhose, solo, black_pantyhose, open_mouth, smile, crotch_seam |
| 3 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, military_uniform, simple_background, solo, white_background, blush, smile, upper_body, blue_headwear, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | black_gloves | blush | looking_at_viewer | military_uniform | open_mouth | simple_background | smile | solo | white_background | black_pantyhose | blue_headwear | panties_under_pantyhose | crotch_seam | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------|:--------------------|:-------------------|:-------------|:--------------------|:--------|:-------|:-------------------|:------------------|:----------------|:--------------------------|:--------------|:-------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | |
| 1 | 14 |  |  |  |  |  | X | X | X | X | X | X | | X | X | | X | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | X | X | | X | X | | X | | X | X | |
| 3 | 6 |  |  |  |  |  | X | | X | X | X | X | X | X | X | X | | X | | | X |
|
CyberHarem/atago_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T14:55:13+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:06:11+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of atago/愛宕 (Kantai Collection)
=======================================
This is the dataset of atago/愛宕 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, breasts, large\_breasts, hat, green\_eyes, beret, blue\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
afff854fd27fa90bf6353744996d56519efd6e60
|
# Dataset of musashi (Kantai Collection)
This is the dataset of musashi (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `dark-skinned_female, dark_skin, breasts, long_hair, glasses, large_breasts, hair_between_eyes, twintails, white_hair, brown_eyes, red_eyes, grey_hair, very_long_hair, semi-rimless_eyewear`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:------------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 963.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/musashi_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 451.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/musashi_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1288 | 1010.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/musashi_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 801.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/musashi_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1288 | 1.56 GiB | [Download](https://huggingface.co/datasets/CyberHarem/musashi_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/musashi_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 10 |  |  |  |  |  | 1girl, puffy_short_sleeves, rectangular_eyewear, solo, dated, enmaided, grey-framed_eyewear, white_apron, maid_apron, maid_headdress, cleavage, elbow_gloves, frilled_apron, pointy_hair, waist_apron, white_gloves, black_dress, signature, choker, frilled_dress, huge_breasts, upper_body |
| 1 | 5 |  |  |  |  |  | 1girl, alternate_costume, huge_breasts, rectangular_eyewear, black_nails, cleavage, dated, navel, solo, black_bikini, blush, grey-framed_eyewear, maid_headdress, bra, choker, cowboy_shot, detached_sleeves, eyewear_on_head, frilled_bikini, front-tie_top, maid_bikini, wedding_ring |
| 2 | 7 |  |  |  |  |  | 1girl, cleavage, fake_animal_ears, rectangular_eyewear, solo, alternate_costume, detached_collar, rabbit_ears, black_nails, bowtie, cowboy_shot, blush, huge_breasts, looking_at_viewer, playboy_bunny, strapless_leotard, thighhighs, wedding_ring, black_leotard, black_pantyhose, grey-framed_eyewear, highleg, navel, wrist_cuffs |
| 3 | 15 |  |  |  |  |  | 1girl, solo, black_nails, blush, collarbone, looking_at_viewer, navel, cleavage, smile, black_thighhighs, lingerie, garter_belt, sitting, black_panties, black_bra, indoors, white_panties |
| 4 | 16 |  |  |  |  |  | 1girl, solo, blush, looking_at_viewer, navel, nipples, black_nails, smile, collarbone, completely_nude, nail_polish, censored, sitting, barefoot, pussy |
| 5 | 18 |  |  |  |  |  | 1girl, rectangular_eyewear, solo, upper_body, dated, headgear, grey-framed_eyewear, looking_at_viewer, sakuramon, black_nails, smile, blush, wedding_ring, nail_polish |
| 6 | 5 |  |  |  |  |  | 1girl, black_gloves, blonde_hair, budget_sarashi, headgear, looking_at_viewer, miniskirt, pointy_hair, solo, two_side_up, black_thighhighs, fingerless_gloves, red_skirt, simple_background, navel, white_background, zettai_ryouiki, pleated_skirt |
| 7 | 6 |  |  |  |  |  | 1girl, black_gloves, blonde_hair, budget_sarashi, fingerless_gloves, headgear, looking_at_viewer, miniskirt, pointy_hair, red_skirt, solo, two_side_up, zettai_ryouiki, black_thighhighs, machinery, navel, turret, ammunition, between_breasts, cannon, smile, hand_on_hip, pleated_skirt, sakuramon |
| 8 | 7 |  |  |  |  |  | 1girl, black_thighhighs, dated, grey-framed_eyewear, looking_at_viewer, rectangular_eyewear, smile, solo, grey_nails, pleated_skirt, sitting, wedding_ring, black_nails, blush, forehead, nail_polish, headgear, sakuramon, signature, miniskirt |
| 9 | 10 |  |  |  |  |  | 1girl, alternate_costume, blush, grey-framed_eyewear, looking_at_viewer, rectangular_eyewear, solo, black_nails, obi, smile, hair_flower, upper_body, wedding_ring, black_kimono, floral_print, wide_sleeves, dated, holding_umbrella, oil-paper_umbrella, signature, striped |
| 10 | 14 |  |  |  |  |  | 1girl, black_gloves, headgear, partially_fingerless_gloves, solo, blush, black_thighhighs, looking_at_viewer, smile, black_nails, closed_mouth, cape, simple_background, pleated_skirt, white_background |
| 11 | 9 |  |  |  |  |  | 1girl, ass, blush, looking_at_viewer, looking_back, solo, smile, completely_nude, from_behind |
| 12 | 6 |  |  |  |  |  | 1girl, alternate_costume, blush, looking_at_viewer, solo, full_body, simple_background, standing, white_background, bangs, floral_print, grey-framed_eyewear, braid, china_dress, closed_mouth, high_heels, rectangular_eyewear, side_slit, sleeveless_dress |
| 13 | 6 |  |  |  |  |  | 1girl, alternate_costume, blush, full_body, simple_background, solo, high_heels, white_background, white_shirt, black_footwear, black_skirt, jacket, looking_at_viewer, alternate_hairstyle, bag, black_nails, coat, eyewear_on_head, long_skirt, long_sleeves, nail_polish, pantyhose, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | puffy_short_sleeves | rectangular_eyewear | solo | dated | enmaided | grey-framed_eyewear | white_apron | maid_apron | maid_headdress | cleavage | elbow_gloves | frilled_apron | pointy_hair | waist_apron | white_gloves | black_dress | signature | choker | frilled_dress | huge_breasts | upper_body | alternate_costume | black_nails | navel | black_bikini | blush | bra | cowboy_shot | detached_sleeves | eyewear_on_head | frilled_bikini | front-tie_top | maid_bikini | wedding_ring | fake_animal_ears | detached_collar | rabbit_ears | bowtie | looking_at_viewer | playboy_bunny | strapless_leotard | thighhighs | black_leotard | black_pantyhose | highleg | wrist_cuffs | collarbone | smile | black_thighhighs | lingerie | garter_belt | sitting | black_panties | black_bra | indoors | white_panties | nipples | completely_nude | nail_polish | censored | barefoot | pussy | headgear | sakuramon | black_gloves | blonde_hair | budget_sarashi | miniskirt | two_side_up | fingerless_gloves | red_skirt | simple_background | white_background | zettai_ryouiki | pleated_skirt | machinery | turret | ammunition | between_breasts | cannon | hand_on_hip | grey_nails | forehead | obi | hair_flower | black_kimono | floral_print | wide_sleeves | holding_umbrella | oil-paper_umbrella | striped | partially_fingerless_gloves | closed_mouth | cape | ass | looking_back | from_behind | full_body | standing | bangs | braid | china_dress | high_heels | side_slit | sleeveless_dress | white_shirt | black_footwear | black_skirt | jacket | alternate_hairstyle | bag | coat | long_skirt | long_sleeves | pantyhose |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:----------------------|:----------------------|:-------|:--------|:-----------|:----------------------|:--------------|:-------------|:-----------------|:-----------|:---------------|:----------------|:--------------|:--------------|:---------------|:--------------|:------------|:---------|:----------------|:---------------|:-------------|:--------------------|:--------------|:--------|:---------------|:--------|:------|:--------------|:-------------------|:------------------|:-----------------|:----------------|:--------------|:---------------|:-------------------|:------------------|:--------------|:---------|:--------------------|:----------------|:--------------------|:-------------|:----------------|:------------------|:----------|:--------------|:-------------|:--------|:-------------------|:-----------|:--------------|:----------|:----------------|:------------|:----------|:----------------|:----------|:------------------|:--------------|:-----------|:-----------|:--------|:-----------|:------------|:---------------|:--------------|:-----------------|:------------|:--------------|:--------------------|:------------|:--------------------|:-------------------|:-----------------|:----------------|:------------|:---------|:-------------|:------------------|:---------|:--------------|:-------------|:-----------|:------|:--------------|:---------------|:---------------|:---------------|:-------------------|:---------------------|:----------|:------------------------------|:---------------|:-------|:------|:---------------|:--------------|:------------|:-----------|:--------|:--------|:--------------|:-------------|:------------|:-------------------|:--------------|:-----------------|:--------------|:---------|:----------------------|:------|:-------|:-------------|:---------------|:------------|
| 0 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | | X | X | X | | X | | | X | X | | | | | | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | | X | X | | | X | | | | X | | | | | | | | | | X | | X | X | X | | X | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 15 |  |  |  |  |  | X | | | X | | | | | | | X | | | | | | | | | | | | | X | X | | X | | | | | | | | | | | | | X | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 16 |  |  |  |  |  | X | | | X | | | | | | | | | | | | | | | | | | | | X | X | | X | | | | | | | | | | | | | X | | | | | | | | X | X | | | | X | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 18 |  |  |  |  |  | X | | X | X | X | | X | | | | | | | | | | | | | | | X | | X | | | X | | | | | | | | X | | | | | X | | | | | | | | | X | | | | | | | | | | | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | | X | | | | | | | | | | X | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 6 |  |  |  |  |  | X | | | X | | | | | | | | | | X | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | | | | X | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 7 |  |  |  |  |  | X | | X | X | X | | X | | | | | | | | | | | X | | | | | | X | | | X | | | | | | | | X | | | | | X | | | | | | | | | X | X | | | X | | | | | | | X | | | | X | X | | | | X | | | | | | | X | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 10 |  |  |  |  |  | X | | X | X | X | | X | | | | | | | | | | | X | | | | X | X | X | | | X | | | | | | | | X | | | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 14 |  |  |  |  |  | X | | | X | | | | | | | | | | | | | | | | | | | | X | | | X | | | | | | | | | | | | | X | | | | | | | | | X | X | | | | | | | | | | | | | | X | | X | | | | | | | X | X | | X | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 11 | 9 |  |  |  |  |  | X | | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | |
| 12 | 6 |  |  |  |  |  | X | | X | X | | | X | | | | | | | | | | | | | | | | X | | | | X | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | X | | | | | | X | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 13 | 6 |  |  |  |  |  | X | | | X | | | | | | | | | | | | | | | | | | | X | X | | | X | | | | X | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | X | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | X | | | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/musashi_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T15:02:57+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T06:20:35+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of musashi (Kantai Collection)
======================================
This is the dataset of musashi (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'dark-skinned\_female, dark\_skin, breasts, long\_hair, glasses, large\_breasts, hair\_between\_eyes, twintails, white\_hair, brown\_eyes, red\_eyes, grey\_hair, very\_long\_hair, semi-rimless\_eyewear', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
33521603bf88bbe4fed4c186006f0e1e10e6a1f2
|
# Dataset Card for "sv_corpora_parliament_processed"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
KatMarie/sv_corpora_parliament_processed
|
[
"region:us"
] |
2023-08-19T15:04:03+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 292351437, "num_examples": 1892723}], "download_size": 161955796, "dataset_size": 292351437}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T15:04:11+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "sv_corpora_parliament_processed"
More Information needed
|
[
"# Dataset Card for \"sv_corpora_parliament_processed\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"sv_corpora_parliament_processed\"\n\nMore Information needed"
] |
[
6,
20
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"sv_corpora_parliament_processed\"\n\nMore Information needed"
] |
35b1ba76234c5e444540b551ef0b462b6a0f0432
|
# Dataset Card for "legal-reasoning-lfqa-synthetic"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
harshasurampudi/legal-reasoning-lfqa-synthetic
|
[
"size_categories:10K<n<100K",
"region:us"
] |
2023-08-19T15:06:52+00:00
|
{"size_categories": ["10K<n<100K"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "validation", "path": "data/validation-*"}]}], "dataset_info": {"features": [{"name": "Context", "dtype": "string"}, {"name": "Question", "dtype": "string"}, {"name": "Legal Reasoning", "dtype": "string"}, {"name": "Answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 31911499, "num_examples": 14991}, {"name": "test", "num_bytes": 3176252, "num_examples": 1497}, {"name": "validation", "num_bytes": 3186381, "num_examples": 1496}], "download_size": 21924127, "dataset_size": 38274132}}
|
2023-08-19T15:21:42+00:00
|
[] |
[] |
TAGS
#size_categories-10K<n<100K #region-us
|
# Dataset Card for "legal-reasoning-lfqa-synthetic"
More Information needed
|
[
"# Dataset Card for \"legal-reasoning-lfqa-synthetic\"\n\nMore Information needed"
] |
[
"TAGS\n#size_categories-10K<n<100K #region-us \n",
"# Dataset Card for \"legal-reasoning-lfqa-synthetic\"\n\nMore Information needed"
] |
[
18,
22
] |
[
"passage: TAGS\n#size_categories-10K<n<100K #region-us \n# Dataset Card for \"legal-reasoning-lfqa-synthetic\"\n\nMore Information needed"
] |
e36de0d7a9a4e9673dc8fab7e5f01ee170f93ef9
|
# ICDAR-2013.c
The ICDAR-2013.c dataset was released in 2023.
You can think of ICDAR-2013.c as a fork (a modified version, in this case by different authors) of the original ICDAR-2013 dataset from the ICDAR 2013 Table Competition.
It contains:
- manual corrections to minor annotation mistakes in the original dataset
- automated corrections (such as canonicalization) to correct oversegmentation and to make the dataset more consistent with other TSR datasets, like PubTables-1M
For more details about this version (2023) of the dataset and the manual corrections made to the original dataset, please see ["Aligning benchmark datasets for table structure recognition"](https://arxiv.org/abs/2303.00716).
For the code used to create this dataset, see [https://github.com/microsoft/table-transformer](https://github.com/microsoft/table-transformer).
## Citing
If you use this dataset in your published work, please cite:
```
@article{smock2023aligning,
title={Aligning benchmark datasets for table structure recognition},
author={Smock, Brandon and Pesala, Rohith and Abraham, Robin},
booktitle={International Conference on Document Analysis and Recognition},
pages={371--386},
year={2023},
organization={Springer}
}
```
## About the original IDCAR-2013 dataset
The original dataset was released as part of the ICDAR 2013 Table Competition.
It can be downloaded [here](https://roundtrippdf.com/en/downloads/) but as of August 2023 accessing the files returns a 403 Forbidden error.
We release a copy of the original dataset but with manual corrections to fix minor annotation mistakes [here](https://huggingface.co/datasets/bsmock/ICDAR-2013-Table-Competition-Corrected).
### Original license
There is no known license for the original dataset, but the data is commonly referred to as "public", and so we interpret this to mean there are no license restrictions on the original data.
According to [this website](https://roundtrippdf.com/en/data-extraction/pdf-table-recognition-dataset/) from Tamir Hassan (as of August 2023): "These documents have been collected systematically from the European Union and US Government websites, and we therefore expect them to have public domain status."
Associated [code](https://github.com/tamirhassan/dataset-tools) for the data for the 2013 competition carries an Apache-2.0 license.
|
bsmock/ICDAR-2013.c
|
[
"license:cdla-permissive-2.0",
"table structure recognition",
"table extraction",
"arxiv:2303.00716",
"region:us"
] |
2023-08-19T15:16:48+00:00
|
{"license": "cdla-permissive-2.0", "tags": ["table structure recognition", "table extraction"]}
|
2023-09-07T03:49:39+00:00
|
[
"2303.00716"
] |
[] |
TAGS
#license-cdla-permissive-2.0 #table structure recognition #table extraction #arxiv-2303.00716 #region-us
|
# ICDAR-2013.c
The ICDAR-2013.c dataset was released in 2023.
You can think of ICDAR-2013.c as a fork (a modified version, in this case by different authors) of the original ICDAR-2013 dataset from the ICDAR 2013 Table Competition.
It contains:
- manual corrections to minor annotation mistakes in the original dataset
- automated corrections (such as canonicalization) to correct oversegmentation and to make the dataset more consistent with other TSR datasets, like PubTables-1M
For more details about this version (2023) of the dataset and the manual corrections made to the original dataset, please see "Aligning benchmark datasets for table structure recognition".
For the code used to create this dataset, see URL
## Citing
If you use this dataset in your published work, please cite:
## About the original IDCAR-2013 dataset
The original dataset was released as part of the ICDAR 2013 Table Competition.
It can be downloaded here but as of August 2023 accessing the files returns a 403 Forbidden error.
We release a copy of the original dataset but with manual corrections to fix minor annotation mistakes here.
### Original license
There is no known license for the original dataset, but the data is commonly referred to as "public", and so we interpret this to mean there are no license restrictions on the original data.
According to this website from Tamir Hassan (as of August 2023): "These documents have been collected systematically from the European Union and US Government websites, and we therefore expect them to have public domain status."
Associated code for the data for the 2013 competition carries an Apache-2.0 license.
|
[
"# ICDAR-2013.c\n\nThe ICDAR-2013.c dataset was released in 2023.\n\nYou can think of ICDAR-2013.c as a fork (a modified version, in this case by different authors) of the original ICDAR-2013 dataset from the ICDAR 2013 Table Competition.\n\nIt contains:\n- manual corrections to minor annotation mistakes in the original dataset\n- automated corrections (such as canonicalization) to correct oversegmentation and to make the dataset more consistent with other TSR datasets, like PubTables-1M\n\nFor more details about this version (2023) of the dataset and the manual corrections made to the original dataset, please see \"Aligning benchmark datasets for table structure recognition\".\n\nFor the code used to create this dataset, see URL",
"## Citing\n\nIf you use this dataset in your published work, please cite:",
"## About the original IDCAR-2013 dataset\n\nThe original dataset was released as part of the ICDAR 2013 Table Competition.\n\nIt can be downloaded here but as of August 2023 accessing the files returns a 403 Forbidden error.\n\nWe release a copy of the original dataset but with manual corrections to fix minor annotation mistakes here.",
"### Original license\n\nThere is no known license for the original dataset, but the data is commonly referred to as \"public\", and so we interpret this to mean there are no license restrictions on the original data.\n\nAccording to this website from Tamir Hassan (as of August 2023): \"These documents have been collected systematically from the European Union and US Government websites, and we therefore expect them to have public domain status.\"\n\nAssociated code for the data for the 2013 competition carries an Apache-2.0 license."
] |
[
"TAGS\n#license-cdla-permissive-2.0 #table structure recognition #table extraction #arxiv-2303.00716 #region-us \n",
"# ICDAR-2013.c\n\nThe ICDAR-2013.c dataset was released in 2023.\n\nYou can think of ICDAR-2013.c as a fork (a modified version, in this case by different authors) of the original ICDAR-2013 dataset from the ICDAR 2013 Table Competition.\n\nIt contains:\n- manual corrections to minor annotation mistakes in the original dataset\n- automated corrections (such as canonicalization) to correct oversegmentation and to make the dataset more consistent with other TSR datasets, like PubTables-1M\n\nFor more details about this version (2023) of the dataset and the manual corrections made to the original dataset, please see \"Aligning benchmark datasets for table structure recognition\".\n\nFor the code used to create this dataset, see URL",
"## Citing\n\nIf you use this dataset in your published work, please cite:",
"## About the original IDCAR-2013 dataset\n\nThe original dataset was released as part of the ICDAR 2013 Table Competition.\n\nIt can be downloaded here but as of August 2023 accessing the files returns a 403 Forbidden error.\n\nWe release a copy of the original dataset but with manual corrections to fix minor annotation mistakes here.",
"### Original license\n\nThere is no known license for the original dataset, but the data is commonly referred to as \"public\", and so we interpret this to mean there are no license restrictions on the original data.\n\nAccording to this website from Tamir Hassan (as of August 2023): \"These documents have been collected systematically from the European Union and US Government websites, and we therefore expect them to have public domain status.\"\n\nAssociated code for the data for the 2013 competition carries an Apache-2.0 license."
] |
[
34,
173,
17,
73,
108
] |
[
"passage: TAGS\n#license-cdla-permissive-2.0 #table structure recognition #table extraction #arxiv-2303.00716 #region-us \n# ICDAR-2013.c\n\nThe ICDAR-2013.c dataset was released in 2023.\n\nYou can think of ICDAR-2013.c as a fork (a modified version, in this case by different authors) of the original ICDAR-2013 dataset from the ICDAR 2013 Table Competition.\n\nIt contains:\n- manual corrections to minor annotation mistakes in the original dataset\n- automated corrections (such as canonicalization) to correct oversegmentation and to make the dataset more consistent with other TSR datasets, like PubTables-1M\n\nFor more details about this version (2023) of the dataset and the manual corrections made to the original dataset, please see \"Aligning benchmark datasets for table structure recognition\".\n\nFor the code used to create this dataset, see URL## Citing\n\nIf you use this dataset in your published work, please cite:## About the original IDCAR-2013 dataset\n\nThe original dataset was released as part of the ICDAR 2013 Table Competition.\n\nIt can be downloaded here but as of August 2023 accessing the files returns a 403 Forbidden error.\n\nWe release a copy of the original dataset but with manual corrections to fix minor annotation mistakes here.### Original license\n\nThere is no known license for the original dataset, but the data is commonly referred to as \"public\", and so we interpret this to mean there are no license restrictions on the original data.\n\nAccording to this website from Tamir Hassan (as of August 2023): \"These documents have been collected systematically from the European Union and US Government websites, and we therefore expect them to have public domain status.\"\n\nAssociated code for the data for the 2013 competition carries an Apache-2.0 license."
] |
611ae369e62c2a0d4935b4a759a2bfeea8cf98ae
|
# Dataset Card for "louxtest"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
cg4/louxtest
|
[
"region:us"
] |
2023-08-19T15:32:25+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}], "dataset_info": {"features": [{"name": "review", "dtype": "string"}, {"name": "review_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 35537.014925373136, "num_examples": 120}, {"name": "validation", "num_bytes": 4145.985074626866, "num_examples": 14}], "download_size": 31049, "dataset_size": 39683.0}}
|
2023-08-19T15:32:32+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "louxtest"
More Information needed
|
[
"# Dataset Card for \"louxtest\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"louxtest\"\n\nMore Information needed"
] |
[
6,
13
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"louxtest\"\n\nMore Information needed"
] |
297e285fda3d6fb174210a88a941e99e98056f34
|
# Dataset Card for Evaluation run of meta-llama/Llama-2-7b-hf
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/meta-llama/Llama-2-7b-hf
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 127 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 16 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_meta-llama__Llama-2-7b-hf",
"harness_gsm8k_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-12-02T13:00:54.924067](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Llama-2-7b-hf/blob/main/results_2023-12-02T13-00-54.924067.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.14480667172100076,
"acc_stderr": 0.009693234799052708
},
"harness|gsm8k|5": {
"acc": 0.14480667172100076,
"acc_stderr": 0.009693234799052708
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_meta-llama__Llama-2-7b-hf
|
[
"region:us"
] |
2023-08-19T15:36:14+00:00
|
{"pretty_name": "Evaluation run of meta-llama/Llama-2-7b-hf", "dataset_summary": "Dataset automatically created during the evaluation run of model [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 127 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 16 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_meta-llama__Llama-2-7b-hf\",\n\t\"harness_gsm8k_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-12-02T13:00:54.924067](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Llama-2-7b-hf/blob/main/results_2023-12-02T13-00-54.924067.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.14480667172100076,\n \"acc_stderr\": 0.009693234799052708\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.14480667172100076,\n \"acc_stderr\": 0.009693234799052708\n }\n}\n```", "repo_url": "https://huggingface.co/meta-llama/Llama-2-7b-hf", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|arc:challenge|25_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|arc:challenge|25_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|arc:challenge|25_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|arc:challenge|25_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_drop_0", "data_files": [{"split": "2023_09_14T20_50_38.766533", "path": ["**/details_harness|drop|0_2023-09-14T20-50-38.766533.parquet"]}, {"split": "2023_09_15T08_35_01.075146", "path": ["**/details_harness|drop|0_2023-09-15T08-35-01.075146.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|0_2023-09-15T08-35-01.075146.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_09_08T17_00_44.389859", "path": ["**/details_harness|drop|3_2023-09-08T17-00-44.389859.parquet"]}, {"split": "2023_09_09T12_32_30.613622", "path": ["**/details_harness|drop|3_2023-09-09T12-32-30.613622.parquet"]}, {"split": "2023_09_20T14_39_46.791628", "path": ["**/details_harness|drop|3_2023-09-20T14-39-46.791628.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-09-20T14-39-46.791628.parquet"]}]}, {"config_name": "harness_gsm8k_0", "data_files": [{"split": "2023_09_15T08_35_01.075146", "path": ["**/details_harness|gsm8k|0_2023-09-15T08-35-01.075146.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|0_2023-09-15T08-35-01.075146.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_09_08T17_00_44.389859", "path": ["**/details_harness|gsm8k|5_2023-09-08T17-00-44.389859.parquet"]}, {"split": "2023_09_09T12_32_30.613622", "path": ["**/details_harness|gsm8k|5_2023-09-09T12-32-30.613622.parquet"]}, {"split": "2023_09_20T14_39_46.791628", "path": ["**/details_harness|gsm8k|5_2023-09-20T14-39-46.791628.parquet"]}, {"split": "2023_12_02T13_00_06.695936", "path": ["**/details_harness|gsm8k|5_2023-12-02T13-00-06.695936.parquet"]}, {"split": "2023_12_02T13_00_54.924067", "path": ["**/details_harness|gsm8k|5_2023-12-02T13-00-54.924067.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-12-02T13-00-54.924067.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hellaswag|10_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hellaswag|10_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hellaswag|10_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hellaswag|10_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_0", "data_files": [{"split": "2023_08_21T20_09_03.352670", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:09:03.352670.parquet"]}, {"split": "2023_08_21T20_15_29.093529", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:15:29.093529.parquet"]}, {"split": "2023_08_21T20_20_08.261679", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:20:08.261679.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:20:08.261679.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-19T16:35:46.942696.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_21T17_55_50.567332", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-21T17:55:50.567332.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-24T09:19:51.585793.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-29T17:54:59.197645.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T09-53-02.418861.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_0", "data_files": [{"split": "2023_08_21T20_09_03.352670", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:09:03.352670.parquet"]}, {"split": "2023_08_21T20_15_29.093529", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:15:29.093529.parquet"]}, {"split": "2023_08_21T20_20_08.261679", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:20:08.261679.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|0_2023-08-21T20:20:08.261679.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_21T17_55_50.567332", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-21T17:55:50.567332.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T09-53-02.418861.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T09-53-02.418861.parquet"]}]}, {"config_name": "harness_winogrande_0", "data_files": [{"split": "2023_09_15T08_35_01.075146", "path": ["**/details_harness|winogrande|0_2023-09-15T08-35-01.075146.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|0_2023-09-15T08-35-01.075146.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_09_08T17_00_44.389859", "path": ["**/details_harness|winogrande|5_2023-09-08T17-00-44.389859.parquet"]}, {"split": "2023_09_09T12_32_30.613622", "path": ["**/details_harness|winogrande|5_2023-09-09T12-32-30.613622.parquet"]}, {"split": "2023_09_20T14_39_46.791628", "path": ["**/details_harness|winogrande|5_2023-09-20T14-39-46.791628.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-09-20T14-39-46.791628.parquet"]}]}, {"config_name": "original_mmlu_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:management|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:virology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:management|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:virology|5_2023-08-28T19:52:01.926454.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_abstract_algebra_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_anatomy_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_astronomy_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_business_ethics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_clinical_knowledge_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_college_biology_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_college_chemistry_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_college_computer_science_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_college_mathematics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_college_medicine_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_college_physics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_computer_security_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_conceptual_physics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_econometrics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_electrical_engineering_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_elementary_mathematics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_formal_logic_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_global_facts_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_biology_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_chemistry_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_computer_science_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_european_history_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_geography_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_mathematics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_microeconomics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_physics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_psychology_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_statistics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_us_history_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_high_school_world_history_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_human_aging_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_human_sexuality_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_international_law_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_jurisprudence_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_logical_fallacies_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_machine_learning_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_management_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:management|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:management|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_marketing_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_medical_genetics_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_miscellaneous_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_moral_disputes_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_moral_scenarios_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_nutrition_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_philosophy_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_prehistory_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_professional_accounting_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_professional_law_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_professional_medicine_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_professional_psychology_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_public_relations_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_security_studies_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_sociology_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_us_foreign_policy_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_virology_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:virology|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:virology|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "original_mmlu_world_religions_5", "data_files": [{"split": "2023_08_28T19_52_01.926454", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T19:52:01.926454.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T19:52:01.926454.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_08_19T16_35_46.942696", "path": ["results_2023-08-19T16:35:46.942696.parquet"]}, {"split": "2023_08_21T17_55_50.567332", "path": ["results_2023-08-21T17:55:50.567332.parquet"]}, {"split": "2023_08_21T20_09_03.352670", "path": ["results_2023-08-21T20:09:03.352670.parquet"]}, {"split": "2023_08_21T20_15_29.093529", "path": ["results_2023-08-21T20:15:29.093529.parquet"]}, {"split": "2023_08_21T20_20_08.261679", "path": ["results_2023-08-21T20:20:08.261679.parquet"]}, {"split": "2023_08_24T09_19_51.585793", "path": ["results_2023-08-24T09:19:51.585793.parquet"]}, {"split": "2023_08_28T19_52_01.926454", "path": ["results_2023-08-28T19:52:01.926454.parquet"]}, {"split": "2023_08_29T17_54_59.197645", "path": ["results_2023-08-29T17:54:59.197645.parquet"]}, {"split": "2023_09_08T17_00_44.389859", "path": ["results_2023-09-08T17-00-44.389859.parquet"]}, {"split": "2023_09_09T12_32_30.613622", "path": ["results_2023-09-09T12-32-30.613622.parquet"]}, {"split": "2023_09_14T20_50_38.766533", "path": ["results_2023-09-14T20-50-38.766533.parquet"]}, {"split": "2023_09_15T08_35_01.075146", "path": ["results_2023-09-15T08-35-01.075146.parquet"]}, {"split": "2023_09_15T09_53_02.418861", "path": ["results_2023-09-15T09-53-02.418861.parquet"]}, {"split": "2023_09_20T14_39_46.791628", "path": ["results_2023-09-20T14-39-46.791628.parquet"]}, {"split": "2023_12_02T13_00_06.695936", "path": ["results_2023-12-02T13-00-06.695936.parquet"]}, {"split": "2023_12_02T13_00_54.924067", "path": ["results_2023-12-02T13-00-54.924067.parquet"]}, {"split": "latest", "path": ["results_2023-12-02T13-00-54.924067.parquet"]}]}]}
|
2023-12-02T13:01:02+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of meta-llama/Llama-2-7b-hf
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model meta-llama/Llama-2-7b-hf on the Open LLM Leaderboard.
The dataset is composed of 127 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 16 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-12-02T13:00:54.924067(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of meta-llama/Llama-2-7b-hf",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model meta-llama/Llama-2-7b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 127 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 16 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-12-02T13:00:54.924067(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of meta-llama/Llama-2-7b-hf",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model meta-llama/Llama-2-7b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 127 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 16 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-12-02T13:00:54.924067(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
22,
31,
171,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of meta-llama/Llama-2-7b-hf## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model meta-llama/Llama-2-7b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 127 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 16 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-12-02T13:00:54.924067(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
5710665ffab05e9e3c2964f1aa5a6727e02a42a3
|
# Dataset of zuihou/瑞鳳 (Kantai Collection)
This is the dataset of zuihou/瑞鳳 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, brown_eyes, ponytail, brown_hair, headband, high_ponytail`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:------------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 535.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuihou_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 336.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuihou_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1253 | 753.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuihou_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 486.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuihou_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1253 | 1002.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuihou_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/zuihou_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, hachimaki, japanese_clothes, looking_at_viewer, solo, upper_body, long_sleeves, muneate, simple_background, smile, white_background, wide_sleeves, light_brown_hair |
| 1 | 23 |  |  |  |  |  | 1girl, hachimaki, japanese_clothes, solo, looking_at_viewer, muneate, blush, hair_ribbon, smile, open_mouth |
| 2 | 6 |  |  |  |  |  | 1girl, blush, hachimaki, japanese_clothes, looking_at_viewer, muneate, solo, upper_body, white_background, simple_background, smile, open_mouth |
| 3 | 8 |  |  |  |  |  | 1girl, bow_(weapon), hachimaki, japanese_clothes, muneate, solo, airplane, looking_at_viewer, hair_ribbon, smile, arrow_(projectile), open_mouth, shorts, character_name |
| 4 | 11 |  |  |  |  |  | 1girl, bow_(weapon), hachimaki, japanese_clothes, muneate, solo, yugake, hair_ribbon, shorts, airplane, looking_at_viewer, open_mouth, single_glove, smile, arrow_(projectile), blush |
| 5 | 9 |  |  |  |  |  | 1girl, blush, hachimaki, japanese_clothes, looking_at_viewer, solo, tamagoyaki, chopsticks, open_mouth, light_brown_hair, smile, holding, muneate, wide_sleeves |
| 6 | 11 |  |  |  |  |  | 1girl, alternate_costume, looking_at_viewer, obi, red_kimono, solo, wide_sleeves, hachimaki, hair_between_eyes, floral_print, long_sleeves, smile, holding, open_mouth, blush, hamaya, new_year |
| 7 | 5 |  |  |  |  |  | 1girl, hachimaki, japanese_clothes, looking_at_viewer, nipples, small_breasts, solo, blush, navel, open_clothes, simple_background, open_mouth, sitting, smile, white_background |
| 8 | 6 |  |  |  |  |  | 1girl, employee_uniform, hachimaki, light_brown_hair, solo, black_skirt, long_sleeves, open_mouth, pleated_skirt, alternate_costume, looking_at_viewer, :d, blue_shirt, vertical_stripes |
| 9 | 12 |  |  |  |  |  | 1girl, green_jacket, solo, looking_at_viewer, hoodie, pleated_skirt, black_skirt, blush, gift, white_sweater, heart-shaped_box, smile, cowboy_shot, hooded_sweater, long_sleeves, hair_between_eyes, light_brown_hair, official_alternate_costume |
| 10 | 17 |  |  |  |  |  | 1girl, solo, looking_at_viewer, serafuku, cosplay, white_background, pleated_skirt, simple_background, smile, black_skirt, grey_hair, long_sleeves, neckerchief |
| 11 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, simple_background, small_breasts, solo, side-tie_bikini_bottom, white_background, blush, hair_between_eyes, navel, black_bikini, black_thighhighs, collarbone, cowboy_shot, micro_bikini |
| 12 | 6 |  |  |  |  |  | 1girl, hetero, navel, nipples, sex, small_breasts, 1boy, open_mouth, vaginal, bar_censor, blush, cum_in_pussy, hachimaki, light_brown_hair, nude, penis, solo_focus, girl_on_top, straddling |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hachimaki | japanese_clothes | looking_at_viewer | solo | upper_body | long_sleeves | muneate | simple_background | smile | white_background | wide_sleeves | light_brown_hair | blush | hair_ribbon | open_mouth | bow_(weapon) | airplane | arrow_(projectile) | shorts | character_name | yugake | single_glove | tamagoyaki | chopsticks | holding | alternate_costume | obi | red_kimono | hair_between_eyes | floral_print | hamaya | new_year | nipples | small_breasts | navel | open_clothes | sitting | employee_uniform | black_skirt | pleated_skirt | :d | blue_shirt | vertical_stripes | green_jacket | hoodie | gift | white_sweater | heart-shaped_box | cowboy_shot | hooded_sweater | official_alternate_costume | serafuku | cosplay | grey_hair | neckerchief | side-tie_bikini_bottom | black_bikini | black_thighhighs | collarbone | micro_bikini | hetero | sex | 1boy | vaginal | bar_censor | cum_in_pussy | nude | penis | solo_focus | girl_on_top | straddling |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:------------|:-------------------|:--------------------|:-------|:-------------|:---------------|:----------|:--------------------|:--------|:-------------------|:---------------|:-------------------|:--------|:--------------|:-------------|:---------------|:-----------|:---------------------|:---------|:-----------------|:---------|:---------------|:-------------|:-------------|:----------|:--------------------|:------|:-------------|:--------------------|:---------------|:---------|:-----------|:----------|:----------------|:--------|:---------------|:----------|:-------------------|:--------------|:----------------|:-----|:-------------|:-------------------|:---------------|:---------|:-------|:----------------|:-------------------|:--------------|:-----------------|:-----------------------------|:-----------|:----------|:------------|:--------------|:-------------------------|:---------------|:-------------------|:-------------|:---------------|:---------|:------|:-------|:----------|:-------------|:---------------|:-------|:--------|:-------------|:--------------|:-------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 23 |  |  |  |  |  | X | X | X | X | X | | | X | | X | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | X | X | X | X | | X | X | X | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 8 |  |  |  |  |  | X | X | X | X | X | | | X | | X | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 11 |  |  |  |  |  | X | X | X | X | X | | | X | | X | | | | X | X | X | X | X | X | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 9 |  |  |  |  |  | X | X | X | X | X | | | X | | X | | X | X | X | | X | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 11 |  |  |  |  |  | X | X | | X | X | | X | | | X | | X | | X | | X | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | X | X | X | X | | | | X | X | X | | | X | | X | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 6 |  |  |  |  |  | X | X | | X | X | | X | | | | | | X | | | X | | | | | | | | | | | X | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 12 |  |  |  |  |  | X | | | X | X | | X | | | X | | | X | X | | | | | | | | | | | | | | | | X | | | | | | | | | | X | X | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 10 | 17 |  |  |  |  |  | X | | | X | X | | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | |
| 11 | 6 |  |  |  |  |  | X | | | X | X | | | | X | | X | | | X | | | | | | | | | | | | | | | | X | | | | | X | X | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | X | | | | | | | | | | | |
| 12 | 6 |  |  |  |  |  | X | X | | | | | | | | | | | X | X | | X | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/zuihou_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T15:37:34+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T23:23:30+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of zuihou/瑞鳳 (Kantai Collection)
========================================
This is the dataset of zuihou/瑞鳳 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, brown\_eyes, ponytail, brown\_hair, headband, high\_ponytail', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
bf03f1a2515f130188609f935cae868a48ece43e
|
# Dataset Card for "generate_sub_5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Jing24/generate_sub_5
|
[
"region:us"
] |
2023-08-19T15:38:16+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "struct": [{"name": "answer_start", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}], "splits": [{"name": "train", "num_bytes": 34459076, "num_examples": 38107}], "download_size": 6236290, "dataset_size": 34459076}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T15:38:17+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "generate_sub_5"
More Information needed
|
[
"# Dataset Card for \"generate_sub_5\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"generate_sub_5\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"generate_sub_5\"\n\nMore Information needed"
] |
7f38879a792bf1d0a226ea02d1d18162b8d4cc1a
|
# Dataset of akatsuki/暁 (Kantai Collection)
This is the dataset of akatsuki/暁 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, hat, purple_eyes, purple_hair, flat_cap, hair_between_eyes, black_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 451.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akatsuki_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 304.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akatsuki_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1158 | 642.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akatsuki_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 416.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akatsuki_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1158 | 835.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/akatsuki_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/akatsuki_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, anchor_symbol, black_pantyhose, long_sleeves, looking_at_viewer, pleated_skirt, red_neckerchief, serafuku, solo, smile, black_skirt, blush, white_background |
| 1 | 21 |  |  |  |  |  | 1girl, anchor_symbol, red_neckerchief, serafuku, solo, upper_body, black_headwear, looking_at_viewer, blush, simple_background, black_sailor_collar, long_sleeves, white_background, smile |
| 2 | 17 |  |  |  |  |  | 1girl, serafuku, solo, black_pantyhose, looking_at_viewer, open_mouth, red_neckerchief, machinery, turret, cannon, pleated_skirt |
| 3 | 5 |  |  |  |  |  | anchor_symbol, black_skirt, blush, long_sleeves, looking_at_viewer, red_neckerchief, serafuku, solo_focus, 2girls, pleated_skirt, smile, open_mouth, pantyhose, 1girl, thighhighs |
| 4 | 6 |  |  |  |  |  | enmaided, looking_at_viewer, 1girl, blush, maid_headdress, white_apron, maid_apron, puffy_short_sleeves, smile, solo, frilled_apron, white_background, white_thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | anchor_symbol | black_pantyhose | long_sleeves | looking_at_viewer | pleated_skirt | red_neckerchief | serafuku | solo | smile | black_skirt | blush | white_background | upper_body | black_headwear | simple_background | black_sailor_collar | open_mouth | machinery | turret | cannon | solo_focus | 2girls | pantyhose | thighhighs | enmaided | maid_headdress | white_apron | maid_apron | puffy_short_sleeves | frilled_apron | white_thighhighs |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------------|:------------------|:---------------|:--------------------|:----------------|:------------------|:-----------|:-------|:--------|:--------------|:--------|:-------------------|:-------------|:-----------------|:--------------------|:----------------------|:-------------|:------------|:---------|:---------|:-------------|:---------|:------------|:-------------|:-----------|:-----------------|:--------------|:-------------|:----------------------|:----------------|:-------------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | |
| 1 | 21 |  |  |  |  |  | X | X | | X | X | | X | X | X | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 2 | 17 |  |  |  |  |  | X | | X | | X | X | X | X | X | | | | | | | | | X | X | X | X | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | | X | X | X | X | X | | X | X | X | | | | | | X | | | | X | X | X | X | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | | | | X | | | | X | X | | X | X | | | | | | | | | | | | | X | X | X | X | X | X | X |
|
CyberHarem/akatsuki_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T15:43:35+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:23:49+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of akatsuki/暁 (Kantai Collection)
=========================================
This is the dataset of akatsuki/暁 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, hat, purple\_eyes, purple\_hair, flat\_cap, hair\_between\_eyes, black\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
fa9cb28667ebea2e6f9b80f5f11ec671365a2f93
|
# Dataset of nagato/長門 (Kantai Collection)
This is the dataset of nagato/長門 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `black_hair, long_hair, red_eyes, breasts, large_breasts, headgear, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 622.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagato_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 403.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagato_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1161 | 790.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagato_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 576.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagato_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1161 | 1.01 GiB | [Download](https://huggingface.co/datasets/CyberHarem/nagato_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/nagato_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 49 |  |  |  |  |  | 1girl, elbow_gloves, solo, midriff, bare_shoulders, fingerless_gloves, navel, hairband, looking_at_viewer, thighhighs, miniskirt |
| 1 | 9 |  |  |  |  |  | 1girl, elbow_gloves, looking_at_viewer, solo, bare_shoulders, black_gloves, simple_background, white_background, fingerless_gloves, upper_body, crossed_arms, blush, midriff |
| 2 | 29 |  |  |  |  |  | 1girl, black_gloves, elbow_gloves, miniskirt, pleated_skirt, solo, white_skirt, smile, partially_fingerless_gloves, simple_background, black_coat, closed_mouth, long_coat, red_thighhighs, looking_at_viewer, white_background, navel, garter_straps, cowboy_shot |
| 3 | 5 |  |  |  |  |  | 1girl, black_gloves, elbow_gloves, looking_at_viewer, machinery, miniskirt, navel, pleated_skirt, red_thighhighs, rigging, smile, solo, turret, white_skirt, garter_straps, midriff, cowboy_shot, long_coat, partially_fingerless_gloves |
| 4 | 7 |  |  |  |  |  | 1girl, black_coat, black_gloves, elbow_gloves, simple_background, solo, upper_body, closed_mouth, partially_fingerless_gloves, looking_at_viewer, grey_background, white_background, blush, heart, smile |
| 5 | 7 |  |  |  |  |  | 1girl, blush, hetero, nipples, sex, solo_focus, 1boy, navel, penis, vaginal, cum_in_pussy, open_mouth, spread_legs, completely_nude, cowgirl_position, girl_on_top, mosaic_censoring, sweat |
| 6 | 8 |  |  |  |  |  | 1girl, huge_breasts, looking_at_viewer, solo, bikini, thick_thighs, blush, abs, muscular_female, navel, simple_background, thighhighs, brown_eyes, elbow_gloves, white_background, areola_slip, cleavage, collar |
| 7 | 27 |  |  |  |  |  | 1girl, solo, collarbone, looking_at_viewer, navel, alternate_costume, brown_eyes, cowboy_shot, cleavage, short_shorts, blush, closed_mouth, denim_shorts, smile, simple_background, white_shirt, holding, grey_shorts, short_sleeves |
| 8 | 5 |  |  |  |  |  | alternate_costume, black_pants, closed_mouth, collared_shirt, long_sleeves, very_long_hair, white_shirt, black_jacket, buttons, hand_on_hip, high-waist_pants, looking_at_viewer, 1girl, black_bowtie, full_body, simple_background, smile, white_background, 2girls, black_footwear, open_clothes, solo_focus |
| 9 | 10 |  |  |  |  |  | 1girl, obi, smile, solo, alternate_costume, closed_mouth, looking_at_viewer, yukata, long_sleeves, wide_sleeves, grey_kimono, holding_umbrella, flower, oil-paper_umbrella, upper_body |
| 10 | 6 |  |  |  |  |  | 1girl, long_sleeves, obi, official_alternate_costume, solo, white_kimono, wide_sleeves, black_gloves, smile, fur_trim, pom_pom_(clothes), bell, blush, brown_eyes, high_heel_boots, oil-paper_umbrella, open_mouth |
| 11 | 14 |  |  |  |  |  | competition_swimsuit, looking_at_viewer, 1girl, cowboy_shot, solo, closed_mouth, collarbone, highleg_swimsuit, brown_eyes, simple_background, alternate_costume, black_one-piece_swimsuit, smile, wet |
| 12 | 6 |  |  |  |  |  | black_panties, blue_sailor_collar, blue_skirt, crop_top, elbow_gloves, highleg_panties, navel, pleated_skirt, shimakaze_(kancolle)_(cosplay), white_gloves, 1girl, black_neckerchief, brown_eyes, closed_mouth, collarbone, cowboy_shot, miniskirt, smile, solo, striped_thighhighs, blush, microskirt, serafuku |
| 13 | 7 |  |  |  |  |  | 1girl, futanari, nipples, testicles, huge_penis, solo, female_pubic_hair, gigantic_breasts, thighhighs, censored, elbow_gloves, erection, excessive_pubic_hair, nipple_rings, open_mouth, sweat |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | solo | midriff | bare_shoulders | fingerless_gloves | navel | hairband | looking_at_viewer | thighhighs | miniskirt | black_gloves | simple_background | white_background | upper_body | crossed_arms | blush | pleated_skirt | white_skirt | smile | partially_fingerless_gloves | black_coat | closed_mouth | long_coat | red_thighhighs | garter_straps | cowboy_shot | machinery | rigging | turret | grey_background | heart | hetero | nipples | sex | solo_focus | 1boy | penis | vaginal | cum_in_pussy | open_mouth | spread_legs | completely_nude | cowgirl_position | girl_on_top | mosaic_censoring | sweat | huge_breasts | bikini | thick_thighs | abs | muscular_female | brown_eyes | areola_slip | cleavage | collar | collarbone | alternate_costume | short_shorts | denim_shorts | white_shirt | holding | grey_shorts | short_sleeves | black_pants | collared_shirt | long_sleeves | very_long_hair | black_jacket | buttons | hand_on_hip | high-waist_pants | black_bowtie | full_body | 2girls | black_footwear | open_clothes | obi | yukata | wide_sleeves | grey_kimono | holding_umbrella | flower | oil-paper_umbrella | official_alternate_costume | white_kimono | fur_trim | pom_pom_(clothes) | bell | high_heel_boots | competition_swimsuit | highleg_swimsuit | black_one-piece_swimsuit | wet | black_panties | blue_sailor_collar | blue_skirt | crop_top | highleg_panties | shimakaze_(kancolle)_(cosplay) | white_gloves | black_neckerchief | striped_thighhighs | microskirt | serafuku | futanari | testicles | huge_penis | female_pubic_hair | gigantic_breasts | censored | erection | excessive_pubic_hair | nipple_rings |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:---------------|:-------|:----------|:-----------------|:--------------------|:--------|:-----------|:--------------------|:-------------|:------------|:---------------|:--------------------|:-------------------|:-------------|:---------------|:--------|:----------------|:--------------|:--------|:------------------------------|:-------------|:---------------|:------------|:-----------------|:----------------|:--------------|:------------|:----------|:---------|:------------------|:--------|:---------|:----------|:------|:-------------|:-------|:--------|:----------|:---------------|:-------------|:--------------|:------------------|:-------------------|:--------------|:-------------------|:--------|:---------------|:---------|:---------------|:------|:------------------|:-------------|:--------------|:-----------|:---------|:-------------|:--------------------|:---------------|:---------------|:--------------|:----------|:--------------|:----------------|:--------------|:-----------------|:---------------|:-----------------|:---------------|:----------|:--------------|:-------------------|:---------------|:------------|:---------|:-----------------|:---------------|:------|:---------|:---------------|:--------------|:-------------------|:---------|:---------------------|:-----------------------------|:---------------|:-----------|:--------------------|:-------|:------------------|:-----------------------|:-------------------|:---------------------------|:------|:----------------|:---------------------|:-------------|:-----------|:------------------|:---------------------------------|:---------------|:--------------------|:---------------------|:-------------|:-----------|:-----------|:------------|:-------------|:--------------------|:-------------------|:-----------|:-----------|:-----------------------|:---------------|
| 0 | 49 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 9 |  |  |  |  |  | X | X | X | X | X | X | | | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 29 |  |  |  |  |  | X | X | X | | | | X | | X | | X | X | X | X | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | | | X | | X | | X | X | | | | | | X | X | X | X | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | X | X | | | | | | X | | | X | X | X | X | | X | | | X | X | X | X | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 8 |  |  |  |  |  | X | X | X | | | | X | | X | X | | | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 27 |  |  |  |  |  | X | | X | | | | X | | X | | | | X | | | | X | | | X | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 5 |  |  |  |  |  | X | | | | | | | | X | | | | X | X | | | | | | X | | | X | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | X | | | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 10 |  |  |  |  |  | X | | X | | | | | | X | | | | | | X | | | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 6 |  |  |  |  |  | X | | X | | | | | | | | | X | | | | | X | | | X | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | X | | | | | | | | | | | X | | X | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 11 | 14 |  |  |  |  |  | X | | X | | | | | | X | | | | X | | | | | | | X | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 12 | 6 |  |  |  |  |  | X | X | X | | | | X | | | | X | | | | | | X | X | | X | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 13 | 7 |  |  |  |  |  | X | X | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/nagato_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T16:16:42+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:32:48+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of nagato/長門 (Kantai Collection)
========================================
This is the dataset of nagato/長門 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'black\_hair, long\_hair, red\_eyes, breasts, large\_breasts, headgear, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
5ccd73064d8685eb463d57341bdce583a92d67ba
|
# Dataset of ikazuchi/雷/雷 (Kantai Collection)
This is the dataset of ikazuchi/雷/雷 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, short_hair, hairclip, hair_ornament, brown_eyes, fang`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 464.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ikazuchi_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 313.36 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ikazuchi_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1167 | 659.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ikazuchi_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 429.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ikazuchi_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1167 | 863.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ikazuchi_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ikazuchi_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 18 |  |  |  |  |  | 1girl, open_mouth, serafuku, skirt, solo, looking_at_viewer, black_pantyhose, neckerchief, :d |
| 1 | 13 |  |  |  |  |  | 1girl, open_mouth, serafuku, solo, looking_at_viewer, blush, :d, red_neckerchief |
| 2 | 20 |  |  |  |  |  | 1girl, open_mouth, pleated_skirt, red_neckerchief, serafuku, solo, anchor_symbol, black_sailor_collar, black_skirt, looking_at_viewer, long_sleeves, smile, simple_background, white_background, blush, skin_fang, cowboy_shot |
| 3 | 5 |  |  |  |  |  | 1girl, black_sailor_collar, red_neckerchief, serafuku, simple_background, upper_body, white_background, anchor_symbol, looking_at_viewer, solo, hair_between_eyes, grin, open_mouth |
| 4 | 11 |  |  |  |  |  | 1girl, black_thighhighs, looking_at_viewer, serafuku, solo, open_mouth, zettai_ryouiki, long_sleeves, neckerchief, blush, pleated_skirt, :d |
| 5 | 6 |  |  |  |  |  | 1girl, anchor_symbol, cat_ears, kemonomimi_mode, pleated_skirt, red_neckerchief, serafuku, solo, black_thighhighs, cat_tail, long_sleeves, looking_at_viewer, open_mouth, paw_pose, smile, white_background, black_skirt, simple_background |
| 6 | 5 |  |  |  |  |  | 1girl, blush, pleated_skirt, serafuku, smile, solo, valentine, gift_box, heart-shaped_box, looking_at_viewer, open_mouth, red_neckerchief, black_thighhighs, incoming_gift, long_sleeves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | serafuku | skirt | solo | looking_at_viewer | black_pantyhose | neckerchief | :d | blush | red_neckerchief | pleated_skirt | anchor_symbol | black_sailor_collar | black_skirt | long_sleeves | smile | simple_background | white_background | skin_fang | cowboy_shot | upper_body | hair_between_eyes | grin | black_thighhighs | zettai_ryouiki | cat_ears | kemonomimi_mode | cat_tail | paw_pose | valentine | gift_box | heart-shaped_box | incoming_gift |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:-----------|:--------|:-------|:--------------------|:------------------|:--------------|:-----|:--------|:------------------|:----------------|:----------------|:----------------------|:--------------|:---------------|:--------|:--------------------|:-------------------|:------------|:--------------|:-------------|:--------------------|:-------|:-------------------|:-----------------|:-----------|:------------------|:-----------|:-----------|:------------|:-----------|:-------------------|:----------------|
| 0 | 18 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | X | | X | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 20 |  |  |  |  |  | X | X | X | | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | | X | X | | | | | X | | X | X | | | | X | X | | | X | X | X | | | | | | | | | | |
| 4 | 11 |  |  |  |  |  | X | X | X | | X | X | | X | X | X | | X | | | | X | | | | | | | | | X | X | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | X | X | | X | X | | | | | X | X | X | | X | X | X | X | X | | | | | | X | | X | X | X | X | | | | |
| 6 | 5 |  |  |  |  |  | X | X | X | | X | X | | | | X | X | X | | | | X | X | | | | | | | | X | | | | | | X | X | X | X |
|
CyberHarem/ikazuchi_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T16:24:23+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T17:18:43+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of ikazuchi/雷/雷 (Kantai Collection)
===========================================
This is the dataset of ikazuchi/雷/雷 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, hairclip, hair\_ornament, brown\_eyes, fang', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
23a23fb01fb6b89cb9c691e748c91dc5f6a2d42e
|
# Dataset Card for "roleplay_instruct_v2_final"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
dim/roleplay_instruct_v2_final
|
[
"region:us"
] |
2023-08-19T16:55:17+00:00
|
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4382098, "num_examples": 7188}], "download_size": 2880335, "dataset_size": 4382098}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-10-04T13:15:48+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "roleplay_instruct_v2_final"
More Information needed
|
[
"# Dataset Card for \"roleplay_instruct_v2_final\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"roleplay_instruct_v2_final\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"roleplay_instruct_v2_final\"\n\nMore Information needed"
] |
cccdfa368126e54b4ee5dd729ec2b6ab3cb9c1d1
|
# Dataset Card for "autotree_nxor_l1_128"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yzhuang/autotree_nxor_l1_128
|
[
"region:us"
] |
2023-08-19T16:57:32+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "input_x", "sequence": {"sequence": "float32"}}, {"name": "input_y", "sequence": {"sequence": "float32"}}, {"name": "rtg", "sequence": {"sequence": "float64"}}, {"name": "status", "sequence": {"sequence": "float32"}}, {"name": "split_threshold", "sequence": {"sequence": "float64"}}, {"name": "split_dimension", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 28890800000, "num_examples": 100000}, {"name": "validation", "num_bytes": 2889080000, "num_examples": 10000}, {"name": "test", "num_bytes": 2889080000, "num_examples": 10000}], "download_size": 33056635077, "dataset_size": 34668960000}}
|
2023-08-19T17:21:32+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "autotree_nxor_l1_128"
More Information needed
|
[
"# Dataset Card for \"autotree_nxor_l1_128\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"autotree_nxor_l1_128\"\n\nMore Information needed"
] |
[
6,
20
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"autotree_nxor_l1_128\"\n\nMore Information needed"
] |
c7e8752031ae654c0c9773498d80b03c9f407388
|
# Dataset of asashio/朝潮/朝潮 (Kantai Collection)
This is the dataset of asashio/朝潮/朝潮 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `black_hair, long_hair, blue_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 550.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asashio_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 323.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asashio_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1246 | 714.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asashio_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 489.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asashio_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1246 | 990.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/asashio_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/asashio_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 13 |  |  |  |  |  | 1girl, long_sleeves, looking_at_viewer, neck_ribbon, pinafore_dress, red_ribbon, smile, solo, black_pantyhose, school_uniform, simple_background, belt, blush, white_background, buttons, white_shirt, black_dress |
| 1 | 10 |  |  |  |  |  | 1girl, long_sleeves, looking_at_viewer, pinafore_dress, simple_background, solo, white_shirt, belt, neck_ribbon, red_ribbon, school_uniform, white_background, cowboy_shot, black_dress, blush, twitter_username |
| 2 | 11 |  |  |  |  |  | 1girl, long_sleeves, looking_at_viewer, neck_ribbon, pinafore_dress, red_bowtie, red_ribbon, solo, white_shirt, belt, black_dress, school_uniform, white_background, smile, blush, simple_background, twitter_username, upper_body, buttons |
| 3 | 34 |  |  |  |  |  | 1girl, long_sleeves, white_shirt, witch_hat, solo, cat_ears, halloween_costume, pinafore_dress, white_gloves, orange_bow, looking_at_viewer, simple_background, striped_thighhighs, frilled_dress, white_background, cat_tail, official_alternate_costume, black_cape, blush, open_mouth, smile, black_dress, belt, black_headwear |
| 4 | 39 |  |  |  |  |  | 1girl, solo, pleated_skirt, arm_warmers, school_uniform, looking_at_viewer, black_thighhighs, short_sleeves, blush, white_shirt, open_mouth, suspender_skirt, smile, white_background |
| 5 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, open_shirt, small_breasts, solo, white_shirt, blue_bra, blush, collarbone, simple_background, white_background, bangs, bow_bra, bow_panties, closed_mouth, cowboy_shot, hair_between_eyes, long_sleeves, navel, sports_bra, upper_body |
| 6 | 19 |  |  |  |  |  | 1girl, blush, small_breasts, open_mouth, looking_at_viewer, nipples, nude, loli, pussy, bangs, navel, solo, ass, bar_censor, black_thighhighs, spread_legs, anus, lying |
| 7 | 7 |  |  |  |  |  | 1boy, 1girl, blush, hetero, nipples, pussy, small_breasts, solo_focus, bar_censor, loli, navel, open_mouth, penis, sex, spread_legs, sweat, vaginal, on_back, tears, completely_nude, looking_at_viewer, missionary, saliva, bangs, bed_sheet, collarbone, pov, tongue |
| 8 | 6 |  |  |  |  |  | 1boy, 1girl, blush, hetero, navel, nipples, small_breasts, solo_focus, bangs, collarbone, completely_nude, happy_sex, loli, looking_at_viewer, open_mouth, pov, sweat, hair_between_eyes, heart-shaped_pupils, saliva, vaginal, cum_in_pussy, deep_penetration, straddling, torogao |
| 9 | 8 |  |  |  |  |  | 1girl, solo, looking_at_viewer, collarbone, cowboy_shot, small_breasts, blush, covered_navel, blue_one-piece_swimsuit, hair_between_eyes, old_school_swimsuit, open_mouth, twitter_username, alternate_costume, ass_visible_through_thighs, black_one-piece_swimsuit, name_tag, simple_background, standing |
| 10 | 8 |  |  |  |  |  | 1girl, solo, alternate_costume, blush, looking_at_viewer, kimono, smile, alternate_hairstyle, floral_print, hair_flower, new_year, obi, open_mouth, apron |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | long_sleeves | looking_at_viewer | neck_ribbon | pinafore_dress | red_ribbon | smile | solo | black_pantyhose | school_uniform | simple_background | belt | blush | white_background | buttons | white_shirt | black_dress | cowboy_shot | twitter_username | red_bowtie | upper_body | witch_hat | cat_ears | halloween_costume | white_gloves | orange_bow | striped_thighhighs | frilled_dress | cat_tail | official_alternate_costume | black_cape | open_mouth | black_headwear | pleated_skirt | arm_warmers | black_thighhighs | short_sleeves | suspender_skirt | open_shirt | small_breasts | blue_bra | collarbone | bangs | bow_bra | bow_panties | closed_mouth | hair_between_eyes | navel | sports_bra | nipples | nude | loli | pussy | ass | bar_censor | spread_legs | anus | lying | 1boy | hetero | solo_focus | penis | sex | sweat | vaginal | on_back | tears | completely_nude | missionary | saliva | bed_sheet | pov | tongue | happy_sex | heart-shaped_pupils | cum_in_pussy | deep_penetration | straddling | torogao | covered_navel | blue_one-piece_swimsuit | old_school_swimsuit | alternate_costume | ass_visible_through_thighs | black_one-piece_swimsuit | name_tag | standing | kimono | alternate_hairstyle | floral_print | hair_flower | new_year | obi | apron |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:---------------|:--------------------|:--------------|:-----------------|:-------------|:--------|:-------|:------------------|:-----------------|:--------------------|:-------|:--------|:-------------------|:----------|:--------------|:--------------|:--------------|:-------------------|:-------------|:-------------|:------------|:-----------|:--------------------|:---------------|:-------------|:---------------------|:----------------|:-----------|:-----------------------------|:-------------|:-------------|:-----------------|:----------------|:--------------|:-------------------|:----------------|:------------------|:-------------|:----------------|:-----------|:-------------|:--------|:----------|:--------------|:---------------|:--------------------|:--------|:-------------|:----------|:-------|:-------|:--------|:------|:-------------|:--------------|:-------|:--------|:-------|:---------|:-------------|:--------|:------|:--------|:----------|:----------|:--------|:------------------|:-------------|:---------|:------------|:------|:---------|:------------|:----------------------|:---------------|:-------------------|:-------------|:----------|:----------------|:--------------------------|:----------------------|:--------------------|:-----------------------------|:---------------------------|:-----------|:-----------|:---------|:----------------------|:---------------|:--------------|:-----------|:------|:--------|
| 0 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | X | X | X | X | X | | X | | X | X | X | X | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 34 |  |  |  |  |  | X | X | X | | X | | X | X | | | X | X | X | X | | X | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 39 |  |  |  |  |  | X | | X | | | | X | X | | X | | | X | X | | X | | | | | | | | | | | | | | | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | X | X | | | | | X | | | X | | X | X | | X | | X | | | X | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 19 |  |  |  |  |  | X | | X | | | | | X | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | X | | | | X | | | X | | | | | X | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 7 |  |  |  |  |  | X | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | X | | X | X | | | | | X | | X | | X | X | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 8 | 6 |  |  |  |  |  | X | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | X | | X | X | | | | X | X | | X | | X | | | | | | | X | X | X | | | X | X | | | X | | X | | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 9 | 8 |  |  |  |  |  | X | | X | | | | | X | | | X | | X | | | | | X | X | | | | | | | | | | | | | X | | | | | | | | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | |
| 10 | 8 |  |  |  |  |  | X | | X | | | | X | X | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | X | X | X | X | X | X | X |
|
CyberHarem/asashio_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T17:00:25+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T00:16:49+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of asashio/朝潮/朝潮 (Kantai Collection)
============================================
This is the dataset of asashio/朝潮/朝潮 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'black\_hair, long\_hair, blue\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
66a4f7fc4328d70c52823d503912dc46f196a9f3
|
# Dataset of bismarck/ビスマルク (Kantai Collection)
This is the dataset of bismarck/ビスマルク (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blonde_hair, long_hair, blue_eyes, breasts, hat, peaked_cap, large_breasts, military_hat`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 673.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bismarck_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 390.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bismarck_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1252 | 849.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bismarck_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 602.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bismarck_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1252 | 1.17 GiB | [Download](https://huggingface.co/datasets/CyberHarem/bismarck_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/bismarck_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, bare_shoulders, detached_sleeves, gloves, grey_thighhighs, military_uniform, solo, looking_at_viewer, machinery, blush |
| 1 | 8 |  |  |  |  |  | 1girl, bare_shoulders, detached_sleeves, gloves, solo, turret, cannon, military_uniform, grey_thighhighs, machinery, looking_at_viewer, open_mouth, outstretched_arm, panties |
| 2 | 5 |  |  |  |  |  | 1girl, bare_shoulders, black_panties, brown_gloves, detached_sleeves, looking_at_viewer, military_uniform, solo, grey_thighhighs, simple_background, smile, white_background, blush, hand_on_hip |
| 3 | 6 |  |  |  |  |  | 1girl, bare_shoulders, brown_gloves, detached_sleeves, looking_at_viewer, military_uniform, solo, white_background, blush, simple_background, upper_body |
| 4 | 6 |  |  |  |  |  | 1girl, cleavage, looking_at_viewer, solo, black_bikini, navel, armpits, blush, arms_up, open_mouth, smile |
| 5 | 7 |  |  |  |  |  | 1girl, looking_at_viewer, solo, alternate_costume, dirndl, beer_mug, cleavage, holding_cup, simple_background, smile, blush, white_background, apron, collarbone, dress, hair_between_eyes, short_sleeves |
| 6 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, playboy_bunny, rabbit_ears, solo, black_leotard, detached_collar, fake_animal_ears, black_bowtie, black_pantyhose, rabbit_tail, strapless_leotard, wrist_cuffs, alternate_costume, blush, cleavage, sitting, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | detached_sleeves | gloves | grey_thighhighs | military_uniform | solo | looking_at_viewer | machinery | blush | turret | cannon | open_mouth | outstretched_arm | panties | black_panties | brown_gloves | simple_background | smile | white_background | hand_on_hip | upper_body | cleavage | black_bikini | navel | armpits | arms_up | alternate_costume | dirndl | beer_mug | holding_cup | apron | collarbone | dress | hair_between_eyes | short_sleeves | playboy_bunny | rabbit_ears | black_leotard | detached_collar | fake_animal_ears | black_bowtie | black_pantyhose | rabbit_tail | strapless_leotard | wrist_cuffs | sitting |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:-------------------|:---------|:------------------|:-------------------|:-------|:--------------------|:------------|:--------|:---------|:---------|:-------------|:-------------------|:----------|:----------------|:---------------|:--------------------|:--------|:-------------------|:--------------|:-------------|:-----------|:---------------|:--------|:----------|:----------|:--------------------|:---------|:-----------|:--------------|:--------|:-------------|:--------|:--------------------|:----------------|:----------------|:--------------|:----------------|:------------------|:-------------------|:---------------|:------------------|:--------------|:--------------------|:--------------|:----------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | | X | X | X | X | | X | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | X | X | | | X | X | X | | X | | | | | | | X | X | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | | | | | | X | X | | X | | | X | | | | | | X | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | | | | | | X | X | | X | | | | | | | | X | X | X | | | X | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 6 | 6 |  |  |  |  |  | X | | | | | | X | X | | X | | | | | | | | | | X | | | X | | | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/bismarck_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T17:10:51+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T04:40:22+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of bismarck/ビスマルク (Kantai Collection)
=============================================
This is the dataset of bismarck/ビスマルク (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, blue\_eyes, breasts, hat, peaked\_cap, large\_breasts, military\_hat', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
061d1e8ca2ef1152a2e10d4d1d9bbef84e9c1cda
|
# Dataset Card for "msmarco_rank"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fireworks-ai/msmarco_rank
|
[
"region:us"
] |
2023-08-19T17:31:47+00:00
|
{"dataset_info": {"features": [{"name": "query", "dtype": "string"}, {"name": "positive", "sequence": "string"}, {"name": "negative", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 13976268494, "num_examples": 398792}], "download_size": 7376188746, "dataset_size": 13976268494}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T17:37:52+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "msmarco_rank"
More Information needed
|
[
"# Dataset Card for \"msmarco_rank\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"msmarco_rank\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"msmarco_rank\"\n\nMore Information needed"
] |
ae57dfcfd92051dbd0ea471b2c689428e086e743
|
# Dataset of mutsu/陸奥 (Kantai Collection)
This is the dataset of mutsu/陸奥 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, short_hair, green_eyes, breasts, large_breasts, headgear, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 608.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mutsu_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 377.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mutsu_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1228 | 781.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mutsu_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 551.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mutsu_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1228 | 1.02 GiB | [Download](https://huggingface.co/datasets/CyberHarem/mutsu_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/mutsu_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, chain, looking_at_viewer, pleated_skirt, solo, white_gloves, black_skirt, smile, midriff, miniskirt, red_thighhighs, radio_antenna, simple_background, turret, cleavage, navel, rigging, white_background, blush, cannon |
| 1 | 39 |  |  |  |  |  | midriff, solo, 1girl, looking_at_viewer, white_gloves, bare_shoulders, miniskirt, hairband, navel, chain, red_thighhighs, smile |
| 2 | 14 |  |  |  |  |  | 1girl, collarbone, looking_at_viewer, solo, smile, blush, simple_background, white_background, closed_mouth, cleavage, upper_body, alternate_costume |
| 3 | 8 |  |  |  |  |  | 1girl, cloud, day, looking_at_viewer, outdoors, solo, blush, collarbone, cowboy_shot, navel, smile, beach, black_bikini, cleavage, ocean, side-tie_bikini_bottom, closed_mouth, flipped_hair, blue_sky, open_mouth |
| 4 | 15 |  |  |  |  |  | 1girl, huge_breasts, looking_at_viewer, solo, thick_thighs, curvy, thighhighs, navel, cleavage, wide_hips, bikini, gloves, smile, tan, collar |
| 5 | 23 |  |  |  |  |  | 1girl, solo, alternate_costume, looking_at_viewer, smile, obi, wide_sleeves, blush, long_sleeves, yukata, floral_print, hair_flower, striped, upper_body |
| 6 | 15 |  |  |  |  |  | 1girl, fake_animal_ears, playboy_bunny, rabbit_ears, solo, detached_collar, wrist_cuffs, black_leotard, looking_at_viewer, bowtie, cleavage, pantyhose, simple_background, smile, strapless_leotard, blush, rabbit_tail, white_background, collarbone, cowboy_shot |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | chain | looking_at_viewer | pleated_skirt | solo | white_gloves | black_skirt | smile | midriff | miniskirt | red_thighhighs | radio_antenna | simple_background | turret | cleavage | navel | rigging | white_background | blush | cannon | bare_shoulders | hairband | collarbone | closed_mouth | upper_body | alternate_costume | cloud | day | outdoors | cowboy_shot | beach | black_bikini | ocean | side-tie_bikini_bottom | flipped_hair | blue_sky | open_mouth | huge_breasts | thick_thighs | curvy | thighhighs | wide_hips | bikini | gloves | tan | collar | obi | wide_sleeves | long_sleeves | yukata | floral_print | hair_flower | striped | fake_animal_ears | playboy_bunny | rabbit_ears | detached_collar | wrist_cuffs | black_leotard | bowtie | pantyhose | strapless_leotard | rabbit_tail |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:--------------------|:----------------|:-------|:---------------|:--------------|:--------|:----------|:------------|:-----------------|:----------------|:--------------------|:---------|:-----------|:--------|:----------|:-------------------|:--------|:---------|:-----------------|:-----------|:-------------|:---------------|:-------------|:--------------------|:--------|:------|:-----------|:--------------|:--------|:---------------|:--------|:-------------------------|:---------------|:-----------|:-------------|:---------------|:---------------|:--------|:-------------|:------------|:---------|:---------|:------|:---------|:------|:---------------|:---------------|:---------|:---------------|:--------------|:----------|:-------------------|:----------------|:--------------|:------------------|:--------------|:----------------|:---------|:------------|:--------------------|:--------------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 39 |  |  |  |  |  | X | X | X | | X | X | | X | X | X | X | | | | | X | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 14 |  |  |  |  |  | X | | X | | X | | | X | | | | | X | | X | | | X | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 8 |  |  |  |  |  | X | | X | | X | | | X | | | | | | | X | X | | | X | | | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 15 |  |  |  |  |  | X | | X | | X | | | X | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 5 | 23 |  |  |  |  |  | X | | X | | X | | | X | | | | | | | | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | |
| 6 | 15 |  |  |  |  |  | X | | X | | X | | | X | | | | | X | | X | | | X | X | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/mutsu_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T17:45:12+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T21:55:49+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of mutsu/陸奥 (Kantai Collection)
=======================================
This is the dataset of mutsu/陸奥 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, green\_eyes, breasts, large\_breasts, headgear, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
1a7bb56eb662d9257d3e3a133745bc11daa42095
|
# Dataset of graf_zeppelin/グラーフ・ツェッペリン (Kantai Collection)
This is the dataset of graf_zeppelin/グラーフ・ツェッペリン (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blonde_hair, long_hair, twintails, breasts, sidelocks, large_breasts, hair_between_eyes, blue_eyes, hat, peaked_cap`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 595.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/graf_zeppelin_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 350.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/graf_zeppelin_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1264 | 773.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/graf_zeppelin_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 531.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/graf_zeppelin_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1264 | 1.05 GiB | [Download](https://huggingface.co/datasets/CyberHarem/graf_zeppelin_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/graf_zeppelin_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, black_gloves, capelet, looking_at_viewer, military_uniform, miniskirt, necktie, solo, black_pantyhose, pleated_skirt, simple_background, white_background, hand_on_hip, iron_cross |
| 1 | 23 |  |  |  |  |  | 1girl, black_skirt, capelet, iron_cross, military_uniform, miniskirt, necktie, pleated_skirt, solo, black_gloves, black_pantyhose, looking_at_viewer, military_hat, simple_background, white_background, jacket, long_sleeves, cowboy_shot, purple_eyes |
| 2 | 10 |  |  |  |  |  | 1girl, black_gloves, black_pantyhose, capelet, looking_at_viewer, miniskirt, necktie, pleated_skirt, solo, iron_cross, military_uniform, black_skirt, crossed_arms |
| 3 | 11 |  |  |  |  |  | 1girl, black_pantyhose, capelet, looking_at_viewer, solo, uniform, black_gloves, miniskirt, blush |
| 4 | 25 |  |  |  |  |  | 1girl, capelet, military_uniform, necktie, solo, iron_cross, upper_body, looking_at_viewer, simple_background, white_background, black_gloves, long_sleeves, military_hat, blush |
| 5 | 10 |  |  |  |  |  | looking_at_viewer, 1girl, blush, solo, navel, simple_background, white_bikini, cleavage, collarbone, iron_cross, white_background, cowboy_shot, necktie, black_gloves, side-tie_bikini_bottom |
| 6 | 9 |  |  |  |  |  | 1girl, cleavage, navel, solo, black_bikini, collarbone, blush, looking_at_viewer, closed_mouth, grey_eyes, alternate_costume, simple_background, white_background |
| 7 | 5 |  |  |  |  |  | 1boy, 1girl, black_gloves, hetero, nipples, penis, bar_censor, huge_breasts, solo_focus, blush, handjob, paizuri, uniform, alternate_breast_size, ass, breasts_out, clothed_female_nude_male, ejaculation, gigantic_breasts, heart-shaped_pupils, large_areolae, purple_eyes, smile, tongue_out |
| 8 | 5 |  |  |  |  |  | 1girl, detached_collar, looking_at_viewer, playboy_bunny, rabbit_ears, rabbit_tail, solo, alternate_costume, black_leotard, fake_animal_ears, simple_background, black_pantyhose, grey_eyes, strapless_leotard, white_background, wrist_cuffs, armpits, ass, blush, cleavage, fake_tail, gloves, highleg_leotard |
| 9 | 8 |  |  |  |  |  | cleavage, dirndl, waist_apron, 1girl, alternate_costume, beer_mug, solo, underbust, blush, holding_cup, iron_cross, collarbone, looking_at_viewer, black_dress, cowboy_shot, puffy_short_sleeves, bangs, necklace, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | black_gloves | capelet | looking_at_viewer | military_uniform | miniskirt | necktie | solo | black_pantyhose | pleated_skirt | simple_background | white_background | hand_on_hip | iron_cross | black_skirt | military_hat | jacket | long_sleeves | cowboy_shot | purple_eyes | crossed_arms | uniform | blush | upper_body | navel | white_bikini | cleavage | collarbone | side-tie_bikini_bottom | black_bikini | closed_mouth | grey_eyes | alternate_costume | 1boy | hetero | nipples | penis | bar_censor | huge_breasts | solo_focus | handjob | paizuri | alternate_breast_size | ass | breasts_out | clothed_female_nude_male | ejaculation | gigantic_breasts | heart-shaped_pupils | large_areolae | smile | tongue_out | detached_collar | playboy_bunny | rabbit_ears | rabbit_tail | black_leotard | fake_animal_ears | strapless_leotard | wrist_cuffs | armpits | fake_tail | gloves | highleg_leotard | dirndl | waist_apron | beer_mug | underbust | holding_cup | black_dress | puffy_short_sleeves | bangs | necklace |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:----------|:--------------------|:-------------------|:------------|:----------|:-------|:------------------|:----------------|:--------------------|:-------------------|:--------------|:-------------|:--------------|:---------------|:---------|:---------------|:--------------|:--------------|:---------------|:----------|:--------|:-------------|:--------|:---------------|:-----------|:-------------|:-------------------------|:---------------|:---------------|:------------|:--------------------|:-------|:---------|:----------|:--------|:-------------|:---------------|:-------------|:----------|:----------|:------------------------|:------|:--------------|:---------------------------|:--------------|:-------------------|:----------------------|:----------------|:--------|:-------------|:------------------|:----------------|:--------------|:--------------|:----------------|:-------------------|:--------------------|:--------------|:----------|:------------|:---------|:------------------|:---------|:--------------|:-----------|:------------|:--------------|:--------------|:----------------------|:--------|:-----------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | X | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | X | X | X | X | | X | | X | X | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 25 |  |  |  |  |  | X | X | X | X | X | | X | X | | | X | X | | X | | X | | X | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 10 |  |  |  |  |  | X | X | | X | | | X | X | | | X | X | | X | | | | | X | | | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 9 |  |  |  |  |  | X | | | X | | | | X | | | X | X | | | | | | | | | | | X | | X | | X | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | X | | | | | | | | | | | | | | | | | | X | | X | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 8 | 5 |  |  |  |  |  | X | | | X | | | | X | X | | X | X | | | | | | | | | | | X | | | | X | | | | | X | X | | | | | | | | | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 9 | 8 |  |  |  |  |  | X | | | X | | | | X | | | | | | X | | | | | X | | | | X | | | | X | X | | | | | X | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/graf_zeppelin_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T17:53:00+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T07:11:26+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of graf\_zeppelin/グラーフ・ツェッペリン (Kantai Collection)
=========================================================
This is the dataset of graf\_zeppelin/グラーフ・ツェッペリン (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, twintails, breasts, sidelocks, large\_breasts, hair\_between\_eyes, blue\_eyes, hat, peaked\_cap', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
ee5da70a8f859b470cc087046083065f4274e72d
|
# Dataset of murasame (Kantai Collection)
This is the dataset of murasame (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, light_brown_hair, brown_eyes, breasts, red_eyes, ribbon, large_breasts, twintails, two_side_up, hair_ribbon, heterochromia, hair_ornament, hairclip`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 672.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murasame_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 373.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murasame_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1294 | 857.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murasame_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 596.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murasame_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1294 | 1.21 GiB | [Download](https://huggingface.co/datasets/CyberHarem/murasame_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/murasame_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, black_serafuku, black_skirt, pleated_skirt, red_neckerchief, solo, looking_at_viewer, blush, smile |
| 1 | 5 |  |  |  |  |  | 1girl, asymmetrical_clothes, beret, black_headwear, black_serafuku, black_skirt, hair_flaps, pleated_skirt, red_neckerchief, smile, solo, white_gloves, looking_at_viewer, simple_background, white_background, belt, white_sailor_collar |
| 2 | 5 |  |  |  |  |  | 1girl, anchor, black_serafuku, machinery, pleated_skirt, solo, chain, black_skirt, socks, blonde_hair, brown_hair, neckerchief, open_mouth, torpedo, very_long_hair |
| 3 | 29 |  |  |  |  |  | 1girl, hair_flaps, solo, looking_at_viewer, competition_swimsuit, covered_navel, blue_one-piece_swimsuit, cleavage, two-tone_swimsuit, simple_background, smile, white_background, highleg_swimsuit, twitter_username, collarbone, cowboy_shot, dated |
| 4 | 7 |  |  |  |  |  | 1girl, cleavage, looking_at_viewer, navel, sailor_bikini, solo, adapted_costume, smile, black_bikini, brown_hair, white_background, blush, collarbone, open_mouth, simple_background |
| 5 | 5 |  |  |  |  |  | cleavage, day, looking_at_viewer, medium_breasts, navel, outdoors, bikini_skirt, black_bikini, ocean, sailor_bikini, smile, water, cloud, collarbone, open_mouth, solo_focus, 1girl, 2girls, blonde_hair, blue_sky, groin, hair_between_eyes, very_long_hair, wading |
| 6 | 12 |  |  |  |  |  | 1girl, solo, blush, looking_at_viewer, panties, bra, cleavage, collarbone, navel, smile, white_background, simple_background, underwear_only, hair_between_eyes, heart, medium_breasts, twitter_username, cowboy_shot, very_long_hair |
| 7 | 5 |  |  |  |  |  | 1boy, 1girl, blush, solo_focus, cum_on_breasts, open_mouth, black_bikini, cleavage, ejaculation, paizuri_under_clothes, smile, sweat, collarbone, facial, looking_at_viewer, nipples, penis, pov, sailor_bikini |
| 8 | 11 |  |  |  |  |  | 1girl, detached_collar, fake_animal_ears, playboy_bunny, rabbit_ears, solo, strapless_leotard, cleavage, hair_flaps, looking_at_viewer, black_leotard, black_pantyhose, blush, bowtie, simple_background, wrist_cuffs, smile, white_background, alternate_costume, cowboy_shot, fishnets |
| 9 | 6 |  |  |  |  |  | 1girl, nipples, 1boy, cum, hair_flaps, hetero, nude, penis, solo_focus, tongue_out, blush, white_gloves, hair_between_eyes, heart, looking_at_viewer, mosaic_censoring, navel, pussy, sex, testicles, thighhighs, vaginal |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | black_serafuku | black_skirt | pleated_skirt | red_neckerchief | solo | looking_at_viewer | blush | smile | asymmetrical_clothes | beret | black_headwear | hair_flaps | white_gloves | simple_background | white_background | belt | white_sailor_collar | anchor | machinery | chain | socks | blonde_hair | brown_hair | neckerchief | open_mouth | torpedo | very_long_hair | competition_swimsuit | covered_navel | blue_one-piece_swimsuit | cleavage | two-tone_swimsuit | highleg_swimsuit | twitter_username | collarbone | cowboy_shot | dated | navel | sailor_bikini | adapted_costume | black_bikini | day | medium_breasts | outdoors | bikini_skirt | ocean | water | cloud | solo_focus | 2girls | blue_sky | groin | hair_between_eyes | wading | panties | bra | underwear_only | heart | 1boy | cum_on_breasts | ejaculation | paizuri_under_clothes | sweat | facial | nipples | penis | pov | detached_collar | fake_animal_ears | playboy_bunny | rabbit_ears | strapless_leotard | black_leotard | black_pantyhose | bowtie | wrist_cuffs | alternate_costume | fishnets | cum | hetero | nude | tongue_out | mosaic_censoring | pussy | sex | testicles | thighhighs | vaginal |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:--------------|:----------------|:------------------|:-------|:--------------------|:--------|:--------|:-----------------------|:--------|:-----------------|:-------------|:---------------|:--------------------|:-------------------|:-------|:----------------------|:---------|:------------|:--------|:--------|:--------------|:-------------|:--------------|:-------------|:----------|:-----------------|:-----------------------|:----------------|:--------------------------|:-----------|:--------------------|:-------------------|:-------------------|:-------------|:--------------|:--------|:--------|:----------------|:------------------|:---------------|:------|:-----------------|:-----------|:---------------|:--------|:--------|:--------|:-------------|:---------|:-----------|:--------|:--------------------|:---------|:----------|:------|:-----------------|:--------|:-------|:-----------------|:--------------|:------------------------|:--------|:---------|:----------|:--------|:------|:------------------|:-------------------|:----------------|:--------------|:--------------------|:----------------|:------------------|:---------|:--------------|:--------------------|:-----------|:------|:---------|:-------|:-------------|:-------------------|:--------|:------|:------------|:-------------|:----------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 29 |  |  |  |  |  | X | | | | | X | X | | X | | | | X | | X | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | | | | | X | X | X | X | | | | | | X | X | | | | | | | | X | | X | | | | | | X | | | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | | | | | | X | | X | | | | | | | | | | | | | | X | | | X | | X | | | | X | | | | X | | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 12 |  |  |  |  |  | X | | | | | X | X | X | X | | | | | | X | X | | | | | | | | | | | | X | | | | X | | | X | X | X | | X | | | | | X | | | | | | | | | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | | | | | | X | X | X | | | | | | | | | | | | | | | | | X | | | | | | X | | | | X | | | | X | | X | | | | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 8 | 11 |  |  |  |  |  | X | | | | | X | X | X | X | | | | X | | X | X | | | | | | | | | | | | | | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 9 | 6 |  |  |  |  |  | X | | | | | | X | X | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | X | | | | X | | | | | X | X | | | | | | X | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/murasame_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T18:25:48+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T06:55:56+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of murasame (Kantai Collection)
=======================================
This is the dataset of murasame (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, light\_brown\_hair, brown\_eyes, breasts, red\_eyes, ribbon, large\_breasts, twintails, two\_side\_up, hair\_ribbon, heterochromia, hair\_ornament, hairclip', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
82f316b18b3de589f061ae7263f077066c08a22a
|
# Dataset Card for "autotree_snxor_l1_128"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
yzhuang/autotree_snxor_l1_128
|
[
"region:us"
] |
2023-08-19T18:30:42+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "input_x", "sequence": {"sequence": "float32"}}, {"name": "input_y", "sequence": {"sequence": "float32"}}, {"name": "rtg", "sequence": {"sequence": "float64"}}, {"name": "status", "sequence": {"sequence": "float32"}}, {"name": "split_threshold", "sequence": {"sequence": "float64"}}, {"name": "split_dimension", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 14452400000, "num_examples": 100000}, {"name": "validation", "num_bytes": 1445240000, "num_examples": 10000}, {"name": "test", "num_bytes": 1445240000, "num_examples": 10000}], "download_size": 16568698860, "dataset_size": 17342880000}}
|
2023-08-19T18:42:40+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "autotree_snxor_l1_128"
More Information needed
|
[
"# Dataset Card for \"autotree_snxor_l1_128\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"autotree_snxor_l1_128\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"autotree_snxor_l1_128\"\n\nMore Information needed"
] |
39ee8c7a586eec4db8b8d62738a8035df7bf6554
|
# Dataset of shoukaku/翔鶴 (Kantai Collection)
This is the dataset of shoukaku/翔鶴 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, hairband, white_hair, brown_eyes, headband, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 655.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shoukaku_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 390.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shoukaku_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1203 | 813.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shoukaku_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 586.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shoukaku_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1203 | 1.09 GiB | [Download](https://huggingface.co/datasets/CyberHarem/shoukaku_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/shoukaku_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, muneate, smile, solo, bow_(weapon), looking_at_viewer, skirt, white_background, arrow_(projectile), gloves, hakama, open_mouth |
| 1 | 13 |  |  |  |  |  | 1girl, bow_(weapon), japanese_clothes, muneate, smile, solo, skirt, thighhighs, thigh_boots, looking_at_viewer, grey_hair, gloves, blush, yellow_eyes |
| 2 | 5 |  |  |  |  |  | 1girl, bow_(weapon), gloves, japanese_clothes, muneate, skirt, solo, thigh_boots, thighhighs, yellow_eyes |
| 3 | 22 |  |  |  |  |  | 1girl, hakama_short_skirt, solo, looking_at_viewer, red_hakama, red_headband, smile, blush, cowboy_shot, tasuki, muneate, red_skirt, simple_background, open_mouth, twitter_username |
| 4 | 5 |  |  |  |  |  | 1girl, alternate_costume, kimono, looking_at_viewer, obi, smile, solo, blush, floral_print, wide_sleeves, alternate_hairstyle, new_year, open_mouth, ponytail, sitting, yellow_eyes |
| 5 | 6 |  |  |  |  |  | 1girl, cleavage, red_hairband, solo, white_bikini, cowboy_shot, large_breasts, looking_at_viewer, navel, red_headband, side-tie_bikini_bottom, smile, white_background |
| 6 | 7 |  |  |  |  |  | 1girl, solo, white_coat, black_pantyhose, red_hairband, red_sweater, smile, blush, long_sleeves, official_alternate_costume, red_headband, boots, looking_at_viewer, open_mouth, bag, full_body, gift_box, grey_skirt, holding_gift, pleated_skirt, ribbed_sweater, yellow_eyes |
| 7 | 12 |  |  |  |  |  | 1girl, christmas, santa_costume, santa_hat, solo, white_gloves, alternate_costume, black_pantyhose, belt, looking_at_viewer, red_capelet, large_breasts, red_dress, red_headwear, smile, fur-trimmed_dress, open_mouth, blush, cleavage, fur-trimmed_capelet |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | muneate | smile | solo | bow_(weapon) | looking_at_viewer | skirt | white_background | arrow_(projectile) | gloves | hakama | open_mouth | japanese_clothes | thighhighs | thigh_boots | grey_hair | blush | yellow_eyes | hakama_short_skirt | red_hakama | red_headband | cowboy_shot | tasuki | red_skirt | simple_background | twitter_username | alternate_costume | kimono | obi | floral_print | wide_sleeves | alternate_hairstyle | new_year | ponytail | sitting | cleavage | red_hairband | white_bikini | large_breasts | navel | side-tie_bikini_bottom | white_coat | black_pantyhose | red_sweater | long_sleeves | official_alternate_costume | boots | bag | full_body | gift_box | grey_skirt | holding_gift | pleated_skirt | ribbed_sweater | christmas | santa_costume | santa_hat | white_gloves | belt | red_capelet | red_dress | red_headwear | fur-trimmed_dress | fur-trimmed_capelet |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:--------|:-------|:---------------|:--------------------|:--------|:-------------------|:---------------------|:---------|:---------|:-------------|:-------------------|:-------------|:--------------|:------------|:--------|:--------------|:---------------------|:-------------|:---------------|:--------------|:---------|:------------|:--------------------|:-------------------|:--------------------|:---------|:------|:---------------|:---------------|:----------------------|:-----------|:-----------|:----------|:-----------|:---------------|:---------------|:----------------|:--------|:-------------------------|:-------------|:------------------|:--------------|:---------------|:-----------------------------|:--------|:------|:------------|:-----------|:-------------|:---------------|:----------------|:-----------------|:------------|:----------------|:------------|:---------------|:-------|:--------------|:------------|:---------------|:--------------------|:----------------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | | | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | X | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 22 |  |  |  |  |  | X | X | X | X | | X | | | | | | X | | | | | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | | X | X | | X | | | | | | X | | | | | X | X | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | | X | X | | X | | X | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | X | | X | X | | X | | | | | | X | | | | | X | X | | | X | | | | | | | | | | | | | | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 7 | 12 |  |  |  |  |  | X | | X | X | | X | | | | | | X | | | | | X | | | | | | | | | | X | | | | | | | | | X | | | X | | | | X | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/shoukaku_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T18:34:54+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T23:57:59+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of shoukaku/翔鶴 (Kantai Collection)
==========================================
This is the dataset of shoukaku/翔鶴 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, hairband, white\_hair, brown\_eyes, headband, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
588524256b999cd255226046b766b5c4b4c3cb3e
|
# Dataset of wo_class/空母ヲ級 (Kantai Collection)
This is the dataset of wo_class/空母ヲ級 (Kantai Collection), containing 11 images and their tags.
The core tags of this character are `long_hair, pale_skin, white_hair, blue_eyes, glowing_eyes, hat, breasts, aqua_eyes, grey_hair, medium_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 11 | 20.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wo_class_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 11 | 10.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wo_class_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 24 | 20.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wo_class_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 11 | 17.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wo_class_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 24 | 32.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wo_class_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/wo_class_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, abyssal_ship, bodysuit, cape, solo, looking_at_viewer, glowing, black_gloves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | abyssal_ship | bodysuit | cape | solo | looking_at_viewer | glowing | black_gloves |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:-----------|:-------|:-------|:--------------------|:----------|:---------------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X |
|
CyberHarem/wo_class_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T18:39:17+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T04:55:24+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of wo\_class/空母ヲ級 (Kantai Collection)
=============================================
This is the dataset of wo\_class/空母ヲ級 (Kantai Collection), containing 11 images and their tags.
The core tags of this character are 'long\_hair, pale\_skin, white\_hair, blue\_eyes, glowing\_eyes, hat, breasts, aqua\_eyes, grey\_hair, medium\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
8cf2729532f6716a56bf08ff7d013735c356aa5d
|
# Dataset Card for "data"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mbeaty2/data
|
[
"region:us"
] |
2023-08-19T18:42:03+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 2929210.0, "num_examples": 127}], "download_size": 1529434, "dataset_size": 2929210.0}}
|
2023-08-19T18:42:09+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "data"
More Information needed
|
[
"# Dataset Card for \"data\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"data\"\n\nMore Information needed"
] |
[
6,
11
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"data\"\n\nMore Information needed"
] |
0d9206c059dc97ac3e375f1a823711b0d1bd89cf
|
# Dataset Card for "generate_sub_6"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Jing24/generate_sub_6
|
[
"region:us"
] |
2023-08-19T19:02:54+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "struct": [{"name": "answer_start", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}], "splits": [{"name": "train", "num_bytes": 27347294, "num_examples": 30298}], "download_size": 4949263, "dataset_size": 27347294}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T19:02:55+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "generate_sub_6"
More Information needed
|
[
"# Dataset Card for \"generate_sub_6\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"generate_sub_6\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"generate_sub_6\"\n\nMore Information needed"
] |
6b56966250aebb527ddc8006e01d0a81674fb868
|
# Dataset Card for "synthetic_with_val"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
saahith/synthetic_with_val
|
[
"region:us"
] |
2023-08-19T19:03:48+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "transcript", "dtype": "string"}, {"name": "duration", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 316158980.0, "num_examples": 405}, {"name": "validation", "num_bytes": 67400894.0, "num_examples": 86}, {"name": "test", "num_bytes": 69350700.0, "num_examples": 88}], "download_size": 347775630, "dataset_size": 452910574.0}}
|
2023-08-19T19:06:03+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "synthetic_with_val"
More Information needed
|
[
"# Dataset Card for \"synthetic_with_val\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"synthetic_with_val\"\n\nMore Information needed"
] |
[
6,
17
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"synthetic_with_val\"\n\nMore Information needed"
] |
ee37bf4896f43694b92936431d8d9247b98b2f58
|
# Latest Wikitext
You could always access the latest Wikipedia texts via this dataset.
We update the dataset weekly, on every Sunday. So the dataset always provides the latest Wikipedia texts from the last week.
The current dataset on main branch contains the latest wikipedia texts created from 2024-01-29 to 2024-02-05.
The data collection is conducted on 2024-02-12.
Use the dataset via:
```
ds = datasets.load_dataset('RealTimeData/wikitext_latest')
```
# Previsou versions
You could access previous versions by requesting different branches.
For example, you could find the 2023-08-12 version via:
```
ds = datasets.load_dataset('RealTimeData/wikitext_latest', revision = '2023-08-12')
```
Check all available versions by clicking the "Files and versions" button on the top bar.
|
RealTimeData/wikitext_latest
|
[
"region:us"
] |
2023-08-19T19:04:41+00:00
|
{}
|
2024-02-12T00:50:50+00:00
|
[] |
[] |
TAGS
#region-us
|
# Latest Wikitext
You could always access the latest Wikipedia texts via this dataset.
We update the dataset weekly, on every Sunday. So the dataset always provides the latest Wikipedia texts from the last week.
The current dataset on main branch contains the latest wikipedia texts created from 2024-01-29 to 2024-02-05.
The data collection is conducted on 2024-02-12.
Use the dataset via:
# Previsou versions
You could access previous versions by requesting different branches.
For example, you could find the 2023-08-12 version via:
Check all available versions by clicking the "Files and versions" button on the top bar.
|
[
"# Latest Wikitext\n\nYou could always access the latest Wikipedia texts via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest Wikipedia texts from the last week.\n\nThe current dataset on main branch contains the latest wikipedia texts created from 2024-01-29 to 2024-02-05.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:",
"# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-12 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
[
"TAGS\n#region-us \n",
"# Latest Wikitext\n\nYou could always access the latest Wikipedia texts via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest Wikipedia texts from the last week.\n\nThe current dataset on main branch contains the latest wikipedia texts created from 2024-01-29 to 2024-02-05.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:",
"# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-12 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
[
6,
92,
54
] |
[
"passage: TAGS\n#region-us \n# Latest Wikitext\n\nYou could always access the latest Wikipedia texts via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest Wikipedia texts from the last week.\n\nThe current dataset on main branch contains the latest wikipedia texts created from 2024-01-29 to 2024-02-05.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-12 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
fedd6ef497261b8ea3d5db88b6933b1ab14bf2d8
|
# Dataset of zuikaku/瑞鶴 (Kantai Collection)
This is the dataset of zuikaku/瑞鶴 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, twintails, ribbon, hair_ribbon, green_hair, green_eyes, white_ribbon`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 583.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuikaku_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 362.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuikaku_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1226 | 765.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuikaku_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 528.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zuikaku_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1226 | 1.02 GiB | [Download](https://huggingface.co/datasets/CyberHarem/zuikaku_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/zuikaku_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 29 |  |  |  |  |  | 1girl, solo, looking_at_viewer, simple_background, smile, white_background, muneate, upper_body, hakama_skirt, hair_between_eyes, tasuki |
| 1 | 7 |  |  |  |  |  | 1girl, bow_(weapon), japanese_clothes, muneate, skirt, smile, solo, looking_at_viewer, yugake, arrow_(projectile), character_name, brown_eyes |
| 2 | 5 |  |  |  |  |  | 1girl, arrow_(projectile), flight_deck, hakama_short_skirt, muneate, quiver, red_hakama, solo, tasuki, thigh_boots, yugake, brown_gloves, holding_bow_(weapon), rudder_footwear, black_thighhighs, full_body, hair_between_eyes, rigging, single_glove, aircraft, grey_hair |
| 3 | 6 |  |  |  |  |  | 1girl, bow_(weapon), japanese_clothes, muneate, skirt, solo, thigh_boots, thighhighs, smile, arrow_(projectile), flight_deck, character_name |
| 4 | 6 |  |  |  |  |  | 1girl, japanese_clothes, muneate, solo, blush, looking_at_viewer, skirt, black_hair, gloves, open_mouth |
| 5 | 5 |  |  |  |  |  | 1girl, hair_between_eyes, hair_down, japanese_clothes, muneate, official_alternate_costume, solo, white_headband, official_alternate_hairstyle, upper_body, breastplate, grey_hair, hachimaki, looking_at_viewer, yellow_eyes, closed_mouth |
| 6 | 8 |  |  |  |  |  | 1girl, looking_at_viewer, navel, solo, blush, small_breasts, white_bikini, collarbone, hair_between_eyes, side-tie_bikini_bottom, simple_background, sitting, smile, white_background, cowboy_shot, grey_hair, jewelry, micro_bikini, open_mouth |
| 7 | 17 |  |  |  |  |  | 1girl, solo, looking_at_viewer, blush, green_jacket, ribbed_sweater, coat, simple_background, hair_between_eyes, white_background, black_thighhighs, brown_scarf, smile, white_sweater, box, gift, holding, long_sleeves, open_mouth, alternate_costume, fur-trimmed_jacket, red_scarf, sweater_dress |
| 8 | 9 |  |  |  |  |  | blue_shirt, 1girl, blue_skirt, blush, hair_between_eyes, midriff, solo, fox_ears, fox_shadow_puppet, fox_tail, navel, closed_mouth, looking_at_viewer, pleated_skirt, simple_background, small_breasts, cowboy_shot, crop_top, detached_sleeves, smile, white_background |
| 9 | 5 |  |  |  |  |  | navel, simple_background, white_background, 1girl, japanese_clothes, side-tie_panties, small_breasts, solo, black_panties, collarbone, cowboy_shot, brown_eyes, dark_green_hair, grey_hair, hair_between_eyes, looking_at_viewer, open_clothes, tasuki, thighhighs, white_panties |
| 10 | 6 |  |  |  |  |  | 1girl, cloud, day, looking_at_viewer, solo, beach, front-tie_top, ocean, outdoors, small_breasts, blue_sky, cowboy_shot, innertube, navel, black_bikini, side-tie_bikini_bottom |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | simple_background | smile | white_background | muneate | upper_body | hakama_skirt | hair_between_eyes | tasuki | bow_(weapon) | japanese_clothes | skirt | yugake | arrow_(projectile) | character_name | brown_eyes | flight_deck | hakama_short_skirt | quiver | red_hakama | thigh_boots | brown_gloves | holding_bow_(weapon) | rudder_footwear | black_thighhighs | full_body | rigging | single_glove | aircraft | grey_hair | thighhighs | blush | black_hair | gloves | open_mouth | hair_down | official_alternate_costume | white_headband | official_alternate_hairstyle | breastplate | hachimaki | yellow_eyes | closed_mouth | navel | small_breasts | white_bikini | collarbone | side-tie_bikini_bottom | sitting | cowboy_shot | jewelry | micro_bikini | green_jacket | ribbed_sweater | coat | brown_scarf | white_sweater | box | gift | holding | long_sleeves | alternate_costume | fur-trimmed_jacket | red_scarf | sweater_dress | blue_shirt | blue_skirt | midriff | fox_ears | fox_shadow_puppet | fox_tail | pleated_skirt | crop_top | detached_sleeves | side-tie_panties | black_panties | dark_green_hair | open_clothes | white_panties | cloud | day | beach | front-tie_top | ocean | outdoors | blue_sky | innertube | black_bikini |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:-------|:--------------------|:--------------------|:--------|:-------------------|:----------|:-------------|:---------------|:--------------------|:---------|:---------------|:-------------------|:--------|:---------|:---------------------|:-----------------|:-------------|:--------------|:---------------------|:---------|:-------------|:--------------|:---------------|:-----------------------|:------------------|:-------------------|:------------|:----------|:---------------|:-----------|:------------|:-------------|:--------|:-------------|:---------|:-------------|:------------|:-----------------------------|:-----------------|:-------------------------------|:--------------|:------------|:--------------|:---------------|:--------|:----------------|:---------------|:-------------|:-------------------------|:----------|:--------------|:----------|:---------------|:---------------|:-----------------|:-------|:--------------|:----------------|:------|:-------|:----------|:---------------|:--------------------|:---------------------|:------------|:----------------|:-------------|:-------------|:----------|:-----------|:--------------------|:-----------|:----------------|:-----------|:-------------------|:-------------------|:----------------|:------------------|:---------------|:----------------|:--------|:------|:--------|:----------------|:--------|:-----------|:-----------|:------------|:---------------|
| 0 | 29 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | | X | | X | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | | | | | X | | | X | X | | | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | X | | | X | | X | | | | | X | X | X | | X | X | | X | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | X | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | X | X | | | | X | X | | X | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 8 |  |  |  |  |  | X | X | X | X | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | X | | X | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 17 |  |  |  |  |  | X | X | X | X | X | X | | | | X | | | | | | | | | | | | | | | | | X | | | | | | | X | | | X | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 9 |  |  |  |  |  | X | X | X | X | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | X | X | X | | | | | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 9 | 5 |  |  |  |  |  | X | X | X | X | | X | | | | X | X | | X | | | | | X | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | X | X | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | |
| 10 | 6 |  |  |  |  |  | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/zuikaku_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T19:05:14+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:35:25+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of zuikaku/瑞鶴 (Kantai Collection)
=========================================
This is the dataset of zuikaku/瑞鶴 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, twintails, ribbon, hair\_ribbon, green\_hair, green\_eyes, white\_ribbon', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
76f15960a7b9c594f8af7a7b99dbc292ff66ce17
|
# Dataset of yukikaze/雪風 (Kantai Collection)
This is the dataset of yukikaze/雪風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, short_hair, brown_eyes, headgear, hair_ornament, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 529.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yukikaze_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 329.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yukikaze_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1130 | 689.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yukikaze_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 478.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yukikaze_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1130 | 933.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yukikaze_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yukikaze_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, blue_sailor_collar, open_mouth, simple_background, smile, solo, speaking_tube_headset, upper_teeth_only, looking_at_viewer, round_teeth, sailor_dress, white_background, yellow_neckerchief, twitter_username, upper_body |
| 1 | 19 |  |  |  |  |  | 1girl, hair_flower, open_mouth, sailor_dress, smile, solo, upper_teeth_only, grey_neckerchief, white_dress, black_sailor_collar, long_sleeves, round_teeth, speaking_tube_headset, blue_sailor_collar, cherry_blossoms, simple_background, white_background, anchor_symbol, pink_flower, blush, cowboy_shot, full_body |
| 2 | 10 |  |  |  |  |  | 1girl, hair_flower, sailor_dress, solo, cherry_blossoms, grey_neckerchief, upper_body, white_dress, long_sleeves, simple_background, white_background, black_sailor_collar, grey_necktie, smile, speaking_tube_headset, blue_sailor_collar, blush, looking_at_viewer, closed_mouth, pink_flower |
| 3 | 14 |  |  |  |  |  | 1girl, sailor_dress, smile, solo, binoculars, open_mouth, looking_at_viewer, salute, school_uniform |
| 4 | 8 |  |  |  |  |  | 1girl, looking_at_viewer, sailor_dress, solo, white_panties, open_mouth, smile, binoculars, character_name |
| 5 | 9 |  |  |  |  |  | 2girls, open_mouth, sailor_dress, binoculars, blonde_hair, blush, long_hair, smile, white_panties |
| 6 | 5 |  |  |  |  |  | 1girl, anchor_symbol, cowboy_shot, looking_at_viewer, open_mouth, smile, solo, speaking_tube_headset, straw_hat, sun_hat, sundress, white_dress, collarbone, upper_teeth_only, bow, official_alternate_costume, bag, blush, hair_between_eyes, hat_flower, jewelry, off-shoulder_dress, round_teeth, simple_background, sunflower, white_background |
| 7 | 8 |  |  |  |  |  | 1girl, anchor_symbol, blue_sky, cloud, day, looking_at_viewer, open_mouth, outdoors, solo, speaking_tube_headset, straw_hat, sun_hat, sundress, white_dress, smile, sunflower, bow, upper_teeth_only, collarbone, hat_flower, upper_body, yellow_flower |
| 8 | 6 |  |  |  |  |  | 1girl, double_bun, official_alternate_costume, open_mouth, solo, looking_at_viewer, smile, upper_teeth_only, white_shirt, blush, upper_body |
| 9 | 20 |  |  |  |  |  | 1girl, solo, looking_at_viewer, white_jacket, school_swimsuit, hooded_jacket, speaking_tube_headset, smile, hoodie, name_tag, open_mouth, blush, collarbone, long_sleeves, swimsuit_under_clothes, blue_one-piece_swimsuit, hair_between_eyes, teeth, black_one-piece_swimsuit, sitting |
| 10 | 5 |  |  |  |  |  | denim_jacket, hair_flower, official_alternate_costume, 1girl, blue_headwear, cowboy_shot, open_mouth, smile, solo, bag, blue_jacket, round_teeth, upper_teeth_only, white_skirt, beret, black_headwear, breast_pocket, cherry_blossoms, long_sleeves, white_dress |
| 11 | 5 |  |  |  |  |  | 1boy, 1girl, blush, hetero, open_mouth, solo_focus, bottomless, navel, penis, sailor_dress, sex, small_breasts, spread_legs, vaginal, covered_nipples, cum_in_pussy, see-through, socks, bar_censor, loli, mosaic_censoring, neckerchief, pov, school_uniform, simple_background, sweat, teeth, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blue_sailor_collar | open_mouth | simple_background | smile | solo | speaking_tube_headset | upper_teeth_only | looking_at_viewer | round_teeth | sailor_dress | white_background | yellow_neckerchief | twitter_username | upper_body | hair_flower | grey_neckerchief | white_dress | black_sailor_collar | long_sleeves | cherry_blossoms | anchor_symbol | pink_flower | blush | cowboy_shot | full_body | grey_necktie | closed_mouth | binoculars | salute | school_uniform | white_panties | character_name | 2girls | blonde_hair | long_hair | straw_hat | sun_hat | sundress | collarbone | bow | official_alternate_costume | bag | hair_between_eyes | hat_flower | jewelry | off-shoulder_dress | sunflower | blue_sky | cloud | day | outdoors | yellow_flower | double_bun | white_shirt | white_jacket | school_swimsuit | hooded_jacket | hoodie | name_tag | swimsuit_under_clothes | blue_one-piece_swimsuit | teeth | black_one-piece_swimsuit | sitting | denim_jacket | blue_headwear | blue_jacket | white_skirt | beret | black_headwear | breast_pocket | 1boy | hetero | solo_focus | bottomless | navel | penis | sex | small_breasts | spread_legs | vaginal | covered_nipples | cum_in_pussy | see-through | socks | bar_censor | loli | mosaic_censoring | neckerchief | pov | sweat |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:---------------------|:-------------|:--------------------|:--------|:-------|:------------------------|:-------------------|:--------------------|:--------------|:---------------|:-------------------|:---------------------|:-------------------|:-------------|:--------------|:-------------------|:--------------|:----------------------|:---------------|:------------------|:----------------|:--------------|:--------|:--------------|:------------|:---------------|:---------------|:-------------|:---------|:-----------------|:----------------|:-----------------|:---------|:--------------|:------------|:------------|:----------|:-----------|:-------------|:------|:-----------------------------|:------|:--------------------|:-------------|:----------|:---------------------|:------------|:-----------|:--------|:------|:-----------|:----------------|:-------------|:--------------|:---------------|:------------------|:----------------|:---------|:-----------|:-------------------------|:--------------------------|:--------|:---------------------------|:----------|:---------------|:----------------|:--------------|:--------------|:--------|:-----------------|:----------------|:-------|:---------|:-------------|:-------------|:--------|:--------|:------|:----------------|:--------------|:----------|:------------------|:---------------|:--------------|:--------|:-------------|:-------|:-------------------|:--------------|:------|:--------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 19 |  |  |  |  |  | X | X | X | X | X | X | X | X | | X | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 10 |  |  |  |  |  | X | X | | X | X | X | X | | X | | X | X | | | X | X | X | X | X | X | X | | X | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 14 |  |  |  |  |  | X | | X | | X | X | | | X | | X | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 8 |  |  |  |  |  | X | | X | | X | X | | | X | | X | | | | | | | | | | | | | | | | | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 9 |  |  |  |  |  | | | X | | X | | | | | | X | | | | | | | | | | | | | X | | | | | X | | | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | X | X | X | X | X | X | X | X | | X | | | | | | X | | | | X | | X | X | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 8 |  |  |  |  |  | X | | X | | X | X | X | X | X | | | | | | X | | | X | | | | X | | | | | | | | | | | | | | | X | X | X | X | X | | | | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 6 |  |  |  |  |  | X | | X | | X | X | | X | X | | | | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 20 |  |  |  |  |  | X | | X | | X | X | X | | X | | | | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | X | | | | X | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 5 |  |  |  |  |  | X | | X | | X | X | | X | | X | | | | | | X | | X | | X | X | | | | X | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 11 | 5 |  |  |  |  |  | X | | X | X | | | | | | | X | X | | | | | | | | | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/yukikaze_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T19:18:27+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:28:11+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yukikaze/雪風 (Kantai Collection)
==========================================
This is the dataset of yukikaze/雪風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, brown\_eyes, headgear, hair\_ornament, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
2f47710632f8f88ec60ae25edf36acc95d89e218
|
# Dataset Card for "99bcd686"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/99bcd686
|
[
"region:us"
] |
2023-08-19T19:26:30+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 178, "num_examples": 10}], "download_size": 1332, "dataset_size": 178}}
|
2023-08-19T19:26:31+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "99bcd686"
More Information needed
|
[
"# Dataset Card for \"99bcd686\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"99bcd686\"\n\nMore Information needed"
] |
[
6,
14
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"99bcd686\"\n\nMore Information needed"
] |
53862003d250936cc81a8827bd388c20d6a98869
|
# Dataset Card for "disfluency-es-16k-v2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Disfluency/disfluency-es-16k-v2
|
[
"region:us"
] |
2023-08-19T19:32:18+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 62314644.0, "num_examples": 780}, {"name": "test", "num_bytes": 8874608.0, "num_examples": 120}], "download_size": 65179414, "dataset_size": 71189252.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-19T19:33:28+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "disfluency-es-16k-v2"
More Information needed
|
[
"# Dataset Card for \"disfluency-es-16k-v2\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"disfluency-es-16k-v2\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"disfluency-es-16k-v2\"\n\nMore Information needed"
] |
328b560b7fdcbb06074da126cbed37fc198d3a7e
|
"<HUMAN> I'd like to know more about Uno's institute, <ASSISTANT>: Instituto Uno offers specialized education for adolescents and children in institutional care and who have a significant gap in education, starting with literacy."
"<HUMAN> I'd like to know about your mission, <ASSISTANT>: Our mission is to bring an innovative and extremely effective education to all adolescents and children in situations of social vulnerability, based on principles such as respect, listening, feeling, collaborating, affection, love."
"<HUMAN> What is Uno's Institute?,<ASSISTANT>: Instituto Uno is an education program focused on literacyfor children and adolescents sheltered in shelters, who are past the ideal literacy age."
"<HUMAN> What is the relationship between quero saber valor and Uno's institute?, <ASSISTANT>: Instituto Uno has the Quero Saber program, on literacy, and the Quero Saber Valor program, on finance."
"<HUMAN> Why should I donate to Uno's institute? <ASSISTANT>: Uno's institute is financial education project that addresses two fundamental aspects, personal finance and behavioral finance, and offers opportunities for teenagers to organize and plan financially."
"<HUMAN> What have you done till now?, <ASSISTANT>: Since 2011, we have served 310 children and adolescents in 28 reception services, carrying out around 5,000 'in loco' educational activities, complemented with 17 excursions and 41 external exploratory studies, with the support of 170 dedicated and committed eco-educator volunteers, working weekly for over one year continuously."
"<HUMAN> What's your belief?, <ASSISTANT>: If you believe that educating is everyone's responsibility, Instituto Uno makes this possibility something possible and accessible to anyone who is willing to go through a transforming personal experience. Go to the website and get in touch."
"<HUMAN> I would like to make a donation,You can make your donation through the Instituto Uno website or by asking me to make the donation. How would you like to do it?"
"<HUMAN> What can you do?, <ASSISTANT>: I can tell you Uno's institute, why should you donate and their history"
|
Briqz23/instituto_uno
|
[
"region:us"
] |
2023-08-19T19:33:54+00:00
|
{}
|
2023-08-19T19:34:37+00:00
|
[] |
[] |
TAGS
#region-us
|
"<HUMAN> I'd like to know more about Uno's institute, <ASSISTANT>: Instituto Uno offers specialized education for adolescents and children in institutional care and who have a significant gap in education, starting with literacy."
"<HUMAN> I'd like to know about your mission, <ASSISTANT>: Our mission is to bring an innovative and extremely effective education to all adolescents and children in situations of social vulnerability, based on principles such as respect, listening, feeling, collaborating, affection, love."
"<HUMAN> What is Uno's Institute?,<ASSISTANT>: Instituto Uno is an education program focused on literacyfor children and adolescents sheltered in shelters, who are past the ideal literacy age."
"<HUMAN> What is the relationship between quero saber valor and Uno's institute?, <ASSISTANT>: Instituto Uno has the Quero Saber program, on literacy, and the Quero Saber Valor program, on finance."
"<HUMAN> Why should I donate to Uno's institute? <ASSISTANT>: Uno's institute is financial education project that addresses two fundamental aspects, personal finance and behavioral finance, and offers opportunities for teenagers to organize and plan financially."
"<HUMAN> What have you done till now?, <ASSISTANT>: Since 2011, we have served 310 children and adolescents in 28 reception services, carrying out around 5,000 'in loco' educational activities, complemented with 17 excursions and 41 external exploratory studies, with the support of 170 dedicated and committed eco-educator volunteers, working weekly for over one year continuously."
"<HUMAN> What's your belief?, <ASSISTANT>: If you believe that educating is everyone's responsibility, Instituto Uno makes this possibility something possible and accessible to anyone who is willing to go through a transforming personal experience. Go to the website and get in touch."
"<HUMAN> I would like to make a donation,You can make your donation through the Instituto Uno website or by asking me to make the donation. How would you like to do it?"
"<HUMAN> What can you do?, <ASSISTANT>: I can tell you Uno's institute, why should you donate and their history"
|
[] |
[
"TAGS\n#region-us \n"
] |
[
6
] |
[
"passage: TAGS\n#region-us \n"
] |
058f2c7cf0325dbbd9fdc353c68c3b62a938be3f
|
# Dataset of yamakaze/山風 (Kantai Collection)
This is the dataset of yamakaze/山風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `green_hair, long_hair, hair_between_eyes, hair_ornament, hairclip, ribbon, hair_ribbon, ponytail, black_ribbon, green_eyes, bangs, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 673.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamakaze_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 382.06 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamakaze_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1295 | 877.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamakaze_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 600.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yamakaze_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1295 | 1.24 GiB | [Download](https://huggingface.co/datasets/CyberHarem/yamakaze_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yamakaze_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, black_serafuku, black_skirt, black_thighhighs, blue_neckerchief, blush, detached_sleeves, looking_at_viewer, pleated_skirt, simple_background, solo, white_background, parted_bangs, sitting, sidelocks, aqua_eyes, closed_mouth, wide_sleeves, zettai_ryouiki |
| 1 | 6 |  |  |  |  |  | 1girl, black_serafuku, black_skirt, blue_neckerchief, blush, detached_sleeves, looking_at_viewer, pleated_skirt, solo, black_thighhighs, zettai_ryouiki |
| 2 | 24 |  |  |  |  |  | 1girl, blue_neckerchief, detached_sleeves, solo, black_serafuku, looking_at_viewer, simple_background, upper_body, blush, white_background, choker, sidelocks, blue_eyes, parted_bangs |
| 3 | 19 |  |  |  |  |  | 1girl, black_serafuku, black_skirt, green_neckerchief, hair_flaps, black_gloves, elbow_gloves, parted_bangs, pleated_skirt, sidelocks, solo, twin_braids, black_thighhighs, blush, simple_background, white_background |
| 4 | 15 |  |  |  |  |  | sidelocks, 1girl, hair_flaps, medium_breasts, solo, blush, cleavage, parted_bangs, looking_at_viewer, black_bikini, navel, cowboy_shot, choker, collarbone, frilled_bikini, simple_background, adapted_costume, white_background, large_breasts, twin_braids |
| 5 | 15 |  |  |  |  |  | 1girl, solo, alternate_costume, blush, looking_at_viewer, simple_background, white_background, long_sleeves, blue_eyes, white_shirt, black_thighhighs, black_dress, open_mouth, smile, sitting |
| 6 | 16 |  |  |  |  |  | 1girl, blush, kimono, solo, looking_at_viewer, wide_sleeves, floral_print, alternate_costume, hair_flower, obi, simple_background, sidelocks, long_sleeves, white_background, holding, upper_body |
| 7 | 5 |  |  |  |  |  | 1girl, blue_dress, blue_rose, cosplay, long_sleeves, off-shoulder_dress, solo, blue_headwear, blush, horse_ears, open_mouth, tilted_headwear, upper_body, hat_flower, heart, bare_shoulders, blue_eyes, closed_eyes, hair_over_one_eye, horse_girl, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | black_serafuku | black_skirt | black_thighhighs | blue_neckerchief | blush | detached_sleeves | looking_at_viewer | pleated_skirt | simple_background | solo | white_background | parted_bangs | sitting | sidelocks | aqua_eyes | closed_mouth | wide_sleeves | zettai_ryouiki | upper_body | choker | blue_eyes | green_neckerchief | hair_flaps | black_gloves | elbow_gloves | twin_braids | medium_breasts | cleavage | black_bikini | navel | cowboy_shot | collarbone | frilled_bikini | adapted_costume | large_breasts | alternate_costume | long_sleeves | white_shirt | black_dress | open_mouth | smile | kimono | floral_print | hair_flower | obi | holding | blue_dress | blue_rose | cosplay | off-shoulder_dress | blue_headwear | horse_ears | tilted_headwear | hat_flower | heart | bare_shoulders | closed_eyes | hair_over_one_eye | horse_girl |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:--------------|:-------------------|:-------------------|:--------|:-------------------|:--------------------|:----------------|:--------------------|:-------|:-------------------|:---------------|:----------|:------------|:------------|:---------------|:---------------|:-----------------|:-------------|:---------|:------------|:--------------------|:-------------|:---------------|:---------------|:--------------|:-----------------|:-----------|:---------------|:--------|:--------------|:-------------|:-----------------|:------------------|:----------------|:--------------------|:---------------|:--------------|:--------------|:-------------|:--------|:---------|:---------------|:--------------|:------|:----------|:-------------|:------------|:----------|:---------------------|:----------------|:-------------|:------------------|:-------------|:--------|:-----------------|:--------------|:--------------------|:-------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | X | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 24 |  |  |  |  |  | X | X | | | X | X | X | X | | X | X | X | X | | X | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 19 |  |  |  |  |  | X | X | X | X | | X | | | X | X | X | X | X | | X | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 15 |  |  |  |  |  | X | | | | | X | | X | | X | X | X | X | | X | | | | | | X | | | X | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 15 |  |  |  |  |  | X | | | X | | X | | X | | X | X | X | | X | | | | | | | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 6 | 16 |  |  |  |  |  | X | | | | | X | | X | | X | X | X | | | X | | | X | | X | | | | | | | | | | | | | | | | | X | X | | | | | X | X | X | X | X | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | | | | | X | | | | | X | | | | | | | | | X | | X | | | | | | | | | | | | | | | | X | | | X | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/yamakaze_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T19:54:48+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T01:55:57+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yamakaze/山風 (Kantai Collection)
==========================================
This is the dataset of yamakaze/山風 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'green\_hair, long\_hair, hair\_between\_eyes, hair\_ornament, hairclip, ribbon, hair\_ribbon, ponytail, black\_ribbon, green\_eyes, bangs, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
d9316971ac1da64f3ad57bb2c38984c04c83c3bb
|
metadata
annotations_creators:
- found
language: []
language_creators: []
license:
- apache-2.0
multilinguality: []
pretty_name: Perritos-y-no-Perritos
size_categories:
- n<1K
source_datasets:
- original
tags:
- animals
- dogs
- creature-dataset
task_categories:
- image-classification
task_ids:
- binary-class-image-classification
|
matiasosorio/perro_y_no_perro
|
[
"region:us"
] |
2023-08-19T20:06:08+00:00
|
{}
|
2023-08-19T20:13:51+00:00
|
[] |
[] |
TAGS
#region-us
|
metadata
annotations_creators:
- found
language: []
language_creators: []
license:
- apache-2.0
multilinguality: []
pretty_name: Perritos-y-no-Perritos
size_categories:
- n<1K
source_datasets:
- original
tags:
- animals
- dogs
- creature-dataset
task_categories:
- image-classification
task_ids:
- binary-class-image-classification
|
[] |
[
"TAGS\n#region-us \n"
] |
[
6
] |
[
"passage: TAGS\n#region-us \n"
] |
b824a1ef2821f112fda0b9cb26e4278c62b425bb
|
MIT Environmental Impulse Response Dataset
The audio recordings in this dataset are originally created by the Computational Audition Lab at MIT. The source of the data can be found at: [https://mcdermottlab.mit.edu/Reverb/IR_Survey.html](https://mcdermottlab.mit.edu/Reverb/IR_Survey.html).
The audio files in the dataset have been resampled to a sampling rate of 16 kHz. This resampling was done to reduce the size of the dataset while making it more suitable for various tasks, including data augmentation.
The dataset consists of 271 audio files, each in WAV format. These files collectively provide a diverse range of environmental impulse response data.
The license for this dataset is unknown. Please refer to the dataset source for any licensing information or usage restrictions, and cite appropriately.
|
davidscripka/MIT_environmental_impulse_responses
|
[
"task_categories:audio-classification",
"task_categories:automatic-speech-recognition",
"size_categories:n<1K",
"license:unknown",
"region:us"
] |
2023-08-19T20:14:33+00:00
|
{"license": "unknown", "size_categories": ["n<1K"], "task_categories": ["audio-classification", "automatic-speech-recognition"]}
|
2023-08-21T17:32:13+00:00
|
[] |
[] |
TAGS
#task_categories-audio-classification #task_categories-automatic-speech-recognition #size_categories-n<1K #license-unknown #region-us
|
MIT Environmental Impulse Response Dataset
The audio recordings in this dataset are originally created by the Computational Audition Lab at MIT. The source of the data can be found at: URL
The audio files in the dataset have been resampled to a sampling rate of 16 kHz. This resampling was done to reduce the size of the dataset while making it more suitable for various tasks, including data augmentation.
The dataset consists of 271 audio files, each in WAV format. These files collectively provide a diverse range of environmental impulse response data.
The license for this dataset is unknown. Please refer to the dataset source for any licensing information or usage restrictions, and cite appropriately.
|
[] |
[
"TAGS\n#task_categories-audio-classification #task_categories-automatic-speech-recognition #size_categories-n<1K #license-unknown #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#task_categories-audio-classification #task_categories-automatic-speech-recognition #size_categories-n<1K #license-unknown #region-us \n"
] |
b1c14205ddee62c69ad13b03c4060490ef1ae486
|
# Dataset of saratoga/サラトガ (Kantai Collection)
This is the dataset of saratoga/サラトガ (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, long_hair, side_ponytail, breasts, ponytail, large_breasts, blue_eyes, hair_between_eyes, sidelocks`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 666.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saratoga_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 392.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saratoga_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1251 | 852.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saratoga_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 599.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saratoga_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1251 | 1.15 GiB | [Download](https://huggingface.co/datasets/CyberHarem/saratoga_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/saratoga_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 31 |  |  |  |  |  | 1girl, breast_pocket, looking_at_viewer, solo, red_neckerchief, smile, white_dress, simple_background, belt, white_background, anchor, upper_body, smokestack |
| 1 | 8 |  |  |  |  |  | 1girl, belt, breast_pocket, garter_straps, red_neckerchief, smile, solo, white_dress, wind_lift, anchor, looking_at_viewer, red_thighhighs, smokestack, simple_background, open_mouth, white_background |
| 2 | 12 |  |  |  |  |  | 1girl, black_gloves, breast_pocket, fingerless_gloves, looking_at_viewer, solo, smile, anchor, short_sleeves, white_dress, simple_background, smokestack_hair_ornament, red_thighhighs, single_glove, white_background |
| 3 | 6 |  |  |  |  |  | 1girl, alternate_costume, looking_at_viewer, simple_background, smile, solo, white_background, black_sweater, upper_body, ribbed_sweater, twitter_username, blush, long_sleeves, one-hour_drawing_challenge, turtleneck_sweater |
| 4 | 11 |  |  |  |  |  | 1girl, solo, nipples, smile, smokestack_hair_ornament, looking_at_viewer, navel, collarbone, blush, completely_nude, upper_body |
| 5 | 20 |  |  |  |  |  | 1girl, cleavage, solo, looking_at_viewer, navel, collarbone, smile, white_bikini, simple_background, cowboy_shot, white_background, blush, open_mouth, smokestack_hair_ornament |
| 6 | 5 |  |  |  |  |  | 1boy, 1girl, blush, hetero, solo_focus, cum_on_breasts, looking_at_viewer, nipples, paizuri, penis, bar_censor, cum_on_hair, facial, open_clothes, sweat |
| 7 | 8 |  |  |  |  |  | 1girl, hetero, solo_focus, blush, navel, nipples, open_mouth, cum_in_pussy, on_back, spread_legs, bar_censor, completely_nude, vaginal, 1boy, looking_at_viewer, multiple_boys, multiple_penises, bed_sheet, cum_on_breasts, double_handjob, gangbang, missionary, pubic_hair, smokestack_hair_ornament, thighhighs |
| 8 | 10 |  |  |  |  |  | 1girl, fake_animal_ears, playboy_bunny, rabbit_ears, strapless_leotard, detached_collar, looking_at_viewer, solo, wrist_cuffs, cowboy_shot, rabbit_tail, white_leotard, simple_background, smokestack_hair_ornament, white_background, pantyhose, alternate_costume, cleavage, dated, grey_eyes, necktie, thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | breast_pocket | looking_at_viewer | solo | red_neckerchief | smile | white_dress | simple_background | belt | white_background | anchor | upper_body | smokestack | garter_straps | wind_lift | red_thighhighs | open_mouth | black_gloves | fingerless_gloves | short_sleeves | smokestack_hair_ornament | single_glove | alternate_costume | black_sweater | ribbed_sweater | twitter_username | blush | long_sleeves | one-hour_drawing_challenge | turtleneck_sweater | nipples | navel | collarbone | completely_nude | cleavage | white_bikini | cowboy_shot | 1boy | hetero | solo_focus | cum_on_breasts | paizuri | penis | bar_censor | cum_on_hair | facial | open_clothes | sweat | cum_in_pussy | on_back | spread_legs | vaginal | multiple_boys | multiple_penises | bed_sheet | double_handjob | gangbang | missionary | pubic_hair | thighhighs | fake_animal_ears | playboy_bunny | rabbit_ears | strapless_leotard | detached_collar | wrist_cuffs | rabbit_tail | white_leotard | pantyhose | dated | grey_eyes | necktie |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------------|:--------------------|:-------|:------------------|:--------|:--------------|:--------------------|:-------|:-------------------|:---------|:-------------|:-------------|:----------------|:------------|:-----------------|:-------------|:---------------|:--------------------|:----------------|:---------------------------|:---------------|:--------------------|:----------------|:-----------------|:-------------------|:--------|:---------------|:-----------------------------|:---------------------|:----------|:--------|:-------------|:------------------|:-----------|:---------------|:--------------|:-------|:---------|:-------------|:-----------------|:----------|:--------|:-------------|:--------------|:---------|:---------------|:--------|:---------------|:----------|:--------------|:----------|:----------------|:-------------------|:------------|:-----------------|:-----------|:-------------|:-------------|:-------------|:-------------------|:----------------|:--------------|:--------------------|:------------------|:--------------|:--------------|:----------------|:------------|:--------|:------------|:----------|
| 0 | 31 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 12 |  |  |  |  |  | X | X | X | X | | X | X | X | | X | X | | | | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | | X | X | | X | | X | | X | | X | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 11 |  |  |  |  |  | X | | X | X | | X | | | | | | X | | | | | | | | | X | | | | | | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 20 |  |  |  |  |  | X | | X | X | | X | | X | | X | | | | | | | X | | | | X | | | | | | X | | | | | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 8 |  |  |  |  |  | X | | X | | | | | | | | | | | | | | X | | | | X | | | | | | X | | | | X | X | | X | | | | X | X | X | X | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 8 | 10 |  |  |  |  |  | X | | X | X | | | | X | | X | | | | | | | | | | | X | | X | | | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/saratoga_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T20:19:45+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T14:58:48+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of saratoga/サラトガ (Kantai Collection)
============================================
This is the dataset of saratoga/サラトガ (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, long\_hair, side\_ponytail, breasts, ponytail, large\_breasts, blue\_eyes, hair\_between\_eyes, sidelocks', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
2ca2533ea6990aa443a25db55dcd2a1aef772f28
|
Llama-2 representations extracted from CoT dataset samples (original order is preserved). Representations are extracted from the final layer and averaged across all tokens.
Dataset structure: key=sample id, value=feature vector in string format, with ";" separator.
|
arazd/llama_features_cot
|
[
"license:openrail",
"region:us"
] |
2023-08-19T20:24:41+00:00
|
{"license": "openrail"}
|
2023-08-19T20:38:22+00:00
|
[] |
[] |
TAGS
#license-openrail #region-us
|
Llama-2 representations extracted from CoT dataset samples (original order is preserved). Representations are extracted from the final layer and averaged across all tokens.
Dataset structure: key=sample id, value=feature vector in string format, with ";" separator.
|
[] |
[
"TAGS\n#license-openrail #region-us \n"
] |
[
12
] |
[
"passage: TAGS\n#license-openrail #region-us \n"
] |
b35906f21cda73a36e6463c9c1e277ed9c2ab053
|
# Dataset of yuubari/夕張 (Kantai Collection)
This is the dataset of yuubari/夕張 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `ponytail, brown_eyes, green_hair, bow, bangs, hair_bow, grey_hair, long_hair, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 516.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuubari_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 321.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuubari_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1232 | 702.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuubari_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 465.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuubari_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1232 | 940.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuubari_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yuubari_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | playboy_bunny, 1girl, looking_at_viewer, rabbit_ears, solo, wrist_cuffs, detached_collar, fake_animal_ears, simple_background, strapless_leotard, white_background, bowtie, rabbit_tail, black_leotard, black_pantyhose, cowboy_shot, dated, green_bow, small_breasts, alternate_costume, cleavage, hair_ribbon, medium_breasts |
| 1 | 15 |  |  |  |  |  | 1girl, bowtie, green_skirt, pleated_skirt, serafuku, short_sleeves, solo, looking_at_viewer, black_pantyhose, midriff, navel, smile, crop_top, open_mouth, machinery, blush |
| 2 | 8 |  |  |  |  |  | 1girl, serafuku, short_sleeves, solo, upper_body, looking_at_viewer, orange_bowtie, sailor_collar, simple_background, green_bow, shirt, smile, white_background, open_mouth |
| 3 | 5 |  |  |  |  |  | 1girl, black_shirt, grey_sailor_collar, hair_ribbon, looking_at_viewer, one-hour_drawing_challenge, orange_neckerchief, serafuku, simple_background, solo, white_background, dated, green_skirt, midriff, navel, upper_body, white_ribbon, twitter_username, crop_top, pleated_skirt, short_sleeves |
| 4 | 24 |  |  |  |  |  | 1girl, pleated_skirt, serafuku, solo, grey_sailor_collar, hair_ribbon, orange_neckerchief, green_skirt, white_ribbon, looking_at_viewer, black_pantyhose, midriff, navel, black_shirt, cowboy_shot, white_background, grey_skirt, orange_necktie, simple_background, crop_top, smile, black_belt, short_sleeves |
| 5 | 35 |  |  |  |  |  | 1girl, solo, black_bikini, looking_at_viewer, hair_ribbon, white_ribbon, cowboy_shot, simple_background, navel, small_breasts, smile, white_background, side-tie_bikini_bottom, one-hour_drawing_challenge |
| 6 | 7 |  |  |  |  |  | 1girl, solo, jumpsuit, looking_at_viewer, navel, smile, white_tank_top, cowboy_shot, midriff, collarbone, one-hour_drawing_challenge, blush, medium_breasts, one_eye_closed, pants, twitter_username |
| 7 | 9 |  |  |  |  |  | 1girl, black_headwear, black_sweater, hat, long_sleeves, solo, white_shirt, green_skirt, looking_at_viewer, official_alternate_costume, twitter_username, sitting, collared_shirt, one-hour_drawing_challenge, open_mouth, smile |
| 8 | 23 |  |  |  |  |  | 1girl, blush, nipples, navel, 1boy, hetero, open_mouth, sex, solo_focus, small_breasts, penis, vaginal, bar_censor, cum_in_pussy, female_pubic_hair, looking_at_viewer, shirt_lift |
| 9 | 6 |  |  |  |  |  | 1girl, alternate_costume, kimono, looking_at_viewer, obi, solo, wide_sleeves, open_mouth, ribbon, smile, happy_new_year |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | playboy_bunny | 1girl | looking_at_viewer | rabbit_ears | solo | wrist_cuffs | detached_collar | fake_animal_ears | simple_background | strapless_leotard | white_background | bowtie | rabbit_tail | black_leotard | black_pantyhose | cowboy_shot | dated | green_bow | small_breasts | alternate_costume | cleavage | hair_ribbon | medium_breasts | green_skirt | pleated_skirt | serafuku | short_sleeves | midriff | navel | smile | crop_top | open_mouth | machinery | blush | upper_body | orange_bowtie | sailor_collar | shirt | black_shirt | grey_sailor_collar | one-hour_drawing_challenge | orange_neckerchief | white_ribbon | twitter_username | grey_skirt | orange_necktie | black_belt | black_bikini | side-tie_bikini_bottom | jumpsuit | white_tank_top | collarbone | one_eye_closed | pants | black_headwear | black_sweater | hat | long_sleeves | white_shirt | official_alternate_costume | sitting | collared_shirt | nipples | 1boy | hetero | sex | solo_focus | penis | vaginal | bar_censor | cum_in_pussy | female_pubic_hair | shirt_lift | kimono | obi | wide_sleeves | ribbon | happy_new_year |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------|:--------|:--------------------|:--------------|:-------|:--------------|:------------------|:-------------------|:--------------------|:--------------------|:-------------------|:---------|:--------------|:----------------|:------------------|:--------------|:--------|:------------|:----------------|:--------------------|:-----------|:--------------|:-----------------|:--------------|:----------------|:-----------|:----------------|:----------|:--------|:--------|:-----------|:-------------|:------------|:--------|:-------------|:----------------|:----------------|:--------|:--------------|:---------------------|:-----------------------------|:---------------------|:---------------|:-------------------|:-------------|:-----------------|:-------------|:---------------|:-------------------------|:-----------|:-----------------|:-------------|:-----------------|:--------|:-----------------|:----------------|:------|:---------------|:--------------|:-----------------------------|:----------|:-----------------|:----------|:-------|:---------|:------|:-------------|:--------|:----------|:-------------|:---------------|:--------------------|:-------------|:---------|:------|:---------------|:---------|:-----------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 15 |  |  |  |  |  | | X | X | | X | | | | | | | X | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 8 |  |  |  |  |  | | X | X | | X | | | | X | | X | | | | | | | X | | | | | | | | X | X | | | X | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | | X | X | | X | | | | X | | X | | | | | | X | | | | | X | | X | X | X | X | X | X | | X | | | | X | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 24 |  |  |  |  |  | | X | X | | X | | | | X | | X | | | | X | X | | | | | | X | | X | X | X | X | X | X | X | X | | | | | | | | X | X | | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 35 |  |  |  |  |  | | X | X | | X | | | | X | | X | | | | | X | | | X | | | X | | | | | | | X | X | | | | | | | | | | | X | | X | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | | X | X | | X | | | | | | | | | | | X | | | | | | | X | | | | | X | X | X | | | | X | | | | | | | X | | | X | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 9 |  |  |  |  |  | | X | X | | X | | | | | | | | | | | | | | | | | | | X | | | | | | X | | X | | | | | | | | | X | | | X | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | |
| 8 | 23 |  |  |  |  |  | | X | X | | | | | | | | | | | | | | | | X | | | | | | | | | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | |
| 9 | 6 |  |  |  |  |  | | X | X | | X | | | | | | | | | | | | | | | X | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X |
|
CyberHarem/yuubari_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T20:35:09+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T21:55:31+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yuubari/夕張 (Kantai Collection)
=========================================
This is the dataset of yuubari/夕張 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'ponytail, brown\_eyes, green\_hair, bow, bangs, hair\_bow, grey\_hair, long\_hair, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
0e9d6180efa3e8305d9708f7d42b817ae748a372
|
Llama-2 representations extracted from Alpaca instruction tuning dataset (original orderof examples is preserved). Representations are extracted from the final layer and averaged across all tokens.
Dataset structure: key=sample id, value=feature vector in string format, with ";" separator.
|
arazd/llama_features_alpaca
|
[
"license:openrail",
"region:us"
] |
2023-08-19T20:39:23+00:00
|
{"license": "openrail"}
|
2023-08-19T20:44:10+00:00
|
[] |
[] |
TAGS
#license-openrail #region-us
|
Llama-2 representations extracted from Alpaca instruction tuning dataset (original orderof examples is preserved). Representations are extracted from the final layer and averaged across all tokens.
Dataset structure: key=sample id, value=feature vector in string format, with ";" separator.
|
[] |
[
"TAGS\n#license-openrail #region-us \n"
] |
[
12
] |
[
"passage: TAGS\n#license-openrail #region-us \n"
] |
d89eedbd4f98661ad94a6d20e82ef0a591c5cce8
|
# Latest GitHub Repositories
You could always access the latest Github repos via this dataset.
We update the dataset weekly, on every Sunday. So the dataset always provides the latest Github repos from the last week.
The current dataset on main branch contains the latest Github Repos submitted from 2024-01-29 to 2024-02-05.
The data collection is conducted on 2024-02-12.
Use the dataset via:
```
ds = datasets.load_dataset('RealTimeData/github_latest')
```
# Previsou versions
You could access previous versions by requesting different branches.
For example, you could find the 2023-08-06 version via:
```
ds = datasets.load_dataset('RealTimeData/github_latest', revision = '2023-08-06')
```
Check all available versions by clicking the "Files and versions" button on the top bar.
|
RealTimeData/github_latest
|
[
"region:us"
] |
2023-08-19T20:52:21+00:00
|
{}
|
2024-02-12T00:33:51+00:00
|
[] |
[] |
TAGS
#region-us
|
# Latest GitHub Repositories
You could always access the latest Github repos via this dataset.
We update the dataset weekly, on every Sunday. So the dataset always provides the latest Github repos from the last week.
The current dataset on main branch contains the latest Github Repos submitted from 2024-01-29 to 2024-02-05.
The data collection is conducted on 2024-02-12.
Use the dataset via:
# Previsou versions
You could access previous versions by requesting different branches.
For example, you could find the 2023-08-06 version via:
Check all available versions by clicking the "Files and versions" button on the top bar.
|
[
"# Latest GitHub Repositories\n\nYou could always access the latest Github repos via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest Github repos from the last week.\n\nThe current dataset on main branch contains the latest Github Repos submitted from 2024-01-29 to 2024-02-05.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:",
"# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-06 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
[
"TAGS\n#region-us \n",
"# Latest GitHub Repositories\n\nYou could always access the latest Github repos via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest Github repos from the last week.\n\nThe current dataset on main branch contains the latest Github Repos submitted from 2024-01-29 to 2024-02-05.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:",
"# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-06 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
[
6,
99,
54
] |
[
"passage: TAGS\n#region-us \n# Latest GitHub Repositories\n\nYou could always access the latest Github repos via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest Github repos from the last week.\n\nThe current dataset on main branch contains the latest Github Repos submitted from 2024-01-29 to 2024-02-05.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-06 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
aa15fa073c9802ab27e984608936778601370a72
|
# Dataset Card for Evaluation run of huggyllama/llama-7b
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/huggyllama/llama-7b
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 121 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_huggyllama__llama-7b",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-12-04T17:40:08.047341](https://huggingface.co/datasets/open-llm-leaderboard/details_huggyllama__llama-7b/blob/main/results_2023-12-04T17-40-08.047341.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.3638062313864483,
"acc_stderr": 0.03380549659651447,
"acc_norm": 0.36665596869333805,
"acc_norm_stderr": 0.03459622436501482,
"mc1": 0.2215422276621787,
"mc1_stderr": 0.014537867601301137,
"mc2": 0.3432793294414406,
"mc2_stderr": 0.01318846106276968
},
"harness|arc:challenge|25": {
"acc": 0.47696245733788395,
"acc_stderr": 0.014595873205358267,
"acc_norm": 0.5093856655290102,
"acc_norm_stderr": 0.014608816322065
},
"harness|hellaswag|10": {
"acc": 0.5753833897629954,
"acc_stderr": 0.004932745013072713,
"acc_norm": 0.7781318462457678,
"acc_norm_stderr": 0.004146537488135709
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.26,
"acc_stderr": 0.04408440022768081,
"acc_norm": 0.26,
"acc_norm_stderr": 0.04408440022768081
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.3851851851851852,
"acc_stderr": 0.042039210401562783,
"acc_norm": 0.3851851851851852,
"acc_norm_stderr": 0.042039210401562783
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.34210526315789475,
"acc_stderr": 0.03860731599316092,
"acc_norm": 0.34210526315789475,
"acc_norm_stderr": 0.03860731599316092
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.41,
"acc_stderr": 0.049431107042371025,
"acc_norm": 0.41,
"acc_norm_stderr": 0.049431107042371025
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.35471698113207545,
"acc_stderr": 0.02944517532819959,
"acc_norm": 0.35471698113207545,
"acc_norm_stderr": 0.02944517532819959
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.375,
"acc_stderr": 0.04048439222695598,
"acc_norm": 0.375,
"acc_norm_stderr": 0.04048439222695598
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.3,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.3,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.33,
"acc_stderr": 0.04725815626252604,
"acc_norm": 0.33,
"acc_norm_stderr": 0.04725815626252604
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.3352601156069364,
"acc_stderr": 0.03599586301247078,
"acc_norm": 0.3352601156069364,
"acc_norm_stderr": 0.03599586301247078
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.23529411764705882,
"acc_stderr": 0.04220773659171451,
"acc_norm": 0.23529411764705882,
"acc_norm_stderr": 0.04220773659171451
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.45,
"acc_stderr": 0.05,
"acc_norm": 0.45,
"acc_norm_stderr": 0.05
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.3702127659574468,
"acc_stderr": 0.03156564682236785,
"acc_norm": 0.3702127659574468,
"acc_norm_stderr": 0.03156564682236785
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.2631578947368421,
"acc_stderr": 0.04142439719489362,
"acc_norm": 0.2631578947368421,
"acc_norm_stderr": 0.04142439719489362
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.22758620689655173,
"acc_stderr": 0.03493950380131184,
"acc_norm": 0.22758620689655173,
"acc_norm_stderr": 0.03493950380131184
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.2619047619047619,
"acc_stderr": 0.022644212615525214,
"acc_norm": 0.2619047619047619,
"acc_norm_stderr": 0.022644212615525214
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.2619047619047619,
"acc_stderr": 0.03932537680392871,
"acc_norm": 0.2619047619047619,
"acc_norm_stderr": 0.03932537680392871
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.33225806451612905,
"acc_stderr": 0.0267955608481228,
"acc_norm": 0.33225806451612905,
"acc_norm_stderr": 0.0267955608481228
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.30049261083743845,
"acc_stderr": 0.03225799476233485,
"acc_norm": 0.30049261083743845,
"acc_norm_stderr": 0.03225799476233485
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.33,
"acc_stderr": 0.04725815626252605,
"acc_norm": 0.33,
"acc_norm_stderr": 0.04725815626252605
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.43636363636363634,
"acc_stderr": 0.03872592983524754,
"acc_norm": 0.43636363636363634,
"acc_norm_stderr": 0.03872592983524754
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.3333333333333333,
"acc_stderr": 0.03358618145732522,
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.03358618145732522
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.44559585492227977,
"acc_stderr": 0.0358701498607566,
"acc_norm": 0.44559585492227977,
"acc_norm_stderr": 0.0358701498607566
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.3435897435897436,
"acc_stderr": 0.024078696580635477,
"acc_norm": 0.3435897435897436,
"acc_norm_stderr": 0.024078696580635477
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.25925925925925924,
"acc_stderr": 0.026719240783712173,
"acc_norm": 0.25925925925925924,
"acc_norm_stderr": 0.026719240783712173
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.33613445378151263,
"acc_stderr": 0.030684737115135363,
"acc_norm": 0.33613445378151263,
"acc_norm_stderr": 0.030684737115135363
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.26490066225165565,
"acc_stderr": 0.036030385453603854,
"acc_norm": 0.26490066225165565,
"acc_norm_stderr": 0.036030385453603854
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.47339449541284406,
"acc_stderr": 0.02140695268815159,
"acc_norm": 0.47339449541284406,
"acc_norm_stderr": 0.02140695268815159
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.3055555555555556,
"acc_stderr": 0.031415546294025445,
"acc_norm": 0.3055555555555556,
"acc_norm_stderr": 0.031415546294025445
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.35784313725490197,
"acc_stderr": 0.03364487286088299,
"acc_norm": 0.35784313725490197,
"acc_norm_stderr": 0.03364487286088299
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.43037974683544306,
"acc_stderr": 0.03223017195937598,
"acc_norm": 0.43037974683544306,
"acc_norm_stderr": 0.03223017195937598
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.39461883408071746,
"acc_stderr": 0.03280400504755291,
"acc_norm": 0.39461883408071746,
"acc_norm_stderr": 0.03280400504755291
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.3511450381679389,
"acc_stderr": 0.0418644516301375,
"acc_norm": 0.3511450381679389,
"acc_norm_stderr": 0.0418644516301375
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.5206611570247934,
"acc_stderr": 0.04560456086387235,
"acc_norm": 0.5206611570247934,
"acc_norm_stderr": 0.04560456086387235
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.4166666666666667,
"acc_stderr": 0.04766075165356461,
"acc_norm": 0.4166666666666667,
"acc_norm_stderr": 0.04766075165356461
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.4294478527607362,
"acc_stderr": 0.038890666191127216,
"acc_norm": 0.4294478527607362,
"acc_norm_stderr": 0.038890666191127216
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.2767857142857143,
"acc_stderr": 0.042466243366976256,
"acc_norm": 0.2767857142857143,
"acc_norm_stderr": 0.042466243366976256
},
"harness|hendrycksTest-management|5": {
"acc": 0.3300970873786408,
"acc_stderr": 0.046561471100123514,
"acc_norm": 0.3300970873786408,
"acc_norm_stderr": 0.046561471100123514
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.47863247863247865,
"acc_stderr": 0.03272616447634954,
"acc_norm": 0.47863247863247865,
"acc_norm_stderr": 0.03272616447634954
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.37,
"acc_stderr": 0.048523658709391,
"acc_norm": 0.37,
"acc_norm_stderr": 0.048523658709391
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.42528735632183906,
"acc_stderr": 0.017679225489431447,
"acc_norm": 0.42528735632183906,
"acc_norm_stderr": 0.017679225489431447
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.3959537572254335,
"acc_stderr": 0.02632981334194625,
"acc_norm": 0.3959537572254335,
"acc_norm_stderr": 0.02632981334194625
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.2424581005586592,
"acc_stderr": 0.014333522059217889,
"acc_norm": 0.2424581005586592,
"acc_norm_stderr": 0.014333522059217889
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.3888888888888889,
"acc_stderr": 0.02791405551046801,
"acc_norm": 0.3888888888888889,
"acc_norm_stderr": 0.02791405551046801
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.3954983922829582,
"acc_stderr": 0.027770918531427834,
"acc_norm": 0.3954983922829582,
"acc_norm_stderr": 0.027770918531427834
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.345679012345679,
"acc_stderr": 0.026462487777001883,
"acc_norm": 0.345679012345679,
"acc_norm_stderr": 0.026462487777001883
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.2695035460992908,
"acc_stderr": 0.026469036818590624,
"acc_norm": 0.2695035460992908,
"acc_norm_stderr": 0.026469036818590624
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.29595827900912647,
"acc_stderr": 0.011658518525277054,
"acc_norm": 0.29595827900912647,
"acc_norm_stderr": 0.011658518525277054
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.4411764705882353,
"acc_stderr": 0.030161911930767102,
"acc_norm": 0.4411764705882353,
"acc_norm_stderr": 0.030161911930767102
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.35784313725490197,
"acc_stderr": 0.019393058402355442,
"acc_norm": 0.35784313725490197,
"acc_norm_stderr": 0.019393058402355442
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.41818181818181815,
"acc_stderr": 0.0472457740573157,
"acc_norm": 0.41818181818181815,
"acc_norm_stderr": 0.0472457740573157
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.34285714285714286,
"acc_stderr": 0.030387262919547728,
"acc_norm": 0.34285714285714286,
"acc_norm_stderr": 0.030387262919547728
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.46766169154228854,
"acc_stderr": 0.035281314729336065,
"acc_norm": 0.46766169154228854,
"acc_norm_stderr": 0.035281314729336065
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.43,
"acc_stderr": 0.049756985195624284,
"acc_norm": 0.43,
"acc_norm_stderr": 0.049756985195624284
},
"harness|hendrycksTest-virology|5": {
"acc": 0.3433734939759036,
"acc_stderr": 0.03696584317010601,
"acc_norm": 0.3433734939759036,
"acc_norm_stderr": 0.03696584317010601
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.4853801169590643,
"acc_stderr": 0.038331852752130205,
"acc_norm": 0.4853801169590643,
"acc_norm_stderr": 0.038331852752130205
},
"harness|truthfulqa:mc|0": {
"mc1": 0.2215422276621787,
"mc1_stderr": 0.014537867601301137,
"mc2": 0.3432793294414406,
"mc2_stderr": 0.01318846106276968
},
"harness|winogrande|5": {
"acc": 0.7142857142857143,
"acc_stderr": 0.012696531870038616
},
"harness|gsm8k|5": {
"acc": 0.0803639120545868,
"acc_stderr": 0.007488258573239077
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_huggyllama__llama-7b
|
[
"region:us"
] |
2023-08-19T20:59:59+00:00
|
{"pretty_name": "Evaluation run of huggyllama/llama-7b", "dataset_summary": "Dataset automatically created during the evaluation run of model [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 121 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_huggyllama__llama-7b\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-12-04T17:40:08.047341](https://huggingface.co/datasets/open-llm-leaderboard/details_huggyllama__llama-7b/blob/main/results_2023-12-04T17-40-08.047341.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.3638062313864483,\n \"acc_stderr\": 0.03380549659651447,\n \"acc_norm\": 0.36665596869333805,\n \"acc_norm_stderr\": 0.03459622436501482,\n \"mc1\": 0.2215422276621787,\n \"mc1_stderr\": 0.014537867601301137,\n \"mc2\": 0.3432793294414406,\n \"mc2_stderr\": 0.01318846106276968\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.47696245733788395,\n \"acc_stderr\": 0.014595873205358267,\n \"acc_norm\": 0.5093856655290102,\n \"acc_norm_stderr\": 0.014608816322065\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5753833897629954,\n \"acc_stderr\": 0.004932745013072713,\n \"acc_norm\": 0.7781318462457678,\n \"acc_norm_stderr\": 0.004146537488135709\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768081,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768081\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.3851851851851852,\n \"acc_stderr\": 0.042039210401562783,\n \"acc_norm\": 0.3851851851851852,\n \"acc_norm_stderr\": 0.042039210401562783\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.34210526315789475,\n \"acc_stderr\": 0.03860731599316092,\n \"acc_norm\": 0.34210526315789475,\n \"acc_norm_stderr\": 0.03860731599316092\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.35471698113207545,\n \"acc_stderr\": 0.02944517532819959,\n \"acc_norm\": 0.35471698113207545,\n \"acc_norm_stderr\": 0.02944517532819959\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.375,\n \"acc_stderr\": 0.04048439222695598,\n \"acc_norm\": 0.375,\n \"acc_norm_stderr\": 0.04048439222695598\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252604,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252604\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.3352601156069364,\n \"acc_stderr\": 0.03599586301247078,\n \"acc_norm\": 0.3352601156069364,\n \"acc_norm_stderr\": 0.03599586301247078\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.23529411764705882,\n \"acc_stderr\": 0.04220773659171451,\n \"acc_norm\": 0.23529411764705882,\n \"acc_norm_stderr\": 0.04220773659171451\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.3702127659574468,\n \"acc_stderr\": 0.03156564682236785,\n \"acc_norm\": 0.3702127659574468,\n \"acc_norm_stderr\": 0.03156564682236785\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2631578947368421,\n \"acc_stderr\": 0.04142439719489362,\n \"acc_norm\": 0.2631578947368421,\n \"acc_norm_stderr\": 0.04142439719489362\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.22758620689655173,\n \"acc_stderr\": 0.03493950380131184,\n \"acc_norm\": 0.22758620689655173,\n \"acc_norm_stderr\": 0.03493950380131184\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2619047619047619,\n \"acc_stderr\": 0.022644212615525214,\n \"acc_norm\": 0.2619047619047619,\n \"acc_norm_stderr\": 0.022644212615525214\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2619047619047619,\n \"acc_stderr\": 0.03932537680392871,\n \"acc_norm\": 0.2619047619047619,\n \"acc_norm_stderr\": 0.03932537680392871\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.33225806451612905,\n \"acc_stderr\": 0.0267955608481228,\n \"acc_norm\": 0.33225806451612905,\n \"acc_norm_stderr\": 0.0267955608481228\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.30049261083743845,\n \"acc_stderr\": 0.03225799476233485,\n \"acc_norm\": 0.30049261083743845,\n \"acc_norm_stderr\": 0.03225799476233485\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.43636363636363634,\n \"acc_stderr\": 0.03872592983524754,\n \"acc_norm\": 0.43636363636363634,\n \"acc_norm_stderr\": 0.03872592983524754\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.03358618145732522,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.03358618145732522\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.44559585492227977,\n \"acc_stderr\": 0.0358701498607566,\n \"acc_norm\": 0.44559585492227977,\n \"acc_norm_stderr\": 0.0358701498607566\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.3435897435897436,\n \"acc_stderr\": 0.024078696580635477,\n \"acc_norm\": 0.3435897435897436,\n \"acc_norm_stderr\": 0.024078696580635477\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.25925925925925924,\n \"acc_stderr\": 0.026719240783712173,\n \"acc_norm\": 0.25925925925925924,\n \"acc_norm_stderr\": 0.026719240783712173\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.33613445378151263,\n \"acc_stderr\": 0.030684737115135363,\n \"acc_norm\": 0.33613445378151263,\n \"acc_norm_stderr\": 0.030684737115135363\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.26490066225165565,\n \"acc_stderr\": 0.036030385453603854,\n \"acc_norm\": 0.26490066225165565,\n \"acc_norm_stderr\": 0.036030385453603854\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.47339449541284406,\n \"acc_stderr\": 0.02140695268815159,\n \"acc_norm\": 0.47339449541284406,\n \"acc_norm_stderr\": 0.02140695268815159\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.3055555555555556,\n \"acc_stderr\": 0.031415546294025445,\n \"acc_norm\": 0.3055555555555556,\n \"acc_norm_stderr\": 0.031415546294025445\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.35784313725490197,\n \"acc_stderr\": 0.03364487286088299,\n \"acc_norm\": 0.35784313725490197,\n \"acc_norm_stderr\": 0.03364487286088299\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.43037974683544306,\n \"acc_stderr\": 0.03223017195937598,\n \"acc_norm\": 0.43037974683544306,\n \"acc_norm_stderr\": 0.03223017195937598\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.39461883408071746,\n \"acc_stderr\": 0.03280400504755291,\n \"acc_norm\": 0.39461883408071746,\n \"acc_norm_stderr\": 0.03280400504755291\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.3511450381679389,\n \"acc_stderr\": 0.0418644516301375,\n \"acc_norm\": 0.3511450381679389,\n \"acc_norm_stderr\": 0.0418644516301375\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.5206611570247934,\n \"acc_stderr\": 0.04560456086387235,\n \"acc_norm\": 0.5206611570247934,\n \"acc_norm_stderr\": 0.04560456086387235\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.4166666666666667,\n \"acc_stderr\": 0.04766075165356461,\n \"acc_norm\": 0.4166666666666667,\n \"acc_norm_stderr\": 0.04766075165356461\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.4294478527607362,\n \"acc_stderr\": 0.038890666191127216,\n \"acc_norm\": 0.4294478527607362,\n \"acc_norm_stderr\": 0.038890666191127216\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.2767857142857143,\n \"acc_stderr\": 0.042466243366976256,\n \"acc_norm\": 0.2767857142857143,\n \"acc_norm_stderr\": 0.042466243366976256\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3300970873786408,\n \"acc_stderr\": 0.046561471100123514,\n \"acc_norm\": 0.3300970873786408,\n \"acc_norm_stderr\": 0.046561471100123514\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.47863247863247865,\n \"acc_stderr\": 0.03272616447634954,\n \"acc_norm\": 0.47863247863247865,\n \"acc_norm_stderr\": 0.03272616447634954\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.42528735632183906,\n \"acc_stderr\": 0.017679225489431447,\n \"acc_norm\": 0.42528735632183906,\n \"acc_norm_stderr\": 0.017679225489431447\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.3959537572254335,\n \"acc_stderr\": 0.02632981334194625,\n \"acc_norm\": 0.3959537572254335,\n \"acc_norm_stderr\": 0.02632981334194625\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.3888888888888889,\n \"acc_stderr\": 0.02791405551046801,\n \"acc_norm\": 0.3888888888888889,\n \"acc_norm_stderr\": 0.02791405551046801\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.3954983922829582,\n \"acc_stderr\": 0.027770918531427834,\n \"acc_norm\": 0.3954983922829582,\n \"acc_norm_stderr\": 0.027770918531427834\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.345679012345679,\n \"acc_stderr\": 0.026462487777001883,\n \"acc_norm\": 0.345679012345679,\n \"acc_norm_stderr\": 0.026462487777001883\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2695035460992908,\n \"acc_stderr\": 0.026469036818590624,\n \"acc_norm\": 0.2695035460992908,\n \"acc_norm_stderr\": 0.026469036818590624\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.29595827900912647,\n \"acc_stderr\": 0.011658518525277054,\n \"acc_norm\": 0.29595827900912647,\n \"acc_norm_stderr\": 0.011658518525277054\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4411764705882353,\n \"acc_stderr\": 0.030161911930767102,\n \"acc_norm\": 0.4411764705882353,\n \"acc_norm_stderr\": 0.030161911930767102\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.35784313725490197,\n \"acc_stderr\": 0.019393058402355442,\n \"acc_norm\": 0.35784313725490197,\n \"acc_norm_stderr\": 0.019393058402355442\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.41818181818181815,\n \"acc_stderr\": 0.0472457740573157,\n \"acc_norm\": 0.41818181818181815,\n \"acc_norm_stderr\": 0.0472457740573157\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.34285714285714286,\n \"acc_stderr\": 0.030387262919547728,\n \"acc_norm\": 0.34285714285714286,\n \"acc_norm_stderr\": 0.030387262919547728\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.46766169154228854,\n \"acc_stderr\": 0.035281314729336065,\n \"acc_norm\": 0.46766169154228854,\n \"acc_norm_stderr\": 0.035281314729336065\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.43,\n \"acc_stderr\": 0.049756985195624284,\n \"acc_norm\": 0.43,\n \"acc_norm_stderr\": 0.049756985195624284\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.3433734939759036,\n \"acc_stderr\": 0.03696584317010601,\n \"acc_norm\": 0.3433734939759036,\n \"acc_norm_stderr\": 0.03696584317010601\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.4853801169590643,\n \"acc_stderr\": 0.038331852752130205,\n \"acc_norm\": 0.4853801169590643,\n \"acc_norm_stderr\": 0.038331852752130205\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2215422276621787,\n \"mc1_stderr\": 0.014537867601301137,\n \"mc2\": 0.3432793294414406,\n \"mc2_stderr\": 0.01318846106276968\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.012696531870038616\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0803639120545868,\n \"acc_stderr\": 0.007488258573239077\n }\n}\n```", "repo_url": "https://huggingface.co/huggyllama/llama-7b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|arc:challenge|25_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|arc:challenge|25_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|arc:challenge|25_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|gsm8k|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hellaswag|10_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hellaswag|10_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hellaswag|10_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-19T21:59:42.894030.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-23T16:59:33.663836.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-management|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-virology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-management|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-virology|5_2023-12-04T17-40-08.047341.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-management|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-virology|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|truthfulqa:mc|0_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_12_04T17_40_08.047341", "path": ["**/details_harness|winogrande|5_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-12-04T17-40-08.047341.parquet"]}]}, {"config_name": "original_mmlu_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:management|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:virology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:management|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:virology|5_2023-08-28T19:48:59.844014.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_abstract_algebra_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_anatomy_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_astronomy_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_business_ethics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_clinical_knowledge_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_college_biology_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_college_chemistry_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_college_computer_science_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_college_mathematics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_college_medicine_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_college_physics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_computer_security_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_conceptual_physics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_econometrics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_electrical_engineering_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_elementary_mathematics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_formal_logic_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_global_facts_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_biology_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_chemistry_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_computer_science_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_european_history_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_geography_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_mathematics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_microeconomics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_physics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_psychology_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_statistics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_us_history_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_high_school_world_history_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_human_aging_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_human_sexuality_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_international_law_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_jurisprudence_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_logical_fallacies_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_machine_learning_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_management_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:management|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:management|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_marketing_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_medical_genetics_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_miscellaneous_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_moral_disputes_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_moral_scenarios_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_nutrition_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_philosophy_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_prehistory_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_professional_accounting_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_professional_law_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_professional_medicine_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_professional_psychology_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_public_relations_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_security_studies_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_sociology_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_us_foreign_policy_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_virology_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:virology|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:virology|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "original_mmlu_world_religions_5", "data_files": [{"split": "2023_08_28T19_48_59.844014", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T19:48:59.844014.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T19:48:59.844014.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_08_19T21_59_42.894030", "path": ["results_2023-08-19T21:59:42.894030.parquet"]}, {"split": "2023_08_23T16_59_33.663836", "path": ["results_2023-08-23T16:59:33.663836.parquet"]}, {"split": "2023_08_28T19_48_59.844014", "path": ["results_2023-08-28T19:48:59.844014.parquet"]}, {"split": "2023_12_04T17_40_08.047341", "path": ["results_2023-12-04T17-40-08.047341.parquet"]}, {"split": "latest", "path": ["results_2023-12-04T17-40-08.047341.parquet"]}]}]}
|
2023-12-04T17:43:25+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of huggyllama/llama-7b
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model huggyllama/llama-7b on the Open LLM Leaderboard.
The dataset is composed of 121 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-12-04T17:40:08.047341(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of huggyllama/llama-7b",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model huggyllama/llama-7b on the Open LLM Leaderboard.\n\nThe dataset is composed of 121 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-12-04T17:40:08.047341(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of huggyllama/llama-7b",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model huggyllama/llama-7b on the Open LLM Leaderboard.\n\nThe dataset is composed of 121 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-12-04T17:40:08.047341(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
18,
31,
167,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of huggyllama/llama-7b## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model huggyllama/llama-7b on the Open LLM Leaderboard.\n\nThe dataset is composed of 121 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-12-04T17:40:08.047341(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
f886051527e90b3283d275225a7265585d3517d0
|
# Dataset of ryuujou/龍驤 (Kantai Collection)
This is the dataset of ryuujou/龍驤 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, twintails, brown_eyes, long_hair, visor_cap`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 535.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ryuujou_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 341.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ryuujou_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1223 | 738.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ryuujou_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 491.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ryuujou_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1223 | 982.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ryuujou_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ryuujou_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, kariginu, looking_at_viewer, magatama, simple_background, solo, black_skirt, open_mouth, pleated_skirt, smile, white_background, cowboy_shot |
| 1 | 22 |  |  |  |  |  | 1girl, kariginu, magatama, onmyouji, shikigami, solo, scroll, looking_at_viewer, smile, pleated_skirt, airplane |
| 2 | 10 |  |  |  |  |  | 1girl, navel, solo, blush, nipples, open_mouth, flat_chest, looking_at_viewer, nude, small_breasts, loli, pussy |
| 3 | 18 |  |  |  |  |  | 1girl, santa_costume, bell, looking_at_viewer, solo, white_gloves, smile, blush, open_mouth, white_pantyhose, christmas, cat_hat, cat_tail, pleated_skirt, sack, gift_box, santa_hat |
| 4 | 9 |  |  |  |  |  | 1girl, solo, detached_collar, fake_animal_ears, playboy_bunny, rabbit_ears, wrist_cuffs, bowtie, simple_background, white_background, cowboy_shot, looking_at_viewer, small_breasts, strapless_leotard, flat_chest, open_mouth, pantyhose, alternate_costume, black_leotard, blush, rabbit_tail |
| 5 | 6 |  |  |  |  |  | 1boy, 1girl, blush, hetero, solo_focus, open_mouth, penis, skirt, vaginal, bar_censor, clothed_sex, pussy, heavy_breathing, panties_aside, smile, socks, white_panties |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | kariginu | looking_at_viewer | magatama | simple_background | solo | black_skirt | open_mouth | pleated_skirt | smile | white_background | cowboy_shot | onmyouji | shikigami | scroll | airplane | navel | blush | nipples | flat_chest | nude | small_breasts | loli | pussy | santa_costume | bell | white_gloves | white_pantyhose | christmas | cat_hat | cat_tail | sack | gift_box | santa_hat | detached_collar | fake_animal_ears | playboy_bunny | rabbit_ears | wrist_cuffs | bowtie | strapless_leotard | pantyhose | alternate_costume | black_leotard | rabbit_tail | 1boy | hetero | solo_focus | penis | skirt | vaginal | bar_censor | clothed_sex | heavy_breathing | panties_aside | socks | white_panties |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:--------------------|:-----------|:--------------------|:-------|:--------------|:-------------|:----------------|:--------|:-------------------|:--------------|:-----------|:------------|:---------|:-----------|:--------|:--------|:----------|:-------------|:-------|:----------------|:-------|:--------|:----------------|:-------|:---------------|:------------------|:------------|:----------|:-----------|:-------|:-----------|:------------|:------------------|:-------------------|:----------------|:--------------|:--------------|:---------|:--------------------|:------------|:--------------------|:----------------|:--------------|:-------|:---------|:-------------|:--------|:--------|:----------|:-------------|:--------------|:------------------|:----------------|:--------|:----------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 22 |  |  |  |  |  | X | X | X | X | | X | | | X | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 10 |  |  |  |  |  | X | | X | | | X | | X | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 18 |  |  |  |  |  | X | | X | | | X | | X | X | X | | | | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 9 |  |  |  |  |  | X | | X | | X | X | | X | | | X | X | | | | | | X | | X | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | | | | | | | X | | X | | | | | | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/ryuujou_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T21:03:11+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:22:36+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of ryuujou/龍驤 (Kantai Collection)
=========================================
This is the dataset of ryuujou/龍驤 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, twintails, brown\_eyes, long\_hair, visor\_cap', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
8f8dbeeefe8060c7cfab852b5e0938c050baa317
|
# Dataset of ushio/潮/潮 (Kantai Collection)
This is the dataset of ushio/潮/潮 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, black_hair, ahoge, breasts, brown_eyes, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 596.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ushio_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 344.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ushio_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1217 | 753.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ushio_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 529.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ushio_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1217 | 1.05 GiB | [Download](https://huggingface.co/datasets/CyberHarem/ushio_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ushio_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, serafuku, solo, upper_body, looking_at_viewer, simple_background, blue_sailor_collar, white_background, green_sailor_collar |
| 1 | 10 |  |  |  |  |  | 1girl, serafuku, solo, blush, looking_at_viewer, hairband, pleated_skirt, headband, simple_background, smile |
| 2 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, serafuku, solo, blush, pleated_skirt, wariza, black_socks |
| 3 | 5 |  |  |  |  |  | 1girl, black_socks, blue_sailor_collar, blue_skirt, kneehighs, looking_at_viewer, pleated_skirt, serafuku, solo, full_body, open_mouth, short_sleeves, simple_background, standing, white_background, green_sailor_collar, loafers, smile |
| 4 | 7 |  |  |  |  |  | 1girl, polka_dot_swimsuit, solo, wrist_scrunchie, looking_at_viewer, straw_hat, blue_one-piece_swimsuit, cleavage, sun_hat, blush, open_mouth, blue_skirt, pleated_skirt, wariza, water |
| 5 | 10 |  |  |  |  |  | 1girl, elbow_gloves, shimakaze_(kancolle)_(cosplay), solo, white_gloves, black_hairband, crop_top, black_neckerchief, black_panties, blue_skirt, highleg_panties, blue_sailor_collar, microskirt, navel, blush, miniskirt, pleated_skirt, simple_background, striped_thighhighs, serafuku, white_background |
| 6 | 5 |  |  |  |  |  | 1girl, blush, covered_navel, cowboy_shot, hair_between_eyes, looking_at_viewer, simple_background, solo, white_background, blue_one-piece_swimsuit, cleavage, collarbone, casual_one-piece_swimsuit, competition_swimsuit, highleg_swimsuit, one-hour_drawing_challenge, open_mouth, parted_lips, twitter_username |
| 7 | 5 |  |  |  |  |  | 1boy, 1girl, blush, hetero, nipples, solo_focus, paizuri, serafuku, huge_breasts, penis, bar_censor, cum_on_breasts, ejaculation, shirt_lift, skirt, sweat, tears |
| 8 | 5 |  |  |  |  |  | 1boy, 1girl, blush, breast_grab, hetero, nipples, solo_focus, sweat, open_mouth, completely_nude, grabbing_from_behind, sex, tears, collarbone, heart-shaped_pupils |
| 9 | 8 |  |  |  |  |  | 1girl, collarbone, solo, cleavage, looking_at_viewer, day, smile, cloud, navel, ocean, outdoors, blue_sky, blush, cowboy_shot, hair_between_eyes, polka_dot_bikini, water, blue_bikini, front-tie_top, lens_flare, polka_dot_swimsuit |
| 10 | 5 |  |  |  |  |  | 2girls, open_mouth, serafuku, solo_focus, blush, brown_hair, skirt, sitting |
| 11 | 8 |  |  |  |  |  | 1girl, detached_collar, fake_animal_ears, playboy_bunny, rabbit_ears, solo, wrist_cuffs, blush, cleavage, alternate_costume, bowtie, simple_background, looking_at_viewer, open_mouth, strapless_leotard, white_background, black_leotard, brown_pantyhose, hair_between_eyes, bare_shoulders, black_pantyhose, cowboy_shot, huge_breasts, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | serafuku | solo | upper_body | looking_at_viewer | simple_background | blue_sailor_collar | white_background | green_sailor_collar | blush | hairband | pleated_skirt | headband | smile | wariza | black_socks | blue_skirt | kneehighs | full_body | open_mouth | short_sleeves | standing | loafers | polka_dot_swimsuit | wrist_scrunchie | straw_hat | blue_one-piece_swimsuit | cleavage | sun_hat | water | elbow_gloves | shimakaze_(kancolle)_(cosplay) | white_gloves | black_hairband | crop_top | black_neckerchief | black_panties | highleg_panties | microskirt | navel | miniskirt | striped_thighhighs | covered_navel | cowboy_shot | hair_between_eyes | collarbone | casual_one-piece_swimsuit | competition_swimsuit | highleg_swimsuit | one-hour_drawing_challenge | parted_lips | twitter_username | 1boy | hetero | nipples | solo_focus | paizuri | huge_breasts | penis | bar_censor | cum_on_breasts | ejaculation | shirt_lift | skirt | sweat | tears | breast_grab | completely_nude | grabbing_from_behind | sex | heart-shaped_pupils | day | cloud | ocean | outdoors | blue_sky | polka_dot_bikini | blue_bikini | front-tie_top | lens_flare | 2girls | brown_hair | sitting | detached_collar | fake_animal_ears | playboy_bunny | rabbit_ears | wrist_cuffs | alternate_costume | bowtie | strapless_leotard | black_leotard | brown_pantyhose | bare_shoulders | black_pantyhose |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:-----------|:-------|:-------------|:--------------------|:--------------------|:---------------------|:-------------------|:----------------------|:--------|:-----------|:----------------|:-----------|:--------|:---------|:--------------|:-------------|:------------|:------------|:-------------|:----------------|:-----------|:----------|:---------------------|:------------------|:------------|:--------------------------|:-----------|:----------|:--------|:---------------|:---------------------------------|:---------------|:-----------------|:-----------|:--------------------|:----------------|:------------------|:-------------|:--------|:------------|:---------------------|:----------------|:--------------|:--------------------|:-------------|:----------------------------|:-----------------------|:-------------------|:-----------------------------|:--------------|:-------------------|:-------|:---------|:----------|:-------------|:----------|:---------------|:--------|:-------------|:-----------------|:--------------|:-------------|:--------|:--------|:--------|:--------------|:------------------|:-----------------------|:------|:----------------------|:------|:--------|:--------|:-----------|:-----------|:-------------------|:--------------|:----------------|:-------------|:---------|:-------------|:----------|:------------------|:-------------------|:----------------|:--------------|:--------------|:--------------------|:---------|:--------------------|:----------------|:------------------|:-----------------|:------------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | X | X | | X | X | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | X | | X | | | | | X | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | | X | X | X | X | X | | | X | | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | | X | | X | | | | | X | | X | | | X | | X | | | X | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 10 |  |  |  |  |  | X | X | X | | | X | X | X | | X | | X | | | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | X | | X | X | | X | | X | | | | | | | | | | X | | | | | | | X | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | X | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 5 |  |  |  |  |  | X | | | | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 8 |  |  |  |  |  | X | | X | | X | | | | | X | | | | X | | | | | | | | | | X | | | | X | | X | | | | | | | | | | X | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 10 | 5 |  |  |  |  |  | | X | | | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | X | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | |
| 11 | 8 |  |  |  |  |  | X | | X | | X | X | | X | | X | | | | X | | | | | | X | | | | | | | | X | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/ushio_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T21:17:17+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T21:55:22+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of ushio/潮/潮 (Kantai Collection)
========================================
This is the dataset of ushio/潮/潮 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, black\_hair, ahoge, breasts, brown\_eyes, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
0335fc4acc9a8eda4d616f93d53dee577bff076f
|
# Dataset Card for Evaluation run of meta-llama/Llama-2-13b-hf
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/meta-llama/Llama-2-13b-hf
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 123 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_meta-llama__Llama-2-13b-hf",
"harness_gsm8k_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-12-02T13:11:49.394544](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Llama-2-13b-hf/blob/main/results_2023-12-02T13-11-49.394544.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.22820318423047764,
"acc_stderr": 0.011559914877317397
},
"harness|gsm8k|5": {
"acc": 0.22820318423047764,
"acc_stderr": 0.011559914877317397
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_meta-llama__Llama-2-13b-hf
|
[
"region:us"
] |
2023-08-19T21:35:59+00:00
|
{"pretty_name": "Evaluation run of meta-llama/Llama-2-13b-hf", "dataset_summary": "Dataset automatically created during the evaluation run of model [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 123 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_meta-llama__Llama-2-13b-hf\",\n\t\"harness_gsm8k_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-12-02T13:11:49.394544](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Llama-2-13b-hf/blob/main/results_2023-12-02T13-11-49.394544.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.22820318423047764,\n \"acc_stderr\": 0.011559914877317397\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.22820318423047764,\n \"acc_stderr\": 0.011559914877317397\n }\n}\n```", "repo_url": "https://huggingface.co/meta-llama/Llama-2-13b-hf", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|arc:challenge|25_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|arc:challenge|25_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|arc:challenge|25_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_drop_0", "data_files": [{"split": "2023_09_15T14_07_08.353318", "path": ["**/details_harness|drop|0_2023-09-15T14-07-08.353318.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|0_2023-09-15T14-07-08.353318.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_09_08T14_32_14.957248", "path": ["**/details_harness|drop|3_2023-09-08T14-32-14.957248.parquet"]}, {"split": "2023_10_14T23_00_26.644553", "path": ["**/details_harness|drop|3_2023-10-14T23-00-26.644553.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-10-14T23-00-26.644553.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_09_08T14_32_14.957248", "path": ["**/details_harness|gsm8k|5_2023-09-08T14-32-14.957248.parquet"]}, {"split": "2023_10_14T23_00_26.644553", "path": ["**/details_harness|gsm8k|5_2023-10-14T23-00-26.644553.parquet"]}, {"split": "2023_12_02T13_11_49.394544", "path": ["**/details_harness|gsm8k|5_2023-12-02T13-11-49.394544.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-12-02T13-11-49.394544.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hellaswag|10_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hellaswag|10_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hellaswag|10_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-19T22:35:38.117975.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-23T17:28:00.015478.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-29T22:26:02.660247.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-29T22:26:02.660247.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-29T22:26:02.660247.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_09_08T14_32_14.957248", "path": ["**/details_harness|winogrande|5_2023-09-08T14-32-14.957248.parquet"]}, {"split": "2023_10_14T23_00_26.644553", "path": ["**/details_harness|winogrande|5_2023-10-14T23-00-26.644553.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-10-14T23-00-26.644553.parquet"]}]}, {"config_name": "original_mmlu_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:management|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:virology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:management|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:virology|5_2023-08-28T19:56:56.621542.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_abstract_algebra_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_anatomy_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_astronomy_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_business_ethics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_clinical_knowledge_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_college_biology_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_college_chemistry_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_college_computer_science_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_college_mathematics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_college_medicine_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_college_physics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_computer_security_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_conceptual_physics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_econometrics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_electrical_engineering_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_elementary_mathematics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_formal_logic_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_global_facts_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_biology_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_chemistry_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_computer_science_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_european_history_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_geography_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_mathematics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_microeconomics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_physics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_psychology_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_statistics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_us_history_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_high_school_world_history_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_human_aging_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_human_sexuality_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_international_law_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_jurisprudence_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_logical_fallacies_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_machine_learning_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_management_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:management|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:management|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_marketing_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_medical_genetics_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_miscellaneous_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_moral_disputes_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_moral_scenarios_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_nutrition_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_philosophy_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_prehistory_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_professional_accounting_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_professional_law_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_professional_medicine_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_professional_psychology_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_public_relations_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_security_studies_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_sociology_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_us_foreign_policy_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_virology_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:virology|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:virology|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "original_mmlu_world_religions_5", "data_files": [{"split": "2023_08_28T19_56_56.621542", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T19:56:56.621542.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T19:56:56.621542.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_08_19T22_35_38.117975", "path": ["results_2023-08-19T22:35:38.117975.parquet"]}, {"split": "2023_08_23T17_28_00.015478", "path": ["results_2023-08-23T17:28:00.015478.parquet"]}, {"split": "2023_08_28T19_56_56.621542", "path": ["results_2023-08-28T19:56:56.621542.parquet"]}, {"split": "2023_08_29T22_26_02.660247", "path": ["results_2023-08-29T22:26:02.660247.parquet"]}, {"split": "2023_09_08T14_32_14.957248", "path": ["results_2023-09-08T14-32-14.957248.parquet"]}, {"split": "2023_09_15T14_07_08.353318", "path": ["results_2023-09-15T14-07-08.353318.parquet"]}, {"split": "2023_10_14T23_00_26.644553", "path": ["results_2023-10-14T23-00-26.644553.parquet"]}, {"split": "2023_12_02T13_11_49.394544", "path": ["results_2023-12-02T13-11-49.394544.parquet"]}, {"split": "latest", "path": ["results_2023-12-02T13-11-49.394544.parquet"]}]}]}
|
2023-12-02T13:12:01+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of meta-llama/Llama-2-13b-hf
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model meta-llama/Llama-2-13b-hf on the Open LLM Leaderboard.
The dataset is composed of 123 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-12-02T13:11:49.394544(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of meta-llama/Llama-2-13b-hf",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model meta-llama/Llama-2-13b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 123 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-12-02T13:11:49.394544(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of meta-llama/Llama-2-13b-hf",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model meta-llama/Llama-2-13b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 123 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-12-02T13:11:49.394544(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
22,
31,
171,
66,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of meta-llama/Llama-2-13b-hf## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model meta-llama/Llama-2-13b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 123 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 8 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-12-02T13:11:49.394544(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
992488fdc6970cd96f8928aaab79fc12d64fe20e
|
# Dataset Card for TinyGiant
## Dataset Summary
This dataset aims to provide a small but pretty viable base model dataset. Aimed to be able to train a model and teach it a viable amount of information about all tokens.
## Languages
English (100%)
More soon...
## Vocab Coverage (and other stats)
### RWKV World Tokenizer
=====================================
enwiki.jsonl
documents: 46180
max context length: 54110
total tokens: 35413961
vocab coverage: 80.41%
file size: 159.56 megabytes
=====================================
stack_exchange.jsonl
documents: 71160
max context length: 20671
total tokens: 38983876
vocab coverage: 79.48%
file size: 148.36 megabytes
=====================================
webtext.jsonl
documents: 154557
max context length: 448
total tokens: 25027551
vocab coverage: 76.54%
file size: 109.57 megabytes
=====================================
code_documents.jsonl
documents: 23298
max context length: 263776
total tokens: 52397777
vocab coverage: 84.61%
file size: 187.14 megabytes
=====================================
stories.jsonl
documents: 25385
max context length: 1053
total tokens: 5552189
vocab coverage: 18.97%
file size: 23.57 megabytes
=====================================
text.jsonl
documents: 181030
max context length: 146988
total tokens: 350672227
vocab coverage: 95.67%
file size: 1329.66 megabytes
=====================================
vn.jsonl
documents: 190
max context length: 2217608
total tokens: 57891290
vocab coverage: 63.14%
file size: 209.89 megabytes
=====================================
jupyter_to_text.jsonl
documents: 9701
max context length: 45295
total tokens: 30927312
vocab coverage: 78.75%
file size: 112.12 megabytes
=====================================
stories_smart.jsonl
documents: 100676
max context length: 1137
total tokens: 23692169
vocab coverage: 23.55%
file size: 98.75 megabytes
=====================================
totals
documents: 612177
max context length: 2217608
tokens: 620558352
vocab coverage: 99.24%
size: 2378.63 megabytes
|
m8than/tiny_giant_filtered_pretrain
|
[
"task_categories:text-generation",
"task_categories:fill-mask",
"language:en",
"license:cc-by-sa-3.0",
"language-modeling",
"masked-language-modeling",
"region:us"
] |
2023-08-19T21:36:01+00:00
|
{"language": ["en"], "license": "cc-by-sa-3.0", "task_categories": ["text-generation", "fill-mask"], "pretty_name": "TinyGiant", "tags": ["language-modeling", "masked-language-modeling"], "configs": [{"config_name": "default", "default": true, "data_files": [{"split": "train", "path": ["*/*.jsonl"]}]}, {"config_name": "mini", "data_files": [{"split": "train", "path": ["webtext/*.jsonl"]}]}, {"config_name": "base", "data_files": [{"split": "train", "path": ["code_documents/*.jsonl", "enwiki/*.jsonl", "webtext/*.jsonl"]}]}]}
|
2023-08-23T06:14:02+00:00
|
[] |
[
"en"
] |
TAGS
#task_categories-text-generation #task_categories-fill-mask #language-English #license-cc-by-sa-3.0 #language-modeling #masked-language-modeling #region-us
|
# Dataset Card for TinyGiant
## Dataset Summary
This dataset aims to provide a small but pretty viable base model dataset. Aimed to be able to train a model and teach it a viable amount of information about all tokens.
## Languages
English (100%)
More soon...
## Vocab Coverage (and other stats)
### RWKV World Tokenizer
=====================================
URL
documents: 46180
max context length: 54110
total tokens: 35413961
vocab coverage: 80.41%
file size: 159.56 megabytes
=====================================
stack_exchange.jsonl
documents: 71160
max context length: 20671
total tokens: 38983876
vocab coverage: 79.48%
file size: 148.36 megabytes
=====================================
URL
documents: 154557
max context length: 448
total tokens: 25027551
vocab coverage: 76.54%
file size: 109.57 megabytes
=====================================
code_documents.jsonl
documents: 23298
max context length: 263776
total tokens: 52397777
vocab coverage: 84.61%
file size: 187.14 megabytes
=====================================
URL
documents: 25385
max context length: 1053
total tokens: 5552189
vocab coverage: 18.97%
file size: 23.57 megabytes
=====================================
URL
documents: 181030
max context length: 146988
total tokens: 350672227
vocab coverage: 95.67%
file size: 1329.66 megabytes
=====================================
URL
documents: 190
max context length: 2217608
total tokens: 57891290
vocab coverage: 63.14%
file size: 209.89 megabytes
=====================================
jupyter_to_text.jsonl
documents: 9701
max context length: 45295
total tokens: 30927312
vocab coverage: 78.75%
file size: 112.12 megabytes
=====================================
stories_smart.jsonl
documents: 100676
max context length: 1137
total tokens: 23692169
vocab coverage: 23.55%
file size: 98.75 megabytes
=====================================
totals
documents: 612177
max context length: 2217608
tokens: 620558352
vocab coverage: 99.24%
size: 2378.63 megabytes
|
[
"# Dataset Card for TinyGiant",
"## Dataset Summary\n\nThis dataset aims to provide a small but pretty viable base model dataset. Aimed to be able to train a model and teach it a viable amount of information about all tokens.",
"## Languages\n\nEnglish (100%)\n\nMore soon...",
"## Vocab Coverage (and other stats)",
"### RWKV World Tokenizer\n\n=====================================\n\nURL\n\ndocuments: 46180\n\nmax context length: 54110\n\ntotal tokens: 35413961\n\nvocab coverage: 80.41%\n\nfile size: 159.56 megabytes\n\n=====================================\n\nstack_exchange.jsonl\n\ndocuments: 71160\n\nmax context length: 20671\n\ntotal tokens: 38983876\n\nvocab coverage: 79.48%\n\nfile size: 148.36 megabytes\n\n=====================================\n\nURL\n\ndocuments: 154557\n\nmax context length: 448\n\ntotal tokens: 25027551\n\nvocab coverage: 76.54%\n\nfile size: 109.57 megabytes\n\n=====================================\n\ncode_documents.jsonl\n\ndocuments: 23298\n\nmax context length: 263776\n\ntotal tokens: 52397777\n\nvocab coverage: 84.61%\n\nfile size: 187.14 megabytes\n\n=====================================\n\nURL\n\ndocuments: 25385\n\nmax context length: 1053\n\ntotal tokens: 5552189\n\nvocab coverage: 18.97%\n\nfile size: 23.57 megabytes\n\n=====================================\n\nURL\n\ndocuments: 181030\n\nmax context length: 146988\n\ntotal tokens: 350672227\n\nvocab coverage: 95.67%\n\nfile size: 1329.66 megabytes\n\n=====================================\n\nURL\n\ndocuments: 190\n\nmax context length: 2217608\n\ntotal tokens: 57891290\n\nvocab coverage: 63.14%\n\nfile size: 209.89 megabytes\n\n=====================================\n\njupyter_to_text.jsonl\n\ndocuments: 9701\n\nmax context length: 45295\n\ntotal tokens: 30927312\n\nvocab coverage: 78.75%\n\nfile size: 112.12 megabytes\n\n=====================================\n\nstories_smart.jsonl\n\ndocuments: 100676\n\nmax context length: 1137\n\ntotal tokens: 23692169\n\nvocab coverage: 23.55%\n\nfile size: 98.75 megabytes\n\n=====================================\n\ntotals\n\ndocuments: 612177\n\nmax context length: 2217608\n\ntokens: 620558352\n\nvocab coverage: 99.24%\n\nsize: 2378.63 megabytes"
] |
[
"TAGS\n#task_categories-text-generation #task_categories-fill-mask #language-English #license-cc-by-sa-3.0 #language-modeling #masked-language-modeling #region-us \n",
"# Dataset Card for TinyGiant",
"## Dataset Summary\n\nThis dataset aims to provide a small but pretty viable base model dataset. Aimed to be able to train a model and teach it a viable amount of information about all tokens.",
"## Languages\n\nEnglish (100%)\n\nMore soon...",
"## Vocab Coverage (and other stats)",
"### RWKV World Tokenizer\n\n=====================================\n\nURL\n\ndocuments: 46180\n\nmax context length: 54110\n\ntotal tokens: 35413961\n\nvocab coverage: 80.41%\n\nfile size: 159.56 megabytes\n\n=====================================\n\nstack_exchange.jsonl\n\ndocuments: 71160\n\nmax context length: 20671\n\ntotal tokens: 38983876\n\nvocab coverage: 79.48%\n\nfile size: 148.36 megabytes\n\n=====================================\n\nURL\n\ndocuments: 154557\n\nmax context length: 448\n\ntotal tokens: 25027551\n\nvocab coverage: 76.54%\n\nfile size: 109.57 megabytes\n\n=====================================\n\ncode_documents.jsonl\n\ndocuments: 23298\n\nmax context length: 263776\n\ntotal tokens: 52397777\n\nvocab coverage: 84.61%\n\nfile size: 187.14 megabytes\n\n=====================================\n\nURL\n\ndocuments: 25385\n\nmax context length: 1053\n\ntotal tokens: 5552189\n\nvocab coverage: 18.97%\n\nfile size: 23.57 megabytes\n\n=====================================\n\nURL\n\ndocuments: 181030\n\nmax context length: 146988\n\ntotal tokens: 350672227\n\nvocab coverage: 95.67%\n\nfile size: 1329.66 megabytes\n\n=====================================\n\nURL\n\ndocuments: 190\n\nmax context length: 2217608\n\ntotal tokens: 57891290\n\nvocab coverage: 63.14%\n\nfile size: 209.89 megabytes\n\n=====================================\n\njupyter_to_text.jsonl\n\ndocuments: 9701\n\nmax context length: 45295\n\ntotal tokens: 30927312\n\nvocab coverage: 78.75%\n\nfile size: 112.12 megabytes\n\n=====================================\n\nstories_smart.jsonl\n\ndocuments: 100676\n\nmax context length: 1137\n\ntotal tokens: 23692169\n\nvocab coverage: 23.55%\n\nfile size: 98.75 megabytes\n\n=====================================\n\ntotals\n\ndocuments: 612177\n\nmax context length: 2217608\n\ntokens: 620558352\n\nvocab coverage: 99.24%\n\nsize: 2378.63 megabytes"
] |
[
56,
9,
45,
10,
10,
431
] |
[
"passage: TAGS\n#task_categories-text-generation #task_categories-fill-mask #language-English #license-cc-by-sa-3.0 #language-modeling #masked-language-modeling #region-us \n# Dataset Card for TinyGiant## Dataset Summary\n\nThis dataset aims to provide a small but pretty viable base model dataset. Aimed to be able to train a model and teach it a viable amount of information about all tokens.## Languages\n\nEnglish (100%)\n\nMore soon...## Vocab Coverage (and other stats)"
] |
6d022142ec10890ada6802cb8a763ee0309d7852
|
# Dataset of taihou/大鳳 (Kantai Collection)
This is the dataset of taihou/大鳳 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `brown_hair, short_hair, brown_eyes, headgear, headband, hair_between_eyes, breasts, small_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 541.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/taihou_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 337.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/taihou_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1239 | 721.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/taihou_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 494.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/taihou_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1239 | 955.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/taihou_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/taihou_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 13 |  |  |  |  |  | 1girl, bike_shorts, pleated_skirt, solo, thighhighs, crossbow, looking_at_viewer, flat_chest, blush, flight_deck, machinery, white_background, open_mouth, simple_background |
| 1 | 7 |  |  |  |  |  | 1girl, bike_shorts, blush, looking_at_viewer, pleated_skirt, smile, solo, flat_chest, thighhighs |
| 2 | 5 |  |  |  |  |  | 1girl, bike_shorts, black_shorts, blush, cowboy_shot, long_sleeves, pleated_skirt, simple_background, solo, shorts_under_skirt, closed_mouth, looking_at_viewer, red_skirt, white_background, sideboob, thighhighs |
| 3 | 5 |  |  |  |  |  | 1girl, blush, flat_chest, looking_at_viewer, on_back, solo, bike_shorts, dakimakura_(medium), full_body, nipples, black_thighhighs, open_mouth, pleated_skirt |
| 4 | 5 |  |  |  |  |  | 1girl, simple_background, solo, white_background, blush, looking_at_viewer, open_mouth, sideboob, upper_body, sweat |
| 5 | 17 |  |  |  |  |  | 1girl, solo, upper_body, long_sleeves, looking_at_viewer, simple_background, white_background, blush, bangs, flat_chest |
| 6 | 6 |  |  |  |  |  | 1girl, cowboy_shot, looking_at_viewer, solo, blush, navel, simple_background, twitter_username, one-hour_drawing_challenge, side-tie_bikini_bottom, white_background, white_bikini |
| 7 | 10 |  |  |  |  |  | 1boy, 1girl, blush, hetero, penis, solo_focus, thighhighs, bike_shorts, open_mouth, sex, skirt, bar_censor, cum_in_pussy, nipples, vaginal, girl_on_top, looking_at_viewer, spread_legs |
| 8 | 11 |  |  |  |  |  | fake_animal_ears, playboy_bunny, rabbit_ears, 1girl, black_pantyhose, detached_collar, solo, looking_at_viewer, strapless_leotard, wrist_cuffs, alternate_costume, black_leotard, simple_background, white_background, blush, cowboy_shot, rabbit_tail, bowtie, covered_navel |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bike_shorts | pleated_skirt | solo | thighhighs | crossbow | looking_at_viewer | flat_chest | blush | flight_deck | machinery | white_background | open_mouth | simple_background | smile | black_shorts | cowboy_shot | long_sleeves | shorts_under_skirt | closed_mouth | red_skirt | sideboob | on_back | dakimakura_(medium) | full_body | nipples | black_thighhighs | upper_body | sweat | bangs | navel | twitter_username | one-hour_drawing_challenge | side-tie_bikini_bottom | white_bikini | 1boy | hetero | penis | solo_focus | sex | skirt | bar_censor | cum_in_pussy | vaginal | girl_on_top | spread_legs | fake_animal_ears | playboy_bunny | rabbit_ears | black_pantyhose | detached_collar | strapless_leotard | wrist_cuffs | alternate_costume | black_leotard | rabbit_tail | bowtie | covered_navel |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------|:----------------|:-------|:-------------|:-----------|:--------------------|:-------------|:--------|:--------------|:------------|:-------------------|:-------------|:--------------------|:--------|:---------------|:--------------|:---------------|:---------------------|:---------------|:------------|:-----------|:----------|:----------------------|:------------|:----------|:-------------------|:-------------|:--------|:--------|:--------|:-------------------|:-----------------------------|:-------------------------|:---------------|:-------|:---------|:--------|:-------------|:------|:--------|:-------------|:---------------|:----------|:--------------|:--------------|:-------------------|:----------------|:--------------|:------------------|:------------------|:--------------------|:--------------|:--------------------|:----------------|:--------------|:---------|:----------------|
| 0 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | X | X | | X | X | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | X | | X | | X | | | X | | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | | | X | X | X | | | | X | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | | | X | | | X | | X | | | X | X | X | | | | | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 17 |  |  |  |  |  | X | | | X | | | X | X | X | | | X | | X | | | | X | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 6 |  |  |  |  |  | X | | | X | | | X | | X | | | X | | X | | | X | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 10 |  |  |  |  |  | X | X | | | X | | X | | X | | | | X | | | | | | | | | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 8 | 11 |  |  |  |  |  | X | | | X | | | X | | X | | | X | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/taihou_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T21:50:46+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T04:27:58+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of taihou/大鳳 (Kantai Collection)
========================================
This is the dataset of taihou/大鳳 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, brown\_eyes, headgear, headband, hair\_between\_eyes, breasts, small\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
2a866775a38819a8f796bc1258b5de7ea7cc9f6e
|
# Dataset of samidare/五月雨/五月雨 (Kantai Collection)
This is the dataset of samidare/五月雨/五月雨 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `blue_hair, long_hair, very_long_hair, blue_eyes, bangs, swept_bangs, multicolored_hair, gradient_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 511.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/samidare_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 332.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/samidare_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1132 | 665.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/samidare_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 469.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/samidare_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1132 | 872.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/samidare_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/samidare_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, elbow_gloves, sleeveless_shirt, solo, black_gloves, black_thighhighs, looking_at_viewer, black_neckerchief, black_sailor_collar, white_skirt, smile, cowboy_shot, white_background, simple_background, white_serafuku |
| 1 | 5 |  |  |  |  |  | 1girl, black_thighhighs, elbow_gloves, neckerchief, sailor_collar, serafuku, skirt, sleeveless_shirt, solo, simple_background, white_background, zettai_ryouiki, black_gloves, looking_at_viewer, smile |
| 2 | 15 |  |  |  |  |  | 1girl, elbow_gloves, looking_at_viewer, serafuku, sleeveless_shirt, solo, upper_body, black_sailor_collar, black_neckerchief, black_gloves, smile, white_background, blush, dated, simple_background |
| 3 | 17 |  |  |  |  |  | 1girl, serafuku, solo, elbow_gloves, smile, looking_at_viewer, skirt, black_thighhighs, open_mouth, blush, zettai_ryouiki, sitting |
| 4 | 7 |  |  |  |  |  | 1girl, alternate_costume, looking_at_viewer, solo, simple_background, smile, white_background, white_dress, open_mouth, blush, cowboy_shot, full_body |
| 5 | 10 |  |  |  |  |  | fake_animal_ears, open_mouth, playboy_bunny, rabbit_ears, strapless_leotard, 1girl, detached_collar, solo, small_breasts, blush, bowtie, looking_at_viewer, wrist_cuffs, alternate_costume, black_leotard, black_pantyhose, cowboy_shot, fishnet_pantyhose, smile, white_background, white_leotard |
| 6 | 5 |  |  |  |  |  | 1girl, enmaided, frilled_apron, looking_at_viewer, open_mouth, smile, solo, black_dress, blush, short_sleeves, white_apron, black_thighhighs, cowboy_shot, maid_apron, maid_headdress, puffy_sleeves, wrist_cuffs, bow, full_body, holding, ribbon, simple_background, tray, waist_apron |
| 7 | 25 |  |  |  |  |  | 1girl, solo, small_breasts, blush, looking_at_viewer, twitter_username, nipples, completely_nude, navel, artist_name, collarbone, sitting |
| 8 | 17 |  |  |  |  |  | 1girl, alternate_costume, blush, solo, floral_print, smile, looking_at_viewer, open_mouth, obi, blue_kimono, holding, wide_sleeves, new_year, hair_flower, upper_body, alternate_hairstyle, long_sleeves, yukata |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | sleeveless_shirt | solo | black_gloves | black_thighhighs | looking_at_viewer | black_neckerchief | black_sailor_collar | white_skirt | smile | cowboy_shot | white_background | simple_background | white_serafuku | neckerchief | sailor_collar | serafuku | skirt | zettai_ryouiki | upper_body | blush | dated | open_mouth | sitting | alternate_costume | white_dress | full_body | fake_animal_ears | playboy_bunny | rabbit_ears | strapless_leotard | detached_collar | small_breasts | bowtie | wrist_cuffs | black_leotard | black_pantyhose | fishnet_pantyhose | white_leotard | enmaided | frilled_apron | black_dress | short_sleeves | white_apron | maid_apron | maid_headdress | puffy_sleeves | bow | holding | ribbon | tray | waist_apron | twitter_username | nipples | completely_nude | navel | artist_name | collarbone | floral_print | obi | blue_kimono | wide_sleeves | new_year | hair_flower | alternate_hairstyle | long_sleeves | yukata |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:-------------------|:-------|:---------------|:-------------------|:--------------------|:--------------------|:----------------------|:--------------|:--------|:--------------|:-------------------|:--------------------|:-----------------|:--------------|:----------------|:-----------|:--------|:-----------------|:-------------|:--------|:--------|:-------------|:----------|:--------------------|:--------------|:------------|:-------------------|:----------------|:--------------|:--------------------|:------------------|:----------------|:---------|:--------------|:----------------|:------------------|:--------------------|:----------------|:-----------|:----------------|:--------------|:----------------|:--------------|:-------------|:-----------------|:----------------|:------|:----------|:---------|:-------|:--------------|:-------------------|:----------|:------------------|:--------|:--------------|:-------------|:---------------|:------|:--------------|:---------------|:-----------|:--------------|:----------------------|:---------------|:---------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | | | | X | | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 15 |  |  |  |  |  | X | X | X | X | X | | X | X | X | | X | | X | X | | | | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 17 |  |  |  |  |  | X | X | | X | | X | X | | | | X | | | | | | | X | X | X | | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | | | X | | | X | | | | X | X | X | X | | | | | | | | X | | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 10 |  |  |  |  |  | X | | | X | | | X | | | | X | X | X | | | | | | | | | X | | X | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | | X | | X | X | | | | X | X | | X | | | | | | | | X | | X | | | | X | | | | | | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 7 | 25 |  |  |  |  |  | X | | | X | | | X | | | | | | | | | | | | | | | X | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | |
| 8 | 17 |  |  |  |  |  | X | | | X | | | X | | | | X | | | | | | | | | | X | X | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/samidare_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T21:58:49+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T19:15:45+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of samidare/五月雨/五月雨 (Kantai Collection)
===============================================
This is the dataset of samidare/五月雨/五月雨 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'blue\_hair, long\_hair, very\_long\_hair, blue\_eyes, bangs, swept\_bangs, multicolored\_hair, gradient\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
e1ff9ab429aa6c611c21d36ac57cc901d41ec7e2
|
# Latest BBC News
You could always access the latest BBC News articles via this dataset.
We update the dataset weekly, on every Sunday. So the dataset always provides the latest BBC News article from the last week.
The current dataset on main branch contains the latest BBC News articles submitted from 2024-02-05 to 2024-02-12.
The data collection is conducted on 2024-02-12.
Use the dataset via:
```
ds = datasets.load_dataset('RealTimeData/bbc_latest')
```
# Previsou versions
You could access previous versions by requesting different branches.
For example, you could find the 2023-08-20 version via:
```
ds = datasets.load_dataset('RealTimeData/bbc_latest', revision = '2023-08-20')
```
Check all available versions by clicking the "Files and versions" button on the top bar.
|
RealTimeData/bbc_latest
|
[
"region:us"
] |
2023-08-19T22:03:43+00:00
|
{}
|
2024-02-12T00:34:31+00:00
|
[] |
[] |
TAGS
#region-us
|
# Latest BBC News
You could always access the latest BBC News articles via this dataset.
We update the dataset weekly, on every Sunday. So the dataset always provides the latest BBC News article from the last week.
The current dataset on main branch contains the latest BBC News articles submitted from 2024-02-05 to 2024-02-12.
The data collection is conducted on 2024-02-12.
Use the dataset via:
# Previsou versions
You could access previous versions by requesting different branches.
For example, you could find the 2023-08-20 version via:
Check all available versions by clicking the "Files and versions" button on the top bar.
|
[
"# Latest BBC News\n\nYou could always access the latest BBC News articles via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest BBC News article from the last week.\n\nThe current dataset on main branch contains the latest BBC News articles submitted from 2024-02-05 to 2024-02-12.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:",
"# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-20 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
[
"TAGS\n#region-us \n",
"# Latest BBC News\n\nYou could always access the latest BBC News articles via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest BBC News article from the last week.\n\nThe current dataset on main branch contains the latest BBC News articles submitted from 2024-02-05 to 2024-02-12.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:",
"# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-20 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
[
6,
91,
54
] |
[
"passage: TAGS\n#region-us \n# Latest BBC News\n\nYou could always access the latest BBC News articles via this dataset.\n\nWe update the dataset weekly, on every Sunday. So the dataset always provides the latest BBC News article from the last week.\n\nThe current dataset on main branch contains the latest BBC News articles submitted from 2024-02-05 to 2024-02-12.\n\nThe data collection is conducted on 2024-02-12.\n\nUse the dataset via:# Previsou versions\n\nYou could access previous versions by requesting different branches.\n\nFor example, you could find the 2023-08-20 version via:\n\n\nCheck all available versions by clicking the \"Files and versions\" button on the top bar."
] |
384b315350fc50229b84a49ca782351729b1be02
|
# Dataset Card for Evaluation run of huggyllama/llama-30b
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/huggyllama/llama-30b
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 122 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_huggyllama__llama-30b",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-09-16T23:44:55.901768](https://huggingface.co/datasets/open-llm-leaderboard/details_huggyllama__llama-30b/blob/main/results_2023-09-16T23-44-55.901768.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"em": 0.0014681208053691276,
"em_stderr": 0.0003921042190298701,
"f1": 0.06332634228187943,
"f1_stderr": 0.0013742294190200051,
"acc": 0.47445656434133393,
"acc_stderr": 0.010516415781576863
},
"harness|drop|3": {
"em": 0.0014681208053691276,
"em_stderr": 0.0003921042190298701,
"f1": 0.06332634228187943,
"f1_stderr": 0.0013742294190200051
},
"harness|gsm8k|5": {
"acc": 0.14859742228961334,
"acc_stderr": 0.009797503180527876
},
"harness|winogrande|5": {
"acc": 0.8003157063930545,
"acc_stderr": 0.011235328382625849
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_huggyllama__llama-30b
|
[
"region:us"
] |
2023-08-19T22:04:08+00:00
|
{"pretty_name": "Evaluation run of huggyllama/llama-30b", "dataset_summary": "Dataset automatically created during the evaluation run of model [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 122 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_huggyllama__llama-30b\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-09-16T23:44:55.901768](https://huggingface.co/datasets/open-llm-leaderboard/details_huggyllama__llama-30b/blob/main/results_2023-09-16T23-44-55.901768.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.0014681208053691276,\n \"em_stderr\": 0.0003921042190298701,\n \"f1\": 0.06332634228187943,\n \"f1_stderr\": 0.0013742294190200051,\n \"acc\": 0.47445656434133393,\n \"acc_stderr\": 0.010516415781576863\n },\n \"harness|drop|3\": {\n \"em\": 0.0014681208053691276,\n \"em_stderr\": 0.0003921042190298701,\n \"f1\": 0.06332634228187943,\n \"f1_stderr\": 0.0013742294190200051\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.14859742228961334,\n \"acc_stderr\": 0.009797503180527876\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8003157063930545,\n \"acc_stderr\": 0.011235328382625849\n }\n}\n```", "repo_url": "https://huggingface.co/huggyllama/llama-30b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|arc:challenge|25_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|arc:challenge|25_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_09_16T23_44_55.901768", "path": ["**/details_harness|drop|3_2023-09-16T23-44-55.901768.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-09-16T23-44-55.901768.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_09_16T23_44_55.901768", "path": ["**/details_harness|gsm8k|5_2023-09-16T23-44-55.901768.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-09-16T23-44-55.901768.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hellaswag|10_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hellaswag|10_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-19T23:03:51.753289.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-management|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-virology|5_2023-08-23T17:40:29.405074.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-23T17:40:29.405074.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-08-23T17:40:29.405074.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_09_16T23_44_55.901768", "path": ["**/details_harness|winogrande|5_2023-09-16T23-44-55.901768.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-09-16T23-44-55.901768.parquet"]}]}, {"config_name": "original_mmlu_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:management|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:virology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:anatomy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:astronomy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:business_ethics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:clinical_knowledge|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_biology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_chemistry|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_computer_science|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_mathematics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_medicine|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:college_physics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:computer_security|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:conceptual_physics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:econometrics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:electrical_engineering|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:elementary_mathematics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:formal_logic|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:global_facts|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_biology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_chemistry|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_computer_science|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_european_history|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_geography|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_mathematics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_physics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_psychology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_statistics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_us_history|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:high_school_world_history|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:human_aging|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:human_sexuality|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:international_law|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:jurisprudence|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:logical_fallacies|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:machine_learning|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:management|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:marketing|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:medical_genetics|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:miscellaneous|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:moral_disputes|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:moral_scenarios|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:nutrition|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:philosophy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:prehistory|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_accounting|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_law|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_medicine|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:professional_psychology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:public_relations|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:security_studies|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:sociology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:us_foreign_policy|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:virology|5_2023-08-28T20:06:09.731721.parquet", "**/details_original|mmlu:world_religions|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_abstract_algebra_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:abstract_algebra|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_anatomy_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:anatomy|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_astronomy_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:astronomy|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_business_ethics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:business_ethics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_clinical_knowledge_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:clinical_knowledge|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_college_biology_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_biology|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_college_chemistry_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_chemistry|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_college_computer_science_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_computer_science|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_college_mathematics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_mathematics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_college_medicine_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_medicine|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_college_physics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:college_physics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_computer_security_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:computer_security|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_conceptual_physics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:conceptual_physics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_econometrics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:econometrics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_electrical_engineering_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:electrical_engineering|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_elementary_mathematics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:elementary_mathematics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_formal_logic_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:formal_logic|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_global_facts_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:global_facts|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_biology_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_biology|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_chemistry_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_chemistry|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_computer_science_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_computer_science|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_european_history_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_european_history|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_geography_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_geography|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_government_and_politics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_government_and_politics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_macroeconomics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_macroeconomics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_mathematics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_mathematics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_microeconomics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_microeconomics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_physics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_physics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_psychology_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_psychology|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_statistics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_statistics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_us_history_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_us_history|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_high_school_world_history_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:high_school_world_history|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_human_aging_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_aging|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_human_sexuality_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:human_sexuality|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_international_law_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:international_law|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_jurisprudence_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:jurisprudence|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_logical_fallacies_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:logical_fallacies|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_machine_learning_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:machine_learning|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_management_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:management|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:management|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_marketing_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:marketing|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_medical_genetics_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:medical_genetics|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_miscellaneous_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:miscellaneous|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_moral_disputes_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_disputes|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_moral_scenarios_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:moral_scenarios|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_nutrition_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:nutrition|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_philosophy_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:philosophy|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_prehistory_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:prehistory|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_professional_accounting_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_accounting|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_professional_law_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_law|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_professional_medicine_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_medicine|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_professional_psychology_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:professional_psychology|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_public_relations_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:public_relations|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_security_studies_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:security_studies|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_sociology_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:sociology|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_us_foreign_policy_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:us_foreign_policy|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_virology_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:virology|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:virology|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "original_mmlu_world_religions_5", "data_files": [{"split": "2023_08_28T20_06_09.731721", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T20:06:09.731721.parquet"]}, {"split": "latest", "path": ["**/details_original|mmlu:world_religions|5_2023-08-28T20:06:09.731721.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_08_19T23_03_51.753289", "path": ["results_2023-08-19T23:03:51.753289.parquet"]}, {"split": "2023_08_23T17_40_29.405074", "path": ["results_2023-08-23T17:40:29.405074.parquet"]}, {"split": "2023_08_28T20_06_09.731721", "path": ["results_2023-08-28T20:06:09.731721.parquet"]}, {"split": "2023_09_16T23_44_55.901768", "path": ["results_2023-09-16T23-44-55.901768.parquet"]}, {"split": "latest", "path": ["results_2023-09-16T23-44-55.901768.parquet"]}]}]}
|
2023-09-16T22:45:08+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of huggyllama/llama-30b
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model huggyllama/llama-30b on the Open LLM Leaderboard.
The dataset is composed of 122 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-09-16T23:44:55.901768(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of huggyllama/llama-30b",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model huggyllama/llama-30b on the Open LLM Leaderboard.\n\nThe dataset is composed of 122 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-09-16T23:44:55.901768(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of huggyllama/llama-30b",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model huggyllama/llama-30b on the Open LLM Leaderboard.\n\nThe dataset is composed of 122 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-09-16T23:44:55.901768(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
18,
31,
166,
66,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of huggyllama/llama-30b## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model huggyllama/llama-30b on the Open LLM Leaderboard.\n\nThe dataset is composed of 122 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-09-16T23:44:55.901768(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
bf6f30d3f542b0907642826fe869a433140d7edd
|
# Dataset of takao/高雄/高雄 (Kantai Collection)
This is the dataset of takao/高雄/高雄 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `black_hair, short_hair, red_eyes, breasts, large_breasts, hat, beret, blue_headwear`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 608.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/takao_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 345.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/takao_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1219 | 741.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/takao_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 538.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/takao_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1219 | 1.02 GiB | [Download](https://huggingface.co/datasets/CyberHarem/takao_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/takao_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, blue_jacket, military_uniform, simple_background, solo, upper_body, white_background, looking_at_viewer, black_gloves, dated, long_sleeves, smile, white_ascot, one-hour_drawing_challenge, twitter_username |
| 1 | 9 |  |  |  |  |  | 1girl, black_thighhighs, garter_straps, military_uniform, solo, black_gloves, looking_at_viewer, skirt, smile, cannon, turret |
| 2 | 10 |  |  |  |  |  | 1girl, ascot, black_gloves, black_thighhighs, blue_skirt, garter_straps, long_sleeves, looking_at_viewer, military_uniform, miniskirt, solo, simple_background, white_background, blue_jacket, open_mouth, blush, cowboy_shot, smile, twitter_username |
| 3 | 5 |  |  |  |  |  | 1girl, black_gloves, black_thighhighs, garter_straps, military_uniform, simple_background, solo, white_background, ascot, miniskirt, looking_at_viewer, cowboy_shot, open_mouth |
| 4 | 8 |  |  |  |  |  | 1girl, ass, black_gloves, black_thighhighs, garter_straps, long_sleeves, military_uniform, solo, black_panties, blush, looking_at_viewer, looking_back, simple_background, white_background, from_behind, blue_skirt, cowboy_shot, blue_jacket, miniskirt, open_mouth |
| 5 | 5 |  |  |  |  |  | 1girl, black_bra, black_panties, black_thighhighs, blush, cleavage, collarbone, navel, solo, underwear_only, looking_at_viewer, simple_background, skindentation, white_background, sitting, garter_belt, lace-trimmed_bra |
| 6 | 5 |  |  |  |  |  | 1girl, big_belly, blush, fat, huge_breasts, solo, thick_thighs, plump, black_gloves, black_thighhighs, thick_arms, open_mouth |
| 7 | 14 |  |  |  |  |  | 1girl, detached_collar, fake_animal_ears, playboy_bunny, rabbit_ears, solo, looking_at_viewer, wrist_cuffs, cleavage, strapless_leotard, blue_leotard, bowtie, white_background, black_pantyhose, black_thighhighs, blush, simple_background, ascot, high_heels, rabbit_tail |
| 8 | 14 |  |  |  |  |  | 1girl, blush, looking_at_viewer, solo, simple_background, white_background, cleavage, navel, blue_bikini, collarbone, gloves, smile |
| 9 | 7 |  |  |  |  |  | 1girl, day, blue_bikini, looking_at_viewer, solo, blue_sky, cloud, ocean, outdoors, navel, beach, cleavage, cowboy_shot |
| 10 | 6 |  |  |  |  |  | smile, 2girls, blonde_hair, looking_at_viewer, navel, adapted_costume, blue_bikini, blush, cleavage, breast_press |
| 11 | 10 |  |  |  |  |  | 1boy, 1girl, hetero, solo_focus, penis, pussy, blush, navel, nipples, mosaic_censoring, open_mouth, sex, girl_on_top, thighhighs, vaginal, cowgirl_position, nude, spread_legs, sweat, black_gloves, erection, looking_at_viewer, open_clothes |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blue_jacket | military_uniform | simple_background | solo | upper_body | white_background | looking_at_viewer | black_gloves | dated | long_sleeves | smile | white_ascot | one-hour_drawing_challenge | twitter_username | black_thighhighs | garter_straps | skirt | cannon | turret | ascot | blue_skirt | miniskirt | open_mouth | blush | cowboy_shot | ass | black_panties | looking_back | from_behind | black_bra | cleavage | collarbone | navel | underwear_only | skindentation | sitting | garter_belt | lace-trimmed_bra | big_belly | fat | huge_breasts | thick_thighs | plump | thick_arms | detached_collar | fake_animal_ears | playboy_bunny | rabbit_ears | wrist_cuffs | strapless_leotard | blue_leotard | bowtie | black_pantyhose | high_heels | rabbit_tail | blue_bikini | gloves | day | blue_sky | cloud | ocean | outdoors | beach | 2girls | blonde_hair | adapted_costume | breast_press | 1boy | hetero | solo_focus | penis | pussy | nipples | mosaic_censoring | sex | girl_on_top | thighhighs | vaginal | cowgirl_position | nude | spread_legs | sweat | erection | open_clothes |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------------|:-------------------|:--------------------|:-------|:-------------|:-------------------|:--------------------|:---------------|:--------|:---------------|:--------|:--------------|:-----------------------------|:-------------------|:-------------------|:----------------|:--------|:---------|:---------|:--------|:-------------|:------------|:-------------|:--------|:--------------|:------|:----------------|:---------------|:--------------|:------------|:-----------|:-------------|:--------|:-----------------|:----------------|:----------|:--------------|:-------------------|:------------|:------|:---------------|:---------------|:--------|:-------------|:------------------|:-------------------|:----------------|:--------------|:--------------|:--------------------|:---------------|:---------|:------------------|:-------------|:--------------|:--------------|:---------|:------|:-----------|:--------|:--------|:-----------|:--------|:---------|:--------------|:------------------|:---------------|:-------|:---------|:-------------|:--------|:--------|:----------|:-------------------|:------|:--------------|:-------------|:----------|:-------------------|:-------|:--------------|:--------|:-----------|:---------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 9 |  |  |  |  |  | X | | X | | X | | | X | X | | | X | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 10 |  |  |  |  |  | X | X | X | X | X | | X | X | X | | X | X | | | X | X | X | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | | X | X | X | | X | X | X | | | | | | | X | X | | | | X | | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 8 |  |  |  |  |  | X | X | X | X | X | | X | X | X | | X | | | | | X | X | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | | | X | X | | X | X | | | | | | | | X | | | | | | | | | X | | | X | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | | | X | | | | X | | | | | | | X | | | | | | | | X | X | | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 14 |  |  |  |  |  | X | | | X | X | | X | X | | | | | | | | X | | | | | X | | | | X | | | | | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 14 |  |  |  |  |  | X | | | X | X | | X | X | | | | X | | | | | | | | | | | | | X | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 7 |  |  |  |  |  | X | | | | X | | | X | | | | | | | | | | | | | | | | | | X | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 10 | 6 |  |  |  |  |  | | | | | | | | X | | | | X | | | | | | | | | | | | | X | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | |
| 11 | 10 |  |  |  |  |  | X | | | | | | | X | X | | | | | | | | | | | | | | | X | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/takao_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T22:35:15+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-14T22:03:58+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of takao/高雄/高雄 (Kantai Collection)
==========================================
This is the dataset of takao/高雄/高雄 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'black\_hair, short\_hair, red\_eyes, breasts, large\_breasts, hat, beret, blue\_headwear', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
65c077a8b344e04c31bd14d2598fae9ea5644e5f
|
# Dataset of kiso/木曽/木曽 (Kantai Collection)
This is the dataset of kiso/木曽/木曽 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `green_hair, eyepatch, green_eyes, short_hair, hat`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 498.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kiso_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 339.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kiso_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1159 | 696.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kiso_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 462.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kiso_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1159 | 890.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kiso_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kiso_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, brown_gloves, looking_at_viewer, midriff, navel, pleated_skirt, red_neckerchief, sailor_hat, serafuku, simple_background, solo, white_background, white_headwear, black_cape, cowboy_shot, green_sailor_collar, pauldrons, sword, twitter_username, white_skirt, one-hour_drawing_challenge, smile, standing |
| 1 | 22 |  |  |  |  |  | 1girl, cape, gloves, midriff, serafuku, skirt, solo, navel, sword, looking_at_viewer, ammunition_belt |
| 2 | 21 |  |  |  |  |  | 1girl, solo, looking_at_viewer, navel, cowboy_shot, simple_background, white_background, hair_between_eyes, medium_breasts, blush, cleavage, twitter_username, collarbone, animal_print, one-hour_drawing_challenge, side-tie_bikini_bottom, white_bikini, large_breasts |
| 3 | 19 |  |  |  |  |  | 1girl, solo, looking_at_viewer, long_sleeves, official_alternate_costume, red_jacket, track_jacket, simple_background, white_background, cowboy_shot, hair_between_eyes, blush, smile, clothes_writing, blue_eyes |
| 4 | 20 |  |  |  |  |  | 1girl, alternate_costume, solo, looking_at_viewer, obi, smile, alternate_hairstyle, floral_print, hair_between_eyes, yukata, hair_flower, wide_sleeves, blush |
| 5 | 9 |  |  |  |  |  | 1boy, 1girl, hetero, solo_focus, bar_censor, blush, nipples, penis, open_mouth, school_uniform, sweat, cum_in_pussy, large_breasts, pubic_hair |
| 6 | 7 |  |  |  |  |  | 1girl, enmaided, solo, maid_apron, maid_headdress, waist_apron, white_apron, black_dress, frilled_apron, simple_background, looking_at_viewer, open_mouth, black_thighhighs, blush, cleavage, gloves, hair_between_eyes, long_sleeves, puffy_sleeves, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | brown_gloves | looking_at_viewer | midriff | navel | pleated_skirt | red_neckerchief | sailor_hat | serafuku | simple_background | solo | white_background | white_headwear | black_cape | cowboy_shot | green_sailor_collar | pauldrons | sword | twitter_username | white_skirt | one-hour_drawing_challenge | smile | standing | cape | gloves | skirt | ammunition_belt | hair_between_eyes | medium_breasts | blush | cleavage | collarbone | animal_print | side-tie_bikini_bottom | white_bikini | large_breasts | long_sleeves | official_alternate_costume | red_jacket | track_jacket | clothes_writing | blue_eyes | alternate_costume | obi | alternate_hairstyle | floral_print | yukata | hair_flower | wide_sleeves | 1boy | hetero | solo_focus | bar_censor | nipples | penis | open_mouth | school_uniform | sweat | cum_in_pussy | pubic_hair | enmaided | maid_apron | maid_headdress | waist_apron | white_apron | black_dress | frilled_apron | black_thighhighs | puffy_sleeves |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------------------|:----------|:--------|:----------------|:------------------|:-------------|:-----------|:--------------------|:-------|:-------------------|:-----------------|:-------------|:--------------|:----------------------|:------------|:--------|:-------------------|:--------------|:-----------------------------|:--------|:-----------|:-------|:---------|:--------|:------------------|:--------------------|:-----------------|:--------|:-----------|:-------------|:---------------|:-------------------------|:---------------|:----------------|:---------------|:-----------------------------|:-------------|:---------------|:------------------|:------------|:--------------------|:------|:----------------------|:---------------|:---------|:--------------|:---------------|:-------|:---------|:-------------|:-------------|:----------|:--------|:-------------|:-----------------|:--------|:---------------|:-------------|:-----------|:-------------|:-----------------|:--------------|:--------------|:--------------|:----------------|:-------------------|:----------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 22 |  |  |  |  |  | X | | X | X | X | | | | X | | X | | | | | | | X | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 21 |  |  |  |  |  | X | | X | | X | | | | | X | X | X | | | X | | | | X | | X | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 19 |  |  |  |  |  | X | | X | | | | | | | X | X | X | | | X | | | | | | | X | | | | | | X | | X | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 20 |  |  |  |  |  | X | | X | | | | | | | | X | | | | | | | | | | | X | | | | | | X | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 5 | 9 |  |  |  |  |  | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | X | | X | | | | | | | X | X | X | | | | | | | | | | | | | X | | | X | | X | X | | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/kiso_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T22:36:54+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-15T02:02:01+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kiso/木曽/木曽 (Kantai Collection)
=========================================
This is the dataset of kiso/木曽/木曽 (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'green\_hair, eyepatch, green\_eyes, short\_hair, hat', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
35da9e8775a7c3be05889b123f791962e2366f2f
|
# Dataset Card for "generate_sub_7"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Jing24/generate_sub_7
|
[
"region:us"
] |
2023-08-19T22:46:11+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "struct": [{"name": "answer_start", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}], "splits": [{"name": "train", "num_bytes": 21022386, "num_examples": 23401}], "download_size": 3811300, "dataset_size": 21022386}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-08-19T22:46:12+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "generate_sub_7"
More Information needed
|
[
"# Dataset Card for \"generate_sub_7\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"generate_sub_7\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"generate_sub_7\"\n\nMore Information needed"
] |
2c05ed3cc45293b2fe27edaa9885eb6add904b4f
|
# Dataset of uzuki (Kantai Collection)
This is the dataset of uzuki (Kantai Collection), containing 500 images and their tags.
The core tags of this character are `long_hair, hair_ornament, crescent_hair_ornament, ahoge, red_eyes, rabbit_hair_ornament, ribbon, pink_hair, hair_ribbon, very_long_hair, low-tied_long_hair, red_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 489.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/uzuki_kantaicollection/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 341.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/uzuki_kantaicollection/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1209 | 724.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/uzuki_kantaicollection/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 460.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/uzuki_kantaicollection/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1209 | 913.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/uzuki_kantaicollection/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/uzuki_kantaicollection',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 25 |  |  |  |  |  | 1girl, black_skirt, blue_shirt, blush, crescent, long_sleeves, pleated_skirt, serafuku, solo, black_sailor_collar, frilled_skirt, hair_between_eyes, blue_socks, bangs, kneehighs, looking_at_viewer, open_mouth, pink_ribbon, fang, black_ribbon, neck_ribbon, shoes, rabbit_ears, :d, standing, grey_footwear, :3, navel, kemonomimi_mode |
| 1 | 7 |  |  |  |  |  | 1girl, black_skirt, blue_shirt, blush, crescent, long_sleeves, pleated_skirt, solo, black_sailor_collar, frilled_skirt, blue_serafuku, cowboy_shot, looking_at_viewer, open_mouth, hair_between_eyes, smile, fang |
| 2 | 13 |  |  |  |  |  | 1girl, black_sailor_collar, black_skirt, crescent, pleated_skirt, serafuku, simple_background, solo, blue_shirt, white_background, frilled_skirt, full_body, looking_at_viewer, open_mouth, smile, chibi, kneehighs, standing |
| 3 | 5 |  |  |  |  |  | 1girl, crescent, looking_at_viewer, open_mouth, serafuku, skirt, smile, solo, fang, rabbit_ears, blush |
| 4 | 5 |  |  |  |  |  | 1girl, crescent, looking_at_viewer, serafuku, simple_background, solo, white_background, open_mouth, skirt, blush |
| 5 | 10 |  |  |  |  |  | 1girl, blue_shirt, crescent, open_mouth, serafuku, solo, upper_body, black_sailor_collar, blush, fang, long_sleeves, looking_at_viewer, neck_ribbon, :d, black_ribbon, hair_between_eyes, pink_ribbon, rabbit_ears, bangs, pink_background, :3, outline, gradient_background |
| 6 | 8 |  |  |  |  |  | crescent, serafuku, skirt, 2girls, blush, open_mouth, navel, socks, looking_at_viewer, pink_eyes, short_hair_with_long_locks, smile, solo_focus, blue_eyes, purple_hair |
| 7 | 6 |  |  |  |  |  | 1girl, crescent, detached_collar, fake_animal_ears, playboy_bunny, rabbit_ears, solo, strapless_leotard, black_leotard, black_pantyhose, bowtie, covered_navel, looking_at_viewer, wrist_cuffs, high_heels, open_mouth, black_footwear, bunny_pose, dated, rabbit_tail, small_breasts, smile, white_background |
| 8 | 5 |  |  |  |  |  | 1girl, alternate_costume, crescent, obi, solo, floral_print, looking_at_viewer, smile, full_body, open_mouth, pink_kimono, sandals, tabi, wide_sleeves, alternate_hairstyle, braid, happy_new_year, long_sleeves, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | black_skirt | blue_shirt | blush | crescent | long_sleeves | pleated_skirt | serafuku | solo | black_sailor_collar | frilled_skirt | hair_between_eyes | blue_socks | bangs | kneehighs | looking_at_viewer | open_mouth | pink_ribbon | fang | black_ribbon | neck_ribbon | shoes | rabbit_ears | :d | standing | grey_footwear | :3 | navel | kemonomimi_mode | blue_serafuku | cowboy_shot | smile | simple_background | white_background | full_body | chibi | skirt | upper_body | pink_background | outline | gradient_background | 2girls | socks | pink_eyes | short_hair_with_long_locks | solo_focus | blue_eyes | purple_hair | detached_collar | fake_animal_ears | playboy_bunny | strapless_leotard | black_leotard | black_pantyhose | bowtie | covered_navel | wrist_cuffs | high_heels | black_footwear | bunny_pose | dated | rabbit_tail | small_breasts | alternate_costume | obi | floral_print | pink_kimono | sandals | tabi | wide_sleeves | alternate_hairstyle | braid | happy_new_year |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------|:-------------|:--------|:-----------|:---------------|:----------------|:-----------|:-------|:----------------------|:----------------|:--------------------|:-------------|:--------|:------------|:--------------------|:-------------|:--------------|:-------|:---------------|:--------------|:--------|:--------------|:-----|:-----------|:----------------|:-----|:--------|:------------------|:----------------|:--------------|:--------|:--------------------|:-------------------|:------------|:--------|:--------|:-------------|:------------------|:----------|:----------------------|:---------|:--------|:------------|:-----------------------------|:-------------|:------------|:--------------|:------------------|:-------------------|:----------------|:--------------------|:----------------|:------------------|:---------|:----------------|:--------------|:-------------|:-----------------|:-------------|:--------|:--------------|:----------------|:--------------------|:------|:---------------|:--------------|:----------|:-------|:---------------|:----------------------|:--------|:-----------------|
| 0 | 25 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | X | X | X | X | | X | X | X | X | | | | X | X | | X | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 13 |  |  |  |  |  | X | X | X | | X | | X | X | X | X | X | | | | X | X | X | | | | | | | | X | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | | | X | X | | | X | X | | | | | | | X | X | | X | | | | X | | | | | | | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | | | X | X | | | X | X | | | | | | | X | X | | | | | | | | | | | | | | | | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 10 |  |  |  |  |  | X | | X | X | X | X | | X | X | X | | X | | X | | X | X | X | X | X | X | | X | X | | | X | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 8 |  |  |  |  |  | | | | X | X | | | X | | | | | | | | X | X | | | | | | | | | | | X | | | | X | | | | | X | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 6 |  |  |  |  |  | X | | | | X | | | | X | | | | | | | X | X | | | | | | X | | | | | | | | | X | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 8 | 5 |  |  |  |  |  | X | | | | X | X | | | X | | | | | | | X | X | | | | | | | | | | | | | | | X | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/uzuki_kantaicollection
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-08-19T23:16:19+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T06:12:33+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of uzuki (Kantai Collection)
====================================
This is the dataset of uzuki (Kantai Collection), containing 500 images and their tags.
The core tags of this character are 'long\_hair, hair\_ornament, crescent\_hair\_ornament, ahoge, red\_eyes, rabbit\_hair\_ornament, ribbon, pink\_hair, hair\_ribbon, very\_long\_hair, low-tied\_long\_hair, red\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
89518973906a14d6703ee26fc1c125c6ead5329a
|
Its simple, Commitpackft. The most concentrated files of coding data, combined and converted to evol instruct. You can thank me later. Just go train some models and @ me the results
Thank you to bigcode for providing the data
Link to source of the data:
https://huggingface.co/datasets/bigcode/commitpackft
|
rombodawg/Rombodawgs_commitpackft_Evolinstruct_Converted
|
[
"license:mit",
"region:us"
] |
2023-08-19T23:16:29+00:00
|
{"license": "mit"}
|
2023-09-02T23:50:02+00:00
|
[] |
[] |
TAGS
#license-mit #region-us
|
Its simple, Commitpackft. The most concentrated files of coding data, combined and converted to evol instruct. You can thank me later. Just go train some models and @ me the results
Thank you to bigcode for providing the data
Link to source of the data:
URL
|
[] |
[
"TAGS\n#license-mit #region-us \n"
] |
[
11
] |
[
"passage: TAGS\n#license-mit #region-us \n"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.