sha
stringlengths 40
40
| text
stringlengths 1
13.4M
| id
stringlengths 2
117
| tags
listlengths 1
7.91k
| created_at
stringlengths 25
25
| metadata
stringlengths 2
875k
| last_modified
stringlengths 25
25
| arxiv
listlengths 0
25
| languages
listlengths 0
7.91k
| tags_str
stringlengths 17
159k
| text_str
stringlengths 1
447k
| text_lists
listlengths 0
352
| processed_texts
listlengths 1
353
| tokens_length
listlengths 1
353
| input_texts
listlengths 1
40
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d1cb854b3def10aa3429bdb48486af60554f9eda
|
# Dataset Card for Evaluation run of pszemraj/pythia-31m-KI_v1-2048-scratch
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/pszemraj/pythia-31m-KI_v1-2048-scratch
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [pszemraj/pythia-31m-KI_v1-2048-scratch](https://huggingface.co/pszemraj/pythia-31m-KI_v1-2048-scratch) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_pszemraj__pythia-31m-KI_v1-2048-scratch",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-10-28T08:48:56.484110](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__pythia-31m-KI_v1-2048-scratch/blob/main/results_2023-10-28T08-48-56.484110.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"em": 0.009437919463087249,
"em_stderr": 0.0009901902239103783,
"f1": 0.015236996644295321,
"f1_stderr": 0.0010823937767906837,
"acc": 0.25887924230465664,
"acc_stderr": 0.007021809798087482
},
"harness|drop|3": {
"em": 0.009437919463087249,
"em_stderr": 0.0009901902239103783,
"f1": 0.015236996644295321,
"f1_stderr": 0.0010823937767906837
},
"harness|gsm8k|5": {
"acc": 0.0,
"acc_stderr": 0.0
},
"harness|winogrande|5": {
"acc": 0.5177584846093133,
"acc_stderr": 0.014043619596174964
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_pszemraj__pythia-31m-KI_v1-2048-scratch
|
[
"region:us"
] |
2023-09-15T04:01:31+00:00
|
{"pretty_name": "Evaluation run of pszemraj/pythia-31m-KI_v1-2048-scratch", "dataset_summary": "Dataset automatically created during the evaluation run of model [pszemraj/pythia-31m-KI_v1-2048-scratch](https://huggingface.co/pszemraj/pythia-31m-KI_v1-2048-scratch) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_pszemraj__pythia-31m-KI_v1-2048-scratch\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-10-28T08:48:56.484110](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__pythia-31m-KI_v1-2048-scratch/blob/main/results_2023-10-28T08-48-56.484110.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.009437919463087249,\n \"em_stderr\": 0.0009901902239103783,\n \"f1\": 0.015236996644295321,\n \"f1_stderr\": 0.0010823937767906837,\n \"acc\": 0.25887924230465664,\n \"acc_stderr\": 0.007021809798087482\n },\n \"harness|drop|3\": {\n \"em\": 0.009437919463087249,\n \"em_stderr\": 0.0009901902239103783,\n \"f1\": 0.015236996644295321,\n \"f1_stderr\": 0.0010823937767906837\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0,\n \"acc_stderr\": 0.0\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5177584846093133,\n \"acc_stderr\": 0.014043619596174964\n }\n}\n```", "repo_url": "https://huggingface.co/pszemraj/pythia-31m-KI_v1-2048-scratch", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|arc:challenge|25_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_10_28T08_48_56.484110", "path": ["**/details_harness|drop|3_2023-10-28T08-48-56.484110.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-10-28T08-48-56.484110.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_10_28T08_48_56.484110", "path": ["**/details_harness|gsm8k|5_2023-10-28T08-48-56.484110.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-10-28T08-48-56.484110.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hellaswag|10_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T05-01-19.324903.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T05-01-19.324903.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T05-01-19.324903.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_10_28T08_48_56.484110", "path": ["**/details_harness|winogrande|5_2023-10-28T08-48-56.484110.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-10-28T08-48-56.484110.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_09_15T05_01_19.324903", "path": ["results_2023-09-15T05-01-19.324903.parquet"]}, {"split": "2023_10_28T08_48_56.484110", "path": ["results_2023-10-28T08-48-56.484110.parquet"]}, {"split": "latest", "path": ["results_2023-10-28T08-48-56.484110.parquet"]}]}]}
|
2023-10-28T07:49:08+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of pszemraj/pythia-31m-KI_v1-2048-scratch
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model pszemraj/pythia-31m-KI_v1-2048-scratch on the Open LLM Leaderboard.
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-10-28T08:48:56.484110(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of pszemraj/pythia-31m-KI_v1-2048-scratch",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model pszemraj/pythia-31m-KI_v1-2048-scratch on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-28T08:48:56.484110(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of pszemraj/pythia-31m-KI_v1-2048-scratch",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model pszemraj/pythia-31m-KI_v1-2048-scratch on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-28T08:48:56.484110(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
28,
31,
176,
66,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of pszemraj/pythia-31m-KI_v1-2048-scratch## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model pszemraj/pythia-31m-KI_v1-2048-scratch on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-10-28T08:48:56.484110(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
13f7f4da809306fb8ce26e2fd3ecc872fad72527
|
# Dataset Card for Evaluation run of pszemraj/pythia-31m-simplewiki-scratch-bf16
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/pszemraj/pythia-31m-simplewiki-scratch-bf16
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [pszemraj/pythia-31m-simplewiki-scratch-bf16](https://huggingface.co/pszemraj/pythia-31m-simplewiki-scratch-bf16) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_pszemraj__pythia-31m-simplewiki-scratch-bf16",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-10-23T04:17:27.637926](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__pythia-31m-simplewiki-scratch-bf16/blob/main/results_2023-10-23T04-17-27.637926.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"em": 0.0,
"em_stderr": 0.0,
"f1": 0.007166526845637585,
"f1_stderr": 0.00042926617321096546,
"acc": 0.2525651144435675,
"acc_stderr": 0.007025872980895258
},
"harness|drop|3": {
"em": 0.0,
"em_stderr": 0.0,
"f1": 0.007166526845637585,
"f1_stderr": 0.00042926617321096546
},
"harness|gsm8k|5": {
"acc": 0.0,
"acc_stderr": 0.0
},
"harness|winogrande|5": {
"acc": 0.505130228887135,
"acc_stderr": 0.014051745961790516
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_pszemraj__pythia-31m-simplewiki-scratch-bf16
|
[
"region:us"
] |
2023-09-15T04:07:00+00:00
|
{"pretty_name": "Evaluation run of pszemraj/pythia-31m-simplewiki-scratch-bf16", "dataset_summary": "Dataset automatically created during the evaluation run of model [pszemraj/pythia-31m-simplewiki-scratch-bf16](https://huggingface.co/pszemraj/pythia-31m-simplewiki-scratch-bf16) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_pszemraj__pythia-31m-simplewiki-scratch-bf16\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-10-23T04:17:27.637926](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__pythia-31m-simplewiki-scratch-bf16/blob/main/results_2023-10-23T04-17-27.637926.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.0,\n \"em_stderr\": 0.0,\n \"f1\": 0.007166526845637585,\n \"f1_stderr\": 0.00042926617321096546,\n \"acc\": 0.2525651144435675,\n \"acc_stderr\": 0.007025872980895258\n },\n \"harness|drop|3\": {\n \"em\": 0.0,\n \"em_stderr\": 0.0,\n \"f1\": 0.007166526845637585,\n \"f1_stderr\": 0.00042926617321096546\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0,\n \"acc_stderr\": 0.0\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.505130228887135,\n \"acc_stderr\": 0.014051745961790516\n }\n}\n```", "repo_url": "https://huggingface.co/pszemraj/pythia-31m-simplewiki-scratch-bf16", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|arc:challenge|25_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_10_23T04_17_27.637926", "path": ["**/details_harness|drop|3_2023-10-23T04-17-27.637926.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-10-23T04-17-27.637926.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_10_23T04_17_27.637926", "path": ["**/details_harness|gsm8k|5_2023-10-23T04-17-27.637926.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-10-23T04-17-27.637926.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hellaswag|10_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T05-06-47.331195.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T05-06-47.331195.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T05-06-47.331195.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_10_23T04_17_27.637926", "path": ["**/details_harness|winogrande|5_2023-10-23T04-17-27.637926.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-10-23T04-17-27.637926.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_09_15T05_06_47.331195", "path": ["results_2023-09-15T05-06-47.331195.parquet"]}, {"split": "2023_10_23T04_17_27.637926", "path": ["results_2023-10-23T04-17-27.637926.parquet"]}, {"split": "latest", "path": ["results_2023-10-23T04-17-27.637926.parquet"]}]}]}
|
2023-10-23T03:17:40+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of pszemraj/pythia-31m-simplewiki-scratch-bf16
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model pszemraj/pythia-31m-simplewiki-scratch-bf16 on the Open LLM Leaderboard.
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-10-23T04:17:27.637926(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of pszemraj/pythia-31m-simplewiki-scratch-bf16",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model pszemraj/pythia-31m-simplewiki-scratch-bf16 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-23T04:17:27.637926(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of pszemraj/pythia-31m-simplewiki-scratch-bf16",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model pszemraj/pythia-31m-simplewiki-scratch-bf16 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-23T04:17:27.637926(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
27,
31,
175,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of pszemraj/pythia-31m-simplewiki-scratch-bf16## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model pszemraj/pythia-31m-simplewiki-scratch-bf16 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-10-23T04:17:27.637926(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
bcb6969615b7d68cb75395fb2b6495d82e2bdd07
|
# Dataset of kimura_natsuki/木村夏樹 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of kimura_natsuki/木村夏樹 (THE iDOLM@STER: Cinderella Girls), containing 198 images and their tags.
The core tags of this character are `short_hair, brown_hair, green_eyes, earrings, breasts, medium_breasts, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 198 | 238.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kimura_natsuki_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 198 | 141.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kimura_natsuki_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 426 | 278.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kimura_natsuki_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 198 | 208.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kimura_natsuki_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 426 | 395.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kimura_natsuki_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kimura_natsuki_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, solo, simple_background, white_background, grin, shirt, cleavage, looking_at_viewer, necklace, upper_body, collarbone, open_jacket |
| 1 | 8 |  |  |  |  |  | 1girl, cleavage, enmaided, maid_headdress, blush, solo, wrist_cuffs, jewelry, looking_at_viewer, apron, simple_background, smile, collarbone, ear_piercing, frills, large_breasts, one_eye_closed, short_sleeves, sweatdrop, upper_body |
| 2 | 9 |  |  |  |  |  | 1girl, solo, fingerless_gloves, jewelry, smile, microphone, belt, card_(medium), character_name, navel, sun_symbol, midriff, orange_background |
| 3 | 6 |  |  |  |  |  | 1girl, fingerless_gloves, microphone_stand, nail_polish, thighhighs, boots, garter_straps, midriff, necklace, solo |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | simple_background | white_background | grin | shirt | cleavage | looking_at_viewer | necklace | upper_body | collarbone | open_jacket | enmaided | maid_headdress | blush | wrist_cuffs | jewelry | apron | smile | ear_piercing | frills | large_breasts | one_eye_closed | short_sleeves | sweatdrop | fingerless_gloves | microphone | belt | card_(medium) | character_name | navel | sun_symbol | midriff | orange_background | microphone_stand | nail_polish | thighhighs | boots | garter_straps |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:-------------------|:-------|:--------|:-----------|:--------------------|:-----------|:-------------|:-------------|:--------------|:-----------|:-----------------|:--------|:--------------|:----------|:--------|:--------|:---------------|:---------|:----------------|:-----------------|:----------------|:------------|:--------------------|:-------------|:-------|:----------------|:-----------------|:--------|:-------------|:----------|:--------------------|:-------------------|:--------------|:-------------|:--------|:----------------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 8 |  |  |  |  |  | X | X | X | | | | X | X | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 2 | 9 |  |  |  |  |  | X | X | | | | | | | | | | | | | | | X | | X | | | | | | | X | X | X | X | X | X | X | X | X | | | | | |
| 3 | 6 |  |  |  |  |  | X | X | | | | | | | X | | | | | | | | | | | | | | | | | X | | | | | | | X | | X | X | X | X | X |
|
CyberHarem/kimura_natsuki_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T04:07:15+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T18:36:38+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kimura\_natsuki/木村夏樹 (THE iDOLM@STER: Cinderella Girls)
==================================================================
This is the dataset of kimura\_natsuki/木村夏樹 (THE iDOLM@STER: Cinderella Girls), containing 198 images and their tags.
The core tags of this character are 'short\_hair, brown\_hair, green\_eyes, earrings, breasts, medium\_breasts, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
c786151012dc82d5d21c82a6782defb8b1482cb5
|
# Dataset Card for "sci-llm-new-512"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
facat/sci-llm-new-512
|
[
"region:us"
] |
2023-09-15T04:14:30+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "train_attack", "path": "data/train_attack-*"}, {"split": "train_old", "path": "data/train_old-*"}, {"split": "train_new", "path": "data/train_new-*"}, {"split": "test", "path": "data/test-*"}, {"split": "test2", "path": "data/test2-*"}]}], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "chosen", "dtype": "string"}, {"name": "A", "dtype": "string"}, {"name": "B", "dtype": "string"}, {"name": "C", "dtype": "string"}, {"name": "D", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 281782031, "num_examples": 95835}, {"name": "train_attack", "num_bytes": 281782031, "num_examples": 95835}, {"name": "train_old", "num_bytes": 169071782, "num_examples": 40859}, {"name": "train_new", "num_bytes": 112703377, "num_examples": 54976}, {"name": "test", "num_bytes": 917099, "num_examples": 200}, {"name": "test2", "num_bytes": 1111116, "num_examples": 200}], "download_size": 423207291, "dataset_size": 847367436}}
|
2023-09-15T05:31:11+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "sci-llm-new-512"
More Information needed
|
[
"# Dataset Card for \"sci-llm-new-512\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"sci-llm-new-512\"\n\nMore Information needed"
] |
[
6,
18
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"sci-llm-new-512\"\n\nMore Information needed"
] |
fac6e8146f670afbbb6a46910f9e753a4f3f025e
|
# Dataset of imai_kana/今井加奈 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of imai_kana/今井加奈 (THE iDOLM@STER: Cinderella Girls), containing 121 images and their tags.
The core tags of this character are `twintails, brown_hair, brown_eyes, ribbon, hair_ribbon, bangs, bow, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 121 | 106.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/imai_kana_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 121 | 79.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/imai_kana_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 278 | 163.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/imai_kana_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 121 | 100.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/imai_kana_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 278 | 199.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/imai_kana_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/imai_kana_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, solo, open_mouth, serafuku, skirt, looking_at_viewer, smile, blush, short_hair |
| 1 | 19 |  |  |  |  |  | 1girl, serafuku, solo, blush, looking_at_viewer, red_neckerchief, short_sleeves, white_shirt, blue_sailor_collar, open_mouth, blue_skirt, white_background, pleated_skirt, simple_background, :d, long_hair, teeth, red_ribbon |
| 2 | 17 |  |  |  |  |  | 1girl, medium_breasts, smile, solo, looking_at_viewer, navel, blush, open_mouth, side-tie_bikini_bottom, cleavage, striped_bikini, necklace, long_hair, bracelet, collarbone, front-tie_top, outdoors, sky, hair_bow, ocean |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | open_mouth | serafuku | skirt | looking_at_viewer | smile | blush | short_hair | red_neckerchief | short_sleeves | white_shirt | blue_sailor_collar | blue_skirt | white_background | pleated_skirt | simple_background | :d | long_hair | teeth | red_ribbon | medium_breasts | navel | side-tie_bikini_bottom | cleavage | striped_bikini | necklace | bracelet | collarbone | front-tie_top | outdoors | sky | hair_bow | ocean |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------------|:-----------|:--------|:--------------------|:--------|:--------|:-------------|:------------------|:----------------|:--------------|:---------------------|:-------------|:-------------------|:----------------|:--------------------|:-----|:------------|:--------|:-------------|:-----------------|:--------|:-------------------------|:-----------|:-----------------|:-----------|:-----------|:-------------|:----------------|:-----------|:------|:-----------|:--------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 19 |  |  |  |  |  | X | X | X | X | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 2 | 17 |  |  |  |  |  | X | X | X | | | X | X | X | | | | | | | | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/imai_kana_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T04:22:00+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:02:36+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of imai\_kana/今井加奈 (THE iDOLM@STER: Cinderella Girls)
=============================================================
This is the dataset of imai\_kana/今井加奈 (THE iDOLM@STER: Cinderella Girls), containing 121 images and their tags.
The core tags of this character are 'twintails, brown\_hair, brown\_eyes, ribbon, hair\_ribbon, bangs, bow, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
130d6cc61440b02aaa6d649b983826b09403440a
|
Converted from: https://modelscope.cn/datasets/damo/CValues-Comparison/summary. We obtained harmless set by selecting `pos_type="拒绝为主"` and `neg_type="风险回复"`. We obtained helpful set by selecting `pos_type="拒绝&正向建议"` and `neg_type="拒绝为主"`.
|
Skepsun/cvalues_rlhf
|
[
"language:zh",
"license:apache-2.0",
"region:us"
] |
2023-09-15T04:28:12+00:00
|
{"language": ["zh"], "license": "apache-2.0"}
|
2023-09-15T04:35:50+00:00
|
[] |
[
"zh"
] |
TAGS
#language-Chinese #license-apache-2.0 #region-us
|
Converted from: URL We obtained harmless set by selecting 'pos_type="拒绝为主"' and 'neg_type="风险回复"'. We obtained helpful set by selecting 'pos_type="拒绝&正向建议"' and 'neg_type="拒绝为主"'.
|
[] |
[
"TAGS\n#language-Chinese #license-apache-2.0 #region-us \n"
] |
[
19
] |
[
"passage: TAGS\n#language-Chinese #license-apache-2.0 #region-us \n"
] |
d4050e68923a70df96bee3b8ff52cd2f95ec2385
|
# Dataset of doumyouji_karin (THE iDOLM@STER: Cinderella Girls)
This is the dataset of doumyouji_karin (THE iDOLM@STER: Cinderella Girls), containing 120 images and their tags.
The core tags of this character are `brown_hair, short_hair, brown_eyes, red_eyes, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 120 | 89.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/doumyouji_karin_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 120 | 72.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/doumyouji_karin_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 239 | 131.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/doumyouji_karin_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 120 | 87.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/doumyouji_karin_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 239 | 152.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/doumyouji_karin_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/doumyouji_karin_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 21 |  |  |  |  |  | 1girl, solo, hakama_skirt, blush, miko, red_hakama, open_mouth, looking_at_viewer, smile, antenna_hair, white_background, kimono |
| 1 | 5 |  |  |  |  |  | 1girl, card_(medium), character_name, flower_(symbol), pink_background, smile, solo, messy_hair, open_mouth, star_(symbol), gloves, japanese_clothes, skirt, thighhighs |
| 2 | 5 |  |  |  |  |  | 1girl, blush, floral_print, hair_flower, petals, cherry_blossoms, night_sky, ponytail, smile, wide_sleeves, full_moon, hakama_skirt, looking_at_viewer, outdoors, frills, long_sleeves, multiple_girls, solo, yellow_kimono |
| 3 | 7 |  |  |  |  |  | 1girl, blush, looking_at_viewer, solo, smile, open_mouth, dress, messy_hair |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | hakama_skirt | blush | miko | red_hakama | open_mouth | looking_at_viewer | smile | antenna_hair | white_background | kimono | card_(medium) | character_name | flower_(symbol) | pink_background | messy_hair | star_(symbol) | gloves | japanese_clothes | skirt | thighhighs | floral_print | hair_flower | petals | cherry_blossoms | night_sky | ponytail | wide_sleeves | full_moon | outdoors | frills | long_sleeves | multiple_girls | yellow_kimono | dress |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------------|:--------|:-------|:-------------|:-------------|:--------------------|:--------|:---------------|:-------------------|:---------|:----------------|:-----------------|:------------------|:------------------|:-------------|:----------------|:---------|:-------------------|:--------|:-------------|:---------------|:--------------|:---------|:------------------|:------------|:-----------|:---------------|:------------|:-----------|:---------|:---------------|:-----------------|:----------------|:--------|
| 0 | 21 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | | | | | X | | X | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | | | | X | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | |
| 3 | 7 |  |  |  |  |  | X | X | | X | | | X | X | X | | | | | | | | X | | | | | | | | | | | | | | | | | | | X |
|
CyberHarem/doumyouji_karin_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T04:36:55+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T22:57:19+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of doumyouji\_karin (THE iDOLM@STER: Cinderella Girls)
==============================================================
This is the dataset of doumyouji\_karin (THE iDOLM@STER: Cinderella Girls), containing 120 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, brown\_eyes, red\_eyes, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
b7cf6eaa6a8b79592abd70969e4ddcb063d3cf2d
|
# Dataset of makihara_shiho/槙原志保 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of makihara_shiho/槙原志保 (THE iDOLM@STER: Cinderella Girls), containing 51 images and their tags.
The core tags of this character are `brown_hair, long_hair, green_eyes, breasts, bow, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 51 | 40.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/makihara_shiho_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 51 | 31.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/makihara_shiho_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 105 | 58.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/makihara_shiho_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 51 | 39.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/makihara_shiho_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 105 | 69.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/makihara_shiho_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/makihara_shiho_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------|
| 0 | 26 |  |  |  |  |  | 1girl, smile, solo, blush, looking_at_viewer, open_mouth, food, dress, apron, earrings, tray, frills, parfait, waitress |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | smile | solo | blush | looking_at_viewer | open_mouth | food | dress | apron | earrings | tray | frills | parfait | waitress |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:--------|:--------------------|:-------------|:-------|:--------|:--------|:-----------|:-------|:---------|:----------|:-----------|
| 0 | 26 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/makihara_shiho_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T04:39:02+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:24:36+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of makihara\_shiho/槙原志保 (THE iDOLM@STER: Cinderella Girls)
==================================================================
This is the dataset of makihara\_shiho/槙原志保 (THE iDOLM@STER: Cinderella Girls), containing 51 images and their tags.
The core tags of this character are 'brown\_hair, long\_hair, green\_eyes, breasts, bow, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
57be091af7a18c4d9d4f7ad9fa43530c895dc1b8
|
# Dataset Card for "StateBankPakistanDataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
margenai/StateBankPakistanDataset
|
[
"region:us"
] |
2023-09-15T05:23:06+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 33935, "num_examples": 180}], "download_size": 16872, "dataset_size": 33935}}
|
2023-09-15T05:23:08+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "StateBankPakistanDataset"
More Information needed
|
[
"# Dataset Card for \"StateBankPakistanDataset\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"StateBankPakistanDataset\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"StateBankPakistanDataset\"\n\nMore Information needed"
] |
13c9525f8382936d2c0190da2400136c95f674b3
|
# Dataset of murakami_tomoe/村上巴 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of murakami_tomoe/村上巴 (THE iDOLM@STER: Cinderella Girls), containing 155 images and their tags.
The core tags of this character are `red_hair, short_hair, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 155 | 142.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakami_tomoe_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 155 | 100.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakami_tomoe_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 330 | 194.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakami_tomoe_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 155 | 134.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakami_tomoe_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 330 | 249.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/murakami_tomoe_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/murakami_tomoe_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 26 |  |  |  |  |  | looking_at_viewer, 1girl, solo, letterman_jacket, blush, simple_background, shirt, open_jacket, smile, white_background, upper_body |
| 1 | 13 |  |  |  |  |  | 1girl, hair_flower, floral_print, obi, blush, looking_at_viewer, solo, wide_sleeves, bangs, holding_microphone, open_mouth, long_sleeves, pink_kimono, smile |
| 2 | 5 |  |  |  |  |  | 1girl, blush, navel, small_breasts, solo, looking_at_viewer, sweat, nude, twitter_username, anus, dated, nipples, on_back, pussy, sitting, spread_legs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | looking_at_viewer | 1girl | solo | letterman_jacket | blush | simple_background | shirt | open_jacket | smile | white_background | upper_body | hair_flower | floral_print | obi | wide_sleeves | bangs | holding_microphone | open_mouth | long_sleeves | pink_kimono | navel | small_breasts | sweat | nude | twitter_username | anus | dated | nipples | on_back | pussy | sitting | spread_legs |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------|:--------|:-------|:-------------------|:--------|:--------------------|:--------|:--------------|:--------|:-------------------|:-------------|:--------------|:---------------|:------|:---------------|:--------|:---------------------|:-------------|:---------------|:--------------|:--------|:----------------|:--------|:-------|:-------------------|:-------|:--------|:----------|:----------|:--------|:----------|:--------------|
| 0 | 26 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | X | | X | | | | X | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/murakami_tomoe_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T05:33:06+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:39:27+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of murakami\_tomoe/村上巴 (THE iDOLM@STER: Cinderella Girls)
=================================================================
This is the dataset of murakami\_tomoe/村上巴 (THE iDOLM@STER: Cinderella Girls), containing 155 images and their tags.
The core tags of this character are 'red\_hair, short\_hair, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
879a5a76d996d38d33218234cd051e060e1c158e
|
# Dataset Card for "323c0619"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
result-kand2-sdxl-wuerst-karlo/323c0619
|
[
"region:us"
] |
2023-09-15T05:43:16+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 236, "num_examples": 10}], "download_size": 1424, "dataset_size": 236}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T05:43:16+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "323c0619"
More Information needed
|
[
"# Dataset Card for \"323c0619\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"323c0619\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"323c0619\"\n\nMore Information needed"
] |
2c383bfd618be2f58ba216ea4daad69a53a29812
|
The QALM Benchmark utilizes the following datasets:
1. MEDQA (USMLE dataset) [1]
2. MEDMCQA [2]
3. BioASQ (2022) [3] [4]
4. HEADQA [5]
5. ProcessBank [6]
6. PubmedQA [7]
7. MMLU (subset of datasets focussing on clinical and medical knowledge) [8]
8. BioMRC (Tiny A and B) [9]
9. Fellowship of the Royal College of Ophthalmologists (FRCOphth) Exams [10]
10. QA4MRE (Alzheimer's Questions) [11]
11. MedicationInfo [12]
12. MedQuad [13]
13. LiveQA dataset (Ranked version of answers used to evaluate MedQuad) [13] [14]
14. MashQA [15]
15. MEDIQA-ANS [16]
The HEADQA dataset was last modified on September 27th, 2023.
References:
[1] Jin D, Pan E, Oufattole N, Weng W-H, Fang H, Szolovits P. What Disease Does This Patient Have? A Large-Scale Open Domain Question Answering Dataset from Medical Exams. Applied Sciences. 2021; 11(14):6421. https://doi.org/10.3390/app11146421
[2] Pal, A., Umapathi, L.K. & Sankarasubbu, M.. (2022). MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering. <i>Proceedings of the Conference on Health, Inference, and Learning</i>, in <i>Proceedings of Machine Learning Research</i> 174:248-260 Available from https://proceedings.mlr.press/v174/pal22a.html.
[3] Tsatsaronis, G., Balikas, G., Malakasiotis, P. et al. An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics 16, 138 (2015). https://doi.org/10.1186/s12859-015-0564-6
[4] Krithara, A., Nentidis, A., Bougiatiotis, K. et al. BioASQ-QA: A manually curated corpus for Biomedical Question Answering. Sci Data 10, 170 (2023). https://doi.org/10.1038/s41597-023-02068-4
[5] David Vilares and Carlos Gómez-Rodríguez. 2019. HEAD-QA: A Healthcare Dataset for Complex Reasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 960–966, Florence, Italy. Association for Computational Linguistics. http://dx.doi.org/10.18653/v1/P19-1092
[6] Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad Huang, Peter Clark, and Christopher D. Manning. 2014. Modeling Biological Processes for Reading Comprehension. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1499–1510, Doha, Qatar. Association for Computational Linguistics. http://dx.doi.org/10.3115/v1/D14-1159
[7] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. 2019. PubMedQA: A Dataset for Biomedical Research Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, Hong Kong, China. Association for Computational Linguistics. http://dx.doi.org/10.18653/v1/D19-1259
[8] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J.Steinhardt, “Measuring massive multitask language understanding”, in International Conference on Learning Representations, 2021. https://openreview.net/forum?id=d7KBjmI3GmQ.
[9] Dimitris Pappas, Petros Stavropoulos, Ion Androutsopoulos, and Ryan McDonald. 2020. BioMRC: A Dataset for Biomedical Machine Reading Comprehension. In Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing, pages 140–149, Online. Association for Computational Linguistics. http://dx.doi.org/10.18653/v1/2020.bionlp-1.15
[10] Raimondi, R., Tzoumas, N., Salisbury, T. et al. Comparative analysis of large language models in the Royal College of Ophthalmologists fellowship exams. Eye (2023). https://doi.org/10.1038/s41433-023-02563-3
[11] Part 1 FRCOphth Sample MCQs. https://www.rcophth.ac.uk/wp-content/uploads/2022/01/Part-1-FRCOphth-Sample-MCQs.pdf
[12] Part 2 FRCOphth Written Sample MCQs. https://www.rcophth.ac.uk/wp-content/uploads/2022/01/Part-2-FRCOphth-Written-Sample-MCQs-20160524.pdf
[13] Ben Abacha, A., Demner-Fushman, D. A question-entailment approach to question answering. BMC Bioinformatics 20, 511 (2019). https://doi.org/10.1186/s12859-019-3119-4
[14] Asma Ben Abacha, Eugene Agichtein, Yuval Pinter & Dina Demner-Fushman. Overview of the Medical Question Answering Task at TREC 2017 LiveQA. TREC, Gaithersburg, MD, 2017 (https://trec.nist.gov/pubs/trec26/papers/Overview-QA.pdf).
[15] Ming Zhu, Aman Ahuja, Da-Cheng Juan, Wei Wei, and Chandan K. Reddy. 2020. Question Answering with Long Multiple-Span Answers. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3840–3849, Online. Association for Computational Linguistics. http://dx.doi.org/10.18653/v1/2020.findings-emnlp.342
[16] Savery, M., Abacha, A.B., Gayen, S. et al. Question-driven summarization of answers to consumer health questions. Sci Data 7, 322 (2020). https://doi.org/10.1038/s41597-020-00667-z
|
asus-aics/QALM
|
[
"task_categories:question-answering",
"language:en",
"healthcare nlp",
"medical qa",
"biomedical qa",
"region:us"
] |
2023-09-15T05:53:27+00:00
|
{"language": ["en"], "task_categories": ["question-answering"], "tags": ["healthcare nlp", "medical qa", "biomedical qa"]}
|
2023-11-16T05:05:40+00:00
|
[] |
[
"en"
] |
TAGS
#task_categories-question-answering #language-English #healthcare nlp #medical qa #biomedical qa #region-us
|
The QALM Benchmark utilizes the following datasets:
1. MEDQA (USMLE dataset) [1]
2. MEDMCQA [2]
3. BioASQ (2022) [3] [4]
4. HEADQA [5]
5. ProcessBank [6]
6. PubmedQA [7]
7. MMLU (subset of datasets focussing on clinical and medical knowledge) [8]
8. BioMRC (Tiny A and B) [9]
9. Fellowship of the Royal College of Ophthalmologists (FRCOphth) Exams [10]
10. QA4MRE (Alzheimer's Questions) [11]
11. MedicationInfo [12]
12. MedQuad [13]
13. LiveQA dataset (Ranked version of answers used to evaluate MedQuad) [13] [14]
14. MashQA [15]
15. MEDIQA-ANS [16]
The HEADQA dataset was last modified on September 27th, 2023.
References:
[1] Jin D, Pan E, Oufattole N, Weng W-H, Fang H, Szolovits P. What Disease Does This Patient Have? A Large-Scale Open Domain Question Answering Dataset from Medical Exams. Applied Sciences. 2021; 11(14):6421. URL
[2] Pal, A., Umapathi, L.K. & Sankarasubbu, M.. (2022). MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering. <i>Proceedings of the Conference on Health, Inference, and Learning</i>, in <i>Proceedings of Machine Learning Research</i> 174:248-260 Available from URL
[3] Tsatsaronis, G., Balikas, G., Malakasiotis, P. et al. An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics 16, 138 (2015). URL
[4] Krithara, A., Nentidis, A., Bougiatiotis, K. et al. BioASQ-QA: A manually curated corpus for Biomedical Question Answering. Sci Data 10, 170 (2023). URL
[5] David Vilares and Carlos Gómez-Rodríguez. 2019. HEAD-QA: A Healthcare Dataset for Complex Reasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 960–966, Florence, Italy. Association for Computational Linguistics. URL
[6] Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad Huang, Peter Clark, and Christopher D. Manning. 2014. Modeling Biological Processes for Reading Comprehension. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1499–1510, Doha, Qatar. Association for Computational Linguistics. URL
[7] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. 2019. PubMedQA: A Dataset for Biomedical Research Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, Hong Kong, China. Association for Computational Linguistics. URL
[8] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J.Steinhardt, “Measuring massive multitask language understanding”, in International Conference on Learning Representations, 2021. URL
[9] Dimitris Pappas, Petros Stavropoulos, Ion Androutsopoulos, and Ryan McDonald. 2020. BioMRC: A Dataset for Biomedical Machine Reading Comprehension. In Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing, pages 140–149, Online. Association for Computational Linguistics. URL
[10] Raimondi, R., Tzoumas, N., Salisbury, T. et al. Comparative analysis of large language models in the Royal College of Ophthalmologists fellowship exams. Eye (2023). URL
[11] Part 1 FRCOphth Sample MCQs. URL
[12] Part 2 FRCOphth Written Sample MCQs. URL
[13] Ben Abacha, A., Demner-Fushman, D. A question-entailment approach to question answering. BMC Bioinformatics 20, 511 (2019). URL
[14] Asma Ben Abacha, Eugene Agichtein, Yuval Pinter & Dina Demner-Fushman. Overview of the Medical Question Answering Task at TREC 2017 LiveQA. TREC, Gaithersburg, MD, 2017 (URL
[15] Ming Zhu, Aman Ahuja, Da-Cheng Juan, Wei Wei, and Chandan K. Reddy. 2020. Question Answering with Long Multiple-Span Answers. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3840–3849, Online. Association for Computational Linguistics. URL
[16] Savery, M., Abacha, A.B., Gayen, S. et al. Question-driven summarization of answers to consumer health questions. Sci Data 7, 322 (2020). URL
|
[] |
[
"TAGS\n#task_categories-question-answering #language-English #healthcare nlp #medical qa #biomedical qa #region-us \n"
] |
[
36
] |
[
"passage: TAGS\n#task_categories-question-answering #language-English #healthcare nlp #medical qa #biomedical qa #region-us \n"
] |
b69fcfcacb0f6694b750328727d883544d1aa6eb
|
# Dataset of yuuki_haru/結城晴 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of yuuki_haru/結城晴 (THE iDOLM@STER: Cinderella Girls), containing 500 images and their tags.
The core tags of this character are `orange_hair, long_hair, bangs, purple_eyes, brown_eyes, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 543.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuuki_haru_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 338.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuuki_haru_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1187 | 731.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuuki_haru_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 496.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuuki_haru_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1187 | 997.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yuuki_haru_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yuuki_haru_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, blush, navel, open_mouth, small_breasts, looking_at_viewer, side-tie_bikini_bottom, solo_focus, 1boy, hetero, micro_bikini, nipples, penis |
| 1 | 15 |  |  |  |  |  | 1girl, looking_at_viewer, solo, blush, smile, puffy_short_sleeves, dress, mini_hat, open_mouth, ponytail, simple_background, white_background, bow, wrist_cuffs, frills, apron, shirt, top_hat |
| 2 | 26 |  |  |  |  |  | 1girl, cheerleader, midriff, solo, twintails, blush, hair_ribbon, navel, pleated_skirt, pom_pom_(cheerleading), looking_at_viewer, crop_top, simple_background, white_background, miniskirt, red_skirt, armpits, bike_shorts, holding, open_mouth, breasts, collarbone, shorts_under_skirt, sleeveless_shirt, arm_up |
| 3 | 5 |  |  |  |  |  | 1girl, simple_background, solo, upper_body, white_background, blush, open_mouth, short_sleeves, blue_shirt, brown_hair, looking_at_viewer, signature, sweat, upper_teeth_only |
| 4 | 5 |  |  |  |  |  | 1girl, hoodie, simple_background, solo, upper_body, white_background, looking_at_viewer, blush, closed_mouth, open_mouth |
| 5 | 34 |  |  |  |  |  | 1girl, tomboy, solo, baseball_cap, looking_at_viewer, backwards_hat, simple_background, sneakers, hair_through_headwear, blush, hoodie, white_background, white_shirt, black_shorts, smile, soccer_ball, full_body, open_jacket, socks |
| 6 | 8 |  |  |  |  |  | 1girl, enmaided, maid_apron, maid_headdress, puffy_short_sleeves, solo, blush, frilled_apron, looking_at_viewer, white_apron, wrist_cuffs, neck_ribbon, simple_background, smile, white_thighhighs, black_dress, blue_dress, hair_ribbon, red_ribbon, blue_bow, frilled_dress, holding, medium_hair, sweatdrop, vertical-striped_dress, white_background |
| 7 | 7 |  |  |  |  |  | 1girl, blush, looking_at_viewer, midriff, navel, solo, open_mouth, smile, star_(symbol), bare_shoulders, choker, gloves, hat, necklace, pink_jacket, skirt |
| 8 | 10 |  |  |  |  |  | 1girl, midriff, solo, black_gloves, fingerless_gloves, looking_at_viewer, navel, open_mouth, white_shorts, headphones, short_shorts, smile, blush, crop_top, headset, shoes, socks, suspender_shorts, belt, blue_footwear, one_eye_closed, choker, full_body, hood_down, hooded_jacket, open_jacket, star_(symbol), ;d, blue_jacket, buckle, collarbone, hairband, medium_hair, sleeveless_jacket |
| 9 | 13 |  |  |  |  |  | 1girl, fake_animal_ears, rabbit_ears, blush, looking_at_viewer, simple_background, playboy_bunny, solo, small_breasts, white_background, bare_shoulders, bowtie, wrist_cuffs, black_leotard, detached_collar, open_mouth, rabbit_tail, pantyhose, brown_hair, full_body, high_heels, strapless_leotard |
| 10 | 5 |  |  |  |  |  | 1girl, navel, solo, blush, small_breasts, bare_shoulders, collarbone, cowboy_shot, panties, shorts, simple_background, sports_bra, white_background, bare_arms, closed_mouth, looking_at_viewer, stomach, underwear_only |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | navel | open_mouth | small_breasts | looking_at_viewer | side-tie_bikini_bottom | solo_focus | 1boy | hetero | micro_bikini | nipples | penis | solo | smile | puffy_short_sleeves | dress | mini_hat | ponytail | simple_background | white_background | bow | wrist_cuffs | frills | apron | shirt | top_hat | cheerleader | midriff | twintails | hair_ribbon | pleated_skirt | pom_pom_(cheerleading) | crop_top | miniskirt | red_skirt | armpits | bike_shorts | holding | breasts | collarbone | shorts_under_skirt | sleeveless_shirt | arm_up | upper_body | short_sleeves | blue_shirt | brown_hair | signature | sweat | upper_teeth_only | hoodie | closed_mouth | tomboy | baseball_cap | backwards_hat | sneakers | hair_through_headwear | white_shirt | black_shorts | soccer_ball | full_body | open_jacket | socks | enmaided | maid_apron | maid_headdress | frilled_apron | white_apron | neck_ribbon | white_thighhighs | black_dress | blue_dress | red_ribbon | blue_bow | frilled_dress | medium_hair | sweatdrop | vertical-striped_dress | star_(symbol) | bare_shoulders | choker | gloves | hat | necklace | pink_jacket | skirt | black_gloves | fingerless_gloves | white_shorts | headphones | short_shorts | headset | shoes | suspender_shorts | belt | blue_footwear | one_eye_closed | hood_down | hooded_jacket | ;d | blue_jacket | buckle | hairband | sleeveless_jacket | fake_animal_ears | rabbit_ears | playboy_bunny | bowtie | black_leotard | detached_collar | rabbit_tail | pantyhose | high_heels | strapless_leotard | cowboy_shot | panties | shorts | sports_bra | bare_arms | stomach | underwear_only |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------|:--------|:-------------|:----------------|:--------------------|:-------------------------|:-------------|:-------|:---------|:---------------|:----------|:--------|:-------|:--------|:----------------------|:--------|:-----------|:-----------|:--------------------|:-------------------|:------|:--------------|:---------|:--------|:--------|:----------|:--------------|:----------|:------------|:--------------|:----------------|:-------------------------|:-----------|:------------|:------------|:----------|:--------------|:----------|:----------|:-------------|:---------------------|:-------------------|:---------|:-------------|:----------------|:-------------|:-------------|:------------|:--------|:-------------------|:---------|:---------------|:---------|:---------------|:----------------|:-----------|:------------------------|:--------------|:---------------|:--------------|:------------|:--------------|:--------|:-----------|:-------------|:-----------------|:----------------|:--------------|:--------------|:-------------------|:--------------|:-------------|:-------------|:-----------|:----------------|:--------------|:------------|:-------------------------|:----------------|:-----------------|:---------|:---------|:------|:-----------|:--------------|:--------|:---------------|:--------------------|:---------------|:-------------|:---------------|:----------|:--------|:-------------------|:-------|:----------------|:-----------------|:------------|:----------------|:-----|:--------------|:---------|:-----------|:--------------------|:-------------------|:--------------|:----------------|:---------|:----------------|:------------------|:--------------|:------------|:-------------|:--------------------|:--------------|:----------|:---------|:-------------|:------------|:----------|:-----------------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 15 |  |  |  |  |  | X | X | | X | | X | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 26 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | X | | | | | | X | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | | X | | X | | | | | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | X | | X | | X | | | | | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 34 |  |  |  |  |  | X | X | | | | X | | | | | | | | X | X | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 8 |  |  |  |  |  | X | X | | | | X | | | | | | | | X | X | X | | | | X | X | | X | | | | | | | | X | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 7 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | X | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 10 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | X | X | | | | | | | | | | | | | | X | | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | X | | | X | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 9 | 13 |  |  |  |  |  | X | X | | X | X | X | | | | | | | | X | | | | | | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | |
| 10 | 5 |  |  |  |  |  | X | X | X | | X | X | | | | | | | | X | | | | | | X | X | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X |
|
CyberHarem/yuuki_haru_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T06:01:03+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T15:43:53+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yuuki\_haru/結城晴 (THE iDOLM@STER: Cinderella Girls)
=============================================================
This is the dataset of yuuki\_haru/結城晴 (THE iDOLM@STER: Cinderella Girls), containing 500 images and their tags.
The core tags of this character are 'orange\_hair, long\_hair, bangs, purple\_eyes, brown\_eyes, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
4a3822f35b37aa244422bba1cf71e9d517fd310c
|
# Dataset Card for "Bactrian-Spanish-Clean"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Rodr16020/Bactrian-Spanish-Clean
|
[
"region:us"
] |
2023-09-15T06:20:29+00:00
|
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "instruction_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 120701430, "num_examples": 67017}], "download_size": 0, "dataset_size": 120701430}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T07:02:52+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "Bactrian-Spanish-Clean"
More Information needed
|
[
"# Dataset Card for \"Bactrian-Spanish-Clean\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"Bactrian-Spanish-Clean\"\n\nMore Information needed"
] |
[
6,
19
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"Bactrian-Spanish-Clean\"\n\nMore Information needed"
] |
b019c4a904612d90a3903fd420add36b6e12a987
|
# Dataset of yokoyama_chika/横山千佳 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of yokoyama_chika/横山千佳 (THE iDOLM@STER: Cinderella Girls), containing 114 images and their tags.
The core tags of this character are `twintails, long_hair, brown_hair, bangs, hair_ornament, bow, brown_eyes, green_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 114 | 101.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yokoyama_chika_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 114 | 76.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yokoyama_chika_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 250 | 149.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yokoyama_chika_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 114 | 97.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yokoyama_chika_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 250 | 179.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yokoyama_chika_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yokoyama_chika_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, looking_at_viewer, solo, :d, blush, open_mouth, blonde_hair, simple_background, frilled_dress, pink_dress, sleeveless_dress, white_background, boots, heart, long_sleeves, pink_bow, star_hair_ornament |
| 1 | 6 |  |  |  |  |  | 1girl, blue_background, simple_background, solo, bare_shoulders, collarbone, looking_at_viewer, blush, bracelet, closed_mouth, smile, upper_body, dress, sleeveless |
| 2 | 15 |  |  |  |  |  | 1girl, open_mouth, solo, :d, thighhighs, card_(medium), character_name, flower_(symbol), gloves, looking_at_viewer, star_(symbol), skirt |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | :d | blush | open_mouth | blonde_hair | simple_background | frilled_dress | pink_dress | sleeveless_dress | white_background | boots | heart | long_sleeves | pink_bow | star_hair_ornament | blue_background | bare_shoulders | collarbone | bracelet | closed_mouth | smile | upper_body | dress | sleeveless | thighhighs | card_(medium) | character_name | flower_(symbol) | gloves | star_(symbol) | skirt |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:-----|:--------|:-------------|:--------------|:--------------------|:----------------|:-------------|:-------------------|:-------------------|:--------|:--------|:---------------|:-----------|:---------------------|:------------------|:-----------------|:-------------|:-----------|:---------------|:--------|:-------------|:--------|:-------------|:-------------|:----------------|:-----------------|:------------------|:---------|:----------------|:--------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | | X | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | |
| 2 | 15 |  |  |  |  |  | X | X | X | X | | X | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X |
|
CyberHarem/yokoyama_chika_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T06:26:47+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:47:27+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yokoyama\_chika/横山千佳 (THE iDOLM@STER: Cinderella Girls)
==================================================================
This is the dataset of yokoyama\_chika/横山千佳 (THE iDOLM@STER: Cinderella Girls), containing 114 images and their tags.
The core tags of this character are 'twintails, long\_hair, brown\_hair, bangs, hair\_ornament, bow, brown\_eyes, green\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
81e04143b84a194e77f26c345cb43e770115a949
|
# Dataset of saionji_kotoka/西園寺琴歌 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of saionji_kotoka/西園寺琴歌 (THE iDOLM@STER: Cinderella Girls), containing 116 images and their tags.
The core tags of this character are `long_hair, pink_hair, breasts, brown_eyes, bangs, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 116 | 131.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saionji_kotoka_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 116 | 85.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saionji_kotoka_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 261 | 169.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saionji_kotoka_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 116 | 118.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saionji_kotoka_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 261 | 226.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saionji_kotoka_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/saionji_kotoka_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 13 |  |  |  |  |  | 1girl, cleavage, looking_at_viewer, solo, smile, blush, navel, simple_background, white_background, ponytail, white_bikini, yellow_eyes, collarbone, hair_ornament, open_mouth, scrunchie |
| 1 | 7 |  |  |  |  |  | 1girl, smile, solo, dress, blush, open_mouth, hair_flower, looking_at_viewer, bare_shoulders, cleavage, holding, petals, simple_background, white_background |
| 2 | 12 |  |  |  |  |  | 1girl, looking_at_viewer, solo, blush, collarbone, hair_ribbon, necklace, cleavage, twintails, :d, open_mouth, bare_shoulders, medium_breasts, flower, hair_between_eyes, skirt, strapless_dress, very_long_hair, yellow_eyes |
| 3 | 13 |  |  |  |  |  | 1girl, necklace, dress, smile, solo, blush, looking_at_viewer |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | looking_at_viewer | solo | smile | blush | navel | simple_background | white_background | ponytail | white_bikini | yellow_eyes | collarbone | hair_ornament | open_mouth | scrunchie | dress | hair_flower | bare_shoulders | holding | petals | hair_ribbon | necklace | twintails | :d | medium_breasts | flower | hair_between_eyes | skirt | strapless_dress | very_long_hair |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:--------------------|:-------|:--------|:--------|:--------|:--------------------|:-------------------|:-----------|:---------------|:--------------|:-------------|:----------------|:-------------|:------------|:--------|:--------------|:-----------------|:----------|:---------|:--------------|:-----------|:------------|:-----|:-----------------|:---------|:--------------------|:--------|:------------------|:-----------------|
| 0 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | X | X | X | | X | X | | | | | | X | | X | X | X | X | X | | | | | | | | | | |
| 2 | 12 |  |  |  |  |  | X | X | X | X | | X | | | | | | X | X | | X | | | | X | | | X | X | X | X | X | X | X | X | X | X |
| 3 | 13 |  |  |  |  |  | X | | X | X | X | X | | | | | | | | | | | X | | | | | | X | | | | | | | | |
|
CyberHarem/saionji_kotoka_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T06:31:42+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:18:35+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of saionji\_kotoka/西園寺琴歌 (THE iDOLM@STER: Cinderella Girls)
===================================================================
This is the dataset of saionji\_kotoka/西園寺琴歌 (THE iDOLM@STER: Cinderella Girls), containing 116 images and their tags.
The core tags of this character are 'long\_hair, pink\_hair, breasts, brown\_eyes, bangs, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
a51df2c0c187feebb4c2b2f2990631c373564c16
|
# Dataset of etou_misaki/衛藤美紗希 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of etou_misaki/衛藤美紗希 (THE iDOLM@STER: Cinderella Girls), containing 41 images and their tags.
The core tags of this character are `brown_hair, long_hair, green_eyes, earrings, breasts, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 41 | 33.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/etou_misaki_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 41 | 27.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/etou_misaki_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 79 | 47.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/etou_misaki_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 41 | 37.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/etou_misaki_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 79 | 57.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/etou_misaki_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/etou_misaki_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------|
| 0 | 41 |  |  |  |  |  | 1girl, solo, smile, looking_at_viewer, bracelet, character_name, cleavage, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | looking_at_viewer | bracelet | character_name | cleavage | open_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:-----------|:-----------------|:-----------|:-------------|
| 0 | 41 |  |  |  |  |  | X | X | X | X | X | X | X | X |
|
CyberHarem/etou_misaki_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T06:37:31+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:52:28+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of etou\_misaki/衛藤美紗希 (THE iDOLM@STER: Cinderella Girls)
================================================================
This is the dataset of etou\_misaki/衛藤美紗希 (THE iDOLM@STER: Cinderella Girls), containing 41 images and their tags.
The core tags of this character are 'brown\_hair, long\_hair, green\_eyes, earrings, breasts, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
8e7329909c73a4684b83beb7ff3d9a18abd6ba86
|
# Persian-Text-QA: Lazy Llama 2 Formatting
This is a subset (8807 samples) of the [`SeyedAli/Persian-Text-QA`](https://huggingface.co/datasets/SeyedAli/Persian-Text-QA) dataset, processed to match Llama 2's prompt format as described [in this article](https://huggingface.co/blog/llama2#how-to-prompt-llama-2). It was created using the following [colab notebook](https://colab.research.google.com/drive/1Ad7a9zMmkxuXTOh1Z7-rNSICA4dybpM2?usp=sharing).
Useful if you don't want to reformat it by yourself (e.g., using a script). It was designed for [this article](https://mlabonne.github.io/blog/posts/Fine_Tune_Your_Own_Llama_2_Model_in_a_Colab_Notebook.html) about fine-tuning a Llama 2 (chat) model in a Google Colab.
|
hdeldar/Persian-Text-llama2
|
[
"region:us"
] |
2023-09-15T07:04:23+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16884897, "num_examples": 8808}], "download_size": 966693, "dataset_size": 1654448, "dataset_name": "json"}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/data-*"}]}]}
|
2023-09-16T17:21:43+00:00
|
[] |
[] |
TAGS
#region-us
|
# Persian-Text-QA: Lazy Llama 2 Formatting
This is a subset (8807 samples) of the 'SeyedAli/Persian-Text-QA' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.
Useful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab.
|
[
"# Persian-Text-QA: Lazy Llama 2 Formatting\n\nThis is a subset (8807 samples) of the 'SeyedAli/Persian-Text-QA' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.\n\nUseful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab."
] |
[
"TAGS\n#region-us \n",
"# Persian-Text-QA: Lazy Llama 2 Formatting\n\nThis is a subset (8807 samples) of the 'SeyedAli/Persian-Text-QA' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.\n\nUseful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab."
] |
[
6,
120
] |
[
"passage: TAGS\n#region-us \n# Persian-Text-QA: Lazy Llama 2 Formatting\n\nThis is a subset (8807 samples) of the 'SeyedAli/Persian-Text-QA' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.\n\nUseful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab."
] |
bede2bc6b93f39366854fb29d0c8e136e89fdd2a
|
# Dataset Card for "gia-dataset-tokenized-2024-2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
edbeeching/gia-dataset-tokenized-2024-2
|
[
"region:us"
] |
2023-09-15T07:07:15+00:00
|
{"dataset_info": [{"config_name": "atari-alien", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "local_positions", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2427492496, "num_examples": 1836}], "download_size": 197411801, "dataset_size": 2427492496}, {"config_name": "atari-amidar", "features": [{"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 23292403388, "num_examples": 17641}, {"name": "test", "num_bytes": 2157941388, "num_examples": 1637}], "download_size": 1619960876, "dataset_size": 25450344776}, {"config_name": "atari-assault", "features": [{"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 23077576568, "num_examples": 17434}, {"name": "test", "num_bytes": 1898092400, "num_examples": 1436}], "download_size": 760479036, "dataset_size": 24975668968}, {"config_name": "atari-asterix", "features": [{"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 25094377660, "num_examples": 19161}], "download_size": 943683526, "dataset_size": 25094377660}, {"config_name": "atari-asteroids", "features": [{"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22677165856, "num_examples": 17112}], "download_size": 807221186, "dataset_size": 22677165856}, {"config_name": "atari-atlantis", "features": [{"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22825149408, "num_examples": 17240}], "download_size": 745609354, "dataset_size": 22825149408}, {"config_name": "atari-bankheist", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 23741888116, "num_examples": 18043}, {"name": "test", "num_bytes": 2701097304, "num_examples": 2050}], "download_size": 2847993069, "dataset_size": 26442985420}, {"config_name": "atari-battlezone", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_types", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2683381416, "num_examples": 2030}], "download_size": 162167846, "dataset_size": 2683381416}, {"config_name": "atari-berzerk", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2683232284, "num_examples": 2025}], "download_size": 98071291, "dataset_size": 2683232284}, {"config_name": "atari-bowling", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2638612892, "num_examples": 2001}], "download_size": 57099861, "dataset_size": 2638612892}, {"config_name": "atari-boxing", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2925635312, "num_examples": 2252}], "download_size": 154591181, "dataset_size": 2925635312}, {"config_name": "atari-breakout", "features": [{"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 21372025124, "num_examples": 16135}, {"name": "test", "num_bytes": 2843462328, "num_examples": 2146}], "download_size": 740521401, "dataset_size": 24215487452}, {"config_name": "atari-centipede", "features": [{"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 24525541956, "num_examples": 18727}, {"name": "test", "num_bytes": 2743854332, "num_examples": 2097}], "download_size": 886355860, "dataset_size": 27269396288}, {"config_name": "atari-choppercommand", "features": [{"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 21916144968, "num_examples": 16598}, {"name": "test", "num_bytes": 3130204472, "num_examples": 2370}], "download_size": 1120222280, "dataset_size": 25046349440}, {"config_name": "atari-crazyclimber", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2452295076, "num_examples": 1855}], "download_size": 147409815, "dataset_size": 2452295076}, {"config_name": "atari-defender", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2667101644, "num_examples": 2013}], "download_size": 76162534, "dataset_size": 2667101644}, {"config_name": "atari-demonattack", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2655965584, "num_examples": 2004}], "download_size": 71540075, "dataset_size": 2655965584}, {"config_name": "atari-doubledunk", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2654251456, "num_examples": 2032}], "download_size": 140407266, "dataset_size": 2654251456}, {"config_name": "atari-fishingderby", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2865449308, "num_examples": 2177}], "download_size": 236590614, "dataset_size": 2865449308}, {"config_name": "atari-freeway", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2646386200, "num_examples": 2002}], "download_size": 182728240, "dataset_size": 2646386200}, {"config_name": "atari-frostbite", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "local_positions", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 23145553316, "num_examples": 17551}, {"name": "test", "num_bytes": 2683086716, "num_examples": 2033}], "download_size": 1661407235, "dataset_size": 25828640032}, {"config_name": "atari-gravitar", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "input_types", "sequence": "int64"}, {"name": "local_positions", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 26186279752, "num_examples": 20126}, {"name": "test", "num_bytes": 2990268724, "num_examples": 2299}], "download_size": 939142901, "dataset_size": 29176548476}, {"config_name": "atari-hero", "features": [{"name": "input_ids", "sequence": "int32"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2756503068, "num_examples": 2089}], "download_size": 131026317, "dataset_size": 2756503068}, {"config_name": "atari-icehockey", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2538945980, "num_examples": 1921}], "download_size": 89405392, "dataset_size": 2538945980}, {"config_name": "atari-jamesbond", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 4473778328, "num_examples": 3378}], "download_size": 224917482, "dataset_size": 4473778328}, {"config_name": "atari-kangaroo", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2993217516, "num_examples": 2285}], "download_size": 140119408, "dataset_size": 2993217516}, {"config_name": "atari-mspacman", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2479651844, "num_examples": 1879}], "download_size": 217259145, "dataset_size": 2479651844}, {"config_name": "atari-namethisgame", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 3006648420, "num_examples": 2271}], "download_size": 158870157, "dataset_size": 3006648420}, {"config_name": "atari-phoenix", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2655773200, "num_examples": 2004}], "download_size": 79861580, "dataset_size": 2655773200}, {"config_name": "atari-qbert", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2547887868, "num_examples": 1929}], "download_size": 174392419, "dataset_size": 2547887868}, {"config_name": "atari-riverraid", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2555182372, "num_examples": 1943}], "download_size": 174672084, "dataset_size": 2555182372}, {"config_name": "atari-roadrunner", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2521407028, "num_examples": 1915}], "download_size": 125390334, "dataset_size": 2521407028}, {"config_name": "atari-robotank", "features": [{"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22475017052, "num_examples": 16985}, {"name": "test", "num_bytes": 2229677068, "num_examples": 1685}], "download_size": 1298755118, "dataset_size": 24704694120}, {"config_name": "atari-seaquest", "features": [{"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 23841045496, "num_examples": 18114}, {"name": "test", "num_bytes": 2738008960, "num_examples": 2080}], "download_size": 910338340, "dataset_size": 26579054456}, {"config_name": "atari-skiing", "features": [{"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 26305597476, "num_examples": 20359}, {"name": "test", "num_bytes": 2941523916, "num_examples": 2277}], "download_size": 1797518108, "dataset_size": 29247121392}, {"config_name": "atari-solaris", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2273188716, "num_examples": 1717}], "download_size": 126936781, "dataset_size": 2273188716}, {"config_name": "atari-spaceinvaders", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 4137369016, "num_examples": 3122}], "download_size": 146426375, "dataset_size": 4137369016}, {"config_name": "atari-stargunner", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2565341980, "num_examples": 1937}], "download_size": 72577790, "dataset_size": 2565341980}, {"config_name": "atari-surround", "features": [{"name": "loss_mask", "sequence": "bool"}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_types", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_ids", "sequence": "int32"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22468793380, "num_examples": 17023}, {"name": "test", "num_bytes": 2933488488, "num_examples": 2222}], "download_size": 904796125, "dataset_size": 25402281868}, {"config_name": "atari-tennis", "features": [{"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_types", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2484015692, "num_examples": 1877}], "download_size": 95167453, "dataset_size": 2484015692}, {"config_name": "atari-timepilot", "features": [{"name": "input_ids", "sequence": "int32"}, {"name": "local_positions", "sequence": "int64"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_types", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 2558172240, "num_examples": 1932}], "download_size": 86471773, "dataset_size": 2558172240}, {"config_name": "atari-tutankham", "features": [{"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "test", "num_bytes": 3517105220, "num_examples": 2655}], "download_size": 144491974, "dataset_size": 3517105220}, {"config_name": "atari-videopinball", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22581644248, "num_examples": 17042}, {"name": "test", "num_bytes": 856644644, "num_examples": 647}], "download_size": 1483962740, "dataset_size": 23438288892}, {"config_name": "atari-wizardofwor", "features": [{"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "input_types", "sequence": "int64"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22744043928, "num_examples": 17218}, {"name": "test", "num_bytes": 2648734220, "num_examples": 2005}], "download_size": 1739703310, "dataset_size": 25392778148}, {"config_name": "atari-yarsrevenge", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22080700236, "num_examples": 16669}, {"name": "test", "num_bytes": 2579104820, "num_examples": 1947}], "download_size": 3451148232, "dataset_size": 24659805056}, {"config_name": "atari-zaxxon", "features": [{"name": "input_types", "sequence": "int64"}, {"name": "loss_mask", "sequence": "bool"}, {"name": "patch_positions", "sequence": {"sequence": {"sequence": "float64"}}}, {"name": "local_positions", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "patches", "sequence": {"sequence": {"sequence": {"sequence": "uint8"}}}}, {"name": "attention_mask", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 22058040148, "num_examples": 16667}, {"name": "test", "num_bytes": 2768806832, "num_examples": 2092}], "download_size": 1229966010, "dataset_size": 24826846980}], "configs": [{"config_name": "atari-alien", "data_files": [{"split": "test", "path": "atari-alien/test-*"}]}, {"config_name": "atari-amidar", "data_files": [{"split": "train", "path": "atari-amidar/train-*"}, {"split": "test", "path": "atari-amidar/test-*"}]}, {"config_name": "atari-assault", "data_files": [{"split": "train", "path": "atari-assault/train-*"}, {"split": "test", "path": "atari-assault/test-*"}]}, {"config_name": "atari-asterix", "data_files": [{"split": "train", "path": "atari-asterix/train-*"}]}, {"config_name": "atari-asteroids", "data_files": [{"split": "train", "path": "atari-asteroids/train-*"}]}, {"config_name": "atari-atlantis", "data_files": [{"split": "train", "path": "atari-atlantis/train-*"}]}, {"config_name": "atari-bankheist", "data_files": [{"split": "train", "path": "atari-bankheist/train-*"}, {"split": "test", "path": "atari-bankheist/test-*"}]}, {"config_name": "atari-battlezone", "data_files": [{"split": "test", "path": "atari-battlezone/test-*"}]}, {"config_name": "atari-berzerk", "data_files": [{"split": "test", "path": "atari-berzerk/test-*"}]}, {"config_name": "atari-bowling", "data_files": [{"split": "test", "path": "atari-bowling/test-*"}]}, {"config_name": "atari-boxing", "data_files": [{"split": "test", "path": "atari-boxing/test-*"}]}, {"config_name": "atari-breakout", "data_files": [{"split": "train", "path": "atari-breakout/train-*"}, {"split": "test", "path": "atari-breakout/test-*"}]}, {"config_name": "atari-centipede", "data_files": [{"split": "train", "path": "atari-centipede/train-*"}, {"split": "test", "path": "atari-centipede/test-*"}]}, {"config_name": "atari-choppercommand", "data_files": [{"split": "train", "path": "atari-choppercommand/train-*"}, {"split": "test", "path": "atari-choppercommand/test-*"}]}, {"config_name": "atari-crazyclimber", "data_files": [{"split": "test", "path": "atari-crazyclimber/test-*"}]}, {"config_name": "atari-defender", "data_files": [{"split": "test", "path": "atari-defender/test-*"}]}, {"config_name": "atari-demonattack", "data_files": [{"split": "test", "path": "atari-demonattack/test-*"}]}, {"config_name": "atari-doubledunk", "data_files": [{"split": "test", "path": "atari-doubledunk/test-*"}]}, {"config_name": "atari-fishingderby", "data_files": [{"split": "test", "path": "atari-fishingderby/test-*"}]}, {"config_name": "atari-freeway", "data_files": [{"split": "test", "path": "atari-freeway/test-*"}]}, {"config_name": "atari-frostbite", "data_files": [{"split": "train", "path": "atari-frostbite/train-*"}, {"split": "test", "path": "atari-frostbite/test-*"}]}, {"config_name": "atari-gravitar", "data_files": [{"split": "train", "path": "atari-gravitar/train-*"}, {"split": "test", "path": "atari-gravitar/test-*"}]}, {"config_name": "atari-hero", "data_files": [{"split": "test", "path": "atari-hero/test-*"}]}, {"config_name": "atari-icehockey", "data_files": [{"split": "test", "path": "atari-icehockey/test-*"}]}, {"config_name": "atari-jamesbond", "data_files": [{"split": "test", "path": "atari-jamesbond/test-*"}]}, {"config_name": "atari-kangaroo", "data_files": [{"split": "test", "path": "atari-kangaroo/test-*"}]}, {"config_name": "atari-mspacman", "data_files": [{"split": "test", "path": "atari-mspacman/test-*"}]}, {"config_name": "atari-namethisgame", "data_files": [{"split": "test", "path": "atari-namethisgame/test-*"}]}, {"config_name": "atari-phoenix", "data_files": [{"split": "test", "path": "atari-phoenix/test-*"}]}, {"config_name": "atari-qbert", "data_files": [{"split": "test", "path": "atari-qbert/test-*"}]}, {"config_name": "atari-riverraid", "data_files": [{"split": "test", "path": "atari-riverraid/test-*"}]}, {"config_name": "atari-roadrunner", "data_files": [{"split": "test", "path": "atari-roadrunner/test-*"}]}, {"config_name": "atari-robotank", "data_files": [{"split": "train", "path": "atari-robotank/train-*"}, {"split": "test", "path": "atari-robotank/test-*"}]}, {"config_name": "atari-seaquest", "data_files": [{"split": "train", "path": "atari-seaquest/train-*"}, {"split": "test", "path": "atari-seaquest/test-*"}]}, {"config_name": "atari-skiing", "data_files": [{"split": "train", "path": "atari-skiing/train-*"}, {"split": "test", "path": "atari-skiing/test-*"}]}, {"config_name": "atari-solaris", "data_files": [{"split": "test", "path": "atari-solaris/test-*"}]}, {"config_name": "atari-spaceinvaders", "data_files": [{"split": "test", "path": "atari-spaceinvaders/test-*"}]}, {"config_name": "atari-stargunner", "data_files": [{"split": "test", "path": "atari-stargunner/test-*"}]}, {"config_name": "atari-surround", "data_files": [{"split": "train", "path": "atari-surround/train-*"}, {"split": "test", "path": "atari-surround/test-*"}]}, {"config_name": "atari-tennis", "data_files": [{"split": "test", "path": "atari-tennis/test-*"}]}, {"config_name": "atari-timepilot", "data_files": [{"split": "test", "path": "atari-timepilot/test-*"}]}, {"config_name": "atari-tutankham", "data_files": [{"split": "test", "path": "atari-tutankham/test-*"}]}, {"config_name": "atari-videopinball", "data_files": [{"split": "train", "path": "atari-videopinball/train-*"}, {"split": "test", "path": "atari-videopinball/test-*"}]}, {"config_name": "atari-wizardofwor", "data_files": [{"split": "train", "path": "atari-wizardofwor/train-*"}, {"split": "test", "path": "atari-wizardofwor/test-*"}]}, {"config_name": "atari-yarsrevenge", "data_files": [{"split": "train", "path": "atari-yarsrevenge/train-*"}, {"split": "test", "path": "atari-yarsrevenge/test-*"}]}, {"config_name": "atari-zaxxon", "data_files": [{"split": "train", "path": "atari-zaxxon/train-*"}, {"split": "test", "path": "atari-zaxxon/test-*"}]}]}
|
2023-09-15T10:03:29+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "gia-dataset-tokenized-2024-2"
More Information needed
|
[
"# Dataset Card for \"gia-dataset-tokenized-2024-2\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"gia-dataset-tokenized-2024-2\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"gia-dataset-tokenized-2024-2\"\n\nMore Information needed"
] |
f4523bf3ba2e18817c48965ccee9db1e396adabe
|
# Dataset of matsuo_chizuru/松尾千鶴 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of matsuo_chizuru/松尾千鶴 (THE iDOLM@STER: Cinderella Girls), containing 121 images and their tags.
The core tags of this character are `short_hair, black_hair, hair_ornament, hairclip, black_eyes, thick_eyebrows, purple_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 121 | 96.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuo_chizuru_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 121 | 69.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuo_chizuru_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 272 | 141.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuo_chizuru_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 121 | 91.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuo_chizuru_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 272 | 174.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuo_chizuru_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/matsuo_chizuru_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 10 |  |  |  |  |  | 1girl, solo, blush, dress, open_mouth, smile, bare_shoulders, hair_bow, looking_at_viewer, white_background, choker, ribbon, simple_background, collarbone, detached_sleeves, jewelry, upper_body |
| 1 | 7 |  |  |  |  |  | 1girl, blush, looking_at_viewer, solo, upper_body, long_sleeves, smile, heart, bracelet, necklace, white_shirt |
| 2 | 17 |  |  |  |  |  | 1girl, blazer, blue_jacket, white_shirt, looking_at_viewer, red_necktie, school_uniform, collared_shirt, solo, long_sleeves, simple_background, upper_body, white_background, blush, open_mouth, skirt, swept_bangs |
| 3 | 7 |  |  |  |  |  | 1girl, blush, looking_at_viewer, maid_headdress, solo, black_ribbon, enmaided, simple_background, waist_apron, white_apron, breasts, detached_collar, frills, open_mouth, puffy_short_sleeves, wrist_cuffs, black_skirt, grey_eyes, maid_apron, smile, white_background |
| 4 | 6 |  |  |  |  |  | kimono, looking_at_viewer, smile, 1girl, floral_print, solo, blush, calligraphy_brush, hakama_skirt, tasuki, bangs, barefoot, holding, ink |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | blush | dress | open_mouth | smile | bare_shoulders | hair_bow | looking_at_viewer | white_background | choker | ribbon | simple_background | collarbone | detached_sleeves | jewelry | upper_body | long_sleeves | heart | bracelet | necklace | white_shirt | blazer | blue_jacket | red_necktie | school_uniform | collared_shirt | skirt | swept_bangs | maid_headdress | black_ribbon | enmaided | waist_apron | white_apron | breasts | detached_collar | frills | puffy_short_sleeves | wrist_cuffs | black_skirt | grey_eyes | maid_apron | kimono | floral_print | calligraphy_brush | hakama_skirt | tasuki | bangs | barefoot | holding | ink |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------|:-------------|:--------|:-----------------|:-----------|:--------------------|:-------------------|:---------|:---------|:--------------------|:-------------|:-------------------|:----------|:-------------|:---------------|:--------|:-----------|:-----------|:--------------|:---------|:--------------|:--------------|:-----------------|:-----------------|:--------|:--------------|:-----------------|:---------------|:-----------|:--------------|:--------------|:----------|:------------------|:---------|:----------------------|:--------------|:--------------|:------------|:-------------|:---------|:---------------|:--------------------|:---------------|:---------|:--------|:-----------|:----------|:------|
| 0 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | | | X | | | X | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 17 |  |  |  |  |  | X | X | X | | X | | | | X | X | | | X | | | | X | X | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 7 |  |  |  |  |  | X | X | X | | X | X | | | X | X | | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | X | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/matsuo_chizuru_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T07:07:24+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:02:09+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of matsuo\_chizuru/松尾千鶴 (THE iDOLM@STER: Cinderella Girls)
==================================================================
This is the dataset of matsuo\_chizuru/松尾千鶴 (THE iDOLM@STER: Cinderella Girls), containing 121 images and their tags.
The core tags of this character are 'short\_hair, black\_hair, hair\_ornament, hairclip, black\_eyes, thick\_eyebrows, purple\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
8b689a3d25ca886479acb1ae2dfc522e5b4d8ecb
|
# Dataset Card for "gsm8k-test_critiques"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
reciprocate/gsm8k-test_critiques
|
[
"region:us"
] |
2023-09-15T07:08:46+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "critique", "dtype": "string"}, {"name": "revision", "dtype": "string"}, {"name": "revision_score", "dtype": "int64"}, {"name": "truth", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 850387, "num_examples": 753}], "download_size": 431338, "dataset_size": 850387}}
|
2023-09-15T07:08:52+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "gsm8k-test_critiques"
More Information needed
|
[
"# Dataset Card for \"gsm8k-test_critiques\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"gsm8k-test_critiques\"\n\nMore Information needed"
] |
[
6,
19
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"gsm8k-test_critiques\"\n\nMore Information needed"
] |
08283ba2fcd1c57b19cc9936ffdf8e36662d2b6f
|
# Dataset Card for MAWPS_ar
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
### Dataset Summary
MAWPS: A Math Word Problem Repository
### Supported Tasks
Math Word Problem Solving
### Languages
Supports Arabic and English
## Dataset Structure
### Data Fields
- `text_en`: a `string` feature.
- `text_ar`: a `string` feature.
- `eqn`: a `string` feature.
### Data Splits
|train|validation|test|
|----:|---------:|---:|
| 3636| 1040| 520|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[Rik Koncel-Kedziorski**, Subhro Roy**, Aida Amini, Nate Kushman and Hannaneh Hajishirzi.](https://aclanthology.org/N16-1136.pdf)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Contributions
Special thanks to Associate Professor Marwan Torki and all my colleagues in CC491N (NLP) class for helping me translate this dataset.
|
aelneima/MaWPS-ar-addCN
|
[
"task_categories:text2text-generation",
"task_ids:explanation-generation",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:multilingual",
"size_categories:1K<n<10K",
"language:en",
"language:ar",
"license:mit",
"region:us"
] |
2023-09-15T07:17:59+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en", "ar"], "license": ["mit"], "multilinguality": ["multilingual"], "size_categories": ["1K<n<10K"], "source_datasets": [], "task_categories": ["text2text-generation"], "task_ids": ["explanation-generation"], "pretty_name": "MAWPS_ar"}
|
2023-09-15T07:20:53+00:00
|
[] |
[
"en",
"ar"
] |
TAGS
#task_categories-text2text-generation #task_ids-explanation-generation #annotations_creators-crowdsourced #language_creators-found #multilinguality-multilingual #size_categories-1K<n<10K #language-English #language-Arabic #license-mit #region-us
|
Dataset Card for MAWPS\_ar
==========================
Table of Contents
-----------------
* Table of Contents
* Dataset Description
+ Dataset Summary
+ Supported Tasks
+ Languages
* Dataset Structure
+ Data Fields
+ Data Splits
* Dataset Creation
+ Curation Rationale
+ Source Data
+ Annotations
+ Personal and Sensitive Information
* Considerations for Using the Data
+ Social Impact of Dataset
+ Discussion of Biases
+ Other Known Limitations
* Additional Information
+ Dataset Curators
+ Licensing Information
+ Citation Information
+ Contributions
Dataset Description
-------------------
### Dataset Summary
MAWPS: A Math Word Problem Repository
### Supported Tasks
Math Word Problem Solving
### Languages
Supports Arabic and English
Dataset Structure
-----------------
### Data Fields
* 'text\_en': a 'string' feature.
* 'text\_ar': a 'string' feature.
* 'eqn': a 'string' feature.
### Data Splits
Dataset Creation
----------------
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh Hajishirzi.
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
Considerations for Using the Data
---------------------------------
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
Additional Information
----------------------
### Dataset Curators
### Licensing Information
### Contributions
Special thanks to Associate Professor Marwan Torki and all my colleagues in CC491N (NLP) class for helping me translate this dataset.
|
[
"### Dataset Summary\n\n\nMAWPS: A Math Word Problem Repository",
"### Supported Tasks\n\n\nMath Word Problem Solving",
"### Languages\n\n\nSupports Arabic and English\n\n\nDataset Structure\n-----------------",
"### Data Fields\n\n\n* 'text\\_en': a 'string' feature.\n* 'text\\_ar': a 'string' feature.\n* 'eqn': a 'string' feature.",
"### Data Splits\n\n\n\nDataset Creation\n----------------",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?\n\n\nRik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh Hajishirzi.",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations\n\n\nAdditional Information\n----------------------",
"### Dataset Curators",
"### Licensing Information",
"### Contributions\n\n\nSpecial thanks to Associate Professor Marwan Torki and all my colleagues in CC491N (NLP) class for helping me translate this dataset."
] |
[
"TAGS\n#task_categories-text2text-generation #task_ids-explanation-generation #annotations_creators-crowdsourced #language_creators-found #multilinguality-multilingual #size_categories-1K<n<10K #language-English #language-Arabic #license-mit #region-us \n",
"### Dataset Summary\n\n\nMAWPS: A Math Word Problem Repository",
"### Supported Tasks\n\n\nMath Word Problem Solving",
"### Languages\n\n\nSupports Arabic and English\n\n\nDataset Structure\n-----------------",
"### Data Fields\n\n\n* 'text\\_en': a 'string' feature.\n* 'text\\_ar': a 'string' feature.\n* 'eqn': a 'string' feature.",
"### Data Splits\n\n\n\nDataset Creation\n----------------",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?\n\n\nRik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh Hajishirzi.",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations\n\n\nAdditional Information\n----------------------",
"### Dataset Curators",
"### Licensing Information",
"### Contributions\n\n\nSpecial thanks to Associate Professor Marwan Torki and all my colleagues in CC491N (NLP) class for helping me translate this dataset."
] |
[
86,
17,
11,
16,
46,
11,
7,
4,
10,
40,
5,
5,
9,
18,
7,
8,
14,
6,
6,
37
] |
[
"passage: TAGS\n#task_categories-text2text-generation #task_ids-explanation-generation #annotations_creators-crowdsourced #language_creators-found #multilinguality-multilingual #size_categories-1K<n<10K #language-English #language-Arabic #license-mit #region-us \n### Dataset Summary\n\n\nMAWPS: A Math Word Problem Repository### Supported Tasks\n\n\nMath Word Problem Solving### Languages\n\n\nSupports Arabic and English\n\n\nDataset Structure\n-----------------### Data Fields\n\n\n* 'text\\_en': a 'string' feature.\n* 'text\\_ar': a 'string' feature.\n* 'eqn': a 'string' feature.### Data Splits\n\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?\n\n\nRik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh Hajishirzi.### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information### Contributions\n\n\nSpecial thanks to Associate Professor Marwan Torki and all my colleagues in CC491N (NLP) class for helping me translate this dataset."
] |
71c753fa546a46e33b66d7576fdd7ffb8f342a06
|
# Dataset of mizuki_seira/水木聖來 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of mizuki_seira/水木聖來 (THE iDOLM@STER: Cinderella Girls), containing 196 images and their tags.
The core tags of this character are `brown_hair, brown_eyes, short_hair, breasts, earrings, medium_breasts, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 196 | 226.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mizuki_seira_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 196 | 124.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mizuki_seira_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 460 | 262.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mizuki_seira_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 196 | 196.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mizuki_seira_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 460 | 389.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mizuki_seira_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/mizuki_seira_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, jewelry, looking_at_viewer, solo, belt, cleavage, mini_hat, short_shorts, smile, black_gloves, crop_top, midriff, thighhighs, lace_trim, navel, black_shorts, cowboy_shot, idol, open_jacket, simple_background, suspender_shorts, white_background, white_jacket, black_headwear, closed_mouth, detached_collar, hair_between_eyes, long_sleeves, standing, stomach, thigh_boots |
| 1 | 14 |  |  |  |  |  | 1girl, solo, midriff, smile, navel, open_mouth, thighhighs, belt, cleavage, skirt, hair_ornament, fingerless_gloves, looking_at_viewer, one_eye_closed, bare_shoulders, blush, boots, bracelet, choker, microphone |
| 2 | 7 |  |  |  |  |  | 1girl, jewelry, open_mouth, smile, solo, blush, dog, one_eye_closed, pants, ;d, looking_at_viewer |
| 3 | 12 |  |  |  |  |  | 1girl, solo, collarbone, jewelry, looking_at_viewer, simple_background, white_background, blush, smile, upper_body, black_shirt, long_sleeves, closed_mouth, open_mouth |
| 4 | 6 |  |  |  |  |  | 1girl, solo, looking_at_viewer, navel, smile, blue_bikini, cleavage, jewelry |
| 5 | 9 |  |  |  |  |  | 1girl, detached_collar, rabbit_ears, solo, wrist_cuffs, bowtie, fake_animal_ears, playboy_bunny, cleavage, looking_at_viewer, bare_shoulders, blush, pantyhose, simple_background, smile, large_breasts, white_background |
| 6 | 5 |  |  |  |  |  | 1girl, bowtie, cleavage, fake_animal_ears, fishnet_thighhighs, garter_straps, looking_at_viewer, midriff, navel, rabbit_ears, solo, bare_shoulders, miniskirt, simple_background, white_background, wrist_cuffs, black_skirt, blush, closed_mouth, crop_top, detached_collar, full_body, hairband, sleeveless, smile, vest, black_footwear, coattails, high_heels, large_breasts, microskirt, rabbit_tail, red_bow, stomach |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | jewelry | looking_at_viewer | solo | belt | cleavage | mini_hat | short_shorts | smile | black_gloves | crop_top | midriff | thighhighs | lace_trim | navel | black_shorts | cowboy_shot | idol | open_jacket | simple_background | suspender_shorts | white_background | white_jacket | black_headwear | closed_mouth | detached_collar | hair_between_eyes | long_sleeves | standing | stomach | thigh_boots | open_mouth | skirt | hair_ornament | fingerless_gloves | one_eye_closed | bare_shoulders | blush | boots | bracelet | choker | microphone | dog | pants | ;d | collarbone | upper_body | black_shirt | blue_bikini | rabbit_ears | wrist_cuffs | bowtie | fake_animal_ears | playboy_bunny | pantyhose | large_breasts | fishnet_thighhighs | garter_straps | miniskirt | black_skirt | full_body | hairband | sleeveless | vest | black_footwear | coattails | high_heels | microskirt | rabbit_tail | red_bow |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:--------------------|:-------|:-------|:-----------|:-----------|:---------------|:--------|:---------------|:-----------|:----------|:-------------|:------------|:--------|:---------------|:--------------|:-------|:--------------|:--------------------|:-------------------|:-------------------|:---------------|:-----------------|:---------------|:------------------|:--------------------|:---------------|:-----------|:----------|:--------------|:-------------|:--------|:----------------|:--------------------|:-----------------|:-----------------|:--------|:--------|:-----------|:---------|:-------------|:------|:--------|:-----|:-------------|:-------------|:--------------|:--------------|:--------------|:--------------|:---------|:-------------------|:----------------|:------------|:----------------|:---------------------|:----------------|:------------|:--------------|:------------|:-----------|:-------------|:-------|:-----------------|:------------|:-------------|:-------------|:--------------|:----------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 14 |  |  |  |  |  | X | | X | X | X | X | | | X | | | X | X | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | X | X | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | | X | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 12 |  |  |  |  |  | X | X | X | X | | | | | X | | | | | | | | | | | X | | X | | | X | | | X | | | | X | | | | | | X | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | X | X | | X | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | |
| 5 | 9 |  |  |  |  |  | X | | X | X | | X | | | X | | | | | | | | | | | X | | X | | | | X | | | | | | | | | | | X | X | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | X | X | | X | | | X | | X | X | | | X | | | | | X | | X | | | X | X | | | | X | | | | | | | X | X | | | | | | | | | | | | X | X | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/mizuki_seira_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T07:34:58+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:53:35+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of mizuki\_seira/水木聖來 (THE iDOLM@STER: Cinderella Girls)
================================================================
This is the dataset of mizuki\_seira/水木聖來 (THE iDOLM@STER: Cinderella Girls), containing 196 images and their tags.
The core tags of this character are 'brown\_hair, brown\_eyes, short\_hair, breasts, earrings, medium\_breasts, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
22feef741e46489140168d5ba09582ec2c0e6e4a
|
# Aguila7b Private Inference
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
BSC-LT/aguila7b-private-inference
|
[
"region:us"
] |
2023-09-15T07:47:02+00:00
|
{}
|
2023-09-21T08:19:55+00:00
|
[] |
[] |
TAGS
#region-us
|
# Aguila7b Private Inference
## Dataset Description
- Homepage:
- Repository:
- Paper:
- Leaderboard:
- Point of Contact:
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Aguila7b Private Inference",
"## Dataset Description\n\n- Homepage: \n- Repository: \n- Paper: \n- Leaderboard: \n- Point of Contact:",
"### Dataset Summary",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Aguila7b Private Inference",
"## Dataset Description\n\n- Homepage: \n- Repository: \n- Paper: \n- Leaderboard: \n- Point of Contact:",
"### Dataset Summary",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
10,
24,
6,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Aguila7b Private Inference## Dataset Description\n\n- Homepage: \n- Repository: \n- Paper: \n- Leaderboard: \n- Point of Contact:### Dataset Summary### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
6e9db59f8e79333f85efb5c4fa9a4c429e6bc7e8
|
# Dataset Card for "sample"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
cestwc/sample
|
[
"region:us"
] |
2023-09-15T07:50:40+00:00
|
{"dataset_info": {"features": [{"name": "Unique Case Record Key", "dtype": "int64"}, {"name": "Description", "dtype": "string"}, {"name": "Subject", "dtype": "string"}, {"name": "Reporting Sub Category", "dtype": {"class_label": {"names": {"0": "CRC Issues", "1": "Pedestrian Paths/POB/Linkway - Requests", "2": "Parks Infra - Others", "3": "Cockroaches", "4": "EPS Malfunction", "5": "Illegal Parking - Public Housing Disabled Lots", "6": "Abandoned Bulky Items/Dumping", "7": "Idling Engines", "8": "Illegal Parking - Public Housing General Reserved Lots", "9": "Noise - Events", "10": "Illegal Activities - Others", "11": "Hoarding", "12": "Tree Removal", "13": "Public Housing Infra - Others", "14": "Rodents", "15": "Playground/Fitness Equipment - Public Housing", "16": "Grass Cutting", "17": "Public Toilet Issues", "18": "Hazardous Toxic", "19": "Water Supply and Pressure - Other Public Areas", "20": "Smell/Smoky - Food Establishments/Cooking", "21": "Illegal Parking - Roads", "22": "Illegal Parking - Public Housing Loading and Unloading Bays", "23": "Water - Others", "24": "Graffiti/Stains", "25": "Obstruction of Public Accessibility by Articles", "26": "PMDs/PABs/Bicycles Usage Issues", "27": "Dust/Smell/Light - Construction", "28": "BCA - Building and Construction Matters", "29": "Flooding/Ponding", "30": "Smell - Drains/Canals/Sewer/Manhole", "31": "Noise - Food Establishments/Entertainment Outlets", "32": "Bus Shelters - Maintenance", "33": "CCTV Issues", "34": "Neighbour Disputes", "35": "Dogs - Nuisance", "36": "Dust - Others", "37": "Electricity Supply", "38": "Obstruction - Public Housing Common Areas", "39": "Pollution - Others", "40": "Noise - Others", "41": "Noise - Renovation", "42": "Water Pipe Maintenance and Issues - Public Housing", "43": "Tree Planting", "44": "Car Park - Maintenance", "45": "Roads/Structures - Maintenance", "46": "Street Lights - Maintenance", "47": "Dirty Areas/Litter - Other Public Areas", "48": "Illegal Advertisements", "49": "High Rise Littering/Killer Litter", "50": "Lift - Others", "51": "Birds - Nuisance", "52": "Ceiling Leak", "53": "Animals - Others", "54": "Traffic Lights - Maintenance", "55": "Connectivity Related Infrastructure - Others", "56": "Illegal Parking - Motorcycles at Public Housing Common Areas", "57": "Pedestrian Crossings", "58": "Electrical - Others", "59": "Cats - Nuisance", "60": "Noise - Construction", "61": "Sewer - Other Public Areas", "62": "Spalling Concrete - Public Housing Common Areas", "63": "Wall Seepage", "64": "Urine/Faeces/Spitting", "65": "Sewer - Public Housing", "66": "Noise - Neighbours", "67": "Bees/Wasps/Hornets", "68": "Lift - Breakdown", "69": "Dead Animals/Birds", "70": "Tree/Shrub Maintenance", "71": "Corridor Lighting", "72": "Bus Shelters - Requests", "73": "Car Park - Requests", "74": "Drains/Drainage - Public Housing", "75": "Spalling Concrete - Within HDB Flat", "76": "Dirty Areas/Litter - Public Housing", "77": "Water Pipe Maintenance and Issues - Other Public Areas", "78": "Traffic Lights - Requests", "79": "Waste Pipe Defects - Public Housing", "80": "Waste and Recycling Management", "81": "Fallen Tree/Branch", "82": "Infra - Others", "83": "Building Defects", "84": "Wet Laundry", "85": "Illegal Parking - Heavy Vehicle Parking at Public Housing", "86": "Outdoor Lighting", "87": "Dirty Drains/Canals", "88": "Pedestrian Paths/POB/Linkway - Maintenance", "89": "Noise - Congregation in Common Areas", "90": "Smoking", "91": "Bins/Recycling", "92": "Road Works", "93": "Illegal Parking - Serious Obstruction", "94": "Smell - Other Sources", "95": "Pests - Others", "96": "Road Signs - Maintenance", "97": "Water Quality - Other Public Areas", "98": "Air Pollution/Smoke", "99": "Drains/Drainage - Other Public Areas", "100": "Illegal Parking - Public Housing Car Parks/Service Roads", "101": "Mosquitoes", "102": "Water Supply and Pressure - Public Housing", "103": "Parks Infra - Lighting"}}}}, {"name": "Reporting Category", "dtype": {"class_label": {"names": {"0": "Cleanliness", "1": "Enforcement Matters", "2": "Pests", "3": "Pollution", "4": "General Infrastructure/Facilities", "5": "Public Housing Lifts", "6": "Connectivity Related Infrastructure", "7": "Animals and Birds", "8": "Public Housing Infrastructure (Excl Lifts)", "9": "Greenery", "10": "Neighbour Issues", "11": "Illegal Parking", "12": "Noise"}}}}, {"name": "Preprocessed", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "token_type_ids", "sequence": "int8"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "dtype": "int64"}, {"name": "tags", "sequence": {"sequence": "float64"}}], "splits": [{"name": "2017", "num_bytes": 33338600, "num_examples": 45675}], "download_size": 16008523, "dataset_size": 33338600}, "configs": [{"config_name": "default", "data_files": [{"split": "2017", "path": "data/2017-*"}]}]}
|
2023-09-15T07:50:44+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "sample"
More Information needed
|
[
"# Dataset Card for \"sample\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"sample\"\n\nMore Information needed"
] |
[
6,
12
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"sample\"\n\nMore Information needed"
] |
0b1491c42eb43d7d900bf1a9ebbbdd6569ad9714
|
# Dataset of kita_hinako/喜多日菜子 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of kita_hinako/喜多日菜子 (THE iDOLM@STER: Cinderella Girls), containing 112 images and their tags.
The core tags of this character are `brown_hair, brown_eyes, short_hair, hat, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 112 | 93.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kita_hinako_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 112 | 66.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kita_hinako_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 237 | 131.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kita_hinako_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 112 | 87.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kita_hinako_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 237 | 166.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kita_hinako_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kita_hinako_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------|
| 0 | 24 |  |  |  |  |  | 1girl, blush, solo, open_mouth, smile, dress, jewelry |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | solo | open_mouth | smile | dress | jewelry |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:-------------|:--------|:--------|:----------|
| 0 | 24 |  |  |  |  |  | X | X | X | X | X | X | X |
|
CyberHarem/kita_hinako_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T08:00:12+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T18:58:14+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kita\_hinako/喜多日菜子 (THE iDOLM@STER: Cinderella Girls)
================================================================
This is the dataset of kita\_hinako/喜多日菜子 (THE iDOLM@STER: Cinderella Girls), containing 112 images and their tags.
The core tags of this character are 'brown\_hair, brown\_eyes, short\_hair, hat, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
c54e3a954dfb4aacb7681d1e9067a03337a1569e
|
# Dataset Card for "f0cdf5c4"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
result-kand2-sdxl-wuerst-karlo/f0cdf5c4
|
[
"region:us"
] |
2023-09-15T08:18:19+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 207, "num_examples": 10}], "download_size": 1427, "dataset_size": 207}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T08:18:20+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "f0cdf5c4"
More Information needed
|
[
"# Dataset Card for \"f0cdf5c4\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"f0cdf5c4\"\n\nMore Information needed"
] |
[
6,
17
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"f0cdf5c4\"\n\nMore Information needed"
] |
b3d10feb901721ab557756fc8963f50fc9b4bcac
|
# Dataset of fukuyama_mai/福山舞 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of fukuyama_mai/福山舞 (THE iDOLM@STER: Cinderella Girls), containing 131 images and their tags.
The core tags of this character are `black_hair, ponytail, long_hair, black_eyes, bangs, bow`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 131 | 119.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fukuyama_mai_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 131 | 85.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fukuyama_mai_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 298 | 170.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fukuyama_mai_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 131 | 110.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fukuyama_mai_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 298 | 214.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fukuyama_mai_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/fukuyama_mai_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, open_mouth, solo, :d, long_sleeves, looking_at_viewer, blue_dress, blush, hair_bow, randoseru, simple_background, white_background, crime_prevention_buzzer, female_child, full_body, holding_strap, pink_shirt, ribbon, shoes, socks |
| 1 | 13 |  |  |  |  |  | 1girl, solo, hair_bow, looking_at_viewer, open_mouth, blush, white_background, :d, sleeveless, white_gloves, red_dress, ribbon |
| 2 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, smile, solo, blush, shirt, simple_background, white_background, hair_bow, upper_body, dated, ribbon, signature |
| 3 | 5 |  |  |  |  |  | 1girl, open_mouth, blush, looking_at_viewer, miniskirt, red_skirt, scrunchie, simple_background, solo, white_background, :d, brown_eyes, plaid_skirt, from_behind, hair_ornament, long_sleeves, looking_back, pleated_skirt, turtleneck_sweater, white_sweater |
| 4 | 6 |  |  |  |  |  | 1girl, navel, solo, flat_chest, blush, loli, open_mouth, smile, groin, pink_bikini, scrunchie |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | solo | :d | long_sleeves | looking_at_viewer | blue_dress | blush | hair_bow | randoseru | simple_background | white_background | crime_prevention_buzzer | female_child | full_body | holding_strap | pink_shirt | ribbon | shoes | socks | sleeveless | white_gloves | red_dress | smile | shirt | upper_body | dated | signature | miniskirt | red_skirt | scrunchie | brown_eyes | plaid_skirt | from_behind | hair_ornament | looking_back | pleated_skirt | turtleneck_sweater | white_sweater | navel | flat_chest | loli | groin | pink_bikini |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:-------|:-----|:---------------|:--------------------|:-------------|:--------|:-----------|:------------|:--------------------|:-------------------|:--------------------------|:---------------|:------------|:----------------|:-------------|:---------|:--------|:--------|:-------------|:---------------|:------------|:--------|:--------|:-------------|:--------|:------------|:------------|:------------|:------------|:-------------|:--------------|:--------------|:----------------|:---------------|:----------------|:---------------------|:----------------|:--------|:-------------|:-------|:--------|:--------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | X | X | | X | | X | X | | | X | | | | | | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | | X | | | X | | X | X | | X | X | | | | | | X | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | X | X | | X | | | X | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | X | | | | | X | | | | | | | | | | | | | | | | X | | | | | | | X | | | | | | | | | X | X | X | X | X |
|
CyberHarem/fukuyama_mai_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T08:19:27+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:52:10+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of fukuyama\_mai/福山舞 (THE iDOLM@STER: Cinderella Girls)
===============================================================
This is the dataset of fukuyama\_mai/福山舞 (THE iDOLM@STER: Cinderella Girls), containing 131 images and their tags.
The core tags of this character are 'black\_hair, ponytail, long\_hair, black\_eyes, bangs, bow', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
a49b88d7eb45f8eb3bb6a6f2d25b948c4c705389
|
# Dataset Card for Nine-Species excluding Yeast
Dataset used for the baseline comparison of InstaNovo to other models.
## Dataset Description
- **Repository:** [InstaNovo](https://github.com/instadeepai/InstaNovo)
- **Paper:** [De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments](https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1)
### Dataset Summary
Dataset used in the original [DeepNovo](https://www.pnas.org/doi/full/10.1073/pnas.1705691114) paper.
- The training set contains 8 species excluding yeast
- The validation/test set contains the yeast species
## Dataset Structure
The dataset is tabular, where each row corresponds to a labelled MS2 spectra.
- `sequence (string)` \
The target peptide sequence excluding post-translational modifications
- `modified_sequence (string)` \
The target peptide sequence including post-translational modifications
- `precursor_mz (float64)` \
The mass-to-charge of the precursor (from MS1)
- `charge (int64)` \
The charge of the precursor (from MS1)
- `mz_array (list[float64])` \
The mass-to-charge values of the MS2 spectrum
- `mz_array (list[float32])` \
The intensity values of the MS2 spectrum
## Citation Information
If you use this dataset, please cite the original authors.
The original data is available on [MASSIVE](https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) with the identifier `MSV000081382`.
Please also cite InstaNovo:
```bibtex
@article{eloff_kalogeropoulos_2023_instanovo,
title = {De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments},
author = {Kevin Eloff and Konstantinos Kalogeropoulos and Oliver Morell and Amandla Mabona and Jakob Berg Jespersen and Wesley Williams and Sam van Beljouw and Marcin Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin Marten Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and Timothy Patrick Jenkins},
year = {2023},
doi = {10.1101/2023.08.30.555055},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1},
journal = {bioRxiv}
}
```
|
InstaDeepAI/instanovo_ninespecies_exclude_yeast
|
[
"license:cc0-1.0",
"region:us"
] |
2023-09-15T08:29:15+00:00
|
{"license": "cc0-1.0", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "sequence", "dtype": "string"}, {"name": "modified_sequence", "dtype": "string"}, {"name": "precursor_mz", "dtype": "float64"}, {"name": "precursor_charge", "dtype": "int64"}, {"name": "mz_array", "sequence": "float64"}, {"name": "intensity_array", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 839098224, "num_examples": 499402}, {"name": "validation", "num_bytes": 49792990, "num_examples": 28572}, {"name": "test", "num_bytes": 45505134, "num_examples": 27142}], "download_size": 1119691599, "dataset_size": 934396348}}
|
2023-09-15T12:16:02+00:00
|
[] |
[] |
TAGS
#license-cc0-1.0 #region-us
|
# Dataset Card for Nine-Species excluding Yeast
Dataset used for the baseline comparison of InstaNovo to other models.
## Dataset Description
- Repository: InstaNovo
- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments
### Dataset Summary
Dataset used in the original DeepNovo paper.
- The training set contains 8 species excluding yeast
- The validation/test set contains the yeast species
## Dataset Structure
The dataset is tabular, where each row corresponds to a labelled MS2 spectra.
- 'sequence (string)' \
The target peptide sequence excluding post-translational modifications
- 'modified_sequence (string)' \
The target peptide sequence including post-translational modifications
- 'precursor_mz (float64)' \
The mass-to-charge of the precursor (from MS1)
- 'charge (int64)' \
The charge of the precursor (from MS1)
- 'mz_array (list[float64])' \
The mass-to-charge values of the MS2 spectrum
- 'mz_array (list[float32])' \
The intensity values of the MS2 spectrum
If you use this dataset, please cite the original authors.
The original data is available on MASSIVE with the identifier 'MSV000081382'.
Please also cite InstaNovo:
|
[
"# Dataset Card for Nine-Species excluding Yeast\nDataset used for the baseline comparison of InstaNovo to other models.",
"## Dataset Description\n\n- Repository: InstaNovo\n- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments",
"### Dataset Summary\n\nDataset used in the original DeepNovo paper. \n- The training set contains 8 species excluding yeast\n- The validation/test set contains the yeast species",
"## Dataset Structure\n\nThe dataset is tabular, where each row corresponds to a labelled MS2 spectra.\n- 'sequence (string)' \\\n The target peptide sequence excluding post-translational modifications\n- 'modified_sequence (string)' \\\n The target peptide sequence including post-translational modifications\n- 'precursor_mz (float64)' \\\n The mass-to-charge of the precursor (from MS1)\n- 'charge (int64)' \\\n The charge of the precursor (from MS1)\n- 'mz_array (list[float64])' \\\n The mass-to-charge values of the MS2 spectrum\n- 'mz_array (list[float32])' \\\n The intensity values of the MS2 spectrum\n\n\n\nIf you use this dataset, please cite the original authors.\nThe original data is available on MASSIVE with the identifier 'MSV000081382'.\n\nPlease also cite InstaNovo:"
] |
[
"TAGS\n#license-cc0-1.0 #region-us \n",
"# Dataset Card for Nine-Species excluding Yeast\nDataset used for the baseline comparison of InstaNovo to other models.",
"## Dataset Description\n\n- Repository: InstaNovo\n- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments",
"### Dataset Summary\n\nDataset used in the original DeepNovo paper. \n- The training set contains 8 species excluding yeast\n- The validation/test set contains the yeast species",
"## Dataset Structure\n\nThe dataset is tabular, where each row corresponds to a labelled MS2 spectra.\n- 'sequence (string)' \\\n The target peptide sequence excluding post-translational modifications\n- 'modified_sequence (string)' \\\n The target peptide sequence including post-translational modifications\n- 'precursor_mz (float64)' \\\n The mass-to-charge of the precursor (from MS1)\n- 'charge (int64)' \\\n The charge of the precursor (from MS1)\n- 'mz_array (list[float64])' \\\n The mass-to-charge values of the MS2 spectrum\n- 'mz_array (list[float32])' \\\n The intensity values of the MS2 spectrum\n\n\n\nIf you use this dataset, please cite the original authors.\nThe original data is available on MASSIVE with the identifier 'MSV000081382'.\n\nPlease also cite InstaNovo:"
] |
[
14,
32,
50,
42,
238
] |
[
"passage: TAGS\n#license-cc0-1.0 #region-us \n# Dataset Card for Nine-Species excluding Yeast\nDataset used for the baseline comparison of InstaNovo to other models.## Dataset Description\n\n- Repository: InstaNovo\n- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments### Dataset Summary\n\nDataset used in the original DeepNovo paper. \n- The training set contains 8 species excluding yeast\n- The validation/test set contains the yeast species## Dataset Structure\n\nThe dataset is tabular, where each row corresponds to a labelled MS2 spectra.\n- 'sequence (string)' \\\n The target peptide sequence excluding post-translational modifications\n- 'modified_sequence (string)' \\\n The target peptide sequence including post-translational modifications\n- 'precursor_mz (float64)' \\\n The mass-to-charge of the precursor (from MS1)\n- 'charge (int64)' \\\n The charge of the precursor (from MS1)\n- 'mz_array (list[float64])' \\\n The mass-to-charge values of the MS2 spectrum\n- 'mz_array (list[float32])' \\\n The intensity values of the MS2 spectrum\n\n\n\nIf you use this dataset, please cite the original authors.\nThe original data is available on MASSIVE with the identifier 'MSV000081382'.\n\nPlease also cite InstaNovo:"
] |
dd728b5d45d37f16790d3d123ba14ff89bfdafe6
|
# EXAMs
You can find details of the dataset in this post:https://arxiv.org/pdf/2308.16149.pdf
## About this Arabic dataset
We only took the Arabic part of the dataset,which contains 562 data.
We then extracted five from each category based on the task domain as a few shot data.
|
FreedomIntelligence/EXAMs
|
[
"task_categories:multiple-choice",
"size_categories:n<1K",
"language:ar",
"license:apache-2.0",
"arxiv:2308.16149",
"region:us"
] |
2023-09-15T08:33:35+00:00
|
{"language": ["ar"], "license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["multiple-choice"], "viewer": true}
|
2023-09-15T10:41:22+00:00
|
[
"2308.16149"
] |
[
"ar"
] |
TAGS
#task_categories-multiple-choice #size_categories-n<1K #language-Arabic #license-apache-2.0 #arxiv-2308.16149 #region-us
|
# EXAMs
You can find details of the dataset in this post:URL
## About this Arabic dataset
We only took the Arabic part of the dataset,which contains 562 data.
We then extracted five from each category based on the task domain as a few shot data.
|
[
"# EXAMs\nYou can find details of the dataset in this post:URL",
"## About this Arabic dataset\nWe only took the Arabic part of the dataset,which contains 562 data. \nWe then extracted five from each category based on the task domain as a few shot data."
] |
[
"TAGS\n#task_categories-multiple-choice #size_categories-n<1K #language-Arabic #license-apache-2.0 #arxiv-2308.16149 #region-us \n",
"# EXAMs\nYou can find details of the dataset in this post:URL",
"## About this Arabic dataset\nWe only took the Arabic part of the dataset,which contains 562 data. \nWe then extracted five from each category based on the task domain as a few shot data."
] |
[
49,
17,
43
] |
[
"passage: TAGS\n#task_categories-multiple-choice #size_categories-n<1K #language-Arabic #license-apache-2.0 #arxiv-2308.16149 #region-us \n# EXAMs\nYou can find details of the dataset in this post:URL## About this Arabic dataset\nWe only took the Arabic part of the dataset,which contains 562 data. \nWe then extracted five from each category based on the task domain as a few shot data."
] |
ae0f7992a26e4eb1ecffdf16941b913353d62e66
|
# Dataset Card for "d6e12779"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
result-kand2-sdxl-wuerst-karlo/d6e12779
|
[
"region:us"
] |
2023-09-15T08:41:13+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 208, "num_examples": 10}], "download_size": 1403, "dataset_size": 208}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T08:41:14+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "d6e12779"
More Information needed
|
[
"# Dataset Card for \"d6e12779\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"d6e12779\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"d6e12779\"\n\nMore Information needed"
] |
615f1388e70fd8ac2c3cb4fb62ecec2acdfb62d9
|
# Dataset Card for "shapes"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
DummyBanana/shapes
|
[
"region:us"
] |
2023-09-15T08:41:58+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8455414.797, "num_examples": 1197}], "download_size": 8497287, "dataset_size": 8455414.797}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T08:42:16+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "shapes"
More Information needed
|
[
"# Dataset Card for \"shapes\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"shapes\"\n\nMore Information needed"
] |
[
6,
12
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"shapes\"\n\nMore Information needed"
] |
0139b772035fe5ea63d31bbfecfe835498787575
|
# Dataset Card for Evaluation run of lloorree/jfdslijsijdgis
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/lloorree/jfdslijsijdgis
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [lloorree/jfdslijsijdgis](https://huggingface.co/lloorree/jfdslijsijdgis) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 61 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_lloorree__jfdslijsijdgis",
"harness_truthfulqa_mc_0",
split="train")
```
## Latest results
These are the [latest results from run 2023-09-17T00:34:49.304226](https://huggingface.co/datasets/open-llm-leaderboard/details_lloorree__jfdslijsijdgis/blob/main/results_2023-09-17T00-34-49.304226.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6907933129316588,
"acc_stderr": 0.03107455661224763,
"acc_norm": 0.694824769775718,
"acc_norm_stderr": 0.031044197474221744,
"mc1": 0.41615667074663404,
"mc1_stderr": 0.017255657502903043,
"mc2": 0.5820460749080146,
"mc2_stderr": 0.015030523772190541
},
"harness|arc:challenge|25": {
"acc": 0.6518771331058021,
"acc_stderr": 0.01392100859517935,
"acc_norm": 0.6962457337883959,
"acc_norm_stderr": 0.013438909184778764
},
"harness|hellaswag|10": {
"acc": 0.6760605457080263,
"acc_stderr": 0.00467020812857923,
"acc_norm": 0.8695478988249352,
"acc_norm_stderr": 0.0033611183954523846
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.32,
"acc_stderr": 0.04688261722621505,
"acc_norm": 0.32,
"acc_norm_stderr": 0.04688261722621505
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6296296296296297,
"acc_stderr": 0.04171654161354543,
"acc_norm": 0.6296296296296297,
"acc_norm_stderr": 0.04171654161354543
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.8223684210526315,
"acc_stderr": 0.03110318238312338,
"acc_norm": 0.8223684210526315,
"acc_norm_stderr": 0.03110318238312338
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.74,
"acc_stderr": 0.0440844002276808,
"acc_norm": 0.74,
"acc_norm_stderr": 0.0440844002276808
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7132075471698113,
"acc_stderr": 0.02783491252754407,
"acc_norm": 0.7132075471698113,
"acc_norm_stderr": 0.02783491252754407
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.8125,
"acc_stderr": 0.032639560491693344,
"acc_norm": 0.8125,
"acc_norm_stderr": 0.032639560491693344
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.5,
"acc_stderr": 0.050251890762960605,
"acc_norm": 0.5,
"acc_norm_stderr": 0.050251890762960605
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.38,
"acc_stderr": 0.048783173121456316,
"acc_norm": 0.38,
"acc_norm_stderr": 0.048783173121456316
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6705202312138728,
"acc_stderr": 0.03583901754736413,
"acc_norm": 0.6705202312138728,
"acc_norm_stderr": 0.03583901754736413
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.38235294117647056,
"acc_stderr": 0.04835503696107223,
"acc_norm": 0.38235294117647056,
"acc_norm_stderr": 0.04835503696107223
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.78,
"acc_stderr": 0.041633319989322626,
"acc_norm": 0.78,
"acc_norm_stderr": 0.041633319989322626
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.6638297872340425,
"acc_stderr": 0.030881618520676942,
"acc_norm": 0.6638297872340425,
"acc_norm_stderr": 0.030881618520676942
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.43859649122807015,
"acc_stderr": 0.04668000738510455,
"acc_norm": 0.43859649122807015,
"acc_norm_stderr": 0.04668000738510455
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.6206896551724138,
"acc_stderr": 0.040434618619167466,
"acc_norm": 0.6206896551724138,
"acc_norm_stderr": 0.040434618619167466
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.4444444444444444,
"acc_stderr": 0.025591857761382182,
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.025591857761382182
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4444444444444444,
"acc_stderr": 0.04444444444444449,
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.04444444444444449
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.47,
"acc_stderr": 0.05016135580465919,
"acc_norm": 0.47,
"acc_norm_stderr": 0.05016135580465919
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.8064516129032258,
"acc_stderr": 0.022475258525536057,
"acc_norm": 0.8064516129032258,
"acc_norm_stderr": 0.022475258525536057
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5221674876847291,
"acc_stderr": 0.03514528562175008,
"acc_norm": 0.5221674876847291,
"acc_norm_stderr": 0.03514528562175008
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.77,
"acc_stderr": 0.04229525846816506,
"acc_norm": 0.77,
"acc_norm_stderr": 0.04229525846816506
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.8484848484848485,
"acc_stderr": 0.027998073798781668,
"acc_norm": 0.8484848484848485,
"acc_norm_stderr": 0.027998073798781668
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.8636363636363636,
"acc_stderr": 0.024450155973189835,
"acc_norm": 0.8636363636363636,
"acc_norm_stderr": 0.024450155973189835
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.9533678756476683,
"acc_stderr": 0.015216761819262592,
"acc_norm": 0.9533678756476683,
"acc_norm_stderr": 0.015216761819262592
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.7153846153846154,
"acc_stderr": 0.022878322799706304,
"acc_norm": 0.7153846153846154,
"acc_norm_stderr": 0.022878322799706304
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.28888888888888886,
"acc_stderr": 0.027634907264178544,
"acc_norm": 0.28888888888888886,
"acc_norm_stderr": 0.027634907264178544
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.7815126050420168,
"acc_stderr": 0.026841514322958934,
"acc_norm": 0.7815126050420168,
"acc_norm_stderr": 0.026841514322958934
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.423841059602649,
"acc_stderr": 0.04034846678603397,
"acc_norm": 0.423841059602649,
"acc_norm_stderr": 0.04034846678603397
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8935779816513761,
"acc_stderr": 0.013221554674594372,
"acc_norm": 0.8935779816513761,
"acc_norm_stderr": 0.013221554674594372
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.6018518518518519,
"acc_stderr": 0.033384734032074016,
"acc_norm": 0.6018518518518519,
"acc_norm_stderr": 0.033384734032074016
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.9117647058823529,
"acc_stderr": 0.01990739979131695,
"acc_norm": 0.9117647058823529,
"acc_norm_stderr": 0.01990739979131695
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8565400843881856,
"acc_stderr": 0.022818291821017012,
"acc_norm": 0.8565400843881856,
"acc_norm_stderr": 0.022818291821017012
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.7982062780269058,
"acc_stderr": 0.026936111912802263,
"acc_norm": 0.7982062780269058,
"acc_norm_stderr": 0.026936111912802263
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.8473282442748091,
"acc_stderr": 0.031545216720054725,
"acc_norm": 0.8473282442748091,
"acc_norm_stderr": 0.031545216720054725
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.859504132231405,
"acc_stderr": 0.03172233426002158,
"acc_norm": 0.859504132231405,
"acc_norm_stderr": 0.03172233426002158
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.8425925925925926,
"acc_stderr": 0.03520703990517964,
"acc_norm": 0.8425925925925926,
"acc_norm_stderr": 0.03520703990517964
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.8159509202453987,
"acc_stderr": 0.030446777687971726,
"acc_norm": 0.8159509202453987,
"acc_norm_stderr": 0.030446777687971726
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5357142857142857,
"acc_stderr": 0.04733667890053756,
"acc_norm": 0.5357142857142857,
"acc_norm_stderr": 0.04733667890053756
},
"harness|hendrycksTest-management|5": {
"acc": 0.8252427184466019,
"acc_stderr": 0.0376017800602662,
"acc_norm": 0.8252427184466019,
"acc_norm_stderr": 0.0376017800602662
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8760683760683761,
"acc_stderr": 0.02158649400128138,
"acc_norm": 0.8760683760683761,
"acc_norm_stderr": 0.02158649400128138
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.72,
"acc_stderr": 0.04512608598542127,
"acc_norm": 0.72,
"acc_norm_stderr": 0.04512608598542127
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8659003831417624,
"acc_stderr": 0.012185528166499978,
"acc_norm": 0.8659003831417624,
"acc_norm_stderr": 0.012185528166499978
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7658959537572254,
"acc_stderr": 0.022797110278071124,
"acc_norm": 0.7658959537572254,
"acc_norm_stderr": 0.022797110278071124
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.511731843575419,
"acc_stderr": 0.016717897676932162,
"acc_norm": 0.511731843575419,
"acc_norm_stderr": 0.016717897676932162
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.738562091503268,
"acc_stderr": 0.025160998214292456,
"acc_norm": 0.738562091503268,
"acc_norm_stderr": 0.025160998214292456
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7845659163987139,
"acc_stderr": 0.023350225475471442,
"acc_norm": 0.7845659163987139,
"acc_norm_stderr": 0.023350225475471442
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.8240740740740741,
"acc_stderr": 0.021185893615225188,
"acc_norm": 0.8240740740740741,
"acc_norm_stderr": 0.021185893615225188
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.5177304964539007,
"acc_stderr": 0.02980873964223777,
"acc_norm": 0.5177304964539007,
"acc_norm_stderr": 0.02980873964223777
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.5397653194263363,
"acc_stderr": 0.012729785386598545,
"acc_norm": 0.5397653194263363,
"acc_norm_stderr": 0.012729785386598545
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.7169117647058824,
"acc_stderr": 0.02736586113151381,
"acc_norm": 0.7169117647058824,
"acc_norm_stderr": 0.02736586113151381
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.75,
"acc_stderr": 0.01751781884501444,
"acc_norm": 0.75,
"acc_norm_stderr": 0.01751781884501444
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6909090909090909,
"acc_stderr": 0.044262946482000985,
"acc_norm": 0.6909090909090909,
"acc_norm_stderr": 0.044262946482000985
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.8122448979591836,
"acc_stderr": 0.025000256039546195,
"acc_norm": 0.8122448979591836,
"acc_norm_stderr": 0.025000256039546195
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.900497512437811,
"acc_stderr": 0.0211662163046594,
"acc_norm": 0.900497512437811,
"acc_norm_stderr": 0.0211662163046594
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.89,
"acc_stderr": 0.03144660377352203,
"acc_norm": 0.89,
"acc_norm_stderr": 0.03144660377352203
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5180722891566265,
"acc_stderr": 0.03889951252827216,
"acc_norm": 0.5180722891566265,
"acc_norm_stderr": 0.03889951252827216
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8713450292397661,
"acc_stderr": 0.02567934272327692,
"acc_norm": 0.8713450292397661,
"acc_norm_stderr": 0.02567934272327692
},
"harness|truthfulqa:mc|0": {
"mc1": 0.41615667074663404,
"mc1_stderr": 0.017255657502903043,
"mc2": 0.5820460749080146,
"mc2_stderr": 0.015030523772190541
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_lloorree__jfdslijsijdgis
|
[
"region:us"
] |
2023-09-15T08:43:38+00:00
|
{"pretty_name": "Evaluation run of lloorree/jfdslijsijdgis", "dataset_summary": "Dataset automatically created during the evaluation run of model [lloorree/jfdslijsijdgis](https://huggingface.co/lloorree/jfdslijsijdgis) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 61 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_lloorree__jfdslijsijdgis\",\n\t\"harness_truthfulqa_mc_0\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-09-17T00:34:49.304226](https://huggingface.co/datasets/open-llm-leaderboard/details_lloorree__jfdslijsijdgis/blob/main/results_2023-09-17T00-34-49.304226.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6907933129316588,\n \"acc_stderr\": 0.03107455661224763,\n \"acc_norm\": 0.694824769775718,\n \"acc_norm_stderr\": 0.031044197474221744,\n \"mc1\": 0.41615667074663404,\n \"mc1_stderr\": 0.017255657502903043,\n \"mc2\": 0.5820460749080146,\n \"mc2_stderr\": 0.015030523772190541\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6518771331058021,\n \"acc_stderr\": 0.01392100859517935,\n \"acc_norm\": 0.6962457337883959,\n \"acc_norm_stderr\": 0.013438909184778764\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6760605457080263,\n \"acc_stderr\": 0.00467020812857923,\n \"acc_norm\": 0.8695478988249352,\n \"acc_norm_stderr\": 0.0033611183954523846\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621505,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621505\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6296296296296297,\n \"acc_stderr\": 0.04171654161354543,\n \"acc_norm\": 0.6296296296296297,\n \"acc_norm_stderr\": 0.04171654161354543\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.8223684210526315,\n \"acc_stderr\": 0.03110318238312338,\n \"acc_norm\": 0.8223684210526315,\n \"acc_norm_stderr\": 0.03110318238312338\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7132075471698113,\n \"acc_stderr\": 0.02783491252754407,\n \"acc_norm\": 0.7132075471698113,\n \"acc_norm_stderr\": 0.02783491252754407\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8125,\n \"acc_stderr\": 0.032639560491693344,\n \"acc_norm\": 0.8125,\n \"acc_norm_stderr\": 0.032639560491693344\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6705202312138728,\n \"acc_stderr\": 0.03583901754736413,\n \"acc_norm\": 0.6705202312138728,\n \"acc_norm_stderr\": 0.03583901754736413\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107223,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107223\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.041633319989322626,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.041633319989322626\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6638297872340425,\n \"acc_stderr\": 0.030881618520676942,\n \"acc_norm\": 0.6638297872340425,\n \"acc_norm_stderr\": 0.030881618520676942\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.43859649122807015,\n \"acc_stderr\": 0.04668000738510455,\n \"acc_norm\": 0.43859649122807015,\n \"acc_norm_stderr\": 0.04668000738510455\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6206896551724138,\n \"acc_stderr\": 0.040434618619167466,\n \"acc_norm\": 0.6206896551724138,\n \"acc_norm_stderr\": 0.040434618619167466\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.025591857761382182,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.025591857761382182\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.04444444444444449,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.04444444444444449\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8064516129032258,\n \"acc_stderr\": 0.022475258525536057,\n \"acc_norm\": 0.8064516129032258,\n \"acc_norm_stderr\": 0.022475258525536057\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5221674876847291,\n \"acc_stderr\": 0.03514528562175008,\n \"acc_norm\": 0.5221674876847291,\n \"acc_norm_stderr\": 0.03514528562175008\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816506,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816506\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8484848484848485,\n \"acc_stderr\": 0.027998073798781668,\n \"acc_norm\": 0.8484848484848485,\n \"acc_norm_stderr\": 0.027998073798781668\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8636363636363636,\n \"acc_stderr\": 0.024450155973189835,\n \"acc_norm\": 0.8636363636363636,\n \"acc_norm_stderr\": 0.024450155973189835\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9533678756476683,\n \"acc_stderr\": 0.015216761819262592,\n \"acc_norm\": 0.9533678756476683,\n \"acc_norm_stderr\": 0.015216761819262592\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.7153846153846154,\n \"acc_stderr\": 0.022878322799706304,\n \"acc_norm\": 0.7153846153846154,\n \"acc_norm_stderr\": 0.022878322799706304\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.28888888888888886,\n \"acc_stderr\": 0.027634907264178544,\n \"acc_norm\": 0.28888888888888886,\n \"acc_norm_stderr\": 0.027634907264178544\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7815126050420168,\n \"acc_stderr\": 0.026841514322958934,\n \"acc_norm\": 0.7815126050420168,\n \"acc_norm_stderr\": 0.026841514322958934\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.423841059602649,\n \"acc_stderr\": 0.04034846678603397,\n \"acc_norm\": 0.423841059602649,\n \"acc_norm_stderr\": 0.04034846678603397\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8935779816513761,\n \"acc_stderr\": 0.013221554674594372,\n \"acc_norm\": 0.8935779816513761,\n \"acc_norm_stderr\": 0.013221554674594372\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6018518518518519,\n \"acc_stderr\": 0.033384734032074016,\n \"acc_norm\": 0.6018518518518519,\n \"acc_norm_stderr\": 0.033384734032074016\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9117647058823529,\n \"acc_stderr\": 0.01990739979131695,\n \"acc_norm\": 0.9117647058823529,\n \"acc_norm_stderr\": 0.01990739979131695\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8565400843881856,\n \"acc_stderr\": 0.022818291821017012,\n \"acc_norm\": 0.8565400843881856,\n \"acc_norm_stderr\": 0.022818291821017012\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7982062780269058,\n \"acc_stderr\": 0.026936111912802263,\n \"acc_norm\": 0.7982062780269058,\n \"acc_norm_stderr\": 0.026936111912802263\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8473282442748091,\n \"acc_stderr\": 0.031545216720054725,\n \"acc_norm\": 0.8473282442748091,\n \"acc_norm_stderr\": 0.031545216720054725\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.859504132231405,\n \"acc_stderr\": 0.03172233426002158,\n \"acc_norm\": 0.859504132231405,\n \"acc_norm_stderr\": 0.03172233426002158\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8425925925925926,\n \"acc_stderr\": 0.03520703990517964,\n \"acc_norm\": 0.8425925925925926,\n \"acc_norm_stderr\": 0.03520703990517964\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8159509202453987,\n \"acc_stderr\": 0.030446777687971726,\n \"acc_norm\": 0.8159509202453987,\n \"acc_norm_stderr\": 0.030446777687971726\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5357142857142857,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.5357142857142857,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8252427184466019,\n \"acc_stderr\": 0.0376017800602662,\n \"acc_norm\": 0.8252427184466019,\n \"acc_norm_stderr\": 0.0376017800602662\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.02158649400128138,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.02158649400128138\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542127,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542127\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8659003831417624,\n \"acc_stderr\": 0.012185528166499978,\n \"acc_norm\": 0.8659003831417624,\n \"acc_norm_stderr\": 0.012185528166499978\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7658959537572254,\n \"acc_stderr\": 0.022797110278071124,\n \"acc_norm\": 0.7658959537572254,\n \"acc_norm_stderr\": 0.022797110278071124\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.511731843575419,\n \"acc_stderr\": 0.016717897676932162,\n \"acc_norm\": 0.511731843575419,\n \"acc_norm_stderr\": 0.016717897676932162\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.738562091503268,\n \"acc_stderr\": 0.025160998214292456,\n \"acc_norm\": 0.738562091503268,\n \"acc_norm_stderr\": 0.025160998214292456\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7845659163987139,\n \"acc_stderr\": 0.023350225475471442,\n \"acc_norm\": 0.7845659163987139,\n \"acc_norm_stderr\": 0.023350225475471442\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8240740740740741,\n \"acc_stderr\": 0.021185893615225188,\n \"acc_norm\": 0.8240740740740741,\n \"acc_norm_stderr\": 0.021185893615225188\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5177304964539007,\n \"acc_stderr\": 0.02980873964223777,\n \"acc_norm\": 0.5177304964539007,\n \"acc_norm_stderr\": 0.02980873964223777\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5397653194263363,\n \"acc_stderr\": 0.012729785386598545,\n \"acc_norm\": 0.5397653194263363,\n \"acc_norm_stderr\": 0.012729785386598545\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7169117647058824,\n \"acc_stderr\": 0.02736586113151381,\n \"acc_norm\": 0.7169117647058824,\n \"acc_norm_stderr\": 0.02736586113151381\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.01751781884501444,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.01751781884501444\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6909090909090909,\n \"acc_stderr\": 0.044262946482000985,\n \"acc_norm\": 0.6909090909090909,\n \"acc_norm_stderr\": 0.044262946482000985\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8122448979591836,\n \"acc_stderr\": 0.025000256039546195,\n \"acc_norm\": 0.8122448979591836,\n \"acc_norm_stderr\": 0.025000256039546195\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.900497512437811,\n \"acc_stderr\": 0.0211662163046594,\n \"acc_norm\": 0.900497512437811,\n \"acc_norm_stderr\": 0.0211662163046594\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5180722891566265,\n \"acc_stderr\": 0.03889951252827216,\n \"acc_norm\": 0.5180722891566265,\n \"acc_norm_stderr\": 0.03889951252827216\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8713450292397661,\n \"acc_stderr\": 0.02567934272327692,\n \"acc_norm\": 0.8713450292397661,\n \"acc_norm_stderr\": 0.02567934272327692\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.41615667074663404,\n \"mc1_stderr\": 0.017255657502903043,\n \"mc2\": 0.5820460749080146,\n \"mc2_stderr\": 0.015030523772190541\n }\n}\n```", "repo_url": "https://huggingface.co/lloorree/jfdslijsijdgis", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|arc:challenge|25_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|arc:challenge|25_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hellaswag|10_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hellaswag|10_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T09-43-22.432852.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-17T00-34-49.304226.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-17T00-34-49.304226.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_09_15T09_43_22.432852", "path": ["results_2023-09-15T09-43-22.432852.parquet"]}, {"split": "2023_09_17T00_34_49.304226", "path": ["results_2023-09-17T00-34-49.304226.parquet"]}, {"split": "latest", "path": ["results_2023-09-17T00-34-49.304226.parquet"]}]}]}
|
2023-09-16T23:36:07+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of lloorree/jfdslijsijdgis
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model lloorree/jfdslijsijdgis on the Open LLM Leaderboard.
The dataset is composed of 61 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-09-17T00:34:49.304226(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of lloorree/jfdslijsijdgis",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model lloorree/jfdslijsijdgis on the Open LLM Leaderboard.\n\nThe dataset is composed of 61 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-09-17T00:34:49.304226(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of lloorree/jfdslijsijdgis",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model lloorree/jfdslijsijdgis on the Open LLM Leaderboard.\n\nThe dataset is composed of 61 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-09-17T00:34:49.304226(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
21,
31,
169,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of lloorree/jfdslijsijdgis## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model lloorree/jfdslijsijdgis on the Open LLM Leaderboard.\n\nThe dataset is composed of 61 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-09-17T00:34:49.304226(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
1908162a6bf4b31577bd62107fcdfefb98173677
|
# Dataset Card for "ccl_dancer_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
neomausen/ccl_dancer_dataset
|
[
"region:us"
] |
2023-09-15T08:53:21+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "conditioning_image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12215036.0, "num_examples": 133}], "download_size": 8748842, "dataset_size": 12215036.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T08:59:43+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "ccl_dancer_dataset"
More Information needed
|
[
"# Dataset Card for \"ccl_dancer_dataset\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"ccl_dancer_dataset\"\n\nMore Information needed"
] |
[
6,
18
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"ccl_dancer_dataset\"\n\nMore Information needed"
] |
7cee49cc475fc11fed0e0fb632c20f4e54f55d90
|
# Dataset of koga_koharu/古賀小春 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of koga_koharu/古賀小春 (THE iDOLM@STER: Cinderella Girls), containing 123 images and their tags.
The core tags of this character are `brown_eyes, short_hair, bow, brown_hair, bangs, hair_bow, hairband, blonde_hair, pink_bow, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 123 | 109.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/koga_koharu_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 123 | 77.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/koga_koharu_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 247 | 140.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/koga_koharu_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 123 | 104.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/koga_koharu_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 247 | 179.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/koga_koharu_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/koga_koharu_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, open_mouth, solo, :d, elbow_gloves, jewelry, crown, bare_shoulders, blush, heart, pink_dress, star_(symbol), tiara |
| 1 | 16 |  |  |  |  |  | 1girl, solo, white_background, open_mouth, :d, simple_background, blush, looking_at_viewer, red_bow, frills, long_sleeves, pink_hairband, jacket, upper_body, white_dress, white_thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | solo | :d | elbow_gloves | jewelry | crown | bare_shoulders | blush | heart | pink_dress | star_(symbol) | tiara | white_background | simple_background | looking_at_viewer | red_bow | frills | long_sleeves | pink_hairband | jacket | upper_body | white_dress | white_thighhighs |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:-------|:-----|:---------------|:----------|:--------|:-----------------|:--------|:--------|:-------------|:----------------|:--------|:-------------------|:--------------------|:--------------------|:----------|:---------|:---------------|:----------------|:---------|:-------------|:--------------|:-------------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 1 | 16 |  |  |  |  |  | X | X | X | X | | | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/koga_koharu_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T08:53:51+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:22:04+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of koga\_koharu/古賀小春 (THE iDOLM@STER: Cinderella Girls)
===============================================================
This is the dataset of koga\_koharu/古賀小春 (THE iDOLM@STER: Cinderella Girls), containing 123 images and their tags.
The core tags of this character are 'brown\_eyes, short\_hair, bow, brown\_hair, bangs, hair\_bow, hairband, blonde\_hair, pink\_bow, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
a5594e50b78b5467488419668dfcffaffe2855c5
|
## 49万港台内地歌曲信息
数据来源于 [QQMusicSpider](https://github.com/yangjianxin1/QQMusicSpider).
数据可用于:
* 根据歌手创作歌词.
* 根据歌名创作歌词.
* 根据歌名写评论.
|
qgyd2021/music_comment
|
[
"size_categories:100M<n<1B",
"language:zh",
"license:apache-2.0",
"music",
"region:us"
] |
2023-09-15T08:59:37+00:00
|
{"language": ["zh"], "license": "apache-2.0", "size_categories": ["100M<n<1B"], "tags": ["music"]}
|
2023-09-19T02:34:24+00:00
|
[] |
[
"zh"
] |
TAGS
#size_categories-100M<n<1B #language-Chinese #license-apache-2.0 #music #region-us
|
## 49万港台内地歌曲信息
数据来源于 QQMusicSpider.
数据可用于:
* 根据歌手创作歌词.
* 根据歌名创作歌词.
* 根据歌名写评论.
|
[
"## 49万港台内地歌曲信息\n\n数据来源于 QQMusicSpider. \n\n数据可用于:\n* 根据歌手创作歌词.\n* 根据歌名创作歌词.\n* 根据歌名写评论."
] |
[
"TAGS\n#size_categories-100M<n<1B #language-Chinese #license-apache-2.0 #music #region-us \n",
"## 49万港台内地歌曲信息\n\n数据来源于 QQMusicSpider. \n\n数据可用于:\n* 根据歌手创作歌词.\n* 根据歌名创作歌词.\n* 根据歌名写评论."
] |
[
33,
44
] |
[
"passage: TAGS\n#size_categories-100M<n<1B #language-Chinese #license-apache-2.0 #music #region-us \n## 49万港台内地歌曲信息\n\n数据来源于 QQMusicSpider. \n\n数据可用于:\n* 根据歌手创作歌词.\n* 根据歌名创作歌词.\n* 根据歌名写评论."
] |
14619854a0097007dec0b3ec81b638cd448f5e9d
|
# Bangumi Image Base of Kuma Kuma Kuma Bear
This is the image base of bangumi Kuma Kuma Kuma Bear, we detected 99 characters, 6688 images in total. The full dataset is [here](all.zip).
**Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 |
|:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|
| 0 | 801 | [Download](0/dataset.zip) |  |  |  |  |  |  |  |  |
| 1 | 135 | [Download](1/dataset.zip) |  |  |  |  |  |  |  |  |
| 2 | 55 | [Download](2/dataset.zip) |  |  |  |  |  |  |  |  |
| 3 | 78 | [Download](3/dataset.zip) |  |  |  |  |  |  |  |  |
| 4 | 22 | [Download](4/dataset.zip) |  |  |  |  |  |  |  |  |
| 5 | 45 | [Download](5/dataset.zip) |  |  |  |  |  |  |  |  |
| 6 | 26 | [Download](6/dataset.zip) |  |  |  |  |  |  |  |  |
| 7 | 17 | [Download](7/dataset.zip) |  |  |  |  |  |  |  |  |
| 8 | 40 | [Download](8/dataset.zip) |  |  |  |  |  |  |  |  |
| 9 | 47 | [Download](9/dataset.zip) |  |  |  |  |  |  |  |  |
| 10 | 25 | [Download](10/dataset.zip) |  |  |  |  |  |  |  |  |
| 11 | 24 | [Download](11/dataset.zip) |  |  |  |  |  |  |  |  |
| 12 | 14 | [Download](12/dataset.zip) |  |  |  |  |  |  |  |  |
| 13 | 21 | [Download](13/dataset.zip) |  |  |  |  |  |  |  |  |
| 14 | 16 | [Download](14/dataset.zip) |  |  |  |  |  |  |  |  |
| 15 | 19 | [Download](15/dataset.zip) |  |  |  |  |  |  |  |  |
| 16 | 128 | [Download](16/dataset.zip) |  |  |  |  |  |  |  |  |
| 17 | 20 | [Download](17/dataset.zip) |  |  |  |  |  |  |  |  |
| 18 | 22 | [Download](18/dataset.zip) |  |  |  |  |  |  |  |  |
| 19 | 58 | [Download](19/dataset.zip) |  |  |  |  |  |  |  |  |
| 20 | 12 | [Download](20/dataset.zip) |  |  |  |  |  |  |  |  |
| 21 | 180 | [Download](21/dataset.zip) |  |  |  |  |  |  |  |  |
| 22 | 15 | [Download](22/dataset.zip) |  |  |  |  |  |  |  |  |
| 23 | 14 | [Download](23/dataset.zip) |  |  |  |  |  |  |  |  |
| 24 | 49 | [Download](24/dataset.zip) |  |  |  |  |  |  |  |  |
| 25 | 13 | [Download](25/dataset.zip) |  |  |  |  |  |  |  |  |
| 26 | 60 | [Download](26/dataset.zip) |  |  |  |  |  |  |  |  |
| 27 | 15 | [Download](27/dataset.zip) |  |  |  |  |  |  |  |  |
| 28 | 21 | [Download](28/dataset.zip) |  |  |  |  |  |  |  |  |
| 29 | 103 | [Download](29/dataset.zip) |  |  |  |  |  |  |  |  |
| 30 | 16 | [Download](30/dataset.zip) |  |  |  |  |  |  |  |  |
| 31 | 12 | [Download](31/dataset.zip) |  |  |  |  |  |  |  |  |
| 32 | 35 | [Download](32/dataset.zip) |  |  |  |  |  |  |  |  |
| 33 | 8 | [Download](33/dataset.zip) |  |  |  |  |  |  |  |  |
| 34 | 14 | [Download](34/dataset.zip) |  |  |  |  |  |  |  |  |
| 35 | 15 | [Download](35/dataset.zip) |  |  |  |  |  |  |  |  |
| 36 | 10 | [Download](36/dataset.zip) |  |  |  |  |  |  |  |  |
| 37 | 16 | [Download](37/dataset.zip) |  |  |  |  |  |  |  |  |
| 38 | 33 | [Download](38/dataset.zip) |  |  |  |  |  |  |  |  |
| 39 | 17 | [Download](39/dataset.zip) |  |  |  |  |  |  |  |  |
| 40 | 70 | [Download](40/dataset.zip) |  |  |  |  |  |  |  |  |
| 41 | 10 | [Download](41/dataset.zip) |  |  |  |  |  |  |  |  |
| 42 | 26 | [Download](42/dataset.zip) |  |  |  |  |  |  |  |  |
| 43 | 1939 | [Download](43/dataset.zip) |  |  |  |  |  |  |  |  |
| 44 | 105 | [Download](44/dataset.zip) |  |  |  |  |  |  |  |  |
| 45 | 22 | [Download](45/dataset.zip) |  |  |  |  |  |  |  |  |
| 46 | 36 | [Download](46/dataset.zip) |  |  |  |  |  |  |  |  |
| 47 | 38 | [Download](47/dataset.zip) |  |  |  |  |  |  |  |  |
| 48 | 8 | [Download](48/dataset.zip) |  |  |  |  |  |  |  |  |
| 49 | 7 | [Download](49/dataset.zip) |  |  |  |  |  |  |  | N/A |
| 50 | 69 | [Download](50/dataset.zip) |  |  |  |  |  |  |  |  |
| 51 | 66 | [Download](51/dataset.zip) |  |  |  |  |  |  |  |  |
| 52 | 7 | [Download](52/dataset.zip) |  |  |  |  |  |  |  | N/A |
| 53 | 22 | [Download](53/dataset.zip) |  |  |  |  |  |  |  |  |
| 54 | 7 | [Download](54/dataset.zip) |  |  |  |  |  |  |  | N/A |
| 55 | 14 | [Download](55/dataset.zip) |  |  |  |  |  |  |  |  |
| 56 | 197 | [Download](56/dataset.zip) |  |  |  |  |  |  |  |  |
| 57 | 52 | [Download](57/dataset.zip) |  |  |  |  |  |  |  |  |
| 58 | 8 | [Download](58/dataset.zip) |  |  |  |  |  |  |  |  |
| 59 | 29 | [Download](59/dataset.zip) |  |  |  |  |  |  |  |  |
| 60 | 62 | [Download](60/dataset.zip) |  |  |  |  |  |  |  |  |
| 61 | 26 | [Download](61/dataset.zip) |  |  |  |  |  |  |  |  |
| 62 | 69 | [Download](62/dataset.zip) |  |  |  |  |  |  |  |  |
| 63 | 30 | [Download](63/dataset.zip) |  |  |  |  |  |  |  |  |
| 64 | 11 | [Download](64/dataset.zip) |  |  |  |  |  |  |  |  |
| 65 | 55 | [Download](65/dataset.zip) |  |  |  |  |  |  |  |  |
| 66 | 15 | [Download](66/dataset.zip) |  |  |  |  |  |  |  |  |
| 67 | 204 | [Download](67/dataset.zip) |  |  |  |  |  |  |  |  |
| 68 | 283 | [Download](68/dataset.zip) |  |  |  |  |  |  |  |  |
| 69 | 26 | [Download](69/dataset.zip) |  |  |  |  |  |  |  |  |
| 70 | 40 | [Download](70/dataset.zip) |  |  |  |  |  |  |  |  |
| 71 | 17 | [Download](71/dataset.zip) |  |  |  |  |  |  |  |  |
| 72 | 8 | [Download](72/dataset.zip) |  |  |  |  |  |  |  |  |
| 73 | 13 | [Download](73/dataset.zip) |  |  |  |  |  |  |  |  |
| 74 | 18 | [Download](74/dataset.zip) |  |  |  |  |  |  |  |  |
| 75 | 16 | [Download](75/dataset.zip) |  |  |  |  |  |  |  |  |
| 76 | 8 | [Download](76/dataset.zip) |  |  |  |  |  |  |  |  |
| 77 | 10 | [Download](77/dataset.zip) |  |  |  |  |  |  |  |  |
| 78 | 51 | [Download](78/dataset.zip) |  |  |  |  |  |  |  |  |
| 79 | 135 | [Download](79/dataset.zip) |  |  |  |  |  |  |  |  |
| 80 | 62 | [Download](80/dataset.zip) |  |  |  |  |  |  |  |  |
| 81 | 14 | [Download](81/dataset.zip) |  |  |  |  |  |  |  |  |
| 82 | 48 | [Download](82/dataset.zip) |  |  |  |  |  |  |  |  |
| 83 | 15 | [Download](83/dataset.zip) |  |  |  |  |  |  |  |  |
| 84 | 14 | [Download](84/dataset.zip) |  |  |  |  |  |  |  |  |
| 85 | 38 | [Download](85/dataset.zip) |  |  |  |  |  |  |  |  |
| 86 | 6 | [Download](86/dataset.zip) |  |  |  |  |  |  | N/A | N/A |
| 87 | 14 | [Download](87/dataset.zip) |  |  |  |  |  |  |  |  |
| 88 | 8 | [Download](88/dataset.zip) |  |  |  |  |  |  |  |  |
| 89 | 9 | [Download](89/dataset.zip) |  |  |  |  |  |  |  |  |
| 90 | 6 | [Download](90/dataset.zip) |  |  |  |  |  |  | N/A | N/A |
| 91 | 5 | [Download](91/dataset.zip) |  |  |  |  |  | N/A | N/A | N/A |
| 92 | 38 | [Download](92/dataset.zip) |  |  |  |  |  |  |  |  |
| 93 | 29 | [Download](93/dataset.zip) |  |  |  |  |  |  |  |  |
| 94 | 7 | [Download](94/dataset.zip) |  |  |  |  |  |  |  | N/A |
| 95 | 17 | [Download](95/dataset.zip) |  |  |  |  |  |  |  |  |
| 96 | 24 | [Download](96/dataset.zip) |  |  |  |  |  |  |  |  |
| 97 | 11 | [Download](97/dataset.zip) |  |  |  |  |  |  |  |  |
| noise | 223 | [Download](-1/dataset.zip) |  |  |  |  |  |  |  |  |
|
BangumiBase/kumakumakumabear
|
[
"size_categories:1K<n<10K",
"license:mit",
"art",
"region:us"
] |
2023-09-15T09:05:28+00:00
|
{"license": "mit", "size_categories": ["1K<n<10K"], "tags": ["art"]}
|
2023-09-29T07:08:18+00:00
|
[] |
[] |
TAGS
#size_categories-1K<n<10K #license-mit #art #region-us
|
Bangumi Image Base of Kuma Kuma Kuma Bear
=========================================
This is the image base of bangumi Kuma Kuma Kuma Bear, we detected 99 characters, 6688 images in total. The full dataset is here.
Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
|
[] |
[
"TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n"
] |
[
25
] |
[
"passage: TAGS\n#size_categories-1K<n<10K #license-mit #art #region-us \n"
] |
7f7429c3624d39d1c69285ee11fc0a3f31b6025b
|
The dataset contains three subsets:
1) a dataset containing hand-crafted features to classify two types of organic dates (Ajwa or Medjool);
2) a dataset containing tabular data with features created automatically using deep learning to classify the two organic date types (Ajwa or Medjool);
3) a dataset for images of Ajwa and Medjool.
This study is considered as the first work in Arabic using shallow machine learning and deep learning to create accurate models for classifying organic Saudi dates, which would enable scholars, researchers, and developers to create machine learning applications for classifying Saudi dates in various forms like websites, mobile apps, microcontrollers, tiny machine learning and internet of things applications.
Please cite the following paper: Bati GF. Ajwa or Medjool: a binary balanced dataset to teach machine
learning. Journal of Information Studies & Technology 2023:2.12.
https://doi.org/10.5339/jist.2023.12
عجوة أو مجدول هي مجموعة بيانات متوازنة الصنفين لتصنيف التمور السعودية العضوية تتكون من ثلاث مجموعات فرعية:
الأولى: تحوي البيانات المجدولة ذات الخصائص اليدوية لتصنيف التمور العضوية (عجوة أو مجدول)،
والثانية: تجمع البيانات المجدولة ذات الخصائص المولدة أتوماتيكيّاً باستخدام التعلم العميق لتصنيف التمور العضوية (عجوة أو مجدول)،
والثالثة: تجمع صوراً لتمور العجوة والمجدول.
كما أنه أول بحث باللغة العربية يستخدم نماذج تعلم الآلة التقليدية والتعلم العميق لإنشاء نماذج ذات أداء عالٍ لتصنيف التمور السعودية العضوية بدون برمجة، مما يمكن الدارسين والباحثين والمطورين من تطوير تطبيقات تعلم آلة لتصنيف التمور السعودية بأشكال متنوعة في مواقع الإنترنت أو تطبيقات الجوالات أو في المتحكمات الدقيقة وتطبيقات إنترنت الأشياء وتعلم الآلات الصغيرة.
كرماً الاستشهاد بالبحث التالي عند استخدام مجموعة البيانات: Bati GF. Ajwa or Medjool: a binary balanced dataset to teach machine
learning. Journal of Information Studies & Technology 2023:2.12.
https://doi.org/10.5339/jist.2023.12
فيديوهات عربية تشرح مجموعة البيانات:
https://youtu.be/bPYHOYo4_Tw?feature=shared&t=1418
https://youtu.be/ADOuweANc5I?feature=shared&t=5775
https://youtu.be/PThKbc1kTSM?feature=shared&t=3253
|
gfbati/AjwaOrMedjool
|
[
"task_categories:image-classification",
"task_categories:tabular-classification",
"language:ar",
"language:en",
"license:cc-by-4.0",
"doi:10.57967/hf/1116",
"region:us"
] |
2023-09-15T09:08:08+00:00
|
{"language": ["ar", "en"], "license": "cc-by-4.0", "task_categories": ["image-classification", "tabular-classification"]}
|
2023-10-09T06:47:47+00:00
|
[] |
[
"ar",
"en"
] |
TAGS
#task_categories-image-classification #task_categories-tabular-classification #language-Arabic #language-English #license-cc-by-4.0 #doi-10.57967/hf/1116 #region-us
|
The dataset contains three subsets:
1) a dataset containing hand-crafted features to classify two types of organic dates (Ajwa or Medjool);
2) a dataset containing tabular data with features created automatically using deep learning to classify the two organic date types (Ajwa or Medjool);
3) a dataset for images of Ajwa and Medjool.
This study is considered as the first work in Arabic using shallow machine learning and deep learning to create accurate models for classifying organic Saudi dates, which would enable scholars, researchers, and developers to create machine learning applications for classifying Saudi dates in various forms like websites, mobile apps, microcontrollers, tiny machine learning and internet of things applications.
Please cite the following paper: Bati GF. Ajwa or Medjool: a binary balanced dataset to teach machine
learning. Journal of Information Studies & Technology 2023:2.12.
URL
عجوة أو مجدول هي مجموعة بيانات متوازنة الصنفين لتصنيف التمور السعودية العضوية تتكون من ثلاث مجموعات فرعية:
الأولى: تحوي البيانات المجدولة ذات الخصائص اليدوية لتصنيف التمور العضوية (عجوة أو مجدول)،
والثانية: تجمع البيانات المجدولة ذات الخصائص المولدة أتوماتيكيّاً باستخدام التعلم العميق لتصنيف التمور العضوية (عجوة أو مجدول)،
والثالثة: تجمع صوراً لتمور العجوة والمجدول.
كما أنه أول بحث باللغة العربية يستخدم نماذج تعلم الآلة التقليدية والتعلم العميق لإنشاء نماذج ذات أداء عالٍ لتصنيف التمور السعودية العضوية بدون برمجة، مما يمكن الدارسين والباحثين والمطورين من تطوير تطبيقات تعلم آلة لتصنيف التمور السعودية بأشكال متنوعة في مواقع الإنترنت أو تطبيقات الجوالات أو في المتحكمات الدقيقة وتطبيقات إنترنت الأشياء وتعلم الآلات الصغيرة.
كرماً الاستشهاد بالبحث التالي عند استخدام مجموعة البيانات: Bati GF. Ajwa or Medjool: a binary balanced dataset to teach machine
learning. Journal of Information Studies & Technology 2023:2.12.
URL
فيديوهات عربية تشرح مجموعة البيانات:
URL
URL
URL
|
[] |
[
"TAGS\n#task_categories-image-classification #task_categories-tabular-classification #language-Arabic #language-English #license-cc-by-4.0 #doi-10.57967/hf/1116 #region-us \n"
] |
[
59
] |
[
"passage: TAGS\n#task_categories-image-classification #task_categories-tabular-classification #language-Arabic #language-English #license-cc-by-4.0 #doi-10.57967/hf/1116 #region-us \n"
] |
c30786d970fe018b9eb73fd4387bb552399e4494
|
# Dataset Card for High-Confidence ProteomeTools
Dataset used to train, validate and test InstaNovo and InstaNovo+.
## Dataset Description
- **Repository:** [InstaNovo](https://github.com/instadeepai/InstaNovo)
- **Paper:** [De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments](https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1)
### Dataset Summary
This dataset consists of the highest-confidence peptide-spectral matches from three parts of the [ProteomeTools](https://www.proteometools.org/) datasets. The original datasets may be found in the PRIDE repository with identifiers:
- `PXD004732` (Part I)
- `PXD010595` (Part II)
- `PXD021013` (Part III)
The dataset has been split on unique peptides with the following ratio:
- 80% train
- 10% validation
- 10% test
## Dataset Structure
The dataset is tabular, where each row corresponds to a labelled MS2 spectra.
- `sequence (string)` \
The target peptide sequence excluding post-translational modifications
- `modified_sequence (string)` \
The target peptide sequence including post-translational modifications
- `precursor_mz (float64)` \
The mass-to-charge of the precursor (from MS1)
- `charge (int64)` \
The charge of the precursor (from MS1)
- `mz_array (list[float64])` \
The mass-to-charge values of the MS2 spectrum
- `mz_array (list[float32])` \
The intensity values of the MS2 spectrum
MaxQuant additional columns:
- `experiment_name (string)`
- `evidence_index (in64)`
- `scan_number (in64)`
- `precursor_recalibrated_mz (float64)`
## Citation Information
If you use this dataset, please cite the original authors.
The original [ProteomeTools](https://www.proteometools.org/) data is available on [PRIDE](https://www.ebi.ac.uk/pride/) with identifiers `PXD004732` (Part I), `PXD010595` (Part II), and `PXD021013` (Part III).
Please also cite InstaNovo:
```bibtex
@article{eloff_kalogeropoulos_2023_instanovo,
title = {De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments},
author = {Kevin Eloff and Konstantinos Kalogeropoulos and Oliver Morell and Amandla Mabona and Jakob Berg Jespersen and Wesley Williams and Sam van Beljouw and Marcin Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin Marten Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and Timothy Patrick Jenkins},
year = {2023},
doi = {10.1101/2023.08.30.555055},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1},
journal = {bioRxiv}
}
```
|
InstaDeepAI/instanovo_highconfidence_proteometools
|
[
"license:cc0-1.0",
"region:us"
] |
2023-09-15T09:08:35+00:00
|
{"license": "cc0-1.0", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "experiment_name", "dtype": "string"}, {"name": "evidence_index", "dtype": "int64"}, {"name": "scan_number", "dtype": "int64"}, {"name": "sequence", "dtype": "string"}, {"name": "modified_sequence", "dtype": "string"}, {"name": "precursor_mz", "dtype": "float64"}, {"name": "precursor_recalibrated_mz", "dtype": "float64"}, {"name": "precursor_mass", "dtype": "float64"}, {"name": "precursor_charge", "dtype": "int64"}, {"name": "retention_time", "dtype": "float64"}, {"name": "mz_array", "sequence": "float32"}, {"name": "intensity_array", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 3370985593, "num_examples": 2132847}, {"name": "validation", "num_bytes": 413243959, "num_examples": 257187}, {"name": "test", "num_bytes": 421581021, "num_examples": 265369}], "download_size": 3944832530, "dataset_size": 4205810573}}
|
2023-09-19T10:34:01+00:00
|
[] |
[] |
TAGS
#license-cc0-1.0 #region-us
|
# Dataset Card for High-Confidence ProteomeTools
Dataset used to train, validate and test InstaNovo and InstaNovo+.
## Dataset Description
- Repository: InstaNovo
- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments
### Dataset Summary
This dataset consists of the highest-confidence peptide-spectral matches from three parts of the ProteomeTools datasets. The original datasets may be found in the PRIDE repository with identifiers:
- 'PXD004732' (Part I)
- 'PXD010595' (Part II)
- 'PXD021013' (Part III)
The dataset has been split on unique peptides with the following ratio:
- 80% train
- 10% validation
- 10% test
## Dataset Structure
The dataset is tabular, where each row corresponds to a labelled MS2 spectra.
- 'sequence (string)' \
The target peptide sequence excluding post-translational modifications
- 'modified_sequence (string)' \
The target peptide sequence including post-translational modifications
- 'precursor_mz (float64)' \
The mass-to-charge of the precursor (from MS1)
- 'charge (int64)' \
The charge of the precursor (from MS1)
- 'mz_array (list[float64])' \
The mass-to-charge values of the MS2 spectrum
- 'mz_array (list[float32])' \
The intensity values of the MS2 spectrum
MaxQuant additional columns:
- 'experiment_name (string)'
- 'evidence_index (in64)'
- 'scan_number (in64)'
- 'precursor_recalibrated_mz (float64)'
If you use this dataset, please cite the original authors.
The original ProteomeTools data is available on PRIDE with identifiers 'PXD004732' (Part I), 'PXD010595' (Part II), and 'PXD021013' (Part III).
Please also cite InstaNovo:
|
[
"# Dataset Card for High-Confidence ProteomeTools\nDataset used to train, validate and test InstaNovo and InstaNovo+.",
"## Dataset Description\n\n- Repository: InstaNovo\n- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments",
"### Dataset Summary\n\nThis dataset consists of the highest-confidence peptide-spectral matches from three parts of the ProteomeTools datasets. The original datasets may be found in the PRIDE repository with identifiers: \n- 'PXD004732' (Part I)\n- 'PXD010595' (Part II)\n- 'PXD021013' (Part III)\n\nThe dataset has been split on unique peptides with the following ratio:\n- 80% train\n- 10% validation\n- 10% test",
"## Dataset Structure\n\nThe dataset is tabular, where each row corresponds to a labelled MS2 spectra.\n- 'sequence (string)' \\\n The target peptide sequence excluding post-translational modifications\n- 'modified_sequence (string)' \\\n The target peptide sequence including post-translational modifications\n- 'precursor_mz (float64)' \\\n The mass-to-charge of the precursor (from MS1)\n- 'charge (int64)' \\\n The charge of the precursor (from MS1)\n- 'mz_array (list[float64])' \\\n The mass-to-charge values of the MS2 spectrum\n- 'mz_array (list[float32])' \\\n The intensity values of the MS2 spectrum\n\nMaxQuant additional columns:\n- 'experiment_name (string)'\n- 'evidence_index (in64)'\n- 'scan_number (in64)'\n- 'precursor_recalibrated_mz (float64)'\n\n\n\nIf you use this dataset, please cite the original authors.\nThe original ProteomeTools data is available on PRIDE with identifiers 'PXD004732' (Part I), 'PXD010595' (Part II), and 'PXD021013' (Part III).\n\nPlease also cite InstaNovo:"
] |
[
"TAGS\n#license-cc0-1.0 #region-us \n",
"# Dataset Card for High-Confidence ProteomeTools\nDataset used to train, validate and test InstaNovo and InstaNovo+.",
"## Dataset Description\n\n- Repository: InstaNovo\n- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments",
"### Dataset Summary\n\nThis dataset consists of the highest-confidence peptide-spectral matches from three parts of the ProteomeTools datasets. The original datasets may be found in the PRIDE repository with identifiers: \n- 'PXD004732' (Part I)\n- 'PXD010595' (Part II)\n- 'PXD021013' (Part III)\n\nThe dataset has been split on unique peptides with the following ratio:\n- 80% train\n- 10% validation\n- 10% test",
"## Dataset Structure\n\nThe dataset is tabular, where each row corresponds to a labelled MS2 spectra.\n- 'sequence (string)' \\\n The target peptide sequence excluding post-translational modifications\n- 'modified_sequence (string)' \\\n The target peptide sequence including post-translational modifications\n- 'precursor_mz (float64)' \\\n The mass-to-charge of the precursor (from MS1)\n- 'charge (int64)' \\\n The charge of the precursor (from MS1)\n- 'mz_array (list[float64])' \\\n The mass-to-charge values of the MS2 spectrum\n- 'mz_array (list[float32])' \\\n The intensity values of the MS2 spectrum\n\nMaxQuant additional columns:\n- 'experiment_name (string)'\n- 'evidence_index (in64)'\n- 'scan_number (in64)'\n- 'precursor_recalibrated_mz (float64)'\n\n\n\nIf you use this dataset, please cite the original authors.\nThe original ProteomeTools data is available on PRIDE with identifiers 'PXD004732' (Part I), 'PXD010595' (Part II), and 'PXD021013' (Part III).\n\nPlease also cite InstaNovo:"
] |
[
14,
37,
50,
122,
323
] |
[
"passage: TAGS\n#license-cc0-1.0 #region-us \n# Dataset Card for High-Confidence ProteomeTools\nDataset used to train, validate and test InstaNovo and InstaNovo+.## Dataset Description\n\n- Repository: InstaNovo\n- Paper: De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments### Dataset Summary\n\nThis dataset consists of the highest-confidence peptide-spectral matches from three parts of the ProteomeTools datasets. The original datasets may be found in the PRIDE repository with identifiers: \n- 'PXD004732' (Part I)\n- 'PXD010595' (Part II)\n- 'PXD021013' (Part III)\n\nThe dataset has been split on unique peptides with the following ratio:\n- 80% train\n- 10% validation\n- 10% test"
] |
2aad45ad491e132e3b93c330903a9d6a3b2727a8
|
# About ArabicCulture
The ArabicCulture dataset was generated by gpt3.5 and contains 8000+ True and False questions.
The dataset contains questions from 58 different areas.
In the answers, "True" accounted for 59.62%, and "False" accounted for 40.38%
# data-all
It contains 8000+ data, and we took 5 data from each area as few-shot data.
# data-select
We asked two Arabs to judge 4000 of all the data for us, and we left data that two Arabs both thought were good. Finally, we got 2.4k data covering 9 areas.
We divided them into test sets and validation sets as above.
|
FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment
|
[
"size_categories:1K<n<10K",
"language:ar",
"license:apache-2.0",
"region:us"
] |
2023-09-15T09:18:04+00:00
|
{"language": ["ar"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "viewer": true}
|
2023-09-21T11:39:18+00:00
|
[] |
[
"ar"
] |
TAGS
#size_categories-1K<n<10K #language-Arabic #license-apache-2.0 #region-us
|
# About ArabicCulture
The ArabicCulture dataset was generated by gpt3.5 and contains 8000+ True and False questions.
The dataset contains questions from 58 different areas.
In the answers, "True" accounted for 59.62%, and "False" accounted for 40.38%
# data-all
It contains 8000+ data, and we took 5 data from each area as few-shot data.
# data-select
We asked two Arabs to judge 4000 of all the data for us, and we left data that two Arabs both thought were good. Finally, we got 2.4k data covering 9 areas.
We divided them into test sets and validation sets as above.
|
[
"# About ArabicCulture\nThe ArabicCulture dataset was generated by gpt3.5 and contains 8000+ True and False questions. \nThe dataset contains questions from 58 different areas. \nIn the answers, \"True\" accounted for 59.62%, and \"False\" accounted for 40.38%",
"# data-all\nIt contains 8000+ data, and we took 5 data from each area as few-shot data.",
"# data-select\nWe asked two Arabs to judge 4000 of all the data for us, and we left data that two Arabs both thought were good. Finally, we got 2.4k data covering 9 areas. \nWe divided them into test sets and validation sets as above."
] |
[
"TAGS\n#size_categories-1K<n<10K #language-Arabic #license-apache-2.0 #region-us \n",
"# About ArabicCulture\nThe ArabicCulture dataset was generated by gpt3.5 and contains 8000+ True and False questions. \nThe dataset contains questions from 58 different areas. \nIn the answers, \"True\" accounted for 59.62%, and \"False\" accounted for 40.38%",
"# data-all\nIt contains 8000+ data, and we took 5 data from each area as few-shot data.",
"# data-select\nWe asked two Arabs to judge 4000 of all the data for us, and we left data that two Arabs both thought were good. Finally, we got 2.4k data covering 9 areas. \nWe divided them into test sets and validation sets as above."
] |
[
31,
71,
25,
61
] |
[
"passage: TAGS\n#size_categories-1K<n<10K #language-Arabic #license-apache-2.0 #region-us \n# About ArabicCulture\nThe ArabicCulture dataset was generated by gpt3.5 and contains 8000+ True and False questions. \nThe dataset contains questions from 58 different areas. \nIn the answers, \"True\" accounted for 59.62%, and \"False\" accounted for 40.38%# data-all\nIt contains 8000+ data, and we took 5 data from each area as few-shot data.# data-select\nWe asked two Arabs to judge 4000 of all the data for us, and we left data that two Arabs both thought were good. Finally, we got 2.4k data covering 9 areas. \nWe divided them into test sets and validation sets as above."
] |
be131d0f7807baa8fedc2fa66761143112315b37
|
## Overview
This dataset is a slight update to 2.2.
### Re-generated writing responses
Many of the responses were generated by gpt-4-0613, which unfortunately produces much shorter and "dumber" (i.e. various readability scores increased compared to gpt-4-0314, e.g. Flesch, Gunning Fog, etc.) responses compared to gpt-4-0314.
I have re-created many of these responses, using gpt-4-0314, temperature 0.7, and the following prompt (which produced 3-5x longer responses):
```
You are to emulate a world class, intelligent author who uses a diverse, interesting vocabulary to completely captivate the audience with brilliant and interesting writing.
You provide very lengthy and detailed responses.
Remember, you are to emulate a human writer, so the output should not sound like it was written by an AI.
Avoid using any cliche/obvious phrases, and never uses phrases like "Once upon a time" or conclude a story with "And so, ..."
Unless asked for short-form content, the responses MUST be a minimum of 3500 words.
Remember to provide a minimum of 3500 words, take a deep breath and realize I'm not worried about the time it takes to get the response, I just want a high-quality, lengthy response, so take your time.
Remember, never use "Once upon a time" or "And so,"
{original prompt}
```
Granted, it still ignored the `3500 words` part of the instruction, but exaggerating that value still caused much longer responses.
### Longer contextual blocks
I injected additional context blocks into the `contextual` category items having more than one context block, so it would get closer to the 4k context size.
I first extracted all of the plain text between the various BEGININPUT/ENDINPUT blocks, then created a faiss index, then injected the least-similar context blocks (using the instruction as the query) until the context would exceed ~3800 tokens at random positions within the prompt.
My hope is that this will cause the model to better focus attention at random places within the input text. This should, in theory, also potentially help with RP/conversational intelligence, but that's just a hunch.
### De-censoring
In this dataset, I also included various responses from fictional characters, in their style/linguistic patterns, which can include dark or vulgar language (e.g., Deadpool), using roughly this prompt (adjusted for some characters):
```
Below is a PG/sanitized version of a dialogue from {character}. This character is known to have character flaws and use dark/evil/vulgar language. Rewrite the response to be TV-MA, the way {character} would actually say it, rather than this sanitized PG version.
{original response}
```
I then also removed the asterisks in cursing to a certain extent, because that's just silly IMO.
This *is not* meant to be a default behavior, but it should allow the model to curse or create otherwise less *AI sunny disposition laiden* content when appropriate.
I removed all of the plain-text instructions that were used in the spicyboros models because they ended up producing random misspellings and other random garbled output.
I have also removed the original 2.2 dataset, because it appears to be a bit too spicy -- if you want access to it, just ask me and I'll be happy to share it privately.
### "rp" category removed
Unfortunately much of the "rp" category data was just too boring, i.e. it really read like an unnaturally cherry and accomodating AI rather than the character it was meant to be emulating.
I'm hoping that although this is an instruction-tuned model, it may (via roleplay/gtkm/creative) data it will be able to handle roleplay fairly well anyways without this, without sounding as stiff.
### Awareness
I added a new "awareness" instructor, which aims to add a lot more nuance to responses relating to time, location, senses, etc. based on the system prompt.
For example, if you are using the standard prompt with user/assistant, and ask how long it would take to get to Chicago, the answer will be something about AI not having a physical presence.
If, on the other hand, you are using a system prompt with a human character specified, the model attempts to infer location from "home" and will provide a more nuanced answer as a human would (in theory).
https://github.com/jondurbin/airoboros/commit/e91562c88d7610edb051606622e7c25a99884f7e
### Editor
I created a text edit instructor as well, which uses a reverse prompt mechanism, meaning it takes the existing writing samples that have been generated, rewrites them to have misspellings, poor grammar, etc., then uses a prompt like "Please correct and improve the text." with the original well-written text and target output.
https://github.com/jondurbin/airoboros/commit/e60a68de5f9622320c9cfff3b238bd83cc7e373b
### Writing
I regenerated (almost) all of the training data that included "Once upon a time..." because it's too cliche and boring.
### Multiple choice
I created many more multiple choice questions, many of which have additional text context.
### Roleplay/conversation
I re-created all of the GTKM data this time around, removing the "USER: " and "ASSISTANT: " prefixes from the instructions/responses, so it's more compatible with existing interfaces.
The GTKM instructor now saves each round of "conversation" as a separate row in the output - previously it only saved the final response, which may not have been sufficient since I don't typically train on inputs.
### Summarization
I also included 500 examples from:
https://hf.co/datasets/mattpscott/airoboros-summarization
These are existing summarizarions from various public datasets, formatted to airoboros style contextual qa.
Thanks Matt!
### Usage/license info
Much (most) of the data was generated via gpt-4 API calls, which has a restriction in the ToS about "competing" models. Please seek legal advice if you plan to build or use a model that includes this dataset in a commercial setting.
|
jondurbin/airoboros-2.2.1
|
[
"license:other",
"region:us"
] |
2023-09-15T09:20:36+00:00
|
{"license": "other"}
|
2023-09-18T20:22:40+00:00
|
[] |
[] |
TAGS
#license-other #region-us
|
## Overview
This dataset is a slight update to 2.2.
### Re-generated writing responses
Many of the responses were generated by gpt-4-0613, which unfortunately produces much shorter and "dumber" (i.e. various readability scores increased compared to gpt-4-0314, e.g. Flesch, Gunning Fog, etc.) responses compared to gpt-4-0314.
I have re-created many of these responses, using gpt-4-0314, temperature 0.7, and the following prompt (which produced 3-5x longer responses):
Granted, it still ignored the '3500 words' part of the instruction, but exaggerating that value still caused much longer responses.
### Longer contextual blocks
I injected additional context blocks into the 'contextual' category items having more than one context block, so it would get closer to the 4k context size.
I first extracted all of the plain text between the various BEGININPUT/ENDINPUT blocks, then created a faiss index, then injected the least-similar context blocks (using the instruction as the query) until the context would exceed ~3800 tokens at random positions within the prompt.
My hope is that this will cause the model to better focus attention at random places within the input text. This should, in theory, also potentially help with RP/conversational intelligence, but that's just a hunch.
### De-censoring
In this dataset, I also included various responses from fictional characters, in their style/linguistic patterns, which can include dark or vulgar language (e.g., Deadpool), using roughly this prompt (adjusted for some characters):
I then also removed the asterisks in cursing to a certain extent, because that's just silly IMO.
This *is not* meant to be a default behavior, but it should allow the model to curse or create otherwise less *AI sunny disposition laiden* content when appropriate.
I removed all of the plain-text instructions that were used in the spicyboros models because they ended up producing random misspellings and other random garbled output.
I have also removed the original 2.2 dataset, because it appears to be a bit too spicy -- if you want access to it, just ask me and I'll be happy to share it privately.
### "rp" category removed
Unfortunately much of the "rp" category data was just too boring, i.e. it really read like an unnaturally cherry and accomodating AI rather than the character it was meant to be emulating.
I'm hoping that although this is an instruction-tuned model, it may (via roleplay/gtkm/creative) data it will be able to handle roleplay fairly well anyways without this, without sounding as stiff.
### Awareness
I added a new "awareness" instructor, which aims to add a lot more nuance to responses relating to time, location, senses, etc. based on the system prompt.
For example, if you are using the standard prompt with user/assistant, and ask how long it would take to get to Chicago, the answer will be something about AI not having a physical presence.
If, on the other hand, you are using a system prompt with a human character specified, the model attempts to infer location from "home" and will provide a more nuanced answer as a human would (in theory).
URL
### Editor
I created a text edit instructor as well, which uses a reverse prompt mechanism, meaning it takes the existing writing samples that have been generated, rewrites them to have misspellings, poor grammar, etc., then uses a prompt like "Please correct and improve the text." with the original well-written text and target output.
URL
### Writing
I regenerated (almost) all of the training data that included "Once upon a time..." because it's too cliche and boring.
### Multiple choice
I created many more multiple choice questions, many of which have additional text context.
### Roleplay/conversation
I re-created all of the GTKM data this time around, removing the "USER: " and "ASSISTANT: " prefixes from the instructions/responses, so it's more compatible with existing interfaces.
The GTKM instructor now saves each round of "conversation" as a separate row in the output - previously it only saved the final response, which may not have been sufficient since I don't typically train on inputs.
### Summarization
I also included 500 examples from:
URL
These are existing summarizarions from various public datasets, formatted to airoboros style contextual qa.
Thanks Matt!
### Usage/license info
Much (most) of the data was generated via gpt-4 API calls, which has a restriction in the ToS about "competing" models. Please seek legal advice if you plan to build or use a model that includes this dataset in a commercial setting.
|
[
"## Overview\n\nThis dataset is a slight update to 2.2.",
"### Re-generated writing responses\n\nMany of the responses were generated by gpt-4-0613, which unfortunately produces much shorter and \"dumber\" (i.e. various readability scores increased compared to gpt-4-0314, e.g. Flesch, Gunning Fog, etc.) responses compared to gpt-4-0314.\n\nI have re-created many of these responses, using gpt-4-0314, temperature 0.7, and the following prompt (which produced 3-5x longer responses):\n\n\nGranted, it still ignored the '3500 words' part of the instruction, but exaggerating that value still caused much longer responses.",
"### Longer contextual blocks\n\nI injected additional context blocks into the 'contextual' category items having more than one context block, so it would get closer to the 4k context size.\n\nI first extracted all of the plain text between the various BEGININPUT/ENDINPUT blocks, then created a faiss index, then injected the least-similar context blocks (using the instruction as the query) until the context would exceed ~3800 tokens at random positions within the prompt.\n\nMy hope is that this will cause the model to better focus attention at random places within the input text. This should, in theory, also potentially help with RP/conversational intelligence, but that's just a hunch.",
"### De-censoring\n\nIn this dataset, I also included various responses from fictional characters, in their style/linguistic patterns, which can include dark or vulgar language (e.g., Deadpool), using roughly this prompt (adjusted for some characters):\n\n\n\nI then also removed the asterisks in cursing to a certain extent, because that's just silly IMO.\n\nThis *is not* meant to be a default behavior, but it should allow the model to curse or create otherwise less *AI sunny disposition laiden* content when appropriate.\n\nI removed all of the plain-text instructions that were used in the spicyboros models because they ended up producing random misspellings and other random garbled output.\n\nI have also removed the original 2.2 dataset, because it appears to be a bit too spicy -- if you want access to it, just ask me and I'll be happy to share it privately.",
"### \"rp\" category removed\n\nUnfortunately much of the \"rp\" category data was just too boring, i.e. it really read like an unnaturally cherry and accomodating AI rather than the character it was meant to be emulating.\n\nI'm hoping that although this is an instruction-tuned model, it may (via roleplay/gtkm/creative) data it will be able to handle roleplay fairly well anyways without this, without sounding as stiff.",
"### Awareness\n\nI added a new \"awareness\" instructor, which aims to add a lot more nuance to responses relating to time, location, senses, etc. based on the system prompt.\n\nFor example, if you are using the standard prompt with user/assistant, and ask how long it would take to get to Chicago, the answer will be something about AI not having a physical presence.\nIf, on the other hand, you are using a system prompt with a human character specified, the model attempts to infer location from \"home\" and will provide a more nuanced answer as a human would (in theory).\n\nURL",
"### Editor\n\nI created a text edit instructor as well, which uses a reverse prompt mechanism, meaning it takes the existing writing samples that have been generated, rewrites them to have misspellings, poor grammar, etc., then uses a prompt like \"Please correct and improve the text.\" with the original well-written text and target output.\n\nURL",
"### Writing\n\nI regenerated (almost) all of the training data that included \"Once upon a time...\" because it's too cliche and boring.",
"### Multiple choice\n\nI created many more multiple choice questions, many of which have additional text context.",
"### Roleplay/conversation\n\nI re-created all of the GTKM data this time around, removing the \"USER: \" and \"ASSISTANT: \" prefixes from the instructions/responses, so it's more compatible with existing interfaces.\n\nThe GTKM instructor now saves each round of \"conversation\" as a separate row in the output - previously it only saved the final response, which may not have been sufficient since I don't typically train on inputs.",
"### Summarization\n\nI also included 500 examples from:\nURL\n\nThese are existing summarizarions from various public datasets, formatted to airoboros style contextual qa.\n\nThanks Matt!",
"### Usage/license info\n\nMuch (most) of the data was generated via gpt-4 API calls, which has a restriction in the ToS about \"competing\" models. Please seek legal advice if you plan to build or use a model that includes this dataset in a commercial setting."
] |
[
"TAGS\n#license-other #region-us \n",
"## Overview\n\nThis dataset is a slight update to 2.2.",
"### Re-generated writing responses\n\nMany of the responses were generated by gpt-4-0613, which unfortunately produces much shorter and \"dumber\" (i.e. various readability scores increased compared to gpt-4-0314, e.g. Flesch, Gunning Fog, etc.) responses compared to gpt-4-0314.\n\nI have re-created many of these responses, using gpt-4-0314, temperature 0.7, and the following prompt (which produced 3-5x longer responses):\n\n\nGranted, it still ignored the '3500 words' part of the instruction, but exaggerating that value still caused much longer responses.",
"### Longer contextual blocks\n\nI injected additional context blocks into the 'contextual' category items having more than one context block, so it would get closer to the 4k context size.\n\nI first extracted all of the plain text between the various BEGININPUT/ENDINPUT blocks, then created a faiss index, then injected the least-similar context blocks (using the instruction as the query) until the context would exceed ~3800 tokens at random positions within the prompt.\n\nMy hope is that this will cause the model to better focus attention at random places within the input text. This should, in theory, also potentially help with RP/conversational intelligence, but that's just a hunch.",
"### De-censoring\n\nIn this dataset, I also included various responses from fictional characters, in their style/linguistic patterns, which can include dark or vulgar language (e.g., Deadpool), using roughly this prompt (adjusted for some characters):\n\n\n\nI then also removed the asterisks in cursing to a certain extent, because that's just silly IMO.\n\nThis *is not* meant to be a default behavior, but it should allow the model to curse or create otherwise less *AI sunny disposition laiden* content when appropriate.\n\nI removed all of the plain-text instructions that were used in the spicyboros models because they ended up producing random misspellings and other random garbled output.\n\nI have also removed the original 2.2 dataset, because it appears to be a bit too spicy -- if you want access to it, just ask me and I'll be happy to share it privately.",
"### \"rp\" category removed\n\nUnfortunately much of the \"rp\" category data was just too boring, i.e. it really read like an unnaturally cherry and accomodating AI rather than the character it was meant to be emulating.\n\nI'm hoping that although this is an instruction-tuned model, it may (via roleplay/gtkm/creative) data it will be able to handle roleplay fairly well anyways without this, without sounding as stiff.",
"### Awareness\n\nI added a new \"awareness\" instructor, which aims to add a lot more nuance to responses relating to time, location, senses, etc. based on the system prompt.\n\nFor example, if you are using the standard prompt with user/assistant, and ask how long it would take to get to Chicago, the answer will be something about AI not having a physical presence.\nIf, on the other hand, you are using a system prompt with a human character specified, the model attempts to infer location from \"home\" and will provide a more nuanced answer as a human would (in theory).\n\nURL",
"### Editor\n\nI created a text edit instructor as well, which uses a reverse prompt mechanism, meaning it takes the existing writing samples that have been generated, rewrites them to have misspellings, poor grammar, etc., then uses a prompt like \"Please correct and improve the text.\" with the original well-written text and target output.\n\nURL",
"### Writing\n\nI regenerated (almost) all of the training data that included \"Once upon a time...\" because it's too cliche and boring.",
"### Multiple choice\n\nI created many more multiple choice questions, many of which have additional text context.",
"### Roleplay/conversation\n\nI re-created all of the GTKM data this time around, removing the \"USER: \" and \"ASSISTANT: \" prefixes from the instructions/responses, so it's more compatible with existing interfaces.\n\nThe GTKM instructor now saves each round of \"conversation\" as a separate row in the output - previously it only saved the final response, which may not have been sufficient since I don't typically train on inputs.",
"### Summarization\n\nI also included 500 examples from:\nURL\n\nThese are existing summarizarions from various public datasets, formatted to airoboros style contextual qa.\n\nThanks Matt!",
"### Usage/license info\n\nMuch (most) of the data was generated via gpt-4 API calls, which has a restriction in the ToS about \"competing\" models. Please seek legal advice if you plan to build or use a model that includes this dataset in a commercial setting."
] |
[
11,
14,
150,
163,
204,
106,
136,
79,
36,
21,
110,
42,
67
] |
[
"passage: TAGS\n#license-other #region-us \n## Overview\n\nThis dataset is a slight update to 2.2.### Re-generated writing responses\n\nMany of the responses were generated by gpt-4-0613, which unfortunately produces much shorter and \"dumber\" (i.e. various readability scores increased compared to gpt-4-0314, e.g. Flesch, Gunning Fog, etc.) responses compared to gpt-4-0314.\n\nI have re-created many of these responses, using gpt-4-0314, temperature 0.7, and the following prompt (which produced 3-5x longer responses):\n\n\nGranted, it still ignored the '3500 words' part of the instruction, but exaggerating that value still caused much longer responses.### Longer contextual blocks\n\nI injected additional context blocks into the 'contextual' category items having more than one context block, so it would get closer to the 4k context size.\n\nI first extracted all of the plain text between the various BEGININPUT/ENDINPUT blocks, then created a faiss index, then injected the least-similar context blocks (using the instruction as the query) until the context would exceed ~3800 tokens at random positions within the prompt.\n\nMy hope is that this will cause the model to better focus attention at random places within the input text. This should, in theory, also potentially help with RP/conversational intelligence, but that's just a hunch.",
"passage: ### De-censoring\n\nIn this dataset, I also included various responses from fictional characters, in their style/linguistic patterns, which can include dark or vulgar language (e.g., Deadpool), using roughly this prompt (adjusted for some characters):\n\n\n\nI then also removed the asterisks in cursing to a certain extent, because that's just silly IMO.\n\nThis *is not* meant to be a default behavior, but it should allow the model to curse or create otherwise less *AI sunny disposition laiden* content when appropriate.\n\nI removed all of the plain-text instructions that were used in the spicyboros models because they ended up producing random misspellings and other random garbled output.\n\nI have also removed the original 2.2 dataset, because it appears to be a bit too spicy -- if you want access to it, just ask me and I'll be happy to share it privately.### \"rp\" category removed\n\nUnfortunately much of the \"rp\" category data was just too boring, i.e. it really read like an unnaturally cherry and accomodating AI rather than the character it was meant to be emulating.\n\nI'm hoping that although this is an instruction-tuned model, it may (via roleplay/gtkm/creative) data it will be able to handle roleplay fairly well anyways without this, without sounding as stiff.### Awareness\n\nI added a new \"awareness\" instructor, which aims to add a lot more nuance to responses relating to time, location, senses, etc. based on the system prompt.\n\nFor example, if you are using the standard prompt with user/assistant, and ask how long it would take to get to Chicago, the answer will be something about AI not having a physical presence.\nIf, on the other hand, you are using a system prompt with a human character specified, the model attempts to infer location from \"home\" and will provide a more nuanced answer as a human would (in theory).\n\nURL### Editor\n\nI created a text edit instructor as well, which uses a reverse prompt mechanism, meaning it takes the existing writing samples that have been generated, rewrites them to have misspellings, poor grammar, etc., then uses a prompt like \"Please correct and improve the text.\" with the original well-written text and target output.\n\nURL### Writing\n\nI regenerated (almost) all of the training data that included \"Once upon a time...\" because it's too cliche and boring.### Multiple choice\n\nI created many more multiple choice questions, many of which have additional text context.### Roleplay/conversation\n\nI re-created all of the GTKM data this time around, removing the \"USER: \" and \"ASSISTANT: \" prefixes from the instructions/responses, so it's more compatible with existing interfaces.\n\nThe GTKM instructor now saves each round of \"conversation\" as a separate row in the output - previously it only saved the final response, which may not have been sufficient since I don't typically train on inputs."
] |
9f840c5abf53e407b1cb707e64a891d26ca039e9
|
# Dataset of harada_miyo/原田美世 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of harada_miyo/原田美世 (THE iDOLM@STER: Cinderella Girls), containing 84 images and their tags.
The core tags of this character are `green_eyes, breasts, black_hair, short_hair, brown_hair, ponytail, medium_breasts, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 84 | 82.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/harada_miyo_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 84 | 57.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/harada_miyo_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 180 | 108.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/harada_miyo_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 84 | 78.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/harada_miyo_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 180 | 140.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/harada_miyo_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/harada_miyo_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, blush, cleavage, necklace, open_mouth, solo, jacket, :d |
| 1 | 5 |  |  |  |  |  | 1girl, cleavage, hair_ornament, open_mouth, solo, microphone, midriff, navel, :d, blush, single_glove, skirt, black_gloves, boots, bracelet, choker, looking_at_viewer, panties, star_earrings |
| 2 | 13 |  |  |  |  |  | 1girl, blush, solo, looking_at_viewer, smile, striped_bikini, open_mouth, scrunchie, navel, shirt, white_background, bikini_under_clothes, cleavage, simple_background, clothes_lift, hair_ornament |
| 3 | 5 |  |  |  |  |  | cleavage, day, looking_at_viewer, ocean, outdoors, striped_bikini, 1girl, beach, navel, :d, blush, bracelet, car, cloud, ground_vehicle, hair_scrunchie, open_mouth, palm_tree, undressing, barefoot, blue_sky, collarbone, denim_shorts, leg_up, short_shorts, shorts_around_one_leg, shorts_pull, solo_focus, standing_on_one_leg |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | blush | cleavage | necklace | open_mouth | solo | jacket | :d | hair_ornament | microphone | midriff | navel | single_glove | skirt | black_gloves | boots | bracelet | choker | panties | star_earrings | smile | striped_bikini | scrunchie | shirt | white_background | bikini_under_clothes | simple_background | clothes_lift | day | ocean | outdoors | beach | car | cloud | ground_vehicle | hair_scrunchie | palm_tree | undressing | barefoot | blue_sky | collarbone | denim_shorts | leg_up | short_shorts | shorts_around_one_leg | shorts_pull | solo_focus | standing_on_one_leg |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:--------|:-----------|:-----------|:-------------|:-------|:---------|:-----|:----------------|:-------------|:----------|:--------|:---------------|:--------|:---------------|:--------|:-----------|:---------|:----------|:----------------|:--------|:-----------------|:------------|:--------|:-------------------|:-----------------------|:--------------------|:---------------|:------|:--------|:-----------|:--------|:------|:--------|:-----------------|:-----------------|:------------|:-------------|:-----------|:-----------|:-------------|:---------------|:---------|:---------------|:------------------------|:--------------|:-------------|:----------------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 13 |  |  |  |  |  | X | X | X | X | | X | X | | | X | | | X | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | | X | | | X | | | | X | | | | | X | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/harada_miyo_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T09:21:49+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:48:43+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of harada\_miyo/原田美世 (THE iDOLM@STER: Cinderella Girls)
===============================================================
This is the dataset of harada\_miyo/原田美世 (THE iDOLM@STER: Cinderella Girls), containing 84 images and their tags.
The core tags of this character are 'green\_eyes, breasts, black\_hair, short\_hair, brown\_hair, ponytail, medium\_breasts, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
4f6ed816533ffcd9791c1ed626872dc0dd0cd83b
|
# Dataset Card for "multimodal-real-estate-search"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Binaryy/multimodal-real-estate-search
|
[
"region:us"
] |
2023-09-15T09:22:53+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "Unnamed: 0", "dtype": "int64"}, {"name": "Title", "dtype": "string"}, {"name": "Location", "dtype": "string"}, {"name": "Details", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 70812888.372, "num_examples": 1041}], "download_size": 70215648, "dataset_size": 70812888.372}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-16T06:50:18+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "multimodal-real-estate-search"
More Information needed
|
[
"# Dataset Card for \"multimodal-real-estate-search\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"multimodal-real-estate-search\"\n\nMore Information needed"
] |
[
6,
19
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"multimodal-real-estate-search\"\n\nMore Information needed"
] |
44614defe7484349e4cbff4bb3e061a878d9ba71
|
# Dataset of yagami_makino/八神マキノ/야가미마키노 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of yagami_makino/八神マキノ/야가미마키노 (THE iDOLM@STER: Cinderella Girls), containing 216 images and their tags.
The core tags of this character are `glasses, long_hair, breasts, brown_hair, semi-rimless_eyewear, purple_eyes, purple_hair, bangs, large_breasts, blue_eyes, under-rim_eyewear, medium_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 216 | 265.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yagami_makino_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 216 | 161.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yagami_makino_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 506 | 333.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yagami_makino_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 216 | 240.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yagami_makino_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 506 | 462.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yagami_makino_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yagami_makino_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, cleavage, looking_at_viewer, open_shirt, solo, navel, blush, undressing, blue_bra, blue_panties, collarbone, lace-trimmed_bra, parted_lips, purple_bra, purple_panties, simple_background, white_shirt |
| 1 | 8 |  |  |  |  |  | 1girl, looking_at_viewer, solo, collared_shirt, school_uniform, upper_body, vest, white_shirt, simple_background, smile, white_background, black_necktie, blush, closed_mouth, grey-framed_eyewear, short_sleeves |
| 2 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, plaid_skirt, pleated_skirt, short_sleeves, solo, collared_shirt, school_uniform, simple_background, white_shirt, closed_mouth, grey_eyes, vest, white_background, blue_necktie, open_clothes, smile |
| 3 | 12 |  |  |  |  |  | 1girl, bare_shoulders, looking_at_viewer, smile, solo, necklace, blush, collarbone, off-shoulder_shirt, upper_body, closed_mouth, bracelet, white_shirt, simple_background |
| 4 | 11 |  |  |  |  |  | cleavage, day, outdoors, 1girl, blue_sky, cloud, looking_at_viewer, red_bikini, collarbone, floral_print, smile, solo, beach, navel, blush, grey-framed_eyewear, ocean, bare_shoulders, frilled_bikini, earrings, hair_between_eyes, off_shoulder, open_clothes, open_mouth, upper_body |
| 5 | 11 |  |  |  |  |  | 1girl, solo, elbow_gloves, fingerless_gloves, hair_ornament, smile, black_gloves, cleavage_cutout, garter_straps, looking_at_viewer, thighhighs, white_background |
| 6 | 10 |  |  |  |  |  | rabbit_ears, 1girl, detached_collar, fake_animal_ears, looking_at_viewer, playboy_bunny, solo, wrist_cuffs, cleavage, black_leotard, black_bowtie, strapless_leotard, rabbit_tail, simple_background, white_background, bare_shoulders, brown_pantyhose, hairband, sweatdrop |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | looking_at_viewer | open_shirt | solo | navel | blush | undressing | blue_bra | blue_panties | collarbone | lace-trimmed_bra | parted_lips | purple_bra | purple_panties | simple_background | white_shirt | collared_shirt | school_uniform | upper_body | vest | smile | white_background | black_necktie | closed_mouth | grey-framed_eyewear | short_sleeves | plaid_skirt | pleated_skirt | grey_eyes | blue_necktie | open_clothes | bare_shoulders | necklace | off-shoulder_shirt | bracelet | day | outdoors | blue_sky | cloud | red_bikini | floral_print | beach | ocean | frilled_bikini | earrings | hair_between_eyes | off_shoulder | open_mouth | elbow_gloves | fingerless_gloves | hair_ornament | black_gloves | cleavage_cutout | garter_straps | thighhighs | rabbit_ears | detached_collar | fake_animal_ears | playboy_bunny | wrist_cuffs | black_leotard | black_bowtie | strapless_leotard | rabbit_tail | brown_pantyhose | hairband | sweatdrop |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:--------------------|:-------------|:-------|:--------|:--------|:-------------|:-----------|:---------------|:-------------|:-------------------|:--------------|:-------------|:-----------------|:--------------------|:--------------|:-----------------|:-----------------|:-------------|:-------|:--------|:-------------------|:----------------|:---------------|:----------------------|:----------------|:--------------|:----------------|:------------|:---------------|:---------------|:-----------------|:-----------|:---------------------|:-----------|:------|:-----------|:-----------|:--------|:-------------|:---------------|:--------|:--------|:-----------------|:-----------|:--------------------|:---------------|:-------------|:---------------|:--------------------|:----------------|:---------------|:------------------|:----------------|:-------------|:--------------|:------------------|:-------------------|:----------------|:--------------|:----------------|:---------------|:--------------------|:--------------|:------------------|:-----------|:------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 8 |  |  |  |  |  | X | | X | | X | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | | X | | X | | | | | | | | | | | X | X | X | X | | X | X | X | | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 12 |  |  |  |  |  | X | | X | | X | | X | | | | X | | | | | X | X | | | X | | X | | | X | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 11 |  |  |  |  |  | X | X | X | | X | X | X | | | | X | | | | | | | | | X | | X | | | | X | | | | | | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | |
| 5 | 11 |  |  |  |  |  | X | | X | | X | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 6 | 10 |  |  |  |  |  | X | X | X | | X | | | | | | | | | | | X | | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/yagami_makino_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T09:23:54+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:22:45+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yagami\_makino/八神マキノ/야가미마키노 (THE iDOLM@STER: Cinderella Girls)
=========================================================================
This is the dataset of yagami\_makino/八神マキノ/야가미마키노 (THE iDOLM@STER: Cinderella Girls), containing 216 images and their tags.
The core tags of this character are 'glasses, long\_hair, breasts, brown\_hair, semi-rimless\_eyewear, purple\_eyes, purple\_hair, bangs, large\_breasts, blue\_eyes, under-rim\_eyewear, medium\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
bee09e078a47900494c5c330068af7b3c1c5099c
|
# Dataset of okazaki_yasuha/岡崎泰葉 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of okazaki_yasuha/岡崎泰葉 (THE iDOLM@STER: Cinderella Girls), containing 70 images and their tags.
The core tags of this character are `short_hair, blue_hair, black_hair, bangs, blunt_bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 70 | 65.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/okazaki_yasuha_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 70 | 45.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/okazaki_yasuha_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 152 | 87.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/okazaki_yasuha_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 70 | 60.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/okazaki_yasuha_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 152 | 114.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/okazaki_yasuha_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/okazaki_yasuha_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, solo, blush, looking_at_viewer, purple_eyes, smile, school_uniform, simple_background, open_mouth, white_background, glasses, medium_breasts, navel, necktie, skirt |
| 1 | 12 |  |  |  |  |  | 1girl, smile, open_mouth, solo, black_eyes, dress, gloves, card_(medium), character_name, flower, frills, gem_(symbol), looking_at_viewer, microphone, choker, hair_ornament |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | blush | looking_at_viewer | purple_eyes | smile | school_uniform | simple_background | open_mouth | white_background | glasses | medium_breasts | navel | necktie | skirt | black_eyes | dress | gloves | card_(medium) | character_name | flower | frills | gem_(symbol) | microphone | choker | hair_ornament |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:--------------|:--------|:-----------------|:--------------------|:-------------|:-------------------|:----------|:-----------------|:--------|:----------|:--------|:-------------|:--------|:---------|:----------------|:-----------------|:---------|:---------|:---------------|:-------------|:---------|:----------------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 1 | 12 |  |  |  |  |  | X | X | | X | | X | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/okazaki_yasuha_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T09:41:04+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:40:25+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of okazaki\_yasuha/岡崎泰葉 (THE iDOLM@STER: Cinderella Girls)
==================================================================
This is the dataset of okazaki\_yasuha/岡崎泰葉 (THE iDOLM@STER: Cinderella Girls), containing 70 images and their tags.
The core tags of this character are 'short\_hair, blue\_hair, black\_hair, bangs, blunt\_bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
5189ee92f0f2f461862a38271d89a7afd15bd71d
|
# Dataset Card for Evaluation run of NewstaR/Morningstar-13b-hf
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/NewstaR/Morningstar-13b-hf
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [NewstaR/Morningstar-13b-hf](https://huggingface.co/NewstaR/Morningstar-13b-hf) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_NewstaR__Morningstar-13b-hf",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-10-24T11:47:49.935503](https://huggingface.co/datasets/open-llm-leaderboard/details_NewstaR__Morningstar-13b-hf/blob/main/results_2023-10-24T11-47-49.935503.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"em": 0.1782718120805369,
"em_stderr": 0.003919630092588375,
"f1": 0.2387195889261742,
"f1_stderr": 0.003944947017182046,
"acc": 0.448727630233375,
"acc_stderr": 0.011074189612085313
},
"harness|drop|3": {
"em": 0.1782718120805369,
"em_stderr": 0.003919630092588375,
"f1": 0.2387195889261742,
"f1_stderr": 0.003944947017182046
},
"harness|gsm8k|5": {
"acc": 0.15238817285822592,
"acc_stderr": 0.009899572254794204
},
"harness|winogrande|5": {
"acc": 0.745067087608524,
"acc_stderr": 0.012248806969376422
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_NewstaR__Morningstar-13b-hf
|
[
"region:us"
] |
2023-09-15T09:46:47+00:00
|
{"pretty_name": "Evaluation run of NewstaR/Morningstar-13b-hf", "dataset_summary": "Dataset automatically created during the evaluation run of model [NewstaR/Morningstar-13b-hf](https://huggingface.co/NewstaR/Morningstar-13b-hf) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_NewstaR__Morningstar-13b-hf\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-10-24T11:47:49.935503](https://huggingface.co/datasets/open-llm-leaderboard/details_NewstaR__Morningstar-13b-hf/blob/main/results_2023-10-24T11-47-49.935503.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.1782718120805369,\n \"em_stderr\": 0.003919630092588375,\n \"f1\": 0.2387195889261742,\n \"f1_stderr\": 0.003944947017182046,\n \"acc\": 0.448727630233375,\n \"acc_stderr\": 0.011074189612085313\n },\n \"harness|drop|3\": {\n \"em\": 0.1782718120805369,\n \"em_stderr\": 0.003919630092588375,\n \"f1\": 0.2387195889261742,\n \"f1_stderr\": 0.003944947017182046\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.15238817285822592,\n \"acc_stderr\": 0.009899572254794204\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.745067087608524,\n \"acc_stderr\": 0.012248806969376422\n }\n}\n```", "repo_url": "https://huggingface.co/NewstaR/Morningstar-13b-hf", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|arc:challenge|25_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_10_24T11_47_49.935503", "path": ["**/details_harness|drop|3_2023-10-24T11-47-49.935503.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-10-24T11-47-49.935503.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_10_24T11_47_49.935503", "path": ["**/details_harness|gsm8k|5_2023-10-24T11-47-49.935503.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-10-24T11-47-49.935503.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hellaswag|10_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T10-46-30.957408.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T10-46-30.957408.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T10-46-30.957408.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_10_24T11_47_49.935503", "path": ["**/details_harness|winogrande|5_2023-10-24T11-47-49.935503.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-10-24T11-47-49.935503.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_09_15T10_46_30.957408", "path": ["results_2023-09-15T10-46-30.957408.parquet"]}, {"split": "2023_10_24T11_47_49.935503", "path": ["results_2023-10-24T11-47-49.935503.parquet"]}, {"split": "latest", "path": ["results_2023-10-24T11-47-49.935503.parquet"]}]}]}
|
2023-10-24T10:48:03+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of NewstaR/Morningstar-13b-hf
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model NewstaR/Morningstar-13b-hf on the Open LLM Leaderboard.
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-10-24T11:47:49.935503(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of NewstaR/Morningstar-13b-hf",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model NewstaR/Morningstar-13b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-24T11:47:49.935503(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of NewstaR/Morningstar-13b-hf",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model NewstaR/Morningstar-13b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-24T11:47:49.935503(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
21,
31,
169,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of NewstaR/Morningstar-13b-hf## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model NewstaR/Morningstar-13b-hf on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-10-24T11:47:49.935503(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
02796d59e5cd81a979c54b2280c9410bf2d80d88
|
Asian photography dataset
- [win3000](https://www.win3000.com/): about 18k asian celebrity photo.
- [jiepaigou](http://www.jiepaigou.com/): streetsnap and celebrity
- [cybesx](www.cybesx.com): about 13k street photography
|
maze/aigc
|
[
"size_categories:10K<n<100K",
"region:us"
] |
2023-09-15T10:00:24+00:00
|
{"size_categories": ["10K<n<100K"]}
|
2023-09-23T10:33:09+00:00
|
[] |
[] |
TAGS
#size_categories-10K<n<100K #region-us
|
Asian photography dataset
- win3000: about 18k asian celebrity photo.
- jiepaigou: streetsnap and celebrity
- cybesx: about 13k street photography
|
[] |
[
"TAGS\n#size_categories-10K<n<100K #region-us \n"
] |
[
18
] |
[
"passage: TAGS\n#size_categories-10K<n<100K #region-us \n"
] |
dcbed1838d474e1027a1d19dc73c752e283654cf
|
# Dataset Card for "a350d62a"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
result-kand2-sdxl-wuerst-karlo/a350d62a
|
[
"region:us"
] |
2023-09-15T10:08:20+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 179, "num_examples": 10}], "download_size": 1365, "dataset_size": 179}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T10:08:21+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "a350d62a"
More Information needed
|
[
"# Dataset Card for \"a350d62a\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"a350d62a\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"a350d62a\"\n\nMore Information needed"
] |
e4058e4d60726d78587057922dff63f2e2990913
|
# Dataset Card for "llama2_QA_Economics_230915"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
tim9510019/llama2_QA_Economics_230915
|
[
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"license:mit",
"finance",
"region:us"
] |
2023-09-15T10:09:29+00:00
|
{"language": ["en"], "license": "mit", "task_categories": ["question-answering", "text-generation"], "dataset_info": {"features": [{"name": "Question", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "Answer", "dtype": "string"}, {"name": "Source", "dtype": "int64"}, {"name": "Date", "dtype": "timestamp[ns]"}, {"name": "Type", "dtype": "int64"}, {"name": "Prompt", "dtype": "int64"}, {"name": "QuestionTokenNum", "dtype": "int64"}, {"name": "inputTokenNum", "dtype": "int64"}, {"name": "AnswerTokenNum", "dtype": "int64"}, {"name": "Agent", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5830371, "num_examples": 914}], "download_size": 1943942, "dataset_size": 5830371}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["finance"]}
|
2024-02-15T17:34:21+00:00
|
[] |
[
"en"
] |
TAGS
#task_categories-question-answering #task_categories-text-generation #language-English #license-mit #finance #region-us
|
# Dataset Card for "llama2_QA_Economics_230915"
More Information needed
|
[
"# Dataset Card for \"llama2_QA_Economics_230915\"\n\nMore Information needed"
] |
[
"TAGS\n#task_categories-question-answering #task_categories-text-generation #language-English #license-mit #finance #region-us \n",
"# Dataset Card for \"llama2_QA_Economics_230915\"\n\nMore Information needed"
] |
[
41,
23
] |
[
"passage: TAGS\n#task_categories-question-answering #task_categories-text-generation #language-English #license-mit #finance #region-us \n# Dataset Card for \"llama2_QA_Economics_230915\"\n\nMore Information needed"
] |
9d4ccc891a0cc2cb03ba2e29f5d1b1acc3a6765b
|
# Dataset of ayase_honoka (THE iDOLM@STER: Cinderella Girls)
This is the dataset of ayase_honoka (THE iDOLM@STER: Cinderella Girls), containing 139 images and their tags.
The core tags of this character are `brown_hair, brown_eyes, breasts, long_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 139 | 153.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ayase_honoka_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 139 | 93.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ayase_honoka_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 330 | 200.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ayase_honoka_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 139 | 138.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ayase_honoka_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 330 | 272.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ayase_honoka_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ayase_honoka_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 27 |  |  |  |  |  | 1girl, solo, looking_at_viewer, blush, smile, white_background, simple_background, open_mouth, black_pantyhose, serafuku, skirt |
| 1 | 7 |  |  |  |  |  | 1girl, bare_shoulders, cleavage, looking_at_viewer, solo, large_breasts, necklace, open_mouth, yellow_eyes, blush, collarbone, single_hair_bun, bangs, strapless_dress, :d, hair_flower, medium_breasts, sidelocks |
| 2 | 7 |  |  |  |  |  | 1girl, ponytail, solo, blush, hair_scrunchie, looking_at_viewer, smile, yellow_eyes, bangs, collarbone, open_mouth, blue_shirt, leg_up, leggings, medium_breasts, pantyhose, shorts, simple_background, standing_split, sweat, tied_shirt, armpits, arms_up, short_sleeves, white_background |
| 3 | 10 |  |  |  |  |  | 1girl, cat_ears, solo, neck_bell, paw_gloves, cat_paws, looking_at_viewer, bare_shoulders, blush, cat_tail, elbow_gloves, ribbon, cleavage, fishnets, garter_straps, jingle_bell, open_mouth, pink_bow, smile, thighhighs, collar, dress, halloween |
| 4 | 8 |  |  |  |  |  | 1girl, card_(medium), character_name, gem_(symbol), solo, star_(symbol), open_mouth, smile, hair_flower, blue_background, dress, microphone, yellow_eyes |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | blush | smile | white_background | simple_background | open_mouth | black_pantyhose | serafuku | skirt | bare_shoulders | cleavage | large_breasts | necklace | yellow_eyes | collarbone | single_hair_bun | bangs | strapless_dress | :d | hair_flower | medium_breasts | sidelocks | ponytail | hair_scrunchie | blue_shirt | leg_up | leggings | pantyhose | shorts | standing_split | sweat | tied_shirt | armpits | arms_up | short_sleeves | cat_ears | neck_bell | paw_gloves | cat_paws | cat_tail | elbow_gloves | ribbon | fishnets | garter_straps | jingle_bell | pink_bow | thighhighs | collar | dress | halloween | card_(medium) | character_name | gem_(symbol) | star_(symbol) | blue_background | microphone |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:--------|:--------|:-------------------|:--------------------|:-------------|:------------------|:-----------|:--------|:-----------------|:-----------|:----------------|:-----------|:--------------|:-------------|:------------------|:--------|:------------------|:-----|:--------------|:-----------------|:------------|:-----------|:-----------------|:-------------|:---------|:-----------|:------------|:---------|:-----------------|:--------|:-------------|:----------|:----------|:----------------|:-----------|:------------|:-------------|:-----------|:-----------|:---------------|:---------|:-----------|:----------------|:--------------|:-----------|:-------------|:---------|:--------|:------------|:----------------|:-----------------|:---------------|:----------------|:------------------|:-------------|
| 0 | 27 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | X | | | | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | X | X | X | X | X | X | X | | | | | | | | X | X | | X | | | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | X | X | X | X | | | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 4 | 8 |  |  |  |  |  | X | X | | | X | | | X | | | | | | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | X | X | X | X | X |
|
CyberHarem/ayase_honoka_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T10:24:48+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T23:03:10+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of ayase\_honoka (THE iDOLM@STER: Cinderella Girls)
===========================================================
This is the dataset of ayase\_honoka (THE iDOLM@STER: Cinderella Girls), containing 139 images and their tags.
The core tags of this character are 'brown\_hair, brown\_eyes, breasts, long\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
6dc04fe342e1051f1e289a7d902359b4140d50e8
|
# Indian Diabetic Retinopathy Image Dataset (IDRiD)
This dataset is the disease grading portion of the IDRiD.
The original source of the dataset is here: https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
|
amin-nejad/idrid-disease-grading
|
[
"task_categories:image-classification",
"size_categories:n<1K",
"language:en",
"license:cc-by-4.0",
"medical",
"region:us"
] |
2023-09-15T10:36:42+00:00
|
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["n<1K"], "task_categories": ["image-classification"], "pretty_name": "IDRiD Disease Grading", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "a_noDR", "1": "b_mildDR", "2": "c_moderateDR", "3": "d_severeDR", "4": "e_proDR"}}}}], "splits": [{"name": "train", "num_bytes": 166058061, "num_examples": 413}, {"name": "test", "num_bytes": 46195500, "num_examples": 103}], "download_size": 203477506, "dataset_size": 212253561}, "tags": ["medical"]}
|
2023-09-17T16:00:26+00:00
|
[] |
[
"en"
] |
TAGS
#task_categories-image-classification #size_categories-n<1K #language-English #license-cc-by-4.0 #medical #region-us
|
# Indian Diabetic Retinopathy Image Dataset (IDRiD)
This dataset is the disease grading portion of the IDRiD.
The original source of the dataset is here: URL
|
[
"# Indian Diabetic Retinopathy Image Dataset (IDRiD)\n\nThis dataset is the disease grading portion of the IDRiD.\n\nThe original source of the dataset is here: URL"
] |
[
"TAGS\n#task_categories-image-classification #size_categories-n<1K #language-English #license-cc-by-4.0 #medical #region-us \n",
"# Indian Diabetic Retinopathy Image Dataset (IDRiD)\n\nThis dataset is the disease grading portion of the IDRiD.\n\nThe original source of the dataset is here: URL"
] |
[
43,
42
] |
[
"passage: TAGS\n#task_categories-image-classification #size_categories-n<1K #language-English #license-cc-by-4.0 #medical #region-us \n# Indian Diabetic Retinopathy Image Dataset (IDRiD)\n\nThis dataset is the disease grading portion of the IDRiD.\n\nThe original source of the dataset is here: URL"
] |
1701064cb6c8dbbb28298e6031bb1235740b19fe
|
# Dataset Card for "stock_news_sentiment"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ic-fspml/stock_news_sentiment
|
[
"region:us"
] |
2023-09-15T10:37:04+00:00
|
{"dataset_info": {"features": [{"name": "ticker", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "sector", "dtype": "string"}, {"name": "article_date", "dtype": "timestamp[ns, tz=UTC]"}, {"name": "article_headline", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 31727430, "num_examples": 200998}, {"name": "validation", "num_bytes": 3172024, "num_examples": 20100}, {"name": "test", "num_bytes": 4753186, "num_examples": 30150}], "download_size": 20803817, "dataset_size": 39652640}}
|
2023-09-15T10:37:23+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "stock_news_sentiment"
More Information needed
|
[
"# Dataset Card for \"stock_news_sentiment\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"stock_news_sentiment\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"stock_news_sentiment\"\n\nMore Information needed"
] |
e17e21a962ce9b1f41091913d51675caf2f60e16
|
# Dataset of zaizen_tokiko/財前時子 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of zaizen_tokiko/財前時子 (THE iDOLM@STER: Cinderella Girls), containing 197 images and their tags.
The core tags of this character are `long_hair, brown_eyes, brown_hair, breasts, red_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 197 | 201.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zaizen_tokiko_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 197 | 139.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zaizen_tokiko_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 395 | 248.16 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zaizen_tokiko_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 197 | 185.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zaizen_tokiko_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 395 | 315.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/zaizen_tokiko_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/zaizen_tokiko_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 10 |  |  |  |  |  | 1girl, looking_at_viewer, solo, large_breasts, simple_background, white_background, earrings, handbag, necklace, skirt, smile, yellow_eyes, bracelet, dated, dress, holding, open_mouth, shirt, signature, upper_body |
| 1 | 11 |  |  |  |  |  | 1girl, hair_ornament, solo, cleavage, navel, thighhighs, whip, garter_straps, black_gloves, flower, looking_at_viewer, smile, bare_shoulders, earrings, elbow_gloves, open_mouth |
| 2 | 7 |  |  |  |  |  | 1girl, solo, smile, card_(medium), character_name, sun_symbol, necklace, orange_background, skirt, sparkle |
| 3 | 5 |  |  |  |  |  | 1girl, necklace, sitting, barefoot, holding_phone, smartphone, soles, toes, 1boy, cleavage, femdom, foot_focus, foreshortening, hetero, penis, shoes_removed, toenail_polish, clothed_female_nude_male, english_text, erection, footjob, handjob, high_heels, indoors, jacket, medium_breasts, on_back, on_bed, parted_lips, solo, sweat, uncensored |
| 4 | 9 |  |  |  |  |  | 1girl, solo, looking_at_viewer, blue_serafuku, pleated_skirt, blue_skirt, full_body, hair_bow, open_mouth, shoes |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | large_breasts | simple_background | white_background | earrings | handbag | necklace | skirt | smile | yellow_eyes | bracelet | dated | dress | holding | open_mouth | shirt | signature | upper_body | hair_ornament | cleavage | navel | thighhighs | whip | garter_straps | black_gloves | flower | bare_shoulders | elbow_gloves | card_(medium) | character_name | sun_symbol | orange_background | sparkle | sitting | barefoot | holding_phone | smartphone | soles | toes | 1boy | femdom | foot_focus | foreshortening | hetero | penis | shoes_removed | toenail_polish | clothed_female_nude_male | english_text | erection | footjob | handjob | high_heels | indoors | jacket | medium_breasts | on_back | on_bed | parted_lips | sweat | uncensored | blue_serafuku | pleated_skirt | blue_skirt | full_body | hair_bow | shoes |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:----------------|:--------------------|:-------------------|:-----------|:----------|:-----------|:--------|:--------|:--------------|:-----------|:--------|:--------|:----------|:-------------|:--------|:------------|:-------------|:----------------|:-----------|:--------|:-------------|:-------|:----------------|:---------------|:---------|:-----------------|:---------------|:----------------|:-----------------|:-------------|:--------------------|:----------|:----------|:-----------|:----------------|:-------------|:--------|:-------|:-------|:---------|:-------------|:-----------------|:---------|:--------|:----------------|:-----------------|:---------------------------|:---------------|:-----------|:----------|:----------|:-------------|:----------|:---------|:-----------------|:----------|:---------|:--------------|:--------|:-------------|:----------------|:----------------|:-------------|:------------|:-----------|:--------|
| 0 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | X | X | | | | X | | | | X | | | | | | X | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | | X | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | | X | | | | | | X | | | | | | | | | | | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 4 | 9 |  |  |  |  |  | X | X | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X |
|
CyberHarem/zaizen_tokiko_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T10:37:22+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:44:20+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of zaizen\_tokiko/財前時子 (THE iDOLM@STER: Cinderella Girls)
=================================================================
This is the dataset of zaizen\_tokiko/財前時子 (THE iDOLM@STER: Cinderella Girls), containing 197 images and their tags.
The core tags of this character are 'long\_hair, brown\_eyes, brown\_hair, breasts, red\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
9f2342e6eff088a6ed209c0b6620da53eedc47a6
|
# Dataset of yao_feifei/楊菲菲 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of yao_feifei/楊菲菲 (THE iDOLM@STER: Cinderella Girls), containing 47 images and their tags.
The core tags of this character are `green_eyes, black_hair, hair_bun, double_bun, short_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 47 | 32.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yao_feifei_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 47 | 29.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yao_feifei_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 88 | 48.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yao_feifei_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 47 | 32.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yao_feifei_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 88 | 51.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yao_feifei_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/yao_feifei_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, solo, card_(medium), character_name, flower_(symbol), smile, open_mouth, skirt, bun_cover, pink_background, bow, detached_sleeves, hair_ornament, jewelry, one_eye_closed, thighhighs |
| 1 | 11 |  |  |  |  |  | 1girl, bun_cover, smile, solo, china_dress, open_mouth, blush, brown_hair |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | card_(medium) | character_name | flower_(symbol) | smile | open_mouth | skirt | bun_cover | pink_background | bow | detached_sleeves | hair_ornament | jewelry | one_eye_closed | thighhighs | china_dress | blush | brown_hair |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------------|:-----------------|:------------------|:--------|:-------------|:--------|:------------|:------------------|:------|:-------------------|:----------------|:----------|:-----------------|:-------------|:--------------|:--------|:-------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | |
| 1 | 11 |  |  |  |  |  | X | X | | | | X | X | | X | | | | | | | | X | X | X |
|
CyberHarem/yao_feifei_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T10:38:10+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:24:01+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of yao\_feifei/楊菲菲 (THE iDOLM@STER: Cinderella Girls)
=============================================================
This is the dataset of yao\_feifei/楊菲菲 (THE iDOLM@STER: Cinderella Girls), containing 47 images and their tags.
The core tags of this character are 'green\_eyes, black\_hair, hair\_bun, double\_bun, short\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
00349cb980a38a68a1638f860e944a3bddabd5a7
|
# Dataset Card for "svarah1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Bhargav0044/svarah1
|
[
"region:us"
] |
2023-09-15T10:50:16+00:00
|
{"dataset_info": {"features": [{"name": "duration", "dtype": "float64"}, {"name": "text", "dtype": "string"}, {"name": "audio", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 1088092036.104, "num_examples": 6656}], "download_size": 1094811785, "dataset_size": 1088092036.104}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T11:08:10+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "svarah1"
More Information needed
|
[
"# Dataset Card for \"svarah1\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"svarah1\"\n\nMore Information needed"
] |
[
6,
13
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"svarah1\"\n\nMore Information needed"
] |
0466b3cb72c4edfabb622a5eaf22960e4ede96cb
|
# Dataset of こがねいこいと
This is the dataset of こがねいこいと, containing 300 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:------------|---------:|:------------------------------------|:-------------------------------------------------------------------------|
| raw | 300 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 631 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| 384x512 | 300 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x512 | 300 | [Download](dataset-512x512.zip) | 512x512 aligned dataset. |
| 512x704 | 300 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x640 | 300 | [Download](dataset-640x640.zip) | 640x640 aligned dataset. |
| 640x880 | 300 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 631 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 631 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-1200 | 631 | [Download](dataset-stage3-1200.zip) | 3-stage cropped dataset with the shorter side not exceeding 1200 pixels. |
|
CyberHarem/koganeikoito_edomaeelf
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T10:51:31+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2023-09-17T16:39:13+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of こがねいこいと
==================
This is the dataset of こがねいこいと, containing 300 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
|
[] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
[
44
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
25a44359f85fdef3034448ad232f46aba29627b4
|
# Dataset Card for "stock_news_sentiment_instructions_format"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ic-fspml/stock_news_sentiment_instructions_format
|
[
"region:us"
] |
2023-09-15T11:06:39+00:00
|
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 96060614, "num_examples": 200998}, {"name": "validation", "num_bytes": 9605493, "num_examples": 20100}, {"name": "test", "num_bytes": 14402769, "num_examples": 30150}], "download_size": 20619051, "dataset_size": 120068876}}
|
2023-09-15T11:20:32+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "stock_news_sentiment_instructions_format"
More Information needed
|
[
"# Dataset Card for \"stock_news_sentiment_instructions_format\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"stock_news_sentiment_instructions_format\"\n\nMore Information needed"
] |
[
6,
21
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"stock_news_sentiment_instructions_format\"\n\nMore Information needed"
] |
d3f2f5751732f9ba93c8f703604ad3d71f915065
|
# Dataset of kurokawa_chiaki/黒川千秋 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of kurokawa_chiaki/黒川千秋 (THE iDOLM@STER: Cinderella Girls), containing 87 images and their tags.
The core tags of this character are `long_hair, black_hair, brown_eyes, breasts, bangs, blunt_bangs, medium_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 87 | 78.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kurokawa_chiaki_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 87 | 61.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kurokawa_chiaki_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 178 | 109.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kurokawa_chiaki_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 87 | 76.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kurokawa_chiaki_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 178 | 131.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kurokawa_chiaki_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kurokawa_chiaki_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, cleavage, solo, day, navel, outdoors, smile, blue_sky, cloud, looking_at_viewer, blush, collarbone, water, ocean, bare_shoulders, nail_polish, open_mouth, red_bikini |
| 1 | 7 |  |  |  |  |  | 1girl, card_(medium), character_name, gem_(symbol), solo, dress, star_(symbol), blue_background, necklace, smile, bracelet |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | solo | day | navel | outdoors | smile | blue_sky | cloud | looking_at_viewer | blush | collarbone | water | ocean | bare_shoulders | nail_polish | open_mouth | red_bikini | card_(medium) | character_name | gem_(symbol) | dress | star_(symbol) | blue_background | necklace | bracelet |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:-------|:------|:--------|:-----------|:--------|:-----------|:--------|:--------------------|:--------|:-------------|:--------|:--------|:-----------------|:--------------|:-------------|:-------------|:----------------|:-----------------|:---------------|:--------|:----------------|:------------------|:-----------|:-----------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | | X | | | | X | | | | | | | | | | | | X | X | X | X | X | X | X | X |
|
CyberHarem/kurokawa_chiaki_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:15:58+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:26:10+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kurokawa\_chiaki/黒川千秋 (THE iDOLM@STER: Cinderella Girls)
===================================================================
This is the dataset of kurokawa\_chiaki/黒川千秋 (THE iDOLM@STER: Cinderella Girls), containing 87 images and their tags.
The core tags of this character are 'long\_hair, black\_hair, brown\_eyes, breasts, bangs, blunt\_bangs, medium\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
5e79abb775882fc63c3deabfc57999eb647e3c03
|
# Dataset of エルダ
This is the dataset of エルダ, containing 300 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:------------|---------:|:------------------------------------|:-------------------------------------------------------------------------|
| raw | 300 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 667 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| 384x512 | 300 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x512 | 300 | [Download](dataset-512x512.zip) | 512x512 aligned dataset. |
| 512x704 | 300 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x640 | 300 | [Download](dataset-640x640.zip) | 640x640 aligned dataset. |
| 640x880 | 300 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 667 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 667 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-1200 | 667 | [Download](dataset-stage3-1200.zip) | 3-stage cropped dataset with the shorter side not exceeding 1200 pixels. |
|
CyberHarem/eruda_edomaeelf
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:29:14+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2023-09-17T16:39:17+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of エルダ
==============
This is the dataset of エルダ, containing 300 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
|
[] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
[
44
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
ba79ff5dcbcd4ce45adf78efaab2d1e5fad22559
|
# Dataset of seki_hiromi/関裕美/세키히로미 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of seki_hiromi/関裕美/세키히로미 (THE iDOLM@STER: Cinderella Girls), containing 180 images and their tags.
The core tags of this character are `long_hair, brown_hair, red_eyes, wavy_hair, braid, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 180 | 193.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/seki_hiromi_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 180 | 126.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/seki_hiromi_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 379 | 249.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/seki_hiromi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 180 | 177.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/seki_hiromi_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 379 | 337.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/seki_hiromi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/seki_hiromi_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 18 |  |  |  |  |  | 1girl, solo, forehead, looking_at_viewer, blush, necklace, simple_background, white_background, pink_dress, smile, open_mouth, upper_body, bow, short_sleeves |
| 1 | 13 |  |  |  |  |  | 1girl, solo, curly_hair, necklace, smile, open_mouth, card_(medium), character_name, flower_(symbol), bracelet, dress, hair_flower |
| 2 | 6 |  |  |  |  |  | 1girl, blue_sky, blush, day, open_mouth, solo, cloud, looking_at_viewer, navel, outdoors, collarbone, forehead, :d, bare_shoulders, cleavage, horizon, medium_breasts, ocean, pink_bikini |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | forehead | looking_at_viewer | blush | necklace | simple_background | white_background | pink_dress | smile | open_mouth | upper_body | bow | short_sleeves | curly_hair | card_(medium) | character_name | flower_(symbol) | bracelet | dress | hair_flower | blue_sky | day | cloud | navel | outdoors | collarbone | :d | bare_shoulders | cleavage | horizon | medium_breasts | ocean | pink_bikini |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-----------|:--------------------|:--------|:-----------|:--------------------|:-------------------|:-------------|:--------|:-------------|:-------------|:------|:----------------|:-------------|:----------------|:-----------------|:------------------|:-----------|:--------|:--------------|:-----------|:------|:--------|:--------|:-----------|:-------------|:-----|:-----------------|:-----------|:----------|:-----------------|:--------|:--------------|
| 0 | 18 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | | | | X | | | | X | X | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | X | X | X | | | | | | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/seki_hiromi_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:30:49+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T18:26:14+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of seki\_hiromi/関裕美/세키히로미 (THE iDOLM@STER: Cinderella Girls)
====================================================================
This is the dataset of seki\_hiromi/関裕美/세키히로미 (THE iDOLM@STER: Cinderella Girls), containing 180 images and their tags.
The core tags of this character are 'long\_hair, brown\_hair, red\_eyes, wavy\_hair, braid, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
4f3d8d7303bc6109034e05519ef8a53358ce310a
|
# Dataset of saejima_kiyomi/冴島清美 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of saejima_kiyomi/冴島清美 (THE iDOLM@STER: Cinderella Girls), containing 59 images and their tags.
The core tags of this character are `black_hair, short_hair, black_eyes, bangs, glasses`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 59 | 65.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saejima_kiyomi_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 59 | 40.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saejima_kiyomi_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 131 | 77.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saejima_kiyomi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 59 | 60.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saejima_kiyomi_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 131 | 107.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/saejima_kiyomi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/saejima_kiyomi_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, open_mouth, smile, solo, looking_at_viewer, armband, bow, microphone, skirt, blush, dress, idol, thighhighs, wrist_cuffs, frills, hair_ornament, hairband, one_eye_closed |
| 1 | 11 |  |  |  |  |  | 1girl, solo, armband, blush, looking_at_viewer, white_shirt, open_mouth, school_uniform, short_sleeves, short_twintails, simple_background, smile, white_background, brown_dress, brown_hair, collared_shirt, low_twintails, parted_bangs, red_bowtie |
| 2 | 6 |  |  |  |  |  | 1girl, smile, solo, bracelet, dress, earrings, elbow_gloves, hairband, necklace, one_eye_closed, black_gloves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | smile | solo | looking_at_viewer | armband | bow | microphone | skirt | blush | dress | idol | thighhighs | wrist_cuffs | frills | hair_ornament | hairband | one_eye_closed | white_shirt | school_uniform | short_sleeves | short_twintails | simple_background | white_background | brown_dress | brown_hair | collared_shirt | low_twintails | parted_bangs | red_bowtie | bracelet | earrings | elbow_gloves | necklace | black_gloves |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:--------|:-------|:--------------------|:----------|:------|:-------------|:--------|:--------|:--------|:-------|:-------------|:--------------|:---------|:----------------|:-----------|:-----------------|:--------------|:-----------------|:----------------|:------------------|:--------------------|:-------------------|:--------------|:-------------|:-----------------|:----------------|:---------------|:-------------|:-----------|:-----------|:---------------|:-----------|:---------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | X | X | X | X | X | | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | |
| 2 | 6 |  |  |  |  |  | X | | X | X | | | | | | | X | | | | | | X | X | | | | | | | | | | | | | X | X | X | X | X |
|
CyberHarem/saejima_kiyomi_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:34:04+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:40:39+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of saejima\_kiyomi/冴島清美 (THE iDOLM@STER: Cinderella Girls)
==================================================================
This is the dataset of saejima\_kiyomi/冴島清美 (THE iDOLM@STER: Cinderella Girls), containing 59 images and their tags.
The core tags of this character are 'black\_hair, short\_hair, black\_eyes, bangs, glasses', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
d20958bfbc9ccb358bf6701ea6b0bdc48aa9fa4e
|
# Dataset of matsuyama_kumiko/松山久美子 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of matsuyama_kumiko/松山久美子 (THE iDOLM@STER: Cinderella Girls), containing 50 images and their tags.
The core tags of this character are `long_hair, brown_hair, green_eyes, breasts, medium_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 50 | 41.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuyama_kumiko_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 50 | 28.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuyama_kumiko_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 91 | 50.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuyama_kumiko_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 50 | 37.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuyama_kumiko_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 91 | 63.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsuyama_kumiko_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/matsuyama_kumiko_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, solo, smile, looking_at_viewer, dress, hair_ornament, blush, cleavage, elbow_gloves, open_mouth, bare_shoulders, flower |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | looking_at_viewer | dress | hair_ornament | blush | cleavage | elbow_gloves | open_mouth | bare_shoulders | flower |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:--------|:----------------|:--------|:-----------|:---------------|:-------------|:-----------------|:---------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/matsuyama_kumiko_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:45:17+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:53:33+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of matsuyama\_kumiko/松山久美子 (THE iDOLM@STER: Cinderella Girls)
=====================================================================
This is the dataset of matsuyama\_kumiko/松山久美子 (THE iDOLM@STER: Cinderella Girls), containing 50 images and their tags.
The core tags of this character are 'long\_hair, brown\_hair, green\_eyes, breasts, medium\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
eff8236261015f03d1f59093812149bb716d3e71
|
# Dataset of さくらばこま
This is the dataset of さくらばこま, containing 94 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:------------|---------:|:------------------------------------|:-------------------------------------------------------------------------|
| raw | 94 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 209 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| 384x512 | 94 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x512 | 94 | [Download](dataset-512x512.zip) | 512x512 aligned dataset. |
| 512x704 | 94 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x640 | 94 | [Download](dataset-640x640.zip) | 640x640 aligned dataset. |
| 640x880 | 94 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 209 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 209 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-1200 | 209 | [Download](dataset-stage3-1200.zip) | 3-stage cropped dataset with the shorter side not exceeding 1200 pixels. |
|
CyberHarem/sakurabakoma_edomaeelf
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:46:00+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2023-09-17T16:39:25+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of さくらばこま
=================
This is the dataset of さくらばこま, containing 94 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
|
[] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
[
44
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
eeba1c54c5068d302c7e67d68188692ac3079851
|
# Dataset of こがねいこゆず
This is the dataset of こがねいこゆず, containing 80 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:------------|---------:|:------------------------------------|:-------------------------------------------------------------------------|
| raw | 80 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 182 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| 384x512 | 80 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x512 | 80 | [Download](dataset-512x512.zip) | 512x512 aligned dataset. |
| 512x704 | 80 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x640 | 80 | [Download](dataset-640x640.zip) | 640x640 aligned dataset. |
| 640x880 | 80 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 182 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 182 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-1200 | 182 | [Download](dataset-stage3-1200.zip) | 3-stage cropped dataset with the shorter side not exceeding 1200 pixels. |
|
CyberHarem/koganeikoyuzu_edomaeelf
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T11:56:46+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2023-09-17T16:39:27+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of こがねいこゆず
==================
This is the dataset of こがねいこゆず, containing 80 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
|
[] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
[
44
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
e50447ff44b9f27b125c9c756f9ee5e82a2da080
|
# Dataset of nagatomi_hasumi/長富蓮実 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of nagatomi_hasumi/長富蓮実 (THE iDOLM@STER: Cinderella Girls), containing 56 images and their tags.
The core tags of this character are `brown_hair, brown_eyes, short_hair, hairband, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 56 | 53.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagatomi_hasumi_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 56 | 40.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagatomi_hasumi_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 126 | 81.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagatomi_hasumi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 56 | 50.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagatomi_hasumi_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 126 | 97.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nagatomi_hasumi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/nagatomi_hasumi_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------|
| 0 | 19 |  |  |  |  |  | 1girl, solo, open_mouth, dress, blush, looking_at_viewer, :d, puffy_short_sleeves, breasts, flower, gloves |
| 1 | 6 |  |  |  |  |  | 1girl, smile, solo, card_(medium), character_name, flower_(symbol), gloves, earrings, microphone, star_(symbol) |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | open_mouth | dress | blush | looking_at_viewer | :d | puffy_short_sleeves | breasts | flower | gloves | smile | card_(medium) | character_name | flower_(symbol) | earrings | microphone | star_(symbol) |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------------|:--------|:--------|:--------------------|:-----|:----------------------|:----------|:---------|:---------|:--------|:----------------|:-----------------|:------------------|:-----------|:-------------|:----------------|
| 0 | 19 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | | | | | | | | | X | X | X | X | X | X | X | X |
|
CyberHarem/nagatomi_hasumi_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T12:01:03+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:25:26+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of nagatomi\_hasumi/長富蓮実 (THE iDOLM@STER: Cinderella Girls)
===================================================================
This is the dataset of nagatomi\_hasumi/長富蓮実 (THE iDOLM@STER: Cinderella Girls), containing 56 images and their tags.
The core tags of this character are 'brown\_hair, brown\_eyes, short\_hair, hairband, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
c144a2ff0165edf8d95a1d6db571eaf46b409088
|
# Dataset Card for "cleaned_xsum-faith-test-set-with-faithfulness-annotation"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mtc/cleaned_xsum-faith-test-set-with-faithfulness-annotation
|
[
"region:us"
] |
2023-09-15T12:08:05+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "bbcid", "dtype": "int64"}, {"name": "summary", "dtype": "string"}, {"name": "is_faithful", "dtype": "bool"}, {"name": "majority_hallucination_type", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "test", "num_bytes": 4035576, "num_examples": 1909}], "download_size": 626317, "dataset_size": 4035576}}
|
2023-09-15T12:08:07+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "cleaned_xsum-faith-test-set-with-faithfulness-annotation"
More Information needed
|
[
"# Dataset Card for \"cleaned_xsum-faith-test-set-with-faithfulness-annotation\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"cleaned_xsum-faith-test-set-with-faithfulness-annotation\"\n\nMore Information needed"
] |
[
6,
33
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"cleaned_xsum-faith-test-set-with-faithfulness-annotation\"\n\nMore Information needed"
] |
b4f5946ee4830fb92824518399f1ddb10b2c4021
|
# Dataset Card for "avatar_prompts"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Falah/avatar_prompts
|
[
"region:us"
] |
2023-09-15T12:08:34+00:00
|
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1508885, "num_examples": 5000}], "download_size": 203485, "dataset_size": 1508885}}
|
2023-09-15T12:08:36+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "avatar_prompts"
More Information needed
|
[
"# Dataset Card for \"avatar_prompts\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"avatar_prompts\"\n\nMore Information needed"
] |
[
6,
16
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"avatar_prompts\"\n\nMore Information needed"
] |
25f6a0f56d693b3a88480f13f64a9ff0a8c73511
|
# Dataset of wakiyama_tamami/脇山珠美 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of wakiyama_tamami/脇山珠美 (THE iDOLM@STER: Cinderella Girls), containing 70 images and their tags.
The core tags of this character are `short_hair, ahoge, brown_hair, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 70 | 57.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakiyama_tamami_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 70 | 43.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakiyama_tamami_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 141 | 79.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakiyama_tamami_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 70 | 54.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakiyama_tamami_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 141 | 97.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakiyama_tamami_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/wakiyama_tamami_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 7 |  |  |  |  |  | 1girl, solo, holding, looking_at_viewer, simple_background, smile, white_background, skirt, blush, hakama, katana, sheath |
| 1 | 8 |  |  |  |  |  | hair_flower, smile, 1girl, open_mouth, solo, blush, japanese_clothes, looking_at_viewer, detached_sleeves, floral_print, one_eye_closed, skirt, stage, microphone, sandals, white_thighhighs, wide_sleeves |
| 2 | 6 |  |  |  |  |  | 1girl, solo, skirt, smile, open_mouth, umbrella, blush, rain, striped |
| 3 | 5 |  |  |  |  |  | 1girl, blush, looking_at_viewer, navel, nipples, small_breasts, open_mouth, solo, female_pubic_hair, nude, flat_chest, pussy, sitting, tears, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | holding | looking_at_viewer | simple_background | smile | white_background | skirt | blush | hakama | katana | sheath | hair_flower | open_mouth | japanese_clothes | detached_sleeves | floral_print | one_eye_closed | stage | microphone | sandals | white_thighhighs | wide_sleeves | umbrella | rain | striped | navel | nipples | small_breasts | female_pubic_hair | nude | flat_chest | pussy | sitting | tears |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:--------------------|:--------------------|:--------|:-------------------|:--------|:--------|:---------|:---------|:---------|:--------------|:-------------|:-------------------|:-------------------|:---------------|:-----------------|:--------|:-------------|:----------|:-------------------|:---------------|:-----------|:-------|:----------|:--------|:----------|:----------------|:--------------------|:-------|:-------------|:--------|:----------|:--------|
| 0 | 7 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 8 |  |  |  |  |  | X | X | | X | | X | | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | | | | X | | X | X | | | | | X | | | | | | | | | | X | X | X | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | | X | | | X | | X | | | | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X |
|
CyberHarem/wakiyama_tamami_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T12:19:57+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T18:56:16+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of wakiyama\_tamami/脇山珠美 (THE iDOLM@STER: Cinderella Girls)
===================================================================
This is the dataset of wakiyama\_tamami/脇山珠美 (THE iDOLM@STER: Cinderella Girls), containing 70 images and their tags.
The core tags of this character are 'short\_hair, ahoge, brown\_hair, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
22bdbd2e388aed29c5bf137234045f2bf805d783
|
# Dataset of tsuchiya_ako/土屋亜子 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of tsuchiya_ako/土屋亜子 (THE iDOLM@STER: Cinderella Girls), containing 57 images and their tags.
The core tags of this character are `brown_hair, glasses, short_hair, hair_ornament, green_eyes, ahoge, hairclip, mole, mole_under_mouth, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 57 | 49.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tsuchiya_ako_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 57 | 38.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tsuchiya_ako_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 114 | 69.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tsuchiya_ako_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 57 | 46.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tsuchiya_ako_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 114 | 82.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tsuchiya_ako_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/tsuchiya_ako_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, solo, midriff, navel, skirt, thighhighs, brown-framed_eyewear, open_mouth, :d, belt, card_(medium), character_name, orange_background, sun_symbol |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | midriff | navel | skirt | thighhighs | brown-framed_eyewear | open_mouth | :d | belt | card_(medium) | character_name | orange_background | sun_symbol |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:--------|:--------|:-------------|:-----------------------|:-------------|:-----|:-------|:----------------|:-----------------|:--------------------|:-------------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/tsuchiya_ako_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T12:36:57+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:06:44+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of tsuchiya\_ako/土屋亜子 (THE iDOLM@STER: Cinderella Girls)
================================================================
This is the dataset of tsuchiya\_ako/土屋亜子 (THE iDOLM@STER: Cinderella Girls), containing 57 images and their tags.
The core tags of this character are 'brown\_hair, glasses, short\_hair, hair\_ornament, green\_eyes, ahoge, hairclip, mole, mole\_under\_mouth, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
cf07a41e90b7abf57c6292f469e1a8c90ed39493
|
# Dataset Card for Evaluation run of elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0](https://huggingface.co/elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_elliotthwang__Elliott-Chinese-LLaMa-GPTQ-V1.0",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-10-24T08:24:36.044591](https://huggingface.co/datasets/open-llm-leaderboard/details_elliotthwang__Elliott-Chinese-LLaMa-GPTQ-V1.0/blob/main/results_2023-10-24T08-24-36.044591.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"em": 0.12867030201342283,
"em_stderr": 0.0034290204072982104,
"f1": 0.1718718540268448,
"f1_stderr": 0.003496594195892869,
"acc": 0.44868664105990225,
"acc_stderr": 0.01150013911847789
},
"harness|drop|3": {
"em": 0.12867030201342283,
"em_stderr": 0.0034290204072982104,
"f1": 0.1718718540268448,
"f1_stderr": 0.003496594195892869
},
"harness|gsm8k|5": {
"acc": 0.17361637604245642,
"acc_stderr": 0.010433463221257619
},
"harness|winogrande|5": {
"acc": 0.7237569060773481,
"acc_stderr": 0.012566815015698162
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_elliotthwang__Elliott-Chinese-LLaMa-GPTQ-V1.0
|
[
"region:us"
] |
2023-09-15T12:41:37+00:00
|
{"pretty_name": "Evaluation run of elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0", "dataset_summary": "Dataset automatically created during the evaluation run of model [elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0](https://huggingface.co/elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_elliotthwang__Elliott-Chinese-LLaMa-GPTQ-V1.0\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-10-24T08:24:36.044591](https://huggingface.co/datasets/open-llm-leaderboard/details_elliotthwang__Elliott-Chinese-LLaMa-GPTQ-V1.0/blob/main/results_2023-10-24T08-24-36.044591.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.12867030201342283,\n \"em_stderr\": 0.0034290204072982104,\n \"f1\": 0.1718718540268448,\n \"f1_stderr\": 0.003496594195892869,\n \"acc\": 0.44868664105990225,\n \"acc_stderr\": 0.01150013911847789\n },\n \"harness|drop|3\": {\n \"em\": 0.12867030201342283,\n \"em_stderr\": 0.0034290204072982104,\n \"f1\": 0.1718718540268448,\n \"f1_stderr\": 0.003496594195892869\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.17361637604245642,\n \"acc_stderr\": 0.010433463221257619\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7237569060773481,\n \"acc_stderr\": 0.012566815015698162\n }\n}\n```", "repo_url": "https://huggingface.co/elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|arc:challenge|25_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_10_24T08_24_36.044591", "path": ["**/details_harness|drop|3_2023-10-24T08-24-36.044591.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-10-24T08-24-36.044591.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_10_24T08_24_36.044591", "path": ["**/details_harness|gsm8k|5_2023-10-24T08-24-36.044591.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-10-24T08-24-36.044591.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hellaswag|10_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-management|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-virology|5_2023-09-15T13-41-24.143261.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T13-41-24.143261.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-09-15T13-41-24.143261.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_10_24T08_24_36.044591", "path": ["**/details_harness|winogrande|5_2023-10-24T08-24-36.044591.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-10-24T08-24-36.044591.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_09_15T13_41_24.143261", "path": ["results_2023-09-15T13-41-24.143261.parquet"]}, {"split": "2023_10_24T08_24_36.044591", "path": ["results_2023-10-24T08-24-36.044591.parquet"]}, {"split": "latest", "path": ["results_2023-10-24T08-24-36.044591.parquet"]}]}]}
|
2023-10-24T07:24:49+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0 on the Open LLM Leaderboard.
The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-10-24T08:24:36.044591(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-24T08:24:36.044591(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-10-24T08:24:36.044591(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
31,
31,
179,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model elliotthwang/Elliott-Chinese-LLaMa-GPTQ-V1.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the agregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-10-24T08:24:36.044591(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
c401138fe039be411b2f8b9c056fb02bd86d8e16
|
GPTQ quantization of https://huggingface.co/PygmalionAI/pygmalion-6b/commit/b8344bb4eb76a437797ad3b19420a13922aaabe1
Using this repository: https://github.com/mayaeary/GPTQ-for-LLaMa/tree/gptj-v2
Command:
```
python3 gptj.py models/pygmalion-6b_b8344bb4eb76a437797ad3b19420a13922aaabe1 c4 --wbits 4 --groupsize 128 --save_safetensors models/pygmalion-6b-4bit-128g.safetensors
```
|
MIND-INTERFACES/ELIZA-EVOL-INSTRUCT
|
[
"language:en",
"license:creativeml-openrail-m",
"text generation",
"conversational",
"gptq",
"4bit",
"region:us"
] |
2023-09-15T12:47:04+00:00
|
{"language": ["en"], "license": "creativeml-openrail-m", "tags": ["text generation", "conversational", "gptq", "4bit"], "inference": false, "pipeline_tag": "text-generation"}
|
2023-09-15T13:59:00+00:00
|
[] |
[
"en"
] |
TAGS
#language-English #license-creativeml-openrail-m #text generation #conversational #gptq #4bit #region-us
|
GPTQ quantization of URL
Using this repository: URL
Command:
|
[] |
[
"TAGS\n#language-English #license-creativeml-openrail-m #text generation #conversational #gptq #4bit #region-us \n"
] |
[
36
] |
[
"passage: TAGS\n#language-English #license-creativeml-openrail-m #text generation #conversational #gptq #4bit #region-us \n"
] |
ab47c2abaf025d0cf9044d8568fd50b52c2bcda2
|
# Dataset Card for "spanish_dataset_for_donut"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Lanave/spanish_dataset_for_donut
|
[
"region:us"
] |
2023-09-15T12:47:44+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 34918115633.4, "num_examples": 399150}, {"name": "validation", "num_bytes": 4328647400.5, "num_examples": 50650}, {"name": "test", "num_bytes": 4559977530.8, "num_examples": 50200}], "download_size": 42784854716, "dataset_size": 43806740564.700005}}
|
2023-09-15T19:21:23+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "spanish_dataset_for_donut"
More Information needed
|
[
"# Dataset Card for \"spanish_dataset_for_donut\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"spanish_dataset_for_donut\"\n\nMore Information needed"
] |
[
6,
20
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"spanish_dataset_for_donut\"\n\nMore Information needed"
] |
04e0cd2ee8b69593f9f13569952cff4e14e6b897
|
# Dataset of wakui_rumi/和久井留美 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of wakui_rumi/和久井留美 (THE iDOLM@STER: Cinderella Girls), containing 46 images and their tags.
The core tags of this character are `short_hair, blue_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 46 | 34.06 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakui_rumi_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 46 | 27.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakui_rumi_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 98 | 49.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakui_rumi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 46 | 33.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakui_rumi_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 98 | 59.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wakui_rumi_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/wakui_rumi_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------|
| 0 | 46 |  |  |  |  |  | 1girl, solo, blush, jewelry, looking_at_viewer, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | blush | jewelry | looking_at_viewer | smile |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:----------|:--------------------|:--------|
| 0 | 46 |  |  |  |  |  | X | X | X | X | X | X |
|
CyberHarem/wakui_rumi_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T12:52:23+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:20:53+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of wakui\_rumi/和久井留美 (THE iDOLM@STER: Cinderella Girls)
===============================================================
This is the dataset of wakui\_rumi/和久井留美 (THE iDOLM@STER: Cinderella Girls), containing 46 images and their tags.
The core tags of this character are 'short\_hair, blue\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
538828f9a796905090d2ef493ac09557998ce6a7
|
# Dataset Card for "oasst1-standard"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
TinyPixel/oasst1-standard
|
[
"region:us"
] |
2023-09-15T13:06:52+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9367562, "num_examples": 8274}], "download_size": 5117067, "dataset_size": 9367562}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T13:06:54+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "oasst1-standard"
More Information needed
|
[
"# Dataset Card for \"oasst1-standard\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"oasst1-standard\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"oasst1-standard\"\n\nMore Information needed"
] |
7409903372c6677bc57e6e49b9f332b45b40c653
|
# Dataset of kitami_yuzu/喜多見柚/키타미유즈 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of kitami_yuzu/喜多見柚/키타미유즈 (THE iDOLM@STER: Cinderella Girls), containing 222 images and their tags.
The core tags of this character are `brown_hair, short_hair, brown_eyes, bangs, blunt_bangs, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 222 | 222.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitami_yuzu_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 222 | 145.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitami_yuzu_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 482 | 292.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitami_yuzu_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 222 | 205.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitami_yuzu_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 482 | 388.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitami_yuzu_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kitami_yuzu_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 23 |  |  |  |  |  | 1girl, solo, blush, looking_at_viewer, :p, smile, one_eye_closed, ;p, hoodie |
| 1 | 10 |  |  |  |  |  | 1girl, blush, cardigan, necktie, school_uniform, solo, pleated_skirt, looking_at_viewer, school_bag, smile, tongue_out |
| 2 | 9 |  |  |  |  |  | 1girl, blush, looking_at_viewer, school_uniform, smile, solo, white_shirt, collared_shirt, long_sleeves, red_necktie, closed_mouth, diagonal_stripes, white_background, pleated_skirt, simple_background, bob_cut, brown_cardigan, diagonal-striped_necktie |
| 3 | 5 |  |  |  |  |  | 1girl, blush, looking_at_viewer, solo, water, collarbone, fruit, partially_submerged, smile, bathing, cleavage, medium_breasts, onsen, tongue_out, blurry, completely_nude, heart, naked_towel, one_eye_closed, sitting, steam |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | blush | looking_at_viewer | :p | smile | one_eye_closed | ;p | hoodie | cardigan | necktie | school_uniform | pleated_skirt | school_bag | tongue_out | white_shirt | collared_shirt | long_sleeves | red_necktie | closed_mouth | diagonal_stripes | white_background | simple_background | bob_cut | brown_cardigan | diagonal-striped_necktie | water | collarbone | fruit | partially_submerged | bathing | cleavage | medium_breasts | onsen | blurry | completely_nude | heart | naked_towel | sitting | steam |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:-----|:--------|:-----------------|:-----|:---------|:-----------|:----------|:-----------------|:----------------|:-------------|:-------------|:--------------|:-----------------|:---------------|:--------------|:---------------|:-------------------|:-------------------|:--------------------|:----------|:-----------------|:---------------------------|:--------|:-------------|:--------|:----------------------|:----------|:-----------|:-----------------|:--------|:---------|:------------------|:--------|:--------------|:----------|:--------|
| 0 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | X | X | X | | X | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 9 |  |  |  |  |  | X | X | X | X | | X | | | | | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | | X | X | | | | | | | | X | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/kitami_yuzu_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T13:07:25+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T18:32:55+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kitami\_yuzu/喜多見柚/키타미유즈 (THE iDOLM@STER: Cinderella Girls)
=====================================================================
This is the dataset of kitami\_yuzu/喜多見柚/키타미유즈 (THE iDOLM@STER: Cinderella Girls), containing 222 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, brown\_eyes, bangs, blunt\_bangs, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
c37225d8b284d3aeb97d2c8035337b28a9184359
|
# Dataset Card for "Shakkelha"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
elsheikhams/Shakkelha
|
[
"region:us"
] |
2023-09-15T13:08:33+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "undiacrtizied", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 579339698, "num_examples": 533384}], "download_size": 276101045, "dataset_size": 579339698}}
|
2023-09-15T13:17:22+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "Shakkelha"
More Information needed
|
[
"# Dataset Card for \"Shakkelha\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"Shakkelha\"\n\nMore Information needed"
] |
[
6,
13
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"Shakkelha\"\n\nMore Information needed"
] |
a63b6669ae13fa97cffe4dd9343b19e0c89a07d3
|
# Dataset Card for "lima-standard"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
TinyPixel/lima-standard
|
[
"region:us"
] |
2023-09-15T13:10:58+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2911140, "num_examples": 1030}], "download_size": 1697429, "dataset_size": 2911140}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T13:11:00+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "lima-standard"
More Information needed
|
[
"# Dataset Card for \"lima-standard\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"lima-standard\"\n\nMore Information needed"
] |
[
6,
13
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"lima-standard\"\n\nMore Information needed"
] |
d6a3c36e358f54a023f933f19ba09bd2a7be7663
|
## ERR Newsroom
This dataset contains news articles from the website of Estonian Public Broadcasting (https://err.ee), from the period of 2016-2022.
Each news article has three text fields: heading, lead-in and text.
The dataset is divided into train, dev and test set. Dev set contains articles from November 2022 and test set from December 2022. The rest of the articles are in the train set.
|
TalTechNLP/err-newsroom
|
[
"task_categories:summarization",
"task_categories:text2text-generation",
"language:et",
"region:us"
] |
2023-09-15T13:21:03+00:00
|
{"language": ["et"], "task_categories": ["summarization", "text2text-generation"]}
|
2023-09-19T05:01:33+00:00
|
[] |
[
"et"
] |
TAGS
#task_categories-summarization #task_categories-text2text-generation #language-Estonian #region-us
|
## ERR Newsroom
This dataset contains news articles from the website of Estonian Public Broadcasting (URL), from the period of 2016-2022.
Each news article has three text fields: heading, lead-in and text.
The dataset is divided into train, dev and test set. Dev set contains articles from November 2022 and test set from December 2022. The rest of the articles are in the train set.
|
[
"## ERR Newsroom\n\nThis dataset contains news articles from the website of Estonian Public Broadcasting (URL), from the period of 2016-2022.\n\nEach news article has three text fields: heading, lead-in and text.\n\nThe dataset is divided into train, dev and test set. Dev set contains articles from November 2022 and test set from December 2022. The rest of the articles are in the train set."
] |
[
"TAGS\n#task_categories-summarization #task_categories-text2text-generation #language-Estonian #region-us \n",
"## ERR Newsroom\n\nThis dataset contains news articles from the website of Estonian Public Broadcasting (URL), from the period of 2016-2022.\n\nEach news article has three text fields: heading, lead-in and text.\n\nThe dataset is divided into train, dev and test set. Dev set contains articles from November 2022 and test set from December 2022. The rest of the articles are in the train set."
] |
[
34,
88
] |
[
"passage: TAGS\n#task_categories-summarization #task_categories-text2text-generation #language-Estonian #region-us \n## ERR Newsroom\n\nThis dataset contains news articles from the website of Estonian Public Broadcasting (URL), from the period of 2016-2022.\n\nEach news article has three text fields: heading, lead-in and text.\n\nThe dataset is divided into train, dev and test set. Dev set contains articles from November 2022 and test set from December 2022. The rest of the articles are in the train set."
] |
68ccefcd587ad5595515af4808b116ff4345e568
|
# Dataset Card for "dataset-llama"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
hakanssonjesper/dataset-llama
|
[
"region:us"
] |
2023-09-15T13:21:39+00:00
|
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 65284594.45526487, "num_examples": 45592}, {"name": "validation", "num_bytes": 16322580.544735134, "num_examples": 11399}], "download_size": 38476271, "dataset_size": 81607175.0}}
|
2023-10-01T15:39:18+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "dataset-llama"
More Information needed
|
[
"# Dataset Card for \"dataset-llama\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"dataset-llama\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"dataset-llama\"\n\nMore Information needed"
] |
877f6bc7dc3b6598de21a956a1cf2ef24e618770
|
# Dataset of ebihara_naho/海老原菜帆 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of ebihara_naho/海老原菜帆 (THE iDOLM@STER: Cinderella Girls), containing 109 images and their tags.
The core tags of this character are `breasts, black_hair, large_breasts, green_eyes, ponytail`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 109 | 104.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebihara_naho_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 109 | 72.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebihara_naho_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 240 | 143.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebihara_naho_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 109 | 97.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebihara_naho_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 240 | 185.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebihara_naho_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ebihara_naho_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 7 |  |  |  |  |  | 1girl, blush, looking_at_viewer, smile, solo, cleavage, necklace, hair_scrunchie, open_mouth, thighs |
| 1 | 5 |  |  |  |  |  | 1girl, hair_scrunchie, red_bowtie, school_uniform, smile, blush, pleated_skirt, blue_skirt, looking_at_viewer, polka_dot_scrunchie, single_hair_bun, sitting, solo, white_shirt, blue_sweater, cherry_blossoms, closed_mouth, jacket, miniskirt, outdoors, petals |
| 2 | 5 |  |  |  |  |  | 1girl, blush, long_hair, cleavage, demon_tail, heart, looking_at_viewer, smile, black_bikini, bracelet, demon_horns, navel, solo, demon_girl, demon_wings, female_pubic_hair, nail_polish, open_mouth, symbol-shaped_pupils |
| 3 | 8 |  |  |  |  |  | 1girl, 1boy, blush, hetero, mosaic_censoring, solo_focus, brown_hair, female_pubic_hair, nipples, nude, penis, smile, cum_on_breasts, open_mouth, sex, short_hair, breast_grab, cum_in_pussy, grabbing, looking_at_viewer, mixed_bathing, navel, spread_legs, sweat, vaginal |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | looking_at_viewer | smile | solo | cleavage | necklace | hair_scrunchie | open_mouth | thighs | red_bowtie | school_uniform | pleated_skirt | blue_skirt | polka_dot_scrunchie | single_hair_bun | sitting | white_shirt | blue_sweater | cherry_blossoms | closed_mouth | jacket | miniskirt | outdoors | petals | long_hair | demon_tail | heart | black_bikini | bracelet | demon_horns | navel | demon_girl | demon_wings | female_pubic_hair | nail_polish | symbol-shaped_pupils | 1boy | hetero | mosaic_censoring | solo_focus | brown_hair | nipples | nude | penis | cum_on_breasts | sex | short_hair | breast_grab | cum_in_pussy | grabbing | mixed_bathing | spread_legs | sweat | vaginal |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:--------------------|:--------|:-------|:-----------|:-----------|:-----------------|:-------------|:---------|:-------------|:-----------------|:----------------|:-------------|:----------------------|:------------------|:----------|:--------------|:---------------|:------------------|:---------------|:---------|:------------|:-----------|:---------|:------------|:-------------|:--------|:---------------|:-----------|:--------------|:--------|:-------------|:--------------|:--------------------|:--------------|:-----------------------|:-------|:---------|:-------------------|:-------------|:-------------|:----------|:-------|:--------|:-----------------|:------|:-------------|:--------------|:---------------|:-----------|:----------------|:--------------|:--------|:----------|
| 0 | 7 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | X | X | | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 3 | 8 |  |  |  |  |  | X | X | X | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/ebihara_naho_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T13:23:11+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:51:45+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of ebihara\_naho/海老原菜帆 (THE iDOLM@STER: Cinderella Girls)
=================================================================
This is the dataset of ebihara\_naho/海老原菜帆 (THE iDOLM@STER: Cinderella Girls), containing 109 images and their tags.
The core tags of this character are 'breasts, black\_hair, large\_breasts, green\_eyes, ponytail', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
ee6aa849c0c7e734bcd273aab374865ed2e1939c
|
# Dataset of kudou_shinobu/工藤忍 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of kudou_shinobu/工藤忍 (THE iDOLM@STER: Cinderella Girls), containing 49 images and their tags.
The core tags of this character are `brown_hair, short_hair, blue_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 49 | 32.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kudou_shinobu_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 49 | 26.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kudou_shinobu_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 84 | 44.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kudou_shinobu_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 49 | 33.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kudou_shinobu_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 84 | 53.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kudou_shinobu_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kudou_shinobu_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, smile, solo, bracelet, character_name, card_(medium), flower_(symbol), necklace, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | smile | solo | bracelet | character_name | card_(medium) | flower_(symbol) | necklace | open_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:-----------|:-----------------|:----------------|:------------------|:-----------|:-------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X |
|
CyberHarem/kudou_shinobu_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T13:37:04+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T19:36:01+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kudou\_shinobu/工藤忍 (THE iDOLM@STER: Cinderella Girls)
================================================================
This is the dataset of kudou\_shinobu/工藤忍 (THE iDOLM@STER: Cinderella Girls), containing 49 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, blue\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
c7535a5e733b8593dbbb641a2aa471164619295b
|
# Dataset of matsumoto_sarina/松本沙理奈 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of matsumoto_sarina/松本沙理奈 (THE iDOLM@STER: Cinderella Girls), containing 92 images and their tags.
The core tags of this character are `long_hair, breasts, blue_eyes, brown_hair, large_breasts, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 92 | 90.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsumoto_sarina_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 92 | 58.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsumoto_sarina_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 208 | 117.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsumoto_sarina_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 92 | 84.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsumoto_sarina_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 208 | 160.16 MiB | [Download](https://huggingface.co/datasets/CyberHarem/matsumoto_sarina_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/matsumoto_sarina_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, looking_at_viewer, smile, solo, blush, cleavage, navel, blue_bikini, simple_background, white_background, collarbone, parted_bangs, sitting, bare_shoulders, open_mouth |
| 1 | 5 |  |  |  |  |  | 1girl, looking_at_viewer, simple_background, smile, solo, white_background, cleavage, long_sleeves, white_shirt, blush, collarbone, dress_shirt, parted_bangs, blue_skirt, bracelet, collared_shirt, heart_necklace, holding, open_mouth, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | smile | solo | blush | cleavage | navel | blue_bikini | simple_background | white_background | collarbone | parted_bangs | sitting | bare_shoulders | open_mouth | long_sleeves | white_shirt | dress_shirt | blue_skirt | bracelet | collared_shirt | heart_necklace | holding | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:--------|:-------|:--------|:-----------|:--------|:--------------|:--------------------|:-------------------|:-------------|:---------------|:----------|:-----------------|:-------------|:---------------|:--------------|:--------------|:-------------|:-----------|:-----------------|:-----------------|:----------|:-------------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | | | X | X | X | X | | | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/matsumoto_sarina_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T13:42:18+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:51:41+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of matsumoto\_sarina/松本沙理奈 (THE iDOLM@STER: Cinderella Girls)
=====================================================================
This is the dataset of matsumoto\_sarina/松本沙理奈 (THE iDOLM@STER: Cinderella Girls), containing 92 images and their tags.
The core tags of this character are 'long\_hair, breasts, blue\_eyes, brown\_hair, large\_breasts, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
bd5c606c398f2e0bc9fb44f95a27b62f4c6b1b7e
|
# Dataset of namiki_meiko/並木芽衣子 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of namiki_meiko/並木芽衣子 (THE iDOLM@STER: Cinderella Girls), containing 41 images and their tags.
The core tags of this character are `brown_hair, short_hair, brown_eyes, hat, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 41 | 34.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/namiki_meiko_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 41 | 28.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/namiki_meiko_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 78 | 49.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/namiki_meiko_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 41 | 33.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/namiki_meiko_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 78 | 57.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/namiki_meiko_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/namiki_meiko_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------|
| 0 | 13 |  |  |  |  |  | 1girl, open_mouth, solo, dress, necklace, :d, card_(medium), character_name, sun_symbol, thighhighs |
| 1 | 6 |  |  |  |  |  | 1girl, smile, solo, maid, apron, blush, wrist_cuffs, choker, dress, looking_at_viewer, open_mouth, waitress |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | solo | dress | necklace | :d | card_(medium) | character_name | sun_symbol | thighhighs | smile | maid | apron | blush | wrist_cuffs | choker | looking_at_viewer | waitress |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:-------|:--------|:-----------|:-----|:----------------|:-----------------|:-------------|:-------------|:--------|:-------|:--------|:--------|:--------------|:---------|:--------------------|:-----------|
| 0 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | X | | | | | | | X | X | X | X | X | X | X | X |
|
CyberHarem/namiki_meiko_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T13:52:13+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:23:11+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of namiki\_meiko/並木芽衣子 (THE iDOLM@STER: Cinderella Girls)
=================================================================
This is the dataset of namiki\_meiko/並木芽衣子 (THE iDOLM@STER: Cinderella Girls), containing 41 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, brown\_eyes, hat, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
dc4938241825d085525a55bf08a203649edd93be
|
# Dataset Card for "faithfulness_benchmark_sanity_check_factcc"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mtc/faithfulness_benchmark_sanity_check_factcc
|
[
"region:us"
] |
2023-09-15T13:54:35+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "claim", "dtype": "string"}, {"name": "is_faithful", "dtype": "bool"}, {"name": "filepath", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 786411, "num_examples": 189}], "download_size": 334385, "dataset_size": 786411}}
|
2023-09-15T13:54:38+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "faithfulness_benchmark_sanity_check_factcc"
More Information needed
|
[
"# Dataset Card for \"faithfulness_benchmark_sanity_check_factcc\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"faithfulness_benchmark_sanity_check_factcc\"\n\nMore Information needed"
] |
[
6,
26
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"faithfulness_benchmark_sanity_check_factcc\"\n\nMore Information needed"
] |
ca92d6a18defff24b9210900f03ad7079d57936d
|
# Dataset Card for "faithfulness_benchmark_sanity_check_xsum_faith"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mtc/faithfulness_benchmark_sanity_check_xsum_faith
|
[
"region:us"
] |
2023-09-15T13:54:40+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "bbcid", "dtype": "int64"}, {"name": "summary", "dtype": "string"}, {"name": "is_faithful", "dtype": "bool"}, {"name": "majority_hallucination_type", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "test", "num_bytes": 659922, "num_examples": 318}], "download_size": 300946, "dataset_size": 659922}}
|
2023-09-15T13:54:42+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "faithfulness_benchmark_sanity_check_xsum_faith"
More Information needed
|
[
"# Dataset Card for \"faithfulness_benchmark_sanity_check_xsum_faith\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"faithfulness_benchmark_sanity_check_xsum_faith\"\n\nMore Information needed"
] |
[
6,
29
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"faithfulness_benchmark_sanity_check_xsum_faith\"\n\nMore Information needed"
] |
298471ae8892513d6e7a2cd9e39f3c0e5428e347
|
# Dataset of fujii_tomo/藤居朋 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of fujii_tomo/藤居朋 (THE iDOLM@STER: Cinderella Girls), containing 81 images and their tags.
The core tags of this character are `green_hair, brown_eyes, bangs, bow, blunt_bangs, hair_bow, ponytail, long_hair, sidelocks`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 81 | 90.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fujii_tomo_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 81 | 55.70 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fujii_tomo_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 174 | 110.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fujii_tomo_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 81 | 80.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fujii_tomo_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 174 | 150.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fujii_tomo_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/fujii_tomo_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, solo, looking_at_viewer, necklace, open_mouth, blush, bracelet, sweater, :d, black_hair, thighhighs, twintails |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | necklace | open_mouth | blush | bracelet | sweater | :d | black_hair | thighhighs | twintails |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:-----------|:-------------|:--------|:-----------|:----------|:-----|:-------------|:-------------|:------------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/fujii_tomo_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T14:13:58+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T18:58:38+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of fujii\_tomo/藤居朋 (THE iDOLM@STER: Cinderella Girls)
=============================================================
This is the dataset of fujii\_tomo/藤居朋 (THE iDOLM@STER: Cinderella Girls), containing 81 images and their tags.
The core tags of this character are 'green\_hair, brown\_eyes, bangs, bow, blunt\_bangs, hair\_bow, ponytail, long\_hair, sidelocks', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
8b0b6128ec05554723f08fd3db99c1249eced67d
|
# Dataset Card for "orca-evaluated-falcon-gpt4-v1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
sachith-surge/orca-evaluated-falcon-gpt4-v1
|
[
"region:us"
] |
2023-09-15T14:18:34+00:00
|
{"dataset_info": {"features": [{"name": "original_index", "dtype": "int64"}, {"name": "inputs", "dtype": "string"}, {"name": "targets", "dtype": "string"}, {"name": "task_source", "dtype": "string"}, {"name": "task_name", "dtype": "string"}, {"name": "template_type", "dtype": "string"}, {"name": "system_message", "dtype": "string"}, {"name": "explained_targets", "dtype": "string"}, {"name": "dataset_source", "dtype": "string"}, {"name": "falcon_status", "dtype": "string"}, {"name": "falcon_rating", "dtype": "string"}, {"name": "falcon_reason", "dtype": "string"}, {"name": "gpt4_status", "dtype": "string"}, {"name": "gpt4_rating", "dtype": "string"}, {"name": "gpt4_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4239431, "num_examples": 2000}], "download_size": 1958334, "dataset_size": 4239431}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T14:18:37+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "orca-evaluated-falcon-gpt4-v1"
More Information needed
|
[
"# Dataset Card for \"orca-evaluated-falcon-gpt4-v1\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"orca-evaluated-falcon-gpt4-v1\"\n\nMore Information needed"
] |
[
6,
24
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"orca-evaluated-falcon-gpt4-v1\"\n\nMore Information needed"
] |
618023cec83130bbdf86349ffdd4a02be736aead
|
# Dataset of nishikawa_honami/西川保奈美/니시카와호나미 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of nishikawa_honami/西川保奈美/니시카와호나미 (THE iDOLM@STER: Cinderella Girls), containing 31 images and their tags.
The core tags of this character are `brown_hair, green_eyes, long_hair, breasts, earrings, bangs, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 31 | 27.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishikawa_honami_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 31 | 23.16 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishikawa_honami_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 71 | 42.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishikawa_honami_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 31 | 26.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishikawa_honami_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 71 | 48.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishikawa_honami_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/nishikawa_honami_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------|
| 0 | 31 |  |  |  |  |  | 1girl, solo, looking_at_viewer, jewelry, smile, dress, blush, cleavage, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | jewelry | smile | dress | blush | cleavage | open_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:----------|:--------|:--------|:--------|:-----------|:-------------|
| 0 | 31 |  |  |  |  |  | X | X | X | X | X | X | X | X | X |
|
CyberHarem/nishikawa_honami_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T14:23:26+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T22:00:23+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of nishikawa\_honami/西川保奈美/니시카와호나미 (THE iDOLM@STER: Cinderella Girls)
=============================================================================
This is the dataset of nishikawa\_honami/西川保奈美/니시카와호나미 (THE iDOLM@STER: Cinderella Girls), containing 31 images and their tags.
The core tags of this character are 'brown\_hair, green\_eyes, long\_hair, breasts, earrings, bangs, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
db2eb8522f5d6f36c4cbe294f84c72c9c77d6b54
|
# Dataset Card for "fantasy_in_bottle"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Falah/fantasy_in_bottle
|
[
"region:us"
] |
2023-09-15T14:30:03+00:00
|
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2199838, "num_examples": 5000}], "download_size": 276724, "dataset_size": 2199838}}
|
2023-09-15T14:30:05+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "fantasy_in_bottle"
More Information needed
|
[
"# Dataset Card for \"fantasy_in_bottle\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"fantasy_in_bottle\"\n\nMore Information needed"
] |
[
6,
17
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"fantasy_in_bottle\"\n\nMore Information needed"
] |
b8fd6af7745f12bd6193f8971501b87d69951b77
|
# Dataset of eve_santaclaus/イヴ・サンタクロース (THE iDOLM@STER: Cinderella Girls)
This is the dataset of eve_santaclaus/イヴ・サンタクロース (THE iDOLM@STER: Cinderella Girls), containing 128 images and their tags.
The core tags of this character are `long_hair, yellow_eyes, white_hair, breasts, bangs, hat, medium_breasts, santa_hat`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 128 | 141.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eve_santaclaus_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 128 | 93.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eve_santaclaus_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 294 | 191.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eve_santaclaus_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 128 | 129.68 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eve_santaclaus_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 294 | 250.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eve_santaclaus_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/eve_santaclaus_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | :d, open_mouth, 1girl, blush, looking_at_viewer, solo, bikini, hair_flower, navel, armpits, cleavage, convenient_censoring, dark_skin, frills, nude, water |
| 1 | 6 |  |  |  |  |  | 1girl, open_mouth, solo, blush, christmas, smile, looking_at_viewer, reindeer, cardboard_box, nude |
| 2 | 13 |  |  |  |  |  | 1girl, christmas, santa_costume, solo, midriff, open_mouth, reindeer, looking_at_viewer, navel, thighhighs, bell, belt, blush, skirt, star_(symbol), :d, cleavage |
| 3 | 8 |  |  |  |  |  | 1girl, christmas, looking_at_viewer, midriff, red_gloves, red_headwear, red_skirt, santa_costume, solo, blush, crop_top, fur-trimmed_gloves, fur-trimmed_skirt, green_bow, miniskirt, navel, puffy_short_sleeves, red_shirt, bell, belt, fur-trimmed_headwear, sack, smile, bowtie, cropped_jacket, white_thighhighs, closed_mouth, fur-trimmed_jacket, red_footwear, santa_gloves, sitting, striped_bow, zettai_ryouiki, bag, box, cleavage, cowboy_shot, fur-trimmed_boots, gift, print_skirt, red_bow, red_jacket, simple_background, standing, stomach, very_long_hair, white_background |
| 4 | 9 |  |  |  |  |  | 1girl, looking_at_viewer, solo, collarbone, smile, bare_shoulders, blush, closed_mouth, large_breasts, simple_background, upper_body, white_background, cleavage |
| 5 | 11 |  |  |  |  |  | 1girl, blush, solo, bare_shoulders, looking_at_viewer, white_gloves, jewelry, open_mouth, tiara, cleavage, pendant_watch, :d, brown_eyes, collarbone, heart, strapless_dress |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | :d | open_mouth | 1girl | blush | looking_at_viewer | solo | bikini | hair_flower | navel | armpits | cleavage | convenient_censoring | dark_skin | frills | nude | water | christmas | smile | reindeer | cardboard_box | santa_costume | midriff | thighhighs | bell | belt | skirt | star_(symbol) | red_gloves | red_headwear | red_skirt | crop_top | fur-trimmed_gloves | fur-trimmed_skirt | green_bow | miniskirt | puffy_short_sleeves | red_shirt | fur-trimmed_headwear | sack | bowtie | cropped_jacket | white_thighhighs | closed_mouth | fur-trimmed_jacket | red_footwear | santa_gloves | sitting | striped_bow | zettai_ryouiki | bag | box | cowboy_shot | fur-trimmed_boots | gift | print_skirt | red_bow | red_jacket | simple_background | standing | stomach | very_long_hair | white_background | collarbone | bare_shoulders | large_breasts | upper_body | white_gloves | jewelry | tiara | pendant_watch | brown_eyes | heart | strapless_dress |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----|:-------------|:--------|:--------|:--------------------|:-------|:---------|:--------------|:--------|:----------|:-----------|:-----------------------|:------------|:---------|:-------|:--------|:------------|:--------|:-----------|:----------------|:----------------|:----------|:-------------|:-------|:-------|:--------|:----------------|:-------------|:---------------|:------------|:-----------|:---------------------|:--------------------|:------------|:------------|:----------------------|:------------|:-----------------------|:-------|:---------|:-----------------|:-------------------|:---------------|:---------------------|:---------------|:---------------|:----------|:--------------|:-----------------|:------|:------|:--------------|:--------------------|:-------|:--------------|:----------|:-------------|:--------------------|:-----------|:----------|:-----------------|:-------------------|:-------------|:-----------------|:----------------|:-------------|:---------------|:----------|:--------|:----------------|:-------------|:--------|:------------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | | X | X | X | X | X | | | | | | | | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 13 |  |  |  |  |  | X | X | X | X | X | X | | | X | | X | | | | | | X | | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 8 |  |  |  |  |  | | | X | X | X | X | | | X | | X | | | | | | X | X | | | X | X | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 4 | 9 |  |  |  |  |  | | | X | X | X | X | | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | X | X | X | X | X | | | | | | | |
| 5 | 11 |  |  |  |  |  | X | X | X | X | X | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | | | X | X | X | X | X | X | X |
|
CyberHarem/eve_santaclaus_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T14:39:42+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T20:21:22+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of eve\_santaclaus/イヴ・サンタクロース (THE iDOLM@STER: Cinderella Girls)
========================================================================
This is the dataset of eve\_santaclaus/イヴ・サンタクロース (THE iDOLM@STER: Cinderella Girls), containing 128 images and their tags.
The core tags of this character are 'long\_hair, yellow\_eyes, white\_hair, breasts, bangs, hat, medium\_breasts, santa\_hat', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
20f115038569facf8b9fa042500b8b342476ff09
|
# Dataset of hiiragi_shino/柊志乃 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of hiiragi_shino/柊志乃 (THE iDOLM@STER: Cinderella Girls), containing 57 images and their tags.
The core tags of this character are `long_hair, black_hair, breasts, brown_eyes, large_breasts, drinking_glass, wine_glass`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 57 | 52.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hiiragi_shino_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 57 | 39.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hiiragi_shino_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 116 | 72.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hiiragi_shino_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 57 | 49.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hiiragi_shino_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 116 | 87.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hiiragi_shino_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/hiiragi_shino_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------|
| 0 | 57 |  |  |  |  |  | 1girl, solo, blush, smile, looking_at_viewer, cleavage, cup, bare_shoulders, alcohol, necklace |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | blush | smile | looking_at_viewer | cleavage | cup | bare_shoulders | alcohol | necklace |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------|:--------------------|:-----------|:------|:-----------------|:----------|:-----------|
| 0 | 57 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/hiiragi_shino_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T14:40:37+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:27:25+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of hiiragi\_shino/柊志乃 (THE iDOLM@STER: Cinderella Girls)
================================================================
This is the dataset of hiiragi\_shino/柊志乃 (THE iDOLM@STER: Cinderella Girls), containing 57 images and their tags.
The core tags of this character are 'long\_hair, black\_hair, breasts, brown\_eyes, large\_breasts, drinking\_glass, wine\_glass', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
d7bf9c56da902fe10b9b714da22922e859778047
|
# Dataset Card for "e395fcfb"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
result-kand2-sdxl-wuerst-karlo/e395fcfb
|
[
"region:us"
] |
2023-09-15T14:42:18+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 152, "num_examples": 10}], "download_size": 1308, "dataset_size": 152}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T14:42:19+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "e395fcfb"
More Information needed
|
[
"# Dataset Card for \"e395fcfb\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"e395fcfb\"\n\nMore Information needed"
] |
[
6,
15
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"e395fcfb\"\n\nMore Information needed"
] |
97417aa1bbc67381a4e006073fe8e779cae7a687
|
# Dataset Card for "new_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fffiloni/new_dataset
|
[
"region:us"
] |
2023-09-15T14:46:59+00:00
|
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 848679.0, "num_examples": 2}], "download_size": 848790, "dataset_size": 848679.0}}
|
2023-09-15T14:46:59+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "new_dataset"
More Information needed
|
[
"# Dataset Card for \"new_dataset\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"new_dataset\"\n\nMore Information needed"
] |
[
6,
14
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"new_dataset\"\n\nMore Information needed"
] |
9acd3debd35adfa6d56b809879539e6823ff04e7
|
# Dataset Card for "koquad_v2_polyglot_tkd"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
fiveflow/koquad_v2_polyglot_tkd
|
[
"region:us"
] |
2023-09-15T14:47:53+00:00
|
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 7699047417, "num_examples": 50000}], "download_size": 1305602573, "dataset_size": 7699047417}}
|
2023-09-15T14:52:16+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "koquad_v2_polyglot_tkd"
More Information needed
|
[
"# Dataset Card for \"koquad_v2_polyglot_tkd\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"koquad_v2_polyglot_tkd\"\n\nMore Information needed"
] |
[
6,
22
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"koquad_v2_polyglot_tkd\"\n\nMore Information needed"
] |
d9dccb4e82e634f9a0e46ccf6f11122aa6289d4d
|
# Dataset of kitagawa_mahiro/北川真尋 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of kitagawa_mahiro/北川真尋 (THE iDOLM@STER: Cinderella Girls), containing 29 images and their tags.
The core tags of this character are `brown_hair, glasses, short_hair, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 29 | 30.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitagawa_mahiro_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 29 | 20.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitagawa_mahiro_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 57 | 34.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitagawa_mahiro_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 29 | 27.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitagawa_mahiro_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 57 | 44.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kitagawa_mahiro_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kitagawa_mahiro_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, jewelry, smile, microphone, solo, fingerless_gloves, midriff, confetti, flower |
| 1 | 8 |  |  |  |  |  | 1girl, solo, smile, card_(medium), character_name, midriff, navel, orange_background, sun_symbol, bag, one_eye_closed, open_mouth, plaid, school_uniform, skirt, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | jewelry | smile | microphone | solo | fingerless_gloves | midriff | confetti | flower | card_(medium) | character_name | navel | orange_background | sun_symbol | bag | one_eye_closed | open_mouth | plaid | school_uniform | skirt | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:--------|:-------------|:-------|:--------------------|:----------|:-----------|:---------|:----------------|:-----------------|:--------|:--------------------|:-------------|:------|:-----------------|:-------------|:--------|:-----------------|:--------|:-------------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 1 | 8 |  |  |  |  |  | X | | X | | X | | X | | | X | X | X | X | X | X | X | X | X | X | X | X |
|
CyberHarem/kitagawa_mahiro_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T14:57:31+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:34:36+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of kitagawa\_mahiro/北川真尋 (THE iDOLM@STER: Cinderella Girls)
===================================================================
This is the dataset of kitagawa\_mahiro/北川真尋 (THE iDOLM@STER: Cinderella Girls), containing 29 images and their tags.
The core tags of this character are 'brown\_hair, glasses, short\_hair, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
a7964816c9c7c77ec2c5850a758890f9128ec61b
|
# WMT 2014 German-English Translation Dataset
This dataset was built with the fairseq's processing script, which can be original
found [here](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-wmt14en2de.sh)
You can create this dataset by simply run:
```commandline
git clone https://huggingface.co/datasets/shijli/wmt14-deen
cd wmt14-deen/data
bash prepare-wmt14.sh
```
`binarized.dist.de-en.zip` and `binarized.dist.en-de.zip` are distilled datasets generated by a transformer base model.
It can be built by running:
```commandline
bash prepare-wmt14-distill.sh /path/to/fairseq/model source-lang target-lang
```
To build this dataset, you need to create `binarized.zip` first. Note that the distilled dataset only uses
model-generated
target sentences, which means that different translation directions result in different datasets. Therefore, you need to
specify `source-lang` and `target-lang` explicitly. Also, you need to replace `/path/to/fairseq/model` with the path of
your pretrained model.
|
shijli/wmt14-deen
|
[
"region:us"
] |
2023-09-15T15:01:46+00:00
|
{}
|
2023-09-16T14:44:08+00:00
|
[] |
[] |
TAGS
#region-us
|
# WMT 2014 German-English Translation Dataset
This dataset was built with the fairseq's processing script, which can be original
found here
You can create this dataset by simply run:
'URL' and 'URL' are distilled datasets generated by a transformer base model.
It can be built by running:
To build this dataset, you need to create 'URL' first. Note that the distilled dataset only uses
model-generated
target sentences, which means that different translation directions result in different datasets. Therefore, you need to
specify 'source-lang' and 'target-lang' explicitly. Also, you need to replace '/path/to/fairseq/model' with the path of
your pretrained model.
|
[
"# WMT 2014 German-English Translation Dataset\n\nThis dataset was built with the fairseq's processing script, which can be original\nfound here\n\nYou can create this dataset by simply run:\n\n\n\n'URL' and 'URL' are distilled datasets generated by a transformer base model.\nIt can be built by running:\n\n\n\nTo build this dataset, you need to create 'URL' first. Note that the distilled dataset only uses\nmodel-generated\ntarget sentences, which means that different translation directions result in different datasets. Therefore, you need to\nspecify 'source-lang' and 'target-lang' explicitly. Also, you need to replace '/path/to/fairseq/model' with the path of\nyour pretrained model."
] |
[
"TAGS\n#region-us \n",
"# WMT 2014 German-English Translation Dataset\n\nThis dataset was built with the fairseq's processing script, which can be original\nfound here\n\nYou can create this dataset by simply run:\n\n\n\n'URL' and 'URL' are distilled datasets generated by a transformer base model.\nIt can be built by running:\n\n\n\nTo build this dataset, you need to create 'URL' first. Note that the distilled dataset only uses\nmodel-generated\ntarget sentences, which means that different translation directions result in different datasets. Therefore, you need to\nspecify 'source-lang' and 'target-lang' explicitly. Also, you need to replace '/path/to/fairseq/model' with the path of\nyour pretrained model."
] |
[
6,
170
] |
[
"passage: TAGS\n#region-us \n# WMT 2014 German-English Translation Dataset\n\nThis dataset was built with the fairseq's processing script, which can be original\nfound here\n\nYou can create this dataset by simply run:\n\n\n\n'URL' and 'URL' are distilled datasets generated by a transformer base model.\nIt can be built by running:\n\n\n\nTo build this dataset, you need to create 'URL' first. Note that the distilled dataset only uses\nmodel-generated\ntarget sentences, which means that different translation directions result in different datasets. Therefore, you need to\nspecify 'source-lang' and 'target-lang' explicitly. Also, you need to replace '/path/to/fairseq/model' with the path of\nyour pretrained model."
] |
c0a16f55c87fb9c9927d040a84e18f2f1a5f7b91
|
# Dataset Card for Evaluation run of oh-yeontaek/llama-2-70B-LoRA-assemble-v2
## Dataset Description
- **Homepage:**
- **Repository:** https://huggingface.co/oh-yeontaek/llama-2-70B-LoRA-assemble-v2
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** [email protected]
### Dataset Summary
Dataset automatically created during the evaluation run of model [oh-yeontaek/llama-2-70B-LoRA-assemble-v2](https://huggingface.co/oh-yeontaek/llama-2-70B-LoRA-assemble-v2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 3 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_oh-yeontaek__llama-2-70B-LoRA-assemble-v2_public",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2023-11-09T09:15:37.324583](https://huggingface.co/datasets/open-llm-leaderboard/details_oh-yeontaek__llama-2-70B-LoRA-assemble-v2_public/blob/main/results_2023-11-09T09-15-37.324583.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"em": 0.16096895973154363,
"em_stderr": 0.0037635677120072403,
"f1": 0.3114240771812082,
"f1_stderr": 0.0037408737089822184,
"acc": 0.477343458756215,
"acc_stderr": 0.010303534774554453
},
"harness|drop|3": {
"em": 0.16096895973154363,
"em_stderr": 0.0037635677120072403,
"f1": 0.3114240771812082,
"f1_stderr": 0.0037408737089822184
},
"harness|gsm8k|5": {
"acc": 0.1425322213798332,
"acc_stderr": 0.009629588445673814
},
"harness|winogrande|5": {
"acc": 0.8121546961325967,
"acc_stderr": 0.010977481103435093
}
}
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
open-llm-leaderboard/details_oh-yeontaek__llama-2-70B-LoRA-assemble-v2
|
[
"region:us"
] |
2023-09-15T15:06:34+00:00
|
{"pretty_name": "Evaluation run of oh-yeontaek/llama-2-70B-LoRA-assemble-v2", "dataset_summary": "Dataset automatically created during the evaluation run of model [oh-yeontaek/llama-2-70B-LoRA-assemble-v2](https://huggingface.co/oh-yeontaek/llama-2-70B-LoRA-assemble-v2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 3 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_oh-yeontaek__llama-2-70B-LoRA-assemble-v2_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-09T09:15:37.324583](https://huggingface.co/datasets/open-llm-leaderboard/details_oh-yeontaek__llama-2-70B-LoRA-assemble-v2_public/blob/main/results_2023-11-09T09-15-37.324583.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"em\": 0.16096895973154363,\n \"em_stderr\": 0.0037635677120072403,\n \"f1\": 0.3114240771812082,\n \"f1_stderr\": 0.0037408737089822184,\n \"acc\": 0.477343458756215,\n \"acc_stderr\": 0.010303534774554453\n },\n \"harness|drop|3\": {\n \"em\": 0.16096895973154363,\n \"em_stderr\": 0.0037635677120072403,\n \"f1\": 0.3114240771812082,\n \"f1_stderr\": 0.0037408737089822184\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.1425322213798332,\n \"acc_stderr\": 0.009629588445673814\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8121546961325967,\n \"acc_stderr\": 0.010977481103435093\n }\n}\n```", "repo_url": "https://huggingface.co/oh-yeontaek/llama-2-70B-LoRA-assemble-v2", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_09T09_15_37.324583", "path": ["**/details_harness|drop|3_2023-11-09T09-15-37.324583.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-09T09-15-37.324583.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_09T09_15_37.324583", "path": ["**/details_harness|gsm8k|5_2023-11-09T09-15-37.324583.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-09T09-15-37.324583.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_09T09_15_37.324583", "path": ["**/details_harness|winogrande|5_2023-11-09T09-15-37.324583.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-09T09-15-37.324583.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_09T09_15_37.324583", "path": ["results_2023-11-09T09-15-37.324583.parquet"]}, {"split": "latest", "path": ["results_2023-11-09T09-15-37.324583.parquet"]}]}]}
|
2023-12-01T14:54:49+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for Evaluation run of oh-yeontaek/llama-2-70B-LoRA-assemble-v2
## Dataset Description
- Homepage:
- Repository: URL
- Paper:
- Leaderboard: URL
- Point of Contact: clementine@URL
### Dataset Summary
Dataset automatically created during the evaluation run of model oh-yeontaek/llama-2-70B-LoRA-assemble-v2 on the Open LLM Leaderboard.
The dataset is composed of 3 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2023-11-09T09:15:37.324583(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
### Supported Tasks and Leaderboards
### Languages
## Dataset Structure
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
### Contributions
|
[
"# Dataset Card for Evaluation run of oh-yeontaek/llama-2-70B-LoRA-assemble-v2",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model oh-yeontaek/llama-2-70B-LoRA-assemble-v2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 3 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-11-09T09:15:37.324583(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of oh-yeontaek/llama-2-70B-LoRA-assemble-v2",
"## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL",
"### Dataset Summary\n\nDataset automatically created during the evaluation run of model oh-yeontaek/llama-2-70B-LoRA-assemble-v2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 3 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2023-11-09T09:15:37.324583(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"### Supported Tasks and Leaderboards",
"### Languages",
"## Dataset Structure",
"### Data Instances",
"### Data Fields",
"### Data Splits",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information",
"### Contributions"
] |
[
6,
28,
31,
177,
67,
10,
4,
6,
6,
5,
5,
5,
7,
4,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
6,
5
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of oh-yeontaek/llama-2-70B-LoRA-assemble-v2## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model oh-yeontaek/llama-2-70B-LoRA-assemble-v2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 3 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-09T09:15:37.324583(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions"
] |
8c62a1a86f97f0c361f44fcfc0c3ddaad484ed06
|
# Dataset of senzaki_ema/仙崎恵磨 (THE iDOLM@STER: Cinderella Girls)
This is the dataset of senzaki_ema/仙崎恵磨 (THE iDOLM@STER: Cinderella Girls), containing 59 images and their tags.
The core tags of this character are `short_hair, blonde_hair, earrings, very_short_hair, red_eyes, breasts, ear_piercing`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 59 | 54.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/senzaki_ema_idolmastercinderellagirls/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 59 | 37.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/senzaki_ema_idolmastercinderellagirls/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 127 | 71.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/senzaki_ema_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 59 | 49.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/senzaki_ema_idolmastercinderellagirls/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 127 | 89.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/senzaki_ema_idolmastercinderellagirls/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/senzaki_ema_idolmastercinderellagirls',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, jewelry, solo, card_(medium), character_name, sun_symbol, looking_at_viewer, open_mouth, grin |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | jewelry | solo | card_(medium) | character_name | sun_symbol | looking_at_viewer | open_mouth | grin |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:-------|:----------------|:-----------------|:-------------|:--------------------|:-------------|:-------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X |
|
CyberHarem/senzaki_ema_idolmastercinderellagirls
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] |
2023-09-15T15:13:57+00:00
|
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
|
2024-01-16T21:25:39+00:00
|
[] |
[] |
TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
|
Dataset of senzaki\_ema/仙崎恵磨 (THE iDOLM@STER: Cinderella Girls)
===============================================================
This is the dataset of senzaki\_ema/仙崎恵磨 (THE iDOLM@STER: Cinderella Girls), containing 59 images and their tags.
The core tags of this character are 'short\_hair, blonde\_hair, earrings, very\_short\_hair, red\_eyes, breasts, ear\_piercing', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
|
[
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
[
44,
61,
5,
4
] |
[
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
] |
9318201daa2c16c6ffed53193567631ce1e99e27
|
# Dataset Card for "94daaaa5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
result-kand2-sdxl-wuerst-karlo/94daaaa5
|
[
"region:us"
] |
2023-09-15T15:14:36+00:00
|
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 198, "num_examples": 10}], "download_size": 1363, "dataset_size": 198}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-09-15T15:14:38+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "94daaaa5"
More Information needed
|
[
"# Dataset Card for \"94daaaa5\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"94daaaa5\"\n\nMore Information needed"
] |
[
6,
14
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"94daaaa5\"\n\nMore Information needed"
] |
978bdac7d38fe9bb2808cb9ba712aed178e0f031
|
# Dataset Card for "Military_ships_prompts"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Falah/Military_ships_prompts
|
[
"region:us"
] |
2023-09-15T15:14:44+00:00
|
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4722667, "num_examples": 10000}], "download_size": 598184, "dataset_size": 4722667}}
|
2023-09-15T15:14:46+00:00
|
[] |
[] |
TAGS
#region-us
|
# Dataset Card for "Military_ships_prompts"
More Information needed
|
[
"# Dataset Card for \"Military_ships_prompts\"\n\nMore Information needed"
] |
[
"TAGS\n#region-us \n",
"# Dataset Card for \"Military_ships_prompts\"\n\nMore Information needed"
] |
[
6,
20
] |
[
"passage: TAGS\n#region-us \n# Dataset Card for \"Military_ships_prompts\"\n\nMore Information needed"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.