sha
stringlengths 40
40
| text
stringlengths 1
13.4M
| id
stringlengths 2
117
| tags
listlengths 1
7.91k
| created_at
stringlengths 25
25
| metadata
stringlengths 2
875k
| last_modified
stringlengths 25
25
| arxiv
listlengths 0
25
| languages
listlengths 0
7.91k
| tags_str
stringlengths 17
159k
| text_str
stringlengths 1
447k
| text_lists
listlengths 0
352
| processed_texts
listlengths 1
353
| tokens_length
listlengths 1
353
| input_texts
listlengths 1
40
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
958f3712eef6c4e7781fcecc1be5abef53914295 | # Dataset Card for "vlsp-eval-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/vlsp-test-vectorized | [
"region:us"
]
| 2023-11-11T14:18:57+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 25301722096, "num_examples": 26343}], "download_size": 966087887, "dataset_size": 25301722096}} | 2023-11-11T14:24:11+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vlsp-eval-vectorized"
More Information needed | [
"# Dataset Card for \"vlsp-eval-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vlsp-eval-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vlsp-eval-vectorized\"\n\nMore Information needed"
]
|
6afa833c412676b04d438f9d5b65298e66fd6b24 | # Dataset Card for "opus-eng-to-fin"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | gradjitta/opus-eng-to-fin | [
"region:us"
]
| 2023-11-11T14:19:55+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}, {"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 249219, "num_examples": 2000}, {"name": "train", "num_bytes": 86453966, "num_examples": 962383}], "download_size": 65607334, "dataset_size": 86703185}} | 2023-11-11T14:20:09+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "opus-eng-to-fin"
More Information needed | [
"# Dataset Card for \"opus-eng-to-fin\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"opus-eng-to-fin\"\n\nMore Information needed"
]
| [
6,
18
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"opus-eng-to-fin\"\n\nMore Information needed"
]
|
ef0cb70b8c70ce157459c795efab1813697b2d86 | ## Dataset Details
The data set has about 1 Million Tokens for Training and about 1500 question answers.
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
This dataset is a comprehensive compilation of questions related to dermatology, spanning inquiries about various skin diseases, their symptoms, recommended medications, and available treatment modalities. Each question is paired with a concise and informative response, making it an ideal resource for training and fine-tuning language models in the field of dermatological healthcare. The dataset is designed to facilitate the development of advanced medical chatbots and language models tailored to dermatology, providing valuable insights into skin health-related inquiries.
| Mreeb/Dermatology-Question-Answer-Dataset-For-Fine-Tuning | [
"task_categories:text-generation",
"size_categories:1K<n<10K",
"license:apache-2.0",
"medical",
"region:us"
]
| 2023-11-11T14:21:16+00:00 | {"license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation"], "pretty_name": "Dermatology Question Answering Dataset", "tags": ["medical"]} | 2023-11-11T14:26:23+00:00 | []
| []
| TAGS
#task_categories-text-generation #size_categories-1K<n<10K #license-apache-2.0 #medical #region-us
| ## Dataset Details
The data set has about 1 Million Tokens for Training and about 1500 question answers.
### Dataset Description
This dataset is a comprehensive compilation of questions related to dermatology, spanning inquiries about various skin diseases, their symptoms, recommended medications, and available treatment modalities. Each question is paired with a concise and informative response, making it an ideal resource for training and fine-tuning language models in the field of dermatological healthcare. The dataset is designed to facilitate the development of advanced medical chatbots and language models tailored to dermatology, providing valuable insights into skin health-related inquiries.
| [
"## Dataset Details\nThe data set has about 1 Million Tokens for Training and about 1500 question answers.",
"### Dataset Description\n\n\n\nThis dataset is a comprehensive compilation of questions related to dermatology, spanning inquiries about various skin diseases, their symptoms, recommended medications, and available treatment modalities. Each question is paired with a concise and informative response, making it an ideal resource for training and fine-tuning language models in the field of dermatological healthcare. The dataset is designed to facilitate the development of advanced medical chatbots and language models tailored to dermatology, providing valuable insights into skin health-related inquiries."
]
| [
"TAGS\n#task_categories-text-generation #size_categories-1K<n<10K #license-apache-2.0 #medical #region-us \n",
"## Dataset Details\nThe data set has about 1 Million Tokens for Training and about 1500 question answers.",
"### Dataset Description\n\n\n\nThis dataset is a comprehensive compilation of questions related to dermatology, spanning inquiries about various skin diseases, their symptoms, recommended medications, and available treatment modalities. Each question is paired with a concise and informative response, making it an ideal resource for training and fine-tuning language models in the field of dermatological healthcare. The dataset is designed to facilitate the development of advanced medical chatbots and language models tailored to dermatology, providing valuable insights into skin health-related inquiries."
]
| [
40,
22,
119
]
| [
"passage: TAGS\n#task_categories-text-generation #size_categories-1K<n<10K #license-apache-2.0 #medical #region-us \n## Dataset Details\nThe data set has about 1 Million Tokens for Training and about 1500 question answers.### Dataset Description\n\n\n\nThis dataset is a comprehensive compilation of questions related to dermatology, spanning inquiries about various skin diseases, their symptoms, recommended medications, and available treatment modalities. Each question is paired with a concise and informative response, making it an ideal resource for training and fine-tuning language models in the field of dermatological healthcare. The dataset is designed to facilitate the development of advanced medical chatbots and language models tailored to dermatology, providing valuable insights into skin health-related inquiries."
]
|
39466135822d43d2aa4a5e66f473f0750ebddd14 | ## Sample usage
### Language-Language
```python
from datasets import load_dataset
dataset = load_dataset("sci-benchmark/self-contradictory","language-language-1",split="small")
print(dataset[0])
```
### Vision-Language
```python
from datasets import load_dataset
import PIL
dataset = load_dataset("sci-benchmark/self-contradictory","vision-language-1",split="small")
print(dataset[0])
img = dataset[0]["img"]
img.show()
```
For Vision-Language task 4, we will use the imagenet-1k dataset as available on Huggingface.(https://huggingface.co/datasets/imagenet-1k) We only provide the labels corresponding to this dataset. For those who wish to use the original imagenet-1k dataset, one can use [LOC_synset_mapping.txt](https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data?select=LOC_synset_mapping.txt) and change the `object` attribute to the synset ids. | sci-benchmark/self-contradictory | [
"size_categories:10K<n<100K",
"language:en",
"license:mit",
"region:us"
]
| 2023-11-11T14:28:26+00:00 | {"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "dataset_info": [{"config_name": "language-language-1", "features": [{"name": "context", "dtype": "string"}, {"name": "violation", "dtype": "string"}, {"name": "question", "dtype": "string"}], "splits": [{"name": "small", "num_bytes": 7138, "num_examples": 25}, {"name": "medium", "num_bytes": 73709, "num_examples": 250}, {"name": "full", "num_bytes": 831007, "num_examples": 2500}], "download_size": 438792, "dataset_size": 911854}, {"config_name": "language-language-2", "features": [{"name": "context", "dtype": "string"}, {"name": "violation", "dtype": "string"}, {"name": "question", "dtype": "string"}], "splits": [{"name": "small", "num_bytes": 36214, "num_examples": 25}, {"name": "medium", "num_bytes": 389489, "num_examples": 250}, {"name": "full", "num_bytes": 3928775, "num_examples": 2500}], "download_size": 0, "dataset_size": 4354478}, {"config_name": "language-language-3", "features": [{"name": "instruction1", "dtype": "string"}, {"name": "instruction2", "dtype": "string"}, {"name": "context", "dtype": "string"}], "splits": [{"name": "small", "num_bytes": 19597, "num_examples": 25}, {"name": "medium", "num_bytes": 198516, "num_examples": 250}, {"name": "full", "num_bytes": 1977170, "num_examples": 2500}], "download_size": 280272, "dataset_size": 2195283}, {"config_name": "language-language-4", "features": [{"name": "object", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "field", "dtype": "string"}], "splits": [{"name": "small", "num_bytes": 13815, "num_examples": 25}, {"name": "medium", "num_bytes": 133962, "num_examples": 250}, {"name": "full", "num_bytes": 1362454, "num_examples": 2500}], "download_size": 616010, "dataset_size": 1510231}, {"config_name": "vision-language-1", "features": [{"name": "context", "dtype": "string"}, {"name": "img", "dtype": "image"}], "splits": [{"name": "small", "num_bytes": 727895.0, "num_examples": 15}, {"name": "medium", "num_bytes": 7327050.0, "num_examples": 150}, {"name": "full", "num_bytes": 80297026.48, "num_examples": 1590}], "download_size": 28095399, "dataset_size": 88351971.48}, {"config_name": "vision-language-2", "features": [{"name": "context1", "dtype": "string"}, {"name": "context2", "dtype": "string"}, {"name": "img", "dtype": "image"}], "splits": [{"name": "small", "num_bytes": 1180429, "num_examples": 15}, {"name": "medium", "num_bytes": 12380274, "num_examples": 150}, {"name": "full", "num_bytes": 119183307.653, "num_examples": 1461}], "download_size": 123412830, "dataset_size": 132744010.653}, {"config_name": "vision-language-3", "features": [{"name": "context", "dtype": "string"}, {"name": "img", "dtype": "image"}], "splits": [{"name": "small", "num_bytes": 196243.0, "num_examples": 20}, {"name": "medium", "num_bytes": 1965597.0, "num_examples": 200}, {"name": "full", "num_bytes": 19361970.0, "num_examples": 2000}], "download_size": 18515602, "dataset_size": 21523810.0}, {"config_name": "vision-language-4", "features": [{"name": "label", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "substitute_question", "dtype": "string"}, {"name": "object", "dtype": "string"}, {"name": "img", "dtype": "image"}], "splits": [{"name": "small", "num_bytes": 36322679, "num_examples": 50}, {"name": "medium", "num_bytes": 224922807, "num_examples": 500}, {"name": "full", "num_bytes": 2142965441.58, "num_examples": 4949}], "download_size": 453840693, "dataset_size": 2404210927.58}], "configs": [{"config_name": "language-language-1", "data_files": [{"split": "small", "path": "language-language-1/small-*"}, {"split": "medium", "path": "language-language-1/medium-*"}, {"split": "full", "path": "language-language-1/full-*"}]}, {"config_name": "language-language-2", "data_files": [{"split": "small", "path": "language-language-2/small-*"}, {"split": "medium", "path": "language-language-2/medium-*"}, {"split": "full", "path": "language-language-2/full-*"}]}, {"config_name": "language-language-3", "data_files": [{"split": "small", "path": "language-language-3/small-*"}, {"split": "medium", "path": "language-language-3/medium-*"}, {"split": "full", "path": "language-language-3/full-*"}]}, {"config_name": "language-language-4", "data_files": [{"split": "small", "path": "language-language-4/small-*"}, {"split": "medium", "path": "language-language-4/medium-*"}, {"split": "full", "path": "language-language-4/full-*"}]}, {"config_name": "vision-language-1", "data_files": [{"split": "small", "path": "vision-language-1/small-*"}, {"split": "medium", "path": "vision-language-1/medium-*"}, {"split": "full", "path": "vision-language-1/full-*"}]}, {"config_name": "vision-language-2", "data_files": [{"split": "small", "path": "vision-language-2/small-*"}, {"split": "medium", "path": "vision-language-2/medium-*"}, {"split": "full", "path": "vision-language-2/full-*"}]}, {"config_name": "vision-language-3", "data_files": [{"split": "small", "path": "vision-language-3/small-*"}, {"split": "medium", "path": "vision-language-3/medium-*"}, {"split": "full", "path": "vision-language-3/full-*"}]}, {"config_name": "vision-language-4", "data_files": [{"split": "small", "path": "vision-language-4/small-*"}, {"split": "medium", "path": "vision-language-4/medium-*"}, {"split": "full", "path": "vision-language-4/full-*"}]}]} | 2023-11-25T08:16:22+00:00 | []
| [
"en"
]
| TAGS
#size_categories-10K<n<100K #language-English #license-mit #region-us
| ## Sample usage
### Language-Language
### Vision-Language
For Vision-Language task 4, we will use the imagenet-1k dataset as available on Huggingface.(URL We only provide the labels corresponding to this dataset. For those who wish to use the original imagenet-1k dataset, one can use LOC_synset_mapping.txt and change the 'object' attribute to the synset ids. | [
"## Sample usage",
"### Language-Language",
"### Vision-Language\n\nFor Vision-Language task 4, we will use the imagenet-1k dataset as available on Huggingface.(URL We only provide the labels corresponding to this dataset. For those who wish to use the original imagenet-1k dataset, one can use LOC_synset_mapping.txt and change the 'object' attribute to the synset ids."
]
| [
"TAGS\n#size_categories-10K<n<100K #language-English #license-mit #region-us \n",
"## Sample usage",
"### Language-Language",
"### Vision-Language\n\nFor Vision-Language task 4, we will use the imagenet-1k dataset as available on Huggingface.(URL We only provide the labels corresponding to this dataset. For those who wish to use the original imagenet-1k dataset, one can use LOC_synset_mapping.txt and change the 'object' attribute to the synset ids."
]
| [
27,
4,
7,
91
]
| [
"passage: TAGS\n#size_categories-10K<n<100K #language-English #license-mit #region-us \n## Sample usage### Language-Language### Vision-Language\n\nFor Vision-Language task 4, we will use the imagenet-1k dataset as available on Huggingface.(URL We only provide the labels corresponding to this dataset. For those who wish to use the original imagenet-1k dataset, one can use LOC_synset_mapping.txt and change the 'object' attribute to the synset ids."
]
|
2be035d331faf6f906642fd2d4fc23a427a70add | # Dataset Card for "conjur_artigos"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | celsowm/conjur_artigos | [
"region:us"
]
| 2023-11-11T14:30:21+00:00 | {"dataset_info": {"features": [{"name": "categoria", "dtype": "string"}, {"name": "titulo", "dtype": "string"}, {"name": "subtitulo", "dtype": "string"}, {"name": "texto", "dtype": "string"}, {"name": "data", "dtype": "string"}, {"name": "link", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 108777316, "num_examples": 15450}], "download_size": 60836756, "dataset_size": 108777316}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T14:31:01+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "conjur_artigos"
More Information needed | [
"# Dataset Card for \"conjur_artigos\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"conjur_artigos\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"conjur_artigos\"\n\nMore Information needed"
]
|
d15304d9f2d65ed04740ae8645ec597d1f15dbf6 | # Dataset Card for "vivos-eval-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/vivos-test-vectorized | [
"region:us"
]
| 2023-11-11T14:36:27+00:00 | {"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 658931592, "num_examples": 686}], "download_size": 111731926, "dataset_size": 658931592}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T14:37:12+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vivos-eval-vectorized"
More Information needed | [
"# Dataset Card for \"vivos-eval-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vivos-eval-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vivos-eval-vectorized\"\n\nMore Information needed"
]
|
6c2717371743a9dd461d575b307e512f59f1bcc6 | # Dataset Card for "baseline-train-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/cv13-hi-train-vectorized | [
"region:us"
]
| 2023-11-11T14:47:26+00:00 | {"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 195692656.96, "num_examples": 6760}], "download_size": 177219905, "dataset_size": 195692656.96}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T14:48:09+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "baseline-train-vectorized"
More Information needed | [
"# Dataset Card for \"baseline-train-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"baseline-train-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"baseline-train-vectorized\"\n\nMore Information needed"
]
|
5e1231858a8efec276503afc5acc8c9c384cedfa | # Dataset Card for "xlsum_data-wiki_gptextsum2_results"
rouge={'rouge1': 0.20406948832826113, 'rouge2': 0.05546401643953366, 'rougeL': 0.12740109757325868, 'rougeLsum': 0.12740109757325868}
Bert={'precision': 0.6510593132607198, 'recall': 0.7254875015963246, 'f1': 0.6859854650165146}
mover = 0.5617656306013571 | arthurmluz/xlsum_data-wiki_gptextsum2_results | [
"region:us"
]
| 2023-11-11T14:49:29+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "gen_summary", "dtype": "string"}, {"name": "rouge", "struct": [{"name": "rouge1", "dtype": "float64"}, {"name": "rouge2", "dtype": "float64"}, {"name": "rougeL", "dtype": "float64"}, {"name": "rougeLsum", "dtype": "float64"}]}, {"name": "bert", "struct": [{"name": "f1", "sequence": "float64"}, {"name": "hashcode", "dtype": "string"}, {"name": "precision", "sequence": "float64"}, {"name": "recall", "sequence": "float64"}]}, {"name": "moverScore", "dtype": "float64"}], "splits": [{"name": "validation", "num_bytes": 30175080, "num_examples": 7175}], "download_size": 18538939, "dataset_size": 30175080}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2023-11-13T20:37:44+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "xlsum_data-wiki_gptextsum2_results"
rouge={'rouge1': 0.20406948832826113, 'rouge2': 0.05546401643953366, 'rougeL': 0.12740109757325868, 'rougeLsum': 0.12740109757325868}
Bert={'precision': 0.6510593132607198, 'recall': 0.7254875015963246, 'f1': 0.6859854650165146}
mover = 0.5617656306013571 | [
"# Dataset Card for \"xlsum_data-wiki_gptextsum2_results\"\n\nrouge={'rouge1': 0.20406948832826113, 'rouge2': 0.05546401643953366, 'rougeL': 0.12740109757325868, 'rougeLsum': 0.12740109757325868}\n\nBert={'precision': 0.6510593132607198, 'recall': 0.7254875015963246, 'f1': 0.6859854650165146}\n\nmover = 0.5617656306013571"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"xlsum_data-wiki_gptextsum2_results\"\n\nrouge={'rouge1': 0.20406948832826113, 'rouge2': 0.05546401643953366, 'rougeL': 0.12740109757325868, 'rougeLsum': 0.12740109757325868}\n\nBert={'precision': 0.6510593132607198, 'recall': 0.7254875015963246, 'f1': 0.6859854650165146}\n\nmover = 0.5617656306013571"
]
| [
6,
141
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"xlsum_data-wiki_gptextsum2_results\"\n\nrouge={'rouge1': 0.20406948832826113, 'rouge2': 0.05546401643953366, 'rougeL': 0.12740109757325868, 'rougeLsum': 0.12740109757325868}\n\nBert={'precision': 0.6510593132607198, 'recall': 0.7254875015963246, 'f1': 0.6859854650165146}\n\nmover = 0.5617656306013571"
]
|
b11eca4915e589e38f758463da94bde39330e820 | # Dataset Card for "baseline-eval-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/cv13-hi-test-vectorized | [
"region:us"
]
| 2023-11-11T14:49:41+00:00 | {"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 2831277024, "num_examples": 2947}], "download_size": 494107812, "dataset_size": 2831277024}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T14:50:45+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "baseline-eval-vectorized"
More Information needed | [
"# Dataset Card for \"baseline-eval-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"baseline-eval-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"baseline-eval-vectorized\"\n\nMore Information needed"
]
|
ae69645ac9e533723c06d43ef05a60f3856f3922 | # Dataset Card for "DATA"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | HossainRabby/DATA | [
"region:us"
]
| 2023-11-11T15:25:46+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 379777.2888616891, "num_examples": 735}, {"name": "test", "num_bytes": 42369.71113831089, "num_examples": 82}], "download_size": 165978, "dataset_size": 422147.0}} | 2023-11-27T14:18:33+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "DATA"
More Information needed | [
"# Dataset Card for \"DATA\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"DATA\"\n\nMore Information needed"
]
| [
6,
12
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"DATA\"\n\nMore Information needed"
]
|
352e53be147567c0d19a8a7186a6226f3ea3fc8e | # Dataset Card for "Example"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | islamrokon/Example | [
"region:us"
]
| 2023-11-11T15:41:03+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 15422.921348314607, "num_examples": 80}, {"name": "test", "num_bytes": 1735.0786516853932, "num_examples": 9}], "download_size": 13925, "dataset_size": 17158.0}} | 2023-11-11T15:41:23+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "Example"
More Information needed | [
"# Dataset Card for \"Example\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"Example\"\n\nMore Information needed"
]
| [
6,
13
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"Example\"\n\nMore Information needed"
]
|
ce7fad7cac7091e2a5d5f78cab75d14b14b5b0df | # Dataset Card for "augmath"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | Yama/augmath | [
"region:us"
]
| 2023-11-11T16:01:05+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "answer", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "context", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8673014, "num_examples": 28386}], "download_size": 833425, "dataset_size": 8673014}} | 2023-11-11T16:01:53+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "augmath"
More Information needed | [
"# Dataset Card for \"augmath\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"augmath\"\n\nMore Information needed"
]
| [
6,
12
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"augmath\"\n\nMore Information needed"
]
|
581dcd513c384578ad80eae4d1444a21d5c75bea | # Dataset Card for "nov1_without_position"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | tanvirsrbd1/nov1_without_position | [
"region:us"
]
| 2023-11-11T16:10:06+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "html", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1568423, "num_examples": 3107}], "download_size": 509819, "dataset_size": 1568423}} | 2023-11-11T16:10:12+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "nov1_without_position"
More Information needed | [
"# Dataset Card for \"nov1_without_position\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"nov1_without_position\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"nov1_without_position\"\n\nMore Information needed"
]
|
11494ea5548bb910b48191799f8cd87010e1b763 | # Dataset Card for "expected_dataset_nov1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | tanvirsrbd1/expected_dataset_nov1 | [
"region:us"
]
| 2023-11-11T16:15:48+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "html", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1568423, "num_examples": 3107}], "download_size": 509819, "dataset_size": 1568423}} | 2023-11-11T16:15:54+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "expected_dataset_nov1"
More Information needed | [
"# Dataset Card for \"expected_dataset_nov1\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"expected_dataset_nov1\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"expected_dataset_nov1\"\n\nMore Information needed"
]
|
3279de2946f8a7b01d65d148c81164ecfd96c3bf | # Dataset Card for "cartoonizer-dataset-sm"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | fpochat/cartoonizer-dataset-sm | [
"region:us"
]
| 2023-11-11T16:16:36+00:00 | {"dataset_info": {"features": [{"name": "original_image", "dtype": "image"}, {"name": "edit_prompt", "dtype": "string"}, {"name": "cartoonized_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 75997787.0, "num_examples": 100}], "download_size": 75999417, "dataset_size": 75997787.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T16:16:43+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "cartoonizer-dataset-sm"
More Information needed | [
"# Dataset Card for \"cartoonizer-dataset-sm\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"cartoonizer-dataset-sm\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"cartoonizer-dataset-sm\"\n\nMore Information needed"
]
|
323b1c55cf87c85dac25e1d60aa5a7da13d280cb | #### Overview
This dataset is a fork from [sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context) <br>
This dataset builds from [WikiSQL](https://huggingface.co/datasets/wikisql) and [Spider](https://huggingface.co/datasets/spider).
There are 78,577 examples of natural language queries, SQL CREATE TABLE statements, and SQL Query answering the question using the CREATE statement as context. This dataset was built with text-to-sql LLMs in mind, intending to prevent hallucination of column and table names often seen when trained on text-to-sql datasets. The CREATE TABLE statement can often be copy and pasted from different DBMS and provides table names, column names and their data types. By providing just the CREATE TABLE statement as context, we can hopefully provide better grounding for models without having to provide actual rows of data, limiting token usage and exposure to private, sensitive, or proprietary data.
#### Cleansing and Augmentation
Cleansing and data augmentation has been done on the combined WikiSQL and Spider data. I used [SQLGlot](https://github.com/tobymao/sqlglot) on queries from Spider and WikiSQL and parsed them into different tables and columns, I then inferred column data types based on usage of `>` `<` operators as well as the use of `MIN()` `MAX()` `AVG()` `SUM()` on columns. While this isn't perfect, it increases the likelihood of inferring the correct datatype for a column, the columns otherwise default to VARCHAR type. These tables and columns are then used to generate CREATE TABLE statements using the inferred types. SQLGlot is used again to ensure both the SQL queries and CREATE TABLE statements parse without errors.
Some queries that do not have column names, e.g. SELECT * FROM table, have a default Id column added to the CREATE TABLE statement. Some other queries which use the generic `table` as the FROM table have instead been changed to a variation of `table_name_1` or some other number which is also reflected in the CREATE TABLE statement.
#### TODO
- Further augment the data by converting queries and CREATE TABLE statements into different SQL dialects, this can be done with SQLGlot. Reference to the dialect might also be added to the question.
- Support other informative contexts beyond CREATE TABLE
- Better parse datatypes to clean up things like numbers for column names and other numbers as strings
If you have any edits you'd like to see in a version 2 of this dataset, let me know.
Random sample:
```json
{
"question": "Berapa banyak kepala departemen yang lebih tua dari 56 tahun?",
"context": "CREATE TABLE head (age INTEGER)",
"answer": "SELECT COUNT(*) FROM head WHERE age > 56"
},
{
"question": "Sebutkan nama, lahir negara bagian mana dan usia kepala departemen yang dipesan berdasarkan usia.",
"context": "CREATE TABLE head (name VARCHAR, born_state VARCHAR, age VARCHAR)",
"answer": "SELECT name, born_state, age FROM head ORDER BY age"
},
``` | detakarang/sql-create-context-id | [
"task_categories:text-generation",
"task_categories:question-answering",
"task_categories:table-question-answering",
"size_categories:10K<n<100K",
"language:id",
"license:cc-by-4.0",
"SQL",
"code",
"NLP",
"text-to-sql",
"context-sql",
"spider",
"wikisql",
"sqlglot",
"region:us"
]
| 2023-11-11T16:22:56+00:00 | {"language": ["id"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation", "question-answering", "table-question-answering"], "pretty_name": "sql-create-context-id", "tags": ["SQL", "code", "NLP", "text-to-sql", "context-sql", "spider", "wikisql", "sqlglot"]} | 2023-11-18T05:40:11+00:00 | []
| [
"id"
]
| TAGS
#task_categories-text-generation #task_categories-question-answering #task_categories-table-question-answering #size_categories-10K<n<100K #language-Indonesian #license-cc-by-4.0 #SQL #code #NLP #text-to-sql #context-sql #spider #wikisql #sqlglot #region-us
| #### Overview
This dataset is a fork from sql-create-context <br>
This dataset builds from WikiSQL and Spider.
There are 78,577 examples of natural language queries, SQL CREATE TABLE statements, and SQL Query answering the question using the CREATE statement as context. This dataset was built with text-to-sql LLMs in mind, intending to prevent hallucination of column and table names often seen when trained on text-to-sql datasets. The CREATE TABLE statement can often be copy and pasted from different DBMS and provides table names, column names and their data types. By providing just the CREATE TABLE statement as context, we can hopefully provide better grounding for models without having to provide actual rows of data, limiting token usage and exposure to private, sensitive, or proprietary data.
#### Cleansing and Augmentation
Cleansing and data augmentation has been done on the combined WikiSQL and Spider data. I used SQLGlot on queries from Spider and WikiSQL and parsed them into different tables and columns, I then inferred column data types based on usage of '>' '<' operators as well as the use of 'MIN()' 'MAX()' 'AVG()' 'SUM()' on columns. While this isn't perfect, it increases the likelihood of inferring the correct datatype for a column, the columns otherwise default to VARCHAR type. These tables and columns are then used to generate CREATE TABLE statements using the inferred types. SQLGlot is used again to ensure both the SQL queries and CREATE TABLE statements parse without errors.
Some queries that do not have column names, e.g. SELECT * FROM table, have a default Id column added to the CREATE TABLE statement. Some other queries which use the generic 'table' as the FROM table have instead been changed to a variation of 'table_name_1' or some other number which is also reflected in the CREATE TABLE statement.
#### TODO
- Further augment the data by converting queries and CREATE TABLE statements into different SQL dialects, this can be done with SQLGlot. Reference to the dialect might also be added to the question.
- Support other informative contexts beyond CREATE TABLE
- Better parse datatypes to clean up things like numbers for column names and other numbers as strings
If you have any edits you'd like to see in a version 2 of this dataset, let me know.
Random sample:
| [
"#### Overview\nThis dataset is a fork from sql-create-context <br>\nThis dataset builds from WikiSQL and Spider.\n\nThere are 78,577 examples of natural language queries, SQL CREATE TABLE statements, and SQL Query answering the question using the CREATE statement as context. This dataset was built with text-to-sql LLMs in mind, intending to prevent hallucination of column and table names often seen when trained on text-to-sql datasets. The CREATE TABLE statement can often be copy and pasted from different DBMS and provides table names, column names and their data types. By providing just the CREATE TABLE statement as context, we can hopefully provide better grounding for models without having to provide actual rows of data, limiting token usage and exposure to private, sensitive, or proprietary data.",
"#### Cleansing and Augmentation\nCleansing and data augmentation has been done on the combined WikiSQL and Spider data. I used SQLGlot on queries from Spider and WikiSQL and parsed them into different tables and columns, I then inferred column data types based on usage of '>' '<' operators as well as the use of 'MIN()' 'MAX()' 'AVG()' 'SUM()' on columns. While this isn't perfect, it increases the likelihood of inferring the correct datatype for a column, the columns otherwise default to VARCHAR type. These tables and columns are then used to generate CREATE TABLE statements using the inferred types. SQLGlot is used again to ensure both the SQL queries and CREATE TABLE statements parse without errors.\n\nSome queries that do not have column names, e.g. SELECT * FROM table, have a default Id column added to the CREATE TABLE statement. Some other queries which use the generic 'table' as the FROM table have instead been changed to a variation of 'table_name_1' or some other number which is also reflected in the CREATE TABLE statement.",
"#### TODO\n- Further augment the data by converting queries and CREATE TABLE statements into different SQL dialects, this can be done with SQLGlot. Reference to the dialect might also be added to the question.\n- Support other informative contexts beyond CREATE TABLE\n- Better parse datatypes to clean up things like numbers for column names and other numbers as strings\n\nIf you have any edits you'd like to see in a version 2 of this dataset, let me know.\n\nRandom sample:"
]
| [
"TAGS\n#task_categories-text-generation #task_categories-question-answering #task_categories-table-question-answering #size_categories-10K<n<100K #language-Indonesian #license-cc-by-4.0 #SQL #code #NLP #text-to-sql #context-sql #spider #wikisql #sqlglot #region-us \n",
"#### Overview\nThis dataset is a fork from sql-create-context <br>\nThis dataset builds from WikiSQL and Spider.\n\nThere are 78,577 examples of natural language queries, SQL CREATE TABLE statements, and SQL Query answering the question using the CREATE statement as context. This dataset was built with text-to-sql LLMs in mind, intending to prevent hallucination of column and table names often seen when trained on text-to-sql datasets. The CREATE TABLE statement can often be copy and pasted from different DBMS and provides table names, column names and their data types. By providing just the CREATE TABLE statement as context, we can hopefully provide better grounding for models without having to provide actual rows of data, limiting token usage and exposure to private, sensitive, or proprietary data.",
"#### Cleansing and Augmentation\nCleansing and data augmentation has been done on the combined WikiSQL and Spider data. I used SQLGlot on queries from Spider and WikiSQL and parsed them into different tables and columns, I then inferred column data types based on usage of '>' '<' operators as well as the use of 'MIN()' 'MAX()' 'AVG()' 'SUM()' on columns. While this isn't perfect, it increases the likelihood of inferring the correct datatype for a column, the columns otherwise default to VARCHAR type. These tables and columns are then used to generate CREATE TABLE statements using the inferred types. SQLGlot is used again to ensure both the SQL queries and CREATE TABLE statements parse without errors.\n\nSome queries that do not have column names, e.g. SELECT * FROM table, have a default Id column added to the CREATE TABLE statement. Some other queries which use the generic 'table' as the FROM table have instead been changed to a variation of 'table_name_1' or some other number which is also reflected in the CREATE TABLE statement.",
"#### TODO\n- Further augment the data by converting queries and CREATE TABLE statements into different SQL dialects, this can be done with SQLGlot. Reference to the dialect might also be added to the question.\n- Support other informative contexts beyond CREATE TABLE\n- Better parse datatypes to clean up things like numbers for column names and other numbers as strings\n\nIf you have any edits you'd like to see in a version 2 of this dataset, let me know.\n\nRandom sample:"
]
| [
101,
199,
281,
114
]
| [
"passage: TAGS\n#task_categories-text-generation #task_categories-question-answering #task_categories-table-question-answering #size_categories-10K<n<100K #language-Indonesian #license-cc-by-4.0 #SQL #code #NLP #text-to-sql #context-sql #spider #wikisql #sqlglot #region-us \n#### Overview\nThis dataset is a fork from sql-create-context <br>\nThis dataset builds from WikiSQL and Spider.\n\nThere are 78,577 examples of natural language queries, SQL CREATE TABLE statements, and SQL Query answering the question using the CREATE statement as context. This dataset was built with text-to-sql LLMs in mind, intending to prevent hallucination of column and table names often seen when trained on text-to-sql datasets. The CREATE TABLE statement can often be copy and pasted from different DBMS and provides table names, column names and their data types. By providing just the CREATE TABLE statement as context, we can hopefully provide better grounding for models without having to provide actual rows of data, limiting token usage and exposure to private, sensitive, or proprietary data."
]
|
032a5026ccf7c20f88d4f21c8623c817c2e75147 | # Dataset Card for "bw_spec_cls_4_00_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_00_s_200 | [
"region:us"
]
| 2023-11-11T16:34:13+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "10", "1": "140", "2": "2", "3": "5"}}}}], "splits": [{"name": "train", "num_bytes": 44003467.0, "num_examples": 800}, {"name": "test", "num_bytes": 4361761.0, "num_examples": 80}], "download_size": 42377721, "dataset_size": 48365228.0}} | 2023-11-11T16:34:24+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_00_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_00_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_00_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_00_s_200\"\n\nMore Information needed"
]
|
1437f742e2c6801e06660b23b0eede62aaf42d53 |
# Bangumi Image Base of Imaizumin Chi Wa Douyara Gal No Tamariba Ni Natteru Rashii
This is the image base of bangumi Imaizumin Chi wa Douyara Gal no Tamariba ni Natteru Rashii, we detected 6 characters, 145 images in total. The full dataset is [here](all.zip).
**Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 |
|:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|
| 0 | 21 | [Download](0/dataset.zip) |  |  |  |  |  |  |  |  |
| 1 | 10 | [Download](1/dataset.zip) |  |  |  |  |  |  |  |  |
| 2 | 17 | [Download](2/dataset.zip) |  |  |  |  |  |  |  |  |
| 3 | 37 | [Download](3/dataset.zip) |  |  |  |  |  |  |  |  |
| 4 | 25 | [Download](4/dataset.zip) |  |  |  |  |  |  |  |  |
| noise | 35 | [Download](-1/dataset.zip) |  |  |  |  |  |  |  |  | | BangumiBase/imaizuminchiwadouyaragalnotamaribaninatterurashii | [
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-11T16:55:17+00:00 | {"license": "mit", "size_categories": ["n<1K"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T05:37:44+00:00 | []
| []
| TAGS
#size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Bangumi Image Base of Imaizumin Chi Wa Douyara Gal No Tamariba Ni Natteru Rashii
================================================================================
This is the image base of bangumi Imaizumin Chi wa Douyara Gal no Tamariba ni Natteru Rashii, we detected 6 characters, 145 images in total. The full dataset is here.
Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| []
| [
"TAGS\n#size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
32
]
| [
"passage: TAGS\n#size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
33ffb1020976a6661522549113b390ce8223d7a5 |
# Bangumi Image Base of Mankitsu Happening
This is the image base of bangumi Mankitsu Happening, we detected 7 characters, 475 images in total. The full dataset is [here](all.zip).
**Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 |
|:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|
| 0 | 70 | [Download](0/dataset.zip) |  |  |  |  |  |  |  |  |
| 1 | 58 | [Download](1/dataset.zip) |  |  |  |  |  |  |  |  |
| 2 | 17 | [Download](2/dataset.zip) |  |  |  |  |  |  |  |  |
| 3 | 103 | [Download](3/dataset.zip) |  |  |  |  |  |  |  |  |
| 4 | 88 | [Download](4/dataset.zip) |  |  |  |  |  |  |  |  |
| 5 | 106 | [Download](5/dataset.zip) |  |  |  |  |  |  |  |  |
| noise | 33 | [Download](-1/dataset.zip) |  |  |  |  |  |  |  |  | | BangumiBase/mankitsuhappening | [
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-11T16:56:03+00:00 | {"license": "mit", "size_categories": ["n<1K"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T05:37:23+00:00 | []
| []
| TAGS
#size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Bangumi Image Base of Mankitsu Happening
========================================
This is the image base of bangumi Mankitsu Happening, we detected 7 characters, 475 images in total. The full dataset is here.
Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| []
| [
"TAGS\n#size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
32
]
| [
"passage: TAGS\n#size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
eb0b1ecd9720e545edb91690b34db5337ab2c076 | # Dataset Card for "bw_spec_cls_4_01_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_01_s_200 | [
"region:us"
]
| 2023-11-11T16:58:34+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "141", "1": "190", "2": "193", "3": "194"}}}}], "splits": [{"name": "train", "num_bytes": 47242921.0, "num_examples": 800}, {"name": "test", "num_bytes": 4742816.0, "num_examples": 80}], "download_size": 45190297, "dataset_size": 51985737.0}} | 2023-11-11T16:58:46+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_01_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_01_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_01_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_01_s_200\"\n\nMore Information needed"
]
|
d2501814b8177ccf2578a8ad60b2f1661b102a49 | # Dataset Card for "vivos-train-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/vivos-train-vectorized | [
"region:us"
]
| 2023-11-11T17:04:37+00:00 | {"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 1540103696.5, "num_examples": 9964}], "download_size": 1511582741, "dataset_size": 1540103696.5}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T17:06:31+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vivos-train-vectorized"
More Information needed | [
"# Dataset Card for \"vivos-train-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vivos-train-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vivos-train-vectorized\"\n\nMore Information needed"
]
|
7015b45636115be1a8a2eca23b1b937fb713f285 | # Dataset Card for "km-shorts"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | en0c/km-shorts | [
"region:us"
]
| 2023-11-11T17:06:45+00:00 | {"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 173849408.0, "num_examples": 45}], "download_size": 157813790, "dataset_size": 173849408.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T17:07:10+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "km-shorts"
More Information needed | [
"# Dataset Card for \"km-shorts\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"km-shorts\"\n\nMore Information needed"
]
| [
6,
14
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"km-shorts\"\n\nMore Information needed"
]
|
b7a46d0ace1f21f656b158f611420a22bd4b509b | # Dataset Card for "wikipedia_token"
```ts
Token count {
'~1024': 5320881,
'1024~2048': 693911,
'2048~4096': 300935,
'4096~8192': 106221,
'8192~16384': 30611,
'16384~32768': 4812,
'32768~65536': 1253,
'65536~128000': 46,
'128000~': 0
}
Text count {
'0~1024': 2751539,
'1024~2048': 1310778,
'2048~4096': 1179150,
'4096~8192': 722101,
'8192~16384': 329062,
'16384~32768': 121237,
'32768~65536': 36894,
'65536~': 7909
}
Token percent {
'~1024': '82.38%',
'1024~2048': '10.74%',
'2048~4096': '4.66%',
'4096~8192': '1.64%',
'8192~16384': '0.47%',
'16384~32768': '0.07%',
'32768~65536': '0.02%',
'65536~128000': '0.00%',
'128000~': '0.00%'
}
Text percent {
'0~1024': '42.60%',
'1024~2048': '20.29%',
'2048~4096': '18.26%',
'4096~8192': '11.18%',
'8192~16384': '5.09%',
'16384~32768': '1.88%',
'32768~65536': '0.57%',
'65536~': '0.12%'
}
``` | seonglae/wikipedia_token | [
"region:us"
]
| 2023-11-11T17:11:05+00:00 | {"dataset_info": {"config_name": "gpt-4", "features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "token_length", "dtype": "int64"}, {"name": "text_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19998333901, "num_examples": 6458670}], "download_size": 11604627673, "dataset_size": 19998333901}, "configs": [{"config_name": "gpt-4", "data_files": [{"split": "train", "path": "gpt-4/train-*"}]}]} | 2023-11-12T02:42:37+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "wikipedia_token"
| [
"# Dataset Card for \"wikipedia_token\""
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"wikipedia_token\""
]
| [
6,
11
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"wikipedia_token\""
]
|
03e2f88d4e01a3d94097ad8bc79db98841142c41 | # Dataset Card for "vlsp-train-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/vlsp-train-vectorized | [
"region:us"
]
| 2023-11-11T17:25:18+00:00 | {"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 24115945291.875, "num_examples": 171441}], "download_size": 24036430824, "dataset_size": 24115945291.875}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T17:47:59+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vlsp-train-vectorized"
More Information needed | [
"# Dataset Card for \"vlsp-train-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vlsp-train-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vlsp-train-vectorized\"\n\nMore Information needed"
]
|
fc6b7995f3c4d7371ac8d3e5fad427fe2fdc1d3e | # Dataset Card for "processed_bert_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | marcohanna/processed_bert_dataset | [
"region:us"
]
| 2023-11-11T17:34:12+00:00 | {"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "token_type_ids", "sequence": "int8"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "special_tokens_mask", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 24027526800.0, "num_examples": 6674313}], "download_size": 5887019660, "dataset_size": 24027526800.0}} | 2023-11-11T22:27:12+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "processed_bert_dataset"
More Information needed | [
"# Dataset Card for \"processed_bert_dataset\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"processed_bert_dataset\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"processed_bert_dataset\"\n\nMore Information needed"
]
|
64e8b8cfd2074e42b707848639cae65d8cc01e6c | # Dataset Card for "Dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | islamrokon/Dataset | [
"region:us"
]
| 2023-11-11T17:34:27+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 379777.2888616891, "num_examples": 735}, {"name": "test", "num_bytes": 42369.71113831089, "num_examples": 82}], "download_size": 165978, "dataset_size": 422147.0}} | 2023-11-11T17:34:53+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "Dataset"
More Information needed | [
"# Dataset Card for \"Dataset\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"Dataset\"\n\nMore Information needed"
]
| [
6,
12
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"Dataset\"\n\nMore Information needed"
]
|
8688bb13d7cea3780e627932aea8165780f63216 | # Chinese International Statistical Classification of Diseases | eddielin0926/chinese-icd | [
"task_categories:text-classification",
"size_categories:1M<n<10M",
"language:zh",
"language:en",
"license:mit",
"medical",
"region:us"
]
| 2023-11-11T17:39:25+00:00 | {"language": ["zh", "en"], "license": "mit", "size_categories": ["1M<n<10M"], "task_categories": ["text-classification"], "pretty_name": "chicd", "tags": ["medical"], "dataset_info": {"features": [{"name": "year", "dtype": "int32"}, {"name": "month", "dtype": "int32"}, {"name": "no", "dtype": "int32"}, {"name": "death", "dtype": "int32"}, {"name": "input_code", "dtype": "int32"}, {"name": "result_code", "dtype": "int32"}, {"name": "check", "dtype": "bool"}, {"name": "serial_no", "dtype": "int32"}, {"name": "catalog", "dtype": "int32"}, {"name": "inputs", "sequence": "string"}, {"name": "results", "sequence": "string"}, {"name": "icds", "sequence": "string"}, {"name": "encodes", "sequence": {"class_label": {"names": {"0": "L519", "1": "A523", "2": "I898", "3": "A047", "4": "E144", "5": "C797", "6": "C755", "7": "K831", "8": "B379", "9": "S621", "10": "C672", "11": "K409", "12": "D073", "13": "A179", "14": "I255", "15": "K353", "16": "C029", "17": "W11", "18": "D139", "19": "R944", "20": "V785", "21": "T502", "22": "C921", "23": "K228", "24": "S069(TR)", "25": "K226", "26": "N501(nTR)", "27": "D136", "28": "Q878", "29": "S610", "30": "L032", "31": "T835", "32": "O699", "33": "K820", "34": "V827", "35": "K256", "36": "M769", "37": "C677", "38": "K920", "39": "C689", "40": "T183", "41": "T327", "42": "B948", "43": "T213", "44": "C160", "45": "R060", "46": "T812", "47": "F104", "48": "I311", "49": "I670", "50": "C112", "51": "H931", "52": "K868", "53": "S158", "54": "R35", "55": "L109", "56": "T115", "57": "G2009", "58": "H348", "59": "P012", "60": "Q019", "61": "V878", "62": "G969", "63": "H441", "64": "K099", "65": "M431", "66": "X97", "67": "C773", "68": "J989", "69": "F191", "70": "Q445", "71": "O691", "72": "I110", "73": "K109", "74": "S121", "75": "Q069", "76": "D302", "77": "K650", "78": "D447", "79": "N508", "80": "V875", "81": "E702", "82": "J840", "83": "T174", "84": "S360(TR)", "85": "R798", "86": "N428", "87": "C629", "88": "O690", "89": "O441", "90": "M624", "91": "I519", "92": "R093", "93": "I471", "94": "A78", "95": "T818", "96": "X78", "97": "D133", "98": "P252", "99": "N920", "100": "K627", "101": "V455", "102": "B86", "103": "C509", "104": "P229", "105": "V892", "106": "I350(nRH)", "107": "H309", "108": "C944", "109": "T360", "110": "S618", "111": "J9840", "112": "L409", "113": "L038", "114": "B457", "115": "H431(nTR)", "116": "R509", "117": "F952", "118": "A421", "119": "S208", "120": "A509", "121": "I472", "122": "H108", "123": "B004", "124": "C52", "125": "P052", "126": "E721", "127": "F072", "128": "W14", "129": "T561", "130": "C153", "131": "Q639", "132": "N209", "133": "T794", "134": "T110", "135": "N041", "136": "K918", "137": "S010", "138": "J940", "139": "M726", "140": "H350", "141": "E782", "142": "C632", "143": "V339", "144": "C223", "145": "P544", "146": "J128", "147": "C252", "148": "M954", "149": "T210", "150": "C752", "151": "C720", "152": "S275", "153": "R11", "154": "S699", "155": "E785", "156": "E169", "157": "V804", "158": "Y839", "159": "E210", "160": "K902", "161": "V275", "162": "E720", "163": "K262", "164": "R202", "165": "T357", "166": "J81", "167": "P015", "168": "I423", "169": "V389", "170": "G378", "171": "S315", "172": "Q257", "173": "T809", "174": "V294", "175": "Q269", "176": "C695", "177": "D519", "178": "S710", "179": "N764", "180": "B853", "181": "I748", "182": "T858", "183": "T424", "184": "O998", "185": "B371", "186": "J948", "187": "I318", "188": "S450", "189": "C139", "190": "E771", "191": "T400", "192": "G822(nTR)", "193": "J387", "194": "A029", "195": "J1110", "196": "D449", "197": "K620", "198": "B450", "199": "S311", "200": "C441", "201": "O365", "202": "D125", "203": "P111", "204": "T797", "205": "S829", "206": "D261", "207": "I959", "208": "Q789", "209": "C442", "210": "L209", "211": "R292", "212": "Q2830", "213": "S909", "214": "C73", "215": "K257", "216": "M1998", "217": "S328", "218": "D691", "219": "N308", "220": "G709", "221": "T604", "222": "A46", "223": "J019", "224": "W74", "225": "J329", "226": "S141", "227": "H409", "228": "E876", "229": "E211", "230": "N481", "231": "R630", "232": "Q070", "233": "I718(nTR)", "234": "T041", "235": "O669", "236": "H919", "237": "T307", "238": "M125", "239": "K719", "240": "I738", "241": "S242", "242": "V285", "243": "T455", "244": "I5150", "245": "M319", "246": "C947", "247": "I868", "248": "S223", "249": "X599", "250": "N251", "251": "N419", "252": "S910", "253": "Q336", "254": "J110", "255": "B461", "256": "E140", "257": "C220", "258": "N390", "259": "T814", "260": "F239", "261": "N159", "262": "Q559", "263": "B250", "264": "F051", "265": "P251", "266": "D486", "267": "C770", "268": "M798", "269": "Q677", "270": "D759", "271": "N760", "272": "C248", "273": "C023", "274": "A809", "275": "S251", "276": "I214", "277": "B589", "278": "K7210", "279": "K628", "280": "O85", "281": "T145", "282": "G048", "283": "D762", "284": "V195", "285": "I671", "286": "J150", "287": "N946", "288": "S327", "289": "K669", "290": "E833", "291": "T829", "292": "T597", "293": "C260", "294": "M620", "295": "I270", "296": "T07", "297": "T826", "298": "G258", "299": "D164", "300": "C968", "301": "R51", "302": "K630", "303": "Q917", "304": "K863", "305": "F155", "306": "P241", "307": "I808", "308": "N059", "309": "T549", "310": "S519", "311": "S522", "312": "A529", "313": "C740", "314": "G040", "315": "R258", "316": "C321", "317": "G600", "318": "O868", "319": "C062", "320": "F03", "321": "N649", "322": "K566", "323": "M480", "324": "T901", "325": "E148", "326": "T242", "327": "V115", "328": "N719", "329": "A401", "330": "S501", "331": "M236", "332": "T383", "333": "P740", "334": "L030", "335": "C64", "336": "D013", "337": "R33", "338": "Y26", "339": "Q271", "340": "I6149(nTR)", "341": "I254", "342": "V465", "343": "Y86", "344": "I603(nTR)", "345": "Q030", "346": "C172", "347": "M703", "348": "X36", "349": "T250", "350": "I310", "351": "W32", "352": "M659", "353": "N86", "354": "B008", "355": "N835", "356": "M130", "357": "B909", "358": "N322", "359": "S701", "360": "D24", "361": "H335", "362": "Q935", "363": "S930", "364": "T932", "365": "B689", "366": "Q233", "367": "D166", "368": "G231", "369": "S819", "370": "E859", "371": "B789", "372": "B977", "373": "T733", "374": "T132", "375": "O909", "376": "V499", "377": "Y579", "378": "T886", "379": "B389", "380": "J411", "381": "H449", "382": "C65", "383": "V264", "384": "I455", "385": "K102", "386": "I071(RH)", "387": "F019", "388": "L989", "389": "C713", "390": "G218", "391": "Q764", "392": "P240", "393": "O623", "394": "I6339", "395": "R042", "396": "Q288", "397": "S800", "398": "O908", "399": "S061(TR)", "400": "T432", "401": "T911", "402": "C889", "403": "T885", "404": "I2190", "405": "T519", "406": "R34", "407": "S375(TR)", "408": "A492", "409": "G913", "410": "L930", "411": "I480", "412": "Q254", "413": "T410", "414": "D332", "415": "D431", "416": "A066", "417": "C716", "418": "W20", "419": "V184", "420": "D372", "421": "B901", "422": "V556", "423": "B91", "424": "R221", "425": "R628", "426": "E118", "427": "R049(nTR)", "428": "C817", "429": "I6919", "430": "C719", "431": "K572", "432": "E101", "433": "V555", "434": "V445", "435": "C694", "436": "D530", "437": "K450", "438": "M1999", "439": "F311", "440": "T903", "441": "I281", "442": "F163", "443": "B082", "444": "T146", "445": "H045", "446": "Q251", "447": "M255", "448": "C419", "449": "K3199", "450": "L97", "451": "D382", "452": "G568", "453": "I253", "454": "E143", "455": "L732", "456": "J181", "457": "T323", "458": "T426", "459": "C951", "460": "G513", "461": "R290", "462": "T131", "463": "E114", "464": "S599", "465": "Y433", "466": "O019", "467": "V746", "468": "F452", "469": "D010", "470": "P369", "471": "B89", "472": "E748", "473": "D141", "474": "L743", "475": "D213", "476": "O622", "477": "N800", "478": "Q613", "479": "X08", "480": "I749(EM)", "481": "I677", "482": "R942", "483": "I780", "484": "T805", "485": "D200", "486": "D239", "487": "H188", "488": "A369", "489": "I312(nTR)", "490": "X83", "491": "I6939", "492": "C003", "493": "A165", "494": "C674", "495": "I872", "496": "T847", "497": "G713", "498": "L033", "499": "I288(nTR)", "500": "F200", "501": "J1010", "502": "A014", "503": "C790", "504": "C218", "505": "K573", "506": "N72", "507": "A415", "508": "I958", "509": "D360", "510": "O95", "511": "T924", "512": "C028", "513": "Q824", "514": "P780", "515": "S381", "516": "D892", "517": "I349", "518": "A985", "519": "D401", "520": "E790", "521": "L259", "522": "I771(nTR)", "523": "I5140", "524": "N838", "525": "I051(RH)", "526": "K449(nTR)", "527": "W25", "528": "L929", "529": "J969", "530": "T119", "531": "S720", "532": "T274", "533": "E111", "534": "N820", "535": "A878", "536": "N151", "537": "G839(nTR)", "538": "J47", "539": "T634", "540": "S110", "541": "V495", "542": "T811", "543": "Q211", "544": "X99", "545": "C502", "546": "V235", "547": "T861", "548": "A327", "549": "D734", "550": "T782", "551": "F069", "552": "L851", "553": "K746", "554": "W22", "555": "T149", "556": "B085", "557": "T451", "558": "M139", "559": "C210", "560": "R179", "561": "Q600", "562": "I719", "563": "I629(nTR)", "564": "T312", "565": "J938(nTR)", "566": "Q258", "567": "S070", "568": "G930", "569": "E260", "570": "I250", "571": "S700", "572": "V199", "573": "N858", "574": "Q222", "575": "I730", "576": "J323", "577": "C767", "578": "K803", "579": "R42", "580": "K741", "581": "E740", "582": "Q174", "583": "V586", "584": "R680", "585": "C413", "586": "D473", "587": "T490", "588": "E349", "589": "I252", "590": "M626", "591": "B171", "592": "D432", "593": "J320", "594": "Q780", "595": "J384", "596": "G470", "597": "B382", "598": "T529", "599": "V817", "600": "K420", "601": "V789", "602": "S222", "603": "K703", "604": "I38", "605": "F141", "606": "N319", "607": "D159", "608": "E750", "609": "T450", "610": "Y838", "611": "S099", "612": "Y00", "613": "V645", "614": "V959", "615": "K273", "616": "I822", "617": "Q289", "618": "A051", "619": "T620", "620": "T754", "621": "N499", "622": "R13", "623": "D391", "624": "N323", "625": "A244", "626": "N185", "627": "D695", "628": "D739", "629": "O235", "630": "T142", "631": "Q549", "632": "I260", "633": "Y883", "634": "C259", "635": "N039", "636": "S364(TR)", "637": "Q602", "638": "S033", "639": "R894", "640": "G835", "641": "D384", "642": "F232", "643": "X24", "644": "C380", "645": "C109", "646": "S722", "647": "O021", "648": "Q649", "649": "N899", "650": "B351", "651": "Q240", "652": "B362", "653": "K716", "654": "C541", "655": "S422", "656": "R410", "657": "C329", "658": "I6140(nTR)", "659": "J849", "660": "A069", "661": "D509", "662": "V919", "663": "G98", "664": "C800", "665": "O159", "666": "A321", "667": "K860", "668": "S279", "669": "K253", "670": "C251", "671": "B270", "672": "I740", "673": "A33", "674": "S012", "675": "T413", "676": "D609", "677": "T933", "678": "P239", "679": "J322", "680": "V599", "681": "E162", "682": "V809", "683": "W09", "684": "R599", "685": "S231", "686": "H169", "687": "I820", "688": "A319", "689": "C962", "690": "S079", "691": "M503", "692": "E550", "693": "R470", "694": "E512", "695": "D130", "696": "T317", "697": "I426", "698": "S109", "699": "J939(nTR)", "700": "V589", "701": "V536", "702": "R18", "703": "I479", "704": "S637", "705": "V646", "706": "A183", "707": "N369", "708": "N492", "709": "N62", "710": "B301", "711": "H832", "712": "Q443", "713": "C61", "714": "L301", "715": "S049", "716": "Q209", "717": "K610", "718": "G711", "719": "K578", "720": "T542", "721": "C793", "722": "I200", "723": "N600", "724": "N134", "725": "J160", "726": "J628", "727": "K291", "728": "Q539", "729": "K751", "730": "E538", "731": "Q242", "732": "O903", "733": "N359", "734": "C180", "735": "E798", "736": "Q769", "737": "E669", "738": "T270", "739": "C189", "740": "S379(TR)", "741": "I744", "742": "D135", "743": "F131", "744": "K121", "745": "T019", "746": "H051", "747": "V795", "748": "H579", "749": "R32", "750": "J860", "751": "Q898", "752": "V735", "753": "T868", "754": "E213", "755": "C481", "756": "K801", "757": "W30", "758": "T919", "759": "S711", "760": "V494", "761": "T902", "762": "D442", "763": "X74", "764": "P027", "765": "T524", "766": "G834(nTR)", "767": "D508", "768": "V819", "769": "K858", "770": "L720", "771": "I248", "772": "C753", "773": "G540", "774": "G1229", "775": "N288", "776": "K134", "777": "S570", "778": "Q641", "779": "S551", "780": "G479", "781": "V399", "782": "T281", "783": "D441", "784": "P60", "785": "A021", "786": "T671", "787": "K430", "788": "V435", "789": "T570", "790": "C910", "791": "L739", "792": "Q218", "793": "I400", "794": "B941", "795": "F153", "796": "G310", "797": "V636", "798": "D485", "799": "I676", "800": "C723", "801": "I059", "802": "S750", "803": "S663", "804": "N809", "805": "E60", "806": "W53", "807": "I454", "808": "G249", "809": "T273", "810": "Q183", "811": "Q794", "812": "V699", "813": "A539", "814": "V245", "815": "M349", "816": "C809", "817": "C457", "818": "G459", "819": "V595", "820": "I512", "821": "J399", "822": "Q200", "823": "M061", "824": "N321", "825": "F011", "826": "E060", "827": "D849", "828": "P209", "829": "R619", "830": "G129", "831": "C224", "832": "O459", "833": "C102", "834": "C241", "835": "B162", "836": "C444", "837": "J13", "838": "K766", "839": "N822", "840": "S008", "841": "C763", "842": "E161", "843": "C774", "844": "C050", "845": "T406", "846": "T022", "847": "A418", "848": "C341", "849": "H209", "850": "C729", "851": "E110", "852": "R600", "853": "I899", "854": "E703", "855": "D232", "856": "J358", "857": "T808", "858": "V879", "859": "X23", "860": "G255", "861": "M218", "862": "T143", "863": "D210", "864": "N488(nTR)", "865": "J981", "866": "D594", "867": "T326", "868": "A527", "869": "Q225", "870": "G619", "871": "H71", "872": "T819", "873": "T846", "874": "M796", "875": "S204", "876": "V874", "877": "O720", "878": "C631", "879": "C499", "880": "Q049", "881": "T856", "882": "I741", "883": "K767", "884": "E756", "885": "E873", "886": "T093(TR)", "887": "J342", "888": "B449", "889": "T392", "890": "O430", "891": "T888", "892": "F192", "893": "Q850", "894": "C090", "895": "T302", "896": "G588", "897": "S013", "898": "R05", "899": "K315", "900": "G919", "901": "E662", "902": "R413", "903": "C679", "904": "V114", "905": "I440", "906": "T71", "907": "P529", "908": "E786", "909": "D481", "910": "C539", "911": "C751", "912": "O411", "913": "D561", "914": "B188", "915": "I6930", "916": "P819", "917": "C163", "918": "C929", "919": "G728", "920": "T430", "921": "S271", "922": "T232", "923": "K272", "924": "T790", "925": "V225", "926": "W84", "927": "R227", "928": "S383", "929": "R072", "930": "S005", "931": "N309", "932": "W07", "933": "V039", "934": "B690", "935": "E112", "936": "V546", "937": "L130", "938": "Q676", "939": "H448", "940": "L139", "941": "N736", "942": "I6949", "943": "K225", "944": "I620(nTR)", "945": "S374(TR)", "946": "S119", "947": "R092", "948": "N301", "949": "B011", "950": "I489", "951": "S335", "952": "A391", "953": "C431", "954": "B199", "955": "C021", "956": "D376", "957": "M543", "958": "G529", "959": "N824", "960": "D648", "961": "A498", "962": "R252", "963": "K056", "964": "B99", "965": "N823", "966": "I891", "967": "M628", "968": "S709", "969": "Q437", "970": "C460", "971": "K116", "972": "V129", "973": "K274", "974": "D219", "975": "A170", "976": "S376(TR)", "977": "I10", "978": "N410", "979": "D179", "980": "S969", "981": "R048(nTR)", "982": "I745", "983": "Q446", "984": "R041(nTR)", "985": "I211", "986": "L308", "987": "E139", "988": "S030", "989": "R54", "990": "B458", "991": "T843", "992": "K579", "993": "D350", "994": "D860", "995": "P002", "996": "D489", "997": "M502", "998": "A009", "999": "S362(TR)", "1000": "C785", "1001": "V031", "1002": "E724", "1003": "H104", "1004": "R002", "1005": "G309", "1006": "C917", "1007": "R961", "1008": "R15", "1009": "C902", "1010": "E43", "1011": "T08", "1012": "S423", "1013": "I728(nTR)", "1014": "W15", "1015": "M609", "1016": "C181", "1017": "M314", "1018": "M549", "1019": "T941", "1020": "C183", "1021": "S051", "1022": "V144", "1023": "A164", "1024": "T802", "1025": "E102", "1026": "E41", "1027": "T316", "1028": "J450", "1029": "V436", "1030": "I878", "1031": "Q213", "1032": "K252", "1033": "K251", "1034": "C171", "1035": "K460", "1036": "S678", "1037": "K835", "1038": "E273", "1039": "G932", "1040": "T592", "1041": "E519", "1042": "F220", "1043": "I341", "1044": "C923", "1045": "E146", "1046": "T393", "1047": "C319", "1048": "V816", "1049": "M233", "1050": "D309", "1051": "Q02", "1052": "R940", "1053": "M539", "1054": "D019", "1055": "Q766", "1056": "C399", "1057": "E722", "1058": "R788", "1059": "T506", "1060": "B342", "1061": "B258", "1062": "I359", "1063": "O751", "1064": "I352", "1065": "K37", "1066": "F55", "1067": "C833", "1068": "P788", "1069": "S368(TR)", "1070": "C844", "1071": "D299", "1072": "S276", "1073": "P549", "1074": "D471", "1075": "S723", "1076": "X58", "1077": "M320", "1078": "F929", "1079": "M243", "1080": "M712", "1081": "C56", "1082": "O639", "1083": "M799", "1084": "F530", "1085": "C781", "1086": "I659", "1087": "K6310", "1088": "T855", "1089": "B908", "1090": "S751", "1091": "C792", "1092": "V284", "1093": "E236", "1094": "K603", "1095": "P298", "1096": "I770", "1097": "F739", "1098": "D143", "1099": "D410", "1100": "S300", "1101": "A084", "1102": "S352", "1103": "K744", "1104": "Q324", "1105": "Q279", "1106": "I778", "1107": "S721", "1108": "V060", "1109": "W77", "1110": "V913", "1111": "C140", "1112": "K36", "1113": "K739", "1114": "T675", "1115": "A481", "1116": "M600", "1117": "C519", "1118": "V775", "1119": "T97", "1120": "E209", "1121": "T813", "1122": "F842", "1123": "K633", "1124": "C780", "1125": "D531", "1126": "J219", "1127": "V145", "1128": "Y590", "1129": "Q323", "1130": "T202", "1131": "V655", "1132": "E871", "1133": "I722(nTR)", "1134": "C390", "1135": "P220", "1136": "Q423", "1137": "H308", "1138": "I459", "1139": "W33", "1140": "L728", "1141": "K800", "1142": "D868", "1143": "J157", "1144": "Q262", "1145": "C310", "1146": "T028", "1147": "T658", "1148": "S688", "1149": "T435", "1150": "K639", "1151": "L031", "1152": "E744", "1153": "F162", "1154": "Q410", "1155": "A89", "1156": "Y079", "1157": "S053(TR)", "1158": "J60", "1159": "A749", "1160": "C381", "1161": "F432", "1162": "R53", "1163": "K560", "1164": "A812", "1165": "F419", "1166": "C432", "1167": "Q749", "1168": "S028", "1169": "X12", "1170": "A199", "1171": "S771", "1172": "D397", "1173": "H669", "1174": "I701", "1175": "W55", "1176": "N12", "1177": "I700", "1178": "C081", "1179": "B005", "1180": "Q893", "1181": "T253", "1182": "M216", "1183": "D728", "1184": "K859", "1185": "D445", "1186": "Q059", "1187": "P250", "1188": "E874", "1189": "L029", "1190": "S531", "1191": "Q230", "1192": "C761", "1193": "C472", "1194": "D439", "1195": "V756", "1196": "C759", "1197": "S272", "1198": "G64", "1199": "M311", "1200": "D131", "1201": "C261", "1202": "C022", "1203": "D731", "1204": "S589", "1205": "T827", "1206": "Q212", "1207": "G318", "1208": "R098", "1209": "K260", "1210": "C33", "1211": "N399", "1212": "S063(TR)", "1213": "I710(nTR)", "1214": "D433", "1215": "C496", "1216": "A403", "1217": "M089", "1218": "T378", "1219": "F259", "1220": "Q179", "1221": "Q631", "1222": "J041", "1223": "W36", "1224": "K632", "1225": "C787", "1226": "Q348", "1227": "Y842", "1228": "S411", "1229": "L26", "1230": "C791", "1231": "S421", "1232": "T958", "1233": "I772(nTR)", "1234": "I348", "1235": "K30", "1236": "Q438", "1237": "K661(nTR)", "1238": "K255", "1239": "T433", "1240": "D381", "1241": "E46", "1242": "H819", "1243": "K088", "1244": "C01", "1245": "C433", "1246": "S179", "1247": "I951", "1248": "H702", "1249": "I724(nTR)", "1250": "G618", "1251": "V635", "1252": "S510", "1253": "S684", "1254": "Q874", "1255": "I209", "1256": "N411", "1257": "G245", "1258": "P017", "1259": "R471", "1260": "Q248", "1261": "T321", "1262": "P070", "1263": "W41", "1264": "S978", "1265": "N759", "1266": "P159", "1267": "M625", "1268": "F410", "1269": "E511", "1270": "N211", "1271": "D103", "1272": "I078", "1273": "Q220", "1274": "D45", "1275": "Q819", "1276": "F105", "1277": "M341", "1278": "I139", "1279": "R162", "1280": "K828", "1281": "C493", "1282": "I6120(nTR)", "1283": "E055", "1284": "C412", "1285": "C920", "1286": "M513", "1287": "R390", "1288": "T864", "1289": "V134", "1290": "T148", "1291": "S728", "1292": "G510", "1293": "C403", "1294": "E639", "1295": "Q309", "1296": "E728", "1297": "C851", "1298": "L039", "1299": "Q909", "1300": "G936(nTR)", "1301": "K292", "1302": "E009", "1303": "R638", "1304": "Q202", "1305": "S051(TR)", "1306": "T486", "1307": "S451", "1308": "I259", "1309": "N189", "1310": "T913", "1311": "M898", "1312": "C340", "1313": "T887", "1314": "N398", "1315": "N971", "1316": "F112", "1317": "M340", "1318": "C382", "1319": "A178", "1320": "T596", "1321": "S159", "1322": "H189", "1323": "C880", "1324": "W44", "1325": "D484", "1326": "C132", "1327": "E781", "1328": "K060", "1329": "A491", "1330": "D385", "1331": "Y369", "1332": "J80", "1333": "Q860", "1334": "M541", "1335": "M321", "1336": "M053", "1337": "T600", "1338": "R97", "1339": "I880", "1340": "K593", "1341": "D099", "1342": "M259", "1343": "G911", "1344": "A499", "1345": "P789", "1346": "E109", "1347": "E220", "1348": "I469", "1349": "V873", "1350": "V656", "1351": "K382", "1352": "L52", "1353": "W70", "1354": "N049", "1355": "V385", "1356": "B485", "1357": "L899", "1358": "V932", "1359": "C20", "1360": "P375", "1361": "P288", "1362": "S009", "1363": "G404", "1364": "C765", "1365": "B699", "1366": "L405", "1367": "T96", "1368": "Q897", "1369": "E113", "1370": "K740", "1371": "H472", "1372": "G522", "1373": "I675", "1374": "M419", "1375": "Q675", "1376": "C779", "1377": "P77", "1378": "E760", "1379": "E059", "1380": "R160", "1381": "D595", "1382": "K830", "1383": "D809", "1384": "D721", "1385": "E279", "1386": "I350", "1387": "T520", "1388": "L509", "1389": "C728", "1390": "F193", "1391": "I351", "1392": "M878", "1393": "E761", "1394": "F103", "1395": "M45", "1396": "C166", "1397": "D696", "1398": "D390", "1399": "F208", "1400": "N498", "1401": "T116", "1402": "Y01", "1403": "G570", "1404": "S134", "1405": "M080", "1406": "S022", "1407": "E834", "1408": "D181", "1409": "Q239", "1410": "I499", "1411": "C005", "1412": "K704", "1413": "C343", "1414": "T848", "1415": "Q552", "1416": "I692", "1417": "S878", "1418": "D758", "1419": "D598", "1420": "X04", "1421": "T460", "1422": "K612", "1423": "M844", "1424": "K928(nTR)", "1425": "V909", "1426": "C796", "1427": "V949", "1428": "C700", "1429": "L922", "1430": "C349", "1431": "Y33", "1432": "S900", "1433": "M310", "1434": "C165", "1435": "M313", "1436": "K223", "1437": "V154", "1438": "P833", "1439": "S019", "1440": "N052", "1441": "Q793", "1442": "I498", "1443": "G544", "1444": "Q245", "1445": "C37", "1446": "Q411", "1447": "S681", "1448": "I510", "1449": "Q386", "1450": "B428", "1451": "T282", "1452": "G712", "1453": "M512", "1454": "Y20", "1455": "J151", "1456": "K419", "1457": "W27", "1458": "G08", "1459": "T12", "1460": "E878", "1461": "I6329", "1462": "T860", "1463": "Q871", "1464": "S630", "1465": "O680", "1466": "Q870", "1467": "K282", "1468": "E275", "1469": "T602", "1470": "D841", "1471": "F302", "1472": "S898", "1473": "J339", "1474": "Q433", "1475": "R198", "1476": "B353", "1477": "Q792", "1478": "I050", "1479": "M948", "1480": "T180", "1481": "L010", "1482": "T914", "1483": "W24", "1484": "T817", "1485": "S014", "1486": "N300", "1487": "O723", "1488": "T509", "1489": "D569", "1490": "J684", "1491": "C750", "1492": "G403", "1493": "C312", "1494": "Q782", "1495": "R64", "1496": "S199", "1497": "I850", "1498": "D380", "1499": "D690", "1500": "Q228", "1501": "J985", "1502": "V575", "1503": "D610", "1504": "S350", "1505": "I712", "1506": "S365(TR)", "1507": "C436", "1508": "N412", "1509": "W75", "1510": "K113", "1511": "W23", "1512": "Y871", "1513": "W92", "1514": "E018", "1515": "Q255", "1516": "R402", "1517": "G610", "1518": "R71", "1519": "R008", "1520": "P702", "1521": "T869", "1522": "Q224", "1523": "L021", "1524": "I6139(nTR)", "1525": "D361", "1526": "Q894", "1527": "C473", "1528": "C837", "1529": "T287", "1530": "K570", "1531": "B359", "1532": "D891", "1533": "O410", "1534": "C940", "1535": "V061", "1536": "M318", "1537": "T603", "1538": "G409", "1539": "Q246", "1540": "L102", "1541": "A399", "1542": "Q790", "1543": "S269", "1544": "S071", "1545": "L589", "1546": "N850", "1547": "D100", "1548": "C320", "1549": "I864", "1550": "Y355", "1551": "C030", "1552": "O001", "1553": "T618", "1554": "C031", "1555": "G710", "1556": "D109", "1557": "S820", "1558": "K761", "1559": "Q000", "1560": "W80", "1561": "B487", "1562": "Y05", "1563": "B084", "1564": "P838", "1565": "P009", "1566": "A420", "1567": "G471", "1568": "D142", "1569": "A310", "1570": "R068", "1571": "R001", "1572": "J159", "1573": "T959", "1574": "B259", "1575": "I720(nTR)", "1576": "C430", "1577": "C830", "1578": "O721", "1579": "J46", "1580": "E854", "1581": "T571", "1582": "I098", "1583": "N250", "1584": "G541", "1585": "T391", "1586": "I6199(nTR)", "1587": "O711", "1588": "T875", "1589": "Q627", "1590": "N40", "1591": "I731", "1592": "E788", "1593": "Q223", "1594": "E830", "1595": "K922", "1596": "C437", "1597": "J180", "1598": "R80", "1599": "T481", "1600": "K210", "1601": "J690", "1602": "D693", "1603": "L080", "1604": "J22", "1605": "T537", "1606": "M330", "1607": "J982", "1608": "C480", "1609": "I716", "1610": "I330", "1611": "T828", "1612": "S299", "1613": "V856", "1614": "P960", "1615": "O141", "1616": "T909", "1617": "J660", "1618": "K552", "1619": "M082", "1620": "W57", "1621": "E780", "1622": "E709", "1623": "C110", "1624": "J100", "1625": "M479", "1626": "E069", "1627": "V125", "1628": "I743", "1629": "T564", "1630": "V021", "1631": "R190", "1632": "I213", "1633": "M779", "1634": "E237", "1635": "J852", "1636": "G958", "1637": "F989", "1638": "Q210", "1639": "D171", "1640": "N10", "1641": "T730", "1642": "D820", "1643": "D386", "1644": "R000", "1645": "G825(nTR)", "1646": "N280", "1647": "E115", "1648": "G039", "1649": "I340(nRH)", "1650": "T824", "1651": "M489", "1652": "T511", "1653": "G819", "1654": "D150", "1655": "P942", "1656": "K269", "1657": "A879", "1658": "S250", "1659": "C959", "1660": "K289", "1661": "Q652", "1662": "S331", "1663": "F102", "1664": "T012", "1665": "Q232", "1666": "D352", "1667": "C159", "1668": "X18", "1669": "B64", "1670": "C914", "1671": "C712", "1672": "P90", "1673": "D090", "1674": "M611", "1675": "N981", "1676": "C222", "1677": "I443", "1678": "K626", "1679": "S923", "1680": "K810", "1681": "M439", "1682": "W31", "1683": "H922", "1684": "T285", "1685": "F519", "1686": "P359", "1687": "B749", "1688": "C721", "1689": "B348", "1690": "I458", "1691": "H549", "1692": "E851", "1693": "D383", "1694": "Q256", "1695": "I251", "1696": "I775", "1697": "S602", "1698": "S452", "1699": "L020", "1700": "I889", "1701": "K709", "1702": "H913", "1703": "L744", "1704": "V446", "1705": "T462", "1706": "C452", "1707": "D392", "1708": "Q828", "1709": "L539", "1710": "S225", "1711": "A929", "1712": "K528", "1713": "S026", "1714": "M889", "1715": "K750", "1716": "D550", "1717": "S429", "1718": "S354", "1719": "K869", "1720": "N019", "1721": "S203", "1722": "S280", "1723": "J448", "1724": "J941", "1725": "T912", "1726": "I879", "1727": "C482", "1728": "E249", "1729": "T043", "1730": "I809", "1731": "D201", "1732": "T091", "1733": "T387", "1734": "M509", "1735": "S913", "1736": "O439", "1737": "K5500", "1738": "Q614", "1739": "F079", "1740": "K521", "1741": "H113(nTR)", "1742": "S025", "1743": "Q219", "1744": "R401", "1745": "K564", "1746": "K279", "1747": "E049", "1748": "H932", "1749": "C130", "1750": "C089", "1751": "T540", "1752": "R771", "1753": "F151", "1754": "B448", "1755": "N485", "1756": "I971", "1757": "F319", "1758": "C795", "1759": "K743", "1760": "C838", "1761": "K805", "1762": "E15", "1763": "W269", "1764": "R103", "1765": "R829", "1766": "F603", "1767": "A181", "1768": "M210", "1769": "T751", "1770": "K404", "1771": "B440", "1772": "S142", "1773": "C131", "1774": "D738", "1775": "C049", "1776": "C154", "1777": "L028", "1778": "K261", "1779": "X76", "1780": "K040", "1781": "M350", "1782": "H813", "1783": "J156", "1784": "I517", "1785": "V903", "1786": "I060(RH)", "1787": "F202", "1788": "T449", "1789": "Q674", "1790": "G838(nTR)", "1791": "T172", "1792": "P080", "1793": "C762", "1794": "N762", "1795": "C322", "1796": "S021", "1797": "V685", "1798": "M179", "1799": "S628", "1800": "N328", "1801": "J348", "1802": "T243", "1803": "F709", "1804": "L448", "1805": "S219", "1806": "O979", "1807": "I120", "1808": "G542(nTR)", "1809": "F459", "1810": "T905", "1811": "O40", "1812": "N23", "1813": "T029", "1814": "C474", "1815": "H041", "1816": "Q459", "1817": "M879", "1818": "K832(nTR)", "1819": "T305", "1820": "J013", "1821": "I604(nTR)", "1822": "B181", "1823": "Q913", "1824": "S314", "1825": "M109", "1826": "I674", "1827": "T798", "1828": "C103", "1829": "Q318", "1830": "G439", "1831": "M485", "1832": "C185", "1833": "C342", "1834": "Q031", "1835": "C061", "1836": "C964", "1837": "S024", "1838": "T503", "1839": "O881", "1840": "S363(TR)", "1841": "T147", "1842": "A410", "1843": "C440", "1844": "N368", "1845": "F341", "1846": "M460", "1847": "S355", "1848": "D367", "1849": "N888", "1850": "S623", "1851": "B441", "1852": "X13", "1853": "W28", "1854": "K318(nTR)", "1855": "G908", "1856": "G935", "1857": "N811", "1858": "D898", "1859": "D735", "1860": "D000", "1861": "G500", "1862": "S934", "1863": "F609", "1864": "Q791", "1865": "M622", "1866": "V274", "1867": "E274(nTR)", "1868": "G210", "1869": "Q431", "1870": "G939(nTR)", "1871": "N201", "1872": "G609", "1873": "D444", "1874": "C414", "1875": "D134", "1876": "D890", "1877": "C922", "1878": "S410", "1879": "K829", "1880": "C221", "1881": "I481", "1882": "K839", "1883": "A064", "1884": "E222", "1885": "E54", "1886": "D377", "1887": "N135", "1888": "V174", "1889": "K823", "1890": "Q392", "1891": "O469", "1892": "K909", "1893": "J152", "1894": "F29", "1895": "Q250", "1896": "R100", "1897": "V475", "1898": "V929", "1899": "I349(nRH)", "1900": "E147", "1901": "S920", "1902": "S129", "1903": "N482", "1904": "D467", "1905": "Y899", "1906": "J90", "1907": "M316", "1908": "K108", "1909": "J205", "1910": "E86", "1911": "V755", "1912": "L988", "1913": "C19", "1914": "C760", "1915": "E849", "1916": "Q159", "1917": "K284", "1918": "B027", "1919": "N813", "1920": "T630", "1921": "J410", "1922": "Q669", "1923": "Q068", "1924": "E875", "1925": "O692", "1926": "W34", "1927": "S020", "1928": "M952", "1929": "P701", "1930": "I4290", "1931": "F719", "1932": "K592", "1933": "Q621", "1934": "C530", "1935": "I050(RH)", "1936": "K132", "1937": "G473", "1938": "T840", "1939": "H160", "1940": "H810", "1941": "J392", "1942": "K588", "1943": "S224", "1944": "I4289", "1945": "N459", "1946": "L309", "1947": "I729(nTR)", "1948": "I280", "1949": "T320", "1950": "S313", "1951": "Q231", "1952": "G959(nTR)", "1953": "N200", "1954": "A483", "1955": "T099", "1956": "C450", "1957": "R945", "1958": "C187", "1959": "S799", "1960": "Q447", "1961": "V694", "1962": "J383", "1963": "N19", "1964": "T111", "1965": "A99", "1966": "G120", "1967": "N61", "1968": "C254", "1969": "N903", "1970": "T568", "1971": "J340", "1972": "T181", "1973": "S520", "1974": "I829", "1975": "X82", "1976": "V676", "1977": "K148", "1978": "S090", "1979": "T361", "1980": "D170", "1981": "M256", "1982": "C637", "1983": "K388", "1984": "C58", "1985": "P073", "1986": "A409", "1987": "R478", "1988": "T749", "1989": "V051", "1990": "E050", "1991": "M998", "1992": "R824", "1993": "D802", "1994": "J391", "1995": "F489", "1996": "C709", "1997": "J449", "1998": "V234", "1999": "C542", "2000": "S221", "2001": "Q969", "2002": "M866", "2003": "C749", "2004": "S064(TR)", "2005": "Q872", "2006": "V799", "2007": "C931", "2008": "R457", "2009": "G008", "2010": "S150", "2011": "O364", "2012": "C060", "2013": "V870", "2014": "D899", "2015": "X84", "2016": "V124", "2017": "R074", "2018": "D190", "2019": "I839", "2020": "D168", "2021": "D694", "2022": "M246", "2023": "K276", "2024": "D420", "2025": "A480", "2026": "C240", "2027": "I6109(nTR)", "2028": "W12", "2029": "A753", "2030": "G938", "2031": "C451", "2032": "S911", "2033": "D692", "2034": "O624", "2035": "K590", "2036": "N137", "2037": "R300", "2038": "G219", "2039": "K3190", "2040": "S325", "2041": "R560", "2042": "E872", "2043": "W10", "2044": "J980", "2045": "M331", "2046": "F179", "2047": "E569", "2048": "S359", "2049": "J351", "2050": "R208", "2051": "J188", "2052": "T175", "2053": "C680", "2054": "S323", "2055": "H342", "2056": "K520", "2057": "J040", "2058": "I079(RH)", "2059": "T409", "2060": "R011", "2061": "K765", "2062": "S246", "2063": "M802", "2064": "R529", "2065": "V476", "2066": "Q158", "2067": "P523", "2068": "K469", "2069": "C794", "2070": "I5149", "2071": "S559", "2072": "X81", "2073": "A430", "2074": "B399", "2075": "F411", "2076": "H959", "2077": "E329", "2078": "P269", "2079": "G001", "2080": "P704", "2081": "S270", "2082": "J121", "2083": "C845", "2084": "J841", "2085": "V839", "2086": "N179", "2087": "N730", "2088": "B49", "2089": "A329", "2090": "C249", "2091": "I5009", "2092": "D300", "2093": "N26", "2094": "C402", "2095": "D046", "2096": "K629", "2097": "B003", "2098": "S770", "2099": "I070", "2100": "C009", "2101": "C039", "2102": "I698", "2103": "E725", "2104": "T599", "2105": "T423", "2106": "T189", "2107": "C300", "2108": "S220", "2109": "A162", "2110": "K439", "2111": "S274", "2112": "A020", "2113": "R030", "2114": "I208", "2115": "N832", "2116": "B376", "2117": "I210", "2118": "Q048", "2119": "D002", "2120": "G038", "2121": "N119", "2122": "R943", "2123": "Q2780", "2124": "D588", "2125": "B069", "2126": "K611", "2127": "V579", "2128": "L024", "2129": "L023", "2130": "R14", "2131": "C148", "2132": "T139", "2133": "C23", "2134": "I602(nTR)", "2135": "G809", "2136": "K911", "2137": "P618", "2138": "K293", "2139": "S003", "2140": "T781", "2141": "N302", "2142": "X590", "2143": "I713(nTR)", "2144": "M359", "2145": "K265", "2146": "S322", "2147": "K861", "2148": "I702", "2149": "T842", "2150": "L108", "2151": "A379", "2152": "J158", "2153": "I788", "2154": "W73", "2155": "K833", "2156": "N828", "2157": "F322", "2158": "M402", "2159": "X00", "2160": "F480", "2161": "I871(nTR)", "2162": "D012", "2163": "J949", "2164": "B369", "2165": "E763", "2166": "V244", "2167": "N133", "2168": "S065(TR)", "2169": "X72", "2170": "R688", "2171": "K729", "2172": "K658", "2173": "L919", "2174": "X349", "2175": "N450", "2176": "C725", "2177": "M758", "2178": "I518", "2179": "P591", "2180": "W13", "2181": "T629", "2182": "M100", "2183": "T795", "2184": "N831", "2185": "Q229", "2186": "I742", "2187": "M103", "2188": "B340", "2189": "V011", "2190": "C831", "2191": "S724", "2192": "T844", "2193": "D443", "2194": "Q759", "2195": "S659", "2196": "C673", "2197": "D869", "2198": "T300", "2199": "D751", "2200": "Q989", "2201": "I516", "2202": "P072", "2203": "C253", "2204": "W49", "2205": "X70", "2206": "S836", "2207": "T136", "2208": "D329", "2209": "V695", "2210": "A490", "2211": "S259", "2212": "V175", "2213": "W67", "2214": "Q601", "2215": "W06", "2216": "I721(nTR)", "2217": "M245", "2218": "J680", "2219": "G960", "2220": "J209", "2221": "R161", "2222": "S619", "2223": "T009", "2224": "Q934", "2225": "A1699", "2226": "D373", "2227": "I409", "2228": "E832", "2229": "A188", "2230": "M464", "2231": "T436", "2232": "S273", "2233": "K227", "2234": "V379", "2235": "T094", "2236": "J010", "2237": "C051", "2238": "C12", "2239": "E230", "2240": "K862", "2241": "B279", "2242": "R739", "2243": "O009", "2244": "D047", "2245": "I4299", "2246": "Q046", "2247": "T313", "2248": "M538", "2249": "T314", "2250": "T535", "2251": "K509", "2252": "D351", "2253": "O429", "2254": "M1997", "2255": "G903", "2256": "E888", "2257": "K389", "2258": "M899", "2259": "C819", "2260": "M009", "2261": "D144", "2262": "A419", "2263": "L530", "2264": "M301", "2265": "C311", "2266": "R02", "2267": "K913", "2268": "S390", "2269": "L299", "2270": "D369", "2271": "A34", "2272": "B001", "2273": "K802", "2274": "K316", "2275": "V846", "2276": "Q933", "2277": "E119", "2278": "P351", "2279": "K701", "2280": "R222", "2281": "E042", "2282": "I776", "2283": "Q647", "2284": "G910", "2285": "T845", "2286": "B608", "2287": "V689", "2288": "P005", "2289": "G062", "2290": "K222(nTR)", "2291": "F402", "2292": "B459", "2293": "O660", "2294": "P749", "2295": "K051", "2296": "K702", "2297": "T920", "2298": "Q319", "2299": "Q663", "2300": "J386", "2301": "K358", "2302": "B023", "2303": "Q643", "2304": "J950", "2305": "D413", "2306": "Q201", "2307": "F429", "2308": "P285", "2309": "D267", "2310": "Q320", "2311": "A180", "2312": "S420", "2313": "H110", "2314": "A549", "2315": "J311", "2316": "A099", "2317": "K140", "2318": "J988", "2319": "B169", "2320": "K912", "2321": "F205", "2322": "N648", "2323": "K250", "2324": "R090", "2325": "K604", "2326": "S810", "2327": "Q061", "2328": "Q040", "2329": "C675", "2330": "K763", "2331": "T862", "2332": "B020", "2333": "Q899", "2334": "I482", "2335": "D233", "2336": "C445", "2337": "K266", "2338": "D137", "2339": "E789", "2340": "H050", "2341": "C411", "2342": "S525", "2343": "R440", "2344": "E701", "2345": "H603", "2346": "I451", "2347": "E320", "2348": "F600", "2349": "H471", "2350": "M623", "2351": "R629", "2352": "X11", "2353": "I5159", "2354": "R601", "2355": "T841", "2356": "E310", "2357": "Q399", "2358": "I6409", "2359": "S128", "2360": "D580", "2361": "Q451", "2362": "C069", "2363": "I709", "2364": "D649", "2365": "J310", "2366": "A028", "2367": "M861", "2368": "A439", "2369": "V425", "2370": "D331", "2371": "M023", "2372": "R101", "2373": "B09", "2374": "K314", "2375": "C091", "2376": "C470", "2377": "C459", "2378": "Q858", "2379": "E889", "2380": "D684", "2381": "B24", "2382": "B902", "2383": "S332", "2384": "T329", "2385": "A829", "2386": "X09", "2387": "C840", "2388": "N258", "2389": "Q419", "2390": "N859", "2391": "M063", "2392": "N259", "2393": "O440", "2394": "I690", "2395": "V877", "2396": "T130", "2397": "C786", "2398": "S932", "2399": "V649", "2400": "M929", "2401": "C639", "2402": "D819", "2403": "C383", "2404": "Q758", "2405": "K551", "2406": "M300", "2407": "G369", "2408": "T328", "2409": "H356(nTR)", "2410": "S369(TR)", "2411": "Q382", "2412": "D763", "2413": "I6119(nTR)", "2414": "V355", "2415": "V872", "2416": "K271", "2417": "J942(nTR)", "2418": "I621(nTR)", "2419": "C227", "2420": "T922", "2421": "J850", "2422": "C161", "2423": "T021", "2424": "J459", "2425": "C169", "2426": "J129", "2427": "C570", "2428": "T390", "2429": "S47", "2430": "C494", "2431": "K559", "2432": "I339", "2433": "I2199", "2434": "P025", "2435": "P968", "2436": "T703", "2437": "F845", "2438": "L088", "2439": "K561", "2440": "J634", "2441": "H921", "2442": "Q605", "2443": "Q412", "2444": "H000", "2445": "V139", "2446": "Q740", "2447": "L401", "2448": "F199", "2449": "L110", "2450": "T874", "2451": "I301", "2452": "O960", "2453": "A810", "2454": "O753", "2455": "D479", "2456": "P832", "2457": "S060(TR)", "2458": "Q620", "2459": "T401", "2460": "P949", "2461": "T820", "2462": "Q892", "2463": "E268", "2464": "J381", "2465": "T799", "2466": "G319", "2467": "N329", "2468": "G723", "2469": "S308", "2470": "C600", "2471": "E271", "2472": "I679", "2473": "H933", "2474": "W17", "2475": "D165", "2476": "K638", "2477": "V585", "2478": "T315", "2479": "J370", "2480": "M213", "2481": "K921", "2482": "C924", "2483": "S801", "2484": "Q796", "2485": "B009", "2486": "V481", "2487": "K851", "2488": "D379", "2489": "T510", "2490": "C449", "2491": "S351", "2492": "C447", "2493": "C699", "2494": "H540", "2495": "E065", "2496": "A182", "2497": "Q999", "2498": "J069", "2499": "G830(nTR)", "2500": "S260", "2501": "V456", "2502": "I069(RH)", "2503": "K130", "2504": "V099", "2505": "K263", "2506": "M138", "2507": "T938", "2508": "R091", "2509": "N342", "2510": "C313", "2511": "T042", "2512": "M548", "2513": "D591", "2514": "Q349", "2515": "B900", "2516": "E713", "2517": "P023", "2518": "T929", "2519": "C162", "2520": "K625(nTR)", "2521": "D126", "2522": "M463", "2523": "G442", "2524": "G528", "2525": "P521", "2526": "S301", "2527": "T220", "2528": "C798", "2529": "C690", "2530": "C492", "2531": "B028", "2532": "C435", "2533": "C927", "2534": "K904", "2535": "M1995", "2536": "V736", "2537": "Q439", "2538": "Q252", "2539": "C722", "2540": "C630", "2541": "H498", "2542": "K529", "2543": "D400", "2544": "A870", "2545": "N939(nTR)", "2546": "K565", "2547": "I711(nTR)", "2548": "Y069", "2549": "V859", "2550": "S120", "2551": "C323", "2552": "S151", "2553": "J039", "2554": "V776", "2555": "A062", "2556": "O069", "2557": "G519", "2558": "R634", "2559": "J051", "2560": "J398", "2561": "E142", "2562": "T025", "2563": "Q680", "2564": "I495", "2565": "A049", "2566": "D412", "2567": "I715(nTR)", "2568": "I091", "2569": "I490", "2570": "B03", "2571": "I289", "2572": "C841", "2573": "I678", "2574": "A799", "2575": "R999", "2576": "E278", "2577": "M242", "2578": "I6359", "2579": "H440", "2580": "Q390", "2581": "L570", "2582": "N818", "2583": "C950", "2584": "B269", "2585": "F059", "2586": "O759", "2587": "S059", "2588": "S015", "2589": "I494", "2590": "Q606", "2591": "T212", "2592": "R21", "2593": "C250", "2594": "C490", "2595": "L511", "2596": "P219", "2597": "D66", "2598": "H700", "2599": "G950", "2600": "C574", "2601": "I601(nTR)", "2602": "G560", "2603": "T821", "2604": "B000", "2605": "T289", "2606": "C188", "2607": "P059", "2608": "B451", "2609": "R730", "2610": "K029", "2611": "Y34", "2612": "D022", "2613": "K621", "2614": "C257", "2615": "I212", "2616": "I672", "2617": "M332", "2618": "Q264", "2619": "N360", "2620": "G441", "2621": "T569", "2622": "C942", "2623": "P350", "2624": "C930", "2625": "S430", "2626": "S018", "2627": "V090", "2628": "I723(nTR)", "2629": "C384", "2630": "C504", "2631": "T659", "2632": "Q754", "2633": "D269", "2634": "M629", "2635": "Q189", "2636": "S899", "2637": "T096", "2638": "V871", "2639": "G09", "2640": "S321", "2641": "B029", "2642": "F209", "2643": "K294", "2644": "G003", "2645": "S500", "2646": "M462", "2647": "K732", "2648": "F329", "2649": "N421(nTR)", "2650": "F729", "2651": "I371", "2652": "Q208", "2653": "S831", "2654": "T447", "2655": "T065", "2656": "S229", "2657": "P969", "2658": "T10", "2659": "K822(nTR)", "2660": "H605", "2661": "V485", "2662": "T638", "2663": "J958", "2664": "M532", "2665": "J698", "2666": "J869", "2667": "C119", "2668": "K811", "2669": "C696", "2670": "I4229", "2671": "X38", "2672": "M329", "2673": "T918", "2674": "G961", "2675": "C966", "2676": "J691", "2677": "G372", "2678": "S290", "2679": "V295", "2680": "J853", "2681": "F068", "2682": "Q206", "2683": "E835", "2684": "S499", "2685": "V255", "2686": "N340", "2687": "I801", "2688": "T560", "2689": "C150", "2690": "T310", "2691": "J312", "2692": "T928", "2693": "J385", "2694": "D434", "2695": "X37", "2696": "S929", "2697": "J168", "2698": "S669", "2699": "E149", "2700": "C859", "2701": "S399", "2702": "C229", "2703": "V794", "2704": "I378", "2705": "T144", "2706": "I461", "2707": "E762", "2708": "C080", "2709": "A972", "2710": "M303", "2711": "P071", "2712": "Q039", "2713": "M478", "2714": "C969", "2715": "S18", "2716": "Q851", "2717": "Q273", "2718": "T882", "2719": "I501", "2720": "X01", "2721": "B178", "2722": "N821", "2723": "Q809", "2724": "T528", "2725": "K122", "2726": "N178", "2727": "I092", "2728": "K769", "2729": "P809", "2730": "P290", "2731": "V535", "2732": "R579", "2733": "Q891", "2734": "E259", "2735": "A979", "2736": "S925", "2737": "I513", "2738": "X14", "2739": "Q393", "2740": "I6319", "2741": "C693", "2742": "D477", "2743": "F431", "2744": "T178", "2745": "T816", "2746": "I258", "2747": "C501", "2748": "D414", "2749": "A630", "2750": "W05", "2751": "I012", "2752": "E243", "2753": "T921", "2754": "G912", "2755": "T598", "2756": "C715", "2757": "H729(nTR)", "2758": "P614", "2759": "G259", "2760": "T223", "2761": "T173", "2762": "P284", "2763": "N312", "2764": "E232", "2765": "I4259", "2766": "C186", "2767": "J029", "2768": "Q738", "2769": "A830", "2770": "A520", "2771": "T311", "2772": "W18", "2773": "N138", "2774": "T271", "2775": "Y850", "2776": "D27", "2777": "V970", "2778": "C099", "2779": "M895", "2780": "D151", "2781": "I509", "2782": "I749(TH)", "2783": "N158", "2784": "T301", "2785": "C170", "2786": "Q043", "2787": "G800", "2788": "Q610", "2789": "G419", "2790": "K563", "2791": "A850", "2792": "L300", "2793": "S823", "2794": "K290", "2795": "A229", "2796": "C783", "2797": "D500", "2798": "M792", "2799": "C724", "2800": "C579", "2801": "T414", "2802": "I071", "2803": "D069", "2804": "K20", "2805": "Q441", "2806": "C410", "2807": "H838(nTR)", "2808": "D132", "2809": "F161", "2810": "S670", "2811": "H341", "2812": "T408", "2813": "M818", "2814": "B354", "2815": "I241", "2816": "N433", "2817": "R064", "2818": "T670", "2819": "Q253", "2820": "E870", "2821": "G629", "2822": "N852", "2823": "K068", "2824": "J61", "2825": "C784", "2826": "T679", "2827": "M939", "2828": "M436", "2829": "F070", "2830": "T825", "2831": "C182", "2832": "B07", "2833": "R578", "2834": "P599", "2835": "I308", "2836": "C184", "2837": "N63", "2838": "E233", "2839": "I6090", "2840": "P279", "2841": "R418", "2842": "N139", "2843": "D469", "2844": "M819", "2845": "V135", "2846": "D599", "2847": "C446", "2848": "S252", "2849": "Q799", "2850": "F444", "2851": "S579", "2852": "K431", "2853": "K381", "2854": "U071", "2855": "S529", "2856": "N170", "2857": "E619", "2858": "T784", "2859": "B019", "2860": "C55", "2861": "I099", "2862": "O713", "2863": "H912", "2864": "E242", "2865": "Q612", "2866": "T355", "2867": "V224", "2868": "C002", "2869": "C495", "2870": "D320", "2871": "L270", "2872": "T134", "2873": "A521", "2874": "A059", "2875": "S822", "2876": "K047", "2877": "C741", "2878": "C111", "2879": "R104", "2880": "K149", "2881": "T412", "2882": "K659", "2883": "L271", "2884": "V185", "2885": "B374", "2886": "B172", "2887": "I201", "2888": "K768(nTR)", "2889": "K264", "2890": "N324(nTR)", "2891": "Q820", "2892": "E063", "2893": "F500", "2894": "C829", "2895": "K277", "2896": "L984", "2897": "T404", "2898": "A318", "2899": "W19", "2900": "T849", "2901": "K558", "2902": "L00", "2903": "R298", "2904": "H709", "2905": "C505", "2906": "S361(TR)", "2907": "J108", "2908": "W56", "2909": "K562", "2910": "I803", "2911": "K440(nTR)", "2912": "N808", "2913": "S320", "2914": "V335", "2915": "K229", "2916": "G92", "2917": "K413", "2918": "N829", "2919": "S298", "2920": "W08", "2921": "X51", "2922": "K700", "2923": "P289", "2924": "E040", "2925": "T609", "2926": "J930", "2927": "W29", "2928": "L219", "2929": "F488", "2930": "G244", "2931": "D643", "2932": "E749", "2933": "G060", "2934": "F799", "2935": "K221", "2936": "Q203", "2937": "C155", "2938": "V155", "2939": "S372(TR)", "2940": "T465", "2941": "T543", "2942": "I079", "2943": "C510", "2944": "D733", "2945": "P293", "2946": "P524", "2947": "K599", "2948": "E742", "2949": "K283", "2950": "K270", "2951": "M250", "2952": "E229", "2953": "T303", "2954": "C269", "2955": "T319", "2956": "P612", "2957": "B377", "2958": "S310", "2959": "A35", "2960": "C020", "2961": "Q339", "2962": "K112", "2963": "S344", "2964": "F959", "2965": "X19", "2966": "I6349", "2967": "V899", "2968": "W260", "2969": "B189", "2970": "S318", "2971": "A022", "2972": "H109", "2973": "D001", "2974": "F39", "2975": "S870", "2976": "V784", "2977": "R609", "2978": "I6159(nTR)", "2979": "X91", "2980": "A493", "2981": "T508", "2982": "K760", "2983": "P281", "2984": "Q398", "2985": "S852", "2986": "A030", "2987": "M621(nTR)", "2988": "K519", "2989": "T141", "2990": "O343", "2991": "Q2820", "2992": "V826", "2993": "T092", "2994": "L538", "2995": "I340", "2996": "L893", "2997": "T322", "2998": "T857", "2999": "D333", "3000": "T981", "3001": "A010", "3002": "R508", "3003": "F449", "3004": "B370", "3005": "L022", "3006": "K649", "3007": "T286", "3008": "Y09", "3009": "C717", "3010": "Y04", "3011": "T203", "3012": "V813", "3013": "A184", "3014": "D169", "3015": "I456", "3016": "I6000", "3017": "E754", "3018": "M729", "3019": "G000", "3020": "F430", "3021": "R520", "3022": "V829", "3023": "I6399", "3024": "R81", "3025": "E201", "3026": "S999", "3027": "C211", "3028": "R568", "3029": "T504", "3030": "C301", "3031": "I351(nRH)", "3032": "C601", "3033": "K591", "3034": "C775", "3035": "D303", "3036": "V745", "3037": "L940", "3038": "T277", "3039": "A060", "3040": "D689", "3041": "T230", "3042": "K914", "3043": "T233", "3044": "M432", "3045": "Q330", "3046": "H830", "3047": "G042", "3048": "I447", "3049": "B582", "3050": "D175", "3051": "E031", "3052": "T049", "3053": "I279", "3054": "A168", "3055": "G030", "3056": "Q929", "3057": "I828", "3058": "P291", "3059": "S824", "3060": "D409", "3061": "T522", "3062": "E880", "3063": "I802", "3064": "J380", "3065": "G952", "3066": "J441", "3067": "N47", "3068": "V950", "3069": "R820", "3070": "I309", "3071": "M511", "3072": "D110", "3073": "T403", "3074": "D480", "3075": "F101", "3076": "I789", "3077": "Q369", "3078": "E250", "3079": "J118", "3080": "V849", "3081": "I739", "3082": "B022", "3083": "E079", "3084": "C434", "3085": "Q998", "3086": "A429", "3087": "K624", "3088": "C001", "3089": "D589", "3090": "C004", "3091": "E168", "3092": "R220", "3093": "W83", "3094": "E711", "3095": "T699", "3096": "S278", "3097": "P370", "3098": "O16", "3099": "J189", "3100": "J40", "3101": "D180", "3102": "K135", "3103": "L512", "3104": "H539", "3105": "S828", "3106": "G549", "3107": "E041", "3108": "T024", "3109": "S131", "3110": "C711", "3111": "C059", "3112": "H470", "3113": "F840", "3114": "F107", "3115": "V837", "3116": "G700", "3117": "R591", "3118": "Q798", "3119": "M434", "3120": "B465", "3121": "C479", "3122": "T306", "3123": "E850", "3124": "L982", "3125": "S202", "3126": "E272", "3127": "N739", "3128": "F111", "3129": "D419", "3130": "E145", "3131": "B659", "3132": "H46", "3133": "I256", "3134": "F328", "3135": "T402", "3136": "C714", "3137": "C66", "3138": "Q849", "3139": "S907", "3140": "J182", "3141": "T58", "3142": "O152", "3143": "O882", "3144": "S011", "3145": "T702", "3146": "I491", "3147": "R571", "3148": "N304", "3149": "M751", "3150": "I313", "3151": "T325", "3152": "S366(TR)", "3153": "E806", "3154": "T55", "3155": "H269", "3156": "S730", "3157": "V430", "3158": "M791", "3159": "T179", "3160": "B54", "3161": "Q263", "3162": "V092", "3163": "F412", "3164": "K571", "3165": "V093", "3166": "K660", "3167": "E877", "3168": "V489", "3169": "C900", "3170": "R959", "3171": "K852", "3172": "S382", "3173": "G909", "3174": "G35", "3175": "G951", "3176": "S212", "3177": "I061(RH)", "3178": "K745", "3179": "I81", "3180": "R570", "3181": "C901", "3182": "Q859", "3183": "B378", "3184": "J154", "3185": "Q268", "3186": "N490", "3187": "C151", "3188": "M169", "3189": "J986", "3190": "G968", "3191": "K275", "3192": "S333", "3193": "Q221", "3194": "I4220", "3195": "I821", "3196": "C710", "3197": "D291", "3198": "M069", "3199": "S302", "3200": "Q204", "3201": "I6360", "3202": "P592", "3203": "Q742", "3204": "D229", "3205": "V855", "3206": "L850", "3207": "C609", "3208": "D129", "3209": "M869", "3210": "T318", "3211": "I859", "3212": "I129", "3213": "V545", "3214": "A080", "3215": "E269", "3216": "K7200", "3217": "R5800", "3218": "I779", "3219": "K259", "3220": "D049", "3221": "S373(TR)", "3222": "S970", "3223": "J155", "3224": "L089", "3225": "S198", "3226": "I509(A)", "3227": "K838", "3228": "I269", "3229": "J64", "3230": "P040", "3231": "V104", "3232": "W66", "3233": "W01", "3234": "A048", "3235": "A64", "3236": "G002", "3237": "G543", "3238": "T939", "3239": "I369(nRH)", "3240": "W35", "3241": "P360", "3242": "T200", "3243": "P522", "3244": "V675", "3245": "Q442", "3246": "K285", "3247": "R400", "3248": "E141", "3249": "J931", "3250": "I442", "3251": "I890", "3252": "I749", "3253": "D371", "3254": "S523", "3255": "E052", "3256": "M219", "3257": "V679", "3258": "V811", "3259": "J14", "3260": "D440", "3261": "B159", "3262": "B349", "3263": "I119", "3264": "G934", "3265": "R170", "3266": "H100", "3267": "T280", "3268": "Q890", "3269": "T369", "3270": "D259", "3271": "D483", "3272": "O269", "3273": "S370(TR)", "3274": "E348", "3275": "Q383", "3276": "A309", "3277": "D015", "3278": "I070(RH)", "3279": "J439(nTR)", "3280": "K352", "3281": "S400", "3282": "T793", "3283": "I6080", "3284": "V041", "3285": "N509", "3286": "C471", "3287": "I511", "3288": "T056", "3289": "D812", "3290": "H664", "3291": "I493", "3292": "C491", "3293": "I99", "3294": "I441", "3295": "C782", "3296": "I059(RH)", "3297": "N009", "3298": "A759", "3299": "C692", "3300": "H602", "3301": "C469", "3302": "M619", "3303": "G111", "3304": "C919", "3305": "C179", "3306": "C439", "3307": "G589", "3308": "W40", "3309": "J960", "3310": "V479", "3311": "T494", "3312": "I00", "3313": "M469", "3314": "K311", "3315": "L239", "3316": "C939", "3317": "T140", "3318": "O149", "3319": "D34", "3320": "S058", "3321": "T68", "3322": "V194", "3323": "Q2829", "3324": "T461", "3325": "R040", "3326": "F172", "3327": "Q678", "3328": "T622", "3329": "O209", "3330": "K297", "3331": "J700", "3332": "D482", "3333": "G049", "3334": "V821", "3335": "B460", "3336": "A167", "3337": "E559", "3338": "L910", "3339": "W268", "3340": "I881", "3341": "J00", "3342": "V594", "3343": "P008", "3344": "G121", "3345": "S004(TR)", "3346": "S418", "3347": "L500", "3348": "J42", "3349": "B488", "3350": "I714", "3351": "Q161", "3352": "K429", "3353": "O239", "3354": "M542", "3355": "R251", "3356": "O864", "3357": "N289", "3358": "G10", "3359": "C052", "3360": "I370", "3361": "K296", "3362": "O368", "3363": "G379", "3364": "S078", "3365": "A412", "3366": "K623", "3367": "C400", "3368": "V254", "3369": "E838", "3370": "R960", "3371": "Q750", "3372": "D848", "3373": "T112", "3374": "Q321", "3375": "C911", "3376": "C764", "3377": "Q688", "3378": "S068(TR)", "3379": "C835", "3380": "R590", "3381": "D65", "3382": "M545", "3383": "D761", "3384": "J961", "3385": "F09", "3386": "K267", "3387": "P282", "3388": "C771", "3389": "Q359", "3390": "K403", "3391": "H353", "3392": "S729", "3393": "K310", "3394": "V841", "3395": "F848", "3396": "M519", "3397": "P270", "3398": "Q172", "3399": "O244", "3400": "G114", "3401": "I6189(nTR)", "3402": "T427", "3403": "W39", "3404": "J120", "3405": "V214", "3406": "R31", "3407": "R55", "3408": "H600", "3409": "B182", "3410": "H609", "3411": "T650", "3412": "P021", "3413": "D821", "3414": "A86", "3415": "D059", "3416": "D70", "3417": "I4209", "3418": "J451", "3419": "K759", "3420": "G579", "3421": "D688", "3422": "K220", "3423": "V486", "3424": "S062(TR)", "3425": "D720", "3426": "Q803", "3427": "B059", "3428": "E752", "3429": "D510", "3430": "D375", "3431": "T563", "3432": "C467", "3433": "C443", "3434": "A039", "3435": "J82", "3436": "T910", "3437": "C113", "3438": "C164", "3439": "N814", "3440": "C006", "3441": "K298", "3442": "Q249", "3443": "R230", "3444": "R270", "3445": "G061", "3446": "N281", "3447": "C772", "3448": "K295", "3449": "T324", "3450": "T915", "3451": "D430", "3452": "V686", "3453": "D407", "3454": "C915", "3455": "G311", "3456": "D374", "3457": "A699", "3458": "G458", "3459": "S127", "3460": "V584", "3461": "W54", "3462": "K668", "3463": "D330", "3464": "K461", "3465": "I090", "3466": "G931", "3467": "T240", "3468": "T283", "3469": "K254", "3470": "D682", "3471": "V98", "3472": "Q699", "3473": "D020", "3474": "K219", "3475": "V823", "3476": "K053", "3477": "D353", "3478": "K819", "3479": "Q432", "3480": "D152", "3481": "G009", "3482": "N429", "3483": "M840", "3484": "T810", "3485": "D619", "3486": "D804", "3487": "N320", "3488": "T090", "3489": "E215", "3490": "D128", "3491": "J304", "3492": "T931", "3493": "N058", "3494": "D472", "3495": "L88", "3496": "J060", "3497": "M488", "3498": "W02", "3499": "C000", "3500": "N889", "3501": "G406", "3502": "D487", "3503": "G119", "3504": "C549", "3505": "E0399", "3506": "Q772", "3507": "S001", "3508": "I319", "3509": "Q079", "3510": "V149", "3511": "O418", "3512": "M790", "3513": "T876", "3514": "S631", "3515": "C788", "3516": "V840", "3517": "I708", "3518": "K634", "3519": "D411", "3520": "E710", "3521": "A1690", "3522": "T590", "3523": "N210", "3524": "T304", "3525": "G450", "3526": "J36", "3527": "K052", "3528": "M719", "3529": "V576", "3530": "B832", "3531": "O994", "3532": "D560", "3533": "B341", "3534": "P399", "3535": "D399", "3536": "E831", "3537": "G312", "3538": "K137", "3539": "V299", "3540": "S626", "3541": "S029", "3542": "V779", "3543": "Q979", "3544": "B661", "3545": "H578(nTR)", "3546": "N709", "3547": "D370", "3548": "E723", "3549": "M868", "3550": "B220", "3551": "Q188", "3552": "T521", "3553": "C500", "3554": "E881", "3555": "S371(TR)", "3556": "R234", "3557": "A38", "3558": "K622", "3559": "K929", "3560": "S903", "3561": "M352", "3562": "S066(TR)", "3563": "I358", "3564": "D334", "3565": "C475", "3566": "C07", "3567": "V786"}}}}], "splits": [{"name": "train", "num_bytes": 113287237, "num_examples": 1477240}], "download_size": 28018862, "dataset_size": 113287237}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-18T14:49:09+00:00 | []
| [
"zh",
"en"
]
| TAGS
#task_categories-text-classification #size_categories-1M<n<10M #language-Chinese #language-English #license-mit #medical #region-us
| # Chinese International Statistical Classification of Diseases | [
"# Chinese International Statistical Classification of Diseases"
]
| [
"TAGS\n#task_categories-text-classification #size_categories-1M<n<10M #language-Chinese #language-English #license-mit #medical #region-us \n",
"# Chinese International Statistical Classification of Diseases"
]
| [
46,
10
]
| [
"passage: TAGS\n#task_categories-text-classification #size_categories-1M<n<10M #language-Chinese #language-English #license-mit #medical #region-us \n# Chinese International Statistical Classification of Diseases"
]
|
fad3a35ea4a12a6d921949f860cc09eacf50490c |
A dataset intended to teach whisper the name Gregory Vandromme | GregoryVandromme/vandromme_dataset | [
"size_categories:n<1K",
"language:en",
"region:us"
]
| 2023-11-11T17:44:39+00:00 | {"language": ["en"], "size_categories": ["n<1K"], "pretty_name": "Gregory Vandromme Fine Tuner"} | 2023-11-11T19:33:02+00:00 | []
| [
"en"
]
| TAGS
#size_categories-n<1K #language-English #region-us
|
A dataset intended to teach whisper the name Gregory Vandromme | []
| [
"TAGS\n#size_categories-n<1K #language-English #region-us \n"
]
| [
20
]
| [
"passage: TAGS\n#size_categories-n<1K #language-English #region-us \n"
]
|
f05d8fdc9826038ac73d91d5bd83f8ee7e8aa498 | # Dataset Card for "cv13-validation-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/cv13-validation-vectorized | [
"region:us"
]
| 2023-11-11T17:45:09+00:00 | {"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 245889424, "num_examples": 256}], "download_size": 30530286, "dataset_size": 245889424}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T17:45:47+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "cv13-validation-vectorized"
More Information needed | [
"# Dataset Card for \"cv13-validation-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"cv13-validation-vectorized\"\n\nMore Information needed"
]
| [
6,
21
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"cv13-validation-vectorized\"\n\nMore Information needed"
]
|
5ace42fa6d09badf97a63f4fe9fb3551d0c4bdb1 | # Dataset Card for "vivos-validation-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/vivos-validation-vectorized | [
"region:us"
]
| 2023-11-11T17:48:15+00:00 | {"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 658006328, "num_examples": 685}], "download_size": 137741565, "dataset_size": 658006328}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T17:48:59+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vivos-validation-vectorized"
More Information needed | [
"# Dataset Card for \"vivos-validation-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vivos-validation-vectorized\"\n\nMore Information needed"
]
| [
6,
20
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vivos-validation-vectorized\"\n\nMore Information needed"
]
|
04cc4ba88e1bf4c6c5479f48893b2a8671d0a698 | # Dataset Card for "vlsp-validation-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | pphuc25/vlsp-validation-vectorized | [
"region:us"
]
| 2023-11-11T17:53:41+00:00 | {"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 7204326704, "num_examples": 7500}], "download_size": 1163119637, "dataset_size": 7204326704}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-11T17:55:48+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vlsp-validation-vectorized"
More Information needed | [
"# Dataset Card for \"vlsp-validation-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vlsp-validation-vectorized\"\n\nMore Information needed"
]
| [
6,
20
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vlsp-validation-vectorized\"\n\nMore Information needed"
]
|
17550c25d90d81d8d3bf4397a4fd5876264621f8 | # Dataset Card for "bw_spec_cls_4_01_noise_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_01_noise_200 | [
"region:us"
]
| 2023-11-11T18:06:21+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "141", "1": "190", "2": "193", "3": "194"}}}}], "splits": [{"name": "train", "num_bytes": 48403090.0, "num_examples": 800}, {"name": "test", "num_bytes": 4851289.0, "num_examples": 80}], "download_size": 27012884, "dataset_size": 53254379.0}} | 2023-11-11T18:06:32+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_01_noise_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_01_noise_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_01_noise_200\"\n\nMore Information needed"
]
| [
6,
25
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_01_noise_200\"\n\nMore Information needed"
]
|
4d746f44ab7ce7c6190194bb09ad107b72727259 | # Dataset Card for "xlsum_data-xlsum_gptextsum2_results"
rouge={'rouge1': 0.24568532857064015, 'rouge2': 0.08475546630975161, 'rougeL': 0.16150062220497313, 'rougeLsum': 0.16150062220497313}
Bert={'precision': 0.6741343554137891, 'recall': 0.7466713432567875, 'f1': 0.7081225687867673}
mover = 0.5766299898244492 | arthurmluz/xlsum_data-xlsum_gptextsum2_results | [
"region:us"
]
| 2023-11-11T18:28:54+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "gen_summary", "dtype": "string"}, {"name": "rouge", "struct": [{"name": "rouge1", "dtype": "float64"}, {"name": "rouge2", "dtype": "float64"}, {"name": "rougeL", "dtype": "float64"}, {"name": "rougeLsum", "dtype": "float64"}]}, {"name": "bert", "struct": [{"name": "f1", "sequence": "float64"}, {"name": "hashcode", "dtype": "string"}, {"name": "precision", "sequence": "float64"}, {"name": "recall", "sequence": "float64"}]}, {"name": "moverScore", "dtype": "float64"}], "splits": [{"name": "validation", "num_bytes": 29388929, "num_examples": 7175}], "download_size": 18045302, "dataset_size": 29388929}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2023-11-13T20:58:57+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "xlsum_data-xlsum_gptextsum2_results"
rouge={'rouge1': 0.24568532857064015, 'rouge2': 0.08475546630975161, 'rougeL': 0.16150062220497313, 'rougeLsum': 0.16150062220497313}
Bert={'precision': 0.6741343554137891, 'recall': 0.7466713432567875, 'f1': 0.7081225687867673}
mover = 0.5766299898244492 | [
"# Dataset Card for \"xlsum_data-xlsum_gptextsum2_results\"\n\nrouge={'rouge1': 0.24568532857064015, 'rouge2': 0.08475546630975161, 'rougeL': 0.16150062220497313, 'rougeLsum': 0.16150062220497313}\n\nBert={'precision': 0.6741343554137891, 'recall': 0.7466713432567875, 'f1': 0.7081225687867673}\n\nmover = 0.5766299898244492"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"xlsum_data-xlsum_gptextsum2_results\"\n\nrouge={'rouge1': 0.24568532857064015, 'rouge2': 0.08475546630975161, 'rougeL': 0.16150062220497313, 'rougeLsum': 0.16150062220497313}\n\nBert={'precision': 0.6741343554137891, 'recall': 0.7466713432567875, 'f1': 0.7081225687867673}\n\nmover = 0.5766299898244492"
]
| [
6,
140
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"xlsum_data-xlsum_gptextsum2_results\"\n\nrouge={'rouge1': 0.24568532857064015, 'rouge2': 0.08475546630975161, 'rougeL': 0.16150062220497313, 'rougeLsum': 0.16150062220497313}\n\nBert={'precision': 0.6741343554137891, 'recall': 0.7466713432567875, 'f1': 0.7081225687867673}\n\nmover = 0.5766299898244492"
]
|
2b7c3fc237f166c0025ac12e8bcdb5e7fd48b3a3 | # Dataset Card for "id_card_class_da"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | erikaxenia/id_card_class_da | [
"region:us"
]
| 2023-11-11T18:38:17+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "valid", "path": "data/valid-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "int64"}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 250255462.45, "num_examples": 2350}, {"name": "valid", "num_bytes": 21179110.0, "num_examples": 59}, {"name": "test", "num_bytes": 16112586.0, "num_examples": 58}], "download_size": 248519862, "dataset_size": 287547158.45}} | 2023-11-11T18:38:35+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "id_card_class_da"
More Information needed | [
"# Dataset Card for \"id_card_class_da\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"id_card_class_da\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"id_card_class_da\"\n\nMore Information needed"
]
|
0fa062a4afd75e2f794f917a12902f422f54351c | # Dataset Card for "paper_test_set"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | nikchar/paper_test_set | [
"region:us"
]
| 2023-11-11T18:47:08+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "label", "dtype": "string"}, {"name": "claim", "dtype": "string"}, {"name": "evidence_wiki_url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15920562, "num_examples": 11073}], "download_size": 6320618, "dataset_size": 15920562}} | 2023-11-11T18:47:10+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "paper_test_set"
More Information needed | [
"# Dataset Card for \"paper_test_set\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"paper_test_set\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"paper_test_set\"\n\nMore Information needed"
]
|
1cb8ef3165230a8a9af9ab90cd32245e52bc18e4 | # Dataset Card for "camera_cleaned_8192_174"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | gianma/camera_cleaned_8192_174 | [
"region:us"
]
| 2023-11-11T18:59:20+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "is_camera", "dtype": "bool"}, {"name": "reference", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "tokenized_len_total", "dtype": "int64"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1549422, "num_examples": 97}, {"name": "validation", "num_bytes": 103831, "num_examples": 6}, {"name": "test", "num_bytes": 107835, "num_examples": 6}], "download_size": 728059, "dataset_size": 1761088}} | 2023-11-11T18:59:27+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "camera_cleaned_8192_174"
More Information needed | [
"# Dataset Card for \"camera_cleaned_8192_174\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"camera_cleaned_8192_174\"\n\nMore Information needed"
]
| [
6,
20
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"camera_cleaned_8192_174\"\n\nMore Information needed"
]
|
b1042611596fb7901216993064f0af64407f34a2 | # Dataset Card for "reuters_articles"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ashwaninbs/reuters_articles | [
"region:us"
]
| 2023-11-11T19:23:42+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13792576, "num_examples": 17262}, {"name": "validation", "num_bytes": 1870389, "num_examples": 2158}, {"name": "test", "num_bytes": 1379190, "num_examples": 2158}], "download_size": 10073411, "dataset_size": 17042155}} | 2023-11-11T19:23:45+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "reuters_articles"
More Information needed | [
"# Dataset Card for \"reuters_articles\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"reuters_articles\"\n\nMore Information needed"
]
| [
6,
16
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"reuters_articles\"\n\nMore Information needed"
]
|
d44789f94050843266f224805423570be8e46de4 | # Dataset Card for "hubert_layer9-librispeech-asr100h_tokenized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | cmu-mlsp/hubert_layer9-librispeech-asr100h_tokenized | [
"region:us"
]
| 2023-11-11T20:35:58+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 1337768164, "num_examples": 57078}, {"name": "validation", "num_bytes": 126705828, "num_examples": 5406}, {"name": "test", "num_bytes": 122815120, "num_examples": 5240}], "download_size": 110156012, "dataset_size": 1587289112}} | 2023-11-11T20:36:12+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "hubert_layer9-librispeech-asr100h_tokenized"
More Information needed | [
"# Dataset Card for \"hubert_layer9-librispeech-asr100h_tokenized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"hubert_layer9-librispeech-asr100h_tokenized\"\n\nMore Information needed"
]
| [
6,
29
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"hubert_layer9-librispeech-asr100h_tokenized\"\n\nMore Information needed"
]
|
a31bb2979d77b62a7ad31cdcf056d9834e6db860 | ---
license: mit
# Dataset Card
**Developed by:** [More Information Needed]
**Shared by [optional]:** [More Information Needed]
**Dataset type:** [More Information Needed]
**Language(s) (NLP):** [More Information Needed]
**License:** [More Information Needed]
**Derived from dataset [optional]:** [More Information Needed]
**Dataset Sources [optional]**
<!-- Provide the basic links for the dataset. -->
**Repository:** [More Information Needed]
**Paper [optional]:** [More Information Needed]
**Demo [optional]:** [More Information Needed]
**Uses**
<!-- Address questions around how the dataset is intended to be used, including the foreseeable users of the dataset and those affected by the dataset. -->
**Direct Use**
<!-- This section is for the dataset use without modification or integration into a larger system. -->
[More Information Needed]
**Downstream Use [optional]**
<!-- This section is for the dataset use when integrated or modified for a task, or when plugged into a larger ecosystem/app. -->
[More Information Needed]
**Out-of-Scope Use**
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
**Bias, Risks, and Limitations**
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
**Recommendations**
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
**How to Get Started with the Dataset**
Use the code below to get started with the dataset.
[More Information Needed]
**Collection Details**
**Source Data**
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the source data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
**Collection Procedures**
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the collection procedure. -->
**Preprocessing [optional]**
[More Information Needed]
**Collection Hyperparameters**
Collection regime: [More Information Needed] <!-- Details about the data collection process -->
**Speeds, Sizes, Times [optional]**
<!-- This section provides information about data size, collection start/end time, etc. -->
[More Information Needed]
**Evaluation**
<!-- This section describes the evaluation protocols and provides the results. -->
**Testing Data, Factors & Metrics**
**Testing Data**
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
**Factors**
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
**Metrics**
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
**Results**
[More Information Needed]
**Summary**
**Dataset Examination [optional]**
<!-- Relevant analysis work for the dataset goes here -->
[More Information Needed]
**Environmental Impact**
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
**Hardware Type:** [More Information Needed]
**Hours used:** [More Information Needed]
**Cloud Provider:** [More Information Needed]
**Compute Region:** [More Information Needed]
**Carbon Emitted:** [More Information Needed]
**Technical Specifications [optional]**
**Dataset Structure and Objective**
[More Information Needed]
**Compute Infrastructure**
[More Information Needed]
**Hardware**
[More Information Needed]
**Software**
[More Information Needed]
**Citation [optional]**
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
**Glossary [optional]**
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
**More Information [optional]**
[More Information Needed]
**Dataset Card Authors [optional]**
[More Information Needed]
**Dataset Card Contact**
[More Information Needed]
| Taylor658/7btrain | [
"region:us"
]
| 2023-11-11T21:23:04+00:00 | {} | 2023-12-25T09:40:51+00:00 | []
| []
| TAGS
#region-us
| ---
license: mit
# Dataset Card
Developed by:
Shared by [optional]:
Dataset type:
Language(s) (NLP):
License:
Derived from dataset [optional]:
Dataset Sources [optional]
Repository:
Paper [optional]:
Demo [optional]:
Uses
Direct Use
Downstream Use [optional]
Out-of-Scope Use
Bias, Risks, and Limitations
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
How to Get Started with the Dataset
Use the code below to get started with the dataset.
Collection Details
Source Data
Collection Procedures
Preprocessing [optional]
Collection Hyperparameters
Collection regime:
Speeds, Sizes, Times [optional]
Evaluation
Testing Data, Factors & Metrics
Testing Data
Factors
Metrics
Results
Summary
Dataset Examination [optional]
Environmental Impact
Hardware Type:
Hours used:
Cloud Provider:
Compute Region:
Carbon Emitted:
Technical Specifications [optional]
Dataset Structure and Objective
Compute Infrastructure
Hardware
Software
Citation [optional]
BibTeX:
APA:
Glossary [optional]
More Information [optional]
Dataset Card Authors [optional]
Dataset Card Contact
| [
"# Dataset Card\n\nDeveloped by: \n\nShared by [optional]: \n\nDataset type: \n\nLanguage(s) (NLP): \n\nLicense: \n\nDerived from dataset [optional]: \n\nDataset Sources [optional]\n\n\n\nRepository: \n\nPaper [optional]: \n\nDemo [optional]: \n\nUses\n\n\n\nDirect Use\n\n\n\n\n\nDownstream Use [optional]\n\n\n\n\n\nOut-of-Scope Use\n\n\n\n\n\nBias, Risks, and Limitations\n\n\n\n\n\nRecommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\nHow to Get Started with the Dataset\n\nUse the code below to get started with the dataset.\n\n\n\nCollection Details\n\nSource Data\n\n\n\n\n\nCollection Procedures\n\n\n\nPreprocessing [optional]\n\n\n\nCollection Hyperparameters\n\nCollection regime: \n\nSpeeds, Sizes, Times [optional]\n\n\n\n\n\nEvaluation\n\n\n\nTesting Data, Factors & Metrics\n\nTesting Data\n\n\n\n\n\nFactors\n\n\n\n\n\nMetrics\n\n\n\n\n\nResults\n\n\n\nSummary\n\nDataset Examination [optional]\n\n\n\n\n\nEnvironmental Impact\n\n\n\nHardware Type: \n\nHours used: \n\nCloud Provider: \n\nCompute Region: \n\nCarbon Emitted: \n\nTechnical Specifications [optional]\n\nDataset Structure and Objective\n\n\n\nCompute Infrastructure\n\n\n\nHardware\n\n\n\nSoftware\n\n\n\nCitation [optional]\n\n\nBibTeX:\n\n\n\nAPA:\n\n\n\nGlossary [optional]\n\n\n\n\n\nMore Information [optional]\n\n\n\nDataset Card Authors [optional]\n\n\n\nDataset Card Contact"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card\n\nDeveloped by: \n\nShared by [optional]: \n\nDataset type: \n\nLanguage(s) (NLP): \n\nLicense: \n\nDerived from dataset [optional]: \n\nDataset Sources [optional]\n\n\n\nRepository: \n\nPaper [optional]: \n\nDemo [optional]: \n\nUses\n\n\n\nDirect Use\n\n\n\n\n\nDownstream Use [optional]\n\n\n\n\n\nOut-of-Scope Use\n\n\n\n\n\nBias, Risks, and Limitations\n\n\n\n\n\nRecommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\nHow to Get Started with the Dataset\n\nUse the code below to get started with the dataset.\n\n\n\nCollection Details\n\nSource Data\n\n\n\n\n\nCollection Procedures\n\n\n\nPreprocessing [optional]\n\n\n\nCollection Hyperparameters\n\nCollection regime: \n\nSpeeds, Sizes, Times [optional]\n\n\n\n\n\nEvaluation\n\n\n\nTesting Data, Factors & Metrics\n\nTesting Data\n\n\n\n\n\nFactors\n\n\n\n\n\nMetrics\n\n\n\n\n\nResults\n\n\n\nSummary\n\nDataset Examination [optional]\n\n\n\n\n\nEnvironmental Impact\n\n\n\nHardware Type: \n\nHours used: \n\nCloud Provider: \n\nCompute Region: \n\nCarbon Emitted: \n\nTechnical Specifications [optional]\n\nDataset Structure and Objective\n\n\n\nCompute Infrastructure\n\n\n\nHardware\n\n\n\nSoftware\n\n\n\nCitation [optional]\n\n\nBibTeX:\n\n\n\nAPA:\n\n\n\nGlossary [optional]\n\n\n\n\n\nMore Information [optional]\n\n\n\nDataset Card Authors [optional]\n\n\n\nDataset Card Contact"
]
| [
6,
302
]
| [
"passage: TAGS\n#region-us \n# Dataset Card\n\nDeveloped by: \n\nShared by [optional]: \n\nDataset type: \n\nLanguage(s) (NLP): \n\nLicense: \n\nDerived from dataset [optional]: \n\nDataset Sources [optional]\n\n\n\nRepository: \n\nPaper [optional]: \n\nDemo [optional]: \n\nUses\n\n\n\nDirect Use\n\n\n\n\n\nDownstream Use [optional]\n\n\n\n\n\nOut-of-Scope Use\n\n\n\n\n\nBias, Risks, and Limitations\n\n\n\n\n\nRecommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\nHow to Get Started with the Dataset\n\nUse the code below to get started with the dataset.\n\n\n\nCollection Details\n\nSource Data\n\n\n\n\n\nCollection Procedures\n\n\n\nPreprocessing [optional]\n\n\n\nCollection Hyperparameters\n\nCollection regime: \n\nSpeeds, Sizes, Times [optional]\n\n\n\n\n\nEvaluation\n\n\n\nTesting Data, Factors & Metrics\n\nTesting Data\n\n\n\n\n\nFactors\n\n\n\n\n\nMetrics\n\n\n\n\n\nResults\n\n\n\nSummary\n\nDataset Examination [optional]\n\n\n\n\n\nEnvironmental Impact\n\n\n\nHardware Type: \n\nHours used: \n\nCloud Provider: \n\nCompute Region: \n\nCarbon Emitted: \n\nTechnical Specifications [optional]\n\nDataset Structure and Objective\n\n\n\nCompute Infrastructure\n\n\n\nHardware\n\n\n\nSoftware\n\n\n\nCitation [optional]\n\n\nBibTeX:\n\n\n\nAPA:\n\n\n\nGlossary [optional]\n\n\n\n\n\nMore Information [optional]\n\n\n\nDataset Card Authors [optional]\n\n\n\nDataset Card Contact"
]
|
968b1e018fe8a67bc9866e3e2cd7ed803596ba58 | # Dataset Card for "amsProject"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mpingale/amsProject | [
"region:us"
]
| 2023-11-11T21:41:43+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "Question", "dtype": "string"}, {"name": "Answer", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 53628, "num_examples": 157}], "download_size": 32020, "dataset_size": 53628}} | 2023-11-11T21:49:42+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "amsProject"
More Information needed | [
"# Dataset Card for \"amsProject\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"amsProject\"\n\nMore Information needed"
]
| [
6,
12
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"amsProject\"\n\nMore Information needed"
]
|
b17214059bafed945fd6bada4875262c9be80f7d | # Dataset Card for "apt-openchat-micro-dataset-llm-v2-714k"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | communityai/apt-openchat-micro-dataset-llm-v2-714k | [
"region:us"
]
| 2023-11-11T21:58:51+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "source", "dtype": "string"}, {"name": "system", "dtype": "string"}, {"name": "items", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "weight", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 1726941274.2272484, "num_examples": 713591}, {"name": "test", "num_bytes": 1210035.7727516522, "num_examples": 500}], "download_size": 873623460, "dataset_size": 1728151310.0}} | 2023-11-11T22:00:20+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "apt-openchat-micro-dataset-llm-v2-714k"
More Information needed | [
"# Dataset Card for \"apt-openchat-micro-dataset-llm-v2-714k\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"apt-openchat-micro-dataset-llm-v2-714k\"\n\nMore Information needed"
]
| [
6,
29
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"apt-openchat-micro-dataset-llm-v2-714k\"\n\nMore Information needed"
]
|
666d58405e5e43a07c9fb6183e8ca9d39a5dbfbc | # Dataset Card for "wikilingua_data-xlsum_gptextsum2_results"
rouge={'rouge1': 0.23113123759141438, 'rouge2': 0.05897907319516351, 'rougeL': 0.1471722974589301, 'rougeLsum': 0.1471722974589301}
Bert={'precision': 0.6712379331977106, 'recall': 0.7217950811286828, 'f1': 0.6946700280784319}
mover =0.5794994539303318 | arthurmluz/wikilingua_data-xlsum_gptextsum2_results | [
"region:us"
]
| 2023-11-11T22:18:06+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "gen_summary", "dtype": "string"}, {"name": "rouge", "struct": [{"name": "rouge1", "dtype": "float64"}, {"name": "rouge2", "dtype": "float64"}, {"name": "rougeL", "dtype": "float64"}, {"name": "rougeLsum", "dtype": "float64"}]}, {"name": "bert", "struct": [{"name": "f1", "sequence": "float64"}, {"name": "hashcode", "dtype": "string"}, {"name": "precision", "sequence": "float64"}, {"name": "recall", "sequence": "float64"}]}, {"name": "moverScore", "dtype": "float64"}], "splits": [{"name": "validation", "num_bytes": 24927421, "num_examples": 8165}], "download_size": 14894371, "dataset_size": 24927421}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2023-11-13T19:52:37+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "wikilingua_data-xlsum_gptextsum2_results"
rouge={'rouge1': 0.23113123759141438, 'rouge2': 0.05897907319516351, 'rougeL': 0.1471722974589301, 'rougeLsum': 0.1471722974589301}
Bert={'precision': 0.6712379331977106, 'recall': 0.7217950811286828, 'f1': 0.6946700280784319}
mover =0.5794994539303318 | [
"# Dataset Card for \"wikilingua_data-xlsum_gptextsum2_results\"\n\nrouge={'rouge1': 0.23113123759141438, 'rouge2': 0.05897907319516351, 'rougeL': 0.1471722974589301, 'rougeLsum': 0.1471722974589301}\n\nBert={'precision': 0.6712379331977106, 'recall': 0.7217950811286828, 'f1': 0.6946700280784319}\n\nmover =0.5794994539303318"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"wikilingua_data-xlsum_gptextsum2_results\"\n\nrouge={'rouge1': 0.23113123759141438, 'rouge2': 0.05897907319516351, 'rougeL': 0.1471722974589301, 'rougeLsum': 0.1471722974589301}\n\nBert={'precision': 0.6712379331977106, 'recall': 0.7217950811286828, 'f1': 0.6946700280784319}\n\nmover =0.5794994539303318"
]
| [
6,
141
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"wikilingua_data-xlsum_gptextsum2_results\"\n\nrouge={'rouge1': 0.23113123759141438, 'rouge2': 0.05897907319516351, 'rougeL': 0.1471722974589301, 'rougeLsum': 0.1471722974589301}\n\nBert={'precision': 0.6712379331977106, 'recall': 0.7217950811286828, 'f1': 0.6946700280784319}\n\nmover =0.5794994539303318"
]
|
3801482d0e59aa596d0c385d9b9445a5c39a80b0 |
# Bangumi Image Base of Yu-gi-oh!
This is the image base of bangumi Yu-Gi-Oh!, we detected 90 characters, 17815 images in total. The full dataset is [here](all.zip).
**Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 |
|:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|
| 0 | 4726 | [Download](0/dataset.zip) |  |  |  |  |  |  |  |  |
| 1 | 40 | [Download](1/dataset.zip) |  |  |  |  |  |  |  |  |
| 2 | 265 | [Download](2/dataset.zip) |  |  |  |  |  |  |  |  |
| 3 | 597 | [Download](3/dataset.zip) |  |  |  |  |  |  |  |  |
| 4 | 101 | [Download](4/dataset.zip) |  |  |  |  |  |  |  |  |
| 5 | 549 | [Download](5/dataset.zip) |  |  |  |  |  |  |  |  |
| 6 | 143 | [Download](6/dataset.zip) |  |  |  |  |  |  |  |  |
| 7 | 363 | [Download](7/dataset.zip) |  |  |  |  |  |  |  |  |
| 8 | 47 | [Download](8/dataset.zip) |  |  |  |  |  |  |  |  |
| 9 | 44 | [Download](9/dataset.zip) |  |  |  |  |  |  |  |  |
| 10 | 2134 | [Download](10/dataset.zip) |  |  |  |  |  |  |  |  |
| 11 | 2013 | [Download](11/dataset.zip) |  |  |  |  |  |  |  |  |
| 12 | 17 | [Download](12/dataset.zip) |  |  |  |  |  |  |  |  |
| 13 | 47 | [Download](13/dataset.zip) |  |  |  |  |  |  |  |  |
| 14 | 26 | [Download](14/dataset.zip) |  |  |  |  |  |  |  |  |
| 15 | 326 | [Download](15/dataset.zip) |  |  |  |  |  |  |  |  |
| 16 | 494 | [Download](16/dataset.zip) |  |  |  |  |  |  |  |  |
| 17 | 20 | [Download](17/dataset.zip) |  |  |  |  |  |  |  |  |
| 18 | 46 | [Download](18/dataset.zip) |  |  |  |  |  |  |  |  |
| 19 | 144 | [Download](19/dataset.zip) |  |  |  |  |  |  |  |  |
| 20 | 97 | [Download](20/dataset.zip) |  |  |  |  |  |  |  |  |
| 21 | 967 | [Download](21/dataset.zip) |  |  |  |  |  |  |  |  |
| 22 | 90 | [Download](22/dataset.zip) |  |  |  |  |  |  |  |  |
| 23 | 150 | [Download](23/dataset.zip) |  |  |  |  |  |  |  |  |
| 24 | 171 | [Download](24/dataset.zip) |  |  |  |  |  |  |  |  |
| 25 | 105 | [Download](25/dataset.zip) |  |  |  |  |  |  |  |  |
| 26 | 26 | [Download](26/dataset.zip) |  |  |  |  |  |  |  |  |
| 27 | 34 | [Download](27/dataset.zip) |  |  |  |  |  |  |  |  |
| 28 | 42 | [Download](28/dataset.zip) |  |  |  |  |  |  |  |  |
| 29 | 40 | [Download](29/dataset.zip) |  |  |  |  |  |  |  |  |
| 30 | 78 | [Download](30/dataset.zip) |  |  |  |  |  |  |  |  |
| 31 | 12 | [Download](31/dataset.zip) |  |  |  |  |  |  |  |  |
| 32 | 21 | [Download](32/dataset.zip) |  |  |  |  |  |  |  |  |
| 33 | 118 | [Download](33/dataset.zip) |  |  |  |  |  |  |  |  |
| 34 | 14 | [Download](34/dataset.zip) |  |  |  |  |  |  |  |  |
| 35 | 36 | [Download](35/dataset.zip) |  |  |  |  |  |  |  |  |
| 36 | 13 | [Download](36/dataset.zip) |  |  |  |  |  |  |  |  |
| 37 | 144 | [Download](37/dataset.zip) |  |  |  |  |  |  |  |  |
| 38 | 21 | [Download](38/dataset.zip) |  |  |  |  |  |  |  |  |
| 39 | 65 | [Download](39/dataset.zip) |  |  |  |  |  |  |  |  |
| 40 | 24 | [Download](40/dataset.zip) |  |  |  |  |  |  |  |  |
| 41 | 13 | [Download](41/dataset.zip) |  |  |  |  |  |  |  |  |
| 42 | 37 | [Download](42/dataset.zip) |  |  |  |  |  |  |  |  |
| 43 | 889 | [Download](43/dataset.zip) |  |  |  |  |  |  |  |  |
| 44 | 159 | [Download](44/dataset.zip) |  |  |  |  |  |  |  |  |
| 45 | 23 | [Download](45/dataset.zip) |  |  |  |  |  |  |  |  |
| 46 | 11 | [Download](46/dataset.zip) |  |  |  |  |  |  |  |  |
| 47 | 10 | [Download](47/dataset.zip) |  |  |  |  |  |  |  |  |
| 48 | 69 | [Download](48/dataset.zip) |  |  |  |  |  |  |  |  |
| 49 | 241 | [Download](49/dataset.zip) |  |  |  |  |  |  |  |  |
| 50 | 20 | [Download](50/dataset.zip) |  |  |  |  |  |  |  |  |
| 51 | 156 | [Download](51/dataset.zip) |  |  |  |  |  |  |  |  |
| 52 | 17 | [Download](52/dataset.zip) |  |  |  |  |  |  |  |  |
| 53 | 12 | [Download](53/dataset.zip) |  |  |  |  |  |  |  |  |
| 54 | 324 | [Download](54/dataset.zip) |  |  |  |  |  |  |  |  |
| 55 | 175 | [Download](55/dataset.zip) |  |  |  |  |  |  |  |  |
| 56 | 10 | [Download](56/dataset.zip) |  |  |  |  |  |  |  |  |
| 57 | 13 | [Download](57/dataset.zip) |  |  |  |  |  |  |  |  |
| 58 | 17 | [Download](58/dataset.zip) |  |  |  |  |  |  |  |  |
| 59 | 14 | [Download](59/dataset.zip) |  |  |  |  |  |  |  |  |
| 60 | 76 | [Download](60/dataset.zip) |  |  |  |  |  |  |  |  |
| 61 | 11 | [Download](61/dataset.zip) |  |  |  |  |  |  |  |  |
| 62 | 20 | [Download](62/dataset.zip) |  |  |  |  |  |  |  |  |
| 63 | 9 | [Download](63/dataset.zip) |  |  |  |  |  |  |  |  |
| 64 | 27 | [Download](64/dataset.zip) |  |  |  |  |  |  |  |  |
| 65 | 55 | [Download](65/dataset.zip) |  |  |  |  |  |  |  |  |
| 66 | 111 | [Download](66/dataset.zip) |  |  |  |  |  |  |  |  |
| 67 | 18 | [Download](67/dataset.zip) |  |  |  |  |  |  |  |  |
| 68 | 14 | [Download](68/dataset.zip) |  |  |  |  |  |  |  |  |
| 69 | 6 | [Download](69/dataset.zip) |  |  |  |  |  |  | N/A | N/A |
| 70 | 11 | [Download](70/dataset.zip) |  |  |  |  |  |  |  |  |
| 71 | 108 | [Download](71/dataset.zip) |  |  |  |  |  |  |  |  |
| 72 | 23 | [Download](72/dataset.zip) |  |  |  |  |  |  |  |  |
| 73 | 10 | [Download](73/dataset.zip) |  |  |  |  |  |  |  |  |
| 74 | 214 | [Download](74/dataset.zip) |  |  |  |  |  |  |  |  |
| 75 | 30 | [Download](75/dataset.zip) |  |  |  |  |  |  |  |  |
| 76 | 14 | [Download](76/dataset.zip) |  |  |  |  |  |  |  |  |
| 77 | 6 | [Download](77/dataset.zip) |  |  |  |  |  |  | N/A | N/A |
| 78 | 8 | [Download](78/dataset.zip) |  |  |  |  |  |  |  |  |
| 79 | 10 | [Download](79/dataset.zip) |  |  |  |  |  |  |  |  |
| 80 | 11 | [Download](80/dataset.zip) |  |  |  |  |  |  |  |  |
| 81 | 130 | [Download](81/dataset.zip) |  |  |  |  |  |  |  |  |
| 82 | 14 | [Download](82/dataset.zip) |  |  |  |  |  |  |  |  |
| 83 | 10 | [Download](83/dataset.zip) |  |  |  |  |  |  |  |  |
| 84 | 70 | [Download](84/dataset.zip) |  |  |  |  |  |  |  |  |
| 85 | 7 | [Download](85/dataset.zip) |  |  |  |  |  |  |  | N/A |
| 86 | 8 | [Download](86/dataset.zip) |  |  |  |  |  |  |  |  |
| 87 | 6 | [Download](87/dataset.zip) |  |  |  |  |  |  | N/A | N/A |
| 88 | 6 | [Download](88/dataset.zip) |  |  |  |  |  |  | N/A | N/A |
| noise | 152 | [Download](-1/dataset.zip) |  |  |  |  |  |  |  |  |
| BangumiBase/yugioh | [
"size_categories:10K<n<100K",
"license:mit",
"art",
"region:us"
]
| 2023-11-11T22:43:28+00:00 | {"license": "mit", "size_categories": ["10K<n<100K"], "tags": ["art"]} | 2023-11-12T03:43:04+00:00 | []
| []
| TAGS
#size_categories-10K<n<100K #license-mit #art #region-us
| Bangumi Image Base of Yu-gi-oh!
===============================
This is the image base of bangumi Yu-Gi-Oh!, we detected 90 characters, 17815 images in total. The full dataset is here.
Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| []
| [
"TAGS\n#size_categories-10K<n<100K #license-mit #art #region-us \n"
]
| [
25
]
| [
"passage: TAGS\n#size_categories-10K<n<100K #license-mit #art #region-us \n"
]
|
0d94f939c6c81d3a9783e2efbcbab1032fb9f7d9 | # Alpaca vs. Alpaca
<img src="./alpacavsalpaca.jpeg" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">
## Dataset Description
The Alpaca vs. Alpaca dataset is a curated blend of the [Alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca) and the [Alpaca GPT-4 dataset](https://huggingface.co/datasets/vicgalle/alpaca-gpt4), both available on HuggingFace Datasets. It uses the standard GPT dataset as the 'rejected' answer, steering the model towards the GPT-4 answer, which is considered as the 'chosen' one.
However, it's important to note that the 'correctness' here is not absolute. The premise is based on the assumption that GPT-4 answers are generally superior in terms of coherence, grammar, and style, and therefore, would be preferred in a human evaluation context. This might not always be the case.
The dataset has been filtered to exclude rows referencing GPT-4, rows with identical outputs from both models, and instances where GPT-4 declined to respond (some of them).
The dataset is primarily designed for conversational tasks, to train reward models or apply techniques like DPO.
### Citation Information
If you use this dataset in your work, please cite the original Alpaca dataset:
```
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
``` | efederici/alpaca-vs-alpaca-dpo | [
"task_categories:conversational",
"size_categories:10K<n<100K",
"language:en",
"dpo",
"rlhf",
"region:us"
]
| 2023-11-11T23:04:26+00:00 | {"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "pretty_name": "alpaca_vs_alpaca", "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "rejected", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "chosen", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 64319355, "num_examples": 49194}], "download_size": 36898348, "dataset_size": 64319355}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["dpo", "rlhf"]} | 2023-11-12T01:38:51+00:00 | []
| [
"en"
]
| TAGS
#task_categories-conversational #size_categories-10K<n<100K #language-English #dpo #rlhf #region-us
| # Alpaca vs. Alpaca
<img src="./URL" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">
## Dataset Description
The Alpaca vs. Alpaca dataset is a curated blend of the Alpaca dataset and the Alpaca GPT-4 dataset, both available on HuggingFace Datasets. It uses the standard GPT dataset as the 'rejected' answer, steering the model towards the GPT-4 answer, which is considered as the 'chosen' one.
However, it's important to note that the 'correctness' here is not absolute. The premise is based on the assumption that GPT-4 answers are generally superior in terms of coherence, grammar, and style, and therefore, would be preferred in a human evaluation context. This might not always be the case.
The dataset has been filtered to exclude rows referencing GPT-4, rows with identical outputs from both models, and instances where GPT-4 declined to respond (some of them).
The dataset is primarily designed for conversational tasks, to train reward models or apply techniques like DPO.
If you use this dataset in your work, please cite the original Alpaca dataset:
| [
"# Alpaca vs. Alpaca\n\n<img src=\"./URL\" style=\"display: block; margin-left: auto; margin-right: auto; width: 30%;\">"
]
| [
"TAGS\n#task_categories-conversational #size_categories-10K<n<100K #language-English #dpo #rlhf #region-us \n",
"# Alpaca vs. Alpaca\n\n<img src=\"./URL\" style=\"display: block; margin-left: auto; margin-right: auto; width: 30%;\">"
]
| [
39,
43
]
| [
"passage: TAGS\n#task_categories-conversational #size_categories-10K<n<100K #language-English #dpo #rlhf #region-us \n# Alpaca vs. Alpaca\n\n<img src=\"./URL\" style=\"display: block; margin-left: auto; margin-right: auto; width: 30%;\">"
]
|
19762931ba70e6d60f09c86e15ec3c16decde325 |
Data generated by the GPT-4 API! | textminr/ner | [
"size_categories:n<1K",
"language:en",
"language:de",
"region:us"
]
| 2023-11-11T23:07:01+00:00 | {"language": ["en", "de"], "size_categories": ["n<1K"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.jsonl"}, {"split": "validation", "path": "validation.jsonl"}]}]} | 2023-12-02T21:03:35+00:00 | []
| [
"en",
"de"
]
| TAGS
#size_categories-n<1K #language-English #language-German #region-us
|
Data generated by the GPT-4 API! | []
| [
"TAGS\n#size_categories-n<1K #language-English #language-German #region-us \n"
]
| [
24
]
| [
"passage: TAGS\n#size_categories-n<1K #language-English #language-German #region-us \n"
]
|
1f3d430135c4a1685b48bda2adc56b11dc9fe6c0 |
# Topic Labeling
This is a carefully crafted dataset for topic labeling. It maps a series of words (generated by topic models like LDA, Top2Vec etc.) to a topic label so that LLMs like T5, Mistral etc. can be fine-tuned on this dataset to generate topic labels for a given text. Parts of this dataset have been labeled manually or using GPT-4.
Source datasets:
- [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
- [textminr/mn-ds](https://huggingface.co/datasets/textminr/mn-ds) | textminr/topic-labeling | [
"task_categories:text-classification",
"size_categories:n<1K",
"language:en",
"region:us"
]
| 2023-11-11T23:15:02+00:00 | {"language": ["en"], "size_categories": ["n<1K"], "task_categories": ["text-classification"], "pretty_name": "Topic Labeling", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": ["base/train.jsonl", "mn-ds/train.jsonl"]}]}]} | 2023-12-30T20:28:47+00:00 | []
| [
"en"
]
| TAGS
#task_categories-text-classification #size_categories-n<1K #language-English #region-us
|
# Topic Labeling
This is a carefully crafted dataset for topic labeling. It maps a series of words (generated by topic models like LDA, Top2Vec etc.) to a topic label so that LLMs like T5, Mistral etc. can be fine-tuned on this dataset to generate topic labels for a given text. Parts of this dataset have been labeled manually or using GPT-4.
Source datasets:
- wikimedia/wikipedia
- textminr/mn-ds | [
"# Topic Labeling\n\nThis is a carefully crafted dataset for topic labeling. It maps a series of words (generated by topic models like LDA, Top2Vec etc.) to a topic label so that LLMs like T5, Mistral etc. can be fine-tuned on this dataset to generate topic labels for a given text. Parts of this dataset have been labeled manually or using GPT-4.\n\nSource datasets:\n\n- wikimedia/wikipedia\n- textminr/mn-ds"
]
| [
"TAGS\n#task_categories-text-classification #size_categories-n<1K #language-English #region-us \n",
"# Topic Labeling\n\nThis is a carefully crafted dataset for topic labeling. It maps a series of words (generated by topic models like LDA, Top2Vec etc.) to a topic label so that LLMs like T5, Mistral etc. can be fine-tuned on this dataset to generate topic labels for a given text. Parts of this dataset have been labeled manually or using GPT-4.\n\nSource datasets:\n\n- wikimedia/wikipedia\n- textminr/mn-ds"
]
| [
31,
114
]
| [
"passage: TAGS\n#task_categories-text-classification #size_categories-n<1K #language-English #region-us \n# Topic Labeling\n\nThis is a carefully crafted dataset for topic labeling. It maps a series of words (generated by topic models like LDA, Top2Vec etc.) to a topic label so that LLMs like T5, Mistral etc. can be fine-tuned on this dataset to generate topic labels for a given text. Parts of this dataset have been labeled manually or using GPT-4.\n\nSource datasets:\n\n- wikimedia/wikipedia\n- textminr/mn-ds"
]
|
61bf16d9072a7725820fb05db1c5fb21d6fcfb38 | # Dataset Card for "GraySpectrotram_example"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mb23/GraySpectrotram_example | [
"region:us"
]
| 2023-11-11T23:43:55+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "data_idx", "dtype": "int32"}, {"name": "number", "dtype": "int32"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "blues", "1": "classical", "2": "country", "3": "disco", "4": "hiphop", "5": "metal", "6": "pop", "7": "reggae", "8": "rock", "9": "jazz"}}}}], "splits": [{"name": "train", "num_bytes": 1063512266.0, "num_examples": 9258}, {"name": "test", "num_bytes": 983072759.0, "num_examples": 8722}], "download_size": 2042103711, "dataset_size": 2046585025.0}} | 2023-11-11T23:45:07+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "GraySpectrotram_example"
More Information needed | [
"# Dataset Card for \"GraySpectrotram_example\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"GraySpectrotram_example\"\n\nMore Information needed"
]
| [
6,
20
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"GraySpectrotram_example\"\n\nMore Information needed"
]
|
e0b2c06254f499357f9a438796723dc5101ed893 | # Dataset Card for "boolq"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | automated-research-group/boolq | [
"region:us"
]
| 2023-11-12T00:32:57+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "request", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 2490820, "num_examples": 3270}], "download_size": 1390879, "dataset_size": 2490820}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2023-11-12T00:32:58+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "boolq"
More Information needed | [
"# Dataset Card for \"boolq\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"boolq\"\n\nMore Information needed"
]
| [
6,
12
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"boolq\"\n\nMore Information needed"
]
|
77a269a896b4a1987beead70a2f7d6165ccf3e40 | # Dataset Card for "236_images"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mdass/236_images | [
"region:us"
]
| 2023-11-12T00:56:38+00:00 | {"dataset_info": {"features": [{"name": "logoName", "dtype": "string"}, {"name": "fileName", "dtype": "string"}, {"name": "image", "dtype": "binary"}, {"name": "name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1799478, "num_examples": 100}], "download_size": 1789315, "dataset_size": 1799478}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T01:11:26+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "236_images"
More Information needed | [
"# Dataset Card for \"236_images\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"236_images\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"236_images\"\n\nMore Information needed"
]
|
23d3c93102160648cea5462581cb06a4a83b59b7 | # Dataset Card for "236_rand_images"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mdass/236_rand_images | [
"region:us"
]
| 2023-11-12T01:12:15+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1996549.0, "num_examples": 100}], "download_size": 1991185, "dataset_size": 1996549.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T01:15:11+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "236_rand_images"
More Information needed | [
"# Dataset Card for \"236_rand_images\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"236_rand_images\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"236_rand_images\"\n\nMore Information needed"
]
|
f48aaaf02319f279db7d5baadd184f63641b9964 | # Dataset Card for "236_rand__images"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mdass/236_rand__images | [
"region:us"
]
| 2023-11-12T01:15:31+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1996549.0, "num_examples": 100}], "download_size": 1991185, "dataset_size": 1996549.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T01:15:33+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "236_rand__images"
More Information needed | [
"# Dataset Card for \"236_rand__images\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"236_rand__images\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"236_rand__images\"\n\nMore Information needed"
]
|
702e954dd605de9ce26019dd2c28cd2f1dae00c7 |
# Dataset Card for TechDebt
This dataset was generated from [The Technical Debt Dataset](https://github.com/clowee/The-Technical-Debt-Dataset) created by Lenarduzzi, et al. and the citation is down below.
## Dataset Details and Structure
The labels for the dataset were provided by the SZZ algorithm cited by the paper and matched to the diff in the commit where the technical debt was located. This diff was then cleaned to only include the lines of code added.
## Bias, Risks, and Limitations
Beware of the data imbalance if you would like to use the dataset. Also, the queries used to extract this data are still being checked over to ensure correctness.
## Recommendations
Changes are constantly being made to this dataset to make it better. Please be aware when you use it.
## References
Valentina Lenarduzzi, Nyyti Saarimäki, Davide Taibi. The Technical Debt Dataset. Proceedings for the 15th Conference on Predictive Models and Data Analytics in Software Engineering. Brazil. 2019.
| davidgaofc/techdebt | [
"license:mit",
"region:us"
]
| 2023-11-12T01:17:00+00:00 | {"license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "validation", "path": "data/validation-*"}]}], "dataset_info": {"features": [{"name": "Diff", "dtype": "string"}, {"name": "FaultInducingLabel", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 89390701, "num_examples": 207464}, {"name": "test", "num_bytes": 29611000, "num_examples": 69155}, {"name": "validation", "num_bytes": 29496034, "num_examples": 69155}], "download_size": 56932761, "dataset_size": 148497735}} | 2023-12-04T05:10:59+00:00 | []
| []
| TAGS
#license-mit #region-us
|
# Dataset Card for TechDebt
This dataset was generated from The Technical Debt Dataset created by Lenarduzzi, et al. and the citation is down below.
## Dataset Details and Structure
The labels for the dataset were provided by the SZZ algorithm cited by the paper and matched to the diff in the commit where the technical debt was located. This diff was then cleaned to only include the lines of code added.
## Bias, Risks, and Limitations
Beware of the data imbalance if you would like to use the dataset. Also, the queries used to extract this data are still being checked over to ensure correctness.
## Recommendations
Changes are constantly being made to this dataset to make it better. Please be aware when you use it.
## References
Valentina Lenarduzzi, Nyyti Saarimäki, Davide Taibi. The Technical Debt Dataset. Proceedings for the 15th Conference on Predictive Models and Data Analytics in Software Engineering. Brazil. 2019.
| [
"# Dataset Card for TechDebt\n\nThis dataset was generated from The Technical Debt Dataset created by Lenarduzzi, et al. and the citation is down below.",
"## Dataset Details and Structure\n\nThe labels for the dataset were provided by the SZZ algorithm cited by the paper and matched to the diff in the commit where the technical debt was located. This diff was then cleaned to only include the lines of code added.",
"## Bias, Risks, and Limitations\n\nBeware of the data imbalance if you would like to use the dataset. Also, the queries used to extract this data are still being checked over to ensure correctness.",
"## Recommendations\n\nChanges are constantly being made to this dataset to make it better. Please be aware when you use it.",
"## References\n\nValentina Lenarduzzi, Nyyti Saarimäki, Davide Taibi. The Technical Debt Dataset. Proceedings for the 15th Conference on Predictive Models and Data Analytics in Software Engineering. Brazil. 2019."
]
| [
"TAGS\n#license-mit #region-us \n",
"# Dataset Card for TechDebt\n\nThis dataset was generated from The Technical Debt Dataset created by Lenarduzzi, et al. and the citation is down below.",
"## Dataset Details and Structure\n\nThe labels for the dataset were provided by the SZZ algorithm cited by the paper and matched to the diff in the commit where the technical debt was located. This diff was then cleaned to only include the lines of code added.",
"## Bias, Risks, and Limitations\n\nBeware of the data imbalance if you would like to use the dataset. Also, the queries used to extract this data are still being checked over to ensure correctness.",
"## Recommendations\n\nChanges are constantly being made to this dataset to make it better. Please be aware when you use it.",
"## References\n\nValentina Lenarduzzi, Nyyti Saarimäki, Davide Taibi. The Technical Debt Dataset. Proceedings for the 15th Conference on Predictive Models and Data Analytics in Software Engineering. Brazil. 2019."
]
| [
11,
40,
59,
48,
28,
53
]
| [
"passage: TAGS\n#license-mit #region-us \n# Dataset Card for TechDebt\n\nThis dataset was generated from The Technical Debt Dataset created by Lenarduzzi, et al. and the citation is down below.## Dataset Details and Structure\n\nThe labels for the dataset were provided by the SZZ algorithm cited by the paper and matched to the diff in the commit where the technical debt was located. This diff was then cleaned to only include the lines of code added.## Bias, Risks, and Limitations\n\nBeware of the data imbalance if you would like to use the dataset. Also, the queries used to extract this data are still being checked over to ensure correctness.## Recommendations\n\nChanges are constantly being made to this dataset to make it better. Please be aware when you use it.## References\n\nValentina Lenarduzzi, Nyyti Saarimäki, Davide Taibi. The Technical Debt Dataset. Proceedings for the 15th Conference on Predictive Models and Data Analytics in Software Engineering. Brazil. 2019."
]
|
f1f8f0b5277010c76185a5e9b43584533896ef88 | # Dataset Card for "random100logos"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | myradeng/random100logos | [
"region:us"
]
| 2023-11-12T01:21:03+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26101910.641344957, "num_examples": 100}], "download_size": 28235002, "dataset_size": 26101910.641344957}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T01:21:06+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "random100logos"
More Information needed | [
"# Dataset Card for \"random100logos\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"random100logos\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"random100logos\"\n\nMore Information needed"
]
|
86626f20d2555bb4e2a361606e7f8b09e147bc8b | # HaluEval-SFT Dataset
HaluEval-SFT Dataset is derived from the HaluEval(https://github.com/RUCAIBox/HaluEval), focusing on enhancing model capabilities in recognizing hallucinations. The dataset comprises a total of 65,000 data points, partitioned into training, validation, and test sets with a ratio of 0.7/0.15/0.15, respectively.
## Getting Started
```python
from datasets import load_dataset
dataset = load_dataset('jzjiao/halueval-sft', split = ["train"])
```
## Dataset Description
The HaluEval-SFT Dataset is structured as follows, with each entry comprising several key-value pairs that hold the data's attributes:
- `sft_text`: This field contains data specifically structured for use with supervised fine-tuning (SFT).
- `input`: The text provided to the model during testing or validation stages for it to generate its judgment or response.
- `ground_truth_output`: The expected output that a model should produce given the corresponding input.
- `type`: The original type in HaluEval. | jzjiao/halueval-sft | [
"task_categories:question-answering",
"task_categories:conversational",
"size_categories:10K<n<100K",
"language:en",
"license:mit",
"region:us"
]
| 2023-11-12T01:25:35+00:00 | {"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering", "conversational"], "pretty_name": "HaluEval-SFT", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "validation", "path": "data/validation-*"}]}], "dataset_info": {"features": [{"name": "sft_text", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "ground_truth_output", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 190689411, "num_examples": 45500}, {"name": "test", "num_bytes": 40645417, "num_examples": 9750}, {"name": "validation", "num_bytes": 39692546, "num_examples": 9750}], "download_size": 133425877, "dataset_size": 271027374}} | 2023-11-12T01:44:13+00:00 | []
| [
"en"
]
| TAGS
#task_categories-question-answering #task_categories-conversational #size_categories-10K<n<100K #language-English #license-mit #region-us
| # HaluEval-SFT Dataset
HaluEval-SFT Dataset is derived from the HaluEval(URL focusing on enhancing model capabilities in recognizing hallucinations. The dataset comprises a total of 65,000 data points, partitioned into training, validation, and test sets with a ratio of 0.7/0.15/0.15, respectively.
## Getting Started
## Dataset Description
The HaluEval-SFT Dataset is structured as follows, with each entry comprising several key-value pairs that hold the data's attributes:
- 'sft_text': This field contains data specifically structured for use with supervised fine-tuning (SFT).
- 'input': The text provided to the model during testing or validation stages for it to generate its judgment or response.
- 'ground_truth_output': The expected output that a model should produce given the corresponding input.
- 'type': The original type in HaluEval. | [
"# HaluEval-SFT Dataset\n\nHaluEval-SFT Dataset is derived from the HaluEval(URL focusing on enhancing model capabilities in recognizing hallucinations. The dataset comprises a total of 65,000 data points, partitioned into training, validation, and test sets with a ratio of 0.7/0.15/0.15, respectively.",
"## Getting Started",
"## Dataset Description\n\nThe HaluEval-SFT Dataset is structured as follows, with each entry comprising several key-value pairs that hold the data's attributes:\n\n- 'sft_text': This field contains data specifically structured for use with supervised fine-tuning (SFT).\n- 'input': The text provided to the model during testing or validation stages for it to generate its judgment or response.\n- 'ground_truth_output': The expected output that a model should produce given the corresponding input.\n- 'type': The original type in HaluEval."
]
| [
"TAGS\n#task_categories-question-answering #task_categories-conversational #size_categories-10K<n<100K #language-English #license-mit #region-us \n",
"# HaluEval-SFT Dataset\n\nHaluEval-SFT Dataset is derived from the HaluEval(URL focusing on enhancing model capabilities in recognizing hallucinations. The dataset comprises a total of 65,000 data points, partitioned into training, validation, and test sets with a ratio of 0.7/0.15/0.15, respectively.",
"## Getting Started",
"## Dataset Description\n\nThe HaluEval-SFT Dataset is structured as follows, with each entry comprising several key-value pairs that hold the data's attributes:\n\n- 'sft_text': This field contains data specifically structured for use with supervised fine-tuning (SFT).\n- 'input': The text provided to the model during testing or validation stages for it to generate its judgment or response.\n- 'ground_truth_output': The expected output that a model should produce given the corresponding input.\n- 'type': The original type in HaluEval."
]
| [
49,
86,
4,
137
]
| [
"passage: TAGS\n#task_categories-question-answering #task_categories-conversational #size_categories-10K<n<100K #language-English #license-mit #region-us \n# HaluEval-SFT Dataset\n\nHaluEval-SFT Dataset is derived from the HaluEval(URL focusing on enhancing model capabilities in recognizing hallucinations. The dataset comprises a total of 65,000 data points, partitioned into training, validation, and test sets with a ratio of 0.7/0.15/0.15, respectively.## Getting Started## Dataset Description\n\nThe HaluEval-SFT Dataset is structured as follows, with each entry comprising several key-value pairs that hold the data's attributes:\n\n- 'sft_text': This field contains data specifically structured for use with supervised fine-tuning (SFT).\n- 'input': The text provided to the model during testing or validation stages for it to generate its judgment or response.\n- 'ground_truth_output': The expected output that a model should produce given the corresponding input.\n- 'type': The original type in HaluEval."
]
|
3f4ec59744e0f08f0a1078fa32dc0fcbc78a5d08 | # Dataset Card for "complexquestion_2WIKIMQA"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | presencesw/complexquestion_2WIKIMQA | [
"region:us"
]
| 2023-11-12T01:57:45+00:00 | {"dataset_info": {"features": [{"name": "entities", "sequence": "null"}, {"name": "triplets", "sequence": "null"}, {"name": "answer", "dtype": "string"}, {"name": "complex_question", "dtype": "string"}, {"name": "system_prompt", "dtype": "string"}, {"name": "user_prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 54978, "num_examples": 10}], "download_size": 11241, "dataset_size": 54978}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T01:57:49+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "complexquestion_2WIKIMQA"
More Information needed | [
"# Dataset Card for \"complexquestion_2WIKIMQA\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"complexquestion_2WIKIMQA\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"complexquestion_2WIKIMQA\"\n\nMore Information needed"
]
|
2255c68724b896d27368cbf448823a415f92dc10 | # Dataset Card for "complexquestion_2WIKIMQA_test"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | presencesw/complexquestion_2WIKIMQA_test | [
"region:us"
]
| 2023-11-12T02:10:35+00:00 | {"dataset_info": {"features": [{"name": "entities", "sequence": "null"}, {"name": "triplets", "sequence": "null"}, {"name": "answer", "dtype": "string"}, {"name": "complex_question", "dtype": "string"}, {"name": "system_prompt", "dtype": "string"}, {"name": "user_prompt", "dtype": "string"}, {"name": "gpt_answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 59717, "num_examples": 10}], "download_size": 15303, "dataset_size": 59717}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T06:11:29+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "complexquestion_2WIKIMQA_test"
More Information needed | [
"# Dataset Card for \"complexquestion_2WIKIMQA_test\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"complexquestion_2WIKIMQA_test\"\n\nMore Information needed"
]
| [
6,
21
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"complexquestion_2WIKIMQA_test\"\n\nMore Information needed"
]
|
60399f7a6fd2ccdc35e0ac3a14654f3dfcbde77b |
Recipe and flavor pairings dataset(s) to be used for LLM training. | PunkWe1ght/embers | [
"license:mit",
"region:us"
]
| 2023-11-12T03:00:59+00:00 | {"license": "mit"} | 2023-11-12T03:43:08+00:00 | []
| []
| TAGS
#license-mit #region-us
|
Recipe and flavor pairings dataset(s) to be used for LLM training. | []
| [
"TAGS\n#license-mit #region-us \n"
]
| [
11
]
| [
"passage: TAGS\n#license-mit #region-us \n"
]
|
579c4730d30fbb18dc9d99816ba77f5010cf4a71 | # Dataset Card for "bud500-validation-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | linhtran92/bud500-validation-vectorized | [
"region:us"
]
| 2023-11-12T03:10:05+00:00 | {"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 7203781608, "num_examples": 7500}], "download_size": 887242283, "dataset_size": 7203781608}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T03:11:56+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bud500-validation-vectorized"
More Information needed | [
"# Dataset Card for \"bud500-validation-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bud500-validation-vectorized\"\n\nMore Information needed"
]
| [
6,
20
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bud500-validation-vectorized\"\n\nMore Information needed"
]
|
6c680d96f5df324e630900b07807151ca94a0a5c | "Reddit Test Dataset."
| ccibeekeoc42/reddit-demo | [
"region:us"
]
| 2023-11-12T03:18:36+00:00 | {} | 2023-11-12T04:11:07+00:00 | []
| []
| TAGS
#region-us
| "Reddit Test Dataset."
| []
| [
"TAGS\n#region-us \n"
]
| [
6
]
| [
"passage: TAGS\n#region-us \n"
]
|
2a11b04e2decae8b66acbfcecabeff8f255aacff | # Dataset Card for "bud500-train-vectorized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | linhtran92/bud500-train-vectorized | [
"region:us"
]
| 2023-11-12T03:22:42+00:00 | {"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "input_length", "dtype": "int64"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 52146799652.25, "num_examples": 634158}], "download_size": 51473857661, "dataset_size": 52146799652.25}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T04:10:07+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bud500-train-vectorized"
More Information needed | [
"# Dataset Card for \"bud500-train-vectorized\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bud500-train-vectorized\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bud500-train-vectorized\"\n\nMore Information needed"
]
|
bac4c094196f51c3573acff24c80b075236456d1 | # 弱智吧数据集 wisdomBar dataset
弱智吧是百度贴吧中的一个非常受欢迎的论坛,以创作短小精悍而闻名。
这里是截至2023/11/10日前的raw data。
## Todo
- get the top 5 answers to each post
- clean the data
- a joke dataset(pure text/multimodal)
- a feasibility dataset
- a new benchmark for LLM | kirp/wisdomBar | [
"task_categories:text-generation",
"size_categories:100K<n<1M",
"language:zh",
"license:apache-2.0",
"region:us"
]
| 2023-11-12T03:35:51+00:00 | {"language": ["zh"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "pretty_name": "\u5f31\u667a\u5427\u6570\u636e\u96c6", "author": "Ang Li, Yilin Jia"} | 2023-12-23T08:50:11+00:00 | []
| [
"zh"
]
| TAGS
#task_categories-text-generation #size_categories-100K<n<1M #language-Chinese #license-apache-2.0 #region-us
| # 弱智吧数据集 wisdomBar dataset
弱智吧是百度贴吧中的一个非常受欢迎的论坛,以创作短小精悍而闻名。
这里是截至2023/11/10日前的raw data。
## Todo
- get the top 5 answers to each post
- clean the data
- a joke dataset(pure text/multimodal)
- a feasibility dataset
- a new benchmark for LLM | [
"# 弱智吧数据集 wisdomBar dataset\n弱智吧是百度贴吧中的一个非常受欢迎的论坛,以创作短小精悍而闻名。\n这里是截至2023/11/10日前的raw data。",
"## Todo\n- get the top 5 answers to each post\n- clean the data\n- a joke dataset(pure text/multimodal)\n- a feasibility dataset\n- a new benchmark for LLM"
]
| [
"TAGS\n#task_categories-text-generation #size_categories-100K<n<1M #language-Chinese #license-apache-2.0 #region-us \n",
"# 弱智吧数据集 wisdomBar dataset\n弱智吧是百度贴吧中的一个非常受欢迎的论坛,以创作短小精悍而闻名。\n这里是截至2023/11/10日前的raw data。",
"## Todo\n- get the top 5 answers to each post\n- clean the data\n- a joke dataset(pure text/multimodal)\n- a feasibility dataset\n- a new benchmark for LLM"
]
| [
42,
49,
44
]
| [
"passage: TAGS\n#task_categories-text-generation #size_categories-100K<n<1M #language-Chinese #license-apache-2.0 #region-us \n# 弱智吧数据集 wisdomBar dataset\n弱智吧是百度贴吧中的一个非常受欢迎的论坛,以创作短小精悍而闻名。\n这里是截至2023/11/10日前的raw data。## Todo\n- get the top 5 answers to each post\n- clean the data\n- a joke dataset(pure text/multimodal)\n- a feasibility dataset\n- a new benchmark for LLM"
]
|
1793ac71cd694b62d70308b06539e8fb433d1c62 | # Dataset Card for "complexquestion_2WIKIMQA_1000"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | presencesw/complexquestion_2WIKIMQA_1000 | [
"region:us"
]
| 2023-11-12T03:42:53+00:00 | {"dataset_info": {"features": [{"name": "entities", "sequence": "null"}, {"name": "triplets", "sequence": "null"}, {"name": "answer", "dtype": "string"}, {"name": "complex_question", "dtype": "string"}, {"name": "system_prompt", "dtype": "string"}, {"name": "user_prompt", "dtype": "string"}, {"name": "gpt_answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5897070, "num_examples": 1000}], "download_size": 629114, "dataset_size": 5897070}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T14:30:28+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "complexquestion_2WIKIMQA_1000"
More Information needed | [
"# Dataset Card for \"complexquestion_2WIKIMQA_1000\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"complexquestion_2WIKIMQA_1000\"\n\nMore Information needed"
]
| [
6,
21
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"complexquestion_2WIKIMQA_1000\"\n\nMore Information needed"
]
|
b159e671b8a4a58b67405271dd29d943d3b46a72 | # Dataset Card for "zalo-banner"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | tinyswish/zalo-banner | [
"region:us"
]
| 2023-11-12T04:33:45+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 86562703.13, "num_examples": 1362}, {"name": "test", "num_bytes": 481752.0, "num_examples": 3}], "download_size": 84168407, "dataset_size": 87044455.13}} | 2023-11-12T04:40:05+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "zalo-banner"
More Information needed | [
"# Dataset Card for \"zalo-banner\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"zalo-banner\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"zalo-banner\"\n\nMore Information needed"
]
|
5568720f3cb5823db75030b5d4ce434d36404a63 | # Dataset Card for "wiki_dpr_token"
## Distribution
```ts
[
{ // Token length
'~128': 2625007,
'128~256': 18370607,
'256~512': 19066,
'512~1024': 571,
'1024~2048': 47,
'2048~4096': 2,
'4096~8192': 0,
'8192~16384': 0,
'16384~32768': 0,
'32768~65536': 0,
'65536~128000': 0,
'128000~': 0,
},
{ // Text length
'~512': 86519,
'512~1024': 20927180,
'1024~2048': 1557,
'2048~4096': 43,
'4096~8192': 1,
'8192~16384': 0,
'16384~32768': 0,
'32768~65536': 0,
'65536~': 0,
},
{ // Token distribution
'~128': '12.49%',
'128~256': '87.42%',
'256~512': '0.09%',
'512~1024': '0.00%',
'1024~2048': '0.00%',
'2048~4096': '0.00%',
'4096~8192': '0.00%',
'8192~16384': '0.00%',
'16384~32768': '0.00%',
'32768~65536': '0.00%',
'65536~128000': '0.00%',
'128000~': '0.00%',
},
{ // Text distribution
'~512': '0.41%',
'512~1024': '99.58%',
'1024~2048': '0.01%',
'2048~4096': '0.00%',
'4096~8192': '0.00%',
'8192~16384': '0.00%',
'16384~32768': '0.00%',
'32768~65536': '0.00%',
'65536~': '0.00%',
}
]
``` | seonglae/wiki_dpr_token | [
"region:us"
]
| 2023-11-12T04:39:03+00:00 | {"dataset_info": {"config_name": "gpt-4", "features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "token_length", "dtype": "int64"}, {"name": "text_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 14112430156, "num_examples": 21015300}], "download_size": 7635924562, "dataset_size": 14112430156}, "configs": [{"config_name": "gpt-4", "data_files": [{"split": "train", "path": "gpt-4/train-*"}]}]} | 2023-11-12T15:55:28+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "wiki_dpr_token"
## Distribution
| [
"# Dataset Card for \"wiki_dpr_token\"",
"## Distribution"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"wiki_dpr_token\"",
"## Distribution"
]
| [
6,
14,
3
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"wiki_dpr_token\"## Distribution"
]
|
ca02f979368ebd7569ee2e29eed77e695a9e066b | # Dataset Card for "news_to_json03"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | growth-cadet/news_to_json03 | [
"region:us"
]
| 2023-11-12T05:34:05+00:00 | {"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20200359, "num_examples": 4098}], "download_size": 8992826, "dataset_size": 20200359}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T05:39:25+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "news_to_json03"
More Information needed | [
"# Dataset Card for \"news_to_json03\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"news_to_json03\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"news_to_json03\"\n\nMore Information needed"
]
|
037a4267da40498fa588a4f76daacb0a6ffb9898 | # Dataset Card for "translated-samples"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | IndonesiaAI/translated-samples | [
"region:us"
]
| 2023-11-12T06:02:47+00:00 | {"dataset_info": {"features": [{"name": "qid", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "response_j", "dtype": "string"}, {"name": "response_k", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 27784014.883398503, "num_examples": 10000}], "download_size": 16825459, "dataset_size": 27784014.883398503}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T06:28:00+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "translated-samples"
More Information needed | [
"# Dataset Card for \"translated-samples\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"translated-samples\"\n\nMore Information needed"
]
| [
6,
16
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"translated-samples\"\n\nMore Information needed"
]
|
5909d267b00c49112bd5d9005db49c7ccb49623f | # Dataset Card for "traditional_clothes"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | nguyenth1312/traditional_clothes | [
"region:us"
]
| 2023-11-12T06:03:08+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "Unnamed: 0", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 148739545.0, "num_examples": 59}], "download_size": 110961466, "dataset_size": 148739545.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T06:03:13+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "traditional_clothes"
More Information needed | [
"# Dataset Card for \"traditional_clothes\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"traditional_clothes\"\n\nMore Information needed"
]
| [
6,
16
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"traditional_clothes\"\n\nMore Information needed"
]
|
3210bb8ba4b87cba0d522650e45f31d283f5351a | # Dataset Card for "context_extension-vicuna-v1.3-7k"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | sade-adrien/context_extension-vicuna-v1.3-7k | [
"region:us"
]
| 2023-11-12T06:08:51+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "val", "path": "data/val-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "meta", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "label", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 1624926742, "num_examples": 8774}, {"name": "val", "num_bytes": 177691277, "num_examples": 975}], "download_size": 781786007, "dataset_size": 1802618019}} | 2023-11-12T06:09:34+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "context_extension-vicuna-v1.3-7k"
More Information needed | [
"# Dataset Card for \"context_extension-vicuna-v1.3-7k\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"context_extension-vicuna-v1.3-7k\"\n\nMore Information needed"
]
| [
6,
23
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"context_extension-vicuna-v1.3-7k\"\n\nMore Information needed"
]
|
bf1b4bfc31dc0e39a51c5fc6528afe456d039ffe | # Dataset Card for "textbook_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mjphayes/textbook_dataset | [
"region:us"
]
| 2023-11-12T06:27:24+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 729355, "num_examples": 8605}], "download_size": 371479, "dataset_size": 729355}} | 2023-11-12T06:27:32+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "textbook_dataset"
More Information needed | [
"# Dataset Card for \"textbook_dataset\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"textbook_dataset\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"textbook_dataset\"\n\nMore Information needed"
]
|
eb21cd082d2619bb125e800798679db32fb93cea | # Dataset Card for "mnli-mock-contrastive-axes"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | iamroot/mnli-mock-contrastive-axes | [
"region:us"
]
| 2023-11-12T06:31:09+00:00 | {"dataset_info": {"features": [{"name": "label", "dtype": {"class_label": {"names": {"0": "entailment", "1": "neutral", "2": "contradiction"}}}}, {"name": "text_a", "dtype": "string"}, {"name": "text_b", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "text_a_embedding", "sequence": "float32"}, {"name": "text_b_embedding", "sequence": "float32"}, {"name": "prompt_embedding", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 2892040066, "num_examples": 304513}], "download_size": 0, "dataset_size": 2892040066}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T20:04:49+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "mnli-mock-contrastive-axes"
More Information needed | [
"# Dataset Card for \"mnli-mock-contrastive-axes\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"mnli-mock-contrastive-axes\"\n\nMore Information needed"
]
| [
6,
22
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"mnli-mock-contrastive-axes\"\n\nMore Information needed"
]
|
267b20168afa5d6983661328fa33350595c304f6 | # Dataset Card for "vietnamese_feat"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | nguyenth1312/vietnamese_feat | [
"region:us"
]
| 2023-11-12T06:47:10+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "Unnamed: 0", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 423262848.0, "num_examples": 144}], "download_size": 371383004, "dataset_size": 423262848.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T06:47:29+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "vietnamese_feat"
More Information needed | [
"# Dataset Card for \"vietnamese_feat\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"vietnamese_feat\"\n\nMore Information needed"
]
| [
6,
15
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"vietnamese_feat\"\n\nMore Information needed"
]
|
d64e4564cc1cf41488460f63c06cdb2b1a57371f |
# Bangumi Image Base of Yakin Byoutou
This is the image base of bangumi Yakin Byoutou, we detected 28 characters, 2053 images in total. The full dataset is [here](all.zip).
**Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 |
|:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|
| 0 | 194 | [Download](0/dataset.zip) |  |  |  |  |  |  |  |  |
| 1 | 84 | [Download](1/dataset.zip) |  |  |  |  |  |  |  |  |
| 2 | 106 | [Download](2/dataset.zip) |  |  |  |  |  |  |  |  |
| 3 | 228 | [Download](3/dataset.zip) |  |  |  |  |  |  |  |  |
| 4 | 228 | [Download](4/dataset.zip) |  |  |  |  |  |  |  |  |
| 5 | 32 | [Download](5/dataset.zip) |  |  |  |  |  |  |  |  |
| 6 | 15 | [Download](6/dataset.zip) |  |  |  |  |  |  |  |  |
| 7 | 184 | [Download](7/dataset.zip) |  |  |  |  |  |  |  |  |
| 8 | 48 | [Download](8/dataset.zip) |  |  |  |  |  |  |  |  |
| 9 | 35 | [Download](9/dataset.zip) |  |  |  |  |  |  |  |  |
| 10 | 35 | [Download](10/dataset.zip) |  |  |  |  |  |  |  |  |
| 11 | 52 | [Download](11/dataset.zip) |  |  |  |  |  |  |  |  |
| 12 | 50 | [Download](12/dataset.zip) |  |  |  |  |  |  |  |  |
| 13 | 52 | [Download](13/dataset.zip) |  |  |  |  |  |  |  |  |
| 14 | 79 | [Download](14/dataset.zip) |  |  |  |  |  |  |  |  |
| 15 | 24 | [Download](15/dataset.zip) |  |  |  |  |  |  |  |  |
| 16 | 12 | [Download](16/dataset.zip) |  |  |  |  |  |  |  |  |
| 17 | 16 | [Download](17/dataset.zip) |  |  |  |  |  |  |  |  |
| 18 | 41 | [Download](18/dataset.zip) |  |  |  |  |  |  |  |  |
| 19 | 29 | [Download](19/dataset.zip) |  |  |  |  |  |  |  |  |
| 20 | 122 | [Download](20/dataset.zip) |  |  |  |  |  |  |  |  |
| 21 | 27 | [Download](21/dataset.zip) |  |  |  |  |  |  |  |  |
| 22 | 33 | [Download](22/dataset.zip) |  |  |  |  |  |  |  |  |
| 23 | 28 | [Download](23/dataset.zip) |  |  |  |  |  |  |  |  |
| 24 | 56 | [Download](24/dataset.zip) |  |  |  |  |  |  |  |  |
| 25 | 24 | [Download](25/dataset.zip) |  |  |  |  |  |  |  |  |
| 26 | 10 | [Download](26/dataset.zip) |  |  |  |  |  |  |  |  |
| noise | 209 | [Download](-1/dataset.zip) |  |  |  |  |  |  |  |  | | BangumiBase/yakinbyoutou | [
"size_categories:1K<n<10K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T06:47:32+00:00 | {"license": "mit", "size_categories": ["1K<n<10K"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T07:34:43+00:00 | []
| []
| TAGS
#size_categories-1K<n<10K #license-mit #art #not-for-all-audiences #region-us
| Bangumi Image Base of Yakin Byoutou
===================================
This is the image base of bangumi Yakin Byoutou, we detected 28 characters, 2053 images in total. The full dataset is here.
Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual. If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability).
Here is the characters' preview:
| []
| [
"TAGS\n#size_categories-1K<n<10K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
34
]
| [
"passage: TAGS\n#size_categories-1K<n<10K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
72de8570cba9ef72f506110a861937d54600ae02 | # Dataset Card for "datasetv2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | gokul00060/datasetv2 | [
"region:us"
]
| 2023-11-12T07:39:12+00:00 | {"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11145, "num_examples": 52}], "download_size": 3564, "dataset_size": 11145}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T07:59:37+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "datasetv2"
More Information needed | [
"# Dataset Card for \"datasetv2\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"datasetv2\"\n\nMore Information needed"
]
| [
6,
14
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"datasetv2\"\n\nMore Information needed"
]
|
04cea3e718275adf1c2439b4da417e17888441c1 |
# Dataset of Airi Akizuki
This is the dataset of Airi Akizuki, containing 799 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 799 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 1719 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 2063 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 799 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 799 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 799 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 1719 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 1719 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 1452 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 2063 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 2063 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/airi_akizuki_onichichi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T07:42:56+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T07:57:44+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Airi Akizuki
=======================
This is the dataset of Airi Akizuki, containing 799 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| []
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
44
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
447c62477cc98c874363b283eed5d99d08a5da16 | # Dataset Card for "environment-multi-labels-even"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | peterbeamish/environment-multi-labels-even | [
"region:us"
]
| 2023-11-12T07:51:31+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "filename", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "environment", "sequence": "string"}, {"name": "variablearg", "sequence": "null"}, {"name": "constarg", "sequence": "string"}, {"name": "variableargjson", "dtype": "string"}, {"name": "constargjson", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "constargcount", "dtype": "float64"}, {"name": "variableargcount", "dtype": "float64"}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 260777154, "num_examples": 19503}, {"name": "test", "num_bytes": 258313170, "num_examples": 19504}], "download_size": 191420386, "dataset_size": 519090324}} | 2023-11-23T20:29:54+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "environment-multi-labels-even"
More Information needed | [
"# Dataset Card for \"environment-multi-labels-even\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"environment-multi-labels-even\"\n\nMore Information needed"
]
| [
6,
19
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"environment-multi-labels-even\"\n\nMore Information needed"
]
|
6e5f278b6fd864abf1ab27d3ff5064e2ef7acaea | [oasst1-89k-ja](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)をチャット形式に変換したデータセットになります。
マルチターン会話でのファインチューニングをする際にご活用下さい(1レコードのトークン長が大きいのでそれなりの計算リソースが必要になります)。
フォーマットは ShareGPT 形式になっています。ファインチューニングをする際は[こちらの記事](https://note.com/npaka/n/n7cbe6f11526c)を参考にして下さい。
oasst1-ja-89k Repository
https://github.com/kunishou/oasst1-89k-ja
OpenAssistant/oasst1
https://huggingface.co/datasets/OpenAssistant/oasst1 | kunishou/oasst1-chat-44k-ja | [
"language:ja",
"license:apache-2.0",
"region:us"
]
| 2023-11-12T07:53:04+00:00 | {"language": ["ja"], "license": "apache-2.0"} | 2023-12-25T13:22:22+00:00 | []
| [
"ja"
]
| TAGS
#language-Japanese #license-apache-2.0 #region-us
| oasst1-89k-jaをチャット形式に変換したデータセットになります。
マルチターン会話でのファインチューニングをする際にご活用下さい(1レコードのトークン長が大きいのでそれなりの計算リソースが必要になります)。
フォーマットは ShareGPT 形式になっています。ファインチューニングをする際はこちらの記事を参考にして下さい。
oasst1-ja-89k Repository
URL
OpenAssistant/oasst1
URL | []
| [
"TAGS\n#language-Japanese #license-apache-2.0 #region-us \n"
]
| [
20
]
| [
"passage: TAGS\n#language-Japanese #license-apache-2.0 #region-us \n"
]
|
8bd28f8d4995252cc3401ca6e7adc02317275316 |
# Dataset of Sana Kuranaka
This is the dataset of Sana Kuranaka, containing 134 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 134 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 293 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 353 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 134 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 134 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 134 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 293 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 293 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 213 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 353 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 353 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/sana_kuranaka_onichichi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T08:05:54+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T08:10:59+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Sana Kuranaka
========================
This is the dataset of Sana Kuranaka, containing 134 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| []
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
44
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
46c5497bf7923d818700f178ae4464a92149c75d | # Dataset Card for "llama2_7b_chat-boolq"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | automated-research-group/llama2_7b_chat-boolq | [
"region:us"
]
| 2023-11-12T08:17:11+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "request", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "input_perplexity", "dtype": "float64"}, {"name": "input_likelihood", "dtype": "float64"}, {"name": "output_perplexity", "dtype": "float64"}, {"name": "output_likelihood", "dtype": "float64"}], "splits": [{"name": "validation", "num_bytes": 2716450, "num_examples": 3270}], "download_size": 1480464, "dataset_size": 2716450}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2023-11-12T08:17:12+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "llama2_7b_chat-boolq"
More Information needed | [
"# Dataset Card for \"llama2_7b_chat-boolq\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"llama2_7b_chat-boolq\"\n\nMore Information needed"
]
| [
6,
21
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"llama2_7b_chat-boolq\"\n\nMore Information needed"
]
|
89bf6e27454da17011226f8b61e6c378e6a84a51 |
# Dataset of Marina Akizuki
This is the dataset of Marina Akizuki, containing 300 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 300 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 588 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 730 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 300 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 300 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 300 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 588 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 588 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 502 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 730 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 730 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/marina_akizuki_onichichi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T08:32:35+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T08:39:58+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Marina Akizuki
=========================
This is the dataset of Marina Akizuki, containing 300 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| []
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
44
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
b239059863c5081282cfd4af0d2e54c902f6f122 | # Dataset Card for "bw_spec_cls_4_02_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_02_s_200 | [
"region:us"
]
| 2023-11-12T08:35:06+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "197", "1": "200", "2": "203", "3": "204"}}}}], "splits": [{"name": "train", "num_bytes": 47753451.0, "num_examples": 800}, {"name": "test", "num_bytes": 1194763.0, "num_examples": 20}], "download_size": 42540369, "dataset_size": 48948214.0}} | 2023-11-12T08:35:09+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_02_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_02_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_02_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_02_s_200\"\n\nMore Information needed"
]
|
91e7478b999d1c34fa43fd22c7d2fabde24bc6e3 | # Dataset Card for "bw_spec_cls_4_03_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_03_s_200 | [
"region:us"
]
| 2023-11-12T08:42:13+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "207", "1": "210", "2": "211", "3": "212"}}}}], "splits": [{"name": "train", "num_bytes": 46577441.0, "num_examples": 800}, {"name": "test", "num_bytes": 1167064.0, "num_examples": 20}], "download_size": 41422161, "dataset_size": 47744505.0}} | 2023-11-12T08:42:17+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_03_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_03_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_03_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_03_s_200\"\n\nMore Information needed"
]
|
16f1b0210a73cc55dbafaf3d742cbb0b6e6f5756 | # Dataset Card for "bw_spec_cls_4_04_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_04_s_200 | [
"region:us"
]
| 2023-11-12T08:49:08+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "213", "1": "255", "2": "256", "3": "368"}}}}], "splits": [{"name": "train", "num_bytes": 42954830.0, "num_examples": 800}, {"name": "test", "num_bytes": 1066370.0, "num_examples": 20}], "download_size": 38269047, "dataset_size": 44021200.0}} | 2023-11-12T08:49:12+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_04_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_04_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_04_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_04_s_200\"\n\nMore Information needed"
]
|
b780092fbbb3f289358f0abe810ea2cd3a51b9cf |
# Dataset of Natsume Makino
This is the dataset of Natsume Makino, containing 168 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 168 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 363 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 460 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 168 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 168 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 168 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 363 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 363 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 311 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 460 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 460 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/natsume_makino_onichichi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T08:51:32+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T08:54:46+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Natsume Makino
=========================
This is the dataset of Natsume Makino, containing 168 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| []
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
44
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
d778226b3b049c60aba39ca10db6d279054b58e0 | # Dataset Card for "bw_spec_cls_4_05_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_05_s_200 | [
"region:us"
]
| 2023-11-12T08:56:14+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "424", "1": "534", "2": "540", "3": "546"}}}}], "splits": [{"name": "train", "num_bytes": 43665640.0, "num_examples": 800}, {"name": "test", "num_bytes": 1066495.0, "num_examples": 20}], "download_size": 38201487, "dataset_size": 44732135.0}} | 2023-11-12T08:56:17+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_05_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_05_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_05_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_05_s_200\"\n\nMore Information needed"
]
|
58e9391006f9f95e1915a9f9d16c9d53cbb81862 | # Dataset Card for "bw_spec_cls_4_06_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_06_s_200 | [
"region:us"
]
| 2023-11-12T09:03:18+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "574", "1": "615", "2": "620", "3": "621"}}}}], "splits": [{"name": "train", "num_bytes": 42703982.0, "num_examples": 800}, {"name": "test", "num_bytes": 1070833.0, "num_examples": 20}], "download_size": 38425177, "dataset_size": 43774815.0}} | 2023-11-12T09:03:21+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_06_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_06_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_06_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_06_s_200\"\n\nMore Information needed"
]
|
b0df386b526f66aeb3acb94b1f867e4c3d647dae | Hey. | BenRachmiel/knock_out | [
"region:us"
]
| 2023-11-12T09:05:49+00:00 | {} | 2023-11-15T23:06:31+00:00 | []
| []
| TAGS
#region-us
| Hey. | []
| [
"TAGS\n#region-us \n"
]
| [
6
]
| [
"passage: TAGS\n#region-us \n"
]
|
c38fecf1302ae8247ae3e799ce81874f4991a4cc |
# Dataset of Haruka Makino
This is the dataset of Haruka Makino, containing 185 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 185 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 444 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 517 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 185 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 185 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 185 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 444 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 444 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 400 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 517 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 517 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/haruka_makino_onichichi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T09:07:22+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T09:10:17+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Haruka Makino
========================
This is the dataset of Haruka Makino, containing 185 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| []
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
44
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
e0c817e0d2c906370ec7a653838b975c0e431913 | # Dataset Card for "bw_spec_cls_4_07_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_07_s_200 | [
"region:us"
]
| 2023-11-12T09:10:09+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "625", "1": "666", "2": "667", "3": "676"}}}}], "splits": [{"name": "train", "num_bytes": 44126695.0, "num_examples": 800}, {"name": "test", "num_bytes": 1096929.0, "num_examples": 20}], "download_size": 37934265, "dataset_size": 45223624.0}} | 2023-11-12T09:10:13+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_07_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_07_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_07_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_07_s_200\"\n\nMore Information needed"
]
|
46833aaba2791ad422fda3f5862f6331b89e9b4d |
# Dataset of Perlica (Arknights)
This is the dataset of Perlica (Arknights), containing 70 images and their tags.
The core tags of this character are `long_hair, animal_ears, bangs, blue_eyes, breasts, grey_hair, medium_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 70 | 135.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/perlica_arknights/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 70 | 59.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/perlica_arknights/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 182 | 138.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/perlica_arknights/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 70 | 109.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/perlica_arknights/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 182 | 225.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/perlica_arknights/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/perlica_arknights',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, bare_shoulders, closed_mouth, looking_at_viewer, off_shoulder, solo, white_dress, open_jacket, sleeveless_dress, upper_body, white_background, grey_jacket, simple_background, white_jacket, belt, gloves, long_sleeves, smile |
| 1 | 5 |  |  |  |  |  | 1girl, bare_shoulders, black_gloves, black_pantyhose, long_sleeves, off_shoulder, open_jacket, sleeveless_dress, solo, standing, white_background, white_dress, white_jacket, black_footwear, full_body, shoes, simple_background, animal_ear_fluff, grey_jacket, looking_at_viewer, belt, closed_mouth, parted_lips |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | closed_mouth | looking_at_viewer | off_shoulder | solo | white_dress | open_jacket | sleeveless_dress | upper_body | white_background | grey_jacket | simple_background | white_jacket | belt | gloves | long_sleeves | smile | black_gloves | black_pantyhose | standing | black_footwear | full_body | shoes | animal_ear_fluff | parted_lips |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:---------------|:--------------------|:---------------|:-------|:--------------|:--------------|:-------------------|:-------------|:-------------------|:--------------|:--------------------|:---------------|:-------|:---------|:---------------|:--------|:---------------|:------------------|:-----------|:-----------------|:------------|:--------|:-------------------|:--------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | | X | | X | X | X | X | X | X | X | X |
| CyberHarem/perlica_arknights | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T09:17:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-02-01T15:46:41+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Perlica (Arknights)
==============================
This is the dataset of Perlica (Arknights), containing 70 images and their tags.
The core tags of this character are 'long\_hair, animal\_ears, bangs, blue\_eyes, breasts, grey\_hair, medium\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
]
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
]
| [
44,
61,
5,
4
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
]
|
1c957c70024494d874f203a611d4e040e3704405 | # Dataset Card for "bw_spec_cls_4_08_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_08_s_200 | [
"region:us"
]
| 2023-11-12T09:17:07+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "694", "1": "695", "2": "714", "3": "715"}}}}], "splits": [{"name": "train", "num_bytes": 43724008.0, "num_examples": 800}, {"name": "test", "num_bytes": 1098572.0, "num_examples": 20}], "download_size": 38859883, "dataset_size": 44822580.0}} | 2023-11-12T09:17:11+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_08_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_08_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_08_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_08_s_200\"\n\nMore Information needed"
]
|
8e0616692f2de634d54aa669b417cc1fa4522e96 |
# Dataset of Endministrator (Arknights)
This is the dataset of Endministrator (Arknights), containing 36 images and their tags.
The core tags of this character are `black_hair, bangs, short_hair, hair_ornament, blunt_bangs, breasts, hairclip, blue_eyes, grey_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 36 | 74.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/endministrator_arknights/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 36 | 31.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/endministrator_arknights/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 99 | 73.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/endministrator_arknights/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 36 | 59.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/endministrator_arknights/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 99 | 117.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/endministrator_arknights/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/endministrator_arknights',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 36 |  |  |  |  |  | 1girl, long_sleeves, looking_at_viewer, solo, black_jacket, open_jacket, smile, sweater, black_pantyhose, simple_background, blush, closed_mouth, sitting, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | long_sleeves | looking_at_viewer | solo | black_jacket | open_jacket | smile | sweater | black_pantyhose | simple_background | blush | closed_mouth | sitting | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------------------|:-------|:---------------|:--------------|:--------|:----------|:------------------|:--------------------|:--------|:---------------|:----------|:-------------------|
| 0 | 36 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/endministrator_arknights | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T09:20:27+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-02-01T16:08:30+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Endministrator (Arknights)
=====================================
This is the dataset of Endministrator (Arknights), containing 36 images and their tags.
The core tags of this character are 'black\_hair, bangs, short\_hair, hair\_ornament, blunt\_bangs, breasts, hairclip, blue\_eyes, grey\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
]
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
]
| [
44,
61,
5,
4
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.### Raw Text Version### Table Version"
]
|
ab6b0715130c9f876f7674c33e6ff0ab1da6fdf9 | # Dataset Card for "bw_spec_cls_4_09_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_09_s_200 | [
"region:us"
]
| 2023-11-12T09:23:56+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "716", "1": "718", "2": "777", "3": "814"}}}}], "splits": [{"name": "train", "num_bytes": 42982359.0, "num_examples": 800}, {"name": "test", "num_bytes": 1090889.0, "num_examples": 20}], "download_size": 38084510, "dataset_size": 44073248.0}} | 2023-11-12T09:23:59+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_09_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_09_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_09_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_09_s_200\"\n\nMore Information needed"
]
|
02c0aad51d7507e40a98c077a76b373e74765345 |
# Dataset of Akira Makino
This is the dataset of Akira Makino, containing 198 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 198 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 420 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 511 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 198 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 198 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 198 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 420 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 420 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 390 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 511 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 511 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/akira_makino_onichichi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
]
| 2023-11-12T09:26:01+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2023-11-12T09:59:57+00:00 | []
| []
| TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Akira Makino
=======================
This is the dataset of Akira Makino, containing 198 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| []
| [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
| [
44
]
| [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
]
|
0596f0bf0f226ae5160f86914096a425614418c3 | # Dataset Card for "ZaloAI"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ktam204/ZaloAI | [
"region:us"
]
| 2023-11-12T09:26:53+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 86452073.13, "num_examples": 1362}], "download_size": 83935670, "dataset_size": 86452073.13}} | 2023-11-14T07:46:20+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "ZaloAI"
More Information needed | [
"# Dataset Card for \"ZaloAI\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"ZaloAI\"\n\nMore Information needed"
]
| [
6,
13
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"ZaloAI\"\n\nMore Information needed"
]
|
5445b7f03993ddae4e9431648824631570829915 | # Dataset Card for "bw_spec_cls_4_10_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_10_s_200 | [
"region:us"
]
| 2023-11-12T09:30:38+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "821", "1": "822", "2": "825", "3": "853"}}}}], "splits": [{"name": "train", "num_bytes": 43884906.0, "num_examples": 800}, {"name": "test", "num_bytes": 1117368.0, "num_examples": 20}], "download_size": 38172148, "dataset_size": 45002274.0}} | 2023-11-12T09:30:42+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_10_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_10_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_10_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_10_s_200\"\n\nMore Information needed"
]
|
06f25a43fd9b9b4fa0bb60c515b58090b9fe2eb2 | # Dataset Card for "bw_spec_cls_4_11_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_11_s_200 | [
"region:us"
]
| 2023-11-12T09:37:32+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "897", "1": "995", "2": "997", "3": "998"}}}}], "splits": [{"name": "train", "num_bytes": 36533192.0, "num_examples": 800}, {"name": "test", "num_bytes": 907504.0, "num_examples": 20}], "download_size": 33482081, "dataset_size": 37440696.0}} | 2023-11-12T09:37:36+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_11_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_11_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_11_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_11_s_200\"\n\nMore Information needed"
]
|
049df8b759ddb210b309a175d4f47a2d98829a3b | # Dataset Card for "chemnlp-arxiv"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | kjappelbaum/chemnlp-arxiv | [
"region:us"
]
| 2023-11-12T09:42:42+00:00 | {"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "meta", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 27416294241, "num_examples": 1558306}], "download_size": 12753172611, "dataset_size": 27416294241}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-11-12T10:30:54+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "chemnlp-arxiv"
More Information needed | [
"# Dataset Card for \"chemnlp-arxiv\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"chemnlp-arxiv\"\n\nMore Information needed"
]
| [
6,
17
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"chemnlp-arxiv\"\n\nMore Information needed"
]
|
bfef76d9f2e73c11d81ac0b1501fe9a68a6dba13 | # Dataset Card for "bw_spec_cls_4_12_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_12_s_200 | [
"region:us"
]
| 2023-11-12T09:44:21+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "1039", "1": "1040", "2": "1082", "3": "1083"}}}}], "splits": [{"name": "train", "num_bytes": 42878965.0, "num_examples": 800}, {"name": "test", "num_bytes": 1081274.0, "num_examples": 20}], "download_size": 37601716, "dataset_size": 43960239.0}} | 2023-11-12T09:44:24+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_12_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_12_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_12_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_12_s_200\"\n\nMore Information needed"
]
|
600a708abb94c5a444400cbab70bf9e1a24baf6f | # Dataset Card for "bw_spec_cls_4_13_s_200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | arieg/bw_spec_cls_4_13_s_200 | [
"region:us"
]
| 2023-11-12T09:51:09+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "1102", "1": "1193", "2": "1195", "3": "1196"}}}}], "splits": [{"name": "train", "num_bytes": 42910474.0, "num_examples": 800}, {"name": "test", "num_bytes": 1075378.0, "num_examples": 20}], "download_size": 37970465, "dataset_size": 43985852.0}} | 2023-11-12T09:51:13+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "bw_spec_cls_4_13_s_200"
More Information needed | [
"# Dataset Card for \"bw_spec_cls_4_13_s_200\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"bw_spec_cls_4_13_s_200\"\n\nMore Information needed"
]
| [
6,
24
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"bw_spec_cls_4_13_s_200\"\n\nMore Information needed"
]
|
0cf407d00cf21d443a52243dec51e053721d5ded | # Dataset Card for "llama2_7b_chat-boolq-results"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | automated-research-group/llama2_7b_chat-boolq-results | [
"region:us"
]
| 2023-11-12T09:52:06+00:00 | {"dataset_info": [{"config_name": "{'do_sample'=False, 'beams'=10}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217480, "num_examples": 3270}], "download_size": 105062, "dataset_size": 217480}, {"config_name": "{'do_sample'=False, 'beams'=1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 503592, "num_examples": 3270}], "download_size": 265378, "dataset_size": 503592}, {"config_name": "{'do_sample'=False, 'beams'=5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217480, "num_examples": 3270}], "download_size": 105062, "dataset_size": 217480}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=100, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218096, "num_examples": 3270}], "download_size": 105150, "dataset_size": 218096}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=100, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218191, "num_examples": 3270}], "download_size": 105558, "dataset_size": 218191}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=1000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217965, "num_examples": 3270}], "download_size": 105096, "dataset_size": 217965}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=1000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218285, "num_examples": 3270}], "download_size": 105322, "dataset_size": 218285}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=10000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218025, "num_examples": 3270}], "download_size": 105120, "dataset_size": 218025}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=10000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218336, "num_examples": 3270}], "download_size": 105622, "dataset_size": 218336}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=100, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 216642, "num_examples": 3270}], "download_size": 105050, "dataset_size": 216642}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=100, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 216562, "num_examples": 3270}], "download_size": 105487, "dataset_size": 216562}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=1000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217182, "num_examples": 3270}], "download_size": 104940, "dataset_size": 217182}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=1000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217123, "num_examples": 3270}], "download_size": 105570, "dataset_size": 217123}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=10000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217545, "num_examples": 3270}], "download_size": 105061, "dataset_size": 217545}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=10000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 219782, "num_examples": 3270}], "download_size": 107601, "dataset_size": 219782}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105165, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218152, "num_examples": 3270}], "download_size": 105161, "dataset_size": 218152}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218137, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218137}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218156, "num_examples": 3270}], "download_size": 105161, "dataset_size": 218156}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218150, "num_examples": 3270}], "download_size": 105158, "dataset_size": 218150}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=100, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 214912, "num_examples": 3270}], "download_size": 104059, "dataset_size": 214912}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=100, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 229014, "num_examples": 3270}], "download_size": 115914, "dataset_size": 229014}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=1000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217453, "num_examples": 3270}], "download_size": 105699, "dataset_size": 217453}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=1000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 233550, "num_examples": 3270}], "download_size": 120956, "dataset_size": 233550}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=10000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217074, "num_examples": 3270}], "download_size": 105063, "dataset_size": 217074}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=10000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 228714, "num_examples": 3270}], "download_size": 117246, "dataset_size": 228714}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218151, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218151}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218152, "num_examples": 3270}], "download_size": 105165, "dataset_size": 218152}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=100, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218147, "num_examples": 3270}], "download_size": 105150, "dataset_size": 218147}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=100, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218173, "num_examples": 3270}], "download_size": 105449, "dataset_size": 218173}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=1000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217974, "num_examples": 3270}], "download_size": 105119, "dataset_size": 217974}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=1000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 216615, "num_examples": 3270}], "download_size": 104953, "dataset_size": 216615}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=10000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218087, "num_examples": 3270}], "download_size": 105124, "dataset_size": 218087}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=10000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217401, "num_examples": 3270}], "download_size": 105177, "dataset_size": 217401}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=100, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218037, "num_examples": 3270}], "download_size": 105301, "dataset_size": 218037}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=100, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 220330, "num_examples": 3270}], "download_size": 107206, "dataset_size": 220330}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=1000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217500, "num_examples": 3270}], "download_size": 105181, "dataset_size": 217500}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=1000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 219606, "num_examples": 3270}], "download_size": 106880, "dataset_size": 219606}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=10000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 216996, "num_examples": 3270}], "download_size": 104798, "dataset_size": 216996}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=10000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 216260, "num_examples": 3270}], "download_size": 105790, "dataset_size": 216260}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218142, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218142}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218142, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218142}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218142, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218142}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218151, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218151}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218137, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218137}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105165, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218148, "num_examples": 3270}], "download_size": 105148, "dataset_size": 218148}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218146, "num_examples": 3270}], "download_size": 105142, "dataset_size": 218146}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=100, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 217979, "num_examples": 3270}], "download_size": 105610, "dataset_size": 217979}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=1000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 216783, "num_examples": 3270}], "download_size": 105217, "dataset_size": 216783}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=1000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 235031, "num_examples": 3270}], "download_size": 122186, "dataset_size": 235031}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=10000, 'top_p'=0.5}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 218161, "num_examples": 3270}], "download_size": 106034, "dataset_size": 218161}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=10000, 'top_p'=1.0}", "features": [{"name": "id", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "bool_accuracy", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 231418, "num_examples": 3270}], "download_size": 118724, "dataset_size": 231418}], "configs": [{"config_name": "{'do_sample'=False, 'beams'=10}", "data_files": [{"split": "train", "path": "{'do_sample'=False, 'beams'=10}/train-*"}]}, {"config_name": "{'do_sample'=False, 'beams'=1}", "data_files": [{"split": "train", "path": "{'do_sample'=False, 'beams'=1}/train-*"}]}, {"config_name": "{'do_sample'=False, 'beams'=5}", "data_files": [{"split": "train", "path": "{'do_sample'=False, 'beams'=5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=100, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=100, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=100, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=100, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=1000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=1000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=1000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=1000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=10000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=10000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=10000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.05, 'top_k'=10000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=100, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=100, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=100, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=100, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=1000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=1000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=1000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=1000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=10000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=10000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=10000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.55, 'top_k'=10000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=100, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=100, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=100, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=100, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=1000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=1000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=1000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=1000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=10000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=10000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=10000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=1, 'temperature'=1.05, 'top_k'=10000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=10, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=100, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=100, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=100, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=100, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=1000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=1000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=1000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=1000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=10000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=10000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=10000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.05, 'top_k'=10000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=100, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=100, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=100, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=100, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=1000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=1000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=1000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=1000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=10000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=10000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=10000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.55, 'top_k'=10000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.9, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=0.95, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=100, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=1000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.05}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.1}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.0, 'top_k'=10000, 'top_p'=0.2}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=100, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=100, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=1000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=1000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=1000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=1000, 'top_p'=1.0}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=10000, 'top_p'=0.5}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=10000, 'top_p'=0.5}/train-*"}]}, {"config_name": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=10000, 'top_p'=1.0}", "data_files": [{"split": "train", "path": "{'do_sample'=True, 'beams'=5, 'temperature'=1.05, 'top_k'=10000, 'top_p'=1.0}/train-*"}]}]} | 2023-12-02T01:06:47+00:00 | []
| []
| TAGS
#region-us
| # Dataset Card for "llama2_7b_chat-boolq-results"
More Information needed | [
"# Dataset Card for \"llama2_7b_chat-boolq-results\"\n\nMore Information needed"
]
| [
"TAGS\n#region-us \n",
"# Dataset Card for \"llama2_7b_chat-boolq-results\"\n\nMore Information needed"
]
| [
6,
25
]
| [
"passage: TAGS\n#region-us \n# Dataset Card for \"llama2_7b_chat-boolq-results\"\n\nMore Information needed"
]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.