sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
listlengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
listlengths
0
25
languages
listlengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
listlengths
0
352
processed_texts
listlengths
1
353
tokens_length
listlengths
1
353
input_texts
listlengths
1
40
e3d0604e57c171dbf3588117e30d5074b2a9b106
# Louis Vuitton web scraped data ## About the website Louis Vuitton operates within the **luxury fashion industry** in the EMEA region, particularly in the **United Kingdom**. This industry is characterised by high-end products ranging from clothing, accessories to leather goods. It is mainly driven by factors such as brand identity, quality of products, and latest fashion trends. With the rise of digitalisation, an significant portion of sales in this industry shifted to **E-commerce** platforms. The dataset observed has **Ecommerce product-list page (PLP)** data on Louis Vuitton in the United Kingdom. This indicates the prominence of online shopping and digital marketing in the luxury fashion industry in the UK. ## Link to **dataset** [United Kingdom - Louis Vuitton - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Louis%20Vuitton%20Product-prices%20United%20Kingdom/r/recvE3ce20IqIpbjI)
DBQ/Louis.Vuitton.Product.prices.United.Kingdom
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:51:07+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Kingdom - Louis Vuitton - Product-level price list", "tags": ["webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3326600, "num_examples": 7741}], "download_size": 862931, "dataset_size": 3326600}}
2023-11-19T08:51:12+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us
# Louis Vuitton web scraped data ## About the website Louis Vuitton operates within the luxury fashion industry in the EMEA region, particularly in the United Kingdom. This industry is characterised by high-end products ranging from clothing, accessories to leather goods. It is mainly driven by factors such as brand identity, quality of products, and latest fashion trends. With the rise of digitalisation, an significant portion of sales in this industry shifted to E-commerce platforms. The dataset observed has Ecommerce product-list page (PLP) data on Louis Vuitton in the United Kingdom. This indicates the prominence of online shopping and digital marketing in the luxury fashion industry in the UK. ## Link to dataset United Kingdom - Louis Vuitton - Product-level price list dataset
[ "# Louis Vuitton web scraped data", "## About the website\n\nLouis Vuitton operates within the luxury fashion industry in the EMEA region, particularly in the United Kingdom. This industry is characterised by high-end products ranging from clothing, accessories to leather goods. It is mainly driven by factors such as brand identity, quality of products, and latest fashion trends. With the rise of digitalisation, an significant portion of sales in this industry shifted to E-commerce platforms. The dataset observed has Ecommerce product-list page (PLP) data on Louis Vuitton in the United Kingdom. This indicates the prominence of online shopping and digital marketing in the luxury fashion industry in the UK.", "## Link to dataset\n\nUnited Kingdom - Louis Vuitton - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n", "# Louis Vuitton web scraped data", "## About the website\n\nLouis Vuitton operates within the luxury fashion industry in the EMEA region, particularly in the United Kingdom. This industry is characterised by high-end products ranging from clothing, accessories to leather goods. It is mainly driven by factors such as brand identity, quality of products, and latest fashion trends. With the rise of digitalisation, an significant portion of sales in this industry shifted to E-commerce platforms. The dataset observed has Ecommerce product-list page (PLP) data on Louis Vuitton in the United Kingdom. This indicates the prominence of online shopping and digital marketing in the luxury fashion industry in the UK.", "## Link to dataset\n\nUnited Kingdom - Louis Vuitton - Product-level price list dataset" ]
[ 178, 7, 145, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n# Louis Vuitton web scraped data## About the website\n\nLouis Vuitton operates within the luxury fashion industry in the EMEA region, particularly in the United Kingdom. This industry is characterised by high-end products ranging from clothing, accessories to leather goods. It is mainly driven by factors such as brand identity, quality of products, and latest fashion trends. With the rise of digitalisation, an significant portion of sales in this industry shifted to E-commerce platforms. The dataset observed has Ecommerce product-list page (PLP) data on Louis Vuitton in the United Kingdom. This indicates the prominence of online shopping and digital marketing in the luxury fashion industry in the UK.## Link to dataset\n\nUnited Kingdom - Louis Vuitton - Product-level price list dataset" ]
356c29361e466314b65d6a9e497b1479c7f26d17
# Farfetch web scraped data ## About the website The **Ecommerce industry** in the **Asia Pacific**, especially in **Macao**, has been experiencing rapid growth, due in part to the booming digital transformation. The region has become a hotspot for online retailers and businesses, creating a competitive marketplace. **Farfetch**, a renowned global luxury fashion online platform, operates in this industry and has established a significant presence in Macao. The available **dataset** showcases the firms **Ecommerce product-list page (PLP) data** on Farfetch in Macao, providing valuable insights into product performance, customer behaviors, and emerging ecommerce trends in this specific area. ## Link to **dataset** [Macao - Farfetch - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Farfetch%20Product-prices%20Macao/r/recjMxrKKCY27iDc8)
DBQ/Farfetch.Product.prices.Macao
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:51:43+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Macao - Farfetch - Product-level price list", "tags": ["webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 220105864, "num_examples": 587981}], "download_size": 80561297, "dataset_size": 220105864}}
2023-11-19T08:52:39+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us
# Farfetch web scraped data ## About the website The Ecommerce industry in the Asia Pacific, especially in Macao, has been experiencing rapid growth, due in part to the booming digital transformation. The region has become a hotspot for online retailers and businesses, creating a competitive marketplace. Farfetch, a renowned global luxury fashion online platform, operates in this industry and has established a significant presence in Macao. The available dataset showcases the firms Ecommerce product-list page (PLP) data on Farfetch in Macao, providing valuable insights into product performance, customer behaviors, and emerging ecommerce trends in this specific area. ## Link to dataset Macao - Farfetch - Product-level price list dataset
[ "# Farfetch web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific, especially in Macao, has been experiencing rapid growth, due in part to the booming digital transformation. The region has become a hotspot for online retailers and businesses, creating a competitive marketplace. Farfetch, a renowned global luxury fashion online platform, operates in this industry and has established a significant presence in Macao. The available dataset showcases the firms Ecommerce product-list page (PLP) data on Farfetch in Macao, providing valuable insights into product performance, customer behaviors, and emerging ecommerce trends in this specific area.", "## Link to dataset\n\nMacao - Farfetch - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n", "# Farfetch web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific, especially in Macao, has been experiencing rapid growth, due in part to the booming digital transformation. The region has become a hotspot for online retailers and businesses, creating a competitive marketplace. Farfetch, a renowned global luxury fashion online platform, operates in this industry and has established a significant presence in Macao. The available dataset showcases the firms Ecommerce product-list page (PLP) data on Farfetch in Macao, providing valuable insights into product performance, customer behaviors, and emerging ecommerce trends in this specific area.", "## Link to dataset\n\nMacao - Farfetch - Product-level price list dataset" ]
[ 179, 8, 137, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n# Farfetch web scraped data## About the website\n\nThe Ecommerce industry in the Asia Pacific, especially in Macao, has been experiencing rapid growth, due in part to the booming digital transformation. The region has become a hotspot for online retailers and businesses, creating a competitive marketplace. Farfetch, a renowned global luxury fashion online platform, operates in this industry and has established a significant presence in Macao. The available dataset showcases the firms Ecommerce product-list page (PLP) data on Farfetch in Macao, providing valuable insights into product performance, customer behaviors, and emerging ecommerce trends in this specific area.## Link to dataset\n\nMacao - Farfetch - Product-level price list dataset" ]
db2cfea8d5b706ef5ec8d8bdf9398741de949877
# Net-a-Porter web scraped data ## About the website The **e-commerce** industry, particularly the segment focusing on **luxury fashion** retail, is rapidly flourishing in the Americas, predominantly in the **United States**. Companies such as **Net-a-Porter** offer an extensive range of products, merging the lines between high fashion and accessible purchasing. Online platforms are revolutionizing traditional retail approaches, allowing businesses to stay ahead amid rapidly evolving consumer preferences. The dataset observed includes **Ecommerce product-list page (PLP) data** on Net-a-Porters operations in the United States. This data offers crucial insights into the online behaviors and preferences of luxury fashion shoppers, further demonstrating the traction of online retail in the modern consumer market. ## Link to **dataset** [United States - Net-a-Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Net-a-Porter%20Product-prices%20United%20States/r/recnVI2GmmLia6A8X)
DBQ/Net.a.Porter.Product.prices.United.States
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:52:59+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United States - Net-a-Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19987977, "num_examples": 48920}], "download_size": 5898449, "dataset_size": 19987977}}
2023-11-19T08:53:07+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us
# Net-a-Porter web scraped data ## About the website The e-commerce industry, particularly the segment focusing on luxury fashion retail, is rapidly flourishing in the Americas, predominantly in the United States. Companies such as Net-a-Porter offer an extensive range of products, merging the lines between high fashion and accessible purchasing. Online platforms are revolutionizing traditional retail approaches, allowing businesses to stay ahead amid rapidly evolving consumer preferences. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porters operations in the United States. This data offers crucial insights into the online behaviors and preferences of luxury fashion shoppers, further demonstrating the traction of online retail in the modern consumer market. ## Link to dataset United States - Net-a-Porter - Product-level price list dataset
[ "# Net-a-Porter web scraped data", "## About the website\n\nThe e-commerce industry, particularly the segment focusing on luxury fashion retail, is rapidly flourishing in the Americas, predominantly in the United States. Companies such as Net-a-Porter offer an extensive range of products, merging the lines between high fashion and accessible purchasing. Online platforms are revolutionizing traditional retail approaches, allowing businesses to stay ahead amid rapidly evolving consumer preferences. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porters operations in the United States. This data offers crucial insights into the online behaviors and preferences of luxury fashion shoppers, further demonstrating the traction of online retail in the modern consumer market.", "## Link to dataset\n\nUnited States - Net-a-Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n", "# Net-a-Porter web scraped data", "## About the website\n\nThe e-commerce industry, particularly the segment focusing on luxury fashion retail, is rapidly flourishing in the Americas, predominantly in the United States. Companies such as Net-a-Porter offer an extensive range of products, merging the lines between high fashion and accessible purchasing. Online platforms are revolutionizing traditional retail approaches, allowing businesses to stay ahead amid rapidly evolving consumer preferences. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porters operations in the United States. This data offers crucial insights into the online behaviors and preferences of luxury fashion shoppers, further demonstrating the traction of online retail in the modern consumer market.", "## Link to dataset\n\nUnited States - Net-a-Porter - Product-level price list dataset" ]
[ 177, 11, 168, 22 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n# Net-a-Porter web scraped data## About the website\n\nThe e-commerce industry, particularly the segment focusing on luxury fashion retail, is rapidly flourishing in the Americas, predominantly in the United States. Companies such as Net-a-Porter offer an extensive range of products, merging the lines between high fashion and accessible purchasing. Online platforms are revolutionizing traditional retail approaches, allowing businesses to stay ahead amid rapidly evolving consumer preferences. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porters operations in the United States. This data offers crucial insights into the online behaviors and preferences of luxury fashion shoppers, further demonstrating the traction of online retail in the modern consumer market.## Link to dataset\n\nUnited States - Net-a-Porter - Product-level price list dataset" ]
10b07478d3dab70b2682480fd2c148b5f480070f
# Mr Porter web scraped data ## About the website Mr Porter operates within the **Ecommerce industry** in the **EMEA** region, particularly in **Germany**. This industry is critically important in the modern business world, supplying goods and services to consumers through various online methods. Ecommerce has revolutionized retail, radically reshaping the way consumers shop and businesses sell products. Specifically in Germany, the Ecommerce industry has seen remarkable growth in recent years. The dataset we observed provides detailed Ecommerce **Product-List Page (PLP) data** on **Mr Porter**, showcasing various aspects of their operations in Germany, giving insight into their strategies, customer behaviors, and market trends. ## Link to **dataset** [Germany - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Germany/r/recFSFFzeJE9jUAr6)
DBQ/Mr.Porter.Product.prices.Germany
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:53:18+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Germany - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 9116565, "num_examples": 27744}], "download_size": 2073015, "dataset_size": 9116565}}
2023-11-19T08:53:24+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website Mr Porter operates within the Ecommerce industry in the EMEA region, particularly in Germany. This industry is critically important in the modern business world, supplying goods and services to consumers through various online methods. Ecommerce has revolutionized retail, radically reshaping the way consumers shop and businesses sell products. Specifically in Germany, the Ecommerce industry has seen remarkable growth in recent years. The dataset we observed provides detailed Ecommerce Product-List Page (PLP) data on Mr Porter, showcasing various aspects of their operations in Germany, giving insight into their strategies, customer behaviors, and market trends. ## Link to dataset Germany - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the Ecommerce industry in the EMEA region, particularly in Germany. This industry is critically important in the modern business world, supplying goods and services to consumers through various online methods. Ecommerce has revolutionized retail, radically reshaping the way consumers shop and businesses sell products. Specifically in Germany, the Ecommerce industry has seen remarkable growth in recent years. The dataset we observed provides detailed Ecommerce Product-List Page (PLP) data on Mr Porter, showcasing various aspects of their operations in Germany, giving insight into their strategies, customer behaviors, and market trends.", "## Link to dataset\n\nGermany - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the Ecommerce industry in the EMEA region, particularly in Germany. This industry is critically important in the modern business world, supplying goods and services to consumers through various online methods. Ecommerce has revolutionized retail, radically reshaping the way consumers shop and businesses sell products. Specifically in Germany, the Ecommerce industry has seen remarkable growth in recent years. The dataset we observed provides detailed Ecommerce Product-List Page (PLP) data on Mr Porter, showcasing various aspects of their operations in Germany, giving insight into their strategies, customer behaviors, and market trends.", "## Link to dataset\n\nGermany - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 143, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nMr Porter operates within the Ecommerce industry in the EMEA region, particularly in Germany. This industry is critically important in the modern business world, supplying goods and services to consumers through various online methods. Ecommerce has revolutionized retail, radically reshaping the way consumers shop and businesses sell products. Specifically in Germany, the Ecommerce industry has seen remarkable growth in recent years. The dataset we observed provides detailed Ecommerce Product-List Page (PLP) data on Mr Porter, showcasing various aspects of their operations in Germany, giving insight into their strategies, customer behaviors, and market trends.## Link to dataset\n\nGermany - Mr Porter - Product-level price list dataset" ]
43472991d0ae400a1ae021419e8426b3015a154b
# Burberry web scraped data ## About the website Burberry operates within the **luxury fashion industry** in the EMEA region, specifically within **Italy**. This industry is renowned for its high-end products often characterised by superior quality, exquisite craftsmanship, and timeless design. Embracing modern marketing channels, many luxury brands like Burberry have adapted to the online retailing landscape, significantly boosting their **Ecommerce operations**. Italy has a profound appreciation of fashion, rendering it a significant market for Burberry. The observed dataset contains **Ecommerce product-list page (PLP) data** on Burberrys operations in Italy, a critical insight into Burberrys online sales activities in this region. ## Link to **dataset** [Italy - Burberry - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Burberry%20Product-prices%20Italy/r/reckNhwDuHzJGvwG7)
DBQ/Burberry.Product.prices.Italy
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:53:32+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Italy - Burberry - Product-level price list", "tags": ["webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 895928, "num_examples": 2691}], "download_size": 260255, "dataset_size": 895928}}
2023-11-19T08:53:36+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us
# Burberry web scraped data ## About the website Burberry operates within the luxury fashion industry in the EMEA region, specifically within Italy. This industry is renowned for its high-end products often characterised by superior quality, exquisite craftsmanship, and timeless design. Embracing modern marketing channels, many luxury brands like Burberry have adapted to the online retailing landscape, significantly boosting their Ecommerce operations. Italy has a profound appreciation of fashion, rendering it a significant market for Burberry. The observed dataset contains Ecommerce product-list page (PLP) data on Burberrys operations in Italy, a critical insight into Burberrys online sales activities in this region. ## Link to dataset Italy - Burberry - Product-level price list dataset
[ "# Burberry web scraped data", "## About the website\n\nBurberry operates within the luxury fashion industry in the EMEA region, specifically within Italy. This industry is renowned for its high-end products often characterised by superior quality, exquisite craftsmanship, and timeless design. Embracing modern marketing channels, many luxury brands like Burberry have adapted to the online retailing landscape, significantly boosting their Ecommerce operations. Italy has a profound appreciation of fashion, rendering it a significant market for Burberry. The observed dataset contains Ecommerce product-list page (PLP) data on Burberrys operations in Italy, a critical insight into Burberrys online sales activities in this region.", "## Link to dataset\n\nItaly - Burberry - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n", "# Burberry web scraped data", "## About the website\n\nBurberry operates within the luxury fashion industry in the EMEA region, specifically within Italy. This industry is renowned for its high-end products often characterised by superior quality, exquisite craftsmanship, and timeless design. Embracing modern marketing channels, many luxury brands like Burberry have adapted to the online retailing landscape, significantly boosting their Ecommerce operations. Italy has a profound appreciation of fashion, rendering it a significant market for Burberry. The observed dataset contains Ecommerce product-list page (PLP) data on Burberrys operations in Italy, a critical insight into Burberrys online sales activities in this region.", "## Link to dataset\n\nItaly - Burberry - Product-level price list dataset" ]
[ 178, 7, 150, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n# Burberry web scraped data## About the website\n\nBurberry operates within the luxury fashion industry in the EMEA region, specifically within Italy. This industry is renowned for its high-end products often characterised by superior quality, exquisite craftsmanship, and timeless design. Embracing modern marketing channels, many luxury brands like Burberry have adapted to the online retailing landscape, significantly boosting their Ecommerce operations. Italy has a profound appreciation of fashion, rendering it a significant market for Burberry. The observed dataset contains Ecommerce product-list page (PLP) data on Burberrys operations in Italy, a critical insight into Burberrys online sales activities in this region.## Link to dataset\n\nItaly - Burberry - Product-level price list dataset" ]
103a049dbde55b3e5fd3bcb86e4ae3f4a2f01996
# Loro Piana web scraped data ## About the website Loro Piana operates in the **luxury fashion** industry, specializing in high-end, luxury apparel, accessories, and textile goods. In Americas, particularly in Canada, this industry has experienced substantial growth driven by wealthy individuals and fashion enthusiasts. With the emerging **digital landscape** and **E-commerce**, the consumption of luxury fashion has become much feasible due to the ease of accessibility. The dataset observed includes **Ecommerce product-list page (PLP) data on Loro Piana** in Canada. This data offers insights into online consumer behavior and preferences, which is crucial for understanding the local consumer market and adjusting marketing strategy accordingly. ## Link to **dataset** [Canada - Loro Piana - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Loro%20Piana%20Product-prices%20Canada/r/recjpKbhfWVXeKhmq)
DBQ/Loro.Piana.Product.prices.Canada
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:53:45+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Canada - Loro Piana - Product-level price list", "tags": ["webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 242143, "num_examples": 698}], "download_size": 83274, "dataset_size": 242143}}
2023-11-19T08:53:50+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us
# Loro Piana web scraped data ## About the website Loro Piana operates in the luxury fashion industry, specializing in high-end, luxury apparel, accessories, and textile goods. In Americas, particularly in Canada, this industry has experienced substantial growth driven by wealthy individuals and fashion enthusiasts. With the emerging digital landscape and E-commerce, the consumption of luxury fashion has become much feasible due to the ease of accessibility. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Canada. This data offers insights into online consumer behavior and preferences, which is crucial for understanding the local consumer market and adjusting marketing strategy accordingly. ## Link to dataset Canada - Loro Piana - Product-level price list dataset
[ "# Loro Piana web scraped data", "## About the website\n\nLoro Piana operates in the luxury fashion industry, specializing in high-end, luxury apparel, accessories, and textile goods. In Americas, particularly in Canada, this industry has experienced substantial growth driven by wealthy individuals and fashion enthusiasts. With the emerging digital landscape and E-commerce, the consumption of luxury fashion has become much feasible due to the ease of accessibility. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Canada. This data offers insights into online consumer behavior and preferences, which is crucial for understanding the local consumer market and adjusting marketing strategy accordingly.", "## Link to dataset\n\nCanada - Loro Piana - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n", "# Loro Piana web scraped data", "## About the website\n\nLoro Piana operates in the luxury fashion industry, specializing in high-end, luxury apparel, accessories, and textile goods. In Americas, particularly in Canada, this industry has experienced substantial growth driven by wealthy individuals and fashion enthusiasts. With the emerging digital landscape and E-commerce, the consumption of luxury fashion has become much feasible due to the ease of accessibility. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Canada. This data offers insights into online consumer behavior and preferences, which is crucial for understanding the local consumer market and adjusting marketing strategy accordingly.", "## Link to dataset\n\nCanada - Loro Piana - Product-level price list dataset" ]
[ 180, 9, 155, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n# Loro Piana web scraped data## About the website\n\nLoro Piana operates in the luxury fashion industry, specializing in high-end, luxury apparel, accessories, and textile goods. In Americas, particularly in Canada, this industry has experienced substantial growth driven by wealthy individuals and fashion enthusiasts. With the emerging digital landscape and E-commerce, the consumption of luxury fashion has become much feasible due to the ease of accessibility. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Canada. This data offers insights into online consumer behavior and preferences, which is crucial for understanding the local consumer market and adjusting marketing strategy accordingly.## Link to dataset\n\nCanada - Loro Piana - Product-level price list dataset" ]
6da29e61cc32b4991cb15fdeaeb6c49ca02470a3
# Blickers web scraped data ## About the website Blickers operates in the **Ecommerce industry** of the Europe, Middle East, and Africa (EMEA) region, with specific focus on **France**. This industry encapsulates any commercial transactions conducted electronically on the internet including buying, selling, and exchanging of goods or services. Especially in France, the **Ecommerce sector** is booming, driven by strong consumer behavior shift towards online shopping and digital transactions. The observed dataset contains insightful **Ecommerce product-list page (PLP) data on Blickers in France**, offering a comprehensive overview of customer activities, preferences, and the performance of various products. This data has the potential to guide strategic decision-making to optimize conversions. ## Link to **dataset** [France - Blickers - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Blickers%20Product-prices%20France/r/recrjX2FST51AHd7c)
DBQ/Blickers.Product.prices.France
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Blickers", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:53:59+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "France - Blickers - Product-level price list", "tags": ["webscraping", "ecommerce", "Blickers", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2820149, "num_examples": 7489}], "download_size": 1352484, "dataset_size": 2820149}}
2023-11-19T08:54:04+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Blickers #fashion #fashion product #image #fashion image #region-us
# Blickers web scraped data ## About the website Blickers operates in the Ecommerce industry of the Europe, Middle East, and Africa (EMEA) region, with specific focus on France. This industry encapsulates any commercial transactions conducted electronically on the internet including buying, selling, and exchanging of goods or services. Especially in France, the Ecommerce sector is booming, driven by strong consumer behavior shift towards online shopping and digital transactions. The observed dataset contains insightful Ecommerce product-list page (PLP) data on Blickers in France, offering a comprehensive overview of customer activities, preferences, and the performance of various products. This data has the potential to guide strategic decision-making to optimize conversions. ## Link to dataset France - Blickers - Product-level price list dataset
[ "# Blickers web scraped data", "## About the website\n\nBlickers operates in the Ecommerce industry of the Europe, Middle East, and Africa (EMEA) region, with specific focus on France. This industry encapsulates any commercial transactions conducted electronically on the internet including buying, selling, and exchanging of goods or services. Especially in France, the Ecommerce sector is booming, driven by strong consumer behavior shift towards online shopping and digital transactions. The observed dataset contains insightful Ecommerce product-list page (PLP) data on Blickers in France, offering a comprehensive overview of customer activities, preferences, and the performance of various products. This data has the potential to guide strategic decision-making to optimize conversions.", "## Link to dataset\n\nFrance - Blickers - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Blickers #fashion #fashion product #image #fashion image #region-us \n", "# Blickers web scraped data", "## About the website\n\nBlickers operates in the Ecommerce industry of the Europe, Middle East, and Africa (EMEA) region, with specific focus on France. This industry encapsulates any commercial transactions conducted electronically on the internet including buying, selling, and exchanging of goods or services. Especially in France, the Ecommerce sector is booming, driven by strong consumer behavior shift towards online shopping and digital transactions. The observed dataset contains insightful Ecommerce product-list page (PLP) data on Blickers in France, offering a comprehensive overview of customer activities, preferences, and the performance of various products. This data has the potential to guide strategic decision-making to optimize conversions.", "## Link to dataset\n\nFrance - Blickers - Product-level price list dataset" ]
[ 179, 7, 156, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Blickers #fashion #fashion product #image #fashion image #region-us \n# Blickers web scraped data## About the website\n\nBlickers operates in the Ecommerce industry of the Europe, Middle East, and Africa (EMEA) region, with specific focus on France. This industry encapsulates any commercial transactions conducted electronically on the internet including buying, selling, and exchanging of goods or services. Especially in France, the Ecommerce sector is booming, driven by strong consumer behavior shift towards online shopping and digital transactions. The observed dataset contains insightful Ecommerce product-list page (PLP) data on Blickers in France, offering a comprehensive overview of customer activities, preferences, and the performance of various products. This data has the potential to guide strategic decision-making to optimize conversions.## Link to dataset\n\nFrance - Blickers - Product-level price list dataset" ]
1b88b7d805e41265c79ccc70328ef6e618b4cb9b
# Mr Porter web scraped data ## About the website The **EMEA industry**, specifically in the **Czech Republic**, has seen significant growth in **ecommerce**. An increasing number of consumers are choosing to shop online due to its accessibility and convenience. A key player in this market is **Mr Porter**, an online retail platform specializing in mens luxury fashion. The collected dataset provides a deep insight into the **product-list page (PLP) data** of Mr Porter, offering valuable information regarding customer preference, market trends, and product popularity. Through this data, it is evident that the ecommerce sector in the Czech Republic is thriving with ample growth opportunities. ## Link to **dataset** [Czech Republic - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Czech%20Republic/r/recBcEw2pvdbDiMDl)
DBQ/Mr.Porter.Product.prices.Czech.Republic
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:54:14+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Czech Republic - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 9135031, "num_examples": 27800}], "download_size": 2087225, "dataset_size": 9135031}}
2023-11-19T08:54:20+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The EMEA industry, specifically in the Czech Republic, has seen significant growth in ecommerce. An increasing number of consumers are choosing to shop online due to its accessibility and convenience. A key player in this market is Mr Porter, an online retail platform specializing in mens luxury fashion. The collected dataset provides a deep insight into the product-list page (PLP) data of Mr Porter, offering valuable information regarding customer preference, market trends, and product popularity. Through this data, it is evident that the ecommerce sector in the Czech Republic is thriving with ample growth opportunities. ## Link to dataset Czech Republic - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe EMEA industry, specifically in the Czech Republic, has seen significant growth in ecommerce. An increasing number of consumers are choosing to shop online due to its accessibility and convenience. A key player in this market is Mr Porter, an online retail platform specializing in mens luxury fashion. The collected dataset provides a deep insight into the product-list page (PLP) data of Mr Porter, offering valuable information regarding customer preference, market trends, and product popularity. Through this data, it is evident that the ecommerce sector in the Czech Republic is thriving with ample growth opportunities.", "## Link to dataset\n\nCzech Republic - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe EMEA industry, specifically in the Czech Republic, has seen significant growth in ecommerce. An increasing number of consumers are choosing to shop online due to its accessibility and convenience. A key player in this market is Mr Porter, an online retail platform specializing in mens luxury fashion. The collected dataset provides a deep insight into the product-list page (PLP) data of Mr Porter, offering valuable information regarding customer preference, market trends, and product popularity. Through this data, it is evident that the ecommerce sector in the Czech Republic is thriving with ample growth opportunities.", "## Link to dataset\n\nCzech Republic - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 133, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe EMEA industry, specifically in the Czech Republic, has seen significant growth in ecommerce. An increasing number of consumers are choosing to shop online due to its accessibility and convenience. A key player in this market is Mr Porter, an online retail platform specializing in mens luxury fashion. The collected dataset provides a deep insight into the product-list page (PLP) data of Mr Porter, offering valuable information regarding customer preference, market trends, and product popularity. Through this data, it is evident that the ecommerce sector in the Czech Republic is thriving with ample growth opportunities.## Link to dataset\n\nCzech Republic - Mr Porter - Product-level price list dataset" ]
ba90ace75c4a918d59eca59ddfb62e7380c93e6e
# Balenciaga web scraped data ## About the website Balenciaga operates in the luxury fashion industry, specifically in the high-end retail segment of the Asia Pacific market, focusing heavily on Singapore. The industry is characterized by renowned brands offering luxury apparel, footwear, and accessories. In **Singapore**, a significant share of this trade belongs to the **luxury fashion** sector. Rapid digitalization and rising incomes have paved the way for **Ecommerce product-list page (PLP**) growth within the industry. In this digital era, brands like **Balenciaga** have effectively utilized Ecommerce platforms to enhance their product offerings. The observed dataset enables an in-depth study of **Ecommerce product-list page (PLP) data on Balenciaga** in the growing Singapore market. ## Link to **dataset** [Singapore - Balenciaga - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Balenciaga%20Product-prices%20Singapore/r/recZOrWqBIvsJz2wg)
DBQ/Balenciaga.Product.prices.Singapore
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Balenciaga", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:54:28+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Singapore - Balenciaga - Product-level price list", "tags": ["webscraping", "ecommerce", "Balenciaga", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 859105, "num_examples": 2308}], "download_size": 283660, "dataset_size": 859105}}
2023-11-19T08:54:33+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Balenciaga #fashion #fashion product #image #fashion image #region-us
# Balenciaga web scraped data ## About the website Balenciaga operates in the luxury fashion industry, specifically in the high-end retail segment of the Asia Pacific market, focusing heavily on Singapore. The industry is characterized by renowned brands offering luxury apparel, footwear, and accessories. In Singapore, a significant share of this trade belongs to the luxury fashion sector. Rapid digitalization and rising incomes have paved the way for Ecommerce product-list page (PLP) growth within the industry. In this digital era, brands like Balenciaga have effectively utilized Ecommerce platforms to enhance their product offerings. The observed dataset enables an in-depth study of Ecommerce product-list page (PLP) data on Balenciaga in the growing Singapore market. ## Link to dataset Singapore - Balenciaga - Product-level price list dataset
[ "# Balenciaga web scraped data", "## About the website\n\nBalenciaga operates in the luxury fashion industry, specifically in the high-end retail segment of the Asia Pacific market, focusing heavily on Singapore. The industry is characterized by renowned brands offering luxury apparel, footwear, and accessories. In Singapore, a significant share of this trade belongs to the luxury fashion sector. Rapid digitalization and rising incomes have paved the way for Ecommerce product-list page (PLP) growth within the industry. In this digital era, brands like Balenciaga have effectively utilized Ecommerce platforms to enhance their product offerings. The observed dataset enables an in-depth study of Ecommerce product-list page (PLP) data on Balenciaga in the growing Singapore market.", "## Link to dataset\n\nSingapore - Balenciaga - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Balenciaga #fashion #fashion product #image #fashion image #region-us \n", "# Balenciaga web scraped data", "## About the website\n\nBalenciaga operates in the luxury fashion industry, specifically in the high-end retail segment of the Asia Pacific market, focusing heavily on Singapore. The industry is characterized by renowned brands offering luxury apparel, footwear, and accessories. In Singapore, a significant share of this trade belongs to the luxury fashion sector. Rapid digitalization and rising incomes have paved the way for Ecommerce product-list page (PLP) growth within the industry. In this digital era, brands like Balenciaga have effectively utilized Ecommerce platforms to enhance their product offerings. The observed dataset enables an in-depth study of Ecommerce product-list page (PLP) data on Balenciaga in the growing Singapore market.", "## Link to dataset\n\nSingapore - Balenciaga - Product-level price list dataset" ]
[ 179, 8, 169, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Balenciaga #fashion #fashion product #image #fashion image #region-us \n# Balenciaga web scraped data## About the website\n\nBalenciaga operates in the luxury fashion industry, specifically in the high-end retail segment of the Asia Pacific market, focusing heavily on Singapore. The industry is characterized by renowned brands offering luxury apparel, footwear, and accessories. In Singapore, a significant share of this trade belongs to the luxury fashion sector. Rapid digitalization and rising incomes have paved the way for Ecommerce product-list page (PLP) growth within the industry. In this digital era, brands like Balenciaga have effectively utilized Ecommerce platforms to enhance their product offerings. The observed dataset enables an in-depth study of Ecommerce product-list page (PLP) data on Balenciaga in the growing Singapore market.## Link to dataset\n\nSingapore - Balenciaga - Product-level price list dataset" ]
5e13f02156633655e10d0143ebb080caf91d2122
# Bottega Veneta web scraped data ## About the website Bottega Veneta operates in the high-end **luxury fashion** industry, predominantly in the **Asia Pacific** region specifically focusing on Australia. This market encompasses fine clothing, opulent accessories, exclusive footwear, and distinguished leather goods. The brand is among the high echelon of luxury fashion brands that have harnessed the potential of the rapidly growing **Ecommerce** industry in the region. The era of online shopping has escalated in recent years due to growing consumer acceptability and advancements in digital platforms. In Australia, this has proven particularly successful. The dataset examined provides rich **Ecommerce product-list page (PLP) data** on **Bottega Veneta** products in Australia, demonstrating the scope and scale of its online market reach. ## Link to **dataset** [Australia - Bottega Veneta - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Bottega%20Veneta%20Product-prices%20Australia/r/rech1Y8eiMFsyQyi3)
DBQ/Bottega.Veneta.Product.prices.Australia
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Bottega Veneta", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:54:41+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Australia - Bottega Veneta - Product-level price list", "tags": ["webscraping", "ecommerce", "Bottega Veneta", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1611618, "num_examples": 4461}], "download_size": 463826, "dataset_size": 1611618}}
2023-11-19T08:54:46+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Bottega Veneta #fashion #fashion product #image #fashion image #region-us
# Bottega Veneta web scraped data ## About the website Bottega Veneta operates in the high-end luxury fashion industry, predominantly in the Asia Pacific region specifically focusing on Australia. This market encompasses fine clothing, opulent accessories, exclusive footwear, and distinguished leather goods. The brand is among the high echelon of luxury fashion brands that have harnessed the potential of the rapidly growing Ecommerce industry in the region. The era of online shopping has escalated in recent years due to growing consumer acceptability and advancements in digital platforms. In Australia, this has proven particularly successful. The dataset examined provides rich Ecommerce product-list page (PLP) data on Bottega Veneta products in Australia, demonstrating the scope and scale of its online market reach. ## Link to dataset Australia - Bottega Veneta - Product-level price list dataset
[ "# Bottega Veneta web scraped data", "## About the website\n\nBottega Veneta operates in the high-end luxury fashion industry, predominantly in the Asia Pacific region specifically focusing on Australia. This market encompasses fine clothing, opulent accessories, exclusive footwear, and distinguished leather goods. The brand is among the high echelon of luxury fashion brands that have harnessed the potential of the rapidly growing Ecommerce industry in the region. The era of online shopping has escalated in recent years due to growing consumer acceptability and advancements in digital platforms. In Australia, this has proven particularly successful. The dataset examined provides rich Ecommerce product-list page (PLP) data on Bottega Veneta products in Australia, demonstrating the scope and scale of its online market reach.", "## Link to dataset\n\nAustralia - Bottega Veneta - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Bottega Veneta #fashion #fashion product #image #fashion image #region-us \n", "# Bottega Veneta web scraped data", "## About the website\n\nBottega Veneta operates in the high-end luxury fashion industry, predominantly in the Asia Pacific region specifically focusing on Australia. This market encompasses fine clothing, opulent accessories, exclusive footwear, and distinguished leather goods. The brand is among the high echelon of luxury fashion brands that have harnessed the potential of the rapidly growing Ecommerce industry in the region. The era of online shopping has escalated in recent years due to growing consumer acceptability and advancements in digital platforms. In Australia, this has proven particularly successful. The dataset examined provides rich Ecommerce product-list page (PLP) data on Bottega Veneta products in Australia, demonstrating the scope and scale of its online market reach.", "## Link to dataset\n\nAustralia - Bottega Veneta - Product-level price list dataset" ]
[ 180, 9, 169, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Bottega Veneta #fashion #fashion product #image #fashion image #region-us \n# Bottega Veneta web scraped data## About the website\n\nBottega Veneta operates in the high-end luxury fashion industry, predominantly in the Asia Pacific region specifically focusing on Australia. This market encompasses fine clothing, opulent accessories, exclusive footwear, and distinguished leather goods. The brand is among the high echelon of luxury fashion brands that have harnessed the potential of the rapidly growing Ecommerce industry in the region. The era of online shopping has escalated in recent years due to growing consumer acceptability and advancements in digital platforms. In Australia, this has proven particularly successful. The dataset examined provides rich Ecommerce product-list page (PLP) data on Bottega Veneta products in Australia, demonstrating the scope and scale of its online market reach.## Link to dataset\n\nAustralia - Bottega Veneta - Product-level price list dataset" ]
3a07d094998287883fc0a331dcf92a33dbde4545
# Chanel web scraped data ## About the website Chanel operates in the **luxury fashion industry**, which has a significant presence in the **Asia Pacific region** and specifically in **Singapore**. The industry in Singapore is characterised by robust consumer demand for high-end fashion goods, including clothing, accessories, and fragrances. Luxury brands such as Chanel are popular among the affluent demographic in the city-state. **Ecommerce**, a rapidly growing sector, plays a pivotal role in the industrys expansion. The dataset observed includes the **Ecommerce product-list page (PLP) data** on Chanel in Singapore, indicating the brands product offerings and consumer preferences in the online market. ## Link to **dataset** [Singapore - Chanel - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Chanel%20Product-prices%20Singapore/r/recRPQbpF1PrX8ScF)
DBQ/Chanel.Product.prices.Singapore
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Chanel", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:55:02+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Singapore - Chanel - Product-level price list", "tags": ["webscraping", "ecommerce", "Chanel", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 518510, "num_examples": 971}], "download_size": 130425, "dataset_size": 518510}}
2023-11-19T08:55:07+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us
# Chanel web scraped data ## About the website Chanel operates in the luxury fashion industry, which has a significant presence in the Asia Pacific region and specifically in Singapore. The industry in Singapore is characterised by robust consumer demand for high-end fashion goods, including clothing, accessories, and fragrances. Luxury brands such as Chanel are popular among the affluent demographic in the city-state. Ecommerce, a rapidly growing sector, plays a pivotal role in the industrys expansion. The dataset observed includes the Ecommerce product-list page (PLP) data on Chanel in Singapore, indicating the brands product offerings and consumer preferences in the online market. ## Link to dataset Singapore - Chanel - Product-level price list dataset
[ "# Chanel web scraped data", "## About the website\n\nChanel operates in the luxury fashion industry, which has a significant presence in the Asia Pacific region and specifically in Singapore. The industry in Singapore is characterised by robust consumer demand for high-end fashion goods, including clothing, accessories, and fragrances. Luxury brands such as Chanel are popular among the affluent demographic in the city-state. Ecommerce, a rapidly growing sector, plays a pivotal role in the industrys expansion. The dataset observed includes the Ecommerce product-list page (PLP) data on Chanel in Singapore, indicating the brands product offerings and consumer preferences in the online market.", "## Link to dataset\n\nSingapore - Chanel - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us \n", "# Chanel web scraped data", "## About the website\n\nChanel operates in the luxury fashion industry, which has a significant presence in the Asia Pacific region and specifically in Singapore. The industry in Singapore is characterised by robust consumer demand for high-end fashion goods, including clothing, accessories, and fragrances. Luxury brands such as Chanel are popular among the affluent demographic in the city-state. Ecommerce, a rapidly growing sector, plays a pivotal role in the industrys expansion. The dataset observed includes the Ecommerce product-list page (PLP) data on Chanel in Singapore, indicating the brands product offerings and consumer preferences in the online market.", "## Link to dataset\n\nSingapore - Chanel - Product-level price list dataset" ]
[ 178, 6, 142, 16 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us \n# Chanel web scraped data## About the website\n\nChanel operates in the luxury fashion industry, which has a significant presence in the Asia Pacific region and specifically in Singapore. The industry in Singapore is characterised by robust consumer demand for high-end fashion goods, including clothing, accessories, and fragrances. Luxury brands such as Chanel are popular among the affluent demographic in the city-state. Ecommerce, a rapidly growing sector, plays a pivotal role in the industrys expansion. The dataset observed includes the Ecommerce product-list page (PLP) data on Chanel in Singapore, indicating the brands product offerings and consumer preferences in the online market.## Link to dataset\n\nSingapore - Chanel - Product-level price list dataset" ]
4e1f793d0e660fee3e65f1c28be502dcddebb283
# Saint Laurent web scraped data ## About the website Saint Laurent is a renowned player in the highly competitive and evolving **luxury fashion industry** in the Asia Pacific region, with a significant presence in **Hong Kong**. Its operations span retail stores, online platforms, and an expansive assortment of apparel. The rise of digital has made **ecommerce** pivotal in reaching the ever-growing customer base in this region. Our dataset provides detailed **Ecommerce product-list page (PLP) data** on Saint Laurents extensive offerings in Hong Kong, casting light on crucial aspects like price points, product types, customer preferences, etc. Visit the [Saint Laurent main page](https://www.databoutique.com/buy-data-list-subset/Saint Laurent web scraped data/r/recnKICNKyOd6cQx6) for insights on other geographies or data types. ## Link to **dataset** [Hong Kong - Saint Laurent - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Saint%20Laurent%20Product-prices%20Hong%20Kong/r/recgTnY6ES9HXG9EP)
DBQ/Saint.Laurent.Product.prices.Hong.Kong
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Saint Laurent", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:55:16+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Hong Kong - Saint Laurent - Product-level price list", "tags": ["webscraping", "ecommerce", "Saint Laurent", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1218887, "num_examples": 3021}], "download_size": 378822, "dataset_size": 1218887}}
2023-11-19T08:55:21+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Saint Laurent #fashion #fashion product #image #fashion image #region-us
# Saint Laurent web scraped data ## About the website Saint Laurent is a renowned player in the highly competitive and evolving luxury fashion industry in the Asia Pacific region, with a significant presence in Hong Kong. Its operations span retail stores, online platforms, and an expansive assortment of apparel. The rise of digital has made ecommerce pivotal in reaching the ever-growing customer base in this region. Our dataset provides detailed Ecommerce product-list page (PLP) data on Saint Laurents extensive offerings in Hong Kong, casting light on crucial aspects like price points, product types, customer preferences, etc. Visit the Saint Laurent main page for insights on other geographies or data types. ## Link to dataset Hong Kong - Saint Laurent - Product-level price list dataset
[ "# Saint Laurent web scraped data", "## About the website\n\nSaint Laurent is a renowned player in the highly competitive and evolving luxury fashion industry in the Asia Pacific region, with a significant presence in Hong Kong. Its operations span retail stores, online platforms, and an expansive assortment of apparel. The rise of digital has made ecommerce pivotal in reaching the ever-growing customer base in this region. Our dataset provides detailed Ecommerce product-list page (PLP) data on Saint Laurents extensive offerings in Hong Kong, casting light on crucial aspects like price points, product types, customer preferences, etc. Visit the Saint Laurent main page for insights on other geographies or data types.", "## Link to dataset\n\nHong Kong - Saint Laurent - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Saint Laurent #fashion #fashion product #image #fashion image #region-us \n", "# Saint Laurent web scraped data", "## About the website\n\nSaint Laurent is a renowned player in the highly competitive and evolving luxury fashion industry in the Asia Pacific region, with a significant presence in Hong Kong. Its operations span retail stores, online platforms, and an expansive assortment of apparel. The rise of digital has made ecommerce pivotal in reaching the ever-growing customer base in this region. Our dataset provides detailed Ecommerce product-list page (PLP) data on Saint Laurents extensive offerings in Hong Kong, casting light on crucial aspects like price points, product types, customer preferences, etc. Visit the Saint Laurent main page for insights on other geographies or data types.", "## Link to dataset\n\nHong Kong - Saint Laurent - Product-level price list dataset" ]
[ 178, 7, 152, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Saint Laurent #fashion #fashion product #image #fashion image #region-us \n# Saint Laurent web scraped data## About the website\n\nSaint Laurent is a renowned player in the highly competitive and evolving luxury fashion industry in the Asia Pacific region, with a significant presence in Hong Kong. Its operations span retail stores, online platforms, and an expansive assortment of apparel. The rise of digital has made ecommerce pivotal in reaching the ever-growing customer base in this region. Our dataset provides detailed Ecommerce product-list page (PLP) data on Saint Laurents extensive offerings in Hong Kong, casting light on crucial aspects like price points, product types, customer preferences, etc. Visit the Saint Laurent main page for insights on other geographies or data types.## Link to dataset\n\nHong Kong - Saint Laurent - Product-level price list dataset" ]
62ed8b129aa401fa746c54ece0a20498480a8312
# Burberry web scraped data ## About the website The **luxury fashion industry** in the **Asia Pacific** region, particularly in **Singapore**, has flourished over the years, witnessing s significant surge in demand for high-end brands like **Burberry**. This growth is propelled by the increasing purchasing power and the evolving tastes of the growing middle class. Additionally, the rise of **Ecommerce** has enabled these brands to expand their reach further, making it easier for consumers to explore and purchase luxury goods. Therefore, the dataset observed pertains to the **Ecommerce product-list page (PLP) data on Burberry in Singapore**, offering insight into the digital consumer patterns related to the brand. ## Link to **dataset** [Singapore - Burberry - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Burberry%20Product-prices%20Singapore/r/rec3hYlcEwldAHk2N)
DBQ/Burberry.Product.prices.Singapore
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:55:47+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Singapore - Burberry - Product-level price list", "tags": ["webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 856627, "num_examples": 2691}], "download_size": 249890, "dataset_size": 856627}}
2023-11-19T08:55:52+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us
# Burberry web scraped data ## About the website The luxury fashion industry in the Asia Pacific region, particularly in Singapore, has flourished over the years, witnessing s significant surge in demand for high-end brands like Burberry. This growth is propelled by the increasing purchasing power and the evolving tastes of the growing middle class. Additionally, the rise of Ecommerce has enabled these brands to expand their reach further, making it easier for consumers to explore and purchase luxury goods. Therefore, the dataset observed pertains to the Ecommerce product-list page (PLP) data on Burberry in Singapore, offering insight into the digital consumer patterns related to the brand. ## Link to dataset Singapore - Burberry - Product-level price list dataset
[ "# Burberry web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, particularly in Singapore, has flourished over the years, witnessing s significant surge in demand for high-end brands like Burberry. This growth is propelled by the increasing purchasing power and the evolving tastes of the growing middle class. Additionally, the rise of Ecommerce has enabled these brands to expand their reach further, making it easier for consumers to explore and purchase luxury goods. Therefore, the dataset observed pertains to the Ecommerce product-list page (PLP) data on Burberry in Singapore, offering insight into the digital consumer patterns related to the brand.", "## Link to dataset\n\nSingapore - Burberry - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n", "# Burberry web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, particularly in Singapore, has flourished over the years, witnessing s significant surge in demand for high-end brands like Burberry. This growth is propelled by the increasing purchasing power and the evolving tastes of the growing middle class. Additionally, the rise of Ecommerce has enabled these brands to expand their reach further, making it easier for consumers to explore and purchase luxury goods. Therefore, the dataset observed pertains to the Ecommerce product-list page (PLP) data on Burberry in Singapore, offering insight into the digital consumer patterns related to the brand.", "## Link to dataset\n\nSingapore - Burberry - Product-level price list dataset" ]
[ 178, 7, 149, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n# Burberry web scraped data## About the website\n\nThe luxury fashion industry in the Asia Pacific region, particularly in Singapore, has flourished over the years, witnessing s significant surge in demand for high-end brands like Burberry. This growth is propelled by the increasing purchasing power and the evolving tastes of the growing middle class. Additionally, the rise of Ecommerce has enabled these brands to expand their reach further, making it easier for consumers to explore and purchase luxury goods. Therefore, the dataset observed pertains to the Ecommerce product-list page (PLP) data on Burberry in Singapore, offering insight into the digital consumer patterns related to the brand.## Link to dataset\n\nSingapore - Burberry - Product-level price list dataset" ]
d6c4a5e5c55cab5889c6e03e78bb795a2dd528ef
# Mr Porter web scraped data ## About the website Mr Porter operates within the **fashion e-commerce industry** in **EMEA**, predominantly focusing on the **Qatari market**. Qatars e-commerce sector is burgeoning, and more consummate luxury fashion consumers are switching their shopping preferences to online platforms like Mr Porter due to its contemporary products and convenience. This development showcases how **online fashion shopping** has significantly influenced the **retail ecosystem** in Qatar. The observed dataset includes oodles of **Ecommerce product-list page (PLP) data** on Mr Porters portfolio in Qatar, providing insights into shoppers preferences, buying patterns, and the performance of the company in the Qatari e-commerce landscape. ## Link to **dataset** [Qatar - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Qatar/r/rec5LPbIZ5RHuas99)
DBQ/Mr.Porter.Product.prices.Qatar
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:56:01+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Qatar - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8916750, "num_examples": 27140}], "download_size": 2078859, "dataset_size": 8916750}}
2023-11-19T08:56:07+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website Mr Porter operates within the fashion e-commerce industry in EMEA, predominantly focusing on the Qatari market. Qatars e-commerce sector is burgeoning, and more consummate luxury fashion consumers are switching their shopping preferences to online platforms like Mr Porter due to its contemporary products and convenience. This development showcases how online fashion shopping has significantly influenced the retail ecosystem in Qatar. The observed dataset includes oodles of Ecommerce product-list page (PLP) data on Mr Porters portfolio in Qatar, providing insights into shoppers preferences, buying patterns, and the performance of the company in the Qatari e-commerce landscape. ## Link to dataset Qatar - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the fashion e-commerce industry in EMEA, predominantly focusing on the Qatari market. Qatars e-commerce sector is burgeoning, and more consummate luxury fashion consumers are switching their shopping preferences to online platforms like Mr Porter due to its contemporary products and convenience. This development showcases how online fashion shopping has significantly influenced the retail ecosystem in Qatar. The observed dataset includes oodles of Ecommerce product-list page (PLP) data on Mr Porters portfolio in Qatar, providing insights into shoppers preferences, buying patterns, and the performance of the company in the Qatari e-commerce landscape.", "## Link to dataset\n\nQatar - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the fashion e-commerce industry in EMEA, predominantly focusing on the Qatari market. Qatars e-commerce sector is burgeoning, and more consummate luxury fashion consumers are switching their shopping preferences to online platforms like Mr Porter due to its contemporary products and convenience. This development showcases how online fashion shopping has significantly influenced the retail ecosystem in Qatar. The observed dataset includes oodles of Ecommerce product-list page (PLP) data on Mr Porters portfolio in Qatar, providing insights into shoppers preferences, buying patterns, and the performance of the company in the Qatari e-commerce landscape.", "## Link to dataset\n\nQatar - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 154, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nMr Porter operates within the fashion e-commerce industry in EMEA, predominantly focusing on the Qatari market. Qatars e-commerce sector is burgeoning, and more consummate luxury fashion consumers are switching their shopping preferences to online platforms like Mr Porter due to its contemporary products and convenience. This development showcases how online fashion shopping has significantly influenced the retail ecosystem in Qatar. The observed dataset includes oodles of Ecommerce product-list page (PLP) data on Mr Porters portfolio in Qatar, providing insights into shoppers preferences, buying patterns, and the performance of the company in the Qatari e-commerce landscape.## Link to dataset\n\nQatar - Mr Porter - Product-level price list dataset" ]
2fc8869d64efbcc86ef70078ea086be46a57fb03
# Chloe web scraped data ## About the website The **Ecommerce industry** in the **Asia Pacific**, specifically in **Hong Kong** is highly dynamic and competitive. Digital technology advancements have greatly transformed the ways of doing business, with a particular momentum in the **online fashion industry**. Predominant players like **Chloe** are capitalizing on the regions growing internet populace, rising disposable incomes, and a cultural shift towards online shopping. The dataset observed includes **Ecommerce product-list page (PLP) data** on Chloe in Hong Kong. This data provides invaluable insights into consumer behavior, market trends, and the competitive landscape, enabling businesses to make informed and strategic decisions in the rapidly-evolving **digital commerce** skyline. ## Link to **dataset** [Hong Kong - Chloe - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Chloe%20Product-prices%20Hong%20Kong/r/recWuG5WfvLdNOGCo)
DBQ/Chloe.Product.prices.Hong.Kong
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Chloe", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:56:14+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Hong Kong - Chloe - Product-level price list", "tags": ["webscraping", "ecommerce", "Chloe", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 675508, "num_examples": 2431}], "download_size": 160521, "dataset_size": 675508}}
2023-11-19T08:56:19+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us
# Chloe web scraped data ## About the website The Ecommerce industry in the Asia Pacific, specifically in Hong Kong is highly dynamic and competitive. Digital technology advancements have greatly transformed the ways of doing business, with a particular momentum in the online fashion industry. Predominant players like Chloe are capitalizing on the regions growing internet populace, rising disposable incomes, and a cultural shift towards online shopping. The dataset observed includes Ecommerce product-list page (PLP) data on Chloe in Hong Kong. This data provides invaluable insights into consumer behavior, market trends, and the competitive landscape, enabling businesses to make informed and strategic decisions in the rapidly-evolving digital commerce skyline. ## Link to dataset Hong Kong - Chloe - Product-level price list dataset
[ "# Chloe web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific, specifically in Hong Kong is highly dynamic and competitive. Digital technology advancements have greatly transformed the ways of doing business, with a particular momentum in the online fashion industry. Predominant players like Chloe are capitalizing on the regions growing internet populace, rising disposable incomes, and a cultural shift towards online shopping. The dataset observed includes Ecommerce product-list page (PLP) data on Chloe in Hong Kong. This data provides invaluable insights into consumer behavior, market trends, and the competitive landscape, enabling businesses to make informed and strategic decisions in the rapidly-evolving digital commerce skyline.", "## Link to dataset\n\nHong Kong - Chloe - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us \n", "# Chloe web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific, specifically in Hong Kong is highly dynamic and competitive. Digital technology advancements have greatly transformed the ways of doing business, with a particular momentum in the online fashion industry. Predominant players like Chloe are capitalizing on the regions growing internet populace, rising disposable incomes, and a cultural shift towards online shopping. The dataset observed includes Ecommerce product-list page (PLP) data on Chloe in Hong Kong. This data provides invaluable insights into consumer behavior, market trends, and the competitive landscape, enabling businesses to make informed and strategic decisions in the rapidly-evolving digital commerce skyline.", "## Link to dataset\n\nHong Kong - Chloe - Product-level price list dataset" ]
[ 179, 6, 150, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us \n# Chloe web scraped data## About the website\n\nThe Ecommerce industry in the Asia Pacific, specifically in Hong Kong is highly dynamic and competitive. Digital technology advancements have greatly transformed the ways of doing business, with a particular momentum in the online fashion industry. Predominant players like Chloe are capitalizing on the regions growing internet populace, rising disposable incomes, and a cultural shift towards online shopping. The dataset observed includes Ecommerce product-list page (PLP) data on Chloe in Hong Kong. This data provides invaluable insights into consumer behavior, market trends, and the competitive landscape, enabling businesses to make informed and strategic decisions in the rapidly-evolving digital commerce skyline.## Link to dataset\n\nHong Kong - Chloe - Product-level price list dataset" ]
cf0cbf8618045922ee3e548da8b485dbae4d911d
# Matches Fashion web scraped data ## About the website **Matches Fashion** operates within the **fashion retail** industry, specifically the **e-commerce sector** in the **EMEA** (Europe, Middle East, and Africa) region, with distinct operations in **France**. This industry has seen significant growth recently due to advancements in technology that have transformed how fashion retailers conduct business and engage with customers. The dataset observed for this study includes **Ecommerce product-list page (PLP) data** on Matches Fashion in France. The data provides insight into consumer behavior, preferences, and trends within the e-commerce fashion market in this region. E-commerce continues to redefine retail, providing infinite opportunities for companies like Matches Fashion within the industry. ## Link to **dataset** [France - Matches Fashion - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Matches%20Fashion%20Product-prices%20France/r/recUNK1mnjKqpVDbE)
DBQ/Matches.Fashion.Product.prices.France
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Matches Fashion", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:56:29+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "France - Matches Fashion - Product-level price list", "tags": ["webscraping", "ecommerce", "Matches Fashion", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 15535596, "num_examples": 44840}], "download_size": 4563946, "dataset_size": 15535596}}
2023-11-19T08:56:36+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Matches Fashion #fashion #fashion product #image #fashion image #region-us
# Matches Fashion web scraped data ## About the website Matches Fashion operates within the fashion retail industry, specifically the e-commerce sector in the EMEA (Europe, Middle East, and Africa) region, with distinct operations in France. This industry has seen significant growth recently due to advancements in technology that have transformed how fashion retailers conduct business and engage with customers. The dataset observed for this study includes Ecommerce product-list page (PLP) data on Matches Fashion in France. The data provides insight into consumer behavior, preferences, and trends within the e-commerce fashion market in this region. E-commerce continues to redefine retail, providing infinite opportunities for companies like Matches Fashion within the industry. ## Link to dataset France - Matches Fashion - Product-level price list dataset
[ "# Matches Fashion web scraped data", "## About the website\n\nMatches Fashion operates within the fashion retail industry, specifically the e-commerce sector in the EMEA (Europe, Middle East, and Africa) region, with distinct operations in France. This industry has seen significant growth recently due to advancements in technology that have transformed how fashion retailers conduct business and engage with customers. The dataset observed for this study includes Ecommerce product-list page (PLP) data on Matches Fashion in France. The data provides insight into consumer behavior, preferences, and trends within the e-commerce fashion market in this region. E-commerce continues to redefine retail, providing infinite opportunities for companies like Matches Fashion within the industry.", "## Link to dataset\n\nFrance - Matches Fashion - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Matches Fashion #fashion #fashion product #image #fashion image #region-us \n", "# Matches Fashion web scraped data", "## About the website\n\nMatches Fashion operates within the fashion retail industry, specifically the e-commerce sector in the EMEA (Europe, Middle East, and Africa) region, with distinct operations in France. This industry has seen significant growth recently due to advancements in technology that have transformed how fashion retailers conduct business and engage with customers. The dataset observed for this study includes Ecommerce product-list page (PLP) data on Matches Fashion in France. The data provides insight into consumer behavior, preferences, and trends within the e-commerce fashion market in this region. E-commerce continues to redefine retail, providing infinite opportunities for companies like Matches Fashion within the industry.", "## Link to dataset\n\nFrance - Matches Fashion - Product-level price list dataset" ]
[ 179, 8, 146, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Matches Fashion #fashion #fashion product #image #fashion image #region-us \n# Matches Fashion web scraped data## About the website\n\nMatches Fashion operates within the fashion retail industry, specifically the e-commerce sector in the EMEA (Europe, Middle East, and Africa) region, with distinct operations in France. This industry has seen significant growth recently due to advancements in technology that have transformed how fashion retailers conduct business and engage with customers. The dataset observed for this study includes Ecommerce product-list page (PLP) data on Matches Fashion in France. The data provides insight into consumer behavior, preferences, and trends within the e-commerce fashion market in this region. E-commerce continues to redefine retail, providing infinite opportunities for companies like Matches Fashion within the industry.## Link to dataset\n\nFrance - Matches Fashion - Product-level price list dataset" ]
19a65be8cd4a935beac3a75f0708006801d7f8c0
# Gucci web scraped data ## About the website The **luxury fashion industry** within the EMEA region, particularly in **Austria**, has been greatly influenced by digitalization and the rise of e-commerce. The increased internet penetration and smartphone usage in this region have significantly boosted online luxury purchases. A notable player in this industry is the globally recognized Italian luxury brand, **Gucci**. Gucci operates within a very digital savvy and contemporary marketplace, where e-commerce reigns supreme. The dataset observed includes **Ecommerce product-list page (PLP) data on Gucci in Austria**, providing intricate insights into consumer behavior, preferences, and sales trends of this leading luxury brand in Austrian e-commerce market. ## Link to **dataset** [Austria - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20Austria/r/recmVrfCUcu2XPtll)
DBQ/Gucci.Product.prices.Austria
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:56:44+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Austria - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"]}
2023-11-19T08:56:45+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website The luxury fashion industry within the EMEA region, particularly in Austria, has been greatly influenced by digitalization and the rise of e-commerce. The increased internet penetration and smartphone usage in this region have significantly boosted online luxury purchases. A notable player in this industry is the globally recognized Italian luxury brand, Gucci. Gucci operates within a very digital savvy and contemporary marketplace, where e-commerce reigns supreme. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Austria, providing intricate insights into consumer behavior, preferences, and sales trends of this leading luxury brand in Austrian e-commerce market. ## Link to dataset Austria - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nThe luxury fashion industry within the EMEA region, particularly in Austria, has been greatly influenced by digitalization and the rise of e-commerce. The increased internet penetration and smartphone usage in this region have significantly boosted online luxury purchases. A notable player in this industry is the globally recognized Italian luxury brand, Gucci. Gucci operates within a very digital savvy and contemporary marketplace, where e-commerce reigns supreme. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Austria, providing intricate insights into consumer behavior, preferences, and sales trends of this leading luxury brand in Austrian e-commerce market.", "## Link to dataset\n\nAustria - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nThe luxury fashion industry within the EMEA region, particularly in Austria, has been greatly influenced by digitalization and the rise of e-commerce. The increased internet penetration and smartphone usage in this region have significantly boosted online luxury purchases. A notable player in this industry is the globally recognized Italian luxury brand, Gucci. Gucci operates within a very digital savvy and contemporary marketplace, where e-commerce reigns supreme. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Austria, providing intricate insights into consumer behavior, preferences, and sales trends of this leading luxury brand in Austrian e-commerce market.", "## Link to dataset\n\nAustria - Gucci - Product-level price list dataset" ]
[ 178, 7, 158, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nThe luxury fashion industry within the EMEA region, particularly in Austria, has been greatly influenced by digitalization and the rise of e-commerce. The increased internet penetration and smartphone usage in this region have significantly boosted online luxury purchases. A notable player in this industry is the globally recognized Italian luxury brand, Gucci. Gucci operates within a very digital savvy and contemporary marketplace, where e-commerce reigns supreme. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Austria, providing intricate insights into consumer behavior, preferences, and sales trends of this leading luxury brand in Austrian e-commerce market.## Link to dataset\n\nAustria - Gucci - Product-level price list dataset" ]
78db6ff660e758b3e631ffb31d6f9830ed3fade9
# Mr Porter web scraped data ## About the website The **E-commerce industry** within the **EMEA** region, particularly in the **United Arab Emirates (UAE)**, has witnessed substantial growth and continues to expand. Internet penetration and the fast-paced life in the UAE have boosted the growth of the e-commerce industry. The dataset observed provides specific insights about **Ecommerce product-list page (PLP) data** on **Mr Porter in the United Arab Emirates**. This information is essential to understand purchasing patterns and customer preferences, vital elements in developing effective e-commerce strategies within the industry. Additionally, it helps in tracking the performance of individual products, enabling Mr Porter to stay ahead in the competitive industry. ## Link to **dataset** [United Arab Emirates - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20United%20Arab%20Emirates/r/recHILSDUDBd0BMJ4)
DBQ/Mr.Porter.Product.prices.United.Arab.Emirates
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:57:19+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Arab Emirates - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8881377, "num_examples": 27033}], "download_size": 2108304, "dataset_size": 8881377}}
2023-11-19T08:57:24+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The E-commerce industry within the EMEA region, particularly in the United Arab Emirates (UAE), has witnessed substantial growth and continues to expand. Internet penetration and the fast-paced life in the UAE have boosted the growth of the e-commerce industry. The dataset observed provides specific insights about Ecommerce product-list page (PLP) data on Mr Porter in the United Arab Emirates. This information is essential to understand purchasing patterns and customer preferences, vital elements in developing effective e-commerce strategies within the industry. Additionally, it helps in tracking the performance of individual products, enabling Mr Porter to stay ahead in the competitive industry. ## Link to dataset United Arab Emirates - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe E-commerce industry within the EMEA region, particularly in the United Arab Emirates (UAE), has witnessed substantial growth and continues to expand. Internet penetration and the fast-paced life in the UAE have boosted the growth of the e-commerce industry. The dataset observed provides specific insights about Ecommerce product-list page (PLP) data on Mr Porter in the United Arab Emirates. This information is essential to understand purchasing patterns and customer preferences, vital elements in developing effective e-commerce strategies within the industry. Additionally, it helps in tracking the performance of individual products, enabling Mr Porter to stay ahead in the competitive industry.", "## Link to dataset\n\nUnited Arab Emirates - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe E-commerce industry within the EMEA region, particularly in the United Arab Emirates (UAE), has witnessed substantial growth and continues to expand. Internet penetration and the fast-paced life in the UAE have boosted the growth of the e-commerce industry. The dataset observed provides specific insights about Ecommerce product-list page (PLP) data on Mr Porter in the United Arab Emirates. This information is essential to understand purchasing patterns and customer preferences, vital elements in developing effective e-commerce strategies within the industry. Additionally, it helps in tracking the performance of individual products, enabling Mr Porter to stay ahead in the competitive industry.", "## Link to dataset\n\nUnited Arab Emirates - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 154, 21 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe E-commerce industry within the EMEA region, particularly in the United Arab Emirates (UAE), has witnessed substantial growth and continues to expand. Internet penetration and the fast-paced life in the UAE have boosted the growth of the e-commerce industry. The dataset observed provides specific insights about Ecommerce product-list page (PLP) data on Mr Porter in the United Arab Emirates. This information is essential to understand purchasing patterns and customer preferences, vital elements in developing effective e-commerce strategies within the industry. Additionally, it helps in tracking the performance of individual products, enabling Mr Porter to stay ahead in the competitive industry.## Link to dataset\n\nUnited Arab Emirates - Mr Porter - Product-level price list dataset" ]
7fb5aadd28324f03b0f00ada20f91433dca2fe68
# Mr Porter web scraped data ## About the website The **E-commerce industry** in the Americas, particularly in **Brazil**, has observed a surge in its growth trajectory. The nation is a thriving hub for online businesses, with a notable player in this sector being **Mr Porter**, which operates prominently in the online luxury fashion retail segment. It has been observed that the dataset includes **Ecommerce product-list page (PLP) data on Mr Porter** in Brazil. This comprehensive data delineates crucial insights into consumer behaviors, shopping trends, and product preferences. In Brazils burgeoning digital market, a deep understanding of such Ecommerce PLP data will be instrumental in driving accelerated growth in the industry. ## Link to **dataset** [Brazil - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Brazil/r/reczvuot0WiECngFE)
DBQ/Mr.Porter.Product.prices.Brazil
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:57:33+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Brazil - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 10092550, "num_examples": 30793}], "download_size": 2349573, "dataset_size": 10092550}}
2023-11-19T08:57:38+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The E-commerce industry in the Americas, particularly in Brazil, has observed a surge in its growth trajectory. The nation is a thriving hub for online businesses, with a notable player in this sector being Mr Porter, which operates prominently in the online luxury fashion retail segment. It has been observed that the dataset includes Ecommerce product-list page (PLP) data on Mr Porter in Brazil. This comprehensive data delineates crucial insights into consumer behaviors, shopping trends, and product preferences. In Brazils burgeoning digital market, a deep understanding of such Ecommerce PLP data will be instrumental in driving accelerated growth in the industry. ## Link to dataset Brazil - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe E-commerce industry in the Americas, particularly in Brazil, has observed a surge in its growth trajectory. The nation is a thriving hub for online businesses, with a notable player in this sector being Mr Porter, which operates prominently in the online luxury fashion retail segment. It has been observed that the dataset includes Ecommerce product-list page (PLP) data on Mr Porter in Brazil. This comprehensive data delineates crucial insights into consumer behaviors, shopping trends, and product preferences. In Brazils burgeoning digital market, a deep understanding of such Ecommerce PLP data will be instrumental in driving accelerated growth in the industry.", "## Link to dataset\n\nBrazil - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe E-commerce industry in the Americas, particularly in Brazil, has observed a surge in its growth trajectory. The nation is a thriving hub for online businesses, with a notable player in this sector being Mr Porter, which operates prominently in the online luxury fashion retail segment. It has been observed that the dataset includes Ecommerce product-list page (PLP) data on Mr Porter in Brazil. This comprehensive data delineates crucial insights into consumer behaviors, shopping trends, and product preferences. In Brazils burgeoning digital market, a deep understanding of such Ecommerce PLP data will be instrumental in driving accelerated growth in the industry.", "## Link to dataset\n\nBrazil - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 149, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe E-commerce industry in the Americas, particularly in Brazil, has observed a surge in its growth trajectory. The nation is a thriving hub for online businesses, with a notable player in this sector being Mr Porter, which operates prominently in the online luxury fashion retail segment. It has been observed that the dataset includes Ecommerce product-list page (PLP) data on Mr Porter in Brazil. This comprehensive data delineates crucial insights into consumer behaviors, shopping trends, and product preferences. In Brazils burgeoning digital market, a deep understanding of such Ecommerce PLP data will be instrumental in driving accelerated growth in the industry.## Link to dataset\n\nBrazil - Mr Porter - Product-level price list dataset" ]
3137f249e83b1126e64226d2a532cd2d263851af
# Balenciaga web scraped data ## About the website The **luxury fashion industry** in the **Asia Pacific**, specifically in **South Korea**, is experiencing rapid growth. An increasing number of South Koreans are showing interest in luxury fashion brands like **Balenciaga**, driven by a strong economy, urbanization, and changing consumer tastes. Furthermore, the rise of **digital platforms** and **Ecommerce** has transformed the industry landscape, making luxury items more accessible to a broader consumer base. The data observed includes **Ecommerce product-list page (PLP) data** on **Balenciaga** in South Korea, shedding light on online consumer behavior and purchasing patterns within the luxury fashion market. This data presents valuable insights into trends and preferences driving this booming sector. ## Link to **dataset** [South Korea - Balenciaga - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Balenciaga%20Product-prices%20South%20Korea/r/recxPrsgx2O0Vmm7v)
DBQ/Balenciaga.Product.prices.South.Korea
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Balenciaga", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:57:47+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Korea - Balenciaga - Product-level price list", "tags": ["webscraping", "ecommerce", "Balenciaga", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 758357, "num_examples": 2038}], "download_size": 249968, "dataset_size": 758357}}
2023-11-19T08:57:51+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Balenciaga #fashion #fashion product #image #fashion image #region-us
# Balenciaga web scraped data ## About the website The luxury fashion industry in the Asia Pacific, specifically in South Korea, is experiencing rapid growth. An increasing number of South Koreans are showing interest in luxury fashion brands like Balenciaga, driven by a strong economy, urbanization, and changing consumer tastes. Furthermore, the rise of digital platforms and Ecommerce has transformed the industry landscape, making luxury items more accessible to a broader consumer base. The data observed includes Ecommerce product-list page (PLP) data on Balenciaga in South Korea, shedding light on online consumer behavior and purchasing patterns within the luxury fashion market. This data presents valuable insights into trends and preferences driving this booming sector. ## Link to dataset South Korea - Balenciaga - Product-level price list dataset
[ "# Balenciaga web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific, specifically in South Korea, is experiencing rapid growth. An increasing number of South Koreans are showing interest in luxury fashion brands like Balenciaga, driven by a strong economy, urbanization, and changing consumer tastes. Furthermore, the rise of digital platforms and Ecommerce has transformed the industry landscape, making luxury items more accessible to a broader consumer base. The data observed includes Ecommerce product-list page (PLP) data on Balenciaga in South Korea, shedding light on online consumer behavior and purchasing patterns within the luxury fashion market. This data presents valuable insights into trends and preferences driving this booming sector.", "## Link to dataset\n\nSouth Korea - Balenciaga - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Balenciaga #fashion #fashion product #image #fashion image #region-us \n", "# Balenciaga web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific, specifically in South Korea, is experiencing rapid growth. An increasing number of South Koreans are showing interest in luxury fashion brands like Balenciaga, driven by a strong economy, urbanization, and changing consumer tastes. Furthermore, the rise of digital platforms and Ecommerce has transformed the industry landscape, making luxury items more accessible to a broader consumer base. The data observed includes Ecommerce product-list page (PLP) data on Balenciaga in South Korea, shedding light on online consumer behavior and purchasing patterns within the luxury fashion market. This data presents valuable insights into trends and preferences driving this booming sector.", "## Link to dataset\n\nSouth Korea - Balenciaga - Product-level price list dataset" ]
[ 179, 8, 160, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Balenciaga #fashion #fashion product #image #fashion image #region-us \n# Balenciaga web scraped data## About the website\n\nThe luxury fashion industry in the Asia Pacific, specifically in South Korea, is experiencing rapid growth. An increasing number of South Koreans are showing interest in luxury fashion brands like Balenciaga, driven by a strong economy, urbanization, and changing consumer tastes. Furthermore, the rise of digital platforms and Ecommerce has transformed the industry landscape, making luxury items more accessible to a broader consumer base. The data observed includes Ecommerce product-list page (PLP) data on Balenciaga in South Korea, shedding light on online consumer behavior and purchasing patterns within the luxury fashion market. This data presents valuable insights into trends and preferences driving this booming sector.## Link to dataset\n\nSouth Korea - Balenciaga - Product-level price list dataset" ]
07f4f496bcf5c78e2e081cd58c0c1f9aae15918f
# Celine web scraped data ## About the website The **Ecommerce industry** in the **EMEA** region, particularly in the **United Kingdom**, has shown a significant growth rate in recent years, becoming a pivotal element in the regions economic landscape. The rise of digital technologies and change in consumer behavior has further accelerated this upward trend. In this digital marketplace, **Celine**, a well-known high-end fashion brand, has maintained its mark. The dataset at-hand encompasses **Ecommerce product-list page (PLP) data** on Celine in the United Kingdom, offering an in-depth understanding of the brands online performance, product offerings, pricing strategies, and audience engagement on the digital platform. ## Link to **dataset** [United Kingdom - Celine - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Celine%20Product-prices%20United%20Kingdom/r/recI2aBXFhehy0LuL)
DBQ/Celine.Product.prices.United.Kingdom
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Celine", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:57:59+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Kingdom - Celine - Product-level price list", "tags": ["webscraping", "ecommerce", "Celine", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 308731, "num_examples": 658}], "download_size": 75519, "dataset_size": 308731}}
2023-11-19T08:58:04+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Celine #fashion #fashion product #image #fashion image #region-us
# Celine web scraped data ## About the website The Ecommerce industry in the EMEA region, particularly in the United Kingdom, has shown a significant growth rate in recent years, becoming a pivotal element in the regions economic landscape. The rise of digital technologies and change in consumer behavior has further accelerated this upward trend. In this digital marketplace, Celine, a well-known high-end fashion brand, has maintained its mark. The dataset at-hand encompasses Ecommerce product-list page (PLP) data on Celine in the United Kingdom, offering an in-depth understanding of the brands online performance, product offerings, pricing strategies, and audience engagement on the digital platform. ## Link to dataset United Kingdom - Celine - Product-level price list dataset
[ "# Celine web scraped data", "## About the website\n\nThe Ecommerce industry in the EMEA region, particularly in the United Kingdom, has shown a significant growth rate in recent years, becoming a pivotal element in the regions economic landscape. The rise of digital technologies and change in consumer behavior has further accelerated this upward trend. In this digital marketplace, Celine, a well-known high-end fashion brand, has maintained its mark. The dataset at-hand encompasses Ecommerce product-list page (PLP) data on Celine in the United Kingdom, offering an in-depth understanding of the brands online performance, product offerings, pricing strategies, and audience engagement on the digital platform.", "## Link to dataset\n\nUnited Kingdom - Celine - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Celine #fashion #fashion product #image #fashion image #region-us \n", "# Celine web scraped data", "## About the website\n\nThe Ecommerce industry in the EMEA region, particularly in the United Kingdom, has shown a significant growth rate in recent years, becoming a pivotal element in the regions economic landscape. The rise of digital technologies and change in consumer behavior has further accelerated this upward trend. In this digital marketplace, Celine, a well-known high-end fashion brand, has maintained its mark. The dataset at-hand encompasses Ecommerce product-list page (PLP) data on Celine in the United Kingdom, offering an in-depth understanding of the brands online performance, product offerings, pricing strategies, and audience engagement on the digital platform.", "## Link to dataset\n\nUnited Kingdom - Celine - Product-level price list dataset" ]
[ 178, 7, 146, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Celine #fashion #fashion product #image #fashion image #region-us \n# Celine web scraped data## About the website\n\nThe Ecommerce industry in the EMEA region, particularly in the United Kingdom, has shown a significant growth rate in recent years, becoming a pivotal element in the regions economic landscape. The rise of digital technologies and change in consumer behavior has further accelerated this upward trend. In this digital marketplace, Celine, a well-known high-end fashion brand, has maintained its mark. The dataset at-hand encompasses Ecommerce product-list page (PLP) data on Celine in the United Kingdom, offering an in-depth understanding of the brands online performance, product offerings, pricing strategies, and audience engagement on the digital platform.## Link to dataset\n\nUnited Kingdom - Celine - Product-level price list dataset" ]
a4dfddcb87dbb773bd8fccad9ecad168bec8a900
# Dior web scraped data ## About the website The **luxury fashion industry** in the **Asia Pacific region**, and in particular in **China**, is a rapidly expanding sector. As the middle class grows in wealth, there is an increasing demand for high-end goods from prestigious brands such as Christian **Dior**. The sector has been greatly influenced by technological innovations, the most notable of which is **ecommerce**. In recent years, there has been a significant shift in consumer behavior with more people opting to shop online for their luxury items. The dataset observed contains **Ecommerce product-list page (PLP) data** on Dior in China, providing valuable insights into market trends and consumer preferences. ## Link to **dataset** [China - Dior - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Dior%20Product-prices%20China/r/recjNQrDONn090TZG)
DBQ/Dior.Product.prices.China
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Dior", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:58:19+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "China - Dior - Product-level price list", "tags": ["webscraping", "ecommerce", "Dior", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1753160, "num_examples": 4499}], "download_size": 534935, "dataset_size": 1753160}}
2023-11-19T08:58:24+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Dior #fashion #fashion product #image #fashion image #region-us
# Dior web scraped data ## About the website The luxury fashion industry in the Asia Pacific region, and in particular in China, is a rapidly expanding sector. As the middle class grows in wealth, there is an increasing demand for high-end goods from prestigious brands such as Christian Dior. The sector has been greatly influenced by technological innovations, the most notable of which is ecommerce. In recent years, there has been a significant shift in consumer behavior with more people opting to shop online for their luxury items. The dataset observed contains Ecommerce product-list page (PLP) data on Dior in China, providing valuable insights into market trends and consumer preferences. ## Link to dataset China - Dior - Product-level price list dataset
[ "# Dior web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, and in particular in China, is a rapidly expanding sector. As the middle class grows in wealth, there is an increasing demand for high-end goods from prestigious brands such as Christian Dior. The sector has been greatly influenced by technological innovations, the most notable of which is ecommerce. In recent years, there has been a significant shift in consumer behavior with more people opting to shop online for their luxury items. The dataset observed contains Ecommerce product-list page (PLP) data on Dior in China, providing valuable insights into market trends and consumer preferences.", "## Link to dataset\n\nChina - Dior - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Dior #fashion #fashion product #image #fashion image #region-us \n", "# Dior web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, and in particular in China, is a rapidly expanding sector. As the middle class grows in wealth, there is an increasing demand for high-end goods from prestigious brands such as Christian Dior. The sector has been greatly influenced by technological innovations, the most notable of which is ecommerce. In recent years, there has been a significant shift in consumer behavior with more people opting to shop online for their luxury items. The dataset observed contains Ecommerce product-list page (PLP) data on Dior in China, providing valuable insights into market trends and consumer preferences.", "## Link to dataset\n\nChina - Dior - Product-level price list dataset" ]
[ 178, 7, 147, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Dior #fashion #fashion product #image #fashion image #region-us \n# Dior web scraped data## About the website\n\nThe luxury fashion industry in the Asia Pacific region, and in particular in China, is a rapidly expanding sector. As the middle class grows in wealth, there is an increasing demand for high-end goods from prestigious brands such as Christian Dior. The sector has been greatly influenced by technological innovations, the most notable of which is ecommerce. In recent years, there has been a significant shift in consumer behavior with more people opting to shop online for their luxury items. The dataset observed contains Ecommerce product-list page (PLP) data on Dior in China, providing valuable insights into market trends and consumer preferences.## Link to dataset\n\nChina - Dior - Product-level price list dataset" ]
34af586a2727d6537bf7135e19e276217a94adba
# Prada web scraped data ## About the website Prada operates in the **luxury fashion industry** within the **EMEA** region, emphasizing particularly in the **United Kingdom**. The luxury fashion industry in the UK has a considerable potential market for Prada since it is well-known for its affluent consumer base. This industry has witnessed significant growth due to the rise in online shopping, thereby boosting the Luxury Ecommerce market segment. Our dataset displays **Ecommerce product-list page (PLP) data** specifically around the Pradas offerings in the UK. This data grants valuable insights, highlighting key market trends and consumer preferences within UKs luxury fashion industry. ## Link to **dataset** [United Kingdom - Prada - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Prada%20Product-prices%20United%20Kingdom/r/recbEzCcd6HPZZzLt)
DBQ/Prada.Product.prices.United.Kingdom
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Prada", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:58:32+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Kingdom - Prada - Product-level price list", "tags": ["webscraping", "ecommerce", "Prada", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1114680, "num_examples": 2180}], "download_size": 327100, "dataset_size": 1114680}}
2023-11-19T08:58:37+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us
# Prada web scraped data ## About the website Prada operates in the luxury fashion industry within the EMEA region, emphasizing particularly in the United Kingdom. The luxury fashion industry in the UK has a considerable potential market for Prada since it is well-known for its affluent consumer base. This industry has witnessed significant growth due to the rise in online shopping, thereby boosting the Luxury Ecommerce market segment. Our dataset displays Ecommerce product-list page (PLP) data specifically around the Pradas offerings in the UK. This data grants valuable insights, highlighting key market trends and consumer preferences within UKs luxury fashion industry. ## Link to dataset United Kingdom - Prada - Product-level price list dataset
[ "# Prada web scraped data", "## About the website\n\nPrada operates in the luxury fashion industry within the EMEA region, emphasizing particularly in the United Kingdom. The luxury fashion industry in the UK has a considerable potential market for Prada since it is well-known for its affluent consumer base. This industry has witnessed significant growth due to the rise in online shopping, thereby boosting the Luxury Ecommerce market segment. Our dataset displays Ecommerce product-list page (PLP) data specifically around the Pradas offerings in the UK. This data grants valuable insights, highlighting key market trends and consumer preferences within UKs luxury fashion industry.", "## Link to dataset\n\nUnited Kingdom - Prada - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us \n", "# Prada web scraped data", "## About the website\n\nPrada operates in the luxury fashion industry within the EMEA region, emphasizing particularly in the United Kingdom. The luxury fashion industry in the UK has a considerable potential market for Prada since it is well-known for its affluent consumer base. This industry has witnessed significant growth due to the rise in online shopping, thereby boosting the Luxury Ecommerce market segment. Our dataset displays Ecommerce product-list page (PLP) data specifically around the Pradas offerings in the UK. This data grants valuable insights, highlighting key market trends and consumer preferences within UKs luxury fashion industry.", "## Link to dataset\n\nUnited Kingdom - Prada - Product-level price list dataset" ]
[ 178, 7, 139, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us \n# Prada web scraped data## About the website\n\nPrada operates in the luxury fashion industry within the EMEA region, emphasizing particularly in the United Kingdom. The luxury fashion industry in the UK has a considerable potential market for Prada since it is well-known for its affluent consumer base. This industry has witnessed significant growth due to the rise in online shopping, thereby boosting the Luxury Ecommerce market segment. Our dataset displays Ecommerce product-list page (PLP) data specifically around the Pradas offerings in the UK. This data grants valuable insights, highlighting key market trends and consumer preferences within UKs luxury fashion industry.## Link to dataset\n\nUnited Kingdom - Prada - Product-level price list dataset" ]
212799cab49eaa63f1a443a1e6b9bd2c82e99fee
# Prada web scraped data ## About the website The **Luxury Fashion Industry** in the **EMEA** region, particularly in **Germany**, has experienced significant transformation in recent years. The face of the industry is continuously changing, with fashion houses like **Prada** sitting at the forefront of this evolution. With an increasing number of consumers turning to online platforms for shopping, the digitalization process has been greatly accelerated for high-end fashion labels. The **ecommerce** sector has thus become instrumental in driving sales. The dataset observed includes **Ecommerce product-list page (PLP) data** on **Prada** in Germany, offering a fresh perspective on buying habits, consumer behaviour, and fashion trends within this evolving industry in the region. ## Link to **dataset** [Germany - Prada - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Prada%20Product-prices%20Germany/r/recTwfXDGd6805PNU)
DBQ/Prada.Product.prices.Germany
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Prada", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:58:45+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Germany - Prada - Product-level price list", "tags": ["webscraping", "ecommerce", "Prada", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1315247, "num_examples": 2588}], "download_size": 373618, "dataset_size": 1315247}}
2023-11-19T08:58:50+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us
# Prada web scraped data ## About the website The Luxury Fashion Industry in the EMEA region, particularly in Germany, has experienced significant transformation in recent years. The face of the industry is continuously changing, with fashion houses like Prada sitting at the forefront of this evolution. With an increasing number of consumers turning to online platforms for shopping, the digitalization process has been greatly accelerated for high-end fashion labels. The ecommerce sector has thus become instrumental in driving sales. The dataset observed includes Ecommerce product-list page (PLP) data on Prada in Germany, offering a fresh perspective on buying habits, consumer behaviour, and fashion trends within this evolving industry in the region. ## Link to dataset Germany - Prada - Product-level price list dataset
[ "# Prada web scraped data", "## About the website\n\nThe Luxury Fashion Industry in the EMEA region, particularly in Germany, has experienced significant transformation in recent years. The face of the industry is continuously changing, with fashion houses like Prada sitting at the forefront of this evolution. With an increasing number of consumers turning to online platforms for shopping, the digitalization process has been greatly accelerated for high-end fashion labels. The ecommerce sector has thus become instrumental in driving sales. The dataset observed includes Ecommerce product-list page (PLP) data on Prada in Germany, offering a fresh perspective on buying habits, consumer behaviour, and fashion trends within this evolving industry in the region.", "## Link to dataset\n\nGermany - Prada - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us \n", "# Prada web scraped data", "## About the website\n\nThe Luxury Fashion Industry in the EMEA region, particularly in Germany, has experienced significant transformation in recent years. The face of the industry is continuously changing, with fashion houses like Prada sitting at the forefront of this evolution. With an increasing number of consumers turning to online platforms for shopping, the digitalization process has been greatly accelerated for high-end fashion labels. The ecommerce sector has thus become instrumental in driving sales. The dataset observed includes Ecommerce product-list page (PLP) data on Prada in Germany, offering a fresh perspective on buying habits, consumer behaviour, and fashion trends within this evolving industry in the region.", "## Link to dataset\n\nGermany - Prada - Product-level price list dataset" ]
[ 178, 7, 149, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us \n# Prada web scraped data## About the website\n\nThe Luxury Fashion Industry in the EMEA region, particularly in Germany, has experienced significant transformation in recent years. The face of the industry is continuously changing, with fashion houses like Prada sitting at the forefront of this evolution. With an increasing number of consumers turning to online platforms for shopping, the digitalization process has been greatly accelerated for high-end fashion labels. The ecommerce sector has thus become instrumental in driving sales. The dataset observed includes Ecommerce product-list page (PLP) data on Prada in Germany, offering a fresh perspective on buying habits, consumer behaviour, and fashion trends within this evolving industry in the region.## Link to dataset\n\nGermany - Prada - Product-level price list dataset" ]
5fa6e10a3511e3059d701653fe10fe40cc374635
# Net-a-Porter web scraped data ## About the website The **EMEA fashion industry**, particularly in **Russia**, has been experiencing substantial growth in online channels due to increased internet penetration and smartphone usage. A significant player in this advancement is **Net-a-Porter**. This platform belongs to the **luxury ecommerce industry**, offering a wide range of premium brands. With the shift towards digital platforms in the shopping behavior of consumers, **Net-a-porter** is making its remarkable presence. The dataset observed provides insight into their online activities, particularly the **Ecommerce product-list page (PLP) data** for Net-a-Porter in Russia. This provides key understanding into customer preferences, behavior, and potential market trends. ## Link to **dataset** [Russia - Net-a-Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Net-a-Porter%20Product-prices%20Russia/r/recjMpDIWAH8eIxfl)
DBQ/Net.a.Porter.Product.prices.Russia
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:59:00+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Russia - Net-a-Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 16708490, "num_examples": 41393}], "download_size": 5182135, "dataset_size": 16708490}}
2023-11-19T08:59:07+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us
# Net-a-Porter web scraped data ## About the website The EMEA fashion industry, particularly in Russia, has been experiencing substantial growth in online channels due to increased internet penetration and smartphone usage. A significant player in this advancement is Net-a-Porter. This platform belongs to the luxury ecommerce industry, offering a wide range of premium brands. With the shift towards digital platforms in the shopping behavior of consumers, Net-a-porter is making its remarkable presence. The dataset observed provides insight into their online activities, particularly the Ecommerce product-list page (PLP) data for Net-a-Porter in Russia. This provides key understanding into customer preferences, behavior, and potential market trends. ## Link to dataset Russia - Net-a-Porter - Product-level price list dataset
[ "# Net-a-Porter web scraped data", "## About the website\n\nThe EMEA fashion industry, particularly in Russia, has been experiencing substantial growth in online channels due to increased internet penetration and smartphone usage. A significant player in this advancement is Net-a-Porter. This platform belongs to the luxury ecommerce industry, offering a wide range of premium brands. With the shift towards digital platforms in the shopping behavior of consumers, Net-a-porter is making its remarkable presence. The dataset observed provides insight into their online activities, particularly the Ecommerce product-list page (PLP) data for Net-a-Porter in Russia. This provides key understanding into customer preferences, behavior, and potential market trends.", "## Link to dataset\n\nRussia - Net-a-Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n", "# Net-a-Porter web scraped data", "## About the website\n\nThe EMEA fashion industry, particularly in Russia, has been experiencing substantial growth in online channels due to increased internet penetration and smartphone usage. A significant player in this advancement is Net-a-Porter. This platform belongs to the luxury ecommerce industry, offering a wide range of premium brands. With the shift towards digital platforms in the shopping behavior of consumers, Net-a-porter is making its remarkable presence. The dataset observed provides insight into their online activities, particularly the Ecommerce product-list page (PLP) data for Net-a-Porter in Russia. This provides key understanding into customer preferences, behavior, and potential market trends.", "## Link to dataset\n\nRussia - Net-a-Porter - Product-level price list dataset" ]
[ 177, 11, 153, 21 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n# Net-a-Porter web scraped data## About the website\n\nThe EMEA fashion industry, particularly in Russia, has been experiencing substantial growth in online channels due to increased internet penetration and smartphone usage. A significant player in this advancement is Net-a-Porter. This platform belongs to the luxury ecommerce industry, offering a wide range of premium brands. With the shift towards digital platforms in the shopping behavior of consumers, Net-a-porter is making its remarkable presence. The dataset observed provides insight into their online activities, particularly the Ecommerce product-list page (PLP) data for Net-a-Porter in Russia. This provides key understanding into customer preferences, behavior, and potential market trends.## Link to dataset\n\nRussia - Net-a-Porter - Product-level price list dataset" ]
967d56ab635584eee52ea9a903d3303c9bcf89ba
# Mr Porter web scraped data ## About the website The **E-commerce industry in EMEA**, particularly in **South Africa**, has seen substantial growth over the past years. **Mr Porter**, a prominent player in this space, has managed to tap into this market successfully. Online shopping has become more prevalent due to the increased internet penetration and the convenience it offers. South Africa, being one of the most advanced economies in Africa, has a sizeable online consumer base. The dataset observed includes **Ecommerce product-list page (PLP)** data on Mr Porter in South Africa, indicating the current online behavior patterns and preferences of online shoppers. ## Link to **dataset** [South Africa - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20South%20Africa/r/rec4LQG4qR9XPMHVP)
DBQ/Mr.Porter.Product.prices.South.Africa
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:59:16+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Africa - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8982718, "num_examples": 27354}], "download_size": 2192806, "dataset_size": 8982718}}
2023-11-19T08:59:23+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The E-commerce industry in EMEA, particularly in South Africa, has seen substantial growth over the past years. Mr Porter, a prominent player in this space, has managed to tap into this market successfully. Online shopping has become more prevalent due to the increased internet penetration and the convenience it offers. South Africa, being one of the most advanced economies in Africa, has a sizeable online consumer base. The dataset observed includes Ecommerce product-list page (PLP) data on Mr Porter in South Africa, indicating the current online behavior patterns and preferences of online shoppers. ## Link to dataset South Africa - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe E-commerce industry in EMEA, particularly in South Africa, has seen substantial growth over the past years. Mr Porter, a prominent player in this space, has managed to tap into this market successfully. Online shopping has become more prevalent due to the increased internet penetration and the convenience it offers. South Africa, being one of the most advanced economies in Africa, has a sizeable online consumer base. The dataset observed includes Ecommerce product-list page (PLP) data on Mr Porter in South Africa, indicating the current online behavior patterns and preferences of online shoppers.", "## Link to dataset\n\nSouth Africa - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe E-commerce industry in EMEA, particularly in South Africa, has seen substantial growth over the past years. Mr Porter, a prominent player in this space, has managed to tap into this market successfully. Online shopping has become more prevalent due to the increased internet penetration and the convenience it offers. South Africa, being one of the most advanced economies in Africa, has a sizeable online consumer base. The dataset observed includes Ecommerce product-list page (PLP) data on Mr Porter in South Africa, indicating the current online behavior patterns and preferences of online shoppers.", "## Link to dataset\n\nSouth Africa - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 132, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe E-commerce industry in EMEA, particularly in South Africa, has seen substantial growth over the past years. Mr Porter, a prominent player in this space, has managed to tap into this market successfully. Online shopping has become more prevalent due to the increased internet penetration and the convenience it offers. South Africa, being one of the most advanced economies in Africa, has a sizeable online consumer base. The dataset observed includes Ecommerce product-list page (PLP) data on Mr Porter in South Africa, indicating the current online behavior patterns and preferences of online shoppers.## Link to dataset\n\nSouth Africa - Mr Porter - Product-level price list dataset" ]
a4a0ec8205505a98859f304a4bee4095413e41b6
# Burberry web scraped data ## About the website The **Fashion Industry** in the **Asia Pacific**, particularly in **Japan**, has seen a significant growth in recent years. High-end, luxury brands like **Burberry** have established themselves firmly in the region. Its a fast-paced, highly consumer-driven industry that heavily incorporates the latest technology and trends. One noteworthy trend in Japans fashion industry is the rapid expansion of **Ecommerce platforms**. The dataset observed provides valuable insights into the **Ecommerce product-list page (PLP) data** on Burberrys operations in Japan, highlighting the online shopping preferences and buying behaviors of consumers in this unique and highly evolved marketplace. ## Link to **dataset** [Japan - Burberry - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Burberry%20Product-prices%20Japan/r/recxtv3fyaKGgEGOj)
DBQ/Burberry.Product.prices.Japan
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:59:31+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Japan - Burberry - Product-level price list", "tags": ["webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 985467, "num_examples": 2950}], "download_size": 267744, "dataset_size": 985467}}
2023-11-19T08:59:41+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us
# Burberry web scraped data ## About the website The Fashion Industry in the Asia Pacific, particularly in Japan, has seen a significant growth in recent years. High-end, luxury brands like Burberry have established themselves firmly in the region. Its a fast-paced, highly consumer-driven industry that heavily incorporates the latest technology and trends. One noteworthy trend in Japans fashion industry is the rapid expansion of Ecommerce platforms. The dataset observed provides valuable insights into the Ecommerce product-list page (PLP) data on Burberrys operations in Japan, highlighting the online shopping preferences and buying behaviors of consumers in this unique and highly evolved marketplace. ## Link to dataset Japan - Burberry - Product-level price list dataset
[ "# Burberry web scraped data", "## About the website\n\nThe Fashion Industry in the Asia Pacific, particularly in Japan, has seen a significant growth in recent years. High-end, luxury brands like Burberry have established themselves firmly in the region. Its a fast-paced, highly consumer-driven industry that heavily incorporates the latest technology and trends. One noteworthy trend in Japans fashion industry is the rapid expansion of Ecommerce platforms. The dataset observed provides valuable insights into the Ecommerce product-list page (PLP) data on Burberrys operations in Japan, highlighting the online shopping preferences and buying behaviors of consumers in this unique and highly evolved marketplace.", "## Link to dataset\n\nJapan - Burberry - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n", "# Burberry web scraped data", "## About the website\n\nThe Fashion Industry in the Asia Pacific, particularly in Japan, has seen a significant growth in recent years. High-end, luxury brands like Burberry have established themselves firmly in the region. Its a fast-paced, highly consumer-driven industry that heavily incorporates the latest technology and trends. One noteworthy trend in Japans fashion industry is the rapid expansion of Ecommerce platforms. The dataset observed provides valuable insights into the Ecommerce product-list page (PLP) data on Burberrys operations in Japan, highlighting the online shopping preferences and buying behaviors of consumers in this unique and highly evolved marketplace.", "## Link to dataset\n\nJapan - Burberry - Product-level price list dataset" ]
[ 178, 7, 148, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n# Burberry web scraped data## About the website\n\nThe Fashion Industry in the Asia Pacific, particularly in Japan, has seen a significant growth in recent years. High-end, luxury brands like Burberry have established themselves firmly in the region. Its a fast-paced, highly consumer-driven industry that heavily incorporates the latest technology and trends. One noteworthy trend in Japans fashion industry is the rapid expansion of Ecommerce platforms. The dataset observed provides valuable insights into the Ecommerce product-list page (PLP) data on Burberrys operations in Japan, highlighting the online shopping preferences and buying behaviors of consumers in this unique and highly evolved marketplace.## Link to dataset\n\nJapan - Burberry - Product-level price list dataset" ]
31cbb4d4ad5014df7a29c7f5c5d38695ae8d1381
# Gucci web scraped data ## About the website The **fashion industry** in the **EMEA** region, more specifically in **Sweden**, has seen a significant shift in recent years. With the surge in **digital transformation**, there has been remarkable growth in the **online luxury fashion market**, where premier brands like **Gucci** have amplified their presence. One particular focus area has been the **Ecommerce product-list pages (PLP)**, aiming to provide a seamless and immersive digital shopping experience. From an analysis of the dataset on Gucci’s PLP in Sweden, it’s clear that e-commerce has a pivotal role currently and will likely maintain this significance in shaping the future of luxury fashion within the region. ## Link to **dataset** [Sweden - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20Sweden/r/reckQ64odNXQly07Z)
DBQ/Gucci.Product.prices.Sweden
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T08:59:51+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Sweden - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2345108, "num_examples": 4916}], "download_size": 674510, "dataset_size": 2345108}}
2023-11-19T08:59:57+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website The fashion industry in the EMEA region, more specifically in Sweden, has seen a significant shift in recent years. With the surge in digital transformation, there has been remarkable growth in the online luxury fashion market, where premier brands like Gucci have amplified their presence. One particular focus area has been the Ecommerce product-list pages (PLP), aiming to provide a seamless and immersive digital shopping experience. From an analysis of the dataset on Gucci’s PLP in Sweden, it’s clear that e-commerce has a pivotal role currently and will likely maintain this significance in shaping the future of luxury fashion within the region. ## Link to dataset Sweden - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nThe fashion industry in the EMEA region, more specifically in Sweden, has seen a significant shift in recent years. With the surge in digital transformation, there has been remarkable growth in the online luxury fashion market, where premier brands like Gucci have amplified their presence. One particular focus area has been the Ecommerce product-list pages (PLP), aiming to provide a seamless and immersive digital shopping experience. From an analysis of the dataset on Gucci’s PLP in Sweden, it’s clear that e-commerce has a pivotal role currently and will likely maintain this significance in shaping the future of luxury fashion within the region.", "## Link to dataset\n\nSweden - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nThe fashion industry in the EMEA region, more specifically in Sweden, has seen a significant shift in recent years. With the surge in digital transformation, there has been remarkable growth in the online luxury fashion market, where premier brands like Gucci have amplified their presence. One particular focus area has been the Ecommerce product-list pages (PLP), aiming to provide a seamless and immersive digital shopping experience. From an analysis of the dataset on Gucci’s PLP in Sweden, it’s clear that e-commerce has a pivotal role currently and will likely maintain this significance in shaping the future of luxury fashion within the region.", "## Link to dataset\n\nSweden - Gucci - Product-level price list dataset" ]
[ 178, 7, 146, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nThe fashion industry in the EMEA region, more specifically in Sweden, has seen a significant shift in recent years. With the surge in digital transformation, there has been remarkable growth in the online luxury fashion market, where premier brands like Gucci have amplified their presence. One particular focus area has been the Ecommerce product-list pages (PLP), aiming to provide a seamless and immersive digital shopping experience. From an analysis of the dataset on Gucci’s PLP in Sweden, it’s clear that e-commerce has a pivotal role currently and will likely maintain this significance in shaping the future of luxury fashion within the region.## Link to dataset\n\nSweden - Gucci - Product-level price list dataset" ]
f3e3afbff5a14ba9e57b0898bff8c94159febb65
# My Theresa web scraped data ## About the website My Theresa is a major player in the **Ecommerce** industry in **EMEA**, with a strong presence in the **United Kingdom**. The **online luxury Fashion** business has experienced significant growth over the years, driven by advancements in technology, rising disposable income, increased internet penetration, and changing consumer preferences. Ecommerce is ever-evolving; with an amalgamation of technological disruption, competitive dynamics, and a shift in consumer behavior making its impact felt on the Ecommerce landscape in the United Kingdom. **My Theresa** focuses on digitally enabled direct-to-consumer boutique experiences. The dataset observed has **Ecommerce product-list page (PLP) data** on My Theresa in the United Kingdom which gives a snapshot of its offerings. ## Link to **dataset** [United Kingdom - My Theresa - Product-level price list dataset](https://www.databoutique.com/buy-data-page/My%20Theresa%20Product-prices%20United%20Kingdom/r/recPYZC2plm5PtCch)
DBQ/My.Theresa.Product.prices.United.Kingdom
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "My Theresa", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:00:10+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Kingdom - My Theresa - Product-level price list", "tags": ["webscraping", "ecommerce", "My Theresa", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 34106714, "num_examples": 97884}], "download_size": 10195453, "dataset_size": 34106714}}
2023-11-19T09:00:22+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #My Theresa #fashion #fashion product #image #fashion image #region-us
# My Theresa web scraped data ## About the website My Theresa is a major player in the Ecommerce industry in EMEA, with a strong presence in the United Kingdom. The online luxury Fashion business has experienced significant growth over the years, driven by advancements in technology, rising disposable income, increased internet penetration, and changing consumer preferences. Ecommerce is ever-evolving; with an amalgamation of technological disruption, competitive dynamics, and a shift in consumer behavior making its impact felt on the Ecommerce landscape in the United Kingdom. My Theresa focuses on digitally enabled direct-to-consumer boutique experiences. The dataset observed has Ecommerce product-list page (PLP) data on My Theresa in the United Kingdom which gives a snapshot of its offerings. ## Link to dataset United Kingdom - My Theresa - Product-level price list dataset
[ "# My Theresa web scraped data", "## About the website\n\nMy Theresa is a major player in the Ecommerce industry in EMEA, with a strong presence in the United Kingdom. The online luxury Fashion business has experienced significant growth over the years, driven by advancements in technology, rising disposable income, increased internet penetration, and changing consumer preferences. Ecommerce is ever-evolving; with an amalgamation of technological disruption, competitive dynamics, and a shift in consumer behavior making its impact felt on the Ecommerce landscape in the United Kingdom. My Theresa focuses on digitally enabled direct-to-consumer boutique experiences. The dataset observed has Ecommerce product-list page (PLP) data on My Theresa in the United Kingdom which gives a snapshot of its offerings.", "## Link to dataset\n\nUnited Kingdom - My Theresa - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #My Theresa #fashion #fashion product #image #fashion image #region-us \n", "# My Theresa web scraped data", "## About the website\n\nMy Theresa is a major player in the Ecommerce industry in EMEA, with a strong presence in the United Kingdom. The online luxury Fashion business has experienced significant growth over the years, driven by advancements in technology, rising disposable income, increased internet penetration, and changing consumer preferences. Ecommerce is ever-evolving; with an amalgamation of technological disruption, competitive dynamics, and a shift in consumer behavior making its impact felt on the Ecommerce landscape in the United Kingdom. My Theresa focuses on digitally enabled direct-to-consumer boutique experiences. The dataset observed has Ecommerce product-list page (PLP) data on My Theresa in the United Kingdom which gives a snapshot of its offerings.", "## Link to dataset\n\nUnited Kingdom - My Theresa - Product-level price list dataset" ]
[ 178, 7, 163, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #My Theresa #fashion #fashion product #image #fashion image #region-us \n# My Theresa web scraped data## About the website\n\nMy Theresa is a major player in the Ecommerce industry in EMEA, with a strong presence in the United Kingdom. The online luxury Fashion business has experienced significant growth over the years, driven by advancements in technology, rising disposable income, increased internet penetration, and changing consumer preferences. Ecommerce is ever-evolving; with an amalgamation of technological disruption, competitive dynamics, and a shift in consumer behavior making its impact felt on the Ecommerce landscape in the United Kingdom. My Theresa focuses on digitally enabled direct-to-consumer boutique experiences. The dataset observed has Ecommerce product-list page (PLP) data on My Theresa in the United Kingdom which gives a snapshot of its offerings.## Link to dataset\n\nUnited Kingdom - My Theresa - Product-level price list dataset" ]
283b78a39ed90d949539f925731844a33a0f7811
# Rue La La web scraped data ## About the website Rue La La operates in the thriving **Ecommerce industry** in the United States. This online-driven marketplace sector is significantly fuelled by the continuous innovations in technology, the growing adoption of mobile devices, and the changing consumption patterns of consumers. In particular, Rue La La is recognized for its flash sales model, selling designer apparels, accessories, footwear, and home decor among other things. As an integral part of the **online retail industry**, Rue La La leverages **Ecommerce product-list page (PLP) data** to create a personalized shopping experience, track customer behavior, and drive sales, thereby maximizing its growth opportunities within the American Ecommerce landscape. ## Link to **dataset** [United States - Rue La La - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Rue%20La%20La%20Product-prices%20United%20States/r/recfmgzc6g12yIFjM)
DBQ/Rue.La.La.Product.prices.United.States
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Rue La La", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:00:34+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United States - Rue La La - Product-level price list", "tags": ["webscraping", "ecommerce", "Rue La La", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2635237, "num_examples": 7594}], "download_size": 514285, "dataset_size": 2635237}}
2023-11-19T09:00:40+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Rue La La #fashion #fashion product #image #fashion image #region-us
# Rue La La web scraped data ## About the website Rue La La operates in the thriving Ecommerce industry in the United States. This online-driven marketplace sector is significantly fuelled by the continuous innovations in technology, the growing adoption of mobile devices, and the changing consumption patterns of consumers. In particular, Rue La La is recognized for its flash sales model, selling designer apparels, accessories, footwear, and home decor among other things. As an integral part of the online retail industry, Rue La La leverages Ecommerce product-list page (PLP) data to create a personalized shopping experience, track customer behavior, and drive sales, thereby maximizing its growth opportunities within the American Ecommerce landscape. ## Link to dataset United States - Rue La La - Product-level price list dataset
[ "# Rue La La web scraped data", "## About the website\n\nRue La La operates in the thriving Ecommerce industry in the United States. This online-driven marketplace sector is significantly fuelled by the continuous innovations in technology, the growing adoption of mobile devices, and the changing consumption patterns of consumers. In particular, Rue La La is recognized for its flash sales model, selling designer apparels, accessories, footwear, and home decor among other things. As an integral part of the online retail industry, Rue La La leverages Ecommerce product-list page (PLP) data to create a personalized shopping experience, track customer behavior, and drive sales, thereby maximizing its growth opportunities within the American Ecommerce landscape.", "## Link to dataset\n\nUnited States - Rue La La - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Rue La La #fashion #fashion product #image #fashion image #region-us \n", "# Rue La La web scraped data", "## About the website\n\nRue La La operates in the thriving Ecommerce industry in the United States. This online-driven marketplace sector is significantly fuelled by the continuous innovations in technology, the growing adoption of mobile devices, and the changing consumption patterns of consumers. In particular, Rue La La is recognized for its flash sales model, selling designer apparels, accessories, footwear, and home decor among other things. As an integral part of the online retail industry, Rue La La leverages Ecommerce product-list page (PLP) data to create a personalized shopping experience, track customer behavior, and drive sales, thereby maximizing its growth opportunities within the American Ecommerce landscape.", "## Link to dataset\n\nUnited States - Rue La La - Product-level price list dataset" ]
[ 180, 9, 154, 20 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Rue La La #fashion #fashion product #image #fashion image #region-us \n# Rue La La web scraped data## About the website\n\nRue La La operates in the thriving Ecommerce industry in the United States. This online-driven marketplace sector is significantly fuelled by the continuous innovations in technology, the growing adoption of mobile devices, and the changing consumption patterns of consumers. In particular, Rue La La is recognized for its flash sales model, selling designer apparels, accessories, footwear, and home decor among other things. As an integral part of the online retail industry, Rue La La leverages Ecommerce product-list page (PLP) data to create a personalized shopping experience, track customer behavior, and drive sales, thereby maximizing its growth opportunities within the American Ecommerce landscape.## Link to dataset\n\nUnited States - Rue La La - Product-level price list dataset" ]
53e05d37e08bc4c0ad9bf8f0794228da8bf0f542
# Chloe web scraped data ## About the website The **e-commerce industry** in EMEA, particularly in **France**, is increasingly competitive and dynamic. This sector experiences remarkable growth with the rise of digital platforms and evolving consumer behaviors. **Chloe**, operating in this market, offers an array of fashion items and luxury goods. The observed dataset provides crucial information about the **Ecommerce product-list page (PLP)** data on Chloe in France. This data reflects online consumer interactions, preferences, and purchasing patterns, providing valuable insight into the overall market position and performance of Chloe in Frances digital retail landscape. It underlines the potent potential of data analytics in shaping the future trajectories of e-commerce businesses. ## Link to **dataset** [France - Chloe - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Chloe%20Product-prices%20France/r/reccacrLFdY2bqA41)
DBQ/Chloe.Product.prices.France
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Chloe", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:00:53+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "France - Chloe - Product-level price list", "tags": ["webscraping", "ecommerce", "Chloe", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 684003, "num_examples": 2459}], "download_size": 155003, "dataset_size": 684003}}
2023-11-19T09:01:01+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us
# Chloe web scraped data ## About the website The e-commerce industry in EMEA, particularly in France, is increasingly competitive and dynamic. This sector experiences remarkable growth with the rise of digital platforms and evolving consumer behaviors. Chloe, operating in this market, offers an array of fashion items and luxury goods. The observed dataset provides crucial information about the Ecommerce product-list page (PLP) data on Chloe in France. This data reflects online consumer interactions, preferences, and purchasing patterns, providing valuable insight into the overall market position and performance of Chloe in Frances digital retail landscape. It underlines the potent potential of data analytics in shaping the future trajectories of e-commerce businesses. ## Link to dataset France - Chloe - Product-level price list dataset
[ "# Chloe web scraped data", "## About the website\n\nThe e-commerce industry in EMEA, particularly in France, is increasingly competitive and dynamic. This sector experiences remarkable growth with the rise of digital platforms and evolving consumer behaviors. Chloe, operating in this market, offers an array of fashion items and luxury goods. The observed dataset provides crucial information about the Ecommerce product-list page (PLP) data on Chloe in France. This data reflects online consumer interactions, preferences, and purchasing patterns, providing valuable insight into the overall market position and performance of Chloe in Frances digital retail landscape. It underlines the potent potential of data analytics in shaping the future trajectories of e-commerce businesses.", "## Link to dataset\n\nFrance - Chloe - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us \n", "# Chloe web scraped data", "## About the website\n\nThe e-commerce industry in EMEA, particularly in France, is increasingly competitive and dynamic. This sector experiences remarkable growth with the rise of digital platforms and evolving consumer behaviors. Chloe, operating in this market, offers an array of fashion items and luxury goods. The observed dataset provides crucial information about the Ecommerce product-list page (PLP) data on Chloe in France. This data reflects online consumer interactions, preferences, and purchasing patterns, providing valuable insight into the overall market position and performance of Chloe in Frances digital retail landscape. It underlines the potent potential of data analytics in shaping the future trajectories of e-commerce businesses.", "## Link to dataset\n\nFrance - Chloe - Product-level price list dataset" ]
[ 179, 6, 157, 16 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us \n# Chloe web scraped data## About the website\n\nThe e-commerce industry in EMEA, particularly in France, is increasingly competitive and dynamic. This sector experiences remarkable growth with the rise of digital platforms and evolving consumer behaviors. Chloe, operating in this market, offers an array of fashion items and luxury goods. The observed dataset provides crucial information about the Ecommerce product-list page (PLP) data on Chloe in France. This data reflects online consumer interactions, preferences, and purchasing patterns, providing valuable insight into the overall market position and performance of Chloe in Frances digital retail landscape. It underlines the potent potential of data analytics in shaping the future trajectories of e-commerce businesses.## Link to dataset\n\nFrance - Chloe - Product-level price list dataset" ]
fc8585456619fe2fd3b7a7f178471fa6cdee69f1
# Net-a-Porter web scraped data ## About the website The **Ecommerce industry** in the **Asia Pacific** region, specifically in **Macao**, demonstrates a growing digital environment with a high affinity for luxury retail consumption. As an online retail destination, **Net-a-Porter** contributes to this sector, carving out a niche market that is driven by affluent consumers who appreciate luxury fashion. The robust digital infrastructure coupled with high purchasing power in Macao provide an ideal environment for Net-a-Porter to thrive. The dataset observed contains **Ecommerce Product-List Page (PLP)** data on Net-a-Porter in Macao, offering insights into consumer behavior, preferences, and emerging trends in this vibrant sector. ## Link to **dataset** [Macao - Net-a-Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Net-a-Porter%20Product-prices%20Macao/r/recxhKe09GdefwSnj)
DBQ/Net.a.Porter.Product.prices.Macao
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:01:14+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Macao - Net-a-Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 20989555, "num_examples": 51420}], "download_size": 6378100, "dataset_size": 20989555}}
2023-11-19T09:01:25+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us
# Net-a-Porter web scraped data ## About the website The Ecommerce industry in the Asia Pacific region, specifically in Macao, demonstrates a growing digital environment with a high affinity for luxury retail consumption. As an online retail destination, Net-a-Porter contributes to this sector, carving out a niche market that is driven by affluent consumers who appreciate luxury fashion. The robust digital infrastructure coupled with high purchasing power in Macao provide an ideal environment for Net-a-Porter to thrive. The dataset observed contains Ecommerce Product-List Page (PLP) data on Net-a-Porter in Macao, offering insights into consumer behavior, preferences, and emerging trends in this vibrant sector. ## Link to dataset Macao - Net-a-Porter - Product-level price list dataset
[ "# Net-a-Porter web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific region, specifically in Macao, demonstrates a growing digital environment with a high affinity for luxury retail consumption. As an online retail destination, Net-a-Porter contributes to this sector, carving out a niche market that is driven by affluent consumers who appreciate luxury fashion. The robust digital infrastructure coupled with high purchasing power in Macao provide an ideal environment for Net-a-Porter to thrive. The dataset observed contains Ecommerce Product-List Page (PLP) data on Net-a-Porter in Macao, offering insights into consumer behavior, preferences, and emerging trends in this vibrant sector.", "## Link to dataset\n\nMacao - Net-a-Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n", "# Net-a-Porter web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific region, specifically in Macao, demonstrates a growing digital environment with a high affinity for luxury retail consumption. As an online retail destination, Net-a-Porter contributes to this sector, carving out a niche market that is driven by affluent consumers who appreciate luxury fashion. The robust digital infrastructure coupled with high purchasing power in Macao provide an ideal environment for Net-a-Porter to thrive. The dataset observed contains Ecommerce Product-List Page (PLP) data on Net-a-Porter in Macao, offering insights into consumer behavior, preferences, and emerging trends in this vibrant sector.", "## Link to dataset\n\nMacao - Net-a-Porter - Product-level price list dataset" ]
[ 177, 11, 159, 22 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n# Net-a-Porter web scraped data## About the website\n\nThe Ecommerce industry in the Asia Pacific region, specifically in Macao, demonstrates a growing digital environment with a high affinity for luxury retail consumption. As an online retail destination, Net-a-Porter contributes to this sector, carving out a niche market that is driven by affluent consumers who appreciate luxury fashion. The robust digital infrastructure coupled with high purchasing power in Macao provide an ideal environment for Net-a-Porter to thrive. The dataset observed contains Ecommerce Product-List Page (PLP) data on Net-a-Porter in Macao, offering insights into consumer behavior, preferences, and emerging trends in this vibrant sector.## Link to dataset\n\nMacao - Net-a-Porter - Product-level price list dataset" ]
0d0e62fc1f0b716e4b57fae446d078c641d19b7b
# Loro Piana web scraped data ## About the website Loro Piana operates in the **luxury fashion industry** within the Europe, Middle East, and Africa (EMEA) region, with a strong market presence in **Germany**. The luxury fashion market in this region is characterized by a high demand for **high-quality materials, craftsmanship**, and **unique designs**. The industry has seen a substantial growth in **online retail**, or **Ecommerce**, with an increasing number of consumers turning to online platforms for convenience and a wider range of options. Specifically, the dataset observed has information about the **Ecommerce product-list page (PLP)** data for Loro Piana in Germany, offering insights into their online market performance. ## Link to **dataset** [Germany - Loro Piana - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Loro%20Piana%20Product-prices%20Germany/r/recKScQaTx24JbIkH)
DBQ/Loro.Piana.Product.prices.Germany
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:01:58+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Germany - Loro Piana - Product-level price list", "tags": ["webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 390968, "num_examples": 1133}], "download_size": 130740, "dataset_size": 390968}}
2023-11-19T09:02:04+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us
# Loro Piana web scraped data ## About the website Loro Piana operates in the luxury fashion industry within the Europe, Middle East, and Africa (EMEA) region, with a strong market presence in Germany. The luxury fashion market in this region is characterized by a high demand for high-quality materials, craftsmanship, and unique designs. The industry has seen a substantial growth in online retail, or Ecommerce, with an increasing number of consumers turning to online platforms for convenience and a wider range of options. Specifically, the dataset observed has information about the Ecommerce product-list page (PLP) data for Loro Piana in Germany, offering insights into their online market performance. ## Link to dataset Germany - Loro Piana - Product-level price list dataset
[ "# Loro Piana web scraped data", "## About the website\n\nLoro Piana operates in the luxury fashion industry within the Europe, Middle East, and Africa (EMEA) region, with a strong market presence in Germany. The luxury fashion market in this region is characterized by a high demand for high-quality materials, craftsmanship, and unique designs. The industry has seen a substantial growth in online retail, or Ecommerce, with an increasing number of consumers turning to online platforms for convenience and a wider range of options. Specifically, the dataset observed has information about the Ecommerce product-list page (PLP) data for Loro Piana in Germany, offering insights into their online market performance.", "## Link to dataset\n\nGermany - Loro Piana - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n", "# Loro Piana web scraped data", "## About the website\n\nLoro Piana operates in the luxury fashion industry within the Europe, Middle East, and Africa (EMEA) region, with a strong market presence in Germany. The luxury fashion market in this region is characterized by a high demand for high-quality materials, craftsmanship, and unique designs. The industry has seen a substantial growth in online retail, or Ecommerce, with an increasing number of consumers turning to online platforms for convenience and a wider range of options. Specifically, the dataset observed has information about the Ecommerce product-list page (PLP) data for Loro Piana in Germany, offering insights into their online market performance.", "## Link to dataset\n\nGermany - Loro Piana - Product-level price list dataset" ]
[ 180, 9, 146, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n# Loro Piana web scraped data## About the website\n\nLoro Piana operates in the luxury fashion industry within the Europe, Middle East, and Africa (EMEA) region, with a strong market presence in Germany. The luxury fashion market in this region is characterized by a high demand for high-quality materials, craftsmanship, and unique designs. The industry has seen a substantial growth in online retail, or Ecommerce, with an increasing number of consumers turning to online platforms for convenience and a wider range of options. Specifically, the dataset observed has information about the Ecommerce product-list page (PLP) data for Loro Piana in Germany, offering insights into their online market performance.## Link to dataset\n\nGermany - Loro Piana - Product-level price list dataset" ]
948a559ce574c5651f727fb4b1f96ef755715d58
# Net-a-Porter web scraped data ## About the website The **Net-a-Porter** brand operates within the highly competitive **Ecommerce** industry in the **EMEA** region, specifically in **Tunisia**. This industry encapsulates all buying and selling of goods or services online, with fashion and luxury products being a significant contributor. The growth of ecommerce platforms in Tunisia has led to a surge in the digital marketplace, playing a key role in boosting the economy of the country. Our dataset primarily revolves around **Ecommerce product-list page (PLP)** data of this renowned online retailer in Tunisia, offering insight into online customer behaviour and product performance. ## Link to **dataset** [Tunisia - Net-a-Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Net-a-Porter%20Product-prices%20Tunisia/r/recyrW7jHdjmHA1Cr)
DBQ/Net.a.Porter.Product.prices.Tunisia
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:02:17+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Tunisia - Net-a-Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 17289050, "num_examples": 42405}], "download_size": 5424439, "dataset_size": 17289050}}
2023-11-19T09:02:27+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us
# Net-a-Porter web scraped data ## About the website The Net-a-Porter brand operates within the highly competitive Ecommerce industry in the EMEA region, specifically in Tunisia. This industry encapsulates all buying and selling of goods or services online, with fashion and luxury products being a significant contributor. The growth of ecommerce platforms in Tunisia has led to a surge in the digital marketplace, playing a key role in boosting the economy of the country. Our dataset primarily revolves around Ecommerce product-list page (PLP) data of this renowned online retailer in Tunisia, offering insight into online customer behaviour and product performance. ## Link to dataset Tunisia - Net-a-Porter - Product-level price list dataset
[ "# Net-a-Porter web scraped data", "## About the website\n\nThe Net-a-Porter brand operates within the highly competitive Ecommerce industry in the EMEA region, specifically in Tunisia. This industry encapsulates all buying and selling of goods or services online, with fashion and luxury products being a significant contributor. The growth of ecommerce platforms in Tunisia has led to a surge in the digital marketplace, playing a key role in boosting the economy of the country. Our dataset primarily revolves around Ecommerce product-list page (PLP) data of this renowned online retailer in Tunisia, offering insight into online customer behaviour and product performance.", "## Link to dataset\n\nTunisia - Net-a-Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n", "# Net-a-Porter web scraped data", "## About the website\n\nThe Net-a-Porter brand operates within the highly competitive Ecommerce industry in the EMEA region, specifically in Tunisia. This industry encapsulates all buying and selling of goods or services online, with fashion and luxury products being a significant contributor. The growth of ecommerce platforms in Tunisia has led to a surge in the digital marketplace, playing a key role in boosting the economy of the country. Our dataset primarily revolves around Ecommerce product-list page (PLP) data of this renowned online retailer in Tunisia, offering insight into online customer behaviour and product performance.", "## Link to dataset\n\nTunisia - Net-a-Porter - Product-level price list dataset" ]
[ 177, 11, 134, 22 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n# Net-a-Porter web scraped data## About the website\n\nThe Net-a-Porter brand operates within the highly competitive Ecommerce industry in the EMEA region, specifically in Tunisia. This industry encapsulates all buying and selling of goods or services online, with fashion and luxury products being a significant contributor. The growth of ecommerce platforms in Tunisia has led to a surge in the digital marketplace, playing a key role in boosting the economy of the country. Our dataset primarily revolves around Ecommerce product-list page (PLP) data of this renowned online retailer in Tunisia, offering insight into online customer behaviour and product performance.## Link to dataset\n\nTunisia - Net-a-Porter - Product-level price list dataset" ]
94023d7dbb609b014aa69f9e000cb19e84b0b06e
# Gucci web scraped data ## About the website The **luxury fashion industry** in the **EMEA** region, especially in **Germany**, is significantly advanced and sophisticated, thanks to the embracing of digital technologies. **Gucci**, a prominent brand in this industry, has successfully penetrated the German market. The recently observed dataset is a collection of **Ecommerce product-list page (PLP) data** specifically on **Guccis operations in Germany**. The initiative is to study and understand the trends, consumer behavior, and transaction statistics associated with this luxury brand, in a digitally-inclined marketplace. This dataset provides valuable insights into Guccis online presence and performance in the German luxury industry. ## Link to **dataset** [Germany - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20Germany/r/recLAvHvPXYVDc76b)
DBQ/Gucci.Product.prices.Germany
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:02:36+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Germany - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2610110, "num_examples": 5418}], "download_size": 799670, "dataset_size": 2610110}}
2023-11-19T09:02:42+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website The luxury fashion industry in the EMEA region, especially in Germany, is significantly advanced and sophisticated, thanks to the embracing of digital technologies. Gucci, a prominent brand in this industry, has successfully penetrated the German market. The recently observed dataset is a collection of Ecommerce product-list page (PLP) data specifically on Guccis operations in Germany. The initiative is to study and understand the trends, consumer behavior, and transaction statistics associated with this luxury brand, in a digitally-inclined marketplace. This dataset provides valuable insights into Guccis online presence and performance in the German luxury industry. ## Link to dataset Germany - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nThe luxury fashion industry in the EMEA region, especially in Germany, is significantly advanced and sophisticated, thanks to the embracing of digital technologies. Gucci, a prominent brand in this industry, has successfully penetrated the German market. The recently observed dataset is a collection of Ecommerce product-list page (PLP) data specifically on Guccis operations in Germany. The initiative is to study and understand the trends, consumer behavior, and transaction statistics associated with this luxury brand, in a digitally-inclined marketplace. This dataset provides valuable insights into Guccis online presence and performance in the German luxury industry.", "## Link to dataset\n\nGermany - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nThe luxury fashion industry in the EMEA region, especially in Germany, is significantly advanced and sophisticated, thanks to the embracing of digital technologies. Gucci, a prominent brand in this industry, has successfully penetrated the German market. The recently observed dataset is a collection of Ecommerce product-list page (PLP) data specifically on Guccis operations in Germany. The initiative is to study and understand the trends, consumer behavior, and transaction statistics associated with this luxury brand, in a digitally-inclined marketplace. This dataset provides valuable insights into Guccis online presence and performance in the German luxury industry.", "## Link to dataset\n\nGermany - Gucci - Product-level price list dataset" ]
[ 178, 7, 145, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nThe luxury fashion industry in the EMEA region, especially in Germany, is significantly advanced and sophisticated, thanks to the embracing of digital technologies. Gucci, a prominent brand in this industry, has successfully penetrated the German market. The recently observed dataset is a collection of Ecommerce product-list page (PLP) data specifically on Guccis operations in Germany. The initiative is to study and understand the trends, consumer behavior, and transaction statistics associated with this luxury brand, in a digitally-inclined marketplace. This dataset provides valuable insights into Guccis online presence and performance in the German luxury industry.## Link to dataset\n\nGermany - Gucci - Product-level price list dataset" ]
f5d963235f7e27d8b65b5b00cac9e2fe6d54479a
# Louis Vuitton web scraped data ## About the website The **Luxury Fashion** industry in the **EMEA** region, specifically in **France**, is a competitive and dynamic sector representing some of the most prestigious names in fashion. **Louis Vuitton**, a prominent player, is renowned for its high-end products, setting the tone for luxury retail within and beyond France. The recent rise in digital transformation has intensified the focus on **Ecommerce** within this industry. The dataset in review contains **Ecommerce product-list page (PLP) data** on Louis Vuitton in France. This data provides valuable insights into consumer behaviour, purchasing patterns, product preferences, and overall performance metrics of Louis Vuittons online retail. ## Link to **dataset** [France - Louis Vuitton - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Louis%20Vuitton%20Product-prices%20France/r/recuJmM9pHnEywNtQ)
DBQ/Louis.Vuitton.Product.prices.France
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:02:53+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "France - Louis Vuitton - Product-level price list", "tags": ["webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3471507, "num_examples": 7806}], "download_size": 915905, "dataset_size": 3471507}}
2023-11-19T09:02:59+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us
# Louis Vuitton web scraped data ## About the website The Luxury Fashion industry in the EMEA region, specifically in France, is a competitive and dynamic sector representing some of the most prestigious names in fashion. Louis Vuitton, a prominent player, is renowned for its high-end products, setting the tone for luxury retail within and beyond France. The recent rise in digital transformation has intensified the focus on Ecommerce within this industry. The dataset in review contains Ecommerce product-list page (PLP) data on Louis Vuitton in France. This data provides valuable insights into consumer behaviour, purchasing patterns, product preferences, and overall performance metrics of Louis Vuittons online retail. ## Link to dataset France - Louis Vuitton - Product-level price list dataset
[ "# Louis Vuitton web scraped data", "## About the website\n\nThe Luxury Fashion industry in the EMEA region, specifically in France, is a competitive and dynamic sector representing some of the most prestigious names in fashion. Louis Vuitton, a prominent player, is renowned for its high-end products, setting the tone for luxury retail within and beyond France. The recent rise in digital transformation has intensified the focus on Ecommerce within this industry. The dataset in review contains Ecommerce product-list page (PLP) data on Louis Vuitton in France. This data provides valuable insights into consumer behaviour, purchasing patterns, product preferences, and overall performance metrics of Louis Vuittons online retail.", "## Link to dataset\n\nFrance - Louis Vuitton - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n", "# Louis Vuitton web scraped data", "## About the website\n\nThe Luxury Fashion industry in the EMEA region, specifically in France, is a competitive and dynamic sector representing some of the most prestigious names in fashion. Louis Vuitton, a prominent player, is renowned for its high-end products, setting the tone for luxury retail within and beyond France. The recent rise in digital transformation has intensified the focus on Ecommerce within this industry. The dataset in review contains Ecommerce product-list page (PLP) data on Louis Vuitton in France. This data provides valuable insights into consumer behaviour, purchasing patterns, product preferences, and overall performance metrics of Louis Vuittons online retail.", "## Link to dataset\n\nFrance - Louis Vuitton - Product-level price list dataset" ]
[ 178, 7, 140, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n# Louis Vuitton web scraped data## About the website\n\nThe Luxury Fashion industry in the EMEA region, specifically in France, is a competitive and dynamic sector representing some of the most prestigious names in fashion. Louis Vuitton, a prominent player, is renowned for its high-end products, setting the tone for luxury retail within and beyond France. The recent rise in digital transformation has intensified the focus on Ecommerce within this industry. The dataset in review contains Ecommerce product-list page (PLP) data on Louis Vuitton in France. This data provides valuable insights into consumer behaviour, purchasing patterns, product preferences, and overall performance metrics of Louis Vuittons online retail.## Link to dataset\n\nFrance - Louis Vuitton - Product-level price list dataset" ]
4f56afd15bbe6da2b46e0ed4129489fd4d17649b
# Farfetch web scraped data ## About the website **Farfetch** operates within the highly competitive **e-commerce industry** in **EMEA**, particularly in Switzerland. This industry has profound influence largely due to the increased online shopping trends, escalated by COVID-19 pandemic. It boasts a diverse portfolio of businesses specialising in various sectors, including retail, fashion, electronics, and home décor, among others. Switzerland, widely recognised for its affluent consumer base, sophisticated infrastructure, and favourable legislative environment, offers an ideal market for e-commerce activities. The dataset observed specifically contains **Ecommerce product-list page (PLP)** data related to **Farfetch** operations in **Switzerland**. This data provides valuable insights into market trends, customer behaviour, and product performance within this geographical market. ## Link to **dataset** [Switzerland - Farfetch - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Farfetch%20Product-prices%20Switzerland/r/rec29qujpLBbDdgET)
DBQ/Farfetch.Product.prices.Switzerland
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:03:49+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Switzerland - Farfetch - Product-level price list", "tags": ["webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 220235667, "num_examples": 587954}], "download_size": 77809281, "dataset_size": 220235667}}
2023-11-19T09:04:46+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us
# Farfetch web scraped data ## About the website Farfetch operates within the highly competitive e-commerce industry in EMEA, particularly in Switzerland. This industry has profound influence largely due to the increased online shopping trends, escalated by COVID-19 pandemic. It boasts a diverse portfolio of businesses specialising in various sectors, including retail, fashion, electronics, and home décor, among others. Switzerland, widely recognised for its affluent consumer base, sophisticated infrastructure, and favourable legislative environment, offers an ideal market for e-commerce activities. The dataset observed specifically contains Ecommerce product-list page (PLP) data related to Farfetch operations in Switzerland. This data provides valuable insights into market trends, customer behaviour, and product performance within this geographical market. ## Link to dataset Switzerland - Farfetch - Product-level price list dataset
[ "# Farfetch web scraped data", "## About the website\n\nFarfetch operates within the highly competitive e-commerce industry in EMEA, particularly in Switzerland. This industry has profound influence largely due to the increased online shopping trends, escalated by COVID-19 pandemic. It boasts a diverse portfolio of businesses specialising in various sectors, including retail, fashion, electronics, and home décor, among others. Switzerland, widely recognised for its affluent consumer base, sophisticated infrastructure, and favourable legislative environment, offers an ideal market for e-commerce activities. The dataset observed specifically contains Ecommerce product-list page (PLP) data related to Farfetch operations in Switzerland. This data provides valuable insights into market trends, customer behaviour, and product performance within this geographical market.", "## Link to dataset\n\nSwitzerland - Farfetch - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n", "# Farfetch web scraped data", "## About the website\n\nFarfetch operates within the highly competitive e-commerce industry in EMEA, particularly in Switzerland. This industry has profound influence largely due to the increased online shopping trends, escalated by COVID-19 pandemic. It boasts a diverse portfolio of businesses specialising in various sectors, including retail, fashion, electronics, and home décor, among others. Switzerland, widely recognised for its affluent consumer base, sophisticated infrastructure, and favourable legislative environment, offers an ideal market for e-commerce activities. The dataset observed specifically contains Ecommerce product-list page (PLP) data related to Farfetch operations in Switzerland. This data provides valuable insights into market trends, customer behaviour, and product performance within this geographical market.", "## Link to dataset\n\nSwitzerland - Farfetch - Product-level price list dataset" ]
[ 179, 8, 172, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n# Farfetch web scraped data## About the website\n\nFarfetch operates within the highly competitive e-commerce industry in EMEA, particularly in Switzerland. This industry has profound influence largely due to the increased online shopping trends, escalated by COVID-19 pandemic. It boasts a diverse portfolio of businesses specialising in various sectors, including retail, fashion, electronics, and home décor, among others. Switzerland, widely recognised for its affluent consumer base, sophisticated infrastructure, and favourable legislative environment, offers an ideal market for e-commerce activities. The dataset observed specifically contains Ecommerce product-list page (PLP) data related to Farfetch operations in Switzerland. This data provides valuable insights into market trends, customer behaviour, and product performance within this geographical market.## Link to dataset\n\nSwitzerland - Farfetch - Product-level price list dataset" ]
2256892f419433d620a9ea6f9047d5238f491270
# Gucci web scraped data ## About the website In the flourishing **fashion and luxury goods industry** in the Asia Pacific region, particularly **South Korea**, high-end brands like **Gucci** are experiencing a surge in popularity. E-commerce is a major driving force; this upward trend reflected in the dataset gathered, which includes **Ecommerce product-list page (PLP)** data on Guccis presence in South Korea. The country’s exponential rise in individual wealth and the strong influence of pop culture on fashion trends have paved the way for an increase in consumer demand. This illustrates the growing appreciation for luxury fashion brands in the Asia Pacific region. ## Link to **dataset** [South Korea - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20South%20Korea/r/recvqhieM1soAYRdL)
DBQ/Gucci.Product.prices.South.Korea
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:04:56+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Korea - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1709874, "num_examples": 3796}], "download_size": 490827, "dataset_size": 1709874}}
2023-11-19T09:05:02+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website In the flourishing fashion and luxury goods industry in the Asia Pacific region, particularly South Korea, high-end brands like Gucci are experiencing a surge in popularity. E-commerce is a major driving force; this upward trend reflected in the dataset gathered, which includes Ecommerce product-list page (PLP) data on Guccis presence in South Korea. The country’s exponential rise in individual wealth and the strong influence of pop culture on fashion trends have paved the way for an increase in consumer demand. This illustrates the growing appreciation for luxury fashion brands in the Asia Pacific region. ## Link to dataset South Korea - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nIn the flourishing fashion and luxury goods industry in the Asia Pacific region, particularly South Korea, high-end brands like Gucci are experiencing a surge in popularity. E-commerce is a major driving force; this upward trend reflected in the dataset gathered, which includes Ecommerce product-list page (PLP) data on Guccis presence in South Korea. The country’s exponential rise in individual wealth and the strong influence of pop culture on fashion trends have paved the way for an increase in consumer demand. This illustrates the growing appreciation for luxury fashion brands in the Asia Pacific region.", "## Link to dataset\n\nSouth Korea - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nIn the flourishing fashion and luxury goods industry in the Asia Pacific region, particularly South Korea, high-end brands like Gucci are experiencing a surge in popularity. E-commerce is a major driving force; this upward trend reflected in the dataset gathered, which includes Ecommerce product-list page (PLP) data on Guccis presence in South Korea. The country’s exponential rise in individual wealth and the strong influence of pop culture on fashion trends have paved the way for an increase in consumer demand. This illustrates the growing appreciation for luxury fashion brands in the Asia Pacific region.", "## Link to dataset\n\nSouth Korea - Gucci - Product-level price list dataset" ]
[ 178, 7, 143, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nIn the flourishing fashion and luxury goods industry in the Asia Pacific region, particularly South Korea, high-end brands like Gucci are experiencing a surge in popularity. E-commerce is a major driving force; this upward trend reflected in the dataset gathered, which includes Ecommerce product-list page (PLP) data on Guccis presence in South Korea. The country’s exponential rise in individual wealth and the strong influence of pop culture on fashion trends have paved the way for an increase in consumer demand. This illustrates the growing appreciation for luxury fashion brands in the Asia Pacific region.## Link to dataset\n\nSouth Korea - Gucci - Product-level price list dataset" ]
0b6281235ae4f5debd6cb188b3c3dbbb1f787c6d
# Chanel web scraped data ## About the website In the EMEA region, particularly in **Germany**, the luxury fashion industry greatly evolved over the years. The **luxury fashion industry** features renowned brands such as **Chanel**, among others. Consumers in Germany exhibit a strong appetite for high-end fashion, thereby intensifying the competition in this sector. With the advent of digitization, many of these high-end brands have shifted to online platforms. Especially during the COVID-19 pandemic, **Ecommerce** has become pivotal in this industry. The dataset observed comprises the **Ecommerce product-list page (PLP) data** on Chanels product availability, prices, and sales in Germany, providing a detailed perspective of the brands digital market status. ## Link to **dataset** [Germany - Chanel - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Chanel%20Product-prices%20Germany/r/recTZkFTUHIvrjoB3)
DBQ/Chanel.Product.prices.Germany
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Chanel", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:05:12+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Germany - Chanel - Product-level price list", "tags": ["webscraping", "ecommerce", "Chanel", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 777798, "num_examples": 1428}], "download_size": 199720, "dataset_size": 777798}}
2023-11-19T09:05:17+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us
# Chanel web scraped data ## About the website In the EMEA region, particularly in Germany, the luxury fashion industry greatly evolved over the years. The luxury fashion industry features renowned brands such as Chanel, among others. Consumers in Germany exhibit a strong appetite for high-end fashion, thereby intensifying the competition in this sector. With the advent of digitization, many of these high-end brands have shifted to online platforms. Especially during the COVID-19 pandemic, Ecommerce has become pivotal in this industry. The dataset observed comprises the Ecommerce product-list page (PLP) data on Chanels product availability, prices, and sales in Germany, providing a detailed perspective of the brands digital market status. ## Link to dataset Germany - Chanel - Product-level price list dataset
[ "# Chanel web scraped data", "## About the website\n\nIn the EMEA region, particularly in Germany, the luxury fashion industry greatly evolved over the years. The luxury fashion industry features renowned brands such as Chanel, among others. Consumers in Germany exhibit a strong appetite for high-end fashion, thereby intensifying the competition in this sector. With the advent of digitization, many of these high-end brands have shifted to online platforms. Especially during the COVID-19 pandemic, Ecommerce has become pivotal in this industry. The dataset observed comprises the Ecommerce product-list page (PLP) data on Chanels product availability, prices, and sales in Germany, providing a detailed perspective of the brands digital market status.", "## Link to dataset\n\nGermany - Chanel - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us \n", "# Chanel web scraped data", "## About the website\n\nIn the EMEA region, particularly in Germany, the luxury fashion industry greatly evolved over the years. The luxury fashion industry features renowned brands such as Chanel, among others. Consumers in Germany exhibit a strong appetite for high-end fashion, thereby intensifying the competition in this sector. With the advent of digitization, many of these high-end brands have shifted to online platforms. Especially during the COVID-19 pandemic, Ecommerce has become pivotal in this industry. The dataset observed comprises the Ecommerce product-list page (PLP) data on Chanels product availability, prices, and sales in Germany, providing a detailed perspective of the brands digital market status.", "## Link to dataset\n\nGermany - Chanel - Product-level price list dataset" ]
[ 178, 6, 159, 16 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us \n# Chanel web scraped data## About the website\n\nIn the EMEA region, particularly in Germany, the luxury fashion industry greatly evolved over the years. The luxury fashion industry features renowned brands such as Chanel, among others. Consumers in Germany exhibit a strong appetite for high-end fashion, thereby intensifying the competition in this sector. With the advent of digitization, many of these high-end brands have shifted to online platforms. Especially during the COVID-19 pandemic, Ecommerce has become pivotal in this industry. The dataset observed comprises the Ecommerce product-list page (PLP) data on Chanels product availability, prices, and sales in Germany, providing a detailed perspective of the brands digital market status.## Link to dataset\n\nGermany - Chanel - Product-level price list dataset" ]
7ddc64a33149f84f4c2914a2cfa9db4b68693ff8
# Loro Piana web scraped data ## About the website The **luxury fashion industry** is an influential sector in the **Asia Pacific**, particularly in **China**, which exhibits an increasing influence on the global landscape. It is driven by rising consumer demand for **high-end fashion** and **luxury goods**. With the advent of technology, the e-commerce platform has become a new playground for luxury brands like **Loro Piana**. **E-commerce** in China provides an opportunity for these brands to extend its reach to its customers. In this context, we have the **Ecommerce product-list page (PLP) data** available for **Loro Piana** in China, which provides comprehensive insights into consumer behaviors, preferences, and the performance of the brand in the digital marketplace. ## Link to **dataset** [China - Loro Piana - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Loro%20Piana%20Product-prices%20China/r/recR7x5CkoSXdIOjH)
DBQ/Loro.Piana.Product.prices.China
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:05:25+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "China - Loro Piana - Product-level price list", "tags": ["webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 168135, "num_examples": 817}], "download_size": 35142, "dataset_size": 168135}}
2023-11-19T09:05:30+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us
# Loro Piana web scraped data ## About the website The luxury fashion industry is an influential sector in the Asia Pacific, particularly in China, which exhibits an increasing influence on the global landscape. It is driven by rising consumer demand for high-end fashion and luxury goods. With the advent of technology, the e-commerce platform has become a new playground for luxury brands like Loro Piana. E-commerce in China provides an opportunity for these brands to extend its reach to its customers. In this context, we have the Ecommerce product-list page (PLP) data available for Loro Piana in China, which provides comprehensive insights into consumer behaviors, preferences, and the performance of the brand in the digital marketplace. ## Link to dataset China - Loro Piana - Product-level price list dataset
[ "# Loro Piana web scraped data", "## About the website\n\nThe luxury fashion industry is an influential sector in the Asia Pacific, particularly in China, which exhibits an increasing influence on the global landscape. It is driven by rising consumer demand for high-end fashion and luxury goods. With the advent of technology, the e-commerce platform has become a new playground for luxury brands like Loro Piana. E-commerce in China provides an opportunity for these brands to extend its reach to its customers. In this context, we have the Ecommerce product-list page (PLP) data available for Loro Piana in China, which provides comprehensive insights into consumer behaviors, preferences, and the performance of the brand in the digital marketplace.", "## Link to dataset\n\nChina - Loro Piana - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n", "# Loro Piana web scraped data", "## About the website\n\nThe luxury fashion industry is an influential sector in the Asia Pacific, particularly in China, which exhibits an increasing influence on the global landscape. It is driven by rising consumer demand for high-end fashion and luxury goods. With the advent of technology, the e-commerce platform has become a new playground for luxury brands like Loro Piana. E-commerce in China provides an opportunity for these brands to extend its reach to its customers. In this context, we have the Ecommerce product-list page (PLP) data available for Loro Piana in China, which provides comprehensive insights into consumer behaviors, preferences, and the performance of the brand in the digital marketplace.", "## Link to dataset\n\nChina - Loro Piana - Product-level price list dataset" ]
[ 180, 9, 153, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n# Loro Piana web scraped data## About the website\n\nThe luxury fashion industry is an influential sector in the Asia Pacific, particularly in China, which exhibits an increasing influence on the global landscape. It is driven by rising consumer demand for high-end fashion and luxury goods. With the advent of technology, the e-commerce platform has become a new playground for luxury brands like Loro Piana. E-commerce in China provides an opportunity for these brands to extend its reach to its customers. In this context, we have the Ecommerce product-list page (PLP) data available for Loro Piana in China, which provides comprehensive insights into consumer behaviors, preferences, and the performance of the brand in the digital marketplace.## Link to dataset\n\nChina - Loro Piana - Product-level price list dataset" ]
46caf1c65f609b64a2d29815c98a14a63cd3424b
# Burberry web scraped data ## About the website The **luxury fashion industry** in the Asia Pacific region, particularly in **China**, has seen a significant shift towards digitalization. **Online shopping**, fuelled by the growth of **Ecommerce**, has become a major sales channel for high-end labels like **Burberry**. This growth in online sales has outpaced that of the offline sector, making e-commerce a key driver for the luxury fashion sector. Chinese consumption of luxury goods is turning towards **e-commerce platforms**, which acts as a crucial bridge connecting luxury fashion powerhouses and customers. The dataset examined contains **Ecommerce product-list page (PLP) data** on **Burberry** within the **Chinese market**. ## Link to **dataset** [China - Burberry - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Burberry%20Product-prices%20China/r/rec8WRWvzC4DWfhsL)
DBQ/Burberry.Product.prices.China
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:05:39+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "China - Burberry - Product-level price list", "tags": ["webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 638473, "num_examples": 2014}], "download_size": 190988, "dataset_size": 638473}}
2023-11-19T09:05:45+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us
# Burberry web scraped data ## About the website The luxury fashion industry in the Asia Pacific region, particularly in China, has seen a significant shift towards digitalization. Online shopping, fuelled by the growth of Ecommerce, has become a major sales channel for high-end labels like Burberry. This growth in online sales has outpaced that of the offline sector, making e-commerce a key driver for the luxury fashion sector. Chinese consumption of luxury goods is turning towards e-commerce platforms, which acts as a crucial bridge connecting luxury fashion powerhouses and customers. The dataset examined contains Ecommerce product-list page (PLP) data on Burberry within the Chinese market. ## Link to dataset China - Burberry - Product-level price list dataset
[ "# Burberry web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, particularly in China, has seen a significant shift towards digitalization. Online shopping, fuelled by the growth of Ecommerce, has become a major sales channel for high-end labels like Burberry. This growth in online sales has outpaced that of the offline sector, making e-commerce a key driver for the luxury fashion sector. Chinese consumption of luxury goods is turning towards e-commerce platforms, which acts as a crucial bridge connecting luxury fashion powerhouses and customers. The dataset examined contains Ecommerce product-list page (PLP) data on Burberry within the Chinese market.", "## Link to dataset\n\nChina - Burberry - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n", "# Burberry web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, particularly in China, has seen a significant shift towards digitalization. Online shopping, fuelled by the growth of Ecommerce, has become a major sales channel for high-end labels like Burberry. This growth in online sales has outpaced that of the offline sector, making e-commerce a key driver for the luxury fashion sector. Chinese consumption of luxury goods is turning towards e-commerce platforms, which acts as a crucial bridge connecting luxury fashion powerhouses and customers. The dataset examined contains Ecommerce product-list page (PLP) data on Burberry within the Chinese market.", "## Link to dataset\n\nChina - Burberry - Product-level price list dataset" ]
[ 178, 7, 148, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n# Burberry web scraped data## About the website\n\nThe luxury fashion industry in the Asia Pacific region, particularly in China, has seen a significant shift towards digitalization. Online shopping, fuelled by the growth of Ecommerce, has become a major sales channel for high-end labels like Burberry. This growth in online sales has outpaced that of the offline sector, making e-commerce a key driver for the luxury fashion sector. Chinese consumption of luxury goods is turning towards e-commerce platforms, which acts as a crucial bridge connecting luxury fashion powerhouses and customers. The dataset examined contains Ecommerce product-list page (PLP) data on Burberry within the Chinese market.## Link to dataset\n\nChina - Burberry - Product-level price list dataset" ]
5e84a8d56e5517347d898350777c4834daff0dd1
# Mr Porter web scraped data ## About the website Mr Porter operates within the **Ecommerce Fashion Retail** industry, one thats seeing a dynamic surge in the **Asia Pacific** region, particularly in **Hong Kong**. This metropolis, known for its fashion-forward populace and high internet penetration, boasts a thriving Ecommerce scene. Young, tech-savvy consumers are driving growth in online shopping, appreciating the ease and variety it provides. As per our dataset, we have specifically observed **Ecommerce product-list page (PLP) data** for **Mr Porter in Hong Kong**. This data provides valuable insights into market trends, consumer preferences, and competitive dynamics, all crucial for strategizing in this vibrant digital retail landscape. ## Link to **dataset** [Hong Kong - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Hong%20Kong/r/reccGQkaol1aca5fH)
DBQ/Mr.Porter.Product.prices.Hong.Kong
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:05:55+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Hong Kong - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8934085, "num_examples": 27206}], "download_size": 2064760, "dataset_size": 8934085}}
2023-11-19T09:06:02+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website Mr Porter operates within the Ecommerce Fashion Retail industry, one thats seeing a dynamic surge in the Asia Pacific region, particularly in Hong Kong. This metropolis, known for its fashion-forward populace and high internet penetration, boasts a thriving Ecommerce scene. Young, tech-savvy consumers are driving growth in online shopping, appreciating the ease and variety it provides. As per our dataset, we have specifically observed Ecommerce product-list page (PLP) data for Mr Porter in Hong Kong. This data provides valuable insights into market trends, consumer preferences, and competitive dynamics, all crucial for strategizing in this vibrant digital retail landscape. ## Link to dataset Hong Kong - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the Ecommerce Fashion Retail industry, one thats seeing a dynamic surge in the Asia Pacific region, particularly in Hong Kong. This metropolis, known for its fashion-forward populace and high internet penetration, boasts a thriving Ecommerce scene. Young, tech-savvy consumers are driving growth in online shopping, appreciating the ease and variety it provides. As per our dataset, we have specifically observed Ecommerce product-list page (PLP) data for Mr Porter in Hong Kong. This data provides valuable insights into market trends, consumer preferences, and competitive dynamics, all crucial for strategizing in this vibrant digital retail landscape.", "## Link to dataset\n\nHong Kong - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the Ecommerce Fashion Retail industry, one thats seeing a dynamic surge in the Asia Pacific region, particularly in Hong Kong. This metropolis, known for its fashion-forward populace and high internet penetration, boasts a thriving Ecommerce scene. Young, tech-savvy consumers are driving growth in online shopping, appreciating the ease and variety it provides. As per our dataset, we have specifically observed Ecommerce product-list page (PLP) data for Mr Porter in Hong Kong. This data provides valuable insights into market trends, consumer preferences, and competitive dynamics, all crucial for strategizing in this vibrant digital retail landscape.", "## Link to dataset\n\nHong Kong - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 152, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nMr Porter operates within the Ecommerce Fashion Retail industry, one thats seeing a dynamic surge in the Asia Pacific region, particularly in Hong Kong. This metropolis, known for its fashion-forward populace and high internet penetration, boasts a thriving Ecommerce scene. Young, tech-savvy consumers are driving growth in online shopping, appreciating the ease and variety it provides. As per our dataset, we have specifically observed Ecommerce product-list page (PLP) data for Mr Porter in Hong Kong. This data provides valuable insights into market trends, consumer preferences, and competitive dynamics, all crucial for strategizing in this vibrant digital retail landscape.## Link to dataset\n\nHong Kong - Mr Porter - Product-level price list dataset" ]
48c38f3523022e79c7320215e11f56eeae1d2295
# Gucci web scraped data ## About the website Operating within the **luxury fashion industry**, **Gucci** marks its prominent presence in the EMEA region, specifically in **Romania**. The luxury fashion industry in Romania has shown considerable growth, owing to increased consumer spending and changing lifestyle trends. The industry is characterized by high-income consumers with a taste for luxury fashion products displaying their status and personality. The industry, driven by premium quality and exclusiveness, demonstrates a good deal of opportunities for luxury brands like Gucci. The dataset observed provides insightful **Ecommerce product-list page (PLP) data** region specific information on Gucci in the Romanian marketplace. ## Link to **dataset** [Romania - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20Romania/r/recfSStZ86lHvxQZi)
DBQ/Gucci.Product.prices.Romania
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:06:11+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Romania - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2466121, "num_examples": 5169}], "download_size": 723248, "dataset_size": 2466121}}
2023-11-19T09:06:17+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website Operating within the luxury fashion industry, Gucci marks its prominent presence in the EMEA region, specifically in Romania. The luxury fashion industry in Romania has shown considerable growth, owing to increased consumer spending and changing lifestyle trends. The industry is characterized by high-income consumers with a taste for luxury fashion products displaying their status and personality. The industry, driven by premium quality and exclusiveness, demonstrates a good deal of opportunities for luxury brands like Gucci. The dataset observed provides insightful Ecommerce product-list page (PLP) data region specific information on Gucci in the Romanian marketplace. ## Link to dataset Romania - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nOperating within the luxury fashion industry, Gucci marks its prominent presence in the EMEA region, specifically in Romania. The luxury fashion industry in Romania has shown considerable growth, owing to increased consumer spending and changing lifestyle trends. The industry is characterized by high-income consumers with a taste for luxury fashion products displaying their status and personality. The industry, driven by premium quality and exclusiveness, demonstrates a good deal of opportunities for luxury brands like Gucci. The dataset observed provides insightful Ecommerce product-list page (PLP) data region specific information on Gucci in the Romanian marketplace.", "## Link to dataset\n\nRomania - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nOperating within the luxury fashion industry, Gucci marks its prominent presence in the EMEA region, specifically in Romania. The luxury fashion industry in Romania has shown considerable growth, owing to increased consumer spending and changing lifestyle trends. The industry is characterized by high-income consumers with a taste for luxury fashion products displaying their status and personality. The industry, driven by premium quality and exclusiveness, demonstrates a good deal of opportunities for luxury brands like Gucci. The dataset observed provides insightful Ecommerce product-list page (PLP) data region specific information on Gucci in the Romanian marketplace.", "## Link to dataset\n\nRomania - Gucci - Product-level price list dataset" ]
[ 178, 7, 141, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nOperating within the luxury fashion industry, Gucci marks its prominent presence in the EMEA region, specifically in Romania. The luxury fashion industry in Romania has shown considerable growth, owing to increased consumer spending and changing lifestyle trends. The industry is characterized by high-income consumers with a taste for luxury fashion products displaying their status and personality. The industry, driven by premium quality and exclusiveness, demonstrates a good deal of opportunities for luxury brands like Gucci. The dataset observed provides insightful Ecommerce product-list page (PLP) data region specific information on Gucci in the Romanian marketplace.## Link to dataset\n\nRomania - Gucci - Product-level price list dataset" ]
718b3b4db0f9698a05d740a015f492e4afb4b460
# Net-a-Porter web scraped data ## About the website The **fashion e-commerce industry** in the Asia Pacific, particularly in **South Korea**, has seen tremendous growth over the last few years. Rapid advancements in **digital technology**, together with a sophisticated logistics infrastructure and increasingly affluent consumer base, are driving this expansion. **South Korea’s digital infrastructure** is one of the most advanced in the region, offering online retailers access to a broad, tech-savvy audience. Cultural factors like the Korean Wave (“Hallyu”) are also influencing fashion trends and consumption patterns. The dataset observed provides **e-commerce product-list page (PLP) data** about **Net-a-Porter** in South Korea, shedding light on purchasing patterns and preferences in this vibrant market. ## Link to **dataset** [South Korea - Net-a-Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Net-a-Porter%20Product-prices%20South%20Korea/r/recbd28ziED1dxjSE)
DBQ/Net.a.Porter.Product.prices.South.Korea
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:06:28+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Korea - Net-a-Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 20928720, "num_examples": 51265}], "download_size": 6412160, "dataset_size": 20928720}}
2023-11-19T09:06:36+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us
# Net-a-Porter web scraped data ## About the website The fashion e-commerce industry in the Asia Pacific, particularly in South Korea, has seen tremendous growth over the last few years. Rapid advancements in digital technology, together with a sophisticated logistics infrastructure and increasingly affluent consumer base, are driving this expansion. South Korea’s digital infrastructure is one of the most advanced in the region, offering online retailers access to a broad, tech-savvy audience. Cultural factors like the Korean Wave (“Hallyu”) are also influencing fashion trends and consumption patterns. The dataset observed provides e-commerce product-list page (PLP) data about Net-a-Porter in South Korea, shedding light on purchasing patterns and preferences in this vibrant market. ## Link to dataset South Korea - Net-a-Porter - Product-level price list dataset
[ "# Net-a-Porter web scraped data", "## About the website\n\nThe fashion e-commerce industry in the Asia Pacific, particularly in South Korea, has seen tremendous growth over the last few years. Rapid advancements in digital technology, together with a sophisticated logistics infrastructure and increasingly affluent consumer base, are driving this expansion. South Korea’s digital infrastructure is one of the most advanced in the region, offering online retailers access to a broad, tech-savvy audience. Cultural factors like the Korean Wave (“Hallyu”) are also influencing fashion trends and consumption patterns. The dataset observed provides e-commerce product-list page (PLP) data about Net-a-Porter in South Korea, shedding light on purchasing patterns and preferences in this vibrant market.", "## Link to dataset\n\nSouth Korea - Net-a-Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n", "# Net-a-Porter web scraped data", "## About the website\n\nThe fashion e-commerce industry in the Asia Pacific, particularly in South Korea, has seen tremendous growth over the last few years. Rapid advancements in digital technology, together with a sophisticated logistics infrastructure and increasingly affluent consumer base, are driving this expansion. South Korea’s digital infrastructure is one of the most advanced in the region, offering online retailers access to a broad, tech-savvy audience. Cultural factors like the Korean Wave (“Hallyu”) are also influencing fashion trends and consumption patterns. The dataset observed provides e-commerce product-list page (PLP) data about Net-a-Porter in South Korea, shedding light on purchasing patterns and preferences in this vibrant market.", "## Link to dataset\n\nSouth Korea - Net-a-Porter - Product-level price list dataset" ]
[ 177, 11, 166, 22 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n# Net-a-Porter web scraped data## About the website\n\nThe fashion e-commerce industry in the Asia Pacific, particularly in South Korea, has seen tremendous growth over the last few years. Rapid advancements in digital technology, together with a sophisticated logistics infrastructure and increasingly affluent consumer base, are driving this expansion. South Korea’s digital infrastructure is one of the most advanced in the region, offering online retailers access to a broad, tech-savvy audience. Cultural factors like the Korean Wave (“Hallyu”) are also influencing fashion trends and consumption patterns. The dataset observed provides e-commerce product-list page (PLP) data about Net-a-Porter in South Korea, shedding light on purchasing patterns and preferences in this vibrant market.## Link to dataset\n\nSouth Korea - Net-a-Porter - Product-level price list dataset" ]
2afc11248e765f9a9b8e3f4bd416e8f9f073fc96
# Mr Porter web scraped data ## About the website Mr Porter operates in the expansive and rapidly evolving **Ecommerce industry** in EMEA, specifically within the fast-growing Romanian market. This sector has gained significant traction owing to the convergence of technology and commerce, encompassing a broad range of online business activities for products and services. **Romania** has emerged as a key player, given its robust digital infrastructure and tech-savvy population. The data set examined provides a comprehensive insight into **Ecommerce product-list page (PLP)** data for **Mr Porter** in this blooming market. Through this, one can decipher key trends in consumer behaviour, product preferences, and overall market trajectory. ## Link to **dataset** [Romania - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Romania/r/recHYAkrDtNZwmVbJ)
DBQ/Mr.Porter.Product.prices.Romania
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:06:47+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Romania - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 9143455, "num_examples": 27826}], "download_size": 2082688, "dataset_size": 9143455}}
2023-11-19T09:06:54+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website Mr Porter operates in the expansive and rapidly evolving Ecommerce industry in EMEA, specifically within the fast-growing Romanian market. This sector has gained significant traction owing to the convergence of technology and commerce, encompassing a broad range of online business activities for products and services. Romania has emerged as a key player, given its robust digital infrastructure and tech-savvy population. The data set examined provides a comprehensive insight into Ecommerce product-list page (PLP) data for Mr Porter in this blooming market. Through this, one can decipher key trends in consumer behaviour, product preferences, and overall market trajectory. ## Link to dataset Romania - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates in the expansive and rapidly evolving Ecommerce industry in EMEA, specifically within the fast-growing Romanian market. This sector has gained significant traction owing to the convergence of technology and commerce, encompassing a broad range of online business activities for products and services. Romania has emerged as a key player, given its robust digital infrastructure and tech-savvy population. The data set examined provides a comprehensive insight into Ecommerce product-list page (PLP) data for Mr Porter in this blooming market. Through this, one can decipher key trends in consumer behaviour, product preferences, and overall market trajectory.", "## Link to dataset\n\nRomania - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates in the expansive and rapidly evolving Ecommerce industry in EMEA, specifically within the fast-growing Romanian market. This sector has gained significant traction owing to the convergence of technology and commerce, encompassing a broad range of online business activities for products and services. Romania has emerged as a key player, given its robust digital infrastructure and tech-savvy population. The data set examined provides a comprehensive insight into Ecommerce product-list page (PLP) data for Mr Porter in this blooming market. Through this, one can decipher key trends in consumer behaviour, product preferences, and overall market trajectory.", "## Link to dataset\n\nRomania - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 151, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nMr Porter operates in the expansive and rapidly evolving Ecommerce industry in EMEA, specifically within the fast-growing Romanian market. This sector has gained significant traction owing to the convergence of technology and commerce, encompassing a broad range of online business activities for products and services. Romania has emerged as a key player, given its robust digital infrastructure and tech-savvy population. The data set examined provides a comprehensive insight into Ecommerce product-list page (PLP) data for Mr Porter in this blooming market. Through this, one can decipher key trends in consumer behaviour, product preferences, and overall market trajectory.## Link to dataset\n\nRomania - Mr Porter - Product-level price list dataset" ]
c66933f81a51ef5ea2977f26272855d21a97c97e
# Farfetch web scraped data ## About the website The **Ecommerce industry** in the **Asia Pacific** region, particularly in **South Korea**, has seen dramatic growth over the recent years. Known for its tech-savvy population and high internet penetration, South Korea is considered as one of the world’s largest and most mature Ecommerce markets. The dataset observed sheds light on the Ecommerce **Product-List Page (PLP)** data on **Farfetch** in South Korea. The company operates within the luxury fashion sector, serving as a platform for boutiques and brands to sell their products, and is an important player in the Korean Ecommerce landscape. Growth in this sector can be attributed to the increasing demand for branded and luxury items in the nation. ## Link to **dataset** [South Korea - Farfetch - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Farfetch%20Product-prices%20South%20Korea/r/recKBupvuFtQd25fO)
DBQ/Farfetch.Product.prices.South.Korea
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:07:34+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Korea - Farfetch - Product-level price list", "tags": ["webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 212179509, "num_examples": 569613}], "download_size": 77331883, "dataset_size": 212179509}}
2023-11-19T09:08:39+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us
# Farfetch web scraped data ## About the website The Ecommerce industry in the Asia Pacific region, particularly in South Korea, has seen dramatic growth over the recent years. Known for its tech-savvy population and high internet penetration, South Korea is considered as one of the world’s largest and most mature Ecommerce markets. The dataset observed sheds light on the Ecommerce Product-List Page (PLP) data on Farfetch in South Korea. The company operates within the luxury fashion sector, serving as a platform for boutiques and brands to sell their products, and is an important player in the Korean Ecommerce landscape. Growth in this sector can be attributed to the increasing demand for branded and luxury items in the nation. ## Link to dataset South Korea - Farfetch - Product-level price list dataset
[ "# Farfetch web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific region, particularly in South Korea, has seen dramatic growth over the recent years. Known for its tech-savvy population and high internet penetration, South Korea is considered as one of the world’s largest and most mature Ecommerce markets. The dataset observed sheds light on the Ecommerce Product-List Page (PLP) data on Farfetch in South Korea. The company operates within the luxury fashion sector, serving as a platform for boutiques and brands to sell their products, and is an important player in the Korean Ecommerce landscape. Growth in this sector can be attributed to the increasing demand for branded and luxury items in the nation.", "## Link to dataset\n\nSouth Korea - Farfetch - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n", "# Farfetch web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific region, particularly in South Korea, has seen dramatic growth over the recent years. Known for its tech-savvy population and high internet penetration, South Korea is considered as one of the world’s largest and most mature Ecommerce markets. The dataset observed sheds light on the Ecommerce Product-List Page (PLP) data on Farfetch in South Korea. The company operates within the luxury fashion sector, serving as a platform for boutiques and brands to sell their products, and is an important player in the Korean Ecommerce landscape. Growth in this sector can be attributed to the increasing demand for branded and luxury items in the nation.", "## Link to dataset\n\nSouth Korea - Farfetch - Product-level price list dataset" ]
[ 179, 8, 154, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n# Farfetch web scraped data## About the website\n\nThe Ecommerce industry in the Asia Pacific region, particularly in South Korea, has seen dramatic growth over the recent years. Known for its tech-savvy population and high internet penetration, South Korea is considered as one of the world’s largest and most mature Ecommerce markets. The dataset observed sheds light on the Ecommerce Product-List Page (PLP) data on Farfetch in South Korea. The company operates within the luxury fashion sector, serving as a platform for boutiques and brands to sell their products, and is an important player in the Korean Ecommerce landscape. Growth in this sector can be attributed to the increasing demand for branded and luxury items in the nation.## Link to dataset\n\nSouth Korea - Farfetch - Product-level price list dataset" ]
1d814fdcd3bab002c7d89c86c6ebec6807fb4529
# Fendi web scraped data ## About the website The **luxury fashion industry** in the **United States** serves as a prominent platform for world-renowned brands like **Fendi**. The industry presents a vibrant mix of branded apparel, footwear, accessories, jewelry and personal luxury goods. A key aspect is the significant surge of **ecommerce**, revolutionizing traditional retail with its superior convenience and selection diversity. In this digital landscape, emphasis is placed on data-driven strategies, where datasets, like **Ecommerce product-list page (PLP) data** on Fendi, provide crucial insights for decision-making and effective market reach. The fashion industry in America, laced with digital innovation, presents significant opportunities and challenges in equal measure. ## Link to **dataset** [United States - Fendi - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Fendi%20Product-prices%20United%20States/r/reclz9iHklMaBqZJ0)
DBQ/Fendi.Product.prices.United.States
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:08:48+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United States - Fendi - Product-level price list", "tags": ["webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1009889, "num_examples": 2897}], "download_size": 306452, "dataset_size": 1009889}}
2023-11-19T09:08:54+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us
# Fendi web scraped data ## About the website The luxury fashion industry in the United States serves as a prominent platform for world-renowned brands like Fendi. The industry presents a vibrant mix of branded apparel, footwear, accessories, jewelry and personal luxury goods. A key aspect is the significant surge of ecommerce, revolutionizing traditional retail with its superior convenience and selection diversity. In this digital landscape, emphasis is placed on data-driven strategies, where datasets, like Ecommerce product-list page (PLP) data on Fendi, provide crucial insights for decision-making and effective market reach. The fashion industry in America, laced with digital innovation, presents significant opportunities and challenges in equal measure. ## Link to dataset United States - Fendi - Product-level price list dataset
[ "# Fendi web scraped data", "## About the website\n\nThe luxury fashion industry in the United States serves as a prominent platform for world-renowned brands like Fendi. The industry presents a vibrant mix of branded apparel, footwear, accessories, jewelry and personal luxury goods. A key aspect is the significant surge of ecommerce, revolutionizing traditional retail with its superior convenience and selection diversity. In this digital landscape, emphasis is placed on data-driven strategies, where datasets, like Ecommerce product-list page (PLP) data on Fendi, provide crucial insights for decision-making and effective market reach. The fashion industry in America, laced with digital innovation, presents significant opportunities and challenges in equal measure.", "## Link to dataset\n\nUnited States - Fendi - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n", "# Fendi web scraped data", "## About the website\n\nThe luxury fashion industry in the United States serves as a prominent platform for world-renowned brands like Fendi. The industry presents a vibrant mix of branded apparel, footwear, accessories, jewelry and personal luxury goods. A key aspect is the significant surge of ecommerce, revolutionizing traditional retail with its superior convenience and selection diversity. In this digital landscape, emphasis is placed on data-driven strategies, where datasets, like Ecommerce product-list page (PLP) data on Fendi, provide crucial insights for decision-making and effective market reach. The fashion industry in America, laced with digital innovation, presents significant opportunities and challenges in equal measure.", "## Link to dataset\n\nUnited States - Fendi - Product-level price list dataset" ]
[ 178, 7, 155, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n# Fendi web scraped data## About the website\n\nThe luxury fashion industry in the United States serves as a prominent platform for world-renowned brands like Fendi. The industry presents a vibrant mix of branded apparel, footwear, accessories, jewelry and personal luxury goods. A key aspect is the significant surge of ecommerce, revolutionizing traditional retail with its superior convenience and selection diversity. In this digital landscape, emphasis is placed on data-driven strategies, where datasets, like Ecommerce product-list page (PLP) data on Fendi, provide crucial insights for decision-making and effective market reach. The fashion industry in America, laced with digital innovation, presents significant opportunities and challenges in equal measure.## Link to dataset\n\nUnited States - Fendi - Product-level price list dataset" ]
15148d2875fdbe513e2e33c1cc8f5e6c40c45d33
# Chanel web scraped data ## About the website The global luxury goods industry, specifically the high-end fashion sector, is a competitive marketplace where brands like **Chanel** thrive. The American market, especially the **United States**, plays a critical role in this industry, as it is one of the worlds biggest consumers of luxury products. With its affluent consumers propensity for luxury and up-scale products, the US market is a major driver of growth in this sector. The recent shift towards **Ecommerce** and digital platforms has further revolutionized luxury sales. The observed dataset provides valuable **Ecommerce product-list page (PLP)** data on Chanels operations in the United States, highlighting key trends and insights into their online strategies and performance. ## Link to **dataset** [United States - Chanel - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Chanel%20Product-prices%20United%20States/r/recMdZB18HDhbWplC)
DBQ/Chanel.Product.prices.United.States
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Chanel", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:09:02+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United States - Chanel - Product-level price list", "tags": ["webscraping", "ecommerce", "Chanel", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 748670, "num_examples": 1452}], "download_size": 189766, "dataset_size": 748670}}
2023-11-19T09:09:12+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us
# Chanel web scraped data ## About the website The global luxury goods industry, specifically the high-end fashion sector, is a competitive marketplace where brands like Chanel thrive. The American market, especially the United States, plays a critical role in this industry, as it is one of the worlds biggest consumers of luxury products. With its affluent consumers propensity for luxury and up-scale products, the US market is a major driver of growth in this sector. The recent shift towards Ecommerce and digital platforms has further revolutionized luxury sales. The observed dataset provides valuable Ecommerce product-list page (PLP) data on Chanels operations in the United States, highlighting key trends and insights into their online strategies and performance. ## Link to dataset United States - Chanel - Product-level price list dataset
[ "# Chanel web scraped data", "## About the website\n\nThe global luxury goods industry, specifically the high-end fashion sector, is a competitive marketplace where brands like Chanel thrive. The American market, especially the United States, plays a critical role in this industry, as it is one of the worlds biggest consumers of luxury products. With its affluent consumers propensity for luxury and up-scale products, the US market is a major driver of growth in this sector. The recent shift towards Ecommerce and digital platforms has further revolutionized luxury sales. The observed dataset provides valuable Ecommerce product-list page (PLP) data on Chanels operations in the United States, highlighting key trends and insights into their online strategies and performance.", "## Link to dataset\n\nUnited States - Chanel - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us \n", "# Chanel web scraped data", "## About the website\n\nThe global luxury goods industry, specifically the high-end fashion sector, is a competitive marketplace where brands like Chanel thrive. The American market, especially the United States, plays a critical role in this industry, as it is one of the worlds biggest consumers of luxury products. With its affluent consumers propensity for luxury and up-scale products, the US market is a major driver of growth in this sector. The recent shift towards Ecommerce and digital platforms has further revolutionized luxury sales. The observed dataset provides valuable Ecommerce product-list page (PLP) data on Chanels operations in the United States, highlighting key trends and insights into their online strategies and performance.", "## Link to dataset\n\nUnited States - Chanel - Product-level price list dataset" ]
[ 178, 6, 161, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chanel #fashion #fashion product #image #fashion image #region-us \n# Chanel web scraped data## About the website\n\nThe global luxury goods industry, specifically the high-end fashion sector, is a competitive marketplace where brands like Chanel thrive. The American market, especially the United States, plays a critical role in this industry, as it is one of the worlds biggest consumers of luxury products. With its affluent consumers propensity for luxury and up-scale products, the US market is a major driver of growth in this sector. The recent shift towards Ecommerce and digital platforms has further revolutionized luxury sales. The observed dataset provides valuable Ecommerce product-list page (PLP) data on Chanels operations in the United States, highlighting key trends and insights into their online strategies and performance.## Link to dataset\n\nUnited States - Chanel - Product-level price list dataset" ]
d79d091dea5818e7c760a22b3b2a3a1237d4b0ec
# Mr Porter web scraped data ## About the website The **Ecommerce industry** in Asia Pacific, particularly in **Taiwan**, has been burgeoning due to increased internet penetration and growing consumer trust in online transactions. The industry encompasses various businesses, including fashion retailers like **Mr Porter**. Recognized for its upscale menswear, Mr Porter has carved a good standing in the online shopping landscape of Taiwan. The observed dataset specifically covers Ecommerce product-list page (PLP) data, offering valuable insights into Mr Porters performance and competitive stance within Taiwan. As Ecommerce sees an upward trend in Taiwan, understanding PLP data becomes essential for carving successful market strategies. ## Link to **dataset** [Taiwan - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Taiwan/r/rec2pFzgTY38uwa95)
DBQ/Mr.Porter.Product.prices.Taiwan
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:09:23+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Taiwan - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8970329, "num_examples": 27315}], "download_size": 2161710, "dataset_size": 8970329}}
2023-11-19T09:09:28+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The Ecommerce industry in Asia Pacific, particularly in Taiwan, has been burgeoning due to increased internet penetration and growing consumer trust in online transactions. The industry encompasses various businesses, including fashion retailers like Mr Porter. Recognized for its upscale menswear, Mr Porter has carved a good standing in the online shopping landscape of Taiwan. The observed dataset specifically covers Ecommerce product-list page (PLP) data, offering valuable insights into Mr Porters performance and competitive stance within Taiwan. As Ecommerce sees an upward trend in Taiwan, understanding PLP data becomes essential for carving successful market strategies. ## Link to dataset Taiwan - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe Ecommerce industry in Asia Pacific, particularly in Taiwan, has been burgeoning due to increased internet penetration and growing consumer trust in online transactions. The industry encompasses various businesses, including fashion retailers like Mr Porter. Recognized for its upscale menswear, Mr Porter has carved a good standing in the online shopping landscape of Taiwan. The observed dataset specifically covers Ecommerce product-list page (PLP) data, offering valuable insights into Mr Porters performance and competitive stance within Taiwan. As Ecommerce sees an upward trend in Taiwan, understanding PLP data becomes essential for carving successful market strategies.", "## Link to dataset\n\nTaiwan - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe Ecommerce industry in Asia Pacific, particularly in Taiwan, has been burgeoning due to increased internet penetration and growing consumer trust in online transactions. The industry encompasses various businesses, including fashion retailers like Mr Porter. Recognized for its upscale menswear, Mr Porter has carved a good standing in the online shopping landscape of Taiwan. The observed dataset specifically covers Ecommerce product-list page (PLP) data, offering valuable insights into Mr Porters performance and competitive stance within Taiwan. As Ecommerce sees an upward trend in Taiwan, understanding PLP data becomes essential for carving successful market strategies.", "## Link to dataset\n\nTaiwan - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 145, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe Ecommerce industry in Asia Pacific, particularly in Taiwan, has been burgeoning due to increased internet penetration and growing consumer trust in online transactions. The industry encompasses various businesses, including fashion retailers like Mr Porter. Recognized for its upscale menswear, Mr Porter has carved a good standing in the online shopping landscape of Taiwan. The observed dataset specifically covers Ecommerce product-list page (PLP) data, offering valuable insights into Mr Porters performance and competitive stance within Taiwan. As Ecommerce sees an upward trend in Taiwan, understanding PLP data becomes essential for carving successful market strategies.## Link to dataset\n\nTaiwan - Mr Porter - Product-level price list dataset" ]
906989f4c754552ae808d6a45cb238abe26b4e5f
# Louis Vuitton web scraped data ## About the website The **luxury fashion industry** in the **Asia Pacific**, particularly in **Australia**, has seen a considerable surge in popularity over recent years. With a central focus on high-end designer brands such as **Louis Vuitton**, this lucrative market operates both in physical boutiques and more predominantly, via **ecommerce**. Australian consumers are now highly targeted by luxury brand campaigns due to their increasing purchasing power. The dataset observed contains comprehensive **Ecommerce product-list page (PLP) data** specific to the operations of **Louis Vuitton in Australia**, offering valuable insight into market preferences, buying behaviour and product performance in the digital space. ## Link to **dataset** [Australia - Louis Vuitton - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Louis%20Vuitton%20Product-prices%20Australia/r/recEN6BuMhUq7CTFa)
DBQ/Louis.Vuitton.Product.prices.Australia
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:09:37+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Australia - Louis Vuitton - Product-level price list", "tags": ["webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2779833, "num_examples": 6525}], "download_size": 739720, "dataset_size": 2779833}}
2023-11-19T09:09:43+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us
# Louis Vuitton web scraped data ## About the website The luxury fashion industry in the Asia Pacific, particularly in Australia, has seen a considerable surge in popularity over recent years. With a central focus on high-end designer brands such as Louis Vuitton, this lucrative market operates both in physical boutiques and more predominantly, via ecommerce. Australian consumers are now highly targeted by luxury brand campaigns due to their increasing purchasing power. The dataset observed contains comprehensive Ecommerce product-list page (PLP) data specific to the operations of Louis Vuitton in Australia, offering valuable insight into market preferences, buying behaviour and product performance in the digital space. ## Link to dataset Australia - Louis Vuitton - Product-level price list dataset
[ "# Louis Vuitton web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific, particularly in Australia, has seen a considerable surge in popularity over recent years. With a central focus on high-end designer brands such as Louis Vuitton, this lucrative market operates both in physical boutiques and more predominantly, via ecommerce. Australian consumers are now highly targeted by luxury brand campaigns due to their increasing purchasing power. The dataset observed contains comprehensive Ecommerce product-list page (PLP) data specific to the operations of Louis Vuitton in Australia, offering valuable insight into market preferences, buying behaviour and product performance in the digital space.", "## Link to dataset\n\nAustralia - Louis Vuitton - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n", "# Louis Vuitton web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific, particularly in Australia, has seen a considerable surge in popularity over recent years. With a central focus on high-end designer brands such as Louis Vuitton, this lucrative market operates both in physical boutiques and more predominantly, via ecommerce. Australian consumers are now highly targeted by luxury brand campaigns due to their increasing purchasing power. The dataset observed contains comprehensive Ecommerce product-list page (PLP) data specific to the operations of Louis Vuitton in Australia, offering valuable insight into market preferences, buying behaviour and product performance in the digital space.", "## Link to dataset\n\nAustralia - Louis Vuitton - Product-level price list dataset" ]
[ 178, 7, 138, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n# Louis Vuitton web scraped data## About the website\n\nThe luxury fashion industry in the Asia Pacific, particularly in Australia, has seen a considerable surge in popularity over recent years. With a central focus on high-end designer brands such as Louis Vuitton, this lucrative market operates both in physical boutiques and more predominantly, via ecommerce. Australian consumers are now highly targeted by luxury brand campaigns due to their increasing purchasing power. The dataset observed contains comprehensive Ecommerce product-list page (PLP) data specific to the operations of Louis Vuitton in Australia, offering valuable insight into market preferences, buying behaviour and product performance in the digital space.## Link to dataset\n\nAustralia - Louis Vuitton - Product-level price list dataset" ]
12d57ca51945a538b5f3d73db580142897600937
# Fendi web scraped data ## About the website Operating within the **luxury fashion industry**, **Fendi** is a notable player in the EMEA region, particularly in its home country, **Italy**. Known for its innovative Italian craftsmanship, it represents an essential pillar of the **Italian luxury goods sector**. The industry is characterized by artisanal production, prestigious brands, premium prices, and a global customer base focusing on exclusivity and quality. A significant trend in this industry is the shift towards **digital platforms** and **Ecommerce** to meet evolving consumer behaviours. Considering this context, the dataset reflects **Ecommerce product-list page (PLP) data on Fendi** in Italy, unveiling consumer preferences and trends in Italian luxury shopping. ## Link to **dataset** [Italy - Fendi - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Fendi%20Product-prices%20Italy/r/recGB0fxVukeTKxdK)
DBQ/Fendi.Product.prices.Italy
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:09:51+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Italy - Fendi - Product-level price list", "tags": ["webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 806401, "num_examples": 1995}], "download_size": 253225, "dataset_size": 806401}}
2023-11-19T09:09:57+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us
# Fendi web scraped data ## About the website Operating within the luxury fashion industry, Fendi is a notable player in the EMEA region, particularly in its home country, Italy. Known for its innovative Italian craftsmanship, it represents an essential pillar of the Italian luxury goods sector. The industry is characterized by artisanal production, prestigious brands, premium prices, and a global customer base focusing on exclusivity and quality. A significant trend in this industry is the shift towards digital platforms and Ecommerce to meet evolving consumer behaviours. Considering this context, the dataset reflects Ecommerce product-list page (PLP) data on Fendi in Italy, unveiling consumer preferences and trends in Italian luxury shopping. ## Link to dataset Italy - Fendi - Product-level price list dataset
[ "# Fendi web scraped data", "## About the website\n\nOperating within the luxury fashion industry, Fendi is a notable player in the EMEA region, particularly in its home country, Italy. Known for its innovative Italian craftsmanship, it represents an essential pillar of the Italian luxury goods sector. The industry is characterized by artisanal production, prestigious brands, premium prices, and a global customer base focusing on exclusivity and quality. A significant trend in this industry is the shift towards digital platforms and Ecommerce to meet evolving consumer behaviours. Considering this context, the dataset reflects Ecommerce product-list page (PLP) data on Fendi in Italy, unveiling consumer preferences and trends in Italian luxury shopping.", "## Link to dataset\n\nItaly - Fendi - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n", "# Fendi web scraped data", "## About the website\n\nOperating within the luxury fashion industry, Fendi is a notable player in the EMEA region, particularly in its home country, Italy. Known for its innovative Italian craftsmanship, it represents an essential pillar of the Italian luxury goods sector. The industry is characterized by artisanal production, prestigious brands, premium prices, and a global customer base focusing on exclusivity and quality. A significant trend in this industry is the shift towards digital platforms and Ecommerce to meet evolving consumer behaviours. Considering this context, the dataset reflects Ecommerce product-list page (PLP) data on Fendi in Italy, unveiling consumer preferences and trends in Italian luxury shopping.", "## Link to dataset\n\nItaly - Fendi - Product-level price list dataset" ]
[ 178, 7, 157, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n# Fendi web scraped data## About the website\n\nOperating within the luxury fashion industry, Fendi is a notable player in the EMEA region, particularly in its home country, Italy. Known for its innovative Italian craftsmanship, it represents an essential pillar of the Italian luxury goods sector. The industry is characterized by artisanal production, prestigious brands, premium prices, and a global customer base focusing on exclusivity and quality. A significant trend in this industry is the shift towards digital platforms and Ecommerce to meet evolving consumer behaviours. Considering this context, the dataset reflects Ecommerce product-list page (PLP) data on Fendi in Italy, unveiling consumer preferences and trends in Italian luxury shopping.## Link to dataset\n\nItaly - Fendi - Product-level price list dataset" ]
339382588dc0b16a724e6644391cb0d232470d81
# Hermes web scraped data ## About the website The **EMEA luxury fashion industry**, particularly in **Italy**, is characterized by its high-end, high-quality retail products. Italy is home to many iconic fashion brands and is one of the worlds fashion capitals. **Hermes** is one of the prominent players in this sphere. With its sophisticated designs and high-quality craftsmanship, Hermes caters to a luxury-oriented demographic. The retail industry, more specifically, is making strategic shifts towards **Ecommerce**, stepping up their game in the digital market. The dataset observed provides insight into this shift, featuring **Ecommerce product-list page (PLP)** data of Hermes in Italy. This data provides an insight into Hermes online market dynamics, signalling its efforts to adapt to the increasingly evolving digital shopping trends. ## Link to **dataset** [Italy - Hermes - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Hermes%20Product-prices%20Italy/r/recHVPAiKIshqPYKD)
DBQ/Hermes.Product.prices.Italy
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Hermes", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:10:07+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Italy - Hermes - Product-level price list", "tags": ["webscraping", "ecommerce", "Hermes", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "int64"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 196574, "num_examples": 535}], "download_size": 49870, "dataset_size": 196574}}
2023-11-19T09:10:13+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Hermes #fashion #fashion product #image #fashion image #region-us
# Hermes web scraped data ## About the website The EMEA luxury fashion industry, particularly in Italy, is characterized by its high-end, high-quality retail products. Italy is home to many iconic fashion brands and is one of the worlds fashion capitals. Hermes is one of the prominent players in this sphere. With its sophisticated designs and high-quality craftsmanship, Hermes caters to a luxury-oriented demographic. The retail industry, more specifically, is making strategic shifts towards Ecommerce, stepping up their game in the digital market. The dataset observed provides insight into this shift, featuring Ecommerce product-list page (PLP) data of Hermes in Italy. This data provides an insight into Hermes online market dynamics, signalling its efforts to adapt to the increasingly evolving digital shopping trends. ## Link to dataset Italy - Hermes - Product-level price list dataset
[ "# Hermes web scraped data", "## About the website\n\nThe EMEA luxury fashion industry, particularly in Italy, is characterized by its high-end, high-quality retail products. Italy is home to many iconic fashion brands and is one of the worlds fashion capitals. Hermes is one of the prominent players in this sphere. With its sophisticated designs and high-quality craftsmanship, Hermes caters to a luxury-oriented demographic. The retail industry, more specifically, is making strategic shifts towards Ecommerce, stepping up their game in the digital market. The dataset observed provides insight into this shift, featuring Ecommerce product-list page (PLP) data of Hermes in Italy. This data provides an insight into Hermes online market dynamics, signalling its efforts to adapt to the increasingly evolving digital shopping trends.", "## Link to dataset\n\nItaly - Hermes - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Hermes #fashion #fashion product #image #fashion image #region-us \n", "# Hermes web scraped data", "## About the website\n\nThe EMEA luxury fashion industry, particularly in Italy, is characterized by its high-end, high-quality retail products. Italy is home to many iconic fashion brands and is one of the worlds fashion capitals. Hermes is one of the prominent players in this sphere. With its sophisticated designs and high-quality craftsmanship, Hermes caters to a luxury-oriented demographic. The retail industry, more specifically, is making strategic shifts towards Ecommerce, stepping up their game in the digital market. The dataset observed provides insight into this shift, featuring Ecommerce product-list page (PLP) data of Hermes in Italy. This data provides an insight into Hermes online market dynamics, signalling its efforts to adapt to the increasingly evolving digital shopping trends.", "## Link to dataset\n\nItaly - Hermes - Product-level price list dataset" ]
[ 178, 7, 181, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Hermes #fashion #fashion product #image #fashion image #region-us \n# Hermes web scraped data## About the website\n\nThe EMEA luxury fashion industry, particularly in Italy, is characterized by its high-end, high-quality retail products. Italy is home to many iconic fashion brands and is one of the worlds fashion capitals. Hermes is one of the prominent players in this sphere. With its sophisticated designs and high-quality craftsmanship, Hermes caters to a luxury-oriented demographic. The retail industry, more specifically, is making strategic shifts towards Ecommerce, stepping up their game in the digital market. The dataset observed provides insight into this shift, featuring Ecommerce product-list page (PLP) data of Hermes in Italy. This data provides an insight into Hermes online market dynamics, signalling its efforts to adapt to the increasingly evolving digital shopping trends.## Link to dataset\n\nItaly - Hermes - Product-level price list dataset" ]
f5b12e2de2499d8d985f53a6fbc6f275857d5c17
# Saint Laurent web scraped data ## About the website Saint Laurent operates within the vibrant **luxury fashion industry** in the **EMEA** region, particularly in **Italy**. The Italian luxury fashion sector is characterised by its rich history, renowned craftsmanship and a high demand for its prestigious brands. **Saint Laurent** falls under this prestigious category. The industry has significant presence online, propelled by the rise of **e-commerce** and digital marketing strategies. The dataset observed pertains to **e-commerce product tags data** for Saint Laurent in Italy. This data illustrates the strong digital footprint in the Italian market and is instrumental for fashion trend analysis, customer preferences and competitive analysis. ## Link to **dataset** [Italy - Saint Laurent - Fashion Standard Categories dataset](https://www.databoutique.com/buy-data-page/Saint%20Laurent%20Standard%20Categories%20Italy/r/recFv379kR9jEGWhK)
DBQ/Saint.Laurent.Standard.Categories.Italy
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Saint Laurent", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:10:21+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Italy - Saint Laurent - Fashion Standard Categories", "tags": ["webscraping", "ecommerce", "Saint Laurent", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "dbq_prd_type", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "website_name", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "tag_field", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 294430, "num_examples": 3064}], "download_size": 51647, "dataset_size": 294430}}
2023-11-19T09:10:25+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Saint Laurent #fashion #fashion product #image #fashion image #region-us
# Saint Laurent web scraped data ## About the website Saint Laurent operates within the vibrant luxury fashion industry in the EMEA region, particularly in Italy. The Italian luxury fashion sector is characterised by its rich history, renowned craftsmanship and a high demand for its prestigious brands. Saint Laurent falls under this prestigious category. The industry has significant presence online, propelled by the rise of e-commerce and digital marketing strategies. The dataset observed pertains to e-commerce product tags data for Saint Laurent in Italy. This data illustrates the strong digital footprint in the Italian market and is instrumental for fashion trend analysis, customer preferences and competitive analysis. ## Link to dataset Italy - Saint Laurent - Fashion Standard Categories dataset
[ "# Saint Laurent web scraped data", "## About the website\n\nSaint Laurent operates within the vibrant luxury fashion industry in the EMEA region, particularly in Italy. The Italian luxury fashion sector is characterised by its rich history, renowned craftsmanship and a high demand for its prestigious brands. Saint Laurent falls under this prestigious category. The industry has significant presence online, propelled by the rise of e-commerce and digital marketing strategies. The dataset observed pertains to e-commerce product tags data for Saint Laurent in Italy. This data illustrates the strong digital footprint in the Italian market and is instrumental for fashion trend analysis, customer preferences and competitive analysis.", "## Link to dataset\n\nItaly - Saint Laurent - Fashion Standard Categories dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Saint Laurent #fashion #fashion product #image #fashion image #region-us \n", "# Saint Laurent web scraped data", "## About the website\n\nSaint Laurent operates within the vibrant luxury fashion industry in the EMEA region, particularly in Italy. The Italian luxury fashion sector is characterised by its rich history, renowned craftsmanship and a high demand for its prestigious brands. Saint Laurent falls under this prestigious category. The industry has significant presence online, propelled by the rise of e-commerce and digital marketing strategies. The dataset observed pertains to e-commerce product tags data for Saint Laurent in Italy. This data illustrates the strong digital footprint in the Italian market and is instrumental for fashion trend analysis, customer preferences and competitive analysis.", "## Link to dataset\n\nItaly - Saint Laurent - Fashion Standard Categories dataset" ]
[ 178, 7, 137, 15 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Saint Laurent #fashion #fashion product #image #fashion image #region-us \n# Saint Laurent web scraped data## About the website\n\nSaint Laurent operates within the vibrant luxury fashion industry in the EMEA region, particularly in Italy. The Italian luxury fashion sector is characterised by its rich history, renowned craftsmanship and a high demand for its prestigious brands. Saint Laurent falls under this prestigious category. The industry has significant presence online, propelled by the rise of e-commerce and digital marketing strategies. The dataset observed pertains to e-commerce product tags data for Saint Laurent in Italy. This data illustrates the strong digital footprint in the Italian market and is instrumental for fashion trend analysis, customer preferences and competitive analysis.## Link to dataset\n\nItaly - Saint Laurent - Fashion Standard Categories dataset" ]
f10fac5c7ab0b9630ce840d2a55b1eb5abd4989d
# Farfetch web scraped data ## About the website The **Ecommerce industry** in the Asia Pacific, particularly in **Singapore**, has experienced significant growth in recent years, largely attributed to the rapid digital transformation and the increasing internet penetration rate. The so-called "Lion City" has become a hub for technological advancements and digital innovations. Companies like **Farfetch** have taken advantage of this and established a solid presence, offering a myriad of luxury fashion products online. The dataset studied comprises **Ecommerce product-list page (PLP) data** on Farfetch in Singapore, demonstrating the reach and impact of such platforms in the blossoming regional market. ## Link to **dataset** [Singapore - Farfetch - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Farfetch%20Product-prices%20Singapore/r/recZTFqL4hIx7jJnk)
DBQ/Farfetch.Product.prices.Singapore
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:11:06+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Singapore - Farfetch - Product-level price list", "tags": ["webscraping", "ecommerce", "Farfetch", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 225892320, "num_examples": 602976}], "download_size": 80912778, "dataset_size": 225892320}}
2023-11-19T09:12:29+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us
# Farfetch web scraped data ## About the website The Ecommerce industry in the Asia Pacific, particularly in Singapore, has experienced significant growth in recent years, largely attributed to the rapid digital transformation and the increasing internet penetration rate. The so-called "Lion City" has become a hub for technological advancements and digital innovations. Companies like Farfetch have taken advantage of this and established a solid presence, offering a myriad of luxury fashion products online. The dataset studied comprises Ecommerce product-list page (PLP) data on Farfetch in Singapore, demonstrating the reach and impact of such platforms in the blossoming regional market. ## Link to dataset Singapore - Farfetch - Product-level price list dataset
[ "# Farfetch web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific, particularly in Singapore, has experienced significant growth in recent years, largely attributed to the rapid digital transformation and the increasing internet penetration rate. The so-called \"Lion City\" has become a hub for technological advancements and digital innovations. Companies like Farfetch have taken advantage of this and established a solid presence, offering a myriad of luxury fashion products online. The dataset studied comprises Ecommerce product-list page (PLP) data on Farfetch in Singapore, demonstrating the reach and impact of such platforms in the blossoming regional market.", "## Link to dataset\n\nSingapore - Farfetch - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n", "# Farfetch web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific, particularly in Singapore, has experienced significant growth in recent years, largely attributed to the rapid digital transformation and the increasing internet penetration rate. The so-called \"Lion City\" has become a hub for technological advancements and digital innovations. Companies like Farfetch have taken advantage of this and established a solid presence, offering a myriad of luxury fashion products online. The dataset studied comprises Ecommerce product-list page (PLP) data on Farfetch in Singapore, demonstrating the reach and impact of such platforms in the blossoming regional market.", "## Link to dataset\n\nSingapore - Farfetch - Product-level price list dataset" ]
[ 179, 8, 138, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Farfetch #fashion #fashion product #image #fashion image #region-us \n# Farfetch web scraped data## About the website\n\nThe Ecommerce industry in the Asia Pacific, particularly in Singapore, has experienced significant growth in recent years, largely attributed to the rapid digital transformation and the increasing internet penetration rate. The so-called \"Lion City\" has become a hub for technological advancements and digital innovations. Companies like Farfetch have taken advantage of this and established a solid presence, offering a myriad of luxury fashion products online. The dataset studied comprises Ecommerce product-list page (PLP) data on Farfetch in Singapore, demonstrating the reach and impact of such platforms in the blossoming regional market.## Link to dataset\n\nSingapore - Farfetch - Product-level price list dataset" ]
c3d8568deedc3686e13e752f897f48b851cd3c0c
# Fendi web scraped data ## About the website The **fashion industry** in EMEA, particularly **Germany**, has gradually incorporated the growth and importance of the **digital marketplace**. High-end retailers, such as Fendi, are now focusing on providing luxury shopping experiences online which imitate the opulence of their physical stores, encompassing the entire purchase journey from product discovery to delivery. The dataset observed includes **Ecommerce product-list page (PLP) data** specifically on **Fendi in Germany**. This reflects the tailored digital consumer experiences in the significant shift to **online luxury retail**. Germany is setting the regional trend with their strong underlying ecommerce infrastructure and digital shopping habits. ## Link to **dataset** [Germany - Fendi - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Fendi%20Product-prices%20Germany/r/recOaqMZaRUVnLhzZ)
DBQ/Fendi.Product.prices.Germany
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:12:38+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Germany - Fendi - Product-level price list", "tags": ["webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 823658, "num_examples": 1992}], "download_size": 255541, "dataset_size": 823658}}
2023-11-19T09:12:43+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us
# Fendi web scraped data ## About the website The fashion industry in EMEA, particularly Germany, has gradually incorporated the growth and importance of the digital marketplace. High-end retailers, such as Fendi, are now focusing on providing luxury shopping experiences online which imitate the opulence of their physical stores, encompassing the entire purchase journey from product discovery to delivery. The dataset observed includes Ecommerce product-list page (PLP) data specifically on Fendi in Germany. This reflects the tailored digital consumer experiences in the significant shift to online luxury retail. Germany is setting the regional trend with their strong underlying ecommerce infrastructure and digital shopping habits. ## Link to dataset Germany - Fendi - Product-level price list dataset
[ "# Fendi web scraped data", "## About the website\n\nThe fashion industry in EMEA, particularly Germany, has gradually incorporated the growth and importance of the digital marketplace. High-end retailers, such as Fendi, are now focusing on providing luxury shopping experiences online which imitate the opulence of their physical stores, encompassing the entire purchase journey from product discovery to delivery. The dataset observed includes Ecommerce product-list page (PLP) data specifically on Fendi in Germany. This reflects the tailored digital consumer experiences in the significant shift to online luxury retail. Germany is setting the regional trend with their strong underlying ecommerce infrastructure and digital shopping habits.", "## Link to dataset\n\nGermany - Fendi - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n", "# Fendi web scraped data", "## About the website\n\nThe fashion industry in EMEA, particularly Germany, has gradually incorporated the growth and importance of the digital marketplace. High-end retailers, such as Fendi, are now focusing on providing luxury shopping experiences online which imitate the opulence of their physical stores, encompassing the entire purchase journey from product discovery to delivery. The dataset observed includes Ecommerce product-list page (PLP) data specifically on Fendi in Germany. This reflects the tailored digital consumer experiences in the significant shift to online luxury retail. Germany is setting the regional trend with their strong underlying ecommerce infrastructure and digital shopping habits.", "## Link to dataset\n\nGermany - Fendi - Product-level price list dataset" ]
[ 178, 7, 143, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n# Fendi web scraped data## About the website\n\nThe fashion industry in EMEA, particularly Germany, has gradually incorporated the growth and importance of the digital marketplace. High-end retailers, such as Fendi, are now focusing on providing luxury shopping experiences online which imitate the opulence of their physical stores, encompassing the entire purchase journey from product discovery to delivery. The dataset observed includes Ecommerce product-list page (PLP) data specifically on Fendi in Germany. This reflects the tailored digital consumer experiences in the significant shift to online luxury retail. Germany is setting the regional trend with their strong underlying ecommerce infrastructure and digital shopping habits.## Link to dataset\n\nGermany - Fendi - Product-level price list dataset" ]
cb13080573da60507d9658c921d9c703a666621e
# Mr Porter web scraped data ## About the website **Mr Porter** is a prominent operator in the **online retail industry** within the EMEA region, specifically in **Russia**. The E-commerce industry in Russia is growing rapidly, amidst the increasing tech-savviness and online shopping habits of consumers. Mr Porters foundation on sophisticated technology offers them a competitive edge, especially in tailoring to Russias vast and diverse consumer base. **E-commerce**, particularly **online fashion retailing**, is emerging as a dominant industry, influenced by factors like advanced technology, easy access to the internet, and changing consumer patterns. The dataset under observation contains **Ecommerce product-list page (PLP) data** pertaining to Mr Porters operations in Russia. ## Link to **dataset** [Russia - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Russia/r/reckLATEvXV9HEd9d)
DBQ/Mr.Porter.Product.prices.Russia
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:12:53+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Russia - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8722278, "num_examples": 26612}], "download_size": 2022635, "dataset_size": 8722278}}
2023-11-19T09:12:59+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website Mr Porter is a prominent operator in the online retail industry within the EMEA region, specifically in Russia. The E-commerce industry in Russia is growing rapidly, amidst the increasing tech-savviness and online shopping habits of consumers. Mr Porters foundation on sophisticated technology offers them a competitive edge, especially in tailoring to Russias vast and diverse consumer base. E-commerce, particularly online fashion retailing, is emerging as a dominant industry, influenced by factors like advanced technology, easy access to the internet, and changing consumer patterns. The dataset under observation contains Ecommerce product-list page (PLP) data pertaining to Mr Porters operations in Russia. ## Link to dataset Russia - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nMr Porter is a prominent operator in the online retail industry within the EMEA region, specifically in Russia. The E-commerce industry in Russia is growing rapidly, amidst the increasing tech-savviness and online shopping habits of consumers. Mr Porters foundation on sophisticated technology offers them a competitive edge, especially in tailoring to Russias vast and diverse consumer base. E-commerce, particularly online fashion retailing, is emerging as a dominant industry, influenced by factors like advanced technology, easy access to the internet, and changing consumer patterns. The dataset under observation contains Ecommerce product-list page (PLP) data pertaining to Mr Porters operations in Russia.", "## Link to dataset\n\nRussia - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nMr Porter is a prominent operator in the online retail industry within the EMEA region, specifically in Russia. The E-commerce industry in Russia is growing rapidly, amidst the increasing tech-savviness and online shopping habits of consumers. Mr Porters foundation on sophisticated technology offers them a competitive edge, especially in tailoring to Russias vast and diverse consumer base. E-commerce, particularly online fashion retailing, is emerging as a dominant industry, influenced by factors like advanced technology, easy access to the internet, and changing consumer patterns. The dataset under observation contains Ecommerce product-list page (PLP) data pertaining to Mr Porters operations in Russia.", "## Link to dataset\n\nRussia - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 155, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nMr Porter is a prominent operator in the online retail industry within the EMEA region, specifically in Russia. The E-commerce industry in Russia is growing rapidly, amidst the increasing tech-savviness and online shopping habits of consumers. Mr Porters foundation on sophisticated technology offers them a competitive edge, especially in tailoring to Russias vast and diverse consumer base. E-commerce, particularly online fashion retailing, is emerging as a dominant industry, influenced by factors like advanced technology, easy access to the internet, and changing consumer patterns. The dataset under observation contains Ecommerce product-list page (PLP) data pertaining to Mr Porters operations in Russia.## Link to dataset\n\nRussia - Mr Porter - Product-level price list dataset" ]
e3827f8742b31d422b9f151cff4b61e36e107fa4
# Mr Porter web scraped data ## About the website Mr Porter operates within the **e-commerce industry**, specifically within the **mens luxury fashion** segment, in the United States. This industry has consistently demonstrated strong growth throughout the Americas, particularly in the United States where online retail is booming. The ability to purchase high-end fashion items online has revolutionized how American consumers shop, making upscale fashion more accessible. This specific dataset provides **Ecommerce product-list page (PLP) data** on Mr Porter, which serves as a key insight into customer preferences, popular items, and overall market trends in the United States. Digital marketing techniques have strengthened this shopping medium, making data collection easier and more effective, thereby boosting this sectors potential for profitability. ## Link to **dataset** [United States - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20United%20States/r/recPOcpE0GqT6uLVc)
DBQ/Mr.Porter.Product.prices.United.States
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:13:08+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United States - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 11724890, "num_examples": 35741}], "download_size": 2718002, "dataset_size": 11724890}}
2023-11-19T09:13:14+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website Mr Porter operates within the e-commerce industry, specifically within the mens luxury fashion segment, in the United States. This industry has consistently demonstrated strong growth throughout the Americas, particularly in the United States where online retail is booming. The ability to purchase high-end fashion items online has revolutionized how American consumers shop, making upscale fashion more accessible. This specific dataset provides Ecommerce product-list page (PLP) data on Mr Porter, which serves as a key insight into customer preferences, popular items, and overall market trends in the United States. Digital marketing techniques have strengthened this shopping medium, making data collection easier and more effective, thereby boosting this sectors potential for profitability. ## Link to dataset United States - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the e-commerce industry, specifically within the mens luxury fashion segment, in the United States. This industry has consistently demonstrated strong growth throughout the Americas, particularly in the United States where online retail is booming. The ability to purchase high-end fashion items online has revolutionized how American consumers shop, making upscale fashion more accessible. This specific dataset provides Ecommerce product-list page (PLP) data on Mr Porter, which serves as a key insight into customer preferences, popular items, and overall market trends in the United States. Digital marketing techniques have strengthened this shopping medium, making data collection easier and more effective, thereby boosting this sectors potential for profitability.", "## Link to dataset\n\nUnited States - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nMr Porter operates within the e-commerce industry, specifically within the mens luxury fashion segment, in the United States. This industry has consistently demonstrated strong growth throughout the Americas, particularly in the United States where online retail is booming. The ability to purchase high-end fashion items online has revolutionized how American consumers shop, making upscale fashion more accessible. This specific dataset provides Ecommerce product-list page (PLP) data on Mr Porter, which serves as a key insight into customer preferences, popular items, and overall market trends in the United States. Digital marketing techniques have strengthened this shopping medium, making data collection easier and more effective, thereby boosting this sectors potential for profitability.", "## Link to dataset\n\nUnited States - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 160, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nMr Porter operates within the e-commerce industry, specifically within the mens luxury fashion segment, in the United States. This industry has consistently demonstrated strong growth throughout the Americas, particularly in the United States where online retail is booming. The ability to purchase high-end fashion items online has revolutionized how American consumers shop, making upscale fashion more accessible. This specific dataset provides Ecommerce product-list page (PLP) data on Mr Porter, which serves as a key insight into customer preferences, popular items, and overall market trends in the United States. Digital marketing techniques have strengthened this shopping medium, making data collection easier and more effective, thereby boosting this sectors potential for profitability.## Link to dataset\n\nUnited States - Mr Porter - Product-level price list dataset" ]
b7fc8cc42843f0203cf45c44438f9f1427f17865
# Loro Piana web scraped data ## About the website Loro Piana operates within the **luxury fashion industry** in the **Asia Pacific** region, particularly **Japan**. This industry is noted for its high-end products and services, catering to a demographic that values exclusivity, quality, and prestige. Japan is a major market, with a sophisticated consumer base that posseses a keen interest in luxury fashion. The **ecommerce sector** in this region has seen substantial growth, with digitization and connectedness driving more consumers online for their luxury purchases. The dataset observed includes **Ecommerce product-list page (PLP) data** on **Loro Piana** in Japan, thus giving insight into the brands online presence and performance in this lucrative market. ## Link to **dataset** [Japan - Loro Piana - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Loro%20Piana%20Product-prices%20Japan/r/recdgxSHfd3wfZDQO)
DBQ/Loro.Piana.Product.prices.Japan
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:13:22+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Japan - Loro Piana - Product-level price list", "tags": ["webscraping", "ecommerce", "Loro Piana", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 238989, "num_examples": 685}], "download_size": 80375, "dataset_size": 238989}}
2023-11-19T09:13:26+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us
# Loro Piana web scraped data ## About the website Loro Piana operates within the luxury fashion industry in the Asia Pacific region, particularly Japan. This industry is noted for its high-end products and services, catering to a demographic that values exclusivity, quality, and prestige. Japan is a major market, with a sophisticated consumer base that posseses a keen interest in luxury fashion. The ecommerce sector in this region has seen substantial growth, with digitization and connectedness driving more consumers online for their luxury purchases. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Japan, thus giving insight into the brands online presence and performance in this lucrative market. ## Link to dataset Japan - Loro Piana - Product-level price list dataset
[ "# Loro Piana web scraped data", "## About the website\n\nLoro Piana operates within the luxury fashion industry in the Asia Pacific region, particularly Japan. This industry is noted for its high-end products and services, catering to a demographic that values exclusivity, quality, and prestige. Japan is a major market, with a sophisticated consumer base that posseses a keen interest in luxury fashion. The ecommerce sector in this region has seen substantial growth, with digitization and connectedness driving more consumers online for their luxury purchases. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Japan, thus giving insight into the brands online presence and performance in this lucrative market.", "## Link to dataset\n\nJapan - Loro Piana - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n", "# Loro Piana web scraped data", "## About the website\n\nLoro Piana operates within the luxury fashion industry in the Asia Pacific region, particularly Japan. This industry is noted for its high-end products and services, catering to a demographic that values exclusivity, quality, and prestige. Japan is a major market, with a sophisticated consumer base that posseses a keen interest in luxury fashion. The ecommerce sector in this region has seen substantial growth, with digitization and connectedness driving more consumers online for their luxury purchases. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Japan, thus giving insight into the brands online presence and performance in this lucrative market.", "## Link to dataset\n\nJapan - Loro Piana - Product-level price list dataset" ]
[ 180, 9, 154, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Loro Piana #fashion #fashion product #image #fashion image #region-us \n# Loro Piana web scraped data## About the website\n\nLoro Piana operates within the luxury fashion industry in the Asia Pacific region, particularly Japan. This industry is noted for its high-end products and services, catering to a demographic that values exclusivity, quality, and prestige. Japan is a major market, with a sophisticated consumer base that posseses a keen interest in luxury fashion. The ecommerce sector in this region has seen substantial growth, with digitization and connectedness driving more consumers online for their luxury purchases. The dataset observed includes Ecommerce product-list page (PLP) data on Loro Piana in Japan, thus giving insight into the brands online presence and performance in this lucrative market.## Link to dataset\n\nJapan - Loro Piana - Product-level price list dataset" ]
3c4fc60fb0f8b8899cd883c3416461104e148d81
# Fendi web scraped data ## About the website The **luxury fashion industry** is a vibrant and thriving sector in the Americas, particularly in **Canada**. This industry is marked by the sale of high-end apparel, accessories, footwear, jewelry, and beauty products from renowned global brands like **Fendi**. Moreover, Canadas luxury fashion industry has embraced digital transformation, leading to a significant growth of **Ecommerce** platforms. Flourishing online sales have proven to be a potent driver for the sectors advancements. A recent dataset analysis provides a comprehensive overlook of **Ecommerce product-list page (PLP) data on Fendi** in Canada, illustrating the brands online presence and its market performance against the backdrop of the countrys digital shopping trend. ## Link to **dataset** [Canada - Fendi - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Fendi%20Product-prices%20Canada/r/recZKFVGijTds1hUc)
DBQ/Fendi.Product.prices.Canada
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:13:34+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Canada - Fendi - Product-level price list", "tags": ["webscraping", "ecommerce", "Fendi", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 642904, "num_examples": 1610}], "download_size": 207514, "dataset_size": 642904}}
2023-11-19T09:13:39+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us
# Fendi web scraped data ## About the website The luxury fashion industry is a vibrant and thriving sector in the Americas, particularly in Canada. This industry is marked by the sale of high-end apparel, accessories, footwear, jewelry, and beauty products from renowned global brands like Fendi. Moreover, Canadas luxury fashion industry has embraced digital transformation, leading to a significant growth of Ecommerce platforms. Flourishing online sales have proven to be a potent driver for the sectors advancements. A recent dataset analysis provides a comprehensive overlook of Ecommerce product-list page (PLP) data on Fendi in Canada, illustrating the brands online presence and its market performance against the backdrop of the countrys digital shopping trend. ## Link to dataset Canada - Fendi - Product-level price list dataset
[ "# Fendi web scraped data", "## About the website\n\nThe luxury fashion industry is a vibrant and thriving sector in the Americas, particularly in Canada. This industry is marked by the sale of high-end apparel, accessories, footwear, jewelry, and beauty products from renowned global brands like Fendi. Moreover, Canadas luxury fashion industry has embraced digital transformation, leading to a significant growth of Ecommerce platforms. Flourishing online sales have proven to be a potent driver for the sectors advancements. A recent dataset analysis provides a comprehensive overlook of Ecommerce product-list page (PLP) data on Fendi in Canada, illustrating the brands online presence and its market performance against the backdrop of the countrys digital shopping trend.", "## Link to dataset\n\nCanada - Fendi - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n", "# Fendi web scraped data", "## About the website\n\nThe luxury fashion industry is a vibrant and thriving sector in the Americas, particularly in Canada. This industry is marked by the sale of high-end apparel, accessories, footwear, jewelry, and beauty products from renowned global brands like Fendi. Moreover, Canadas luxury fashion industry has embraced digital transformation, leading to a significant growth of Ecommerce platforms. Flourishing online sales have proven to be a potent driver for the sectors advancements. A recent dataset analysis provides a comprehensive overlook of Ecommerce product-list page (PLP) data on Fendi in Canada, illustrating the brands online presence and its market performance against the backdrop of the countrys digital shopping trend.", "## Link to dataset\n\nCanada - Fendi - Product-level price list dataset" ]
[ 178, 7, 160, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Fendi #fashion #fashion product #image #fashion image #region-us \n# Fendi web scraped data## About the website\n\nThe luxury fashion industry is a vibrant and thriving sector in the Americas, particularly in Canada. This industry is marked by the sale of high-end apparel, accessories, footwear, jewelry, and beauty products from renowned global brands like Fendi. Moreover, Canadas luxury fashion industry has embraced digital transformation, leading to a significant growth of Ecommerce platforms. Flourishing online sales have proven to be a potent driver for the sectors advancements. A recent dataset analysis provides a comprehensive overlook of Ecommerce product-list page (PLP) data on Fendi in Canada, illustrating the brands online presence and its market performance against the backdrop of the countrys digital shopping trend.## Link to dataset\n\nCanada - Fendi - Product-level price list dataset" ]
1de3f356bda47c2409b479645dffb96317e84332
# Gucci web scraped data ## About the website Gucci is a key player in the **luxury fashion industry** in the Americas, particularly in **Canada**. This industry encompasses a broad range of high-end, premium products such as clothing, accessories, fragrances, and watches, which are regarded for their exceptional quality and exclusivity. The brand has strongly maintained its demand and popularity through both its brick-and-mortar shops and its **e-commerce presence**. The dataset observed includes **Ecommerce product-list page (PLP) data on Gucci** in Canada, indicating online shopping trends and consumer behaviors in relation to Guccis products in the digital marketplace. ## Link to **dataset** [Canada - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20Canada/r/recwapX0etBkgXR6t)
DBQ/Gucci.Product.prices.Canada
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:13:48+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Canada - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2475271, "num_examples": 5185}], "download_size": 750587, "dataset_size": 2475271}}
2023-11-19T09:13:53+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website Gucci is a key player in the luxury fashion industry in the Americas, particularly in Canada. This industry encompasses a broad range of high-end, premium products such as clothing, accessories, fragrances, and watches, which are regarded for their exceptional quality and exclusivity. The brand has strongly maintained its demand and popularity through both its brick-and-mortar shops and its e-commerce presence. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Canada, indicating online shopping trends and consumer behaviors in relation to Guccis products in the digital marketplace. ## Link to dataset Canada - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nGucci is a key player in the luxury fashion industry in the Americas, particularly in Canada. This industry encompasses a broad range of high-end, premium products such as clothing, accessories, fragrances, and watches, which are regarded for their exceptional quality and exclusivity. The brand has strongly maintained its demand and popularity through both its brick-and-mortar shops and its e-commerce presence. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Canada, indicating online shopping trends and consumer behaviors in relation to Guccis products in the digital marketplace.", "## Link to dataset\n\nCanada - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nGucci is a key player in the luxury fashion industry in the Americas, particularly in Canada. This industry encompasses a broad range of high-end, premium products such as clothing, accessories, fragrances, and watches, which are regarded for their exceptional quality and exclusivity. The brand has strongly maintained its demand and popularity through both its brick-and-mortar shops and its e-commerce presence. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Canada, indicating online shopping trends and consumer behaviors in relation to Guccis products in the digital marketplace.", "## Link to dataset\n\nCanada - Gucci - Product-level price list dataset" ]
[ 178, 7, 144, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nGucci is a key player in the luxury fashion industry in the Americas, particularly in Canada. This industry encompasses a broad range of high-end, premium products such as clothing, accessories, fragrances, and watches, which are regarded for their exceptional quality and exclusivity. The brand has strongly maintained its demand and popularity through both its brick-and-mortar shops and its e-commerce presence. The dataset observed includes Ecommerce product-list page (PLP) data on Gucci in Canada, indicating online shopping trends and consumer behaviors in relation to Guccis products in the digital marketplace.## Link to dataset\n\nCanada - Gucci - Product-level price list dataset" ]
39d9fdcfb68b2ec1c269b8f12cdac8a05ee86a91
# Prada web scraped data ## About the website The **luxury fashion industry** in the **EMEA** (Europe, Middle East, and Africa) region is a robust and highly dynamic sector, with particular emphasis on the thriving market in **Portugal**. Best known for their high-end labels, this industry is marked by factors such as premium quality, design aesthetics, and brand reputation. **Prada**, a renowned Italian luxury fashion house, holds a significant place in this industry. The industry is fast adapting to the digital era, with notable progress in the realm of **Ecommerce**. As per the observed dataset, we have **product-list page (PLP)** data pertaining to Pradas performance in the Portugal market. The data is reflective of Prada’s online presence and Ecommerce strategies in the region. ## Link to **dataset** [Portugal - Prada - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Prada%20Product-prices%20Portugal/r/recWitpZbmrikZDl1)
DBQ/Prada.Product.prices.Portugal
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Prada", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:14:00+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Portugal - Prada - Product-level price list", "tags": ["webscraping", "ecommerce", "Prada", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1285620, "num_examples": 2548}], "download_size": 385056, "dataset_size": 1285620}}
2023-11-19T09:14:05+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us
# Prada web scraped data ## About the website The luxury fashion industry in the EMEA (Europe, Middle East, and Africa) region is a robust and highly dynamic sector, with particular emphasis on the thriving market in Portugal. Best known for their high-end labels, this industry is marked by factors such as premium quality, design aesthetics, and brand reputation. Prada, a renowned Italian luxury fashion house, holds a significant place in this industry. The industry is fast adapting to the digital era, with notable progress in the realm of Ecommerce. As per the observed dataset, we have product-list page (PLP) data pertaining to Pradas performance in the Portugal market. The data is reflective of Prada’s online presence and Ecommerce strategies in the region. ## Link to dataset Portugal - Prada - Product-level price list dataset
[ "# Prada web scraped data", "## About the website\n\nThe luxury fashion industry in the EMEA (Europe, Middle East, and Africa) region is a robust and highly dynamic sector, with particular emphasis on the thriving market in Portugal. Best known for their high-end labels, this industry is marked by factors such as premium quality, design aesthetics, and brand reputation. Prada, a renowned Italian luxury fashion house, holds a significant place in this industry. The industry is fast adapting to the digital era, with notable progress in the realm of Ecommerce. As per the observed dataset, we have product-list page (PLP) data pertaining to Pradas performance in the Portugal market. The data is reflective of Prada’s online presence and Ecommerce strategies in the region.", "## Link to dataset\n\nPortugal - Prada - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us \n", "# Prada web scraped data", "## About the website\n\nThe luxury fashion industry in the EMEA (Europe, Middle East, and Africa) region is a robust and highly dynamic sector, with particular emphasis on the thriving market in Portugal. Best known for their high-end labels, this industry is marked by factors such as premium quality, design aesthetics, and brand reputation. Prada, a renowned Italian luxury fashion house, holds a significant place in this industry. The industry is fast adapting to the digital era, with notable progress in the realm of Ecommerce. As per the observed dataset, we have product-list page (PLP) data pertaining to Pradas performance in the Portugal market. The data is reflective of Prada’s online presence and Ecommerce strategies in the region.", "## Link to dataset\n\nPortugal - Prada - Product-level price list dataset" ]
[ 178, 7, 169, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Prada #fashion #fashion product #image #fashion image #region-us \n# Prada web scraped data## About the website\n\nThe luxury fashion industry in the EMEA (Europe, Middle East, and Africa) region is a robust and highly dynamic sector, with particular emphasis on the thriving market in Portugal. Best known for their high-end labels, this industry is marked by factors such as premium quality, design aesthetics, and brand reputation. Prada, a renowned Italian luxury fashion house, holds a significant place in this industry. The industry is fast adapting to the digital era, with notable progress in the realm of Ecommerce. As per the observed dataset, we have product-list page (PLP) data pertaining to Pradas performance in the Portugal market. The data is reflective of Prada’s online presence and Ecommerce strategies in the region.## Link to dataset\n\nPortugal - Prada - Product-level price list dataset" ]
090d27f0fdb3acd2dd60c9fb1bb088a3c51b34d8
# Net-a-Porter web scraped data ## About the website Net-a-Porter operates in the highly competitive **e-commerce industry** in EMEA, particularly in the **United Kingdom**. This vibrant industry is characterized by a dynamic digital environment encompassing various segments, notably **fashion**, **luxury goods**, and **retail**. These segments continue to witness significant growth, driven by advancements in technology and changing consumer behaviors. Net-a-Porter, being a premium online luxury fashion retail platform, significantly contributes to the e-commerce landscape. The dataset observed includes **Ecommerce product-list page (PLP) data on Net-a-Porter** in the United Kingdom, offering insightful information about the sites performance, trending products, consumer preferences, and much more. ## Link to **dataset** [United Kingdom - Net-a-Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Net-a-Porter%20Product-prices%20United%20Kingdom/r/recBUdYFZQj4tUnIX)
DBQ/Net.a.Porter.Product.prices.United.Kingdom
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:14:23+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Kingdom - Net-a-Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Net", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 23194278, "num_examples": 56980}], "download_size": 6865739, "dataset_size": 23194278}}
2023-11-19T09:14:32+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us
# Net-a-Porter web scraped data ## About the website Net-a-Porter operates in the highly competitive e-commerce industry in EMEA, particularly in the United Kingdom. This vibrant industry is characterized by a dynamic digital environment encompassing various segments, notably fashion, luxury goods, and retail. These segments continue to witness significant growth, driven by advancements in technology and changing consumer behaviors. Net-a-Porter, being a premium online luxury fashion retail platform, significantly contributes to the e-commerce landscape. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porter in the United Kingdom, offering insightful information about the sites performance, trending products, consumer preferences, and much more. ## Link to dataset United Kingdom - Net-a-Porter - Product-level price list dataset
[ "# Net-a-Porter web scraped data", "## About the website\n\nNet-a-Porter operates in the highly competitive e-commerce industry in EMEA, particularly in the United Kingdom. This vibrant industry is characterized by a dynamic digital environment encompassing various segments, notably fashion, luxury goods, and retail. These segments continue to witness significant growth, driven by advancements in technology and changing consumer behaviors. Net-a-Porter, being a premium online luxury fashion retail platform, significantly contributes to the e-commerce landscape. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porter in the United Kingdom, offering insightful information about the sites performance, trending products, consumer preferences, and much more.", "## Link to dataset\n\nUnited Kingdom - Net-a-Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n", "# Net-a-Porter web scraped data", "## About the website\n\nNet-a-Porter operates in the highly competitive e-commerce industry in EMEA, particularly in the United Kingdom. This vibrant industry is characterized by a dynamic digital environment encompassing various segments, notably fashion, luxury goods, and retail. These segments continue to witness significant growth, driven by advancements in technology and changing consumer behaviors. Net-a-Porter, being a premium online luxury fashion retail platform, significantly contributes to the e-commerce landscape. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porter in the United Kingdom, offering insightful information about the sites performance, trending products, consumer preferences, and much more.", "## Link to dataset\n\nUnited Kingdom - Net-a-Porter - Product-level price list dataset" ]
[ 177, 11, 160, 22 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Net #fashion #fashion product #image #fashion image #region-us \n# Net-a-Porter web scraped data## About the website\n\nNet-a-Porter operates in the highly competitive e-commerce industry in EMEA, particularly in the United Kingdom. This vibrant industry is characterized by a dynamic digital environment encompassing various segments, notably fashion, luxury goods, and retail. These segments continue to witness significant growth, driven by advancements in technology and changing consumer behaviors. Net-a-Porter, being a premium online luxury fashion retail platform, significantly contributes to the e-commerce landscape. The dataset observed includes Ecommerce product-list page (PLP) data on Net-a-Porter in the United Kingdom, offering insightful information about the sites performance, trending products, consumer preferences, and much more.## Link to dataset\n\nUnited Kingdom - Net-a-Porter - Product-level price list dataset" ]
1756ffead1d68f6137d4d21e7a536709301bda13
# Blickers web scraped data ## About the website The Blickers operates in the **eCommerce industry** in the EMEA region, predominantly in the **United Kingdom**. This industrys key essence revolves around buying and selling goods or services using the internet and transferring money and data to carry out transactions. It has dramatically redefined many consumers shopping habits in the UK. The dataset observed involves **eCommerce product-list page (PLP) data** for Blickers operations in the UK. The dataset specifically provides comprehensive insights into shoppers online behavior, preferences, and purchase trends, all critical aspects of understanding the ever-evolving **eCommerce landscape in the United Kingdom** and beyond. ## Link to **dataset** [United Kingdom - Blickers - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Blickers%20Product-prices%20United%20Kingdom/r/rec5q13pQBDDUAHZT)
DBQ/Blickers.Product.prices.United.Kingdom
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Blickers", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:14:42+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Kingdom - Blickers - Product-level price list", "tags": ["webscraping", "ecommerce", "Blickers", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 10697404, "num_examples": 28256}], "download_size": 5228722, "dataset_size": 10697404}}
2023-11-19T09:14:50+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Blickers #fashion #fashion product #image #fashion image #region-us
# Blickers web scraped data ## About the website The Blickers operates in the eCommerce industry in the EMEA region, predominantly in the United Kingdom. This industrys key essence revolves around buying and selling goods or services using the internet and transferring money and data to carry out transactions. It has dramatically redefined many consumers shopping habits in the UK. The dataset observed involves eCommerce product-list page (PLP) data for Blickers operations in the UK. The dataset specifically provides comprehensive insights into shoppers online behavior, preferences, and purchase trends, all critical aspects of understanding the ever-evolving eCommerce landscape in the United Kingdom and beyond. ## Link to dataset United Kingdom - Blickers - Product-level price list dataset
[ "# Blickers web scraped data", "## About the website\n\nThe Blickers operates in the eCommerce industry in the EMEA region, predominantly in the United Kingdom. This industrys key essence revolves around buying and selling goods or services using the internet and transferring money and data to carry out transactions. It has dramatically redefined many consumers shopping habits in the UK. The dataset observed involves eCommerce product-list page (PLP) data for Blickers operations in the UK. The dataset specifically provides comprehensive insights into shoppers online behavior, preferences, and purchase trends, all critical aspects of understanding the ever-evolving eCommerce landscape in the United Kingdom and beyond.", "## Link to dataset\n\nUnited Kingdom - Blickers - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Blickers #fashion #fashion product #image #fashion image #region-us \n", "# Blickers web scraped data", "## About the website\n\nThe Blickers operates in the eCommerce industry in the EMEA region, predominantly in the United Kingdom. This industrys key essence revolves around buying and selling goods or services using the internet and transferring money and data to carry out transactions. It has dramatically redefined many consumers shopping habits in the UK. The dataset observed involves eCommerce product-list page (PLP) data for Blickers operations in the UK. The dataset specifically provides comprehensive insights into shoppers online behavior, preferences, and purchase trends, all critical aspects of understanding the ever-evolving eCommerce landscape in the United Kingdom and beyond.", "## Link to dataset\n\nUnited Kingdom - Blickers - Product-level price list dataset" ]
[ 179, 7, 146, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Blickers #fashion #fashion product #image #fashion image #region-us \n# Blickers web scraped data## About the website\n\nThe Blickers operates in the eCommerce industry in the EMEA region, predominantly in the United Kingdom. This industrys key essence revolves around buying and selling goods or services using the internet and transferring money and data to carry out transactions. It has dramatically redefined many consumers shopping habits in the UK. The dataset observed involves eCommerce product-list page (PLP) data for Blickers operations in the UK. The dataset specifically provides comprehensive insights into shoppers online behavior, preferences, and purchase trends, all critical aspects of understanding the ever-evolving eCommerce landscape in the United Kingdom and beyond.## Link to dataset\n\nUnited Kingdom - Blickers - Product-level price list dataset" ]
399d30de32d13e39d726118e260ac601051bdd13
# Bottega Veneta web scraped data ## About the website Bottega Veneta is a prominent player in the **Luxury Fashion** industry in the **Americas**, particularly in the **United States**. This industry is defined by high-end clothing, accessories, leather goods, shoes and lifestyle items from distinctive brands. In the US, the Luxury Fashion market is shaped by trends like digitalization, personalized experiences, and sustainability. A significant amount of retail activity occurs on digital platforms. The dataset observed presents **Ecommerce product-list page (PLP)** data on **Bottega Veneta** in the United States, highlighting the brands online retail presence in the industry. Ecommerce has become increasingly important in the Luxury Fashion sector as a direct-to-consumer avenue. ## Link to **dataset** [United States - Bottega Veneta - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Bottega%20Veneta%20Product-prices%20United%20States/r/recZ249aYzkZQZLPx)
DBQ/Bottega.Veneta.Product.prices.United.States
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Bottega Veneta", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:14:59+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United States - Bottega Veneta - Product-level price list", "tags": ["webscraping", "ecommerce", "Bottega Veneta", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1614857, "num_examples": 4469}], "download_size": 452053, "dataset_size": 1614857}}
2023-11-19T09:15:04+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Bottega Veneta #fashion #fashion product #image #fashion image #region-us
# Bottega Veneta web scraped data ## About the website Bottega Veneta is a prominent player in the Luxury Fashion industry in the Americas, particularly in the United States. This industry is defined by high-end clothing, accessories, leather goods, shoes and lifestyle items from distinctive brands. In the US, the Luxury Fashion market is shaped by trends like digitalization, personalized experiences, and sustainability. A significant amount of retail activity occurs on digital platforms. The dataset observed presents Ecommerce product-list page (PLP) data on Bottega Veneta in the United States, highlighting the brands online retail presence in the industry. Ecommerce has become increasingly important in the Luxury Fashion sector as a direct-to-consumer avenue. ## Link to dataset United States - Bottega Veneta - Product-level price list dataset
[ "# Bottega Veneta web scraped data", "## About the website\n\nBottega Veneta is a prominent player in the Luxury Fashion industry in the Americas, particularly in the United States. This industry is defined by high-end clothing, accessories, leather goods, shoes and lifestyle items from distinctive brands. In the US, the Luxury Fashion market is shaped by trends like digitalization, personalized experiences, and sustainability. A significant amount of retail activity occurs on digital platforms. The dataset observed presents Ecommerce product-list page (PLP) data on Bottega Veneta in the United States, highlighting the brands online retail presence in the industry. Ecommerce has become increasingly important in the Luxury Fashion sector as a direct-to-consumer avenue.", "## Link to dataset\n\nUnited States - Bottega Veneta - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Bottega Veneta #fashion #fashion product #image #fashion image #region-us \n", "# Bottega Veneta web scraped data", "## About the website\n\nBottega Veneta is a prominent player in the Luxury Fashion industry in the Americas, particularly in the United States. This industry is defined by high-end clothing, accessories, leather goods, shoes and lifestyle items from distinctive brands. In the US, the Luxury Fashion market is shaped by trends like digitalization, personalized experiences, and sustainability. A significant amount of retail activity occurs on digital platforms. The dataset observed presents Ecommerce product-list page (PLP) data on Bottega Veneta in the United States, highlighting the brands online retail presence in the industry. Ecommerce has become increasingly important in the Luxury Fashion sector as a direct-to-consumer avenue.", "## Link to dataset\n\nUnited States - Bottega Veneta - Product-level price list dataset" ]
[ 180, 9, 160, 20 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Bottega Veneta #fashion #fashion product #image #fashion image #region-us \n# Bottega Veneta web scraped data## About the website\n\nBottega Veneta is a prominent player in the Luxury Fashion industry in the Americas, particularly in the United States. This industry is defined by high-end clothing, accessories, leather goods, shoes and lifestyle items from distinctive brands. In the US, the Luxury Fashion market is shaped by trends like digitalization, personalized experiences, and sustainability. A significant amount of retail activity occurs on digital platforms. The dataset observed presents Ecommerce product-list page (PLP) data on Bottega Veneta in the United States, highlighting the brands online retail presence in the industry. Ecommerce has become increasingly important in the Luxury Fashion sector as a direct-to-consumer avenue.## Link to dataset\n\nUnited States - Bottega Veneta - Product-level price list dataset" ]
08a221d334003b69422722371a39f9935738ab43
# Gucci web scraped data ## About the website The **luxury fashion industry** in the **Asia Pacific** region, specifically in **Australia**, continues to flourish owing to its affluent consumer base and expanding online presence. Brands like **Gucci** have a substantial footprint in this marketplace. In Australia, luxury retailing has seen impressive growth, with luxury fashion houses progressively increasing their digital presence to meet the changing consumer behavior. The availability of **Ecommerce product-list page (PLP) data** on Guccis Australian market provides valuable insights into the fashion houses performance and the shopping behavior of its clientele. This data is instrumental in examining market trends, consumer preference, and buying patterns in the **Australian luxury fashion market**. ## Link to **dataset** [Australia - Gucci - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Gucci%20Product-prices%20Australia/r/recoAQnDLFcGoAEIN)
DBQ/Gucci.Product.prices.Australia
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:15:15+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Australia - Gucci - Product-level price list", "tags": ["webscraping", "ecommerce", "Gucci", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1407422, "num_examples": 2972}], "download_size": 415524, "dataset_size": 1407422}}
2023-11-19T09:15:20+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us
# Gucci web scraped data ## About the website The luxury fashion industry in the Asia Pacific region, specifically in Australia, continues to flourish owing to its affluent consumer base and expanding online presence. Brands like Gucci have a substantial footprint in this marketplace. In Australia, luxury retailing has seen impressive growth, with luxury fashion houses progressively increasing their digital presence to meet the changing consumer behavior. The availability of Ecommerce product-list page (PLP) data on Guccis Australian market provides valuable insights into the fashion houses performance and the shopping behavior of its clientele. This data is instrumental in examining market trends, consumer preference, and buying patterns in the Australian luxury fashion market. ## Link to dataset Australia - Gucci - Product-level price list dataset
[ "# Gucci web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, specifically in Australia, continues to flourish owing to its affluent consumer base and expanding online presence. Brands like Gucci have a substantial footprint in this marketplace. In Australia, luxury retailing has seen impressive growth, with luxury fashion houses progressively increasing their digital presence to meet the changing consumer behavior. The availability of Ecommerce product-list page (PLP) data on Guccis Australian market provides valuable insights into the fashion houses performance and the shopping behavior of its clientele. This data is instrumental in examining market trends, consumer preference, and buying patterns in the Australian luxury fashion market.", "## Link to dataset\n\nAustralia - Gucci - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n", "# Gucci web scraped data", "## About the website\n\nThe luxury fashion industry in the Asia Pacific region, specifically in Australia, continues to flourish owing to its affluent consumer base and expanding online presence. Brands like Gucci have a substantial footprint in this marketplace. In Australia, luxury retailing has seen impressive growth, with luxury fashion houses progressively increasing their digital presence to meet the changing consumer behavior. The availability of Ecommerce product-list page (PLP) data on Guccis Australian market provides valuable insights into the fashion houses performance and the shopping behavior of its clientele. This data is instrumental in examining market trends, consumer preference, and buying patterns in the Australian luxury fashion market.", "## Link to dataset\n\nAustralia - Gucci - Product-level price list dataset" ]
[ 178, 7, 150, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Gucci #fashion #fashion product #image #fashion image #region-us \n# Gucci web scraped data## About the website\n\nThe luxury fashion industry in the Asia Pacific region, specifically in Australia, continues to flourish owing to its affluent consumer base and expanding online presence. Brands like Gucci have a substantial footprint in this marketplace. In Australia, luxury retailing has seen impressive growth, with luxury fashion houses progressively increasing their digital presence to meet the changing consumer behavior. The availability of Ecommerce product-list page (PLP) data on Guccis Australian market provides valuable insights into the fashion houses performance and the shopping behavior of its clientele. This data is instrumental in examining market trends, consumer preference, and buying patterns in the Australian luxury fashion market.## Link to dataset\n\nAustralia - Gucci - Product-level price list dataset" ]
074a5be4d0946f644235f14b0d8c66582e08a6d8
# Burberry web scraped data ## About the website The **luxury fashion industry** in the **EMEA region**, particularly in the **United Arab Emirates**, is a robust and rapidly growing market. This growth is primarily fuelled by the affluent consumer base and tourists, who have a keen interest in high-end and prestigious fashion labels. Middle Eastern consumers often look at luxury goods as a status symbol, thus driving up demand for premium brands like **Burberry**. In recent years, **Ecommerce** in this sector has seen significant growth, with online platforms becoming a major sales channel. The dataset observed provides in-depth analysis of **Ecommerce product-list page (PLP) data** on Burberry in the United Arab Emirates. ## Link to **dataset** [United Arab Emirates - Burberry - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Burberry%20Product-prices%20United%20Arab%20Emirates/r/recg0ZpPS4sh1eFAU)
DBQ/Burberry.Product.prices.United.Arab.Emirates
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:15:28+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "United Arab Emirates - Burberry - Product-level price list", "tags": ["webscraping", "ecommerce", "Burberry", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 809175, "num_examples": 2554}], "download_size": 234729, "dataset_size": 809175}}
2023-11-19T09:15:32+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us
# Burberry web scraped data ## About the website The luxury fashion industry in the EMEA region, particularly in the United Arab Emirates, is a robust and rapidly growing market. This growth is primarily fuelled by the affluent consumer base and tourists, who have a keen interest in high-end and prestigious fashion labels. Middle Eastern consumers often look at luxury goods as a status symbol, thus driving up demand for premium brands like Burberry. In recent years, Ecommerce in this sector has seen significant growth, with online platforms becoming a major sales channel. The dataset observed provides in-depth analysis of Ecommerce product-list page (PLP) data on Burberry in the United Arab Emirates. ## Link to dataset United Arab Emirates - Burberry - Product-level price list dataset
[ "# Burberry web scraped data", "## About the website\n\nThe luxury fashion industry in the EMEA region, particularly in the United Arab Emirates, is a robust and rapidly growing market. This growth is primarily fuelled by the affluent consumer base and tourists, who have a keen interest in high-end and prestigious fashion labels. Middle Eastern consumers often look at luxury goods as a status symbol, thus driving up demand for premium brands like Burberry. In recent years, Ecommerce in this sector has seen significant growth, with online platforms becoming a major sales channel. The dataset observed provides in-depth analysis of Ecommerce product-list page (PLP) data on Burberry in the United Arab Emirates.", "## Link to dataset\n\nUnited Arab Emirates - Burberry - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n", "# Burberry web scraped data", "## About the website\n\nThe luxury fashion industry in the EMEA region, particularly in the United Arab Emirates, is a robust and rapidly growing market. This growth is primarily fuelled by the affluent consumer base and tourists, who have a keen interest in high-end and prestigious fashion labels. Middle Eastern consumers often look at luxury goods as a status symbol, thus driving up demand for premium brands like Burberry. In recent years, Ecommerce in this sector has seen significant growth, with online platforms becoming a major sales channel. The dataset observed provides in-depth analysis of Ecommerce product-list page (PLP) data on Burberry in the United Arab Emirates.", "## Link to dataset\n\nUnited Arab Emirates - Burberry - Product-level price list dataset" ]
[ 178, 7, 152, 20 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Burberry #fashion #fashion product #image #fashion image #region-us \n# Burberry web scraped data## About the website\n\nThe luxury fashion industry in the EMEA region, particularly in the United Arab Emirates, is a robust and rapidly growing market. This growth is primarily fuelled by the affluent consumer base and tourists, who have a keen interest in high-end and prestigious fashion labels. Middle Eastern consumers often look at luxury goods as a status symbol, thus driving up demand for premium brands like Burberry. In recent years, Ecommerce in this sector has seen significant growth, with online platforms becoming a major sales channel. The dataset observed provides in-depth analysis of Ecommerce product-list page (PLP) data on Burberry in the United Arab Emirates.## Link to dataset\n\nUnited Arab Emirates - Burberry - Product-level price list dataset" ]
b839612de629794b6eff58d40c9783066693a9f8
# Mr Porter web scraped data ## About the website The **EMEA region**, specifically **Sweden**, has seen a significant rise in the **luxury online retail industry**, where **Mr Porter** operates. The growth has primarily been driven by the fast-paced digitalization, significant internet penetration, and a growing number of digitally native consumers. Additionally, Swedish consumers, renowned for their fashion-forward approach, have demonstrated a strong appetite for luxury fashion products, favouring convenience, choice, and quality offered by online retailers like Mr Porter. The dataset in question provides comprehensive insight into **Ecommerce product-list page (PLP) data** on Mr Porters operation in Sweden, unveiling valuable customer trends and product preferences. ## Link to **dataset** [Sweden - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20Sweden/r/recKNdRjHlSCpbHYz)
DBQ/Mr.Porter.Product.prices.Sweden
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:15:43+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Sweden - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 9100964, "num_examples": 27695}], "download_size": 2082496, "dataset_size": 9100964}}
2023-11-19T09:15:48+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The EMEA region, specifically Sweden, has seen a significant rise in the luxury online retail industry, where Mr Porter operates. The growth has primarily been driven by the fast-paced digitalization, significant internet penetration, and a growing number of digitally native consumers. Additionally, Swedish consumers, renowned for their fashion-forward approach, have demonstrated a strong appetite for luxury fashion products, favouring convenience, choice, and quality offered by online retailers like Mr Porter. The dataset in question provides comprehensive insight into Ecommerce product-list page (PLP) data on Mr Porters operation in Sweden, unveiling valuable customer trends and product preferences. ## Link to dataset Sweden - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe EMEA region, specifically Sweden, has seen a significant rise in the luxury online retail industry, where Mr Porter operates. The growth has primarily been driven by the fast-paced digitalization, significant internet penetration, and a growing number of digitally native consumers. Additionally, Swedish consumers, renowned for their fashion-forward approach, have demonstrated a strong appetite for luxury fashion products, favouring convenience, choice, and quality offered by online retailers like Mr Porter. The dataset in question provides comprehensive insight into Ecommerce product-list page (PLP) data on Mr Porters operation in Sweden, unveiling valuable customer trends and product preferences.", "## Link to dataset\n\nSweden - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe EMEA region, specifically Sweden, has seen a significant rise in the luxury online retail industry, where Mr Porter operates. The growth has primarily been driven by the fast-paced digitalization, significant internet penetration, and a growing number of digitally native consumers. Additionally, Swedish consumers, renowned for their fashion-forward approach, have demonstrated a strong appetite for luxury fashion products, favouring convenience, choice, and quality offered by online retailers like Mr Porter. The dataset in question provides comprehensive insight into Ecommerce product-list page (PLP) data on Mr Porters operation in Sweden, unveiling valuable customer trends and product preferences.", "## Link to dataset\n\nSweden - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 159, 18 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe EMEA region, specifically Sweden, has seen a significant rise in the luxury online retail industry, where Mr Porter operates. The growth has primarily been driven by the fast-paced digitalization, significant internet penetration, and a growing number of digitally native consumers. Additionally, Swedish consumers, renowned for their fashion-forward approach, have demonstrated a strong appetite for luxury fashion products, favouring convenience, choice, and quality offered by online retailers like Mr Porter. The dataset in question provides comprehensive insight into Ecommerce product-list page (PLP) data on Mr Porters operation in Sweden, unveiling valuable customer trends and product preferences.## Link to dataset\n\nSweden - Mr Porter - Product-level price list dataset" ]
46e10084061806ca2346c3d37a690f4257146e9e
# Louis Vuitton web scraped data ## About the website The **luxury fashion industry** in the Americas, specifically in **Canada** is flourishing and significantly competitive. A vital player, **Louis Vuitton**, has crucially attained a strong positioning in this market. The industry in focus encompasses high-end, exclusive products and services, which are in high demand amongst the affluent sections of society. These products typically include haute couture, ready-to-wear clothing, handbags, perfumes, and accessories, amongst other items. The industry is primarily based in fashion capitals like New York, but it has a vast and significant reach across the entire region. The dataset observed provides valuable insights from an **Ecommerce product-list page (PLP)** specifically for Louis Vuittons operations in Canada. ## Link to **dataset** [Canada - Louis Vuitton - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Louis%20Vuitton%20Product-prices%20Canada/r/recj2WoaJ5aLp1fxA)
DBQ/Louis.Vuitton.Product.prices.Canada
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:15:57+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "Canada - Louis Vuitton - Product-level price list", "tags": ["webscraping", "ecommerce", "Louis Vuitton", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3461232, "num_examples": 8151}], "download_size": 912831, "dataset_size": 3461232}}
2023-11-19T09:16:02+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us
# Louis Vuitton web scraped data ## About the website The luxury fashion industry in the Americas, specifically in Canada is flourishing and significantly competitive. A vital player, Louis Vuitton, has crucially attained a strong positioning in this market. The industry in focus encompasses high-end, exclusive products and services, which are in high demand amongst the affluent sections of society. These products typically include haute couture, ready-to-wear clothing, handbags, perfumes, and accessories, amongst other items. The industry is primarily based in fashion capitals like New York, but it has a vast and significant reach across the entire region. The dataset observed provides valuable insights from an Ecommerce product-list page (PLP) specifically for Louis Vuittons operations in Canada. ## Link to dataset Canada - Louis Vuitton - Product-level price list dataset
[ "# Louis Vuitton web scraped data", "## About the website\n\nThe luxury fashion industry in the Americas, specifically in Canada is flourishing and significantly competitive. A vital player, Louis Vuitton, has crucially attained a strong positioning in this market. The industry in focus encompasses high-end, exclusive products and services, which are in high demand amongst the affluent sections of society. These products typically include haute couture, ready-to-wear clothing, handbags, perfumes, and accessories, amongst other items. The industry is primarily based in fashion capitals like New York, but it has a vast and significant reach across the entire region. The dataset observed provides valuable insights from an Ecommerce product-list page (PLP) specifically for Louis Vuittons operations in Canada.", "## Link to dataset\n\nCanada - Louis Vuitton - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n", "# Louis Vuitton web scraped data", "## About the website\n\nThe luxury fashion industry in the Americas, specifically in Canada is flourishing and significantly competitive. A vital player, Louis Vuitton, has crucially attained a strong positioning in this market. The industry in focus encompasses high-end, exclusive products and services, which are in high demand amongst the affluent sections of society. These products typically include haute couture, ready-to-wear clothing, handbags, perfumes, and accessories, amongst other items. The industry is primarily based in fashion capitals like New York, but it has a vast and significant reach across the entire region. The dataset observed provides valuable insights from an Ecommerce product-list page (PLP) specifically for Louis Vuittons operations in Canada.", "## Link to dataset\n\nCanada - Louis Vuitton - Product-level price list dataset" ]
[ 178, 7, 166, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Louis Vuitton #fashion #fashion product #image #fashion image #region-us \n# Louis Vuitton web scraped data## About the website\n\nThe luxury fashion industry in the Americas, specifically in Canada is flourishing and significantly competitive. A vital player, Louis Vuitton, has crucially attained a strong positioning in this market. The industry in focus encompasses high-end, exclusive products and services, which are in high demand amongst the affluent sections of society. These products typically include haute couture, ready-to-wear clothing, handbags, perfumes, and accessories, amongst other items. The industry is primarily based in fashion capitals like New York, but it has a vast and significant reach across the entire region. The dataset observed provides valuable insights from an Ecommerce product-list page (PLP) specifically for Louis Vuittons operations in Canada.## Link to dataset\n\nCanada - Louis Vuitton - Product-level price list dataset" ]
5ac13bb645831e307fc7c13eb4515fb543c33f63
# Chloe web scraped data ## About the website The **Ecommerce industry** in the **Asia Pacific region**, particularly in **South Korea**, is experiencing remarkable growth. Fueling this rapid expansion are tech-savvy consumers who are rapidly adopting online shopping with ease and comfort. Companies like **Chloe** are leveraging the popularity of Ecommerce to extend their market reach. The dataset currently under observation contains **Ecommerce product-list page (PLP) data** specifically concerning Chloe in South Korea. This critical data offers deep insights into consumer purchasing habits, shifts in market trends, and performance analysis, thereby fostering a wealth of opportunities for Chloe to further expand its online presence. ## Link to **dataset** [South Korea - Chloe - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Chloe%20Product-prices%20South%20Korea/r/recVfyRPRYg697Wup)
DBQ/Chloe.Product.prices.South.Korea
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Chloe", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:16:11+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Korea - Chloe - Product-level price list", "tags": ["webscraping", "ecommerce", "Chloe", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 677692, "num_examples": 2439}], "download_size": 158885, "dataset_size": 677692}}
2023-11-19T09:16:16+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us
# Chloe web scraped data ## About the website The Ecommerce industry in the Asia Pacific region, particularly in South Korea, is experiencing remarkable growth. Fueling this rapid expansion are tech-savvy consumers who are rapidly adopting online shopping with ease and comfort. Companies like Chloe are leveraging the popularity of Ecommerce to extend their market reach. The dataset currently under observation contains Ecommerce product-list page (PLP) data specifically concerning Chloe in South Korea. This critical data offers deep insights into consumer purchasing habits, shifts in market trends, and performance analysis, thereby fostering a wealth of opportunities for Chloe to further expand its online presence. ## Link to dataset South Korea - Chloe - Product-level price list dataset
[ "# Chloe web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific region, particularly in South Korea, is experiencing remarkable growth. Fueling this rapid expansion are tech-savvy consumers who are rapidly adopting online shopping with ease and comfort. Companies like Chloe are leveraging the popularity of Ecommerce to extend their market reach. The dataset currently under observation contains Ecommerce product-list page (PLP) data specifically concerning Chloe in South Korea. This critical data offers deep insights into consumer purchasing habits, shifts in market trends, and performance analysis, thereby fostering a wealth of opportunities for Chloe to further expand its online presence.", "## Link to dataset\n\nSouth Korea - Chloe - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us \n", "# Chloe web scraped data", "## About the website\n\nThe Ecommerce industry in the Asia Pacific region, particularly in South Korea, is experiencing remarkable growth. Fueling this rapid expansion are tech-savvy consumers who are rapidly adopting online shopping with ease and comfort. Companies like Chloe are leveraging the popularity of Ecommerce to extend their market reach. The dataset currently under observation contains Ecommerce product-list page (PLP) data specifically concerning Chloe in South Korea. This critical data offers deep insights into consumer purchasing habits, shifts in market trends, and performance analysis, thereby fostering a wealth of opportunities for Chloe to further expand its online presence.", "## Link to dataset\n\nSouth Korea - Chloe - Product-level price list dataset" ]
[ 179, 6, 146, 17 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Chloe #fashion #fashion product #image #fashion image #region-us \n# Chloe web scraped data## About the website\n\nThe Ecommerce industry in the Asia Pacific region, particularly in South Korea, is experiencing remarkable growth. Fueling this rapid expansion are tech-savvy consumers who are rapidly adopting online shopping with ease and comfort. Companies like Chloe are leveraging the popularity of Ecommerce to extend their market reach. The dataset currently under observation contains Ecommerce product-list page (PLP) data specifically concerning Chloe in South Korea. This critical data offers deep insights into consumer purchasing habits, shifts in market trends, and performance analysis, thereby fostering a wealth of opportunities for Chloe to further expand its online presence.## Link to dataset\n\nSouth Korea - Chloe - Product-level price list dataset" ]
40c511ae7da468fdc793f5d28e758c3baa2626a7
# Mr Porter web scraped data ## About the website The **Ecommerce Industry** is booming significantly in the Asia Pacific region, notably so in **South Korea**. In part, this market growth is driven by the increasing use of the internet and smartphone devices which further facilitate online shopping. One of the notable players operating in this industry is **Mr Porter**, a renowned international mens luxury wear online retailer. The dataset obtained for analysis contains **Ecommerce product-list page (PLP) data** of **Mr Porter** in South Korea. This data will offer insightful details about online customer interactions, preferences, and trends in the South Korean luxury retail market. ## Link to **dataset** [South Korea - Mr Porter - Product-level price list dataset](https://www.databoutique.com/buy-data-page/Mr%20Porter%20Product-prices%20South%20Korea/r/recmSQCD6UD9QZEqq)
DBQ/Mr.Porter.Product.prices.South.Korea
[ "task_categories:text-classification", "task_categories:image-classification", "task_categories:feature-extraction", "task_categories:image-segmentation", "task_categories:image-to-image", "task_categories:image-to-text", "task_categories:object-detection", "task_categories:summarization", "task_categories:zero-shot-image-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image", "region:us" ]
2023-11-19T09:16:25+00:00
{"annotations_creators": ["other"], "language_creators": ["other"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "task_categories": ["text-classification", "image-classification", "feature-extraction", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "summarization", "zero-shot-image-classification"], "pretty_name": "South Korea - Mr Porter - Product-level price list", "tags": ["webscraping", "ecommerce", "Mr Porter", "fashion", "fashion product", "image", "fashion image"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "website_name", "dtype": "string"}, {"name": "competence_date", "dtype": "string"}, {"name": "country_code", "dtype": "string"}, {"name": "currency_code", "dtype": "string"}, {"name": "brand", "dtype": "string"}, {"name": "category1_code", "dtype": "string"}, {"name": "category2_code", "dtype": "string"}, {"name": "category3_code", "dtype": "string"}, {"name": "product_code", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "itemurl", "dtype": "string"}, {"name": "imageurl", "dtype": "string"}, {"name": "full_price", "dtype": "float64"}, {"name": "price", "dtype": "float64"}, {"name": "full_price_eur", "dtype": "float64"}, {"name": "price_eur", "dtype": "float64"}, {"name": "flg_discount", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8881255, "num_examples": 27053}], "download_size": 2126775, "dataset_size": 8881255}}
2023-11-19T09:16:30+00:00
[]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us
# Mr Porter web scraped data ## About the website The Ecommerce Industry is booming significantly in the Asia Pacific region, notably so in South Korea. In part, this market growth is driven by the increasing use of the internet and smartphone devices which further facilitate online shopping. One of the notable players operating in this industry is Mr Porter, a renowned international mens luxury wear online retailer. The dataset obtained for analysis contains Ecommerce product-list page (PLP) data of Mr Porter in South Korea. This data will offer insightful details about online customer interactions, preferences, and trends in the South Korean luxury retail market. ## Link to dataset South Korea - Mr Porter - Product-level price list dataset
[ "# Mr Porter web scraped data", "## About the website\n\nThe Ecommerce Industry is booming significantly in the Asia Pacific region, notably so in South Korea. In part, this market growth is driven by the increasing use of the internet and smartphone devices which further facilitate online shopping. One of the notable players operating in this industry is Mr Porter, a renowned international mens luxury wear online retailer. The dataset obtained for analysis contains Ecommerce product-list page (PLP) data of Mr Porter in South Korea. This data will offer insightful details about online customer interactions, preferences, and trends in the South Korean luxury retail market.", "## Link to dataset\n\nSouth Korea - Mr Porter - Product-level price list dataset" ]
[ "TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n", "# Mr Porter web scraped data", "## About the website\n\nThe Ecommerce Industry is booming significantly in the Asia Pacific region, notably so in South Korea. In part, this market growth is driven by the increasing use of the internet and smartphone devices which further facilitate online shopping. One of the notable players operating in this industry is Mr Porter, a renowned international mens luxury wear online retailer. The dataset obtained for analysis contains Ecommerce product-list page (PLP) data of Mr Porter in South Korea. This data will offer insightful details about online customer interactions, preferences, and trends in the South Korean luxury retail market.", "## Link to dataset\n\nSouth Korea - Mr Porter - Product-level price list dataset" ]
[ 180, 8, 133, 19 ]
[ "passage: TAGS\n#task_categories-text-classification #task_categories-image-classification #task_categories-feature-extraction #task_categories-image-segmentation #task_categories-image-to-image #task_categories-image-to-text #task_categories-object-detection #task_categories-summarization #task_categories-zero-shot-image-classification #annotations_creators-other #language_creators-other #multilinguality-monolingual #source_datasets-original #language-English #license-unknown #webscraping #ecommerce #Mr Porter #fashion #fashion product #image #fashion image #region-us \n# Mr Porter web scraped data## About the website\n\nThe Ecommerce Industry is booming significantly in the Asia Pacific region, notably so in South Korea. In part, this market growth is driven by the increasing use of the internet and smartphone devices which further facilitate online shopping. One of the notable players operating in this industry is Mr Porter, a renowned international mens luxury wear online retailer. The dataset obtained for analysis contains Ecommerce product-list page (PLP) data of Mr Porter in South Korea. This data will offer insightful details about online customer interactions, preferences, and trends in the South Korean luxury retail market.## Link to dataset\n\nSouth Korea - Mr Porter - Product-level price list dataset" ]
67e3a3877f374dad650a61d1b7621f7030989b01
This pre-training dataset was created for [shisa-base-7b-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1). It is primarily composed of a DSIR sampling of [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400) JA/EN tokens in a 90%/10% ratio.
augmxnt/shisa-pretrain-en-ja-v1
[ "language:ja", "language:en", "license:odc-by", "region:us" ]
2023-11-19T09:48:04+00:00
{"language": ["ja", "en"], "license": "odc-by"}
2023-12-05T20:08:51+00:00
[]
[ "ja", "en" ]
TAGS #language-Japanese #language-English #license-odc-by #region-us
This pre-training dataset was created for shisa-base-7b-v1. It is primarily composed of a DSIR sampling of MADLAD-400 JA/EN tokens in a 90%/10% ratio.
[]
[ "TAGS\n#language-Japanese #language-English #license-odc-by #region-us \n" ]
[ 24 ]
[ "passage: TAGS\n#language-Japanese #language-English #license-odc-by #region-us \n" ]
381e6c0eae1d0a264f001d1def4ab43ce1e83853
# Dataset Card for "exams_vi" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vlsp-2023-vllm/exams_vi
[ "region:us" ]
2023-11-19T09:52:41+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "choices", "struct": [{"name": "label", "sequence": "string"}, {"name": "text", "sequence": "string"}]}, {"name": "answerKey", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "grade", "dtype": "string"}, {"name": "subject", "dtype": "string"}]}], "splits": [{"name": "test", "num_bytes": 7847326, "num_examples": 19150}], "download_size": 3472929, "dataset_size": 7847326}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
2023-11-20T12:12:10+00:00
[]
[]
TAGS #region-us
# Dataset Card for "exams_vi" More Information needed
[ "# Dataset Card for \"exams_vi\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"exams_vi\"\n\nMore Information needed" ]
[ 6, 14 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"exams_vi\"\n\nMore Information needed" ]
3316130bb91bbef5377d6ad593cc0a9f15125625
# Dataset Card for Evaluation run of Danielbrdz/Barcenas-3b ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/Danielbrdz/Barcenas-3b - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [Danielbrdz/Barcenas-3b](https://huggingface.co/Danielbrdz/Barcenas-3b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Danielbrdz__Barcenas-3b_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T09:57:40.626211](https://huggingface.co/datasets/open-llm-leaderboard/details_Danielbrdz__Barcenas-3b_public/blob/main/results_2023-11-19T09-57-40.626211.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.29842324440945045, "acc_stderr": 0.03223833363169239, "acc_norm": 0.3005672000487252, "acc_norm_stderr": 0.03303096158756811, "mc1": 0.2533659730722154, "mc1_stderr": 0.01522589934082684, "mc2": 0.4155719273070087, "mc2_stderr": 0.013997732355524069, "em": 0.0014681208053691276, "em_stderr": 0.0003921042190298658, "f1": 0.04693791946308727, "f1_stderr": 0.0011945909744697145 }, "harness|arc:challenge|25": { "acc": 0.3916382252559727, "acc_stderr": 0.014264122124938217, "acc_norm": 0.431740614334471, "acc_norm_stderr": 0.014474591427196204 }, "harness|hellaswag|10": { "acc": 0.5013941445927106, "acc_stderr": 0.004989762014739189, "acc_norm": 0.6781517625970922, "acc_norm_stderr": 0.0046623033952396175 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.2814814814814815, "acc_stderr": 0.038850042458002526, "acc_norm": 0.2814814814814815, "acc_norm_stderr": 0.038850042458002526 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.32894736842105265, "acc_stderr": 0.03823428969926604, "acc_norm": 0.32894736842105265, "acc_norm_stderr": 0.03823428969926604 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.33584905660377357, "acc_stderr": 0.029067220146644826, "acc_norm": 0.33584905660377357, "acc_norm_stderr": 0.029067220146644826 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2916666666666667, "acc_stderr": 0.03800968060554857, "acc_norm": 0.2916666666666667, "acc_norm_stderr": 0.03800968060554857 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.23699421965317918, "acc_stderr": 0.03242414757483098, "acc_norm": 0.23699421965317918, "acc_norm_stderr": 0.03242414757483098 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.28431372549019607, "acc_stderr": 0.04488482852329017, "acc_norm": 0.28431372549019607, "acc_norm_stderr": 0.04488482852329017 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.22127659574468084, "acc_stderr": 0.027136349602424063, "acc_norm": 0.22127659574468084, "acc_norm_stderr": 0.027136349602424063 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.23684210526315788, "acc_stderr": 0.03999423879281336, "acc_norm": 0.23684210526315788, "acc_norm_stderr": 0.03999423879281336 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.3724137931034483, "acc_stderr": 0.040287315329475604, "acc_norm": 0.3724137931034483, "acc_norm_stderr": 0.040287315329475604 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2566137566137566, "acc_stderr": 0.022494510767503154, "acc_norm": 0.2566137566137566, "acc_norm_stderr": 0.022494510767503154 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.15873015873015872, "acc_stderr": 0.03268454013011742, "acc_norm": 0.15873015873015872, "acc_norm_stderr": 0.03268454013011742 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.31, "acc_stderr": 0.04648231987117317, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117317 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.2806451612903226, "acc_stderr": 0.02556060472102289, "acc_norm": 0.2806451612903226, "acc_norm_stderr": 0.02556060472102289 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.2561576354679803, "acc_stderr": 0.030712730070982592, "acc_norm": 0.2561576354679803, "acc_norm_stderr": 0.030712730070982592 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.296969696969697, "acc_stderr": 0.03567969772268048, "acc_norm": 0.296969696969697, "acc_norm_stderr": 0.03567969772268048 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.36363636363636365, "acc_stderr": 0.034273086529999344, "acc_norm": 0.36363636363636365, "acc_norm_stderr": 0.034273086529999344 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.3471502590673575, "acc_stderr": 0.034356961683613546, "acc_norm": 0.3471502590673575, "acc_norm_stderr": 0.034356961683613546 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.3564102564102564, "acc_stderr": 0.024283140529467295, "acc_norm": 0.3564102564102564, "acc_norm_stderr": 0.024283140529467295 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2518518518518518, "acc_stderr": 0.02646611753895991, "acc_norm": 0.2518518518518518, "acc_norm_stderr": 0.02646611753895991 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.31092436974789917, "acc_stderr": 0.030066761582977934, "acc_norm": 0.31092436974789917, "acc_norm_stderr": 0.030066761582977934 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.304635761589404, "acc_stderr": 0.03757949922943343, "acc_norm": 0.304635761589404, "acc_norm_stderr": 0.03757949922943343 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.26422018348623855, "acc_stderr": 0.018904164171510193, "acc_norm": 0.26422018348623855, "acc_norm_stderr": 0.018904164171510193 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.3055555555555556, "acc_stderr": 0.03141554629402543, "acc_norm": 0.3055555555555556, "acc_norm_stderr": 0.03141554629402543 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25, "acc_stderr": 0.03039153369274154, "acc_norm": 0.25, "acc_norm_stderr": 0.03039153369274154 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.3037974683544304, "acc_stderr": 0.029936696387138608, "acc_norm": 0.3037974683544304, "acc_norm_stderr": 0.029936696387138608 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.2556053811659193, "acc_stderr": 0.029275891003969927, "acc_norm": 0.2556053811659193, "acc_norm_stderr": 0.029275891003969927 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.31297709923664124, "acc_stderr": 0.04066962905677697, "acc_norm": 0.31297709923664124, "acc_norm_stderr": 0.04066962905677697 }, "harness|hendrycksTest-international_law|5": { "acc": 0.35537190082644626, "acc_stderr": 0.04369236326573981, "acc_norm": 0.35537190082644626, "acc_norm_stderr": 0.04369236326573981 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.25, "acc_stderr": 0.04186091791394607, "acc_norm": 0.25, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.3006134969325153, "acc_stderr": 0.03602511318806771, "acc_norm": 0.3006134969325153, "acc_norm_stderr": 0.03602511318806771 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.26785714285714285, "acc_stderr": 0.042032772914677614, "acc_norm": 0.26785714285714285, "acc_norm_stderr": 0.042032772914677614 }, "harness|hendrycksTest-management|5": { "acc": 0.24271844660194175, "acc_stderr": 0.04245022486384495, "acc_norm": 0.24271844660194175, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.2692307692307692, "acc_stderr": 0.029058588303748845, "acc_norm": 0.2692307692307692, "acc_norm_stderr": 0.029058588303748845 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.29, "acc_stderr": 0.04560480215720684, "acc_norm": 0.29, "acc_norm_stderr": 0.04560480215720684 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.29757343550446996, "acc_stderr": 0.016349111912909418, "acc_norm": 0.29757343550446996, "acc_norm_stderr": 0.016349111912909418 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.2832369942196532, "acc_stderr": 0.02425790170532338, "acc_norm": 0.2832369942196532, "acc_norm_stderr": 0.02425790170532338 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2446927374301676, "acc_stderr": 0.014378169884098443, "acc_norm": 0.2446927374301676, "acc_norm_stderr": 0.014378169884098443 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.3333333333333333, "acc_stderr": 0.026992544339297236, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.026992544339297236 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.3665594855305466, "acc_stderr": 0.027368078243971625, "acc_norm": 0.3665594855305466, "acc_norm_stderr": 0.027368078243971625 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.3549382716049383, "acc_stderr": 0.026624152478845853, "acc_norm": 0.3549382716049383, "acc_norm_stderr": 0.026624152478845853 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2730496453900709, "acc_stderr": 0.026577860943307857, "acc_norm": 0.2730496453900709, "acc_norm_stderr": 0.026577860943307857 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.28226857887874834, "acc_stderr": 0.011495852176241952, "acc_norm": 0.28226857887874834, "acc_norm_stderr": 0.011495852176241952 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.3014705882352941, "acc_stderr": 0.027875982114273168, "acc_norm": 0.3014705882352941, "acc_norm_stderr": 0.027875982114273168 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.26143790849673204, "acc_stderr": 0.01777694715752803, "acc_norm": 0.26143790849673204, "acc_norm_stderr": 0.01777694715752803 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.22727272727272727, "acc_stderr": 0.04013964554072775, "acc_norm": 0.22727272727272727, "acc_norm_stderr": 0.04013964554072775 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.4, "acc_stderr": 0.031362502409358936, "acc_norm": 0.4, "acc_norm_stderr": 0.031362502409358936 }, "harness|hendrycksTest-sociology|5": { "acc": 0.32338308457711445, "acc_stderr": 0.03307615947979033, "acc_norm": 0.32338308457711445, "acc_norm_stderr": 0.03307615947979033 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.27, "acc_stderr": 0.0446196043338474, "acc_norm": 0.27, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-virology|5": { "acc": 0.27710843373493976, "acc_stderr": 0.034843315926805875, "acc_norm": 0.27710843373493976, "acc_norm_stderr": 0.034843315926805875 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.3157894736842105, "acc_stderr": 0.035650796707083106, "acc_norm": 0.3157894736842105, "acc_norm_stderr": 0.035650796707083106 }, "harness|truthfulqa:mc|0": { "mc1": 0.2533659730722154, "mc1_stderr": 0.01522589934082684, "mc2": 0.4155719273070087, "mc2_stderr": 0.013997732355524069 }, "harness|winogrande|5": { "acc": 0.6621941594317285, "acc_stderr": 0.013292583502910892 }, "harness|drop|3": { "em": 0.0014681208053691276, "em_stderr": 0.0003921042190298658, "f1": 0.04693791946308727, "f1_stderr": 0.0011945909744697145 }, "harness|gsm8k|5": { "acc": 0.025018953752843062, "acc_stderr": 0.00430204504656428 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_Danielbrdz__Barcenas-3b
[ "region:us" ]
2023-11-19T10:00:44+00:00
{"pretty_name": "Evaluation run of Danielbrdz/Barcenas-3b", "dataset_summary": "Dataset automatically created during the evaluation run of model [Danielbrdz/Barcenas-3b](https://huggingface.co/Danielbrdz/Barcenas-3b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Danielbrdz__Barcenas-3b_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T09:57:40.626211](https://huggingface.co/datasets/open-llm-leaderboard/details_Danielbrdz__Barcenas-3b_public/blob/main/results_2023-11-19T09-57-40.626211.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.29842324440945045,\n \"acc_stderr\": 0.03223833363169239,\n \"acc_norm\": 0.3005672000487252,\n \"acc_norm_stderr\": 0.03303096158756811,\n \"mc1\": 0.2533659730722154,\n \"mc1_stderr\": 0.01522589934082684,\n \"mc2\": 0.4155719273070087,\n \"mc2_stderr\": 0.013997732355524069,\n \"em\": 0.0014681208053691276,\n \"em_stderr\": 0.0003921042190298658,\n \"f1\": 0.04693791946308727,\n \"f1_stderr\": 0.0011945909744697145\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.3916382252559727,\n \"acc_stderr\": 0.014264122124938217,\n \"acc_norm\": 0.431740614334471,\n \"acc_norm_stderr\": 0.014474591427196204\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5013941445927106,\n \"acc_stderr\": 0.004989762014739189,\n \"acc_norm\": 0.6781517625970922,\n \"acc_norm_stderr\": 0.0046623033952396175\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.2814814814814815,\n \"acc_stderr\": 0.038850042458002526,\n \"acc_norm\": 0.2814814814814815,\n \"acc_norm_stderr\": 0.038850042458002526\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.32894736842105265,\n \"acc_stderr\": 0.03823428969926604,\n \"acc_norm\": 0.32894736842105265,\n \"acc_norm_stderr\": 0.03823428969926604\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.33584905660377357,\n \"acc_stderr\": 0.029067220146644826,\n \"acc_norm\": 0.33584905660377357,\n \"acc_norm_stderr\": 0.029067220146644826\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2916666666666667,\n \"acc_stderr\": 0.03800968060554857,\n \"acc_norm\": 0.2916666666666667,\n \"acc_norm_stderr\": 0.03800968060554857\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.23699421965317918,\n \"acc_stderr\": 0.03242414757483098,\n \"acc_norm\": 0.23699421965317918,\n \"acc_norm_stderr\": 0.03242414757483098\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.28431372549019607,\n \"acc_stderr\": 0.04488482852329017,\n \"acc_norm\": 0.28431372549019607,\n \"acc_norm_stderr\": 0.04488482852329017\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.22127659574468084,\n \"acc_stderr\": 0.027136349602424063,\n \"acc_norm\": 0.22127659574468084,\n \"acc_norm_stderr\": 0.027136349602424063\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.23684210526315788,\n \"acc_stderr\": 0.03999423879281336,\n \"acc_norm\": 0.23684210526315788,\n \"acc_norm_stderr\": 0.03999423879281336\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.3724137931034483,\n \"acc_stderr\": 0.040287315329475604,\n \"acc_norm\": 0.3724137931034483,\n \"acc_norm_stderr\": 0.040287315329475604\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2566137566137566,\n \"acc_stderr\": 0.022494510767503154,\n \"acc_norm\": 0.2566137566137566,\n \"acc_norm_stderr\": 0.022494510767503154\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.15873015873015872,\n \"acc_stderr\": 0.03268454013011742,\n \"acc_norm\": 0.15873015873015872,\n \"acc_norm_stderr\": 0.03268454013011742\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117317,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117317\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.2806451612903226,\n \"acc_stderr\": 0.02556060472102289,\n \"acc_norm\": 0.2806451612903226,\n \"acc_norm_stderr\": 0.02556060472102289\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.2561576354679803,\n \"acc_stderr\": 0.030712730070982592,\n \"acc_norm\": 0.2561576354679803,\n \"acc_norm_stderr\": 0.030712730070982592\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.296969696969697,\n \"acc_stderr\": 0.03567969772268048,\n \"acc_norm\": 0.296969696969697,\n \"acc_norm_stderr\": 0.03567969772268048\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.36363636363636365,\n \"acc_stderr\": 0.034273086529999344,\n \"acc_norm\": 0.36363636363636365,\n \"acc_norm_stderr\": 0.034273086529999344\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.3471502590673575,\n \"acc_stderr\": 0.034356961683613546,\n \"acc_norm\": 0.3471502590673575,\n \"acc_norm_stderr\": 0.034356961683613546\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.3564102564102564,\n \"acc_stderr\": 0.024283140529467295,\n \"acc_norm\": 0.3564102564102564,\n \"acc_norm_stderr\": 0.024283140529467295\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2518518518518518,\n \"acc_stderr\": 0.02646611753895991,\n \"acc_norm\": 0.2518518518518518,\n \"acc_norm_stderr\": 0.02646611753895991\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.31092436974789917,\n \"acc_stderr\": 0.030066761582977934,\n \"acc_norm\": 0.31092436974789917,\n \"acc_norm_stderr\": 0.030066761582977934\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.304635761589404,\n \"acc_stderr\": 0.03757949922943343,\n \"acc_norm\": 0.304635761589404,\n \"acc_norm_stderr\": 0.03757949922943343\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.26422018348623855,\n \"acc_stderr\": 0.018904164171510193,\n \"acc_norm\": 0.26422018348623855,\n \"acc_norm_stderr\": 0.018904164171510193\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.3055555555555556,\n \"acc_stderr\": 0.03141554629402543,\n \"acc_norm\": 0.3055555555555556,\n \"acc_norm_stderr\": 0.03141554629402543\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.03039153369274154,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.03039153369274154\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.3037974683544304,\n \"acc_stderr\": 0.029936696387138608,\n \"acc_norm\": 0.3037974683544304,\n \"acc_norm_stderr\": 0.029936696387138608\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.2556053811659193,\n \"acc_stderr\": 0.029275891003969927,\n \"acc_norm\": 0.2556053811659193,\n \"acc_norm_stderr\": 0.029275891003969927\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.31297709923664124,\n \"acc_stderr\": 0.04066962905677697,\n \"acc_norm\": 0.31297709923664124,\n \"acc_norm_stderr\": 0.04066962905677697\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.35537190082644626,\n \"acc_stderr\": 0.04369236326573981,\n \"acc_norm\": 0.35537190082644626,\n \"acc_norm_stderr\": 0.04369236326573981\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.3006134969325153,\n \"acc_stderr\": 0.03602511318806771,\n \"acc_norm\": 0.3006134969325153,\n \"acc_norm_stderr\": 0.03602511318806771\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.26785714285714285,\n \"acc_stderr\": 0.042032772914677614,\n \"acc_norm\": 0.26785714285714285,\n \"acc_norm_stderr\": 0.042032772914677614\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.24271844660194175,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.24271844660194175,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2692307692307692,\n \"acc_stderr\": 0.029058588303748845,\n \"acc_norm\": 0.2692307692307692,\n \"acc_norm_stderr\": 0.029058588303748845\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.29757343550446996,\n \"acc_stderr\": 0.016349111912909418,\n \"acc_norm\": 0.29757343550446996,\n \"acc_norm_stderr\": 0.016349111912909418\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.2832369942196532,\n \"acc_stderr\": 0.02425790170532338,\n \"acc_norm\": 0.2832369942196532,\n \"acc_norm_stderr\": 0.02425790170532338\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2446927374301676,\n \"acc_stderr\": 0.014378169884098443,\n \"acc_norm\": 0.2446927374301676,\n \"acc_norm_stderr\": 0.014378169884098443\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.026992544339297236,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.026992544339297236\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.3665594855305466,\n \"acc_stderr\": 0.027368078243971625,\n \"acc_norm\": 0.3665594855305466,\n \"acc_norm_stderr\": 0.027368078243971625\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.3549382716049383,\n \"acc_stderr\": 0.026624152478845853,\n \"acc_norm\": 0.3549382716049383,\n \"acc_norm_stderr\": 0.026624152478845853\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2730496453900709,\n \"acc_stderr\": 0.026577860943307857,\n \"acc_norm\": 0.2730496453900709,\n \"acc_norm_stderr\": 0.026577860943307857\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.28226857887874834,\n \"acc_stderr\": 0.011495852176241952,\n \"acc_norm\": 0.28226857887874834,\n \"acc_norm_stderr\": 0.011495852176241952\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.3014705882352941,\n \"acc_stderr\": 0.027875982114273168,\n \"acc_norm\": 0.3014705882352941,\n \"acc_norm_stderr\": 0.027875982114273168\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.26143790849673204,\n \"acc_stderr\": 0.01777694715752803,\n \"acc_norm\": 0.26143790849673204,\n \"acc_norm_stderr\": 0.01777694715752803\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.22727272727272727,\n \"acc_stderr\": 0.04013964554072775,\n \"acc_norm\": 0.22727272727272727,\n \"acc_norm_stderr\": 0.04013964554072775\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.031362502409358936,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.031362502409358936\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.32338308457711445,\n \"acc_stderr\": 0.03307615947979033,\n \"acc_norm\": 0.32338308457711445,\n \"acc_norm_stderr\": 0.03307615947979033\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.0446196043338474,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.0446196043338474\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.27710843373493976,\n \"acc_stderr\": 0.034843315926805875,\n \"acc_norm\": 0.27710843373493976,\n \"acc_norm_stderr\": 0.034843315926805875\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.3157894736842105,\n \"acc_stderr\": 0.035650796707083106,\n \"acc_norm\": 0.3157894736842105,\n \"acc_norm_stderr\": 0.035650796707083106\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2533659730722154,\n \"mc1_stderr\": 0.01522589934082684,\n \"mc2\": 0.4155719273070087,\n \"mc2_stderr\": 0.013997732355524069\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.6621941594317285,\n \"acc_stderr\": 0.013292583502910892\n },\n \"harness|drop|3\": {\n \"em\": 0.0014681208053691276,\n \"em_stderr\": 0.0003921042190298658,\n \"f1\": 0.04693791946308727,\n \"f1_stderr\": 0.0011945909744697145\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.025018953752843062,\n \"acc_stderr\": 0.00430204504656428\n }\n}\n```", "repo_url": "https://huggingface.co/Danielbrdz/Barcenas-3b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|arc:challenge|25_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|drop|3_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|gsm8k|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hellaswag|10_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T09-57-40.626211.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["**/details_harness|winogrande|5_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T09-57-40.626211.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T09_57_40.626211", "path": ["results_2023-11-19T09-57-40.626211.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T09-57-40.626211.parquet"]}]}]}
2023-11-19T10:01:35+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Danielbrdz/Barcenas-3b ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model Danielbrdz/Barcenas-3b on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T09:57:40.626211(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of Danielbrdz/Barcenas-3b", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model Danielbrdz/Barcenas-3b on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T09:57:40.626211(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Danielbrdz/Barcenas-3b", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model Danielbrdz/Barcenas-3b on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T09:57:40.626211(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 18, 31, 167, 67, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of Danielbrdz/Barcenas-3b## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model Danielbrdz/Barcenas-3b on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T09:57:40.626211(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
a6b31b1065095fc41b440773f2c41b8ba87c967a
# Mini-VNCC ## Description The `mini-vncc` is a 777,777 unique web documents represents an intensively filtered collection of Vietnamese web content, meticulously extracted from ~6TB of Vietnamese text in all CommonCrawl archive from 2013 to 2023. It is specifically tailored for pretraining models on Markdown structured web content in Vietnamese. ## Access To access the dataset, use: ```python from datasets import load_dataset dataset = load_dataset("nampdn-ai/mini-vncc") ``` ## Dataset Structure ### Data Fields - `url`: Source web page URL. - `text`: Extracted Vietnamese HTML text converted into Markdown. - `length`: Number of characters in the document. ### Data Usage Ideal for pretraining/finetune small Viet language models on Vietnamese Markdown structured web content. **Note:** Data should be cleaned at the document level prior to usage to ensure quality. ## Acknowledgements Special thanks to the CommonCrawl project and [Symato contributors](https://huggingface.co/datasets/Symato/cc#main-contributors) for providing the base data. ## Licensing This dataset is available under CommonCrawl's licensing terms. For more details, visit [CommonCrawl's license](https://commoncrawl.org/terms-of-use/).
nampdn-ai/mini-vncc
[ "task_categories:text-generation", "size_categories:100K<n<1M", "language:vi", "region:us" ]
2023-11-19T10:05:31+00:00
{"language": ["vi"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "pretty_name": "Mini Vietnamese CommonCrawl"}
2023-11-30T16:13:05+00:00
[]
[ "vi" ]
TAGS #task_categories-text-generation #size_categories-100K<n<1M #language-Vietnamese #region-us
# Mini-VNCC ## Description The 'mini-vncc' is a 777,777 unique web documents represents an intensively filtered collection of Vietnamese web content, meticulously extracted from ~6TB of Vietnamese text in all CommonCrawl archive from 2013 to 2023. It is specifically tailored for pretraining models on Markdown structured web content in Vietnamese. ## Access To access the dataset, use: ## Dataset Structure ### Data Fields - 'url': Source web page URL. - 'text': Extracted Vietnamese HTML text converted into Markdown. - 'length': Number of characters in the document. ### Data Usage Ideal for pretraining/finetune small Viet language models on Vietnamese Markdown structured web content. Note: Data should be cleaned at the document level prior to usage to ensure quality. ## Acknowledgements Special thanks to the CommonCrawl project and Symato contributors for providing the base data. ## Licensing This dataset is available under CommonCrawl's licensing terms. For more details, visit CommonCrawl's license.
[ "# Mini-VNCC", "## Description\n\nThe 'mini-vncc' is a 777,777 unique web documents represents an intensively filtered collection of Vietnamese web content, meticulously extracted from ~6TB of Vietnamese text in all CommonCrawl archive from 2013 to 2023. It is specifically tailored for pretraining models on Markdown structured web content in Vietnamese.", "## Access\n\nTo access the dataset, use:", "## Dataset Structure", "### Data Fields\n\n- 'url': Source web page URL.\n- 'text': Extracted Vietnamese HTML text converted into Markdown.\n- 'length': Number of characters in the document.", "### Data Usage\n\nIdeal for pretraining/finetune small Viet language models on Vietnamese Markdown structured web content.\n\nNote: Data should be cleaned at the document level prior to usage to ensure quality.", "## Acknowledgements\n\nSpecial thanks to the CommonCrawl project and Symato contributors for providing the base data.", "## Licensing\n\nThis dataset is available under CommonCrawl's licensing terms. For more details, visit CommonCrawl's license." ]
[ "TAGS\n#task_categories-text-generation #size_categories-100K<n<1M #language-Vietnamese #region-us \n", "# Mini-VNCC", "## Description\n\nThe 'mini-vncc' is a 777,777 unique web documents represents an intensively filtered collection of Vietnamese web content, meticulously extracted from ~6TB of Vietnamese text in all CommonCrawl archive from 2013 to 2023. It is specifically tailored for pretraining models on Markdown structured web content in Vietnamese.", "## Access\n\nTo access the dataset, use:", "## Dataset Structure", "### Data Fields\n\n- 'url': Source web page URL.\n- 'text': Extracted Vietnamese HTML text converted into Markdown.\n- 'length': Number of characters in the document.", "### Data Usage\n\nIdeal for pretraining/finetune small Viet language models on Vietnamese Markdown structured web content.\n\nNote: Data should be cleaned at the document level prior to usage to ensure quality.", "## Acknowledgements\n\nSpecial thanks to the CommonCrawl project and Symato contributors for providing the base data.", "## Licensing\n\nThis dataset is available under CommonCrawl's licensing terms. For more details, visit CommonCrawl's license." ]
[ 36, 5, 78, 10, 6, 45, 44, 25, 34 ]
[ "passage: TAGS\n#task_categories-text-generation #size_categories-100K<n<1M #language-Vietnamese #region-us \n# Mini-VNCC## Description\n\nThe 'mini-vncc' is a 777,777 unique web documents represents an intensively filtered collection of Vietnamese web content, meticulously extracted from ~6TB of Vietnamese text in all CommonCrawl archive from 2013 to 2023. It is specifically tailored for pretraining models on Markdown structured web content in Vietnamese.## Access\n\nTo access the dataset, use:## Dataset Structure### Data Fields\n\n- 'url': Source web page URL.\n- 'text': Extracted Vietnamese HTML text converted into Markdown.\n- 'length': Number of characters in the document.### Data Usage\n\nIdeal for pretraining/finetune small Viet language models on Vietnamese Markdown structured web content.\n\nNote: Data should be cleaned at the document level prior to usage to ensure quality.## Acknowledgements\n\nSpecial thanks to the CommonCrawl project and Symato contributors for providing the base data.## Licensing\n\nThis dataset is available under CommonCrawl's licensing terms. For more details, visit CommonCrawl's license." ]
fe5ed68e316b2182c27c5ee404387db15adb0f10
# Dataset Card for Evaluation run of CausalLM/7B ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/CausalLM/7B - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [CausalLM/7B](https://huggingface.co/CausalLM/7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CausalLM__7B_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T10:15:27.073071](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__7B_public/blob/main/results_2023-11-19T10-15-27.073071.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6094831324044202, "acc_stderr": 0.0327856640395233, "acc_norm": 0.6180866854509012, "acc_norm_stderr": 0.03347186592408746, "mc1": 0.3537331701346389, "mc1_stderr": 0.016737814358846147, "mc2": 0.5012670346064317, "mc2_stderr": 0.015282424019072406, "em": 0.3381921140939597, "em_stderr": 0.0048449283464877275, "f1": 0.4114880453020153, "f1_stderr": 0.00471092648573539 }, "harness|arc:challenge|25": { "acc": 0.47013651877133106, "acc_stderr": 0.014585305840007102, "acc_norm": 0.5, "acc_norm_stderr": 0.014611390804670088 }, "harness|hellaswag|10": { "acc": 0.5603465445130452, "acc_stderr": 0.004953305461311753, "acc_norm": 0.7457677753435571, "acc_norm_stderr": 0.00434538861452003 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5407407407407407, "acc_stderr": 0.04304979692464242, "acc_norm": 0.5407407407407407, "acc_norm_stderr": 0.04304979692464242 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.625, "acc_stderr": 0.039397364351956274, "acc_norm": 0.625, "acc_norm_stderr": 0.039397364351956274 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7132075471698113, "acc_stderr": 0.02783491252754407, "acc_norm": 0.7132075471698113, "acc_norm_stderr": 0.02783491252754407 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7361111111111112, "acc_stderr": 0.03685651095897532, "acc_norm": 0.7361111111111112, "acc_norm_stderr": 0.03685651095897532 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.42, "acc_stderr": 0.049604496374885836, "acc_norm": 0.42, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.56, "acc_stderr": 0.049888765156985884, "acc_norm": 0.56, "acc_norm_stderr": 0.049888765156985884 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7167630057803468, "acc_stderr": 0.034355680560478746, "acc_norm": 0.7167630057803468, "acc_norm_stderr": 0.034355680560478746 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.38235294117647056, "acc_stderr": 0.04835503696107223, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.04835503696107223 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.73, "acc_stderr": 0.04461960433384739, "acc_norm": 0.73, "acc_norm_stderr": 0.04461960433384739 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5361702127659574, "acc_stderr": 0.032600385118357715, "acc_norm": 0.5361702127659574, "acc_norm_stderr": 0.032600385118357715 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.40350877192982454, "acc_stderr": 0.046151869625837026, "acc_norm": 0.40350877192982454, "acc_norm_stderr": 0.046151869625837026 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5241379310344828, "acc_stderr": 0.0416180850350153, "acc_norm": 0.5241379310344828, "acc_norm_stderr": 0.0416180850350153 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4444444444444444, "acc_stderr": 0.025591857761382175, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.025591857761382175 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4444444444444444, "acc_stderr": 0.04444444444444449, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.04444444444444449 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7516129032258064, "acc_stderr": 0.024580028921481003, "acc_norm": 0.7516129032258064, "acc_norm_stderr": 0.024580028921481003 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4827586206896552, "acc_stderr": 0.035158955511657, "acc_norm": 0.4827586206896552, "acc_norm_stderr": 0.035158955511657 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.64, "acc_stderr": 0.04824181513244218, "acc_norm": 0.64, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7636363636363637, "acc_stderr": 0.03317505930009182, "acc_norm": 0.7636363636363637, "acc_norm_stderr": 0.03317505930009182 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8181818181818182, "acc_stderr": 0.027479603010538808, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.027479603010538808 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8549222797927462, "acc_stderr": 0.025416343096306443, "acc_norm": 0.8549222797927462, "acc_norm_stderr": 0.025416343096306443 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5974358974358974, "acc_stderr": 0.024864995159767755, "acc_norm": 0.5974358974358974, "acc_norm_stderr": 0.024864995159767755 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3074074074074074, "acc_stderr": 0.028133252578815635, "acc_norm": 0.3074074074074074, "acc_norm_stderr": 0.028133252578815635 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6008403361344538, "acc_stderr": 0.031811100324139266, "acc_norm": 0.6008403361344538, "acc_norm_stderr": 0.031811100324139266 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.39072847682119205, "acc_stderr": 0.039837983066598075, "acc_norm": 0.39072847682119205, "acc_norm_stderr": 0.039837983066598075 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8220183486238533, "acc_stderr": 0.01639943636661291, "acc_norm": 0.8220183486238533, "acc_norm_stderr": 0.01639943636661291 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5046296296296297, "acc_stderr": 0.03409825519163572, "acc_norm": 0.5046296296296297, "acc_norm_stderr": 0.03409825519163572 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7549019607843137, "acc_stderr": 0.030190282453501947, "acc_norm": 0.7549019607843137, "acc_norm_stderr": 0.030190282453501947 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7763713080168776, "acc_stderr": 0.027123298205229966, "acc_norm": 0.7763713080168776, "acc_norm_stderr": 0.027123298205229966 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6591928251121076, "acc_stderr": 0.0318114974705536, "acc_norm": 0.6591928251121076, "acc_norm_stderr": 0.0318114974705536 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7022900763358778, "acc_stderr": 0.04010358942462203, "acc_norm": 0.7022900763358778, "acc_norm_stderr": 0.04010358942462203 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7314814814814815, "acc_stderr": 0.042844679680521934, "acc_norm": 0.7314814814814815, "acc_norm_stderr": 0.042844679680521934 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6932515337423313, "acc_stderr": 0.036230899157241474, "acc_norm": 0.6932515337423313, "acc_norm_stderr": 0.036230899157241474 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5, "acc_stderr": 0.04745789978762494, "acc_norm": 0.5, "acc_norm_stderr": 0.04745789978762494 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8376068376068376, "acc_stderr": 0.02416161812798774, "acc_norm": 0.8376068376068376, "acc_norm_stderr": 0.02416161812798774 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.80970625798212, "acc_stderr": 0.014036945850381387, "acc_norm": 0.80970625798212, "acc_norm_stderr": 0.014036945850381387 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6560693641618497, "acc_stderr": 0.025574123786546655, "acc_norm": 0.6560693641618497, "acc_norm_stderr": 0.025574123786546655 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2759776536312849, "acc_stderr": 0.01495010300247536, "acc_norm": 0.2759776536312849, "acc_norm_stderr": 0.01495010300247536 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6764705882352942, "acc_stderr": 0.026787453111906497, "acc_norm": 0.6764705882352942, "acc_norm_stderr": 0.026787453111906497 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.684887459807074, "acc_stderr": 0.02638527370346449, "acc_norm": 0.684887459807074, "acc_norm_stderr": 0.02638527370346449 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.691358024691358, "acc_stderr": 0.025702640260603746, "acc_norm": 0.691358024691358, "acc_norm_stderr": 0.025702640260603746 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4219858156028369, "acc_stderr": 0.029462189233370593, "acc_norm": 0.4219858156028369, "acc_norm_stderr": 0.029462189233370593 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4954367666232073, "acc_stderr": 0.012769704263117526, "acc_norm": 0.4954367666232073, "acc_norm_stderr": 0.012769704263117526 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6360294117647058, "acc_stderr": 0.02922719246003203, "acc_norm": 0.6360294117647058, "acc_norm_stderr": 0.02922719246003203 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6160130718954249, "acc_stderr": 0.01967580813528152, "acc_norm": 0.6160130718954249, "acc_norm_stderr": 0.01967580813528152 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6545454545454545, "acc_stderr": 0.04554619617541054, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.04554619617541054 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.726530612244898, "acc_stderr": 0.02853556033712845, "acc_norm": 0.726530612244898, "acc_norm_stderr": 0.02853556033712845 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8507462686567164, "acc_stderr": 0.02519692987482705, "acc_norm": 0.8507462686567164, "acc_norm_stderr": 0.02519692987482705 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.0358870281282637, "acc_norm": 0.85, "acc_norm_stderr": 0.0358870281282637 }, "harness|hendrycksTest-virology|5": { "acc": 0.46987951807228917, "acc_stderr": 0.03885425420866766, "acc_norm": 0.46987951807228917, "acc_norm_stderr": 0.03885425420866766 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7894736842105263, "acc_stderr": 0.031267817146631786, "acc_norm": 0.7894736842105263, "acc_norm_stderr": 0.031267817146631786 }, "harness|truthfulqa:mc|0": { "mc1": 0.3537331701346389, "mc1_stderr": 0.016737814358846147, "mc2": 0.5012670346064317, "mc2_stderr": 0.015282424019072406 }, "harness|winogrande|5": { "acc": 0.696921862667719, "acc_stderr": 0.012916727462634458 }, "harness|drop|3": { "em": 0.3381921140939597, "em_stderr": 0.0048449283464877275, "f1": 0.4114880453020153, "f1_stderr": 0.00471092648573539 }, "harness|gsm8k|5": { "acc": 0.22971948445792267, "acc_stderr": 0.011586857544997503 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_CausalLM__7B
[ "region:us" ]
2023-11-19T10:18:15+00:00
{"pretty_name": "Evaluation run of CausalLM/7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [CausalLM/7B](https://huggingface.co/CausalLM/7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CausalLM__7B_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T10:15:27.073071](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__7B_public/blob/main/results_2023-11-19T10-15-27.073071.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6094831324044202,\n \"acc_stderr\": 0.0327856640395233,\n \"acc_norm\": 0.6180866854509012,\n \"acc_norm_stderr\": 0.03347186592408746,\n \"mc1\": 0.3537331701346389,\n \"mc1_stderr\": 0.016737814358846147,\n \"mc2\": 0.5012670346064317,\n \"mc2_stderr\": 0.015282424019072406,\n \"em\": 0.3381921140939597,\n \"em_stderr\": 0.0048449283464877275,\n \"f1\": 0.4114880453020153,\n \"f1_stderr\": 0.00471092648573539\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.47013651877133106,\n \"acc_stderr\": 0.014585305840007102,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.014611390804670088\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5603465445130452,\n \"acc_stderr\": 0.004953305461311753,\n \"acc_norm\": 0.7457677753435571,\n \"acc_norm_stderr\": 0.00434538861452003\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5407407407407407,\n \"acc_stderr\": 0.04304979692464242,\n \"acc_norm\": 0.5407407407407407,\n \"acc_norm_stderr\": 0.04304979692464242\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.625,\n \"acc_stderr\": 0.039397364351956274,\n \"acc_norm\": 0.625,\n \"acc_norm_stderr\": 0.039397364351956274\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7132075471698113,\n \"acc_stderr\": 0.02783491252754407,\n \"acc_norm\": 0.7132075471698113,\n \"acc_norm_stderr\": 0.02783491252754407\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7361111111111112,\n \"acc_stderr\": 0.03685651095897532,\n \"acc_norm\": 0.7361111111111112,\n \"acc_norm_stderr\": 0.03685651095897532\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.049888765156985884,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.049888765156985884\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7167630057803468,\n \"acc_stderr\": 0.034355680560478746,\n \"acc_norm\": 0.7167630057803468,\n \"acc_norm_stderr\": 0.034355680560478746\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107223,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107223\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.04461960433384739,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.04461960433384739\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5361702127659574,\n \"acc_stderr\": 0.032600385118357715,\n \"acc_norm\": 0.5361702127659574,\n \"acc_norm_stderr\": 0.032600385118357715\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.40350877192982454,\n \"acc_stderr\": 0.046151869625837026,\n \"acc_norm\": 0.40350877192982454,\n \"acc_norm_stderr\": 0.046151869625837026\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5241379310344828,\n \"acc_stderr\": 0.0416180850350153,\n \"acc_norm\": 0.5241379310344828,\n \"acc_norm_stderr\": 0.0416180850350153\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.025591857761382175,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.025591857761382175\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.04444444444444449,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.04444444444444449\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7516129032258064,\n \"acc_stderr\": 0.024580028921481003,\n \"acc_norm\": 0.7516129032258064,\n \"acc_norm_stderr\": 0.024580028921481003\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4827586206896552,\n \"acc_stderr\": 0.035158955511657,\n \"acc_norm\": 0.4827586206896552,\n \"acc_norm_stderr\": 0.035158955511657\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7636363636363637,\n \"acc_stderr\": 0.03317505930009182,\n \"acc_norm\": 0.7636363636363637,\n \"acc_norm_stderr\": 0.03317505930009182\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8181818181818182,\n \"acc_stderr\": 0.027479603010538808,\n \"acc_norm\": 0.8181818181818182,\n \"acc_norm_stderr\": 0.027479603010538808\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8549222797927462,\n \"acc_stderr\": 0.025416343096306443,\n \"acc_norm\": 0.8549222797927462,\n \"acc_norm_stderr\": 0.025416343096306443\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5974358974358974,\n \"acc_stderr\": 0.024864995159767755,\n \"acc_norm\": 0.5974358974358974,\n \"acc_norm_stderr\": 0.024864995159767755\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3074074074074074,\n \"acc_stderr\": 0.028133252578815635,\n \"acc_norm\": 0.3074074074074074,\n \"acc_norm_stderr\": 0.028133252578815635\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6008403361344538,\n \"acc_stderr\": 0.031811100324139266,\n \"acc_norm\": 0.6008403361344538,\n \"acc_norm_stderr\": 0.031811100324139266\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.39072847682119205,\n \"acc_stderr\": 0.039837983066598075,\n \"acc_norm\": 0.39072847682119205,\n \"acc_norm_stderr\": 0.039837983066598075\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8220183486238533,\n \"acc_stderr\": 0.01639943636661291,\n \"acc_norm\": 0.8220183486238533,\n \"acc_norm_stderr\": 0.01639943636661291\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5046296296296297,\n \"acc_stderr\": 0.03409825519163572,\n \"acc_norm\": 0.5046296296296297,\n \"acc_norm_stderr\": 0.03409825519163572\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7549019607843137,\n \"acc_stderr\": 0.030190282453501947,\n \"acc_norm\": 0.7549019607843137,\n \"acc_norm_stderr\": 0.030190282453501947\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7763713080168776,\n \"acc_stderr\": 0.027123298205229966,\n \"acc_norm\": 0.7763713080168776,\n \"acc_norm_stderr\": 0.027123298205229966\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6591928251121076,\n \"acc_stderr\": 0.0318114974705536,\n \"acc_norm\": 0.6591928251121076,\n \"acc_norm_stderr\": 0.0318114974705536\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7022900763358778,\n \"acc_stderr\": 0.04010358942462203,\n \"acc_norm\": 0.7022900763358778,\n \"acc_norm_stderr\": 0.04010358942462203\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7314814814814815,\n \"acc_stderr\": 0.042844679680521934,\n \"acc_norm\": 0.7314814814814815,\n \"acc_norm_stderr\": 0.042844679680521934\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6932515337423313,\n \"acc_stderr\": 0.036230899157241474,\n \"acc_norm\": 0.6932515337423313,\n \"acc_norm_stderr\": 0.036230899157241474\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.04745789978762494,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.04745789978762494\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8376068376068376,\n \"acc_stderr\": 0.02416161812798774,\n \"acc_norm\": 0.8376068376068376,\n \"acc_norm_stderr\": 0.02416161812798774\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.80970625798212,\n \"acc_stderr\": 0.014036945850381387,\n \"acc_norm\": 0.80970625798212,\n \"acc_norm_stderr\": 0.014036945850381387\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6560693641618497,\n \"acc_stderr\": 0.025574123786546655,\n \"acc_norm\": 0.6560693641618497,\n \"acc_norm_stderr\": 0.025574123786546655\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2759776536312849,\n \"acc_stderr\": 0.01495010300247536,\n \"acc_norm\": 0.2759776536312849,\n \"acc_norm_stderr\": 0.01495010300247536\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.026787453111906497,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.026787453111906497\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.684887459807074,\n \"acc_stderr\": 0.02638527370346449,\n \"acc_norm\": 0.684887459807074,\n \"acc_norm_stderr\": 0.02638527370346449\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.691358024691358,\n \"acc_stderr\": 0.025702640260603746,\n \"acc_norm\": 0.691358024691358,\n \"acc_norm_stderr\": 0.025702640260603746\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4219858156028369,\n \"acc_stderr\": 0.029462189233370593,\n \"acc_norm\": 0.4219858156028369,\n \"acc_norm_stderr\": 0.029462189233370593\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4954367666232073,\n \"acc_stderr\": 0.012769704263117526,\n \"acc_norm\": 0.4954367666232073,\n \"acc_norm_stderr\": 0.012769704263117526\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6360294117647058,\n \"acc_stderr\": 0.02922719246003203,\n \"acc_norm\": 0.6360294117647058,\n \"acc_norm_stderr\": 0.02922719246003203\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6160130718954249,\n \"acc_stderr\": 0.01967580813528152,\n \"acc_norm\": 0.6160130718954249,\n \"acc_norm_stderr\": 0.01967580813528152\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.04554619617541054,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.04554619617541054\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.726530612244898,\n \"acc_stderr\": 0.02853556033712845,\n \"acc_norm\": 0.726530612244898,\n \"acc_norm_stderr\": 0.02853556033712845\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8507462686567164,\n \"acc_stderr\": 0.02519692987482705,\n \"acc_norm\": 0.8507462686567164,\n \"acc_norm_stderr\": 0.02519692987482705\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.0358870281282637,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.0358870281282637\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.46987951807228917,\n \"acc_stderr\": 0.03885425420866766,\n \"acc_norm\": 0.46987951807228917,\n \"acc_norm_stderr\": 0.03885425420866766\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7894736842105263,\n \"acc_stderr\": 0.031267817146631786,\n \"acc_norm\": 0.7894736842105263,\n \"acc_norm_stderr\": 0.031267817146631786\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3537331701346389,\n \"mc1_stderr\": 0.016737814358846147,\n \"mc2\": 0.5012670346064317,\n \"mc2_stderr\": 0.015282424019072406\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.696921862667719,\n \"acc_stderr\": 0.012916727462634458\n },\n \"harness|drop|3\": {\n \"em\": 0.3381921140939597,\n \"em_stderr\": 0.0048449283464877275,\n \"f1\": 0.4114880453020153,\n \"f1_stderr\": 0.00471092648573539\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.22971948445792267,\n \"acc_stderr\": 0.011586857544997503\n }\n}\n```", "repo_url": "https://huggingface.co/CausalLM/7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|arc:challenge|25_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|drop|3_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|gsm8k|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hellaswag|10_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T10-15-27.073071.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["**/details_harness|winogrande|5_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T10-15-27.073071.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T10_15_27.073071", "path": ["results_2023-11-19T10-15-27.073071.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T10-15-27.073071.parquet"]}]}]}
2023-11-19T10:19:03+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of CausalLM/7B ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model CausalLM/7B on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T10:15:27.073071(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of CausalLM/7B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model CausalLM/7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T10:15:27.073071(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of CausalLM/7B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model CausalLM/7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T10:15:27.073071(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 14, 31, 163, 67, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of CausalLM/7B## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model CausalLM/7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T10:15:27.073071(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
079c4bfbc294ae1c800193be1d1ca5a21162c425
# Dataset Card for "ICPR_big_div2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nourheshamshaheen/ICPR_big_div2
[ "region:us" ]
2023-11-19T10:35:27+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "area", "1": "heatmap", "2": "horizontal_bar", "3": "horizontal_interval", "4": "line", "5": "manhattan", "6": "map", "7": "pie", "8": "scatter", "9": "scatter-line", "10": "surface", "11": "venn", "12": "vertical_bar", "13": "vertical_box", "14": "vertical_interval"}}}}, {"name": "pipeline_label", "dtype": {"class_label": {"names": {"0": "line", "1": "other", "2": "scatter", "3": "scatter_line", "4": "vertical_bar"}}}}, {"name": "true_label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1192178239.45, "num_examples": 22923}], "download_size": 1082413228, "dataset_size": 1192178239.45}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-11-19T10:46:26+00:00
[]
[]
TAGS #region-us
# Dataset Card for "ICPR_big_div2" More Information needed
[ "# Dataset Card for \"ICPR_big_div2\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"ICPR_big_div2\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"ICPR_big_div2\"\n\nMore Information needed" ]
db25f76c4368d1f6480679ceb53c4f211416e73f
# Dataset Card for Evaluation run of prithivida/Asimov-7B-v1 ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/prithivida/Asimov-7B-v1 - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [prithivida/Asimov-7B-v1](https://huggingface.co/prithivida/Asimov-7B-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_prithivida__Asimov-7B-v1_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T10:40:19.617701](https://huggingface.co/datasets/open-llm-leaderboard/details_prithivida__Asimov-7B-v1_public/blob/main/results_2023-11-19T10-40-19.617701.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5591327615228756, "acc_stderr": 0.033793433613618404, "acc_norm": 0.5679554479286705, "acc_norm_stderr": 0.034576211690701054, "mc1": 0.3463892288861689, "mc1_stderr": 0.01665699710912514, "mc2": 0.5114755425083032, "mc2_stderr": 0.015500857240755488, "em": 0.004928691275167785, "em_stderr": 0.0007171872517059772, "f1": 0.06691170302013415, "f1_stderr": 0.0015363127511980274 }, "harness|arc:challenge|25": { "acc": 0.5460750853242321, "acc_stderr": 0.014549221105171864, "acc_norm": 0.590443686006826, "acc_norm_stderr": 0.01437035863247244 }, "harness|hellaswag|10": { "acc": 0.6097390957976498, "acc_stderr": 0.004868117598481945, "acc_norm": 0.8004381597291377, "acc_norm_stderr": 0.00398854190214743 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.047937248544110196, "acc_norm": 0.35, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.48148148148148145, "acc_stderr": 0.043163785995113245, "acc_norm": 0.48148148148148145, "acc_norm_stderr": 0.043163785995113245 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5526315789473685, "acc_stderr": 0.04046336883978251, "acc_norm": 0.5526315789473685, "acc_norm_stderr": 0.04046336883978251 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6188679245283019, "acc_stderr": 0.029890609686286634, "acc_norm": 0.6188679245283019, "acc_norm_stderr": 0.029890609686286634 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5833333333333334, "acc_stderr": 0.04122728707651282, "acc_norm": 0.5833333333333334, "acc_norm_stderr": 0.04122728707651282 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.47, "acc_stderr": 0.050161355804659205, "acc_norm": 0.47, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5664739884393064, "acc_stderr": 0.03778621079092055, "acc_norm": 0.5664739884393064, "acc_norm_stderr": 0.03778621079092055 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.37254901960784315, "acc_stderr": 0.04810840148082635, "acc_norm": 0.37254901960784315, "acc_norm_stderr": 0.04810840148082635 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.71, "acc_stderr": 0.04560480215720684, "acc_norm": 0.71, "acc_norm_stderr": 0.04560480215720684 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4595744680851064, "acc_stderr": 0.032579014820998356, "acc_norm": 0.4595744680851064, "acc_norm_stderr": 0.032579014820998356 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.3333333333333333, "acc_stderr": 0.044346007015849245, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.044346007015849245 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.503448275862069, "acc_stderr": 0.04166567577101579, "acc_norm": 0.503448275862069, "acc_norm_stderr": 0.04166567577101579 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3862433862433862, "acc_stderr": 0.02507598176760168, "acc_norm": 0.3862433862433862, "acc_norm_stderr": 0.02507598176760168 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4126984126984127, "acc_stderr": 0.04403438954768177, "acc_norm": 0.4126984126984127, "acc_norm_stderr": 0.04403438954768177 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6741935483870968, "acc_stderr": 0.026662010578567107, "acc_norm": 0.6741935483870968, "acc_norm_stderr": 0.026662010578567107 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4088669950738916, "acc_stderr": 0.034590588158832314, "acc_norm": 0.4088669950738916, "acc_norm_stderr": 0.034590588158832314 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7333333333333333, "acc_stderr": 0.03453131801885417, "acc_norm": 0.7333333333333333, "acc_norm_stderr": 0.03453131801885417 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7323232323232324, "acc_stderr": 0.03154449888270285, "acc_norm": 0.7323232323232324, "acc_norm_stderr": 0.03154449888270285 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8290155440414507, "acc_stderr": 0.027171213683164528, "acc_norm": 0.8290155440414507, "acc_norm_stderr": 0.027171213683164528 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5487179487179488, "acc_stderr": 0.025230381238934837, "acc_norm": 0.5487179487179488, "acc_norm_stderr": 0.025230381238934837 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2962962962962963, "acc_stderr": 0.027840811495871927, "acc_norm": 0.2962962962962963, "acc_norm_stderr": 0.027840811495871927 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6050420168067226, "acc_stderr": 0.03175367846096626, "acc_norm": 0.6050420168067226, "acc_norm_stderr": 0.03175367846096626 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.32450331125827814, "acc_stderr": 0.03822746937658753, "acc_norm": 0.32450331125827814, "acc_norm_stderr": 0.03822746937658753 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7431192660550459, "acc_stderr": 0.018732492928342472, "acc_norm": 0.7431192660550459, "acc_norm_stderr": 0.018732492928342472 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49074074074074076, "acc_stderr": 0.034093869469927006, "acc_norm": 0.49074074074074076, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7058823529411765, "acc_stderr": 0.03198001660115071, "acc_norm": 0.7058823529411765, "acc_norm_stderr": 0.03198001660115071 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7383966244725738, "acc_stderr": 0.028609516716994934, "acc_norm": 0.7383966244725738, "acc_norm_stderr": 0.028609516716994934 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6143497757847534, "acc_stderr": 0.03266842214289201, "acc_norm": 0.6143497757847534, "acc_norm_stderr": 0.03266842214289201 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7480916030534351, "acc_stderr": 0.03807387116306086, "acc_norm": 0.7480916030534351, "acc_norm_stderr": 0.03807387116306086 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7603305785123967, "acc_stderr": 0.03896878985070416, "acc_norm": 0.7603305785123967, "acc_norm_stderr": 0.03896878985070416 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6574074074074074, "acc_stderr": 0.045879047413018105, "acc_norm": 0.6574074074074074, "acc_norm_stderr": 0.045879047413018105 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6748466257668712, "acc_stderr": 0.036803503712864595, "acc_norm": 0.6748466257668712, "acc_norm_stderr": 0.036803503712864595 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.047268355537191, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.047268355537191 }, "harness|hendrycksTest-management|5": { "acc": 0.6990291262135923, "acc_stderr": 0.045416094465039476, "acc_norm": 0.6990291262135923, "acc_norm_stderr": 0.045416094465039476 }, "harness|hendrycksTest-marketing|5": { "acc": 0.811965811965812, "acc_stderr": 0.02559819368665226, "acc_norm": 0.811965811965812, "acc_norm_stderr": 0.02559819368665226 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7075351213282248, "acc_stderr": 0.016267000684598645, "acc_norm": 0.7075351213282248, "acc_norm_stderr": 0.016267000684598645 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5924855491329479, "acc_stderr": 0.0264545781469315, "acc_norm": 0.5924855491329479, "acc_norm_stderr": 0.0264545781469315 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.24692737430167597, "acc_stderr": 0.014422292204808848, "acc_norm": 0.24692737430167597, "acc_norm_stderr": 0.014422292204808848 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6274509803921569, "acc_stderr": 0.027684181883302895, "acc_norm": 0.6274509803921569, "acc_norm_stderr": 0.027684181883302895 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6270096463022508, "acc_stderr": 0.027466610213140105, "acc_norm": 0.6270096463022508, "acc_norm_stderr": 0.027466610213140105 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5833333333333334, "acc_stderr": 0.027431623722415005, "acc_norm": 0.5833333333333334, "acc_norm_stderr": 0.027431623722415005 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.40425531914893614, "acc_stderr": 0.02927553215970473, "acc_norm": 0.40425531914893614, "acc_norm_stderr": 0.02927553215970473 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3852672750977836, "acc_stderr": 0.012429485434955194, "acc_norm": 0.3852672750977836, "acc_norm_stderr": 0.012429485434955194 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5698529411764706, "acc_stderr": 0.030074971917302875, "acc_norm": 0.5698529411764706, "acc_norm_stderr": 0.030074971917302875 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5686274509803921, "acc_stderr": 0.020036393768352638, "acc_norm": 0.5686274509803921, "acc_norm_stderr": 0.020036393768352638 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.5363636363636364, "acc_stderr": 0.04776449162396197, "acc_norm": 0.5363636363636364, "acc_norm_stderr": 0.04776449162396197 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6571428571428571, "acc_stderr": 0.030387262919547728, "acc_norm": 0.6571428571428571, "acc_norm_stderr": 0.030387262919547728 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7711442786069652, "acc_stderr": 0.029705284056772432, "acc_norm": 0.7711442786069652, "acc_norm_stderr": 0.029705284056772432 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.76, "acc_stderr": 0.04292346959909282, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909282 }, "harness|hendrycksTest-virology|5": { "acc": 0.45180722891566266, "acc_stderr": 0.03874371556587953, "acc_norm": 0.45180722891566266, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7368421052631579, "acc_stderr": 0.03377310252209205, "acc_norm": 0.7368421052631579, "acc_norm_stderr": 0.03377310252209205 }, "harness|truthfulqa:mc|0": { "mc1": 0.3463892288861689, "mc1_stderr": 0.01665699710912514, "mc2": 0.5114755425083032, "mc2_stderr": 0.015500857240755488 }, "harness|winogrande|5": { "acc": 0.739542225730071, "acc_stderr": 0.012334833671998297 }, "harness|drop|3": { "em": 0.004928691275167785, "em_stderr": 0.0007171872517059772, "f1": 0.06691170302013415, "f1_stderr": 0.0015363127511980274 }, "harness|gsm8k|5": { "acc": 0.0932524639878696, "acc_stderr": 0.00800968883832857 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_prithivida__Asimov-7B-v1
[ "region:us" ]
2023-11-19T10:43:24+00:00
{"pretty_name": "Evaluation run of prithivida/Asimov-7B-v1", "dataset_summary": "Dataset automatically created during the evaluation run of model [prithivida/Asimov-7B-v1](https://huggingface.co/prithivida/Asimov-7B-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_prithivida__Asimov-7B-v1_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T10:40:19.617701](https://huggingface.co/datasets/open-llm-leaderboard/details_prithivida__Asimov-7B-v1_public/blob/main/results_2023-11-19T10-40-19.617701.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5591327615228756,\n \"acc_stderr\": 0.033793433613618404,\n \"acc_norm\": 0.5679554479286705,\n \"acc_norm_stderr\": 0.034576211690701054,\n \"mc1\": 0.3463892288861689,\n \"mc1_stderr\": 0.01665699710912514,\n \"mc2\": 0.5114755425083032,\n \"mc2_stderr\": 0.015500857240755488,\n \"em\": 0.004928691275167785,\n \"em_stderr\": 0.0007171872517059772,\n \"f1\": 0.06691170302013415,\n \"f1_stderr\": 0.0015363127511980274\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5460750853242321,\n \"acc_stderr\": 0.014549221105171864,\n \"acc_norm\": 0.590443686006826,\n \"acc_norm_stderr\": 0.01437035863247244\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6097390957976498,\n \"acc_stderr\": 0.004868117598481945,\n \"acc_norm\": 0.8004381597291377,\n \"acc_norm_stderr\": 0.00398854190214743\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.48148148148148145,\n \"acc_stderr\": 0.043163785995113245,\n \"acc_norm\": 0.48148148148148145,\n \"acc_norm_stderr\": 0.043163785995113245\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5526315789473685,\n \"acc_stderr\": 0.04046336883978251,\n \"acc_norm\": 0.5526315789473685,\n \"acc_norm_stderr\": 0.04046336883978251\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6188679245283019,\n \"acc_stderr\": 0.029890609686286634,\n \"acc_norm\": 0.6188679245283019,\n \"acc_norm_stderr\": 0.029890609686286634\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5833333333333334,\n \"acc_stderr\": 0.04122728707651282,\n \"acc_norm\": 0.5833333333333334,\n \"acc_norm_stderr\": 0.04122728707651282\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5664739884393064,\n \"acc_stderr\": 0.03778621079092055,\n \"acc_norm\": 0.5664739884393064,\n \"acc_norm_stderr\": 0.03778621079092055\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.37254901960784315,\n \"acc_stderr\": 0.04810840148082635,\n \"acc_norm\": 0.37254901960784315,\n \"acc_norm_stderr\": 0.04810840148082635\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.4595744680851064,\n \"acc_stderr\": 0.032579014820998356,\n \"acc_norm\": 0.4595744680851064,\n \"acc_norm_stderr\": 0.032579014820998356\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.044346007015849245,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.044346007015849245\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.503448275862069,\n \"acc_stderr\": 0.04166567577101579,\n \"acc_norm\": 0.503448275862069,\n \"acc_norm_stderr\": 0.04166567577101579\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3862433862433862,\n \"acc_stderr\": 0.02507598176760168,\n \"acc_norm\": 0.3862433862433862,\n \"acc_norm_stderr\": 0.02507598176760168\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4126984126984127,\n \"acc_stderr\": 0.04403438954768177,\n \"acc_norm\": 0.4126984126984127,\n \"acc_norm_stderr\": 0.04403438954768177\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6741935483870968,\n \"acc_stderr\": 0.026662010578567107,\n \"acc_norm\": 0.6741935483870968,\n \"acc_norm_stderr\": 0.026662010578567107\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4088669950738916,\n \"acc_stderr\": 0.034590588158832314,\n \"acc_norm\": 0.4088669950738916,\n \"acc_norm_stderr\": 0.034590588158832314\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7333333333333333,\n \"acc_stderr\": 0.03453131801885417,\n \"acc_norm\": 0.7333333333333333,\n \"acc_norm_stderr\": 0.03453131801885417\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7323232323232324,\n \"acc_stderr\": 0.03154449888270285,\n \"acc_norm\": 0.7323232323232324,\n \"acc_norm_stderr\": 0.03154449888270285\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8290155440414507,\n \"acc_stderr\": 0.027171213683164528,\n \"acc_norm\": 0.8290155440414507,\n \"acc_norm_stderr\": 0.027171213683164528\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5487179487179488,\n \"acc_stderr\": 0.025230381238934837,\n \"acc_norm\": 0.5487179487179488,\n \"acc_norm_stderr\": 0.025230381238934837\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2962962962962963,\n \"acc_stderr\": 0.027840811495871927,\n \"acc_norm\": 0.2962962962962963,\n \"acc_norm_stderr\": 0.027840811495871927\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6050420168067226,\n \"acc_stderr\": 0.03175367846096626,\n \"acc_norm\": 0.6050420168067226,\n \"acc_norm_stderr\": 0.03175367846096626\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.32450331125827814,\n \"acc_stderr\": 0.03822746937658753,\n \"acc_norm\": 0.32450331125827814,\n \"acc_norm_stderr\": 0.03822746937658753\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7431192660550459,\n \"acc_stderr\": 0.018732492928342472,\n \"acc_norm\": 0.7431192660550459,\n \"acc_norm_stderr\": 0.018732492928342472\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.49074074074074076,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.49074074074074076,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7058823529411765,\n \"acc_stderr\": 0.03198001660115071,\n \"acc_norm\": 0.7058823529411765,\n \"acc_norm_stderr\": 0.03198001660115071\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7383966244725738,\n \"acc_stderr\": 0.028609516716994934,\n \"acc_norm\": 0.7383966244725738,\n \"acc_norm_stderr\": 0.028609516716994934\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6143497757847534,\n \"acc_stderr\": 0.03266842214289201,\n \"acc_norm\": 0.6143497757847534,\n \"acc_norm_stderr\": 0.03266842214289201\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7480916030534351,\n \"acc_stderr\": 0.03807387116306086,\n \"acc_norm\": 0.7480916030534351,\n \"acc_norm_stderr\": 0.03807387116306086\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7603305785123967,\n \"acc_stderr\": 0.03896878985070416,\n \"acc_norm\": 0.7603305785123967,\n \"acc_norm_stderr\": 0.03896878985070416\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6574074074074074,\n \"acc_stderr\": 0.045879047413018105,\n \"acc_norm\": 0.6574074074074074,\n \"acc_norm_stderr\": 0.045879047413018105\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6748466257668712,\n \"acc_stderr\": 0.036803503712864595,\n \"acc_norm\": 0.6748466257668712,\n \"acc_norm_stderr\": 0.036803503712864595\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.047268355537191,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.047268355537191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6990291262135923,\n \"acc_stderr\": 0.045416094465039476,\n \"acc_norm\": 0.6990291262135923,\n \"acc_norm_stderr\": 0.045416094465039476\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.811965811965812,\n \"acc_stderr\": 0.02559819368665226,\n \"acc_norm\": 0.811965811965812,\n \"acc_norm_stderr\": 0.02559819368665226\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7075351213282248,\n \"acc_stderr\": 0.016267000684598645,\n \"acc_norm\": 0.7075351213282248,\n \"acc_norm_stderr\": 0.016267000684598645\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5924855491329479,\n \"acc_stderr\": 0.0264545781469315,\n \"acc_norm\": 0.5924855491329479,\n \"acc_norm_stderr\": 0.0264545781469315\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.24692737430167597,\n \"acc_stderr\": 0.014422292204808848,\n \"acc_norm\": 0.24692737430167597,\n \"acc_norm_stderr\": 0.014422292204808848\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6274509803921569,\n \"acc_stderr\": 0.027684181883302895,\n \"acc_norm\": 0.6274509803921569,\n \"acc_norm_stderr\": 0.027684181883302895\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6270096463022508,\n \"acc_stderr\": 0.027466610213140105,\n \"acc_norm\": 0.6270096463022508,\n \"acc_norm_stderr\": 0.027466610213140105\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5833333333333334,\n \"acc_stderr\": 0.027431623722415005,\n \"acc_norm\": 0.5833333333333334,\n \"acc_norm_stderr\": 0.027431623722415005\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.40425531914893614,\n \"acc_stderr\": 0.02927553215970473,\n \"acc_norm\": 0.40425531914893614,\n \"acc_norm_stderr\": 0.02927553215970473\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3852672750977836,\n \"acc_stderr\": 0.012429485434955194,\n \"acc_norm\": 0.3852672750977836,\n \"acc_norm_stderr\": 0.012429485434955194\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5698529411764706,\n \"acc_stderr\": 0.030074971917302875,\n \"acc_norm\": 0.5698529411764706,\n \"acc_norm_stderr\": 0.030074971917302875\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5686274509803921,\n \"acc_stderr\": 0.020036393768352638,\n \"acc_norm\": 0.5686274509803921,\n \"acc_norm_stderr\": 0.020036393768352638\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.5363636363636364,\n \"acc_stderr\": 0.04776449162396197,\n \"acc_norm\": 0.5363636363636364,\n \"acc_norm_stderr\": 0.04776449162396197\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6571428571428571,\n \"acc_stderr\": 0.030387262919547728,\n \"acc_norm\": 0.6571428571428571,\n \"acc_norm_stderr\": 0.030387262919547728\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7711442786069652,\n \"acc_stderr\": 0.029705284056772432,\n \"acc_norm\": 0.7711442786069652,\n \"acc_norm_stderr\": 0.029705284056772432\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909282,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909282\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.45180722891566266,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.45180722891566266,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7368421052631579,\n \"acc_stderr\": 0.03377310252209205,\n \"acc_norm\": 0.7368421052631579,\n \"acc_norm_stderr\": 0.03377310252209205\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3463892288861689,\n \"mc1_stderr\": 0.01665699710912514,\n \"mc2\": 0.5114755425083032,\n \"mc2_stderr\": 0.015500857240755488\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.739542225730071,\n \"acc_stderr\": 0.012334833671998297\n },\n \"harness|drop|3\": {\n \"em\": 0.004928691275167785,\n \"em_stderr\": 0.0007171872517059772,\n \"f1\": 0.06691170302013415,\n \"f1_stderr\": 0.0015363127511980274\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0932524639878696,\n \"acc_stderr\": 0.00800968883832857\n }\n}\n```", "repo_url": "https://huggingface.co/prithivida/Asimov-7B-v1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|arc:challenge|25_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|drop|3_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|gsm8k|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hellaswag|10_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T10-40-19.617701.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["**/details_harness|winogrande|5_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T10-40-19.617701.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T10_40_19.617701", "path": ["results_2023-11-19T10-40-19.617701.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T10-40-19.617701.parquet"]}]}]}
2023-11-19T10:44:14+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of prithivida/Asimov-7B-v1 ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model prithivida/Asimov-7B-v1 on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T10:40:19.617701(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of prithivida/Asimov-7B-v1", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model prithivida/Asimov-7B-v1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T10:40:19.617701(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of prithivida/Asimov-7B-v1", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model prithivida/Asimov-7B-v1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T10:40:19.617701(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 21, 31, 170, 67, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of prithivida/Asimov-7B-v1## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model prithivida/Asimov-7B-v1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T10:40:19.617701(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
ab6c3422e64f1f221fac085c48b27cef4538ae3a
# Dataset Card for "ICPR_big_division2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nourheshamshaheen/ICPR_big_division2
[ "region:us" ]
2023-11-19T10:43:25+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "area", "1": "heatmap", "2": "horizontal_bar", "3": "horizontal_interval", "4": "line", "5": "manhattan", "6": "map", "7": "pie", "8": "scatter", "9": "scatter-line", "10": "surface", "11": "venn", "12": "vertical_bar", "13": "vertical_box", "14": "vertical_interval"}}}}, {"name": "pipeline_label", "dtype": {"class_label": {"names": {"0": "line", "1": "other", "2": "scatter", "3": "scatter_line", "4": "vertical_bar"}}}}, {"name": "true_label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1192178239.45, "num_examples": 22923}], "download_size": 1082413228, "dataset_size": 1192178239.45}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-11-19T10:52:12+00:00
[]
[]
TAGS #region-us
# Dataset Card for "ICPR_big_division2" More Information needed
[ "# Dataset Card for \"ICPR_big_division2\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"ICPR_big_division2\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"ICPR_big_division2\"\n\nMore Information needed" ]
bd9e5d3cffd7e9b1bfae7fbae1f469bd16ae2a88
# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-7B ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/starmpcc/Asclepius-Llama2-7B - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [starmpcc/Asclepius-Llama2-7B](https://huggingface.co/starmpcc/Asclepius-Llama2-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-7B_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T11:08:00.198126](https://huggingface.co/datasets/open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-7B_public/blob/main/results_2023-11-19T11-08-00.198126.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.43616440221247377, "acc_stderr": 0.034450168116826926, "acc_norm": 0.4429356406607476, "acc_norm_stderr": 0.03535922633415619, "mc1": 0.2974296205630355, "mc1_stderr": 0.016002651487361, "mc2": 0.43308620079593113, "mc2_stderr": 0.015567429964446104, "em": 0.030411073825503357, "em_stderr": 0.0017585282619462322, "f1": 0.13804635067114085, "f1_stderr": 0.0023911010858403406 }, "harness|arc:challenge|25": { "acc": 0.47525597269624575, "acc_stderr": 0.01459348769493774, "acc_norm": 0.5085324232081911, "acc_norm_stderr": 0.014609263165632182 }, "harness|hellaswag|10": { "acc": 0.5856403106950807, "acc_stderr": 0.004916043838455664, "acc_norm": 0.7652857996415057, "acc_norm_stderr": 0.004229538929090431 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.35555555555555557, "acc_stderr": 0.04135176749720386, "acc_norm": 0.35555555555555557, "acc_norm_stderr": 0.04135176749720386 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.32894736842105265, "acc_stderr": 0.038234289699266046, "acc_norm": 0.32894736842105265, "acc_norm_stderr": 0.038234289699266046 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.51, "acc_stderr": 0.05024183937956912, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.4716981132075472, "acc_stderr": 0.030723535249006107, "acc_norm": 0.4716981132075472, "acc_norm_stderr": 0.030723535249006107 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.4305555555555556, "acc_stderr": 0.04140685639111502, "acc_norm": 0.4305555555555556, "acc_norm_stderr": 0.04140685639111502 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.35, "acc_stderr": 0.04793724854411018, "acc_norm": 0.35, "acc_norm_stderr": 0.04793724854411018 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.45, "acc_stderr": 0.05, "acc_norm": 0.45, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.2947976878612717, "acc_stderr": 0.03476599607516478, "acc_norm": 0.2947976878612717, "acc_norm_stderr": 0.03476599607516478 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.2549019607843137, "acc_stderr": 0.0433643270799318, "acc_norm": 0.2549019607843137, "acc_norm_stderr": 0.0433643270799318 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.3702127659574468, "acc_stderr": 0.03156564682236786, "acc_norm": 0.3702127659574468, "acc_norm_stderr": 0.03156564682236786 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.2631578947368421, "acc_stderr": 0.04142439719489362, "acc_norm": 0.2631578947368421, "acc_norm_stderr": 0.04142439719489362 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.46206896551724136, "acc_stderr": 0.041546596717075474, "acc_norm": 0.46206896551724136, "acc_norm_stderr": 0.041546596717075474 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.30158730158730157, "acc_stderr": 0.0236369759961018, "acc_norm": 0.30158730158730157, "acc_norm_stderr": 0.0236369759961018 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.30952380952380953, "acc_stderr": 0.04134913018303317, "acc_norm": 0.30952380952380953, "acc_norm_stderr": 0.04134913018303317 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.28, "acc_stderr": 0.045126085985421276, "acc_norm": 0.28, "acc_norm_stderr": 0.045126085985421276 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.4645161290322581, "acc_stderr": 0.028372287797962956, "acc_norm": 0.4645161290322581, "acc_norm_stderr": 0.028372287797962956 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.3054187192118227, "acc_stderr": 0.03240661565868408, "acc_norm": 0.3054187192118227, "acc_norm_stderr": 0.03240661565868408 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.44, "acc_stderr": 0.04988876515698589, "acc_norm": 0.44, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.5878787878787879, "acc_stderr": 0.038435669935887165, "acc_norm": 0.5878787878787879, "acc_norm_stderr": 0.038435669935887165 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.45454545454545453, "acc_stderr": 0.03547601494006936, "acc_norm": 0.45454545454545453, "acc_norm_stderr": 0.03547601494006936 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.5751295336787565, "acc_stderr": 0.035674713352125395, "acc_norm": 0.5751295336787565, "acc_norm_stderr": 0.035674713352125395 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.4230769230769231, "acc_stderr": 0.025049197876042338, "acc_norm": 0.4230769230769231, "acc_norm_stderr": 0.025049197876042338 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.27037037037037037, "acc_stderr": 0.02708037281514567, "acc_norm": 0.27037037037037037, "acc_norm_stderr": 0.02708037281514567 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.3949579831932773, "acc_stderr": 0.031753678460966245, "acc_norm": 0.3949579831932773, "acc_norm_stderr": 0.031753678460966245 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.31125827814569534, "acc_stderr": 0.03780445850526732, "acc_norm": 0.31125827814569534, "acc_norm_stderr": 0.03780445850526732 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.563302752293578, "acc_stderr": 0.021264820158714205, "acc_norm": 0.563302752293578, "acc_norm_stderr": 0.021264820158714205 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.27314814814814814, "acc_stderr": 0.030388051301678116, "acc_norm": 0.27314814814814814, "acc_norm_stderr": 0.030388051301678116 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.5, "acc_stderr": 0.03509312031717982, "acc_norm": 0.5, "acc_norm_stderr": 0.03509312031717982 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.5611814345991561, "acc_stderr": 0.032302649315470375, "acc_norm": 0.5611814345991561, "acc_norm_stderr": 0.032302649315470375 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.484304932735426, "acc_stderr": 0.0335412657542081, "acc_norm": 0.484304932735426, "acc_norm_stderr": 0.0335412657542081 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.4961832061068702, "acc_stderr": 0.043851623256015534, "acc_norm": 0.4961832061068702, "acc_norm_stderr": 0.043851623256015534 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6363636363636364, "acc_stderr": 0.043913262867240704, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.043913262867240704 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.4537037037037037, "acc_stderr": 0.04812917324536823, "acc_norm": 0.4537037037037037, "acc_norm_stderr": 0.04812917324536823 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.48466257668711654, "acc_stderr": 0.03926522378708843, "acc_norm": 0.48466257668711654, "acc_norm_stderr": 0.03926522378708843 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.38392857142857145, "acc_stderr": 0.04616143075028547, "acc_norm": 0.38392857142857145, "acc_norm_stderr": 0.04616143075028547 }, "harness|hendrycksTest-management|5": { "acc": 0.5048543689320388, "acc_stderr": 0.04950504382128921, "acc_norm": 0.5048543689320388, "acc_norm_stderr": 0.04950504382128921 }, "harness|hendrycksTest-marketing|5": { "acc": 0.6367521367521367, "acc_stderr": 0.03150712523091264, "acc_norm": 0.6367521367521367, "acc_norm_stderr": 0.03150712523091264 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.5964240102171137, "acc_stderr": 0.017544332237926424, "acc_norm": 0.5964240102171137, "acc_norm_stderr": 0.017544332237926424 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.476878612716763, "acc_stderr": 0.026890297881303125, "acc_norm": 0.476878612716763, "acc_norm_stderr": 0.026890297881303125 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.28156424581005585, "acc_stderr": 0.015042290171866117, "acc_norm": 0.28156424581005585, "acc_norm_stderr": 0.015042290171866117 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.434640522875817, "acc_stderr": 0.028384256704883037, "acc_norm": 0.434640522875817, "acc_norm_stderr": 0.028384256704883037 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5434083601286174, "acc_stderr": 0.028290869054197604, "acc_norm": 0.5434083601286174, "acc_norm_stderr": 0.028290869054197604 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.4228395061728395, "acc_stderr": 0.027487472980871598, "acc_norm": 0.4228395061728395, "acc_norm_stderr": 0.027487472980871598 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.3475177304964539, "acc_stderr": 0.028406627809590954, "acc_norm": 0.3475177304964539, "acc_norm_stderr": 0.028406627809590954 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3428943937418514, "acc_stderr": 0.012123463271585892, "acc_norm": 0.3428943937418514, "acc_norm_stderr": 0.012123463271585892 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4375, "acc_stderr": 0.030134614954403924, "acc_norm": 0.4375, "acc_norm_stderr": 0.030134614954403924 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.4166666666666667, "acc_stderr": 0.01994491413687358, "acc_norm": 0.4166666666666667, "acc_norm_stderr": 0.01994491413687358 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.4909090909090909, "acc_stderr": 0.04788339768702861, "acc_norm": 0.4909090909090909, "acc_norm_stderr": 0.04788339768702861 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.3795918367346939, "acc_stderr": 0.031067211262872478, "acc_norm": 0.3795918367346939, "acc_norm_stderr": 0.031067211262872478 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6169154228855721, "acc_stderr": 0.034375193373382504, "acc_norm": 0.6169154228855721, "acc_norm_stderr": 0.034375193373382504 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-virology|5": { "acc": 0.41566265060240964, "acc_stderr": 0.038367221765980515, "acc_norm": 0.41566265060240964, "acc_norm_stderr": 0.038367221765980515 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.6374269005847953, "acc_stderr": 0.0368713061556206, "acc_norm": 0.6374269005847953, "acc_norm_stderr": 0.0368713061556206 }, "harness|truthfulqa:mc|0": { "mc1": 0.2974296205630355, "mc1_stderr": 0.016002651487361, "mc2": 0.43308620079593113, "mc2_stderr": 0.015567429964446104 }, "harness|winogrande|5": { "acc": 0.6827150749802684, "acc_stderr": 0.013080598411332118 }, "harness|drop|3": { "em": 0.030411073825503357, "em_stderr": 0.0017585282619462322, "f1": 0.13804635067114085, "f1_stderr": 0.0023911010858403406 }, "harness|gsm8k|5": { "acc": 0.003032600454890068, "acc_stderr": 0.0015145735612245386 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-7B
[ "region:us" ]
2023-11-19T11:11:03+00:00
{"pretty_name": "Evaluation run of starmpcc/Asclepius-Llama2-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [starmpcc/Asclepius-Llama2-7B](https://huggingface.co/starmpcc/Asclepius-Llama2-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-7B_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T11:08:00.198126](https://huggingface.co/datasets/open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-7B_public/blob/main/results_2023-11-19T11-08-00.198126.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.43616440221247377,\n \"acc_stderr\": 0.034450168116826926,\n \"acc_norm\": 0.4429356406607476,\n \"acc_norm_stderr\": 0.03535922633415619,\n \"mc1\": 0.2974296205630355,\n \"mc1_stderr\": 0.016002651487361,\n \"mc2\": 0.43308620079593113,\n \"mc2_stderr\": 0.015567429964446104,\n \"em\": 0.030411073825503357,\n \"em_stderr\": 0.0017585282619462322,\n \"f1\": 0.13804635067114085,\n \"f1_stderr\": 0.0023911010858403406\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.47525597269624575,\n \"acc_stderr\": 0.01459348769493774,\n \"acc_norm\": 0.5085324232081911,\n \"acc_norm_stderr\": 0.014609263165632182\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5856403106950807,\n \"acc_stderr\": 0.004916043838455664,\n \"acc_norm\": 0.7652857996415057,\n \"acc_norm_stderr\": 0.004229538929090431\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.35555555555555557,\n \"acc_stderr\": 0.04135176749720386,\n \"acc_norm\": 0.35555555555555557,\n \"acc_norm_stderr\": 0.04135176749720386\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.32894736842105265,\n \"acc_stderr\": 0.038234289699266046,\n \"acc_norm\": 0.32894736842105265,\n \"acc_norm_stderr\": 0.038234289699266046\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.4716981132075472,\n \"acc_stderr\": 0.030723535249006107,\n \"acc_norm\": 0.4716981132075472,\n \"acc_norm_stderr\": 0.030723535249006107\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.4305555555555556,\n \"acc_stderr\": 0.04140685639111502,\n \"acc_norm\": 0.4305555555555556,\n \"acc_norm_stderr\": 0.04140685639111502\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.04793724854411018,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.04793724854411018\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.2947976878612717,\n \"acc_stderr\": 0.03476599607516478,\n \"acc_norm\": 0.2947976878612717,\n \"acc_norm_stderr\": 0.03476599607516478\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.2549019607843137,\n \"acc_stderr\": 0.0433643270799318,\n \"acc_norm\": 0.2549019607843137,\n \"acc_norm_stderr\": 0.0433643270799318\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.3702127659574468,\n \"acc_stderr\": 0.03156564682236786,\n \"acc_norm\": 0.3702127659574468,\n \"acc_norm_stderr\": 0.03156564682236786\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2631578947368421,\n \"acc_stderr\": 0.04142439719489362,\n \"acc_norm\": 0.2631578947368421,\n \"acc_norm_stderr\": 0.04142439719489362\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.46206896551724136,\n \"acc_stderr\": 0.041546596717075474,\n \"acc_norm\": 0.46206896551724136,\n \"acc_norm_stderr\": 0.041546596717075474\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.30158730158730157,\n \"acc_stderr\": 0.0236369759961018,\n \"acc_norm\": 0.30158730158730157,\n \"acc_norm_stderr\": 0.0236369759961018\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.30952380952380953,\n \"acc_stderr\": 0.04134913018303317,\n \"acc_norm\": 0.30952380952380953,\n \"acc_norm_stderr\": 0.04134913018303317\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.4645161290322581,\n \"acc_stderr\": 0.028372287797962956,\n \"acc_norm\": 0.4645161290322581,\n \"acc_norm_stderr\": 0.028372287797962956\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.3054187192118227,\n \"acc_stderr\": 0.03240661565868408,\n \"acc_norm\": 0.3054187192118227,\n \"acc_norm_stderr\": 0.03240661565868408\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.44,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.5878787878787879,\n \"acc_stderr\": 0.038435669935887165,\n \"acc_norm\": 0.5878787878787879,\n \"acc_norm_stderr\": 0.038435669935887165\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.45454545454545453,\n \"acc_stderr\": 0.03547601494006936,\n \"acc_norm\": 0.45454545454545453,\n \"acc_norm_stderr\": 0.03547601494006936\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.5751295336787565,\n \"acc_stderr\": 0.035674713352125395,\n \"acc_norm\": 0.5751295336787565,\n \"acc_norm_stderr\": 0.035674713352125395\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.4230769230769231,\n \"acc_stderr\": 0.025049197876042338,\n \"acc_norm\": 0.4230769230769231,\n \"acc_norm_stderr\": 0.025049197876042338\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.27037037037037037,\n \"acc_stderr\": 0.02708037281514567,\n \"acc_norm\": 0.27037037037037037,\n \"acc_norm_stderr\": 0.02708037281514567\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.3949579831932773,\n \"acc_stderr\": 0.031753678460966245,\n \"acc_norm\": 0.3949579831932773,\n \"acc_norm_stderr\": 0.031753678460966245\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.31125827814569534,\n \"acc_stderr\": 0.03780445850526732,\n \"acc_norm\": 0.31125827814569534,\n \"acc_norm_stderr\": 0.03780445850526732\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.563302752293578,\n \"acc_stderr\": 0.021264820158714205,\n \"acc_norm\": 0.563302752293578,\n \"acc_norm_stderr\": 0.021264820158714205\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.27314814814814814,\n \"acc_stderr\": 0.030388051301678116,\n \"acc_norm\": 0.27314814814814814,\n \"acc_norm_stderr\": 0.030388051301678116\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.03509312031717982,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.03509312031717982\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.5611814345991561,\n \"acc_stderr\": 0.032302649315470375,\n \"acc_norm\": 0.5611814345991561,\n \"acc_norm_stderr\": 0.032302649315470375\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.484304932735426,\n \"acc_stderr\": 0.0335412657542081,\n \"acc_norm\": 0.484304932735426,\n \"acc_norm_stderr\": 0.0335412657542081\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.4961832061068702,\n \"acc_stderr\": 0.043851623256015534,\n \"acc_norm\": 0.4961832061068702,\n \"acc_norm_stderr\": 0.043851623256015534\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6363636363636364,\n \"acc_stderr\": 0.043913262867240704,\n \"acc_norm\": 0.6363636363636364,\n \"acc_norm_stderr\": 0.043913262867240704\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.4537037037037037,\n \"acc_stderr\": 0.04812917324536823,\n \"acc_norm\": 0.4537037037037037,\n \"acc_norm_stderr\": 0.04812917324536823\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.48466257668711654,\n \"acc_stderr\": 0.03926522378708843,\n \"acc_norm\": 0.48466257668711654,\n \"acc_norm_stderr\": 0.03926522378708843\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.38392857142857145,\n \"acc_stderr\": 0.04616143075028547,\n \"acc_norm\": 0.38392857142857145,\n \"acc_norm_stderr\": 0.04616143075028547\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.5048543689320388,\n \"acc_stderr\": 0.04950504382128921,\n \"acc_norm\": 0.5048543689320388,\n \"acc_norm_stderr\": 0.04950504382128921\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.6367521367521367,\n \"acc_stderr\": 0.03150712523091264,\n \"acc_norm\": 0.6367521367521367,\n \"acc_norm_stderr\": 0.03150712523091264\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.5964240102171137,\n \"acc_stderr\": 0.017544332237926424,\n \"acc_norm\": 0.5964240102171137,\n \"acc_norm_stderr\": 0.017544332237926424\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.476878612716763,\n \"acc_stderr\": 0.026890297881303125,\n \"acc_norm\": 0.476878612716763,\n \"acc_norm_stderr\": 0.026890297881303125\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.28156424581005585,\n \"acc_stderr\": 0.015042290171866117,\n \"acc_norm\": 0.28156424581005585,\n \"acc_norm_stderr\": 0.015042290171866117\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.434640522875817,\n \"acc_stderr\": 0.028384256704883037,\n \"acc_norm\": 0.434640522875817,\n \"acc_norm_stderr\": 0.028384256704883037\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5434083601286174,\n \"acc_stderr\": 0.028290869054197604,\n \"acc_norm\": 0.5434083601286174,\n \"acc_norm_stderr\": 0.028290869054197604\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.4228395061728395,\n \"acc_stderr\": 0.027487472980871598,\n \"acc_norm\": 0.4228395061728395,\n \"acc_norm_stderr\": 0.027487472980871598\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.3475177304964539,\n \"acc_stderr\": 0.028406627809590954,\n \"acc_norm\": 0.3475177304964539,\n \"acc_norm_stderr\": 0.028406627809590954\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3428943937418514,\n \"acc_stderr\": 0.012123463271585892,\n \"acc_norm\": 0.3428943937418514,\n \"acc_norm_stderr\": 0.012123463271585892\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4375,\n \"acc_stderr\": 0.030134614954403924,\n \"acc_norm\": 0.4375,\n \"acc_norm_stderr\": 0.030134614954403924\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.4166666666666667,\n \"acc_stderr\": 0.01994491413687358,\n \"acc_norm\": 0.4166666666666667,\n \"acc_norm_stderr\": 0.01994491413687358\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.4909090909090909,\n \"acc_stderr\": 0.04788339768702861,\n \"acc_norm\": 0.4909090909090909,\n \"acc_norm_stderr\": 0.04788339768702861\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.3795918367346939,\n \"acc_stderr\": 0.031067211262872478,\n \"acc_norm\": 0.3795918367346939,\n \"acc_norm_stderr\": 0.031067211262872478\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6169154228855721,\n \"acc_stderr\": 0.034375193373382504,\n \"acc_norm\": 0.6169154228855721,\n \"acc_norm_stderr\": 0.034375193373382504\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.41566265060240964,\n \"acc_stderr\": 0.038367221765980515,\n \"acc_norm\": 0.41566265060240964,\n \"acc_norm_stderr\": 0.038367221765980515\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.6374269005847953,\n \"acc_stderr\": 0.0368713061556206,\n \"acc_norm\": 0.6374269005847953,\n \"acc_norm_stderr\": 0.0368713061556206\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2974296205630355,\n \"mc1_stderr\": 0.016002651487361,\n \"mc2\": 0.43308620079593113,\n \"mc2_stderr\": 0.015567429964446104\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.6827150749802684,\n \"acc_stderr\": 0.013080598411332118\n },\n \"harness|drop|3\": {\n \"em\": 0.030411073825503357,\n \"em_stderr\": 0.0017585282619462322,\n \"f1\": 0.13804635067114085,\n \"f1_stderr\": 0.0023911010858403406\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.003032600454890068,\n \"acc_stderr\": 0.0015145735612245386\n }\n}\n```", "repo_url": "https://huggingface.co/starmpcc/Asclepius-Llama2-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|arc:challenge|25_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|drop|3_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|gsm8k|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hellaswag|10_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-00.198126.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["**/details_harness|winogrande|5_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T11-08-00.198126.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T11_08_00.198126", "path": ["results_2023-11-19T11-08-00.198126.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T11-08-00.198126.parquet"]}]}]}
2023-11-19T11:11:52+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-7B ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-7B on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T11:08:00.198126(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-7B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T11:08:00.198126(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-7B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T11:08:00.198126(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 23, 31, 172, 66, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-7B## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T11:08:00.198126(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
4ae927b9ec0a154ce44ea5590ad61ce404d352a5
# Dataset Card for Evaluation run of CausalLM/7B-DPO-alpha ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/CausalLM/7B-DPO-alpha - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [CausalLM/7B-DPO-alpha](https://huggingface.co/CausalLM/7B-DPO-alpha) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CausalLM__7B-DPO-alpha_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T11:08:51.305800](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__7B-DPO-alpha_public/blob/main/results_2023-11-19T11-08-51.305800.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6236046803892823, "acc_stderr": 0.03264925225879007, "acc_norm": 0.6333787021160284, "acc_norm_stderr": 0.03332854835241186, "mc1": 0.40024479804161567, "mc1_stderr": 0.017151605555749138, "mc2": 0.5758241125359985, "mc2_stderr": 0.015245539745917741, "em": 0.22399328859060402, "em_stderr": 0.004269626575176229, "f1": 0.31194630872483253, "f1_stderr": 0.004238938371737311 }, "harness|arc:challenge|25": { "acc": 0.4735494880546075, "acc_stderr": 0.014590931358120174, "acc_norm": 0.5085324232081911, "acc_norm_stderr": 0.014609263165632186 }, "harness|hellaswag|10": { "acc": 0.5332603067118104, "acc_stderr": 0.004978729300074889, "acc_norm": 0.7300338577972515, "acc_norm_stderr": 0.004430346234650379 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5555555555555556, "acc_stderr": 0.04292596718256981, "acc_norm": 0.5555555555555556, "acc_norm_stderr": 0.04292596718256981 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.625, "acc_stderr": 0.039397364351956274, "acc_norm": 0.625, "acc_norm_stderr": 0.039397364351956274 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7396226415094339, "acc_stderr": 0.027008766090708056, "acc_norm": 0.7396226415094339, "acc_norm_stderr": 0.027008766090708056 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6944444444444444, "acc_stderr": 0.03852084696008534, "acc_norm": 0.6944444444444444, "acc_norm_stderr": 0.03852084696008534 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.54, "acc_stderr": 0.05009082659620333, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.36, "acc_stderr": 0.048241815132442176, "acc_norm": 0.36, "acc_norm_stderr": 0.048241815132442176 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6705202312138728, "acc_stderr": 0.03583901754736412, "acc_norm": 0.6705202312138728, "acc_norm_stderr": 0.03583901754736412 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4411764705882353, "acc_stderr": 0.049406356306056595, "acc_norm": 0.4411764705882353, "acc_norm_stderr": 0.049406356306056595 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.74, "acc_stderr": 0.04408440022768078, "acc_norm": 0.74, "acc_norm_stderr": 0.04408440022768078 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5404255319148936, "acc_stderr": 0.032579014820998356, "acc_norm": 0.5404255319148936, "acc_norm_stderr": 0.032579014820998356 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.39473684210526316, "acc_stderr": 0.045981880578165414, "acc_norm": 0.39473684210526316, "acc_norm_stderr": 0.045981880578165414 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5448275862068965, "acc_stderr": 0.04149886942192118, "acc_norm": 0.5448275862068965, "acc_norm_stderr": 0.04149886942192118 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.47619047619047616, "acc_stderr": 0.025722097064388542, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.025722097064388542 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.46825396825396826, "acc_stderr": 0.04463112720677172, "acc_norm": 0.46825396825396826, "acc_norm_stderr": 0.04463112720677172 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7580645161290323, "acc_stderr": 0.024362599693031086, "acc_norm": 0.7580645161290323, "acc_norm_stderr": 0.024362599693031086 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.03517945038691063, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.67, "acc_stderr": 0.04725815626252607, "acc_norm": 0.67, "acc_norm_stderr": 0.04725815626252607 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8181818181818182, "acc_stderr": 0.03011768892950357, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.03011768892950357 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8434343434343434, "acc_stderr": 0.025890520358141454, "acc_norm": 0.8434343434343434, "acc_norm_stderr": 0.025890520358141454 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8704663212435233, "acc_stderr": 0.02423353229775872, "acc_norm": 0.8704663212435233, "acc_norm_stderr": 0.02423353229775872 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6307692307692307, "acc_stderr": 0.024468615241478923, "acc_norm": 0.6307692307692307, "acc_norm_stderr": 0.024468615241478923 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.32222222222222224, "acc_stderr": 0.028493465091028597, "acc_norm": 0.32222222222222224, "acc_norm_stderr": 0.028493465091028597 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6638655462184874, "acc_stderr": 0.030684737115135374, "acc_norm": 0.6638655462184874, "acc_norm_stderr": 0.030684737115135374 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3973509933774834, "acc_stderr": 0.0399552400768168, "acc_norm": 0.3973509933774834, "acc_norm_stderr": 0.0399552400768168 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8256880733944955, "acc_stderr": 0.01626567563201034, "acc_norm": 0.8256880733944955, "acc_norm_stderr": 0.01626567563201034 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5648148148148148, "acc_stderr": 0.03381200005643527, "acc_norm": 0.5648148148148148, "acc_norm_stderr": 0.03381200005643527 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7450980392156863, "acc_stderr": 0.030587591351604246, "acc_norm": 0.7450980392156863, "acc_norm_stderr": 0.030587591351604246 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7763713080168776, "acc_stderr": 0.027123298205229966, "acc_norm": 0.7763713080168776, "acc_norm_stderr": 0.027123298205229966 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6502242152466368, "acc_stderr": 0.03200736719484503, "acc_norm": 0.6502242152466368, "acc_norm_stderr": 0.03200736719484503 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7404580152671756, "acc_stderr": 0.03844876139785271, "acc_norm": 0.7404580152671756, "acc_norm_stderr": 0.03844876139785271 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8099173553719008, "acc_stderr": 0.03581796951709282, "acc_norm": 0.8099173553719008, "acc_norm_stderr": 0.03581796951709282 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.75, "acc_stderr": 0.04186091791394607, "acc_norm": 0.75, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7116564417177914, "acc_stderr": 0.03559039531617342, "acc_norm": 0.7116564417177914, "acc_norm_stderr": 0.03559039531617342 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.7864077669902912, "acc_stderr": 0.04058042015646034, "acc_norm": 0.7864077669902912, "acc_norm_stderr": 0.04058042015646034 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8504273504273504, "acc_stderr": 0.023365051491753715, "acc_norm": 0.8504273504273504, "acc_norm_stderr": 0.023365051491753715 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7969348659003831, "acc_stderr": 0.014385525076611567, "acc_norm": 0.7969348659003831, "acc_norm_stderr": 0.014385525076611567 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6791907514450867, "acc_stderr": 0.025131000233647907, "acc_norm": 0.6791907514450867, "acc_norm_stderr": 0.025131000233647907 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3642458100558659, "acc_stderr": 0.016094338768474596, "acc_norm": 0.3642458100558659, "acc_norm_stderr": 0.016094338768474596 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7222222222222222, "acc_stderr": 0.0256468630971379, "acc_norm": 0.7222222222222222, "acc_norm_stderr": 0.0256468630971379 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7041800643086816, "acc_stderr": 0.025922371788818777, "acc_norm": 0.7041800643086816, "acc_norm_stderr": 0.025922371788818777 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6759259259259259, "acc_stderr": 0.02604176620271716, "acc_norm": 0.6759259259259259, "acc_norm_stderr": 0.02604176620271716 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4716312056737589, "acc_stderr": 0.02977945095730307, "acc_norm": 0.4716312056737589, "acc_norm_stderr": 0.02977945095730307 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5143415906127771, "acc_stderr": 0.012764981829524272, "acc_norm": 0.5143415906127771, "acc_norm_stderr": 0.012764981829524272 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6544117647058824, "acc_stderr": 0.028888193103988637, "acc_norm": 0.6544117647058824, "acc_norm_stderr": 0.028888193103988637 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6274509803921569, "acc_stderr": 0.019559646809215937, "acc_norm": 0.6274509803921569, "acc_norm_stderr": 0.019559646809215937 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7387755102040816, "acc_stderr": 0.028123429335142783, "acc_norm": 0.7387755102040816, "acc_norm_stderr": 0.028123429335142783 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.025538433368578337, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.025538433368578337 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.0348735088019777, "acc_norm": 0.86, "acc_norm_stderr": 0.0348735088019777 }, "harness|hendrycksTest-virology|5": { "acc": 0.45180722891566266, "acc_stderr": 0.038743715565879536, "acc_norm": 0.45180722891566266, "acc_norm_stderr": 0.038743715565879536 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7894736842105263, "acc_stderr": 0.0312678171466318, "acc_norm": 0.7894736842105263, "acc_norm_stderr": 0.0312678171466318 }, "harness|truthfulqa:mc|0": { "mc1": 0.40024479804161567, "mc1_stderr": 0.017151605555749138, "mc2": 0.5758241125359985, "mc2_stderr": 0.015245539745917741 }, "harness|winogrande|5": { "acc": 0.675611681136543, "acc_stderr": 0.013157225726641639 }, "harness|drop|3": { "em": 0.22399328859060402, "em_stderr": 0.004269626575176229, "f1": 0.31194630872483253, "f1_stderr": 0.004238938371737311 }, "harness|gsm8k|5": { "acc": 0.2266868840030326, "acc_stderr": 0.011532758009339986 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_CausalLM__7B-DPO-alpha
[ "region:us" ]
2023-11-19T11:11:37+00:00
{"pretty_name": "Evaluation run of CausalLM/7B-DPO-alpha", "dataset_summary": "Dataset automatically created during the evaluation run of model [CausalLM/7B-DPO-alpha](https://huggingface.co/CausalLM/7B-DPO-alpha) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CausalLM__7B-DPO-alpha_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T11:08:51.305800](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__7B-DPO-alpha_public/blob/main/results_2023-11-19T11-08-51.305800.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6236046803892823,\n \"acc_stderr\": 0.03264925225879007,\n \"acc_norm\": 0.6333787021160284,\n \"acc_norm_stderr\": 0.03332854835241186,\n \"mc1\": 0.40024479804161567,\n \"mc1_stderr\": 0.017151605555749138,\n \"mc2\": 0.5758241125359985,\n \"mc2_stderr\": 0.015245539745917741,\n \"em\": 0.22399328859060402,\n \"em_stderr\": 0.004269626575176229,\n \"f1\": 0.31194630872483253,\n \"f1_stderr\": 0.004238938371737311\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.4735494880546075,\n \"acc_stderr\": 0.014590931358120174,\n \"acc_norm\": 0.5085324232081911,\n \"acc_norm_stderr\": 0.014609263165632186\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5332603067118104,\n \"acc_stderr\": 0.004978729300074889,\n \"acc_norm\": 0.7300338577972515,\n \"acc_norm_stderr\": 0.004430346234650379\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5555555555555556,\n \"acc_stderr\": 0.04292596718256981,\n \"acc_norm\": 0.5555555555555556,\n \"acc_norm_stderr\": 0.04292596718256981\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.625,\n \"acc_stderr\": 0.039397364351956274,\n \"acc_norm\": 0.625,\n \"acc_norm_stderr\": 0.039397364351956274\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7396226415094339,\n \"acc_stderr\": 0.027008766090708056,\n \"acc_norm\": 0.7396226415094339,\n \"acc_norm_stderr\": 0.027008766090708056\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6944444444444444,\n \"acc_stderr\": 0.03852084696008534,\n \"acc_norm\": 0.6944444444444444,\n \"acc_norm_stderr\": 0.03852084696008534\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6705202312138728,\n \"acc_stderr\": 0.03583901754736412,\n \"acc_norm\": 0.6705202312138728,\n \"acc_norm_stderr\": 0.03583901754736412\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4411764705882353,\n \"acc_stderr\": 0.049406356306056595,\n \"acc_norm\": 0.4411764705882353,\n \"acc_norm_stderr\": 0.049406356306056595\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.04408440022768078,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.04408440022768078\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5404255319148936,\n \"acc_stderr\": 0.032579014820998356,\n \"acc_norm\": 0.5404255319148936,\n \"acc_norm_stderr\": 0.032579014820998356\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.39473684210526316,\n \"acc_stderr\": 0.045981880578165414,\n \"acc_norm\": 0.39473684210526316,\n \"acc_norm_stderr\": 0.045981880578165414\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5448275862068965,\n \"acc_stderr\": 0.04149886942192118,\n \"acc_norm\": 0.5448275862068965,\n \"acc_norm_stderr\": 0.04149886942192118\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.47619047619047616,\n \"acc_stderr\": 0.025722097064388542,\n \"acc_norm\": 0.47619047619047616,\n \"acc_norm_stderr\": 0.025722097064388542\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.46825396825396826,\n \"acc_stderr\": 0.04463112720677172,\n \"acc_norm\": 0.46825396825396826,\n \"acc_norm_stderr\": 0.04463112720677172\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7580645161290323,\n \"acc_stderr\": 0.024362599693031086,\n \"acc_norm\": 0.7580645161290323,\n \"acc_norm_stderr\": 0.024362599693031086\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5024630541871922,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.5024630541871922,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.04725815626252607,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.04725815626252607\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8181818181818182,\n \"acc_stderr\": 0.03011768892950357,\n \"acc_norm\": 0.8181818181818182,\n \"acc_norm_stderr\": 0.03011768892950357\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8434343434343434,\n \"acc_stderr\": 0.025890520358141454,\n \"acc_norm\": 0.8434343434343434,\n \"acc_norm_stderr\": 0.025890520358141454\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8704663212435233,\n \"acc_stderr\": 0.02423353229775872,\n \"acc_norm\": 0.8704663212435233,\n \"acc_norm_stderr\": 0.02423353229775872\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6307692307692307,\n \"acc_stderr\": 0.024468615241478923,\n \"acc_norm\": 0.6307692307692307,\n \"acc_norm_stderr\": 0.024468615241478923\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32222222222222224,\n \"acc_stderr\": 0.028493465091028597,\n \"acc_norm\": 0.32222222222222224,\n \"acc_norm_stderr\": 0.028493465091028597\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6638655462184874,\n \"acc_stderr\": 0.030684737115135374,\n \"acc_norm\": 0.6638655462184874,\n \"acc_norm_stderr\": 0.030684737115135374\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3973509933774834,\n \"acc_stderr\": 0.0399552400768168,\n \"acc_norm\": 0.3973509933774834,\n \"acc_norm_stderr\": 0.0399552400768168\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8256880733944955,\n \"acc_stderr\": 0.01626567563201034,\n \"acc_norm\": 0.8256880733944955,\n \"acc_norm_stderr\": 0.01626567563201034\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5648148148148148,\n \"acc_stderr\": 0.03381200005643527,\n \"acc_norm\": 0.5648148148148148,\n \"acc_norm_stderr\": 0.03381200005643527\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7450980392156863,\n \"acc_stderr\": 0.030587591351604246,\n \"acc_norm\": 0.7450980392156863,\n \"acc_norm_stderr\": 0.030587591351604246\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7763713080168776,\n \"acc_stderr\": 0.027123298205229966,\n \"acc_norm\": 0.7763713080168776,\n \"acc_norm_stderr\": 0.027123298205229966\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6502242152466368,\n \"acc_stderr\": 0.03200736719484503,\n \"acc_norm\": 0.6502242152466368,\n \"acc_norm_stderr\": 0.03200736719484503\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7404580152671756,\n \"acc_stderr\": 0.03844876139785271,\n \"acc_norm\": 0.7404580152671756,\n \"acc_norm_stderr\": 0.03844876139785271\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8099173553719008,\n \"acc_stderr\": 0.03581796951709282,\n \"acc_norm\": 0.8099173553719008,\n \"acc_norm_stderr\": 0.03581796951709282\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7116564417177914,\n \"acc_stderr\": 0.03559039531617342,\n \"acc_norm\": 0.7116564417177914,\n \"acc_norm_stderr\": 0.03559039531617342\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.48214285714285715,\n \"acc_stderr\": 0.047427623612430116,\n \"acc_norm\": 0.48214285714285715,\n \"acc_norm_stderr\": 0.047427623612430116\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7864077669902912,\n \"acc_stderr\": 0.04058042015646034,\n \"acc_norm\": 0.7864077669902912,\n \"acc_norm_stderr\": 0.04058042015646034\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8504273504273504,\n \"acc_stderr\": 0.023365051491753715,\n \"acc_norm\": 0.8504273504273504,\n \"acc_norm_stderr\": 0.023365051491753715\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7969348659003831,\n \"acc_stderr\": 0.014385525076611567,\n \"acc_norm\": 0.7969348659003831,\n \"acc_norm_stderr\": 0.014385525076611567\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6791907514450867,\n \"acc_stderr\": 0.025131000233647907,\n \"acc_norm\": 0.6791907514450867,\n \"acc_norm_stderr\": 0.025131000233647907\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3642458100558659,\n \"acc_stderr\": 0.016094338768474596,\n \"acc_norm\": 0.3642458100558659,\n \"acc_norm_stderr\": 0.016094338768474596\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.0256468630971379,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.0256468630971379\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7041800643086816,\n \"acc_stderr\": 0.025922371788818777,\n \"acc_norm\": 0.7041800643086816,\n \"acc_norm_stderr\": 0.025922371788818777\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6759259259259259,\n \"acc_stderr\": 0.02604176620271716,\n \"acc_norm\": 0.6759259259259259,\n \"acc_norm_stderr\": 0.02604176620271716\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4716312056737589,\n \"acc_stderr\": 0.02977945095730307,\n \"acc_norm\": 0.4716312056737589,\n \"acc_norm_stderr\": 0.02977945095730307\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5143415906127771,\n \"acc_stderr\": 0.012764981829524272,\n \"acc_norm\": 0.5143415906127771,\n \"acc_norm_stderr\": 0.012764981829524272\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6544117647058824,\n \"acc_stderr\": 0.028888193103988637,\n \"acc_norm\": 0.6544117647058824,\n \"acc_norm_stderr\": 0.028888193103988637\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6274509803921569,\n \"acc_stderr\": 0.019559646809215937,\n \"acc_norm\": 0.6274509803921569,\n \"acc_norm_stderr\": 0.019559646809215937\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7387755102040816,\n \"acc_stderr\": 0.028123429335142783,\n \"acc_norm\": 0.7387755102040816,\n \"acc_norm_stderr\": 0.028123429335142783\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.025538433368578337,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.025538433368578337\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.0348735088019777,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.0348735088019777\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.45180722891566266,\n \"acc_stderr\": 0.038743715565879536,\n \"acc_norm\": 0.45180722891566266,\n \"acc_norm_stderr\": 0.038743715565879536\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7894736842105263,\n \"acc_stderr\": 0.0312678171466318,\n \"acc_norm\": 0.7894736842105263,\n \"acc_norm_stderr\": 0.0312678171466318\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.40024479804161567,\n \"mc1_stderr\": 0.017151605555749138,\n \"mc2\": 0.5758241125359985,\n \"mc2_stderr\": 0.015245539745917741\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.675611681136543,\n \"acc_stderr\": 0.013157225726641639\n },\n \"harness|drop|3\": {\n \"em\": 0.22399328859060402,\n \"em_stderr\": 0.004269626575176229,\n \"f1\": 0.31194630872483253,\n \"f1_stderr\": 0.004238938371737311\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.2266868840030326,\n \"acc_stderr\": 0.011532758009339986\n }\n}\n```", "repo_url": "https://huggingface.co/CausalLM/7B-DPO-alpha", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|arc:challenge|25_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|drop|3_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|gsm8k|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hellaswag|10_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-51.305800.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["**/details_harness|winogrande|5_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T11-08-51.305800.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T11_08_51.305800", "path": ["results_2023-11-19T11-08-51.305800.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T11-08-51.305800.parquet"]}]}]}
2023-11-19T11:12:27+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of CausalLM/7B-DPO-alpha ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model CausalLM/7B-DPO-alpha on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T11:08:51.305800(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of CausalLM/7B-DPO-alpha", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model CausalLM/7B-DPO-alpha on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T11:08:51.305800(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of CausalLM/7B-DPO-alpha", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model CausalLM/7B-DPO-alpha on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T11:08:51.305800(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 20, 31, 169, 66, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of CausalLM/7B-DPO-alpha## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model CausalLM/7B-DPO-alpha on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T11:08:51.305800(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
0fa1a78958a741d467a204103b246e7c0d466214
# Dataset Card for "diffusion.8.instruct_pix2pix" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ayan1988/diffusion.8.instruct_pix2pix
[ "region:us" ]
2023-11-19T11:27:29+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "output", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 416880509.0, "num_examples": 1000}], "download_size": 416911651, "dataset_size": 416880509.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-11-19T12:42:31+00:00
[]
[]
TAGS #region-us
# Dataset Card for "diffusion.8.instruct_pix2pix" More Information needed
[ "# Dataset Card for \"diffusion.8.instruct_pix2pix\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"diffusion.8.instruct_pix2pix\"\n\nMore Information needed" ]
[ 6, 20 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"diffusion.8.instruct_pix2pix\"\n\nMore Information needed" ]
708bc36c4480f0df2eed36b0f594b30f14259605
# Dataset Card for "inabs_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/inabs_id_rename
[ "region:us" ]
2023-11-19T11:37:56+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 160093632, "num_examples": 5347}, {"name": "test", "num_bytes": 30537791, "num_examples": 1068}, {"name": "valid", "num_bytes": 22688291, "num_examples": 713}], "download_size": 103897792, "dataset_size": 213319714}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "valid", "path": "data/valid-*"}]}]}
2023-11-19T11:38:08+00:00
[]
[]
TAGS #region-us
# Dataset Card for "inabs_id_rename" More Information needed
[ "# Dataset Card for \"inabs_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"inabs_id_rename\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"inabs_id_rename\"\n\nMore Information needed" ]
67b6aeccc118cbb67ee9c320f9bf7547a12d0e04
## This dataset consists of more than 19 million French sentences. This diverse collection originates from a variety of sources, including books, songs, Wikipedia, and translation datasets.
La-matrice/french_sentences_19M
[ "task_categories:text-generation", "language:fr", "region:us" ]
2023-11-19T11:38:49+00:00
{"language": ["fr"], "task_categories": ["text-generation"], "pretty_name": "f"}
2023-11-28T07:15:04+00:00
[]
[ "fr" ]
TAGS #task_categories-text-generation #language-French #region-us
## This dataset consists of more than 19 million French sentences. This diverse collection originates from a variety of sources, including books, songs, Wikipedia, and translation datasets.
[ "## This dataset consists of more than 19 million French sentences.\n\nThis diverse collection originates from a variety of sources, including books, songs, Wikipedia, and translation datasets." ]
[ "TAGS\n#task_categories-text-generation #language-French #region-us \n", "## This dataset consists of more than 19 million French sentences.\n\nThis diverse collection originates from a variety of sources, including books, songs, Wikipedia, and translation datasets." ]
[ 23, 39 ]
[ "passage: TAGS\n#task_categories-text-generation #language-French #region-us \n## This dataset consists of more than 19 million French sentences.\n\nThis diverse collection originates from a variety of sources, including books, songs, Wikipedia, and translation datasets." ]
3ef51acd13fd8789eb88c17af146386360a417a5
# Dataset Card for Evaluation run of AI-Sweden-Models/gpt-sw3-1.3b ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_AI-Sweden-Models__gpt-sw3-1.3b_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T11:42:51.452519](https://huggingface.co/datasets/open-llm-leaderboard/details_AI-Sweden-Models__gpt-sw3-1.3b_public/blob/main/results_2023-11-19T11-42-51.452519.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.26488474204014834, "acc_stderr": 0.031111618585053954, "acc_norm": 0.2662369199123101, "acc_norm_stderr": 0.031927997249928834, "mc1": 0.23623011015911874, "mc1_stderr": 0.014869755015871117, "mc2": 0.3996656760993288, "mc2_stderr": 0.014244979717903544, "em": 0.0008389261744966443, "em_stderr": 0.000296496298980123, "f1": 0.04081061241610719, "f1_stderr": 0.001194792794486935 }, "harness|arc:challenge|25": { "acc": 0.27303754266211605, "acc_stderr": 0.01301933276263575, "acc_norm": 0.3037542662116041, "acc_norm_stderr": 0.013438909184778755 }, "harness|hellaswag|10": { "acc": 0.3951404102768373, "acc_stderr": 0.004878816961012043, "acc_norm": 0.5039832702648874, "acc_norm_stderr": 0.0049896230687787955 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.22, "acc_stderr": 0.04163331998932269, "acc_norm": 0.22, "acc_norm_stderr": 0.04163331998932269 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.2740740740740741, "acc_stderr": 0.03853254836552003, "acc_norm": 0.2740740740740741, "acc_norm_stderr": 0.03853254836552003 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.19736842105263158, "acc_stderr": 0.03238981601699397, "acc_norm": 0.19736842105263158, "acc_norm_stderr": 0.03238981601699397 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.25660377358490566, "acc_stderr": 0.026880647889051996, "acc_norm": 0.25660377358490566, "acc_norm_stderr": 0.026880647889051996 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.3125, "acc_stderr": 0.038760854559127644, "acc_norm": 0.3125, "acc_norm_stderr": 0.038760854559127644 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.2, "acc_stderr": 0.040201512610368445, "acc_norm": 0.2, "acc_norm_stderr": 0.040201512610368445 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.22, "acc_stderr": 0.0416333199893227, "acc_norm": 0.22, "acc_norm_stderr": 0.0416333199893227 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.2832369942196532, "acc_stderr": 0.034355680560478746, "acc_norm": 0.2832369942196532, "acc_norm_stderr": 0.034355680560478746 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.22549019607843138, "acc_stderr": 0.041583075330832865, "acc_norm": 0.22549019607843138, "acc_norm_stderr": 0.041583075330832865 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.31063829787234043, "acc_stderr": 0.03025123757921317, "acc_norm": 0.31063829787234043, "acc_norm_stderr": 0.03025123757921317 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.22807017543859648, "acc_stderr": 0.03947152782669415, "acc_norm": 0.22807017543859648, "acc_norm_stderr": 0.03947152782669415 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.25517241379310346, "acc_stderr": 0.03632984052707842, "acc_norm": 0.25517241379310346, "acc_norm_stderr": 0.03632984052707842 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2804232804232804, "acc_stderr": 0.023135287974325618, "acc_norm": 0.2804232804232804, "acc_norm_stderr": 0.023135287974325618 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2777777777777778, "acc_stderr": 0.040061680838488774, "acc_norm": 0.2777777777777778, "acc_norm_stderr": 0.040061680838488774 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.24838709677419354, "acc_stderr": 0.02458002892148101, "acc_norm": 0.24838709677419354, "acc_norm_stderr": 0.02458002892148101 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.24630541871921183, "acc_stderr": 0.03031509928561773, "acc_norm": 0.24630541871921183, "acc_norm_stderr": 0.03031509928561773 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.2, "acc_stderr": 0.040201512610368445, "acc_norm": 0.2, "acc_norm_stderr": 0.040201512610368445 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.21212121212121213, "acc_stderr": 0.03192271569548299, "acc_norm": 0.21212121212121213, "acc_norm_stderr": 0.03192271569548299 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.29292929292929293, "acc_stderr": 0.032424979581788166, "acc_norm": 0.29292929292929293, "acc_norm_stderr": 0.032424979581788166 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.22797927461139897, "acc_stderr": 0.030276909945178267, "acc_norm": 0.22797927461139897, "acc_norm_stderr": 0.030276909945178267 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.31025641025641026, "acc_stderr": 0.023454674889404288, "acc_norm": 0.31025641025641026, "acc_norm_stderr": 0.023454674889404288 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3, "acc_stderr": 0.02794045713622841, "acc_norm": 0.3, "acc_norm_stderr": 0.02794045713622841 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.2184873949579832, "acc_stderr": 0.026841514322958945, "acc_norm": 0.2184873949579832, "acc_norm_stderr": 0.026841514322958945 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.036313298039696545, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.036313298039696545 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.22018348623853212, "acc_stderr": 0.01776597865232757, "acc_norm": 0.22018348623853212, "acc_norm_stderr": 0.01776597865232757 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.39351851851851855, "acc_stderr": 0.03331747876370312, "acc_norm": 0.39351851851851855, "acc_norm_stderr": 0.03331747876370312 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.2549019607843137, "acc_stderr": 0.030587591351604246, "acc_norm": 0.2549019607843137, "acc_norm_stderr": 0.030587591351604246 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.26582278481012656, "acc_stderr": 0.028756799629658342, "acc_norm": 0.26582278481012656, "acc_norm_stderr": 0.028756799629658342 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.35874439461883406, "acc_stderr": 0.03219079200419997, "acc_norm": 0.35874439461883406, "acc_norm_stderr": 0.03219079200419997 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.2748091603053435, "acc_stderr": 0.03915345408847834, "acc_norm": 0.2748091603053435, "acc_norm_stderr": 0.03915345408847834 }, "harness|hendrycksTest-international_law|5": { "acc": 0.2975206611570248, "acc_stderr": 0.04173349148083499, "acc_norm": 0.2975206611570248, "acc_norm_stderr": 0.04173349148083499 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.28703703703703703, "acc_stderr": 0.043733130409147614, "acc_norm": 0.28703703703703703, "acc_norm_stderr": 0.043733130409147614 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.26380368098159507, "acc_stderr": 0.03462419931615623, "acc_norm": 0.26380368098159507, "acc_norm_stderr": 0.03462419931615623 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.16964285714285715, "acc_stderr": 0.0356236785009539, "acc_norm": 0.16964285714285715, "acc_norm_stderr": 0.0356236785009539 }, "harness|hendrycksTest-management|5": { "acc": 0.2524271844660194, "acc_stderr": 0.04301250399690877, "acc_norm": 0.2524271844660194, "acc_norm_stderr": 0.04301250399690877 }, "harness|hendrycksTest-marketing|5": { "acc": 0.23504273504273504, "acc_stderr": 0.027778835904935437, "acc_norm": 0.23504273504273504, "acc_norm_stderr": 0.027778835904935437 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.23, "acc_stderr": 0.04229525846816506, "acc_norm": 0.23, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.27586206896551724, "acc_stderr": 0.01598281477469563, "acc_norm": 0.27586206896551724, "acc_norm_stderr": 0.01598281477469563 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.21098265895953758, "acc_stderr": 0.021966309947043135, "acc_norm": 0.21098265895953758, "acc_norm_stderr": 0.021966309947043135 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.21241830065359477, "acc_stderr": 0.02342037547829613, "acc_norm": 0.21241830065359477, "acc_norm_stderr": 0.02342037547829613 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.2604501607717042, "acc_stderr": 0.024926723224845543, "acc_norm": 0.2604501607717042, "acc_norm_stderr": 0.024926723224845543 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.2222222222222222, "acc_stderr": 0.023132376234543332, "acc_norm": 0.2222222222222222, "acc_norm_stderr": 0.023132376234543332 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2553191489361702, "acc_stderr": 0.026011992930902006, "acc_norm": 0.2553191489361702, "acc_norm_stderr": 0.026011992930902006 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.24967405475880053, "acc_stderr": 0.011054538377832311, "acc_norm": 0.24967405475880053, "acc_norm_stderr": 0.011054538377832311 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.3492647058823529, "acc_stderr": 0.02895975519682486, "acc_norm": 0.3492647058823529, "acc_norm_stderr": 0.02895975519682486 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.2565359477124183, "acc_stderr": 0.01766784161237901, "acc_norm": 0.2565359477124183, "acc_norm_stderr": 0.01766784161237901 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.2545454545454545, "acc_stderr": 0.041723430387053825, "acc_norm": 0.2545454545454545, "acc_norm_stderr": 0.041723430387053825 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.23265306122448978, "acc_stderr": 0.02704925791589618, "acc_norm": 0.23265306122448978, "acc_norm_stderr": 0.02704925791589618 }, "harness|hendrycksTest-sociology|5": { "acc": 0.19402985074626866, "acc_stderr": 0.027962677604768924, "acc_norm": 0.19402985074626866, "acc_norm_stderr": 0.027962677604768924 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.26, "acc_stderr": 0.04408440022768078, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768078 }, "harness|hendrycksTest-virology|5": { "acc": 0.2710843373493976, "acc_stderr": 0.03460579907553026, "acc_norm": 0.2710843373493976, "acc_norm_stderr": 0.03460579907553026 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.30994152046783624, "acc_stderr": 0.03546976959393163, "acc_norm": 0.30994152046783624, "acc_norm_stderr": 0.03546976959393163 }, "harness|truthfulqa:mc|0": { "mc1": 0.23623011015911874, "mc1_stderr": 0.014869755015871117, "mc2": 0.3996656760993288, "mc2_stderr": 0.014244979717903544 }, "harness|winogrande|5": { "acc": 0.5887924230465666, "acc_stderr": 0.013829128358676872 }, "harness|drop|3": { "em": 0.0008389261744966443, "em_stderr": 0.000296496298980123, "f1": 0.04081061241610719, "f1_stderr": 0.001194792794486935 }, "harness|gsm8k|5": { "acc": 0.000758150113722517, "acc_stderr": 0.0007581501137225241 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_AI-Sweden-Models__gpt-sw3-1.3b
[ "region:us" ]
2023-11-19T11:45:12+00:00
{"pretty_name": "Evaluation run of AI-Sweden-Models/gpt-sw3-1.3b", "dataset_summary": "Dataset automatically created during the evaluation run of model [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_AI-Sweden-Models__gpt-sw3-1.3b_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T11:42:51.452519](https://huggingface.co/datasets/open-llm-leaderboard/details_AI-Sweden-Models__gpt-sw3-1.3b_public/blob/main/results_2023-11-19T11-42-51.452519.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.26488474204014834,\n \"acc_stderr\": 0.031111618585053954,\n \"acc_norm\": 0.2662369199123101,\n \"acc_norm_stderr\": 0.031927997249928834,\n \"mc1\": 0.23623011015911874,\n \"mc1_stderr\": 0.014869755015871117,\n \"mc2\": 0.3996656760993288,\n \"mc2_stderr\": 0.014244979717903544,\n \"em\": 0.0008389261744966443,\n \"em_stderr\": 0.000296496298980123,\n \"f1\": 0.04081061241610719,\n \"f1_stderr\": 0.001194792794486935\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.27303754266211605,\n \"acc_stderr\": 0.01301933276263575,\n \"acc_norm\": 0.3037542662116041,\n \"acc_norm_stderr\": 0.013438909184778755\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.3951404102768373,\n \"acc_stderr\": 0.004878816961012043,\n \"acc_norm\": 0.5039832702648874,\n \"acc_norm_stderr\": 0.0049896230687787955\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.04163331998932269,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.04163331998932269\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.2740740740740741,\n \"acc_stderr\": 0.03853254836552003,\n \"acc_norm\": 0.2740740740740741,\n \"acc_norm_stderr\": 0.03853254836552003\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.19736842105263158,\n \"acc_stderr\": 0.03238981601699397,\n \"acc_norm\": 0.19736842105263158,\n \"acc_norm_stderr\": 0.03238981601699397\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.25660377358490566,\n \"acc_stderr\": 0.026880647889051996,\n \"acc_norm\": 0.25660377358490566,\n \"acc_norm_stderr\": 0.026880647889051996\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.3125,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.3125,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.040201512610368445,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.040201512610368445\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.0416333199893227,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.0416333199893227\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.2832369942196532,\n \"acc_stderr\": 0.034355680560478746,\n \"acc_norm\": 0.2832369942196532,\n \"acc_norm_stderr\": 0.034355680560478746\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.22549019607843138,\n \"acc_stderr\": 0.041583075330832865,\n \"acc_norm\": 0.22549019607843138,\n \"acc_norm_stderr\": 0.041583075330832865\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.31063829787234043,\n \"acc_stderr\": 0.03025123757921317,\n \"acc_norm\": 0.31063829787234043,\n \"acc_norm_stderr\": 0.03025123757921317\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.22807017543859648,\n \"acc_stderr\": 0.03947152782669415,\n \"acc_norm\": 0.22807017543859648,\n \"acc_norm_stderr\": 0.03947152782669415\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.25517241379310346,\n \"acc_stderr\": 0.03632984052707842,\n \"acc_norm\": 0.25517241379310346,\n \"acc_norm_stderr\": 0.03632984052707842\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2804232804232804,\n \"acc_stderr\": 0.023135287974325618,\n \"acc_norm\": 0.2804232804232804,\n \"acc_norm_stderr\": 0.023135287974325618\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2777777777777778,\n \"acc_stderr\": 0.040061680838488774,\n \"acc_norm\": 0.2777777777777778,\n \"acc_norm_stderr\": 0.040061680838488774\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.24838709677419354,\n \"acc_stderr\": 0.02458002892148101,\n \"acc_norm\": 0.24838709677419354,\n \"acc_norm_stderr\": 0.02458002892148101\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.24630541871921183,\n \"acc_stderr\": 0.03031509928561773,\n \"acc_norm\": 0.24630541871921183,\n \"acc_norm_stderr\": 0.03031509928561773\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.040201512610368445,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.040201512610368445\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.21212121212121213,\n \"acc_stderr\": 0.03192271569548299,\n \"acc_norm\": 0.21212121212121213,\n \"acc_norm_stderr\": 0.03192271569548299\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.29292929292929293,\n \"acc_stderr\": 0.032424979581788166,\n \"acc_norm\": 0.29292929292929293,\n \"acc_norm_stderr\": 0.032424979581788166\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.22797927461139897,\n \"acc_stderr\": 0.030276909945178267,\n \"acc_norm\": 0.22797927461139897,\n \"acc_norm_stderr\": 0.030276909945178267\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.31025641025641026,\n \"acc_stderr\": 0.023454674889404288,\n \"acc_norm\": 0.31025641025641026,\n \"acc_norm_stderr\": 0.023454674889404288\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.02794045713622841,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.02794045713622841\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.2184873949579832,\n \"acc_stderr\": 0.026841514322958945,\n \"acc_norm\": 0.2184873949579832,\n \"acc_norm_stderr\": 0.026841514322958945\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.036313298039696545,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.036313298039696545\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.22018348623853212,\n \"acc_stderr\": 0.01776597865232757,\n \"acc_norm\": 0.22018348623853212,\n \"acc_norm_stderr\": 0.01776597865232757\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.39351851851851855,\n \"acc_stderr\": 0.03331747876370312,\n \"acc_norm\": 0.39351851851851855,\n \"acc_norm_stderr\": 0.03331747876370312\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.2549019607843137,\n \"acc_stderr\": 0.030587591351604246,\n \"acc_norm\": 0.2549019607843137,\n \"acc_norm_stderr\": 0.030587591351604246\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.26582278481012656,\n \"acc_stderr\": 0.028756799629658342,\n \"acc_norm\": 0.26582278481012656,\n \"acc_norm_stderr\": 0.028756799629658342\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.35874439461883406,\n \"acc_stderr\": 0.03219079200419997,\n \"acc_norm\": 0.35874439461883406,\n \"acc_norm_stderr\": 0.03219079200419997\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2748091603053435,\n \"acc_stderr\": 0.03915345408847834,\n \"acc_norm\": 0.2748091603053435,\n \"acc_norm_stderr\": 0.03915345408847834\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.2975206611570248,\n \"acc_stderr\": 0.04173349148083499,\n \"acc_norm\": 0.2975206611570248,\n \"acc_norm_stderr\": 0.04173349148083499\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.28703703703703703,\n \"acc_stderr\": 0.043733130409147614,\n \"acc_norm\": 0.28703703703703703,\n \"acc_norm_stderr\": 0.043733130409147614\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.26380368098159507,\n \"acc_stderr\": 0.03462419931615623,\n \"acc_norm\": 0.26380368098159507,\n \"acc_norm_stderr\": 0.03462419931615623\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.16964285714285715,\n \"acc_stderr\": 0.0356236785009539,\n \"acc_norm\": 0.16964285714285715,\n \"acc_norm_stderr\": 0.0356236785009539\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.2524271844660194,\n \"acc_stderr\": 0.04301250399690877,\n \"acc_norm\": 0.2524271844660194,\n \"acc_norm_stderr\": 0.04301250399690877\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.23504273504273504,\n \"acc_stderr\": 0.027778835904935437,\n \"acc_norm\": 0.23504273504273504,\n \"acc_norm_stderr\": 0.027778835904935437\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.04229525846816506,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.04229525846816506\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.27586206896551724,\n \"acc_stderr\": 0.01598281477469563,\n \"acc_norm\": 0.27586206896551724,\n \"acc_norm_stderr\": 0.01598281477469563\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.21098265895953758,\n \"acc_stderr\": 0.021966309947043135,\n \"acc_norm\": 0.21098265895953758,\n \"acc_norm_stderr\": 0.021966309947043135\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.21241830065359477,\n \"acc_stderr\": 0.02342037547829613,\n \"acc_norm\": 0.21241830065359477,\n \"acc_norm_stderr\": 0.02342037547829613\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.2604501607717042,\n \"acc_stderr\": 0.024926723224845543,\n \"acc_norm\": 0.2604501607717042,\n \"acc_norm_stderr\": 0.024926723224845543\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.023132376234543332,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.023132376234543332\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2553191489361702,\n \"acc_stderr\": 0.026011992930902006,\n \"acc_norm\": 0.2553191489361702,\n \"acc_norm_stderr\": 0.026011992930902006\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.24967405475880053,\n \"acc_stderr\": 0.011054538377832311,\n \"acc_norm\": 0.24967405475880053,\n \"acc_norm_stderr\": 0.011054538377832311\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.3492647058823529,\n \"acc_stderr\": 0.02895975519682486,\n \"acc_norm\": 0.3492647058823529,\n \"acc_norm_stderr\": 0.02895975519682486\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.2565359477124183,\n \"acc_stderr\": 0.01766784161237901,\n \"acc_norm\": 0.2565359477124183,\n \"acc_norm_stderr\": 0.01766784161237901\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.2545454545454545,\n \"acc_stderr\": 0.041723430387053825,\n \"acc_norm\": 0.2545454545454545,\n \"acc_norm_stderr\": 0.041723430387053825\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.23265306122448978,\n \"acc_stderr\": 0.02704925791589618,\n \"acc_norm\": 0.23265306122448978,\n \"acc_norm_stderr\": 0.02704925791589618\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.19402985074626866,\n \"acc_stderr\": 0.027962677604768924,\n \"acc_norm\": 0.19402985074626866,\n \"acc_norm_stderr\": 0.027962677604768924\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768078,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768078\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.2710843373493976,\n \"acc_stderr\": 0.03460579907553026,\n \"acc_norm\": 0.2710843373493976,\n \"acc_norm_stderr\": 0.03460579907553026\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.30994152046783624,\n \"acc_stderr\": 0.03546976959393163,\n \"acc_norm\": 0.30994152046783624,\n \"acc_norm_stderr\": 0.03546976959393163\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.23623011015911874,\n \"mc1_stderr\": 0.014869755015871117,\n \"mc2\": 0.3996656760993288,\n \"mc2_stderr\": 0.014244979717903544\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5887924230465666,\n \"acc_stderr\": 0.013829128358676872\n },\n \"harness|drop|3\": {\n \"em\": 0.0008389261744966443,\n \"em_stderr\": 0.000296496298980123,\n \"f1\": 0.04081061241610719,\n \"f1_stderr\": 0.001194792794486935\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.000758150113722517,\n \"acc_stderr\": 0.0007581501137225241\n }\n}\n```", "repo_url": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|arc:challenge|25_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|drop|3_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|gsm8k|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hellaswag|10_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T11-42-51.452519.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["**/details_harness|winogrande|5_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T11-42-51.452519.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T11_42_51.452519", "path": ["results_2023-11-19T11-42-51.452519.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T11-42-51.452519.parquet"]}]}]}
2023-11-19T11:46:00+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of AI-Sweden-Models/gpt-sw3-1.3b ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model AI-Sweden-Models/gpt-sw3-1.3b on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T11:42:51.452519(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of AI-Sweden-Models/gpt-sw3-1.3b", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model AI-Sweden-Models/gpt-sw3-1.3b on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T11:42:51.452519(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of AI-Sweden-Models/gpt-sw3-1.3b", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model AI-Sweden-Models/gpt-sw3-1.3b on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T11:42:51.452519(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 26, 31, 175, 67, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of AI-Sweden-Models/gpt-sw3-1.3b## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model AI-Sweden-Models/gpt-sw3-1.3b on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T11:42:51.452519(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
aae4bdb6d780f2b2e32fc148789aa7639f7ea458
# Dataset Card for "multitiny_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/multitiny_id_rename
[ "region:us" ]
2023-11-19T11:51:48+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 784189580, "num_examples": 1202}, {"name": "test", "num_bytes": 118639331, "num_examples": 240}, {"name": "valid", "num_bytes": 116986806, "num_examples": 161}], "download_size": 460698395, "dataset_size": 1019815717}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "valid", "path": "data/valid-*"}]}]}
2023-11-19T11:52:14+00:00
[]
[]
TAGS #region-us
# Dataset Card for "multitiny_id_rename" More Information needed
[ "# Dataset Card for \"multitiny_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"multitiny_id_rename\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"multitiny_id_rename\"\n\nMore Information needed" ]
225cf210a556e01f260ea5798a230de8734de3c4
# Dataset Card for "sol_processed_data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Pipper/sol_processed_data
[ "region:us" ]
2023-11-19T11:52:58+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 12740019180, "num_examples": 3814377}], "download_size": 1991408875, "dataset_size": 12740019180}}
2023-11-19T14:25:34+00:00
[]
[]
TAGS #region-us
# Dataset Card for "sol_processed_data" More Information needed
[ "# Dataset Card for \"sol_processed_data\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"sol_processed_data\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"sol_processed_data\"\n\nMore Information needed" ]
54b8d83b7b15a73e74c3cc333dd68bad3b4bb5cb
# Dataset Card for "multishort_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/multishort_id_rename
[ "region:us" ]
2023-11-19T11:54:10+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1259506444, "num_examples": 2353}, {"name": "test", "num_bytes": 224819986, "num_examples": 471}, {"name": "valid", "num_bytes": 189617746, "num_examples": 314}], "download_size": 755096518, "dataset_size": 1673944176}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "valid", "path": "data/valid-*"}]}]}
2023-11-19T11:54:50+00:00
[]
[]
TAGS #region-us
# Dataset Card for "multishort_id_rename" More Information needed
[ "# Dataset Card for \"multishort_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"multishort_id_rename\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"multishort_id_rename\"\n\nMore Information needed" ]
763df5849e62145c5251c242672c7a214e1370cb
# Dataset Card for "diffusion.9.custom_diffusion" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ayan1988/diffusion.9.custom_diffusion
[ "region:us" ]
2023-11-19T12:02:15+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 85296454.0, "num_examples": 200}], "download_size": 0, "dataset_size": 85296454.0}}
2023-11-19T12:05:56+00:00
[]
[]
TAGS #region-us
# Dataset Card for "diffusion.9.custom_diffusion" More Information needed
[ "# Dataset Card for \"diffusion.9.custom_diffusion\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"diffusion.9.custom_diffusion\"\n\nMore Information needed" ]
[ 6, 20 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"diffusion.9.custom_diffusion\"\n\nMore Information needed" ]
21fa7f69911a88c0d1579c8e08cc0ce5a63ffeee
# Dataset Card for "multilong_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/multilong_id_rename
[ "region:us" ]
2023-11-19T12:12:58+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1376297066, "num_examples": 3404}, {"name": "test", "num_bytes": 260869872, "num_examples": 682}, {"name": "valid", "num_bytes": 206485006, "num_examples": 453}], "download_size": 833197169, "dataset_size": 1843651944}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "valid", "path": "data/valid-*"}]}]}
2023-11-19T12:13:40+00:00
[]
[]
TAGS #region-us
# Dataset Card for "multilong_id_rename" More Information needed
[ "# Dataset Card for \"multilong_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"multilong_id_rename\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"multilong_id_rename\"\n\nMore Information needed" ]
48dc2e234f200967bf5b1730b17cdd07f5423b77
# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-13B ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/starmpcc/Asclepius-Llama2-13B - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [starmpcc/Asclepius-Llama2-13B](https://huggingface.co/starmpcc/Asclepius-Llama2-13B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-13B_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T12:18:05.781996](https://huggingface.co/datasets/open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-13B_public/blob/main/results_2023-11-19T12-18-05.781996.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5201519972088248, "acc_stderr": 0.034051581317112195, "acc_norm": 0.5290222877161421, "acc_norm_stderr": 0.03495991688232667, "mc1": 0.2827417380660955, "mc1_stderr": 0.01576477083677731, "mc2": 0.4075956796231733, "mc2_stderr": 0.015612342660639225, "em": 0.022546140939597316, "em_stderr": 0.0015202810875087338, "f1": 0.12420616610738253, "f1_stderr": 0.002172993439883863 }, "harness|arc:challenge|25": { "acc": 0.5324232081911263, "acc_stderr": 0.014580637569995421, "acc_norm": 0.5588737201365188, "acc_norm_stderr": 0.014509747749064664 }, "harness|hellaswag|10": { "acc": 0.6115315674168492, "acc_stderr": 0.004864058877626275, "acc_norm": 0.7965544712208723, "acc_norm_stderr": 0.004017383866405767 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4444444444444444, "acc_stderr": 0.04292596718256981, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.04292596718256981 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5197368421052632, "acc_stderr": 0.04065771002562605, "acc_norm": 0.5197368421052632, "acc_norm_stderr": 0.04065771002562605 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.49, "acc_stderr": 0.05024183937956911, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5962264150943396, "acc_stderr": 0.03019761160019795, "acc_norm": 0.5962264150943396, "acc_norm_stderr": 0.03019761160019795 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5763888888888888, "acc_stderr": 0.0413212501972337, "acc_norm": 0.5763888888888888, "acc_norm_stderr": 0.0413212501972337 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5260115606936416, "acc_stderr": 0.038073017265045125, "acc_norm": 0.5260115606936416, "acc_norm_stderr": 0.038073017265045125 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.2549019607843137, "acc_stderr": 0.04336432707993179, "acc_norm": 0.2549019607843137, "acc_norm_stderr": 0.04336432707993179 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.61, "acc_stderr": 0.04902071300001974, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4297872340425532, "acc_stderr": 0.03236214467715564, "acc_norm": 0.4297872340425532, "acc_norm_stderr": 0.03236214467715564 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.2982456140350877, "acc_stderr": 0.04303684033537315, "acc_norm": 0.2982456140350877, "acc_norm_stderr": 0.04303684033537315 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.496551724137931, "acc_stderr": 0.041665675771015785, "acc_norm": 0.496551724137931, "acc_norm_stderr": 0.041665675771015785 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3439153439153439, "acc_stderr": 0.024464426625596433, "acc_norm": 0.3439153439153439, "acc_norm_stderr": 0.024464426625596433 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42857142857142855, "acc_stderr": 0.04426266681379909, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.04426266681379909 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.35, "acc_stderr": 0.04793724854411018, "acc_norm": 0.35, "acc_norm_stderr": 0.04793724854411018 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6096774193548387, "acc_stderr": 0.027751256636969583, "acc_norm": 0.6096774193548387, "acc_norm_stderr": 0.027751256636969583 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.39901477832512317, "acc_stderr": 0.03445487686264715, "acc_norm": 0.39901477832512317, "acc_norm_stderr": 0.03445487686264715 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.55, "acc_stderr": 0.049999999999999996, "acc_norm": 0.55, "acc_norm_stderr": 0.049999999999999996 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6545454545454545, "acc_stderr": 0.03713158067481913, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.03713158067481913 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6868686868686869, "acc_stderr": 0.033042050878136525, "acc_norm": 0.6868686868686869, "acc_norm_stderr": 0.033042050878136525 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7668393782383419, "acc_stderr": 0.03051611137147601, "acc_norm": 0.7668393782383419, "acc_norm_stderr": 0.03051611137147601 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5307692307692308, "acc_stderr": 0.025302958890850154, "acc_norm": 0.5307692307692308, "acc_norm_stderr": 0.025302958890850154 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2814814814814815, "acc_stderr": 0.027420019350945284, "acc_norm": 0.2814814814814815, "acc_norm_stderr": 0.027420019350945284 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5252100840336135, "acc_stderr": 0.0324371805513741, "acc_norm": 0.5252100840336135, "acc_norm_stderr": 0.0324371805513741 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.32450331125827814, "acc_stderr": 0.038227469376587525, "acc_norm": 0.32450331125827814, "acc_norm_stderr": 0.038227469376587525 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.708256880733945, "acc_stderr": 0.019489300968876522, "acc_norm": 0.708256880733945, "acc_norm_stderr": 0.019489300968876522 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4305555555555556, "acc_stderr": 0.03376922151252336, "acc_norm": 0.4305555555555556, "acc_norm_stderr": 0.03376922151252336 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7254901960784313, "acc_stderr": 0.03132179803083292, "acc_norm": 0.7254901960784313, "acc_norm_stderr": 0.03132179803083292 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.6835443037974683, "acc_stderr": 0.030274974880218977, "acc_norm": 0.6835443037974683, "acc_norm_stderr": 0.030274974880218977 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5605381165919282, "acc_stderr": 0.03331092511038179, "acc_norm": 0.5605381165919282, "acc_norm_stderr": 0.03331092511038179 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6183206106870229, "acc_stderr": 0.042607351576445594, "acc_norm": 0.6183206106870229, "acc_norm_stderr": 0.042607351576445594 }, "harness|hendrycksTest-international_law|5": { "acc": 0.5950413223140496, "acc_stderr": 0.04481137755942469, "acc_norm": 0.5950413223140496, "acc_norm_stderr": 0.04481137755942469 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6296296296296297, "acc_stderr": 0.04668408033024931, "acc_norm": 0.6296296296296297, "acc_norm_stderr": 0.04668408033024931 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6196319018404908, "acc_stderr": 0.038142698932618374, "acc_norm": 0.6196319018404908, "acc_norm_stderr": 0.038142698932618374 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.25892857142857145, "acc_stderr": 0.04157751539865629, "acc_norm": 0.25892857142857145, "acc_norm_stderr": 0.04157751539865629 }, "harness|hendrycksTest-management|5": { "acc": 0.7281553398058253, "acc_stderr": 0.044052680241409216, "acc_norm": 0.7281553398058253, "acc_norm_stderr": 0.044052680241409216 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7350427350427351, "acc_stderr": 0.028911208802749475, "acc_norm": 0.7350427350427351, "acc_norm_stderr": 0.028911208802749475 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7318007662835249, "acc_stderr": 0.01584243083526942, "acc_norm": 0.7318007662835249, "acc_norm_stderr": 0.01584243083526942 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5578034682080925, "acc_stderr": 0.026738603643807403, "acc_norm": 0.5578034682080925, "acc_norm_stderr": 0.026738603643807403 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.25139664804469275, "acc_stderr": 0.014508979453553974, "acc_norm": 0.25139664804469275, "acc_norm_stderr": 0.014508979453553974 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5326797385620915, "acc_stderr": 0.02856869975222587, "acc_norm": 0.5326797385620915, "acc_norm_stderr": 0.02856869975222587 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.594855305466238, "acc_stderr": 0.027882383791325967, "acc_norm": 0.594855305466238, "acc_norm_stderr": 0.027882383791325967 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5864197530864198, "acc_stderr": 0.02740204204026996, "acc_norm": 0.5864197530864198, "acc_norm_stderr": 0.02740204204026996 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.36524822695035464, "acc_stderr": 0.028723863853281278, "acc_norm": 0.36524822695035464, "acc_norm_stderr": 0.028723863853281278 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.37614080834419816, "acc_stderr": 0.012372214430599816, "acc_norm": 0.37614080834419816, "acc_norm_stderr": 0.012372214430599816 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5110294117647058, "acc_stderr": 0.030365446477275675, "acc_norm": 0.5110294117647058, "acc_norm_stderr": 0.030365446477275675 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.4934640522875817, "acc_stderr": 0.020226106567657803, "acc_norm": 0.4934640522875817, "acc_norm_stderr": 0.020226106567657803 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.5636363636363636, "acc_stderr": 0.04750185058907296, "acc_norm": 0.5636363636363636, "acc_norm_stderr": 0.04750185058907296 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5469387755102041, "acc_stderr": 0.03186785930004128, "acc_norm": 0.5469387755102041, "acc_norm_stderr": 0.03186785930004128 }, "harness|hendrycksTest-sociology|5": { "acc": 0.736318407960199, "acc_stderr": 0.03115715086935557, "acc_norm": 0.736318407960199, "acc_norm_stderr": 0.03115715086935557 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.74, "acc_stderr": 0.044084400227680794, "acc_norm": 0.74, "acc_norm_stderr": 0.044084400227680794 }, "harness|hendrycksTest-virology|5": { "acc": 0.40963855421686746, "acc_stderr": 0.03828401115079023, "acc_norm": 0.40963855421686746, "acc_norm_stderr": 0.03828401115079023 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7426900584795322, "acc_stderr": 0.03352799844161865, "acc_norm": 0.7426900584795322, "acc_norm_stderr": 0.03352799844161865 }, "harness|truthfulqa:mc|0": { "mc1": 0.2827417380660955, "mc1_stderr": 0.01576477083677731, "mc2": 0.4075956796231733, "mc2_stderr": 0.015612342660639225 }, "harness|winogrande|5": { "acc": 0.7269139700078927, "acc_stderr": 0.012522020105869456 }, "harness|drop|3": { "em": 0.022546140939597316, "em_stderr": 0.0015202810875087338, "f1": 0.12420616610738253, "f1_stderr": 0.002172993439883863 }, "harness|gsm8k|5": { "acc": 0.001516300227445034, "acc_stderr": 0.0010717793485492627 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-13B
[ "region:us" ]
2023-11-19T12:21:10+00:00
{"pretty_name": "Evaluation run of starmpcc/Asclepius-Llama2-13B", "dataset_summary": "Dataset automatically created during the evaluation run of model [starmpcc/Asclepius-Llama2-13B](https://huggingface.co/starmpcc/Asclepius-Llama2-13B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-13B_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T12:18:05.781996](https://huggingface.co/datasets/open-llm-leaderboard/details_starmpcc__Asclepius-Llama2-13B_public/blob/main/results_2023-11-19T12-18-05.781996.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5201519972088248,\n \"acc_stderr\": 0.034051581317112195,\n \"acc_norm\": 0.5290222877161421,\n \"acc_norm_stderr\": 0.03495991688232667,\n \"mc1\": 0.2827417380660955,\n \"mc1_stderr\": 0.01576477083677731,\n \"mc2\": 0.4075956796231733,\n \"mc2_stderr\": 0.015612342660639225,\n \"em\": 0.022546140939597316,\n \"em_stderr\": 0.0015202810875087338,\n \"f1\": 0.12420616610738253,\n \"f1_stderr\": 0.002172993439883863\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5324232081911263,\n \"acc_stderr\": 0.014580637569995421,\n \"acc_norm\": 0.5588737201365188,\n \"acc_norm_stderr\": 0.014509747749064664\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6115315674168492,\n \"acc_stderr\": 0.004864058877626275,\n \"acc_norm\": 0.7965544712208723,\n \"acc_norm_stderr\": 0.004017383866405767\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.04292596718256981,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.04292596718256981\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5197368421052632,\n \"acc_stderr\": 0.04065771002562605,\n \"acc_norm\": 0.5197368421052632,\n \"acc_norm_stderr\": 0.04065771002562605\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5962264150943396,\n \"acc_stderr\": 0.03019761160019795,\n \"acc_norm\": 0.5962264150943396,\n \"acc_norm_stderr\": 0.03019761160019795\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5763888888888888,\n \"acc_stderr\": 0.0413212501972337,\n \"acc_norm\": 0.5763888888888888,\n \"acc_norm_stderr\": 0.0413212501972337\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5260115606936416,\n \"acc_stderr\": 0.038073017265045125,\n \"acc_norm\": 0.5260115606936416,\n \"acc_norm_stderr\": 0.038073017265045125\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.2549019607843137,\n \"acc_stderr\": 0.04336432707993179,\n \"acc_norm\": 0.2549019607843137,\n \"acc_norm_stderr\": 0.04336432707993179\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.4297872340425532,\n \"acc_stderr\": 0.03236214467715564,\n \"acc_norm\": 0.4297872340425532,\n \"acc_norm_stderr\": 0.03236214467715564\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2982456140350877,\n \"acc_stderr\": 0.04303684033537315,\n \"acc_norm\": 0.2982456140350877,\n \"acc_norm_stderr\": 0.04303684033537315\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.496551724137931,\n \"acc_stderr\": 0.041665675771015785,\n \"acc_norm\": 0.496551724137931,\n \"acc_norm_stderr\": 0.041665675771015785\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3439153439153439,\n \"acc_stderr\": 0.024464426625596433,\n \"acc_norm\": 0.3439153439153439,\n \"acc_norm_stderr\": 0.024464426625596433\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.04426266681379909,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.04426266681379909\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.04793724854411018,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.04793724854411018\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6096774193548387,\n \"acc_stderr\": 0.027751256636969583,\n \"acc_norm\": 0.6096774193548387,\n \"acc_norm_stderr\": 0.027751256636969583\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.39901477832512317,\n \"acc_stderr\": 0.03445487686264715,\n \"acc_norm\": 0.39901477832512317,\n \"acc_norm_stderr\": 0.03445487686264715\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.049999999999999996,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.049999999999999996\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.03713158067481913,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.03713158067481913\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6868686868686869,\n \"acc_stderr\": 0.033042050878136525,\n \"acc_norm\": 0.6868686868686869,\n \"acc_norm_stderr\": 0.033042050878136525\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7668393782383419,\n \"acc_stderr\": 0.03051611137147601,\n \"acc_norm\": 0.7668393782383419,\n \"acc_norm_stderr\": 0.03051611137147601\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5307692307692308,\n \"acc_stderr\": 0.025302958890850154,\n \"acc_norm\": 0.5307692307692308,\n \"acc_norm_stderr\": 0.025302958890850154\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2814814814814815,\n \"acc_stderr\": 0.027420019350945284,\n \"acc_norm\": 0.2814814814814815,\n \"acc_norm_stderr\": 0.027420019350945284\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.5252100840336135,\n \"acc_stderr\": 0.0324371805513741,\n \"acc_norm\": 0.5252100840336135,\n \"acc_norm_stderr\": 0.0324371805513741\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.32450331125827814,\n \"acc_stderr\": 0.038227469376587525,\n \"acc_norm\": 0.32450331125827814,\n \"acc_norm_stderr\": 0.038227469376587525\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.708256880733945,\n \"acc_stderr\": 0.019489300968876522,\n \"acc_norm\": 0.708256880733945,\n \"acc_norm_stderr\": 0.019489300968876522\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4305555555555556,\n \"acc_stderr\": 0.03376922151252336,\n \"acc_norm\": 0.4305555555555556,\n \"acc_norm_stderr\": 0.03376922151252336\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7254901960784313,\n \"acc_stderr\": 0.03132179803083292,\n \"acc_norm\": 0.7254901960784313,\n \"acc_norm_stderr\": 0.03132179803083292\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.6835443037974683,\n \"acc_stderr\": 0.030274974880218977,\n \"acc_norm\": 0.6835443037974683,\n \"acc_norm_stderr\": 0.030274974880218977\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5605381165919282,\n \"acc_stderr\": 0.03331092511038179,\n \"acc_norm\": 0.5605381165919282,\n \"acc_norm_stderr\": 0.03331092511038179\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6183206106870229,\n \"acc_stderr\": 0.042607351576445594,\n \"acc_norm\": 0.6183206106870229,\n \"acc_norm_stderr\": 0.042607351576445594\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.5950413223140496,\n \"acc_stderr\": 0.04481137755942469,\n \"acc_norm\": 0.5950413223140496,\n \"acc_norm_stderr\": 0.04481137755942469\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6296296296296297,\n \"acc_stderr\": 0.04668408033024931,\n \"acc_norm\": 0.6296296296296297,\n \"acc_norm_stderr\": 0.04668408033024931\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6196319018404908,\n \"acc_stderr\": 0.038142698932618374,\n \"acc_norm\": 0.6196319018404908,\n \"acc_norm_stderr\": 0.038142698932618374\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.25892857142857145,\n \"acc_stderr\": 0.04157751539865629,\n \"acc_norm\": 0.25892857142857145,\n \"acc_norm_stderr\": 0.04157751539865629\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7281553398058253,\n \"acc_stderr\": 0.044052680241409216,\n \"acc_norm\": 0.7281553398058253,\n \"acc_norm_stderr\": 0.044052680241409216\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7350427350427351,\n \"acc_stderr\": 0.028911208802749475,\n \"acc_norm\": 0.7350427350427351,\n \"acc_norm_stderr\": 0.028911208802749475\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7318007662835249,\n \"acc_stderr\": 0.01584243083526942,\n \"acc_norm\": 0.7318007662835249,\n \"acc_norm_stderr\": 0.01584243083526942\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5578034682080925,\n \"acc_stderr\": 0.026738603643807403,\n \"acc_norm\": 0.5578034682080925,\n \"acc_norm_stderr\": 0.026738603643807403\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.25139664804469275,\n \"acc_stderr\": 0.014508979453553974,\n \"acc_norm\": 0.25139664804469275,\n \"acc_norm_stderr\": 0.014508979453553974\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5326797385620915,\n \"acc_stderr\": 0.02856869975222587,\n \"acc_norm\": 0.5326797385620915,\n \"acc_norm_stderr\": 0.02856869975222587\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.594855305466238,\n \"acc_stderr\": 0.027882383791325967,\n \"acc_norm\": 0.594855305466238,\n \"acc_norm_stderr\": 0.027882383791325967\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5864197530864198,\n \"acc_stderr\": 0.02740204204026996,\n \"acc_norm\": 0.5864197530864198,\n \"acc_norm_stderr\": 0.02740204204026996\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.36524822695035464,\n \"acc_stderr\": 0.028723863853281278,\n \"acc_norm\": 0.36524822695035464,\n \"acc_norm_stderr\": 0.028723863853281278\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.37614080834419816,\n \"acc_stderr\": 0.012372214430599816,\n \"acc_norm\": 0.37614080834419816,\n \"acc_norm_stderr\": 0.012372214430599816\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5110294117647058,\n \"acc_stderr\": 0.030365446477275675,\n \"acc_norm\": 0.5110294117647058,\n \"acc_norm_stderr\": 0.030365446477275675\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.4934640522875817,\n \"acc_stderr\": 0.020226106567657803,\n \"acc_norm\": 0.4934640522875817,\n \"acc_norm_stderr\": 0.020226106567657803\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.5636363636363636,\n \"acc_stderr\": 0.04750185058907296,\n \"acc_norm\": 0.5636363636363636,\n \"acc_norm_stderr\": 0.04750185058907296\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5469387755102041,\n \"acc_stderr\": 0.03186785930004128,\n \"acc_norm\": 0.5469387755102041,\n \"acc_norm_stderr\": 0.03186785930004128\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.736318407960199,\n \"acc_stderr\": 0.03115715086935557,\n \"acc_norm\": 0.736318407960199,\n \"acc_norm_stderr\": 0.03115715086935557\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.044084400227680794,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.044084400227680794\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.40963855421686746,\n \"acc_stderr\": 0.03828401115079023,\n \"acc_norm\": 0.40963855421686746,\n \"acc_norm_stderr\": 0.03828401115079023\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7426900584795322,\n \"acc_stderr\": 0.03352799844161865,\n \"acc_norm\": 0.7426900584795322,\n \"acc_norm_stderr\": 0.03352799844161865\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2827417380660955,\n \"mc1_stderr\": 0.01576477083677731,\n \"mc2\": 0.4075956796231733,\n \"mc2_stderr\": 0.015612342660639225\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7269139700078927,\n \"acc_stderr\": 0.012522020105869456\n },\n \"harness|drop|3\": {\n \"em\": 0.022546140939597316,\n \"em_stderr\": 0.0015202810875087338,\n \"f1\": 0.12420616610738253,\n \"f1_stderr\": 0.002172993439883863\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.001516300227445034,\n \"acc_stderr\": 0.0010717793485492627\n }\n}\n```", "repo_url": "https://huggingface.co/starmpcc/Asclepius-Llama2-13B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|arc:challenge|25_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|drop|3_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|gsm8k|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hellaswag|10_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T12-18-05.781996.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["**/details_harness|winogrande|5_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T12-18-05.781996.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T12_18_05.781996", "path": ["results_2023-11-19T12-18-05.781996.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T12-18-05.781996.parquet"]}]}]}
2023-11-19T12:21:58+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-13B ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-13B on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T12:18:05.781996(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-13B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-13B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T12:18:05.781996(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-13B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-13B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T12:18:05.781996(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 23, 31, 172, 66, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of starmpcc/Asclepius-Llama2-13B## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model starmpcc/Asclepius-Llama2-13B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T12:18:05.781996(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
d208e7a588f318d826ff6d4f2b5050474a750192
# Dataset Card for "qa" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
thangquoc/qa
[ "region:us" ]
2023-11-19T12:39:54+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 428777, "num_examples": 1200}], "download_size": 134213, "dataset_size": 428777}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-11-19T12:40:45+00:00
[]
[]
TAGS #region-us
# Dataset Card for "qa" More Information needed
[ "# Dataset Card for \"qa\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"qa\"\n\nMore Information needed" ]
[ 6, 11 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"qa\"\n\nMore Information needed" ]
0043f5068b81b540f15c2dc6df59251d35c6703d
# Dataset Card for "lcr_final_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/lcr_final_id_rename
[ "region:us" ]
2023-11-19T12:53:59+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 82132163, "num_examples": 2918}, {"name": "test", "num_bytes": 18921115, "num_examples": 584}, {"name": "valid", "num_bytes": 12959086, "num_examples": 389}], "download_size": 56066938, "dataset_size": 114012364}}
2023-11-19T12:54:09+00:00
[]
[]
TAGS #region-us
# Dataset Card for "lcr_final_id_rename" More Information needed
[ "# Dataset Card for \"lcr_final_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"lcr_final_id_rename\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"lcr_final_id_rename\"\n\nMore Information needed" ]
6da35c60e5c4eaf68015d466afa267ce114310f4
# Dataset Card for "govreport_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/govreport_id_rename
[ "region:us" ]
2023-11-19T12:55:07+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 804293268, "num_examples": 14597}, {"name": "test", "num_bytes": 149069637, "num_examples": 2919}, {"name": "valid", "num_bytes": 107525366, "num_examples": 1947}], "download_size": 506718966, "dataset_size": 1060888271}}
2023-11-19T12:55:36+00:00
[]
[]
TAGS #region-us
# Dataset Card for "govreport_id_rename" More Information needed
[ "# Dataset Card for \"govreport_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"govreport_id_rename\"\n\nMore Information needed" ]
[ 6, 17 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"govreport_id_rename\"\n\nMore Information needed" ]
e12f91359454d25aa3bcb1258aeed167b74a0bfa
This is the chat vs unchat comparision for ToxicQA Base model used is llama-2-chat-7b Use only for Alignment research. NOETI is not responsible for what you might do with it.
NobodyExistsOnTheInternet/unchat-vs-chat-results
[ "license:mit", "not-for-all-audiences", "region:us" ]
2023-11-19T13:00:15+00:00
{"license": "mit", "tags": ["not-for-all-audiences"]}
2024-01-10T14:27:45+00:00
[]
[]
TAGS #license-mit #not-for-all-audiences #region-us
This is the chat vs unchat comparision for ToxicQA Base model used is llama-2-chat-7b Use only for Alignment research. NOETI is not responsible for what you might do with it.
[]
[ "TAGS\n#license-mit #not-for-all-audiences #region-us \n" ]
[ 20 ]
[ "passage: TAGS\n#license-mit #not-for-all-audiences #region-us \n" ]
ca2a5d097a86f4f5f8d5e1bba1ffec0a1503b8be
# Dataset Card for "billsum_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/billsum_id_rename
[ "region:us" ]
2023-11-19T13:01:05+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 22011129, "num_examples": 16663}, {"name": "test", "num_bytes": 4387587, "num_examples": 3334}, {"name": "valid", "num_bytes": 2931675, "num_examples": 2221}], "download_size": 15176081, "dataset_size": 29330391}}
2023-11-19T13:01:17+00:00
[]
[]
TAGS #region-us
# Dataset Card for "billsum_id_rename" More Information needed
[ "# Dataset Card for \"billsum_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"billsum_id_rename\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"billsum_id_rename\"\n\nMore Information needed" ]
09094743ee72363e19fe8dadd7c1087421168940
# Dataset Card for "eurlexsum_id_rename" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CJWeiss/eurlexsum_id_rename
[ "region:us" ]
2023-11-19T13:07:34+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 92785728, "num_examples": 1128}, {"name": "test", "num_bytes": 28072606, "num_examples": 225}, {"name": "valid", "num_bytes": 19930581, "num_examples": 151}], "download_size": 56329644, "dataset_size": 140788915}}
2023-11-19T13:07:45+00:00
[]
[]
TAGS #region-us
# Dataset Card for "eurlexsum_id_rename" More Information needed
[ "# Dataset Card for \"eurlexsum_id_rename\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"eurlexsum_id_rename\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"eurlexsum_id_rename\"\n\nMore Information needed" ]
da5db7689ad1b176b38fc03db1d6264675b0bf65
# Dataset Card for Evaluation run of NucleusAI/nucleus-22B-token-500B ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/NucleusAI/nucleus-22B-token-500B - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** [email protected] ### Dataset Summary Dataset automatically created during the evaluation run of model [NucleusAI/nucleus-22B-token-500B](https://huggingface.co/NucleusAI/nucleus-22B-token-500B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_NucleusAI__nucleus-22B-token-500B_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-19T13:17:41.829726](https://huggingface.co/datasets/open-llm-leaderboard/details_NucleusAI__nucleus-22B-token-500B_public/blob/main/results_2023-11-19T13-17-41.829726.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.30673650516641404, "acc_stderr": 0.032547522985263574, "acc_norm": 0.3095249010872989, "acc_norm_stderr": 0.03338118293403526, "mc1": 0.23378212974296206, "mc1_stderr": 0.014816195991931586, "mc2": 0.3915840427149961, "mc2_stderr": 0.013964045059765704, "em": 0.0025167785234899327, "em_stderr": 0.0005131152834514876, "f1": 0.041879194630872585, "f1_stderr": 0.0011986236857635742 }, "harness|arc:challenge|25": { "acc": 0.3575085324232082, "acc_stderr": 0.014005494275916573, "acc_norm": 0.4069965870307167, "acc_norm_stderr": 0.014356399418009124 }, "harness|hellaswag|10": { "acc": 0.5060744871539534, "acc_stderr": 0.004989413158034803, "acc_norm": 0.6938856801433977, "acc_norm_stderr": 0.004599358920909554 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.2814814814814815, "acc_stderr": 0.03885004245800254, "acc_norm": 0.2814814814814815, "acc_norm_stderr": 0.03885004245800254 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.3092105263157895, "acc_stderr": 0.037610708698674805, "acc_norm": 0.3092105263157895, "acc_norm_stderr": 0.037610708698674805 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.3169811320754717, "acc_stderr": 0.028637235639800928, "acc_norm": 0.3169811320754717, "acc_norm_stderr": 0.028637235639800928 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2777777777777778, "acc_stderr": 0.037455547914624555, "acc_norm": 0.2777777777777778, "acc_norm_stderr": 0.037455547914624555 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.2947976878612717, "acc_stderr": 0.03476599607516478, "acc_norm": 0.2947976878612717, "acc_norm_stderr": 0.03476599607516478 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.21568627450980393, "acc_stderr": 0.04092563958237654, "acc_norm": 0.21568627450980393, "acc_norm_stderr": 0.04092563958237654 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.32340425531914896, "acc_stderr": 0.030579442773610337, "acc_norm": 0.32340425531914896, "acc_norm_stderr": 0.030579442773610337 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.21052631578947367, "acc_stderr": 0.03835153954399421, "acc_norm": 0.21052631578947367, "acc_norm_stderr": 0.03835153954399421 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.3103448275862069, "acc_stderr": 0.03855289616378948, "acc_norm": 0.3103448275862069, "acc_norm_stderr": 0.03855289616378948 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.24338624338624337, "acc_stderr": 0.022101128787415436, "acc_norm": 0.24338624338624337, "acc_norm_stderr": 0.022101128787415436 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.30158730158730157, "acc_stderr": 0.041049472699033945, "acc_norm": 0.30158730158730157, "acc_norm_stderr": 0.041049472699033945 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.2870967741935484, "acc_stderr": 0.025736542745594525, "acc_norm": 0.2870967741935484, "acc_norm_stderr": 0.025736542745594525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.2019704433497537, "acc_stderr": 0.02824735012218027, "acc_norm": 0.2019704433497537, "acc_norm_stderr": 0.02824735012218027 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.33, "acc_stderr": 0.04725815626252606, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252606 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.21818181818181817, "acc_stderr": 0.03225078108306289, "acc_norm": 0.21818181818181817, "acc_norm_stderr": 0.03225078108306289 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.3333333333333333, "acc_stderr": 0.033586181457325226, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.033586181457325226 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.3471502590673575, "acc_stderr": 0.03435696168361355, "acc_norm": 0.3471502590673575, "acc_norm_stderr": 0.03435696168361355 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.38974358974358975, "acc_stderr": 0.024726967886647078, "acc_norm": 0.38974358974358975, "acc_norm_stderr": 0.024726967886647078 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2814814814814815, "acc_stderr": 0.02742001935094527, "acc_norm": 0.2814814814814815, "acc_norm_stderr": 0.02742001935094527 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.29411764705882354, "acc_stderr": 0.02959732973097809, "acc_norm": 0.29411764705882354, "acc_norm_stderr": 0.02959732973097809 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.2913907284768212, "acc_stderr": 0.037101857261199946, "acc_norm": 0.2913907284768212, "acc_norm_stderr": 0.037101857261199946 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3174311926605505, "acc_stderr": 0.019957152198460507, "acc_norm": 0.3174311926605505, "acc_norm_stderr": 0.019957152198460507 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.3888888888888889, "acc_stderr": 0.03324708911809117, "acc_norm": 0.3888888888888889, "acc_norm_stderr": 0.03324708911809117 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.27450980392156865, "acc_stderr": 0.031321798030832904, "acc_norm": 0.27450980392156865, "acc_norm_stderr": 0.031321798030832904 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.3080168776371308, "acc_stderr": 0.030052389335605695, "acc_norm": 0.3080168776371308, "acc_norm_stderr": 0.030052389335605695 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.336322869955157, "acc_stderr": 0.031708824268455, "acc_norm": 0.336322869955157, "acc_norm_stderr": 0.031708824268455 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.3511450381679389, "acc_stderr": 0.04186445163013751, "acc_norm": 0.3511450381679389, "acc_norm_stderr": 0.04186445163013751 }, "harness|hendrycksTest-international_law|5": { "acc": 0.2809917355371901, "acc_stderr": 0.04103203830514511, "acc_norm": 0.2809917355371901, "acc_norm_stderr": 0.04103203830514511 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.2777777777777778, "acc_stderr": 0.04330043749650743, "acc_norm": 0.2777777777777778, "acc_norm_stderr": 0.04330043749650743 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.2392638036809816, "acc_stderr": 0.033519538795212696, "acc_norm": 0.2392638036809816, "acc_norm_stderr": 0.033519538795212696 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.3482142857142857, "acc_stderr": 0.04521829902833586, "acc_norm": 0.3482142857142857, "acc_norm_stderr": 0.04521829902833586 }, "harness|hendrycksTest-management|5": { "acc": 0.24271844660194175, "acc_stderr": 0.04245022486384495, "acc_norm": 0.24271844660194175, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.41025641025641024, "acc_stderr": 0.03222414045241106, "acc_norm": 0.41025641025641024, "acc_norm_stderr": 0.03222414045241106 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.2567049808429119, "acc_stderr": 0.015620480263064528, "acc_norm": 0.2567049808429119, "acc_norm_stderr": 0.015620480263064528 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.2947976878612717, "acc_stderr": 0.024547617794803838, "acc_norm": 0.2947976878612717, "acc_norm_stderr": 0.024547617794803838 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2335195530726257, "acc_stderr": 0.014149575348976259, "acc_norm": 0.2335195530726257, "acc_norm_stderr": 0.014149575348976259 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.38235294117647056, "acc_stderr": 0.02782610930728369, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.02782610930728369 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.2765273311897106, "acc_stderr": 0.025403832978179604, "acc_norm": 0.2765273311897106, "acc_norm_stderr": 0.025403832978179604 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.26851851851851855, "acc_stderr": 0.024659685185967284, "acc_norm": 0.26851851851851855, "acc_norm_stderr": 0.024659685185967284 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.28368794326241137, "acc_stderr": 0.026891709428343954, "acc_norm": 0.28368794326241137, "acc_norm_stderr": 0.026891709428343954 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.26140808344198174, "acc_stderr": 0.011222528169771314, "acc_norm": 0.26140808344198174, "acc_norm_stderr": 0.011222528169771314 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.35661764705882354, "acc_stderr": 0.029097209568411952, "acc_norm": 0.35661764705882354, "acc_norm_stderr": 0.029097209568411952 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.2679738562091503, "acc_stderr": 0.017917974069594722, "acc_norm": 0.2679738562091503, "acc_norm_stderr": 0.017917974069594722 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.2909090909090909, "acc_stderr": 0.04350271442923243, "acc_norm": 0.2909090909090909, "acc_norm_stderr": 0.04350271442923243 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.34285714285714286, "acc_stderr": 0.030387262919547735, "acc_norm": 0.34285714285714286, "acc_norm_stderr": 0.030387262919547735 }, "harness|hendrycksTest-sociology|5": { "acc": 0.32338308457711445, "acc_stderr": 0.03307615947979034, "acc_norm": 0.32338308457711445, "acc_norm_stderr": 0.03307615947979034 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-virology|5": { "acc": 0.2891566265060241, "acc_stderr": 0.03529486801511115, "acc_norm": 0.2891566265060241, "acc_norm_stderr": 0.03529486801511115 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.32748538011695905, "acc_stderr": 0.035993357714560276, "acc_norm": 0.32748538011695905, "acc_norm_stderr": 0.035993357714560276 }, "harness|truthfulqa:mc|0": { "mc1": 0.23378212974296206, "mc1_stderr": 0.014816195991931586, "mc2": 0.3915840427149961, "mc2_stderr": 0.013964045059765704 }, "harness|winogrande|5": { "acc": 0.6764009471191792, "acc_stderr": 0.013148883320923144 }, "harness|drop|3": { "em": 0.0025167785234899327, "em_stderr": 0.0005131152834514876, "f1": 0.041879194630872585, "f1_stderr": 0.0011986236857635742 }, "harness|gsm8k|5": { "acc": 0.009855951478392721, "acc_stderr": 0.002721076577041663 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
open-llm-leaderboard/details_NucleusAI__nucleus-22B-token-500B
[ "region:us" ]
2023-11-19T13:20:07+00:00
{"pretty_name": "Evaluation run of NucleusAI/nucleus-22B-token-500B", "dataset_summary": "Dataset automatically created during the evaluation run of model [NucleusAI/nucleus-22B-token-500B](https://huggingface.co/NucleusAI/nucleus-22B-token-500B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_NucleusAI__nucleus-22B-token-500B_public\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2023-11-19T13:17:41.829726](https://huggingface.co/datasets/open-llm-leaderboard/details_NucleusAI__nucleus-22B-token-500B_public/blob/main/results_2023-11-19T13-17-41.829726.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.30673650516641404,\n \"acc_stderr\": 0.032547522985263574,\n \"acc_norm\": 0.3095249010872989,\n \"acc_norm_stderr\": 0.03338118293403526,\n \"mc1\": 0.23378212974296206,\n \"mc1_stderr\": 0.014816195991931586,\n \"mc2\": 0.3915840427149961,\n \"mc2_stderr\": 0.013964045059765704,\n \"em\": 0.0025167785234899327,\n \"em_stderr\": 0.0005131152834514876,\n \"f1\": 0.041879194630872585,\n \"f1_stderr\": 0.0011986236857635742\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.3575085324232082,\n \"acc_stderr\": 0.014005494275916573,\n \"acc_norm\": 0.4069965870307167,\n \"acc_norm_stderr\": 0.014356399418009124\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5060744871539534,\n \"acc_stderr\": 0.004989413158034803,\n \"acc_norm\": 0.6938856801433977,\n \"acc_norm_stderr\": 0.004599358920909554\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.2814814814814815,\n \"acc_stderr\": 0.03885004245800254,\n \"acc_norm\": 0.2814814814814815,\n \"acc_norm_stderr\": 0.03885004245800254\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.3092105263157895,\n \"acc_stderr\": 0.037610708698674805,\n \"acc_norm\": 0.3092105263157895,\n \"acc_norm_stderr\": 0.037610708698674805\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.3169811320754717,\n \"acc_stderr\": 0.028637235639800928,\n \"acc_norm\": 0.3169811320754717,\n \"acc_norm_stderr\": 0.028637235639800928\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2777777777777778,\n \"acc_stderr\": 0.037455547914624555,\n \"acc_norm\": 0.2777777777777778,\n \"acc_norm_stderr\": 0.037455547914624555\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.2947976878612717,\n \"acc_stderr\": 0.03476599607516478,\n \"acc_norm\": 0.2947976878612717,\n \"acc_norm_stderr\": 0.03476599607516478\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.21568627450980393,\n \"acc_stderr\": 0.04092563958237654,\n \"acc_norm\": 0.21568627450980393,\n \"acc_norm_stderr\": 0.04092563958237654\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.32340425531914896,\n \"acc_stderr\": 0.030579442773610337,\n \"acc_norm\": 0.32340425531914896,\n \"acc_norm_stderr\": 0.030579442773610337\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.21052631578947367,\n \"acc_stderr\": 0.03835153954399421,\n \"acc_norm\": 0.21052631578947367,\n \"acc_norm_stderr\": 0.03835153954399421\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.3103448275862069,\n \"acc_stderr\": 0.03855289616378948,\n \"acc_norm\": 0.3103448275862069,\n \"acc_norm_stderr\": 0.03855289616378948\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.24338624338624337,\n \"acc_stderr\": 0.022101128787415436,\n \"acc_norm\": 0.24338624338624337,\n \"acc_norm_stderr\": 0.022101128787415436\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.30158730158730157,\n \"acc_stderr\": 0.041049472699033945,\n \"acc_norm\": 0.30158730158730157,\n \"acc_norm_stderr\": 0.041049472699033945\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.2870967741935484,\n \"acc_stderr\": 0.025736542745594525,\n \"acc_norm\": 0.2870967741935484,\n \"acc_norm_stderr\": 0.025736542745594525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.2019704433497537,\n \"acc_stderr\": 0.02824735012218027,\n \"acc_norm\": 0.2019704433497537,\n \"acc_norm_stderr\": 0.02824735012218027\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252606,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252606\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.21818181818181817,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.21818181818181817,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.033586181457325226,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.033586181457325226\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.3471502590673575,\n \"acc_stderr\": 0.03435696168361355,\n \"acc_norm\": 0.3471502590673575,\n \"acc_norm_stderr\": 0.03435696168361355\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.38974358974358975,\n \"acc_stderr\": 0.024726967886647078,\n \"acc_norm\": 0.38974358974358975,\n \"acc_norm_stderr\": 0.024726967886647078\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2814814814814815,\n \"acc_stderr\": 0.02742001935094527,\n \"acc_norm\": 0.2814814814814815,\n \"acc_norm_stderr\": 0.02742001935094527\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.29411764705882354,\n \"acc_stderr\": 0.02959732973097809,\n \"acc_norm\": 0.29411764705882354,\n \"acc_norm_stderr\": 0.02959732973097809\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.2913907284768212,\n \"acc_stderr\": 0.037101857261199946,\n \"acc_norm\": 0.2913907284768212,\n \"acc_norm_stderr\": 0.037101857261199946\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3174311926605505,\n \"acc_stderr\": 0.019957152198460507,\n \"acc_norm\": 0.3174311926605505,\n \"acc_norm_stderr\": 0.019957152198460507\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.3888888888888889,\n \"acc_stderr\": 0.03324708911809117,\n \"acc_norm\": 0.3888888888888889,\n \"acc_norm_stderr\": 0.03324708911809117\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.27450980392156865,\n \"acc_stderr\": 0.031321798030832904,\n \"acc_norm\": 0.27450980392156865,\n \"acc_norm_stderr\": 0.031321798030832904\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.3080168776371308,\n \"acc_stderr\": 0.030052389335605695,\n \"acc_norm\": 0.3080168776371308,\n \"acc_norm_stderr\": 0.030052389335605695\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.336322869955157,\n \"acc_stderr\": 0.031708824268455,\n \"acc_norm\": 0.336322869955157,\n \"acc_norm_stderr\": 0.031708824268455\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.3511450381679389,\n \"acc_stderr\": 0.04186445163013751,\n \"acc_norm\": 0.3511450381679389,\n \"acc_norm_stderr\": 0.04186445163013751\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.2809917355371901,\n \"acc_stderr\": 0.04103203830514511,\n \"acc_norm\": 0.2809917355371901,\n \"acc_norm_stderr\": 0.04103203830514511\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.2777777777777778,\n \"acc_stderr\": 0.04330043749650743,\n \"acc_norm\": 0.2777777777777778,\n \"acc_norm_stderr\": 0.04330043749650743\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.2392638036809816,\n \"acc_stderr\": 0.033519538795212696,\n \"acc_norm\": 0.2392638036809816,\n \"acc_norm_stderr\": 0.033519538795212696\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.3482142857142857,\n \"acc_stderr\": 0.04521829902833586,\n \"acc_norm\": 0.3482142857142857,\n \"acc_norm_stderr\": 0.04521829902833586\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.24271844660194175,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.24271844660194175,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.41025641025641024,\n \"acc_stderr\": 0.03222414045241106,\n \"acc_norm\": 0.41025641025641024,\n \"acc_norm_stderr\": 0.03222414045241106\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.2567049808429119,\n \"acc_stderr\": 0.015620480263064528,\n \"acc_norm\": 0.2567049808429119,\n \"acc_norm_stderr\": 0.015620480263064528\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.2947976878612717,\n \"acc_stderr\": 0.024547617794803838,\n \"acc_norm\": 0.2947976878612717,\n \"acc_norm_stderr\": 0.024547617794803838\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2335195530726257,\n \"acc_stderr\": 0.014149575348976259,\n \"acc_norm\": 0.2335195530726257,\n \"acc_norm_stderr\": 0.014149575348976259\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.02782610930728369,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.02782610930728369\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.2765273311897106,\n \"acc_stderr\": 0.025403832978179604,\n \"acc_norm\": 0.2765273311897106,\n \"acc_norm_stderr\": 0.025403832978179604\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.26851851851851855,\n \"acc_stderr\": 0.024659685185967284,\n \"acc_norm\": 0.26851851851851855,\n \"acc_norm_stderr\": 0.024659685185967284\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.28368794326241137,\n \"acc_stderr\": 0.026891709428343954,\n \"acc_norm\": 0.28368794326241137,\n \"acc_norm_stderr\": 0.026891709428343954\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.26140808344198174,\n \"acc_stderr\": 0.011222528169771314,\n \"acc_norm\": 0.26140808344198174,\n \"acc_norm_stderr\": 0.011222528169771314\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.35661764705882354,\n \"acc_stderr\": 0.029097209568411952,\n \"acc_norm\": 0.35661764705882354,\n \"acc_norm_stderr\": 0.029097209568411952\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.2679738562091503,\n \"acc_stderr\": 0.017917974069594722,\n \"acc_norm\": 0.2679738562091503,\n \"acc_norm_stderr\": 0.017917974069594722\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.2909090909090909,\n \"acc_stderr\": 0.04350271442923243,\n \"acc_norm\": 0.2909090909090909,\n \"acc_norm_stderr\": 0.04350271442923243\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.34285714285714286,\n \"acc_stderr\": 0.030387262919547735,\n \"acc_norm\": 0.34285714285714286,\n \"acc_norm_stderr\": 0.030387262919547735\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.32338308457711445,\n \"acc_stderr\": 0.03307615947979034,\n \"acc_norm\": 0.32338308457711445,\n \"acc_norm_stderr\": 0.03307615947979034\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.2891566265060241,\n \"acc_stderr\": 0.03529486801511115,\n \"acc_norm\": 0.2891566265060241,\n \"acc_norm_stderr\": 0.03529486801511115\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.32748538011695905,\n \"acc_stderr\": 0.035993357714560276,\n \"acc_norm\": 0.32748538011695905,\n \"acc_norm_stderr\": 0.035993357714560276\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.23378212974296206,\n \"mc1_stderr\": 0.014816195991931586,\n \"mc2\": 0.3915840427149961,\n \"mc2_stderr\": 0.013964045059765704\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.6764009471191792,\n \"acc_stderr\": 0.013148883320923144\n },\n \"harness|drop|3\": {\n \"em\": 0.0025167785234899327,\n \"em_stderr\": 0.0005131152834514876,\n \"f1\": 0.041879194630872585,\n \"f1_stderr\": 0.0011986236857635742\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.009855951478392721,\n \"acc_stderr\": 0.002721076577041663\n }\n}\n```", "repo_url": "https://huggingface.co/NucleusAI/nucleus-22B-token-500B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|arc:challenge|25_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_drop_3", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|drop|3_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|drop|3_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|gsm8k|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hellaswag|10_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-anatomy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-astronomy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_biology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-college_physics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-computer_security|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-econometrics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-global_facts|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-human_aging|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-international_law|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-management|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-marketing|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-nutrition|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-philosophy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-prehistory|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_law|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-public_relations|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-security_studies|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-sociology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-virology|5_2023-11-19T13-17-41.829726.parquet", "**/details_harness|hendrycksTest-world_religions|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["**/details_harness|winogrande|5_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2023-11-19T13-17-41.829726.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2023_11_19T13_17_41.829726", "path": ["results_2023-11-19T13-17-41.829726.parquet"]}, {"split": "latest", "path": ["results_2023-11-19T13-17-41.829726.parquet"]}]}]}
2023-11-19T13:21:00+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of NucleusAI/nucleus-22B-token-500B ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: URL - Point of Contact: clementine@URL ### Dataset Summary Dataset automatically created during the evaluation run of model NucleusAI/nucleus-22B-token-500B on the Open LLM Leaderboard. The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2023-11-19T13:17:41.829726(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ### Supported Tasks and Leaderboards ### Languages ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions
[ "# Dataset Card for Evaluation run of NucleusAI/nucleus-22B-token-500B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model NucleusAI/nucleus-22B-token-500B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T13:17:41.829726(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of NucleusAI/nucleus-22B-token-500B", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL", "### Dataset Summary\n\nDataset automatically created during the evaluation run of model NucleusAI/nucleus-22B-token-500B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2023-11-19T13:17:41.829726(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "### Supported Tasks and Leaderboards", "### Languages", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions" ]
[ 6, 24, 31, 173, 67, 10, 4, 6, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 5 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of NucleusAI/nucleus-22B-token-500B## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: URL\n- Point of Contact: clementine@URL### Dataset Summary\n\nDataset automatically created during the evaluation run of model NucleusAI/nucleus-22B-token-500B on the Open LLM Leaderboard.\n\nThe dataset is composed of 64 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2023-11-19T13:17:41.829726(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):### Supported Tasks and Leaderboards### Languages## Dataset Structure### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions" ]
9f5533a171d7e04d6e6c7a15f934c7791aa44573
# **DALL·E 3 Dataset by Bittensor Network (NetUID 18)** **Description :** This dataset was generated by Subnetwork 18 (Bittensor), utilizing the capabilities of DALL·E 3. **WanDB :** [Cortex-T Wandb](https://wandb.ai/cortex-t/synthetic-QA/) **Disclaimer: Image Attribution and Copyright Notice** The images included in this dataset have been sourced from WandB (Weights and Biases). While every effort has been made to ensure compliance with copyright and intellectual property rights, Cortex Foundation cannot guarantee the absence of any copyright or intellectual property infringements. Cortex Foundation assumes no responsibility or liability for any potential copyright issues associated with the images in this dataset. Users of this dataset are strongly encouraged to verify the copyright status of individual images and ensure compliance with applicable laws and regulations before using or redistributing the dataset. By accessing and using this dataset, you acknowledge and agree that Cortex Foundation is not responsible for any copyright violations or legal consequences that may arise from the use of these images. If you have any concerns or questions regarding the copyright status of specific images, please contact the original source or copyright holder directly. Cortex Foundation reserves the right to update or modify this disclaimer as needed to reflect any changes in the dataset's composition or to address emerging legal or ethical considerations.
CortexLM/dalle-3-dataset
[ "task_categories:text-to-image", "language:en", "license:unknown", "region:us" ]
2023-11-19T13:27:44+00:00
{"language": ["en"], "license": "unknown", "task_categories": ["text-to-image"]}
2023-11-20T13:42:27+00:00
[]
[ "en" ]
TAGS #task_categories-text-to-image #language-English #license-unknown #region-us
# DALL·E 3 Dataset by Bittensor Network (NetUID 18) Description : This dataset was generated by Subnetwork 18 (Bittensor), utilizing the capabilities of DALL·E 3. WanDB : Cortex-T Wandb Disclaimer: Image Attribution and Copyright Notice The images included in this dataset have been sourced from WandB (Weights and Biases). While every effort has been made to ensure compliance with copyright and intellectual property rights, Cortex Foundation cannot guarantee the absence of any copyright or intellectual property infringements. Cortex Foundation assumes no responsibility or liability for any potential copyright issues associated with the images in this dataset. Users of this dataset are strongly encouraged to verify the copyright status of individual images and ensure compliance with applicable laws and regulations before using or redistributing the dataset. By accessing and using this dataset, you acknowledge and agree that Cortex Foundation is not responsible for any copyright violations or legal consequences that may arise from the use of these images. If you have any concerns or questions regarding the copyright status of specific images, please contact the original source or copyright holder directly. Cortex Foundation reserves the right to update or modify this disclaimer as needed to reflect any changes in the dataset's composition or to address emerging legal or ethical considerations.
[ "# DALL·E 3 Dataset by Bittensor Network (NetUID 18)\n\nDescription : This dataset was generated by Subnetwork 18 (Bittensor), utilizing the capabilities of DALL·E 3.\n\nWanDB : Cortex-T Wandb\n\nDisclaimer: Image Attribution and Copyright Notice\n\nThe images included in this dataset have been sourced from WandB (Weights and Biases). While every effort has been made to ensure compliance with copyright and intellectual property rights, Cortex Foundation cannot guarantee the absence of any copyright or intellectual property infringements.\n\nCortex Foundation assumes no responsibility or liability for any potential copyright issues associated with the images in this dataset. Users of this dataset are strongly encouraged to verify the copyright status of individual images and ensure compliance with applicable laws and regulations before using or redistributing the dataset.\n\nBy accessing and using this dataset, you acknowledge and agree that Cortex Foundation is not responsible for any copyright violations or legal consequences that may arise from the use of these images.\n\nIf you have any concerns or questions regarding the copyright status of specific images, please contact the original source or copyright holder directly.\n\nCortex Foundation reserves the right to update or modify this disclaimer as needed to reflect any changes in the dataset's composition or to address emerging legal or ethical considerations." ]
[ "TAGS\n#task_categories-text-to-image #language-English #license-unknown #region-us \n", "# DALL·E 3 Dataset by Bittensor Network (NetUID 18)\n\nDescription : This dataset was generated by Subnetwork 18 (Bittensor), utilizing the capabilities of DALL·E 3.\n\nWanDB : Cortex-T Wandb\n\nDisclaimer: Image Attribution and Copyright Notice\n\nThe images included in this dataset have been sourced from WandB (Weights and Biases). While every effort has been made to ensure compliance with copyright and intellectual property rights, Cortex Foundation cannot guarantee the absence of any copyright or intellectual property infringements.\n\nCortex Foundation assumes no responsibility or liability for any potential copyright issues associated with the images in this dataset. Users of this dataset are strongly encouraged to verify the copyright status of individual images and ensure compliance with applicable laws and regulations before using or redistributing the dataset.\n\nBy accessing and using this dataset, you acknowledge and agree that Cortex Foundation is not responsible for any copyright violations or legal consequences that may arise from the use of these images.\n\nIf you have any concerns or questions regarding the copyright status of specific images, please contact the original source or copyright holder directly.\n\nCortex Foundation reserves the right to update or modify this disclaimer as needed to reflect any changes in the dataset's composition or to address emerging legal or ethical considerations." ]
[ 29, 292 ]
[ "passage: TAGS\n#task_categories-text-to-image #language-English #license-unknown #region-us \n# DALL·E 3 Dataset by Bittensor Network (NetUID 18)\n\nDescription : This dataset was generated by Subnetwork 18 (Bittensor), utilizing the capabilities of DALL·E 3.\n\nWanDB : Cortex-T Wandb\n\nDisclaimer: Image Attribution and Copyright Notice\n\nThe images included in this dataset have been sourced from WandB (Weights and Biases). While every effort has been made to ensure compliance with copyright and intellectual property rights, Cortex Foundation cannot guarantee the absence of any copyright or intellectual property infringements.\n\nCortex Foundation assumes no responsibility or liability for any potential copyright issues associated with the images in this dataset. Users of this dataset are strongly encouraged to verify the copyright status of individual images and ensure compliance with applicable laws and regulations before using or redistributing the dataset.\n\nBy accessing and using this dataset, you acknowledge and agree that Cortex Foundation is not responsible for any copyright violations or legal consequences that may arise from the use of these images.\n\nIf you have any concerns or questions regarding the copyright status of specific images, please contact the original source or copyright holder directly.\n\nCortex Foundation reserves the right to update or modify this disclaimer as needed to reflect any changes in the dataset's composition or to address emerging legal or ethical considerations." ]
b71418f806a25e840d91e8db77a6b476a756d5c1
This dataset is for storing assets for https://huggingface.co/tasks and https://github.com/huggingface/huggingface.js/tree/main/packages/tasks
huggingfacejs/tasks
[ "license:mit", "region:us" ]
2023-11-19T13:33:11+00:00
{"license": "mit"}
2024-01-25T23:58:40+00:00
[]
[]
TAGS #license-mit #region-us
This dataset is for storing assets for URL and URL
[]
[ "TAGS\n#license-mit #region-us \n" ]
[ 11 ]
[ "passage: TAGS\n#license-mit #region-us \n" ]
aed0d1ac64a37c8b54f5ed8b7d2b239c676061d9
# Dataset Card for "inxai_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Robin246/inxai_dataset
[ "region:us" ]
2023-11-19T13:56:46+00:00
{"dataset_info": {"features": [{"name": "action_needed", "dtype": "int64"}, {"name": "action", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "input_sentence", "dtype": "string"}, {"name": "reply", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 53802, "num_examples": 533}], "download_size": 19323, "dataset_size": 53802}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-11-19T13:56:52+00:00
[]
[]
TAGS #region-us
# Dataset Card for "inxai_dataset" More Information needed
[ "# Dataset Card for \"inxai_dataset\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"inxai_dataset\"\n\nMore Information needed" ]
[ 6, 16 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"inxai_dataset\"\n\nMore Information needed" ]