sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
d2321bf1ed1207ee9afba00880809436b43fc0cc
# Dataset Card for `msmarco-passage/eval` The `msmarco-passage/eval` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/eval). # Data This dataset provides: - `queries` (i.e., topics); count=101,092 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_eval', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_eval
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:13+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/eval`", "viewer": false}
2023-01-05T03:17:19+00:00
de45da64bde97a5f1f91e59ebb0f1afc64a4c988
# Dataset Card for `msmarco-passage/train/triples-small` The `msmarco-passage/train/triples-small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/train/triples-small). # Data This dataset provides: - `docpairs`; count=39,780,811 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset docpairs = load_dataset('irds/msmarco-passage_train_triples-small', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_train_triples-small
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:25+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/train/triples-small`", "viewer": false}
2023-01-05T03:17:31+00:00
7ffed33f9c1e1f94dd4d8e816ff253f4dc335ef9
# Dataset Card for `msmarco-passage/train/triples-v2` The `msmarco-passage/train/triples-v2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/train/triples-v2). # Data This dataset provides: - `docpairs`; count=397,768,673 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset docpairs = load_dataset('irds/msmarco-passage_train_triples-v2', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_train_triples-v2
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:36+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/train/triples-v2`", "viewer": false}
2023-01-05T03:17:42+00:00
b1129fe39c9a242ff4f864aa9b8dc6d2d23bec25
# Dataset Card for `msmarco-passage/trec-dl-hard` The `msmarco-passage/trec-dl-hard` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=4,256 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:47+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard`", "viewer": false}
2023-01-05T03:17:54+00:00
0d1c5543ae8c9d7c9a844ca272c1b9794216f7ea
# Dataset Card for `msmarco-passage/trec-dl-hard/fold1` The `msmarco-passage/trec-dl-hard/fold1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold1). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,072 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold1', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold1
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:59+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold1`", "viewer": false}
2023-01-05T03:18:05+00:00
28f16fc5228f9fb890b1e089ab6c77317c20aef2
# Dataset Card for `msmarco-passage/trec-dl-hard/fold2` The `msmarco-passage/trec-dl-hard/fold2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold2). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=898 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold2', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold2', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold2
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:10+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold2`", "viewer": false}
2023-01-05T03:18:16+00:00
9328cd2381826e6c4f4720f1b045ba75a4124f61
# Dataset Card for `msmarco-passage/trec-dl-hard/fold3` The `msmarco-passage/trec-dl-hard/fold3` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold3). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=444 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold3', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold3', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold3
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:22+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold3`", "viewer": false}
2023-01-05T03:18:28+00:00
e05f315864a95239e4d0b39ce54fdc79b25dffb2
# Dataset Card for `msmarco-passage/trec-dl-hard/fold4` The `msmarco-passage/trec-dl-hard/fold4` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold4). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=716 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold4', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold4', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold4
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:33+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold4`", "viewer": false}
2023-01-05T03:18:39+00:00
7f96a0dfde501b9cb37db2482b6efbf357a317db
# Dataset Card for `msmarco-passage/trec-dl-hard/fold5` The `msmarco-passage/trec-dl-hard/fold5` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold5). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,126 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold5', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold5', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold5
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:45+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold5`", "viewer": false}
2023-01-05T03:18:51+00:00
913b4b74161e8b0da4594bfd2b35d311f93bc461
# Dataset Card for `mmarco/de` The `mmarco/de` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/de). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_de_dev`](https://huggingface.co/datasets/irds/mmarco_de_dev), [`mmarco_de_train`](https://huggingface.co/datasets/irds/mmarco_de_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_de', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_de
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:18:56+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/de`", "viewer": false}
2023-01-05T03:19:02+00:00
5318697117a4dd1f182ab0f84c8169d9f77fd8f4
# Dataset Card for `mmarco/de/dev` The `mmarco/de/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/de/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_de`](https://huggingface.co/datasets/irds/mmarco_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_de_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_de_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_de_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_de", "region:us" ]
2023-01-05T03:19:07+00:00
{"source_datasets": ["irds/mmarco_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/de/dev`", "viewer": false}
2023-01-05T03:19:14+00:00
39560409ee079e73867791aa2836b00d7b105121
# Dataset Card for `mmarco/de/train` The `mmarco/de/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/de/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_de`](https://huggingface.co/datasets/irds/mmarco_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_de_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_de_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_de_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_de_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_de", "region:us" ]
2023-01-05T03:19:19+00:00
{"source_datasets": ["irds/mmarco_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/de/train`", "viewer": false}
2023-01-05T03:19:25+00:00
3e18dee28ad468246a5280b641c1a7f59d2286ac
# Dataset Card for `mmarco/es` The `mmarco/es` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/es). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_es_dev`](https://huggingface.co/datasets/irds/mmarco_es_dev), [`mmarco_es_train`](https://huggingface.co/datasets/irds/mmarco_es_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_es', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_es
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:19:31+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/es`", "viewer": false}
2023-01-05T03:19:37+00:00
d2ae92f49e7c11f60a7551ad2e4733343daa21c5
# Dataset Card for `mmarco/es/dev` The `mmarco/es/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/es/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,092 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_es`](https://huggingface.co/datasets/irds/mmarco_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_es_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_es_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_es_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_es", "region:us" ]
2023-01-05T03:19:42+00:00
{"source_datasets": ["irds/mmarco_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/es/dev`", "viewer": false}
2023-01-05T03:19:48+00:00
224ef56d6b405ccf0d1d0b16d72b6cabd078c93d
# Dataset Card for `mmarco/es/train` The `mmarco/es/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/es/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_es`](https://huggingface.co/datasets/irds/mmarco_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_es_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_es_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_es_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_es_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_es", "region:us" ]
2023-01-05T03:19:54+00:00
{"source_datasets": ["irds/mmarco_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/es/train`", "viewer": false}
2023-01-05T03:19:59+00:00
9be96a7ba7c9b3c875234cc6502e3265e3fca1c4
# Dataset Card for `mmarco/fr` The `mmarco/fr` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/fr). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_fr_dev`](https://huggingface.co/datasets/irds/mmarco_fr_dev), [`mmarco_fr_train`](https://huggingface.co/datasets/irds/mmarco_fr_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_fr', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_fr
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:20:05+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/fr`", "viewer": false}
2023-01-05T03:20:11+00:00
8ce34210d36d56a3699310cb6c46887a695dd2bf
# Dataset Card for `mmarco/fr/dev` The `mmarco/fr/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/fr/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_fr`](https://huggingface.co/datasets/irds/mmarco_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_fr_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_fr_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_fr_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_fr", "region:us" ]
2023-01-05T03:20:16+00:00
{"source_datasets": ["irds/mmarco_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/fr/dev`", "viewer": false}
2023-01-05T03:20:22+00:00
e1ebd14d7bb66bad1f0c37581ecb3fbc74c89c42
# Dataset Card for `mmarco/fr/train` The `mmarco/fr/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/fr/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_fr`](https://huggingface.co/datasets/irds/mmarco_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_fr_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_fr_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_fr_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_fr_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_fr", "region:us" ]
2023-01-05T03:20:28+00:00
{"source_datasets": ["irds/mmarco_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/fr/train`", "viewer": false}
2023-01-05T03:20:35+00:00
121d66064395028f03b0c2eb1c2e78a71d8d5772
# Dataset Card for `mmarco/id` The `mmarco/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/id). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_id_dev`](https://huggingface.co/datasets/irds/mmarco_id_dev), [`mmarco_id_train`](https://huggingface.co/datasets/irds/mmarco_id_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_id', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_id
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:20:40+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/id`", "viewer": false}
2023-01-05T03:20:46+00:00
a024cb2ae75bbcd0fa6c3cac7fb14ebcf1f5e206
# Dataset Card for `mmarco/id/dev` The `mmarco/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/id/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_id`](https://huggingface.co/datasets/irds/mmarco_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_id_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_id_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_id_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_id", "region:us" ]
2023-01-05T03:20:51+00:00
{"source_datasets": ["irds/mmarco_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/id/dev`", "viewer": false}
2023-01-05T03:20:57+00:00
8ed13a03e20df3f825e3819af6924db5ffdeb207
# Dataset Card for `mmarco/id/train` The `mmarco/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/id/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_id`](https://huggingface.co/datasets/irds/mmarco_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_id_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_id_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_id_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_id_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_id", "region:us" ]
2023-01-05T03:21:03+00:00
{"source_datasets": ["irds/mmarco_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/id/train`", "viewer": false}
2023-01-05T03:21:09+00:00
6911b71cabc9c941677f0b6f2ff11d36c0cc897b
# Dataset Card for `mmarco/it` The `mmarco/it` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/it). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_it_dev`](https://huggingface.co/datasets/irds/mmarco_it_dev), [`mmarco_it_train`](https://huggingface.co/datasets/irds/mmarco_it_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_it', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_it
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:21:14+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/it`", "viewer": false}
2023-01-05T03:21:20+00:00
9041a86a6faf53429176be84cb19064891334ed5
# Dataset Card for `mmarco/it/dev` The `mmarco/it/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/it/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_it`](https://huggingface.co/datasets/irds/mmarco_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_it_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_it_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_it_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_it", "region:us" ]
2023-01-05T03:21:25+00:00
{"source_datasets": ["irds/mmarco_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/it/dev`", "viewer": false}
2023-01-05T03:21:31+00:00
ed816a1fc65c82f46a2cd1eb029e7432d4032c13
# Dataset Card for `mmarco/it/train` The `mmarco/it/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/it/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_it`](https://huggingface.co/datasets/irds/mmarco_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_it_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_it_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_it_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_it_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_it", "region:us" ]
2023-01-05T03:21:37+00:00
{"source_datasets": ["irds/mmarco_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/it/train`", "viewer": false}
2023-01-05T03:21:42+00:00
0d5b98409b96ddb651dd383b19a955fd285ba41c
# Dataset Card for `mmarco/pt` The `mmarco/pt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_pt_dev`](https://huggingface.co/datasets/irds/mmarco_pt_dev), [`mmarco_pt_dev_small`](https://huggingface.co/datasets/irds/mmarco_pt_dev_small), [`mmarco_pt_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_dev_v1.1), [`mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train), [`mmarco_pt_train_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_train_v1.1) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_pt', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:21:48+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt`", "viewer": false}
2023-01-05T03:21:53+00:00
fd0b5ecc91d7554363318d22452441ace17ef00a
# Dataset Card for `mmarco/pt/dev` The `mmarco/pt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,619 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) This dataset is used by: [`mmarco_pt_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_dev_v1.1) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_pt_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "region:us" ]
2023-01-05T03:21:59+00:00
{"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev`", "viewer": false}
2023-01-05T03:22:05+00:00
dc6503ba07a3359edd9d8f8721cb2ea7b4513a6d
# Dataset Card for `mmarco/pt/dev/small` The `mmarco/pt/dev/small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev/small). # Data This dataset provides: - `queries` (i.e., topics); count=7,000 - `qrels`: (relevance assessments); count=7,437 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_dev_small', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_pt_dev_small', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_dev_small
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "region:us" ]
2023-01-05T03:22:10+00:00
{"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev/small`", "viewer": false}
2023-01-05T03:22:16+00:00
da1c91489c6eb056422972f1f5e8c07f022c25ea
# Dataset Card for `mmarco/pt/dev/v1.1` The `mmarco/pt/dev/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev/v1.1). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) - For `qrels`, use [`irds/mmarco_pt_dev`](https://huggingface.co/datasets/irds/mmarco_pt_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_dev_v1.1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_dev_v1.1
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "source_datasets:irds/mmarco_pt_dev", "region:us" ]
2023-01-05T03:22:21+00:00
{"source_datasets": ["irds/mmarco_pt", "irds/mmarco_pt_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev/v1.1`", "viewer": false}
2023-01-05T03:22:27+00:00
5d4cf64899999da4ed32d43b226395439548d865
# Dataset Card for `mmarco/pt/train` The `mmarco/pt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/train). # Data This dataset provides: - `queries` (i.e., topics); count=811,690 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) This dataset is used by: [`mmarco_pt_train_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_train_v1.1) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_pt_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_pt_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "region:us" ]
2023-01-05T03:22:32+00:00
{"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/train`", "viewer": false}
2023-01-05T03:22:38+00:00
00857b925e6581b887e42c57add9bb865666ff79
# Dataset Card for `mmarco/pt/train/v1.1` The `mmarco/pt/train/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/train/v1.1). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) - For `qrels`, use [`irds/mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train) - For `docpairs`, use [`irds/mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_train_v1.1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_train_v1.1
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "source_datasets:irds/mmarco_pt_train", "region:us" ]
2023-01-05T03:22:43+00:00
{"source_datasets": ["irds/mmarco_pt", "irds/mmarco_pt_train"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/train/v1.1`", "viewer": false}
2023-01-05T03:22:49+00:00
302ec30bd28f6e934b2be22f26c6469902df3f18
# Dataset Card for `mmarco/ru` The `mmarco/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_ru_dev`](https://huggingface.co/datasets/irds/mmarco_ru_dev), [`mmarco_ru_train`](https://huggingface.co/datasets/irds/mmarco_ru_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_ru', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_ru
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:22:54+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru`", "viewer": false}
2023-01-05T03:23:00+00:00
396f5d096f7d354cfa20f28225cf3f1077a9e72d
# Dataset Card for `mmarco/ru/dev` The `mmarco/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_ru`](https://huggingface.co/datasets/irds/mmarco_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_ru_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_ru_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_ru_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_ru", "region:us" ]
2023-01-05T03:23:06+00:00
{"source_datasets": ["irds/mmarco_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru/dev`", "viewer": false}
2023-01-05T03:23:11+00:00
99dbbec8730c9bc682b9f0831b1ab146fe87787b
# Dataset Card for `mmarco/ru/train` The `mmarco/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_ru`](https://huggingface.co/datasets/irds/mmarco_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_ru_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_ru_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_ru_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_ru_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_ru", "region:us" ]
2023-01-05T03:23:17+00:00
{"source_datasets": ["irds/mmarco_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru/train`", "viewer": false}
2023-01-05T03:23:22+00:00
9ba54124147f5d9e6ec7297445e3f96c0a20244b
# Dataset Card for `mmarco/v2/ar` The `mmarco/v2/ar` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_ar_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ar_dev), [`mmarco_v2_ar_train`](https://huggingface.co/datasets/irds/mmarco_v2_ar_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_ar', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ar
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:23:28+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar`", "viewer": false}
2023-01-05T03:23:34+00:00
55b93d3088b4564bba7b51e4a1a9973c89cc137d
# Dataset Card for `mmarco/v2/ar/dev` The `mmarco/v2/ar/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_ar`](https://huggingface.co/datasets/irds/mmarco_v2_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ar_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ar_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ar_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ar", "region:us" ]
2023-01-05T03:23:39+00:00
{"source_datasets": ["irds/mmarco_v2_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar/dev`", "viewer": false}
2023-01-05T03:23:45+00:00
220bb4a55bb9f7ffe064ed30934761bc90e34b80
# Dataset Card for `mmarco/v2/ar/train` The `mmarco/v2/ar/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_ar`](https://huggingface.co/datasets/irds/mmarco_v2_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ar_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ar_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_ar_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ar_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ar", "region:us" ]
2023-01-05T03:23:50+00:00
{"source_datasets": ["irds/mmarco_v2_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar/train`", "viewer": false}
2023-01-05T03:23:56+00:00
025cc71d4ecfe1f78fd4a92a271b365ca207d68c
# Dataset Card for `mmarco/v2/de` The `mmarco/v2/de` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_de_dev`](https://huggingface.co/datasets/irds/mmarco_v2_de_dev), [`mmarco_v2_de_train`](https://huggingface.co/datasets/irds/mmarco_v2_de_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_de', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_de
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:24:01+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de`", "viewer": false}
2023-01-05T03:24:07+00:00
775820735e29f81f97bd323f9e42da15d75a7399
# Dataset Card for `mmarco/v2/de/dev` The `mmarco/v2/de/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_de`](https://huggingface.co/datasets/irds/mmarco_v2_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_de_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_de_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_de_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_de", "region:us" ]
2023-01-05T03:24:12+00:00
{"source_datasets": ["irds/mmarco_v2_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de/dev`", "viewer": false}
2023-01-05T03:24:18+00:00
06296b9d2a33c8eaa737bf43a0d0ad4ec6f989c6
# Dataset Card for `mmarco/v2/de/train` The `mmarco/v2/de/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_de`](https://huggingface.co/datasets/irds/mmarco_v2_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_de_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_de_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_de_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_de_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_de", "region:us" ]
2023-01-05T03:24:23+00:00
{"source_datasets": ["irds/mmarco_v2_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de/train`", "viewer": false}
2023-01-05T03:24:29+00:00
8852c8ee2a3f9a4c186d0f3af18655f8715717a4
# Dataset Card for `mmarco/v2/dt` The `mmarco/v2/dt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_dt_dev`](https://huggingface.co/datasets/irds/mmarco_v2_dt_dev), [`mmarco_v2_dt_train`](https://huggingface.co/datasets/irds/mmarco_v2_dt_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_dt', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_dt
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:24:34+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt`", "viewer": false}
2023-01-05T03:24:40+00:00
5992a038543122ae908c19c2bf71dd9e1572bb76
# Dataset Card for `mmarco/v2/dt/dev` The `mmarco/v2/dt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_dt`](https://huggingface.co/datasets/irds/mmarco_v2_dt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_dt_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_dt_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_dt_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_dt", "region:us" ]
2023-01-05T03:24:46+00:00
{"source_datasets": ["irds/mmarco_v2_dt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt/dev`", "viewer": false}
2023-01-05T03:24:51+00:00
4dcdc7ea954e937a4f4fb21eff71ad33946caab3
# Dataset Card for `mmarco/v2/dt/train` The `mmarco/v2/dt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_dt`](https://huggingface.co/datasets/irds/mmarco_v2_dt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_dt_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_dt_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_dt_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_dt_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_dt", "region:us" ]
2023-01-05T03:24:57+00:00
{"source_datasets": ["irds/mmarco_v2_dt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt/train`", "viewer": false}
2023-01-05T03:25:03+00:00
1f59f33da3fdeaa1a99f599522cd5dada0bac269
# Dataset Card for `mmarco/v2/es` The `mmarco/v2/es` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_es_dev`](https://huggingface.co/datasets/irds/mmarco_v2_es_dev), [`mmarco_v2_es_train`](https://huggingface.co/datasets/irds/mmarco_v2_es_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_es', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_es
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:25:08+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es`", "viewer": false}
2023-01-05T03:25:14+00:00
56f0cb61ca641e603ad81830a16b30870b9d50be
# Dataset Card for `mmarco/v2/es/dev` The `mmarco/v2/es/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_es`](https://huggingface.co/datasets/irds/mmarco_v2_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_es_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_es_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_es_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_es", "region:us" ]
2023-01-05T03:25:19+00:00
{"source_datasets": ["irds/mmarco_v2_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es/dev`", "viewer": false}
2023-01-05T03:25:25+00:00
651b9d0d9b949874c4cf759e3d6b69c0199da772
# Dataset Card for `mmarco/v2/es/train` The `mmarco/v2/es/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_es`](https://huggingface.co/datasets/irds/mmarco_v2_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_es_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_es_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_es_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_es_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_es", "region:us" ]
2023-01-05T03:25:30+00:00
{"source_datasets": ["irds/mmarco_v2_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es/train`", "viewer": false}
2023-01-05T03:25:36+00:00
ce88693e3db6b50e721a57ea8ba9bab032288a7b
# Dataset Card for `mmarco/v2/fr` The `mmarco/v2/fr` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_fr_dev`](https://huggingface.co/datasets/irds/mmarco_v2_fr_dev), [`mmarco_v2_fr_train`](https://huggingface.co/datasets/irds/mmarco_v2_fr_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_fr', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_fr
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:25:41+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr`", "viewer": false}
2023-01-05T03:25:47+00:00
fdbe12aff10816aaf7155c18c41b789ffef690fc
# Dataset Card for `mmarco/v2/fr/dev` The `mmarco/v2/fr/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_fr`](https://huggingface.co/datasets/irds/mmarco_v2_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_fr_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_fr_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_fr_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_fr", "region:us" ]
2023-01-05T03:25:52+00:00
{"source_datasets": ["irds/mmarco_v2_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr/dev`", "viewer": false}
2023-01-05T03:25:58+00:00
963eb6d5d2b12cccc3f393c55f8a8c066d46fbd3
# Dataset Card for `mmarco/v2/fr/train` The `mmarco/v2/fr/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_fr`](https://huggingface.co/datasets/irds/mmarco_v2_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_fr_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_fr_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_fr_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_fr_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_fr", "region:us" ]
2023-01-05T03:26:03+00:00
{"source_datasets": ["irds/mmarco_v2_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr/train`", "viewer": false}
2023-01-05T03:26:09+00:00
c36fafdb8684f28430b5013cece64fb14debb449
# Dataset Card for `mmarco/v2/hi` The `mmarco/v2/hi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_hi_dev`](https://huggingface.co/datasets/irds/mmarco_v2_hi_dev), [`mmarco_v2_hi_train`](https://huggingface.co/datasets/irds/mmarco_v2_hi_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_hi', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_hi
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:26:14+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi`", "viewer": false}
2023-01-05T03:26:20+00:00
a51c0764a63a7f644e3aa474442cf6bed41b91b7
# Dataset Card for `mmarco/v2/hi/dev` The `mmarco/v2/hi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_hi`](https://huggingface.co/datasets/irds/mmarco_v2_hi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_hi_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_hi_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_hi_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_hi", "region:us" ]
2023-01-05T03:26:26+00:00
{"source_datasets": ["irds/mmarco_v2_hi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi/dev`", "viewer": false}
2023-01-05T03:26:31+00:00
a63e5ec3dbf14df93dd249bb874a5eed2a74b1e5
# Dataset Card for `mmarco/v2/hi/train` The `mmarco/v2/hi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_hi`](https://huggingface.co/datasets/irds/mmarco_v2_hi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_hi_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_hi_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_hi_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_hi_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_hi", "region:us" ]
2023-01-05T03:26:37+00:00
{"source_datasets": ["irds/mmarco_v2_hi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi/train`", "viewer": false}
2023-01-05T03:26:42+00:00
63a8e90a554c7673b908774dea617b7312e725d9
# Dataset Card for `mmarco/v2/id` The `mmarco/v2/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_id_dev`](https://huggingface.co/datasets/irds/mmarco_v2_id_dev), [`mmarco_v2_id_train`](https://huggingface.co/datasets/irds/mmarco_v2_id_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_id', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_id
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:26:48+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id`", "viewer": false}
2023-01-05T03:26:53+00:00
feb53944fe08e3b192c908aa24ba935b2c372bca
# Dataset Card for `mmarco/v2/id/dev` The `mmarco/v2/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_id`](https://huggingface.co/datasets/irds/mmarco_v2_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_id_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_id_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_id_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_id", "region:us" ]
2023-01-05T03:26:59+00:00
{"source_datasets": ["irds/mmarco_v2_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id/dev`", "viewer": false}
2023-01-05T03:27:05+00:00
f893909ae46738fb4abc510ae09bd456942c1dd2
# Dataset Card for `mmarco/v2/id/train` The `mmarco/v2/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_id`](https://huggingface.co/datasets/irds/mmarco_v2_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_id_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_id_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_id_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_id_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_id", "region:us" ]
2023-01-05T03:27:10+00:00
{"source_datasets": ["irds/mmarco_v2_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id/train`", "viewer": false}
2023-01-05T03:27:16+00:00
fea94875097d6e7e5981a0248b76d38bd7cf7927
# Dataset Card for `mmarco/v2/it` The `mmarco/v2/it` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_it_dev`](https://huggingface.co/datasets/irds/mmarco_v2_it_dev), [`mmarco_v2_it_train`](https://huggingface.co/datasets/irds/mmarco_v2_it_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_it', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_it
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:27:21+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it`", "viewer": false}
2023-01-05T03:27:27+00:00
d4a4b740e65f57fb103c681260429c1f0a73c198
# Dataset Card for `mmarco/v2/it/dev` The `mmarco/v2/it/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_it`](https://huggingface.co/datasets/irds/mmarco_v2_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_it_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_it_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_it_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_it", "region:us" ]
2023-01-05T03:27:32+00:00
{"source_datasets": ["irds/mmarco_v2_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it/dev`", "viewer": false}
2023-01-05T03:27:38+00:00
7ccf7e05af3e19adc9229c939a06e743f0f354db
# Dataset Card for `mmarco/v2/it/train` The `mmarco/v2/it/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_it`](https://huggingface.co/datasets/irds/mmarco_v2_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_it_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_it_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_it_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_it_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_it", "region:us" ]
2023-01-05T03:27:44+00:00
{"source_datasets": ["irds/mmarco_v2_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it/train`", "viewer": false}
2023-01-05T03:27:49+00:00
0de1fbfd7c9c175c5605cf3c74100e57335b7990
# Dataset Card for `mmarco/v2/ja` The `mmarco/v2/ja` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_ja_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ja_dev), [`mmarco_v2_ja_train`](https://huggingface.co/datasets/irds/mmarco_v2_ja_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_ja', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ja
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:27:55+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja`", "viewer": false}
2023-01-05T03:28:00+00:00
81b384fff5bab1c0cf04303b48954ca35d5012d0
# Dataset Card for `mmarco/v2/ja/dev` The `mmarco/v2/ja/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_ja`](https://huggingface.co/datasets/irds/mmarco_v2_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ja_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ja_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ja_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ja", "region:us" ]
2023-01-05T03:28:06+00:00
{"source_datasets": ["irds/mmarco_v2_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja/dev`", "viewer": false}
2023-01-05T03:28:11+00:00
019f1bc1bc08562ed1fc3dd95bd2750bb66bfb3f
# Dataset Card for `mmarco/v2/ja/train` The `mmarco/v2/ja/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_ja`](https://huggingface.co/datasets/irds/mmarco_v2_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ja_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ja_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_ja_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ja_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ja", "region:us" ]
2023-01-05T03:28:18+00:00
{"source_datasets": ["irds/mmarco_v2_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja/train`", "viewer": false}
2023-01-05T03:28:24+00:00
f657b5c613d6cf8b4c76c0c346cf788d095e0ab9
# Dataset Card for `mmarco/v2/pt` The `mmarco/v2/pt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_pt_dev`](https://huggingface.co/datasets/irds/mmarco_v2_pt_dev), [`mmarco_v2_pt_train`](https://huggingface.co/datasets/irds/mmarco_v2_pt_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_pt', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_pt
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:28:29+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt`", "viewer": false}
2023-01-05T03:28:35+00:00
80c6924eca6c275fb63f87f1edb7d1254f553197
# Dataset Card for `mmarco/v2/pt/dev` The `mmarco/v2/pt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_pt`](https://huggingface.co/datasets/irds/mmarco_v2_pt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_pt_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_pt_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_pt_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_pt", "region:us" ]
2023-01-05T03:28:40+00:00
{"source_datasets": ["irds/mmarco_v2_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt/dev`", "viewer": false}
2023-01-05T03:28:46+00:00
a182535672ccc70b49df8e95cdfcde91e75e6a8a
# Dataset Card for `mmarco/v2/pt/train` The `mmarco/v2/pt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_pt`](https://huggingface.co/datasets/irds/mmarco_v2_pt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_pt_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_pt_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_pt_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_pt_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_pt", "region:us" ]
2023-01-05T03:28:51+00:00
{"source_datasets": ["irds/mmarco_v2_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt/train`", "viewer": false}
2023-01-05T03:28:57+00:00
9139938dfdff672f1e6041f2ae539d572102a7c7
# Dataset Card for `mmarco/v2/ru` The `mmarco/v2/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_ru_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ru_dev), [`mmarco_v2_ru_train`](https://huggingface.co/datasets/irds/mmarco_v2_ru_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_ru', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ru
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:29:03+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru`", "viewer": false}
2023-01-05T03:29:08+00:00
b2470571ef0729b660765abe4c46cd3cae23c178
# Dataset Card for `mmarco/v2/ru/dev` The `mmarco/v2/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_ru`](https://huggingface.co/datasets/irds/mmarco_v2_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ru_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ru_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ru_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ru", "region:us" ]
2023-01-05T03:29:14+00:00
{"source_datasets": ["irds/mmarco_v2_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru/dev`", "viewer": false}
2023-01-05T03:29:19+00:00
57c370fb695cbdbdcd461ac5174eb2b14cac6ce6
# Dataset Card for `mmarco/v2/ru/train` The `mmarco/v2/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_ru`](https://huggingface.co/datasets/irds/mmarco_v2_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ru_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ru_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_ru_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ru_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ru", "region:us" ]
2023-01-05T03:29:25+00:00
{"source_datasets": ["irds/mmarco_v2_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru/train`", "viewer": false}
2023-01-05T03:29:30+00:00
1e1c186e28642f5368e484e50e4763dc7771794a
# Dataset Card for `mmarco/v2/vi` The `mmarco/v2/vi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_vi_dev`](https://huggingface.co/datasets/irds/mmarco_v2_vi_dev), [`mmarco_v2_vi_train`](https://huggingface.co/datasets/irds/mmarco_v2_vi_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_vi', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_vi
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:29:36+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi`", "viewer": false}
2023-01-05T03:29:42+00:00
a3a85f41d0fc827cf6ec0279324876b81d7e6f40
# Dataset Card for `mmarco/v2/vi/dev` The `mmarco/v2/vi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_vi`](https://huggingface.co/datasets/irds/mmarco_v2_vi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_vi_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_vi_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_vi_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_vi", "region:us" ]
2023-01-05T03:29:47+00:00
{"source_datasets": ["irds/mmarco_v2_vi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi/dev`", "viewer": false}
2023-01-05T03:29:53+00:00
118c5fc9012fdf927d1ddfe86fc1b8ea0e01bd39
# Dataset Card for `mmarco/v2/vi/train` The `mmarco/v2/vi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_vi`](https://huggingface.co/datasets/irds/mmarco_v2_vi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_vi_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_vi_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_vi_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_vi_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_vi", "region:us" ]
2023-01-05T03:29:58+00:00
{"source_datasets": ["irds/mmarco_v2_vi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi/train`", "viewer": false}
2023-01-05T03:30:04+00:00
9deac9ddcbad386ae7f5790bd31f60a82ca9350f
# Dataset Card for `mmarco/v2/zh` The `mmarco/v2/zh` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_zh_dev`](https://huggingface.co/datasets/irds/mmarco_v2_zh_dev), [`mmarco_v2_zh_train`](https://huggingface.co/datasets/irds/mmarco_v2_zh_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_zh', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_zh
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:30:10+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh`", "viewer": false}
2023-01-05T03:30:15+00:00
8dda454ab13ffc9292f910d94d54bea669940adb
# Dataset Card for `mmarco/v2/zh/dev` The `mmarco/v2/zh/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_zh`](https://huggingface.co/datasets/irds/mmarco_v2_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_zh_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_zh_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_zh_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_zh", "region:us" ]
2023-01-05T03:30:21+00:00
{"source_datasets": ["irds/mmarco_v2_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh/dev`", "viewer": false}
2023-01-05T03:30:26+00:00
d3ef087d03f6a09c9241aec41224881ab88bff95
# Dataset Card for `mmarco/v2/zh/train` The `mmarco/v2/zh/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_zh`](https://huggingface.co/datasets/irds/mmarco_v2_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_zh_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_zh_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_zh_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_zh_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_zh", "region:us" ]
2023-01-05T03:30:32+00:00
{"source_datasets": ["irds/mmarco_v2_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh/train`", "viewer": false}
2023-01-05T03:30:37+00:00
d8e4203011b1116de9d9738a8988a451861665a2
# Dataset Card for `mmarco/zh` The `mmarco/zh` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_zh_dev`](https://huggingface.co/datasets/irds/mmarco_zh_dev), [`mmarco_zh_dev_small`](https://huggingface.co/datasets/irds/mmarco_zh_dev_small), [`mmarco_zh_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_zh_dev_v1.1), [`mmarco_zh_train`](https://huggingface.co/datasets/irds/mmarco_zh_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_zh', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:30:43+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh`", "viewer": false}
2023-01-05T03:30:49+00:00
a8eeb0f8a9dee7c850da4151ca03edfdac83901e
# Dataset Card for `mmarco/zh/dev` The `mmarco/zh/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) This dataset is used by: [`mmarco_zh_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_zh_dev_v1.1) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_zh_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "region:us" ]
2023-01-05T03:30:54+00:00
{"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev`", "viewer": false}
2023-01-05T03:31:00+00:00
c474a1fafa872b760cd9ab484f6c7423f7a546d2
# Dataset Card for `mmarco/zh/dev/small` The `mmarco/zh/dev/small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev/small). # Data This dataset provides: - `queries` (i.e., topics); count=6,980 - `qrels`: (relevance assessments); count=7,437 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_dev_small', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_zh_dev_small', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_dev_small
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "region:us" ]
2023-01-05T03:31:05+00:00
{"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev/small`", "viewer": false}
2023-01-05T03:31:11+00:00
1fafbbeaf298d8e192277bca84e9d82bcf37e54d
# Dataset Card for `mmarco/zh/dev/v1.1` The `mmarco/zh/dev/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev/v1.1). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) - For `qrels`, use [`irds/mmarco_zh_dev`](https://huggingface.co/datasets/irds/mmarco_zh_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_dev_v1.1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_dev_v1.1
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "source_datasets:irds/mmarco_zh_dev", "region:us" ]
2023-01-05T03:31:16+00:00
{"source_datasets": ["irds/mmarco_zh", "irds/mmarco_zh_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev/v1.1`", "viewer": false}
2023-01-05T03:31:22+00:00
9baf31ce58f4720ea71c70479f5dc2a6ff90942a
# Dataset Card for `mmarco/zh/train` The `mmarco/zh/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_zh_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_zh_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "region:us" ]
2023-01-05T03:31:28+00:00
{"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/train`", "viewer": false}
2023-01-05T03:31:33+00:00
2b33c9015daa0a100a121e5d364109bc7971b424
# Dataset Card for `mr-tydi/ar` The `mr-tydi/ar` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=2,106,586 - `queries` (i.e., topics); count=16,595 - `qrels`: (relevance assessments); count=16,749 This dataset is used by: [`mr-tydi_ar_dev`](https://huggingface.co/datasets/irds/mr-tydi_ar_dev), [`mr-tydi_ar_test`](https://huggingface.co/datasets/irds/mr-tydi_ar_test), [`mr-tydi_ar_train`](https://huggingface.co/datasets/irds/mr-tydi_ar_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_ar', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_ar', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:31:39+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar`", "viewer": false}
2023-01-05T03:31:44+00:00
116977c3b67189c26496ae6c113f160f8c012a89
# Dataset Card for `mr-tydi/ar/dev` The `mr-tydi/ar/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/dev). # Data This dataset provides: - `queries` (i.e., topics); count=3,115 - `qrels`: (relevance assessments); count=3,115 - For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ar_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ar", "region:us" ]
2023-01-05T03:31:50+00:00
{"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/dev`", "viewer": false}
2023-01-05T03:31:55+00:00
ea56f4317930f205647148b0b2c582a74764ea4f
# Dataset Card for `mr-tydi/ar/test` The `mr-tydi/ar/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/test). # Data This dataset provides: - `queries` (i.e., topics); count=1,081 - `qrels`: (relevance assessments); count=1,257 - For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ar_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ar", "region:us" ]
2023-01-05T03:32:01+00:00
{"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/test`", "viewer": false}
2023-01-05T03:32:07+00:00
82af0d4efac40a0c34be26552f1139519702e64a
# Dataset Card for `mr-tydi/ar/train` The `mr-tydi/ar/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/train). # Data This dataset provides: - `queries` (i.e., topics); count=12,377 - `qrels`: (relevance assessments); count=12,377 - For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ar_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ar", "region:us" ]
2023-01-05T03:32:12+00:00
{"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/train`", "viewer": false}
2023-01-05T03:32:18+00:00
3d05169ef6d1fa01da83b6f5b80aa3d79dcb5792
# Dataset Card for `mr-tydi/bn` The `mr-tydi/bn` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=304,059 - `queries` (i.e., topics); count=2,264 - `qrels`: (relevance assessments); count=2,292 This dataset is used by: [`mr-tydi_bn_dev`](https://huggingface.co/datasets/irds/mr-tydi_bn_dev), [`mr-tydi_bn_test`](https://huggingface.co/datasets/irds/mr-tydi_bn_test), [`mr-tydi_bn_train`](https://huggingface.co/datasets/irds/mr-tydi_bn_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_bn', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_bn', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:32:23+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn`", "viewer": false}
2023-01-05T03:32:29+00:00
8c20e0907ac51fde8f7ba8de23137696c4406352
# Dataset Card for `mr-tydi/bn/dev` The `mr-tydi/bn/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/dev). # Data This dataset provides: - `queries` (i.e., topics); count=440 - `qrels`: (relevance assessments); count=443 - For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_bn_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_bn", "region:us" ]
2023-01-05T03:32:34+00:00
{"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/dev`", "viewer": false}
2023-01-05T03:32:40+00:00
ef8865b143d065f164cee924e1b24fe612a32daa
# Dataset Card for `mr-tydi/bn/test` The `mr-tydi/bn/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/test). # Data This dataset provides: - `queries` (i.e., topics); count=111 - `qrels`: (relevance assessments); count=130 - For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_bn_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_bn", "region:us" ]
2023-01-05T03:32:45+00:00
{"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/test`", "viewer": false}
2023-01-05T03:32:51+00:00
215a725e6ed16c8f82cfdbe4d3e93338517f60cb
# Dataset Card for `mr-tydi/bn/train` The `mr-tydi/bn/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/train). # Data This dataset provides: - `queries` (i.e., topics); count=1,713 - `qrels`: (relevance assessments); count=1,719 - For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_bn_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_bn", "region:us" ]
2023-01-05T03:32:56+00:00
{"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/train`", "viewer": false}
2023-01-05T03:33:02+00:00
e97158d8f7045f844dcfcc9a623ed080400e190c
# Dataset Card for `mr-tydi/en` The `mr-tydi/en` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=32,907,100 - `queries` (i.e., topics); count=5,194 - `qrels`: (relevance assessments); count=5,360 This dataset is used by: [`mr-tydi_en_dev`](https://huggingface.co/datasets/irds/mr-tydi_en_dev), [`mr-tydi_en_test`](https://huggingface.co/datasets/irds/mr-tydi_en_test), [`mr-tydi_en_train`](https://huggingface.co/datasets/irds/mr-tydi_en_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_en', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_en', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:33:08+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en`", "viewer": false}
2023-01-05T03:33:13+00:00
7810f17d9eae686e0a3777bebe55454484f4f579
# Dataset Card for `mr-tydi/en/dev` The `mr-tydi/en/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/dev). # Data This dataset provides: - `queries` (i.e., topics); count=878 - `qrels`: (relevance assessments); count=878 - For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_en_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_en", "region:us" ]
2023-01-05T03:33:19+00:00
{"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/dev`", "viewer": false}
2023-01-05T03:33:24+00:00
0c580e618d980b6d995940ee0d4d437531fd5fc7
# Dataset Card for `mr-tydi/en/test` The `mr-tydi/en/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/test). # Data This dataset provides: - `queries` (i.e., topics); count=744 - `qrels`: (relevance assessments); count=935 - For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_en_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_en", "region:us" ]
2023-01-05T03:33:30+00:00
{"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/test`", "viewer": false}
2023-01-05T03:33:36+00:00
e7adc0010e9a25265ff0a34dbe4aa949601f35db
# Dataset Card for `mr-tydi/en/train` The `mr-tydi/en/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/train). # Data This dataset provides: - `queries` (i.e., topics); count=3,547 - `qrels`: (relevance assessments); count=3,547 - For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_en_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_en", "region:us" ]
2023-01-05T03:33:41+00:00
{"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/train`", "viewer": false}
2023-01-05T03:33:47+00:00
6fd3f05fad94fa1f76c8b200bf713b18e313ec2b
# Dataset Card for `mr-tydi/fi` The `mr-tydi/fi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,908,757 - `queries` (i.e., topics); count=9,572 - `qrels`: (relevance assessments); count=9,750 This dataset is used by: [`mr-tydi_fi_dev`](https://huggingface.co/datasets/irds/mr-tydi_fi_dev), [`mr-tydi_fi_test`](https://huggingface.co/datasets/irds/mr-tydi_fi_test), [`mr-tydi_fi_train`](https://huggingface.co/datasets/irds/mr-tydi_fi_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_fi', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_fi', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:33:52+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi`", "viewer": false}
2023-01-05T03:33:58+00:00
27aca1999a1a6338fd80316ca76567e21ea1b2ed
# Dataset Card for `mr-tydi/fi/dev` The `mr-tydi/fi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/dev). # Data This dataset provides: - `queries` (i.e., topics); count=1,738 - `qrels`: (relevance assessments); count=1,738 - For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_fi_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_fi", "region:us" ]
2023-01-05T03:34:03+00:00
{"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/dev`", "viewer": false}
2023-01-05T03:34:09+00:00
d7a1fb0eb29da74a2131cf6fb729be32ad6fd13a
# Dataset Card for `mr-tydi/fi/test` The `mr-tydi/fi/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/test). # Data This dataset provides: - `queries` (i.e., topics); count=1,254 - `qrels`: (relevance assessments); count=1,451 - For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_fi_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_fi", "region:us" ]
2023-01-05T03:34:15+00:00
{"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/test`", "viewer": false}
2023-01-05T03:34:20+00:00
da4363cbc02ab541845b6fe1765a416f1947e063
# Dataset Card for `mr-tydi/fi/train` The `mr-tydi/fi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/train). # Data This dataset provides: - `queries` (i.e., topics); count=6,561 - `qrels`: (relevance assessments); count=6,561 - For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_fi_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_fi", "region:us" ]
2023-01-05T03:34:26+00:00
{"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/train`", "viewer": false}
2023-01-05T03:34:31+00:00
52fa3f74fba6e8df5ed50368faadf723b826b77e
# Dataset Card for `mr-tydi/id` The `mr-tydi/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,469,399 - `queries` (i.e., topics); count=6,977 - `qrels`: (relevance assessments); count=7,087 This dataset is used by: [`mr-tydi_id_dev`](https://huggingface.co/datasets/irds/mr-tydi_id_dev), [`mr-tydi_id_test`](https://huggingface.co/datasets/irds/mr-tydi_id_test), [`mr-tydi_id_train`](https://huggingface.co/datasets/irds/mr-tydi_id_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_id', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_id', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:34:37+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id`", "viewer": false}
2023-01-05T03:34:43+00:00
0bc171fb2cf461c7bdc5cc09c206d5abdd319605
# Dataset Card for `mr-tydi/id/dev` The `mr-tydi/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/dev). # Data This dataset provides: - `queries` (i.e., topics); count=1,224 - `qrels`: (relevance assessments); count=1,224 - For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_id_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_id", "region:us" ]
2023-01-05T03:34:48+00:00
{"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/dev`", "viewer": false}
2023-01-05T03:34:54+00:00
6742bbe73521c9c48ddc8b9d20759a5adfe6f215
# Dataset Card for `mr-tydi/id/test` The `mr-tydi/id/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/test). # Data This dataset provides: - `queries` (i.e., topics); count=829 - `qrels`: (relevance assessments); count=961 - For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_id_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_id", "region:us" ]
2023-01-05T03:34:59+00:00
{"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/test`", "viewer": false}
2023-01-05T03:35:05+00:00
a77f581e55790621d489d5efe98e850e12ce6e39
# Dataset Card for `mr-tydi/id/train` The `mr-tydi/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/train). # Data This dataset provides: - `queries` (i.e., topics); count=4,902 - `qrels`: (relevance assessments); count=4,902 - For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_id_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_id", "region:us" ]
2023-01-05T03:35:10+00:00
{"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/train`", "viewer": false}
2023-01-05T03:35:16+00:00
fb0ed00b09554d1aac88efb7ee4274bbc4bd88e3
# Dataset Card for `mr-tydi/ja` The `mr-tydi/ja` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=7,000,027 - `queries` (i.e., topics); count=5,353 - `qrels`: (relevance assessments); count=5,548 This dataset is used by: [`mr-tydi_ja_dev`](https://huggingface.co/datasets/irds/mr-tydi_ja_dev), [`mr-tydi_ja_test`](https://huggingface.co/datasets/irds/mr-tydi_ja_test), [`mr-tydi_ja_train`](https://huggingface.co/datasets/irds/mr-tydi_ja_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_ja', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_ja', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:35:22+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja`", "viewer": false}
2023-01-05T03:35:27+00:00
bb8500a049bedc507eae40fa893bc6acdb97e1d2
# Dataset Card for `mr-tydi/ja/dev` The `mr-tydi/ja/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/dev). # Data This dataset provides: - `queries` (i.e., topics); count=928 - `qrels`: (relevance assessments); count=928 - For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ja_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ja", "region:us" ]
2023-01-05T03:35:33+00:00
{"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/dev`", "viewer": false}
2023-01-05T03:35:38+00:00
81d197db47cb6d78960d14c6f731a1c9be52aedf
# Dataset Card for `mr-tydi/ja/test` The `mr-tydi/ja/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/test). # Data This dataset provides: - `queries` (i.e., topics); count=720 - `qrels`: (relevance assessments); count=923 - For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ja_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ja", "region:us" ]
2023-01-05T03:35:44+00:00
{"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/test`", "viewer": false}
2023-01-05T03:35:50+00:00