sha
stringlengths 40
40
| text
stringlengths 0
13.4M
| id
stringlengths 2
117
| tags
list | created_at
stringlengths 25
25
| metadata
stringlengths 2
31.7M
| last_modified
stringlengths 25
25
|
---|---|---|---|---|---|---|
da219e140927b15ba36801bc742e4938a72cc0d1
|
Banatza/FirstEmbed
|
[
"license:afl-3.0",
"region:us"
] |
2023-02-04T17:37:31+00:00
|
{"license": "afl-3.0"}
|
2023-02-04T17:39:46+00:00
|
|
44c0cbfdefe6db4fca2b358e4c188e71ffe3bb48
|
tiagoblima/tedtalk2012-03
|
[
"license:mit",
"region:us"
] |
2023-02-04T17:51:16+00:00
|
{"license": "mit", "dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "text_id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 13629622, "num_examples": 1025}, {"name": "validation", "num_bytes": 113301, "num_examples": 887}, {"name": "test", "num_bytes": 185207, "num_examples": 1570}], "download_size": 8195667, "dataset_size": 13928130}}
|
2023-02-06T23:47:53+00:00
|
|
830b0d0c724f22b06a1e1cb95b6812f31ed701f2
|
```bib
@inproceedings{yanaka-etal-2021-exploring,
title = "Exploring Transitivity in Neural {NLI} Models through Veridicality",
author = "Yanaka, Hitomi and
Mineshima, Koji and
Inui, Kentaro",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
year = "2021",
pages = "920--934",
}
```
|
metaeval/nli-veridicality-transitivity
|
[
"task_categories:text-classification",
"task_ids:natural-language-inference",
"language:en",
"license:cc",
"region:us"
] |
2023-02-04T18:04:01+00:00
|
{"language": ["en"], "license": "cc", "task_categories": ["text-classification"], "task_ids": ["natural-language-inference"]}
|
2023-02-04T18:10:09+00:00
|
c9988951aa6571824b20888f8ba8201953d44df9
|
https://github.com/verypluming/HELP
```bib
@InProceedings{yanaka-EtAl:2019:starsem,
author = {Yanaka, Hitomi and Mineshima, Koji and Bekki, Daisuke and Inui, Kentaro and Sekine, Satoshi and Abzianidze, Lasha and Bos, Johan},
title = {HELP: A Dataset for Identifying Shortcomings of Neural Models in Monotonicity Reasoning},
booktitle = {Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM2019)},
year = {2019},
}
```
|
metaeval/help-nli
|
[
"task_categories:text-classification",
"task_ids:natural-language-inference",
"language:en",
"license:cc",
"region:us"
] |
2023-02-04T18:07:35+00:00
|
{"language": ["en"], "license": "cc", "task_categories": ["text-classification"], "task_ids": ["natural-language-inference"]}
|
2023-05-31T07:57:01+00:00
|
cbf17036f91ebc9d2b4e6c1eeff30dace5398452
|
# Dataset Card for "origa_segmet"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ferferefer/origa_segmet
|
[
"region:us"
] |
2023-02-04T18:46:23+00:00
|
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 7092060.0, "num_examples": 585}, {"name": "validation", "num_bytes": 758584.0, "num_examples": 65}], "download_size": 7875129, "dataset_size": 7850644.0}}
|
2023-04-18T15:00:47+00:00
|
6101cd85ea986419793772cb79c15e810913a1dc
|
# Dataset Card for "wiki-nds"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
danielpleus/wiki-nds
|
[
"region:us"
] |
2023-02-04T19:00:57+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 92432660, "num_examples": 84158}], "download_size": 47740161, "dataset_size": 92432660}}
|
2023-02-04T19:06:48+00:00
|
f3396c3fe34b7f05e97222f465b153ac096bc5b5
|
# Dataset Card for "test_temp"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MartinKu/test_temp
|
[
"region:us"
] |
2023-02-04T21:33:29+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "S_V", "sequence": "string"}, {"name": "S_V_position", "sequence": "int64"}, {"name": "O_C", "sequence": "string"}, {"name": "O_C_position", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 9100, "num_examples": 40}], "download_size": 8683, "dataset_size": 9100}}
|
2023-02-08T06:59:47+00:00
|
8a24aaff4b3313cabaf75056e1f1a2ca5b68d957
|
# Dataset Card for "OxfordPets_test_facebook_opt_6.7b_Attributes_Caption_ns_3669_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/OxfordPets_test_facebook_opt_6.7b_Attributes_Caption_ns_3669_random
|
[
"region:us"
] |
2023-02-04T21:44:27+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 122168243.375, "num_examples": 3669}, {"name": "fewshot_3_bs_16", "num_bytes": 124209771.375, "num_examples": 3669}, {"name": "fewshot_0_bs_16", "num_bytes": 121141370.375, "num_examples": 3669}], "download_size": 358990525, "dataset_size": 367519385.125}}
|
2023-02-06T05:17:15+00:00
|
cf0ff9fa2ae42eea2257b0dd1214d8a8577e9387
|
# Dataset Card for "OxfordPets_test_facebook_opt_6.7b_Visclues_ns_3669_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/OxfordPets_test_facebook_opt_6.7b_Visclues_ns_3669_random
|
[
"region:us"
] |
2023-02-04T21:57:11+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 122804715.375, "num_examples": 3669}, {"name": "fewshot_3_bs_16", "num_bytes": 125493759.375, "num_examples": 3669}, {"name": "fewshot_0_bs_16", "num_bytes": 121471156.375, "num_examples": 3669}], "download_size": 359901253, "dataset_size": 369769631.125}}
|
2023-02-06T05:28:03+00:00
|
28f6377542a0f9bf9b5b09104233fb03ffe210d0
|
# PWESuite-Eval
Dataset composed of multiple smaller datasets used for the evaluation of phonetic word embeddings.
See code for evaluation [here](https://github.com/zouharvi/pwesuite).
Used datasets:
- [CMU Pronunciation dictionary](http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
- [CC-100](https://data.statmt.org/cc-100/)
- [CogNet v0](https://aclanthology.org/P19-1302/)
- [Vitz and Winkler (1973)](https://www.sciencedirect.com/science/article/pii/S0022537173800167)
Authors:
- Vilém Zouhar (ETH Zürich, [contact](mailto:[email protected]))
- Kalvin Chang (CMU LTI, [contact](mailto:[email protected]))
- Chenxuan Cui (CMU LTI, [contact](mailto:[email protected]))
- Nathaniel Robinson (CMU LTI, [contact](mailto:[email protected]))
- Nathaniel Carlson (BYU, [contact](mailto:[email protected]))
- David Mortensen (CMU LTI, [contact](mailto:[email protected]))
If you use this dataset/evaluation, please cite:
```
@article{zouhar2023pwesuite,
title={{PWESuite}: {P}honetic Word Embeddings and Tasks They Facilitate},
author={Zouhar, Vil{\'e}m and Chang, Kalvin and Cui, Chenxuan and Carlson, Nathaniel and Robinson, Nathaniel and Sachan, Mrinmaya and Mortensen, David},
journal={arXiv preprint arXiv:2304.02541},
year={2023},
url={https://arxiv.org/abs/2304.02541}
}
```
|
zouharvi/pwesuite-eval
|
[
"multilinguality:multilingual",
"size_categories:100K<n<1M",
"language:en",
"language:am",
"language:bn",
"language:sw",
"language:uz",
"language:es",
"language:pl",
"language:fr",
"language:de",
"license:apache-2.0",
"words",
"word",
"embedding",
"phonetic",
"phonological",
"cognates",
"rhyme",
"analogy",
"arxiv:2304.02541",
"region:us"
] |
2023-02-04T22:04:58+00:00
|
{"language": ["en", "am", "bn", "sw", "uz", "es", "pl", "fr", "de"], "license": "apache-2.0", "multilinguality": ["multilingual"], "size_categories": ["100K<n<1M"], "pretty_name": "PWESuite Evaluation v1", "tags": ["words", "word", "embedding", "phonetic", "phonological", "cognates", "rhyme", "analogy"], "dataset_info": {"features": [{"name": "token_ort", "dtype": "string"}, {"name": "token_ipa", "dtype": "string"}, {"name": "token_arp", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "purpose", "dtype": "string"}], "splits": [{"name": "train", "num_examples": 1738008}]}}
|
2023-10-11T16:14:09+00:00
|
3d4236f8988fe37444b326ffbba78137866e8c5d
|
# Dataset Card for "Intent-Classification-large"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
dipesh/Intent-Classification-large
|
[
"region:us"
] |
2023-02-04T22:17:57+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "intent", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "others", "1": "places near me", "2": "send whatsapp message", "3": "greet and hello hi kind of things, general check in", "4": "play games", "5": "tell me news", "6": "covid cases", "7": "tell me about", "8": "volume control", "9": "open website", "10": "play on youtube", "11": "tell me joke", "12": "send email", "13": "goodbye", "14": "take screenshot", "15": "download youtube video", "16": "asking weather", "17": "asking date", "18": "asking time", "19": "i am bored", "20": "click photo", "21": "what can you do"}}}}], "splits": [{"name": "train", "num_bytes": 1594125, "num_examples": 15311}, {"name": "validation", "num_bytes": 175519, "num_examples": 1702}], "download_size": 677155, "dataset_size": 1769644}}
|
2023-02-04T22:18:08+00:00
|
e396b6888fd059c8a24fa68a37861fadf059eff2
|
# Dataset Card for "DTD_parition1_test_facebook_opt_6.7b_Attributes_Caption_ns_1880_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/DTD_parition1_test_facebook_opt_6.7b_Attributes_Caption_ns_1880_random
|
[
"region:us"
] |
2023-02-04T22:40:07+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 92259840.0, "num_examples": 1880}, {"name": "fewshot_3_bs_16", "num_bytes": 93271918.0, "num_examples": 1880}], "download_size": 181110966, "dataset_size": 185531758.0}}
|
2023-02-04T22:57:35+00:00
|
06c84e97bd9360dbf93770538c1cda0b8f332a22
|
# Dataset Card for "DTD_parition1_test_facebook_opt_6.7b_Visclues_ns_1880_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/DTD_parition1_test_facebook_opt_6.7b_Visclues_ns_1880_random
|
[
"region:us"
] |
2023-02-04T22:47:57+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 92562741.0, "num_examples": 1880}, {"name": "fewshot_3_bs_16", "num_bytes": 93877293.0, "num_examples": 1880}], "download_size": 181620779, "dataset_size": 186440034.0}}
|
2023-02-04T23:09:02+00:00
|
bf46422e48a9a5972b232439870c4650497e1175
|
# Video-to-Video Dataset
This is a dataset for video-to-video.
You have not to worry about this copyright if you read the outline of license.
# Outline of License
This is under Unity-Chan License. The outline is as follow:
- You can use this for commercial purpose.
- You must display "Song/Motion: © Unity Technologies Japan/UCL." in your work.
The official guideline is [here](https://unity-chan.com/contents/guideline_en/).
Please read it.
# Copyrights
## 3D Model
This model is CC-0.
[More](https://vroid.pixiv.help/hc/ja/articles/360012381793-AvatarSample-D)
## Song
Unity Technologies Japan/UCL has the copyright of the song.
[More](https://unity-chan.com/download/releaseNote.php?id=imagealbum-vol1&lang=en)

## Motion
Unity Technologies Japan/UCL has the copyright of the motion.
# Contact
Plese use the Community function.
|
alfredplpl/video-to-video-dataset
|
[
"language:ja",
"language:en",
"license:other",
"region:us"
] |
2023-02-04T23:52:54+00:00
|
{"language": ["ja", "en"], "license": "other"}
|
2023-02-05T05:33:49+00:00
|
a6f833b5ef32dea49cd5c5fc49c9358b22ec82fa
|
# Dataset Card for "Caltech101_with_background_test_facebook_opt_6.7b_Attributes_Caption_ns_6084_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/Caltech101_with_background_test_facebook_opt_6.7b_Attributes_Caption_ns_6084_random
|
[
"region:us"
] |
2023-02-04T23:57:40+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 102753879.5, "num_examples": 6084}, {"name": "fewshot_3_bs_16", "num_bytes": 105999857.5, "num_examples": 6084}], "download_size": 193316942, "dataset_size": 208753737.0}}
|
2023-02-05T01:43:57+00:00
|
04bec310672fa3028655dc0f9abafef8c9336b65
|
# Dataset Card for "Caltech101_with_background_test_facebook_opt_6.7b_Visclues_ns_6084_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/Caltech101_with_background_test_facebook_opt_6.7b_Visclues_ns_6084_random
|
[
"region:us"
] |
2023-02-05T00:44:25+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 103748347.5, "num_examples": 6084}, {"name": "fewshot_3_bs_16", "num_bytes": 107978514.5, "num_examples": 6084}], "download_size": 195080607, "dataset_size": 211726862.0}}
|
2023-02-05T02:59:54+00:00
|
913c95c8d302c88ef0704cbbd2d0e0c7fd3d7daf
|
# AutoTrain Dataset for project: square-count-classifier
## Dataset Description
This dataset has been automatically processed by AutoTrain for project square-count-classifier.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"image": "<28x28 L PIL image>",
"target": 0
},
{
"image": "<28x28 L PIL image>",
"target": 0
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['green', 'red'], id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 394 |
| valid | 40 |
|
dhavala/autotrain-data-square-count-classifier
|
[
"task_categories:image-classification",
"region:us"
] |
2023-02-05T02:16:57+00:00
|
{"task_categories": ["image-classification"]}
|
2023-02-05T02:22:19+00:00
|
7719ef590e024f1d2f69c986e1f76ece1ecc1190
|
# Dataset Card for "boostcamp-docvqa-v5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Ssunbell/boostcamp-docvqa-v5
|
[
"region:us"
] |
2023-02-05T02:50:57+00:00
|
{"dataset_info": {"features": [{"name": "questionId", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "sequence": {"sequence": {"sequence": "uint8"}}}, {"name": "docId", "dtype": "int64"}, {"name": "ucsf_document_id", "dtype": "string"}, {"name": "ucsf_document_page_no", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "data_split", "dtype": "string"}, {"name": "words", "sequence": "string"}, {"name": "boxes", "sequence": {"sequence": "int64"}}], "splits": [{"name": "train", "num_bytes": 6381793673, "num_examples": 39454}, {"name": "val", "num_bytes": 869361798, "num_examples": 5349}], "download_size": 2578655464, "dataset_size": 7251155471}}
|
2023-02-05T03:01:47+00:00
|
ae29eeddc3350ad0adb3cb89f7da637ee80b9dc6
|
# Dataset Card for "boostcamp-docvqa-v5-test"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Ssunbell/boostcamp-docvqa-v5-test
|
[
"region:us"
] |
2023-02-05T03:01:54+00:00
|
{"dataset_info": {"features": [{"name": "questionId", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "sequence": {"sequence": {"sequence": "uint8"}}}, {"name": "docId", "dtype": "int64"}, {"name": "ucsf_document_id", "dtype": "string"}, {"name": "ucsf_document_page_no", "dtype": "string"}, {"name": "data_split", "dtype": "string"}, {"name": "words", "sequence": "string"}, {"name": "boxes", "sequence": {"sequence": "int64"}}], "splits": [{"name": "test", "num_bytes": 843083964, "num_examples": 5188}], "download_size": 296859136, "dataset_size": 843083964}}
|
2023-02-05T03:03:26+00:00
|
aa57749de94d6104ddb34dc5109abdb60b5d5a27
|
# Dataset Card for "FGVC_Aircraft_test_facebook_opt_6.7b_Attributes_Caption_ns_3333_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/FGVC_Aircraft_test_facebook_opt_6.7b_Attributes_Caption_ns_3333_random
|
[
"region:us"
] |
2023-02-05T03:22:37+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 300148506.375, "num_examples": 3333}, {"name": "fewshot_3_bs_16", "num_bytes": 301866097.375, "num_examples": 3333}], "download_size": 590830197, "dataset_size": 602014603.75}}
|
2023-02-05T04:21:09+00:00
|
0648b56590979c5661bfb55569a0a247612f217e
|
# Dataset Card for "FGVC_Aircraft_test_facebook_opt_6.7b_Visclues_ns_3333_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/FGVC_Aircraft_test_facebook_opt_6.7b_Visclues_ns_3333_random
|
[
"region:us"
] |
2023-02-05T03:49:11+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 300686675.375, "num_examples": 3333}, {"name": "fewshot_3_bs_16", "num_bytes": 302944193.375, "num_examples": 3333}], "download_size": 591533331, "dataset_size": 603630868.75}}
|
2023-02-05T05:02:10+00:00
|
68bd22702024d7436061b4ed7d240deb62ddf001
|
# Dataset Card for "OxfordFlowers_test_facebook_opt_6.7b_Attributes_Caption_ns_6149_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/OxfordFlowers_test_facebook_opt_6.7b_Attributes_Caption_ns_6149_random
|
[
"region:us"
] |
2023-02-05T05:46:03+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 269126072.375, "num_examples": 6149}, {"name": "fewshot_3_bs_16", "num_bytes": 272734326.375, "num_examples": 6149}], "download_size": 524724011, "dataset_size": 541860398.75}}
|
2023-02-05T07:43:36+00:00
|
9990ce90b6363be2b91d024d21834a5567a83c82
|
Elaina617/nijika
|
[
"license:openrail",
"region:us"
] |
2023-02-05T05:51:34+00:00
|
{"license": "openrail"}
|
2023-02-27T12:24:52+00:00
|
|
512c1c7cc7b8d6e4c1492f6cfbd601de7df9787b
|
Aleavka/Kaifei_29
|
[
"license:odbl",
"region:us"
] |
2023-02-05T06:25:19+00:00
|
{"license": "odbl"}
|
2023-02-05T06:27:13+00:00
|
|
10f33a1b8068336360d90d6edde7f6d157b266c4
|
# Dataset Card for "OxfordFlowers_test_facebook_opt_6.7b_Visclues_ns_6149_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/OxfordFlowers_test_facebook_opt_6.7b_Visclues_ns_6149_random
|
[
"region:us"
] |
2023-02-05T06:38:10+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 270234427.375, "num_examples": 6149}, {"name": "fewshot_3_bs_16", "num_bytes": 274949239.375, "num_examples": 6149}], "download_size": 526197349, "dataset_size": 545183666.75}}
|
2023-02-05T09:10:17+00:00
|
ecefa7c5543b5dee0c5efd00c409231f3cdcdab6
|
alexrods/mini_car_bikes_detection
|
[
"license:other",
"region:us"
] |
2023-02-05T07:42:57+00:00
|
{"license": "other"}
|
2023-02-16T18:41:55+00:00
|
|
3db68af54c50ccb3bc8d9bc00124886f14d6847d
|
# Dataset for project: quick-summarization
## Dataset Description
This dataset has been trained for project quick-summarization.
### Languages
The BCP-47 code for the dataset's language is en.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"text": "Ever noticed how plane seats appear to be getting smaller and smaller? With increasing numbers of people taking to the skies, some experts are questioning if having such packed out planes is putting passengers at risk. They say that the shrinking space on aeroplanes is not only uncomfortable - it's putting our health and safety in danger. More than squabbling over the arm rest, shrinking space on planes putting our health and safety in danger? This week, a U.S consumer advisory group set up by the Department of Transportation said at a public hearing that while the government is happy to set standards for animals flying on planes, it doesn't stipulate a minimum amount of space for humans. 'In a world where animals have more rights to space and food than humans,' said Charlie Leocha, consumer representative on the committee.\u00a0'It is time that the DOT and FAA take a stand for humane treatment of passengers.' But could crowding on planes lead to more serious issues than fighting for space in the overhead lockers, crashing elbows and seat back kicking? Tests conducted by the FAA use planes with a 31 inch pitch, a standard which on some airlines has decreased . Many economy seats on United Airlines have 30 inches of room, while some airlines offer as little as 28 inches . Cynthia Corbertt, a human factors researcher with the Federal Aviation Administration, that it conducts tests on how quickly passengers can leave a plane. But these tests are conducted using planes with 31 inches between each row of seats, a standard which on some airlines has decreased, reported the Detroit News. The distance between two seats from one point on a seat to the same point on the seat behind it is known as the pitch. While most airlines stick to a pitch of 31 inches or above, some fall below this. While United Airlines has 30 inches of space, Gulf Air economy seats have between 29 and 32 inches, Air Asia offers 29 inches and Spirit Airlines offers just 28 inches. British Airways has a seat pitch of 31 inches, while easyJet has 29 inches, Thomson's short haul seat pitch is 28 inches, and Virgin Atlantic's is 30-31.",
"target": "Experts question if packed out planes are putting passengers at risk.\nU.S consumer advisory group says minimum space must be stipulated.\nSafety tests conducted on planes with more leg room than airlines offer."
},
{
"text": "A drunk teenage boy had to be rescued by security after jumping into a lions' enclosure at a zoo in western India. Rahul Kumar, 17, clambered over the enclosure fence at the\u00a0Kamla Nehru Zoological Park in Ahmedabad, and began running towards the animals, shouting he would 'kill them'. Mr Kumar explained afterwards that he was drunk and 'thought I'd stand a good chance' against the predators. Next level drunk: Intoxicated Rahul Kumar, 17, climbed into the lions' enclosure at a zoo in Ahmedabad and began running towards the animals shouting 'Today I kill a lion!' Mr Kumar had been sitting near the enclosure when he suddenly made a dash for the lions, surprising zoo security. The intoxicated teenager ran towards the lions, shouting: 'Today I kill a lion or a lion kills me!' A zoo spokesman said: 'Guards had earlier spotted him close to the enclosure but had no idea he was planing to enter it. 'Fortunately, there are eight moats to cross before getting to where the lions usually are and he fell into the second one, allowing guards to catch up with him and take him out. 'We then handed him over to the police.' Brave fool: Fortunately, Mr Kumar fell into a moat as he ran towards the lions and could be rescued by zoo security staff before reaching the animals (stock image) Kumar later explained: 'I don't really know why I did it. 'I was drunk and thought I'd stand a good chance.' A police spokesman said: 'He has been cautioned and will be sent for psychiatric evaluation. 'Fortunately for him, the lions were asleep and the zoo guards acted quickly enough to prevent a tragedy similar to that in Delhi.' Last year a 20-year-old man was mauled to death by a tiger in the Indian capital after climbing into its enclosure at the city zoo.",
"target": "Drunk teenage boy climbed into lion enclosure at zoo in west India.\nRahul Kumar, 17, ran towards animals shouting 'Today I kill a lion!'\nFortunately he fell into a moat before reaching lions and was rescued."
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"text": "Value(dtype='string', id=None)",
"target": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 7507 |
| valid | 2491 |
|
Kaludi/data-quick-summarization
|
[
"task_categories:summarization",
"language:en",
"region:us"
] |
2023-02-05T08:28:09+00:00
|
{"language": ["en"], "task_categories": ["summarization"]}
|
2023-02-05T20:42:13+00:00
|
be85d4d2987cdbc212484ce2a1fccd4ec450510e
|
# Dataset Card for "test1-dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
futuristixa/test1-dataset
|
[
"region:us"
] |
2023-02-05T09:04:39+00:00
|
{"dataset_info": {"features": [{"name": "review", "dtype": "string"}, {"name": "review_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1252876.2642514652, "num_examples": 3378}, {"name": "validation", "num_bytes": 139455.7357485349, "num_examples": 376}], "download_size": 0, "dataset_size": 1392332.0}}
|
2023-02-05T10:15:25+00:00
|
95e3bb8f22b7247818e60c3ddb63b5f1db78abf1
|
kenthorvath/japanese-kamons
|
[
"license:mit",
"region:us"
] |
2023-02-05T09:19:24+00:00
|
{"license": "mit"}
|
2023-02-05T09:36:38+00:00
|
|
cffce0c535b77b35d90cd867f537f9f1152cf55c
|
# DreamBank - Dreams
The dataset is a collection of ~30k textual reports of dreams, originally scraped from the [DreamBank](https://www.dreambank.net/) databased by
[`mattbierner`](https://github.com/mattbierner/DreamScrape). The DreamBank reports are divided into `series`,
which are collections of individuals or research projects/groups that have gathered the dreams. The vast majority of the series are in the
English language, but a small part of the are in German. These series are indicated by the presence of `.de` in their name.
## Content
The dataset revolves around three main features:
- `dreams`: the content of each dream report.
- `series`: the series to which a report belongs
- `description`: a brief description of the `series`
## Series distribution
The following is a summary of (alphabetically ordered) DreamBank's series together with their total amount of dream reports.
- alta: 422
- angie: 48
- arlie: 212
- b: 3114
- b-baseline: 250
- b2: 1138
- bay_area_girls_456: 234
- bay_area_girls_789: 154
- bea1: 223
- bea2: 63
- blind-f: 238
- blind-m: 143
- bosnak: 53
- chris: 100
- chuck: 75
- dahlia: 24
- david: 166
- dorothea: 899
- ed: 143
- edna: 19
- elizabeth: 1707
- emma: 1221
- emmas_husband: 72
- esther: 110
- german-f.de: 397
- german-m.de: 140
- hall_female: 681
- jasmine1: 39
- jasmine2: 269
- jasmine3: 259
- jasmine4: 94
- jeff: 87
- joan: 42
- kenneth: 2021
- lawrence: 206
- mack: 38
- madeline1-hs: 98
- madeline2-dorms: 186
- madeline3-offcampus: 348
- madeline4-postgrad: 294
- mark: 23
- melissa: 89
- melora: 211
- melvin: 128
- merri: 315
- miami-home: 171
- miami-lab: 274
- midwest_teens-f: 111
- midwest_teens-m: 83
- nancy: 44
- natural_scientist: 234
- norman: 1235
- norms-f: 490
- norms-m: 491
- pegasus: 1093
- peru-f: 381
- peru-m: 384
- phil1: 106
- phil2: 220
- phil3: 180
- physiologist: 86
- ringo: 16
- samantha: 63
- seventh_graders: 69
- toby: 33
- tom: 27
- ucsc_women: 81
- vickie: 35
- vietnam_vet: 98
- vonuslar.de: 6094
- wedding: 65
- west_coast_teens: 89
- zurich-f.de: 164
- zurich-m.de: 135
|
DReAMy-lib/DreamBank-dreams
|
[
"task_categories:text-generation",
"size_categories:10K<n<100K",
"language:en",
"language:de",
"license:apache-2.0",
"region:us"
] |
2023-02-05T09:56:21+00:00
|
{"language": ["en", "de"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "dreams", "dtype": "string"}, {"name": "series", "dtype": "string"}, {"name": "description", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 27263345, "num_examples": 29345}], "download_size": 15525739, "dataset_size": 27263345}}
|
2023-02-05T09:58:42+00:00
|
af1ccacd510395bb09e4441647394a7dc4f73427
|
AFTRDRK/testing
|
[
"license:afl-3.0",
"region:us"
] |
2023-02-05T09:56:21+00:00
|
{"license": "afl-3.0"}
|
2023-02-05T10:06:04+00:00
|
|
acbcd60a205f27e1de9a9d46838528fecb876fc9
|
persianConversation
|
Kamtera/Persian-conversational-dataset
|
[
"task_categories:conversational",
"task_categories:text-generation",
"language:fa",
"license:apache-2.0",
"region:us"
] |
2023-02-05T10:12:23+00:00
|
{"language": ["fa"], "license": "apache-2.0", "task_categories": ["conversational", "text-generation"], "pretty_name": "persianConversation"}
|
2023-04-04T07:19:27+00:00
|
0ef85426a9b6765dca712c0d45cc55d42ef18fe7
|
tomi dataset (theory of mind question answering) recasted as natural language inference
https://colab.research.google.com/drive/1J_RqDSw9iPxJSBvCJu-VRbjXnrEjKVvr?usp=sharing
```
@article{sileo2023tasksource,
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
author={Sileo, Damien},
url= {https://arxiv.org/abs/2301.05948},
journal={arXiv preprint arXiv:2301.05948},
year={2023}
}
@inproceedings{le-etal-2019-revisiting,
title = "Revisiting the Evaluation of Theory of Mind through Question Answering",
author = "Le, Matthew and
Boureau, Y-Lan and
Nickel, Maximilian",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D19-1598",
doi = "10.18653/v1/D19-1598",
pages = "5872--5877"
}
```
|
tasksource/tomi-nli
|
[
"task_categories:text-classification",
"task_ids:natural-language-inference",
"language:en",
"license:gpl-3.0",
"arxiv:2301.05948",
"region:us"
] |
2023-02-05T10:40:34+00:00
|
{"language": ["en"], "license": "gpl-3.0", "task_categories": ["text-classification"], "task_ids": ["natural-language-inference"]}
|
2023-02-09T21:05:13+00:00
|
75cafe8ddb7ed77d5712ed27b6388b385899315c
|
Images trained for my [phantom diffusion](https://huggingface.co/Phantom-Artist/phantom-diffusion) series.
Since they are all AI generated images that are public domain under the US law, I claim it is legal to redistribute them as public domain.
However, they might have copyright in your/their original country.
Still, many countries including Japan allow us to use them for training an AI under their copyrights law, and because all the artists here are from Japan, I assume it should be allowed to reuse it for training globally.
|
Phantom-Artist/phantom-diffusion-dataset
|
[
"size_categories:n<1K",
"language:en",
"language:ja",
"license:cc0-1.0",
"region:us"
] |
2023-02-05T11:06:08+00:00
|
{"language": ["en", "ja"], "license": "cc0-1.0", "size_categories": ["n<1K"]}
|
2023-02-05T11:13:34+00:00
|
1a9eff18797ee36426711ce0bcce52225e02307e
|
Embeddings derived from business descriptions of S&P500 companies using sentence-BERT, SentenceTransformer('all-MiniLM-L6-v2') to be exact. For more info on evaluation of sentence transformers (specifcailly the huge GPT-3 versus smaller models see: https://twitter.com/Nils_Reimers/status/1487014195568775173)
|
beanjar/sp500-business-description-sentence-bert-embeddings
|
[
"license:mit",
"region:us"
] |
2023-02-05T11:19:03+00:00
|
{"license": "mit"}
|
2023-02-05T11:38:49+00:00
|
225ef41e13b1c9e1d544aec8e809140e635effb7
|
# Dataset Card for "sidewalk-imagery"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
shahardekel/sidewalk-imagery
|
[
"region:us"
] |
2023-02-05T12:06:15+00:00
|
{"dataset_info": {"features": [{"name": "pixel_values", "dtype": "image"}, {"name": "label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 86083036.0, "num_examples": 10}], "download_size": 7066127, "dataset_size": 86083036.0}}
|
2023-02-05T12:06:18+00:00
|
e913e2d4075f89f6c6eb14fadc36e072c006bb4d
|
# AutoTrain Dataset for project: big-data-chest
## Dataset Description
This dataset has been automatically processed by AutoTrain for project big-data-chest.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"image": "<2090x1858 L PIL image>",
"target": 0
},
{
"image": "<1422x1152 L PIL image>",
"target": 0
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['NORMAL', 'PNEUMONIA'], id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 298 |
| valid | 198 |
|
MartinLubenov/autotrain-data-big-data-chest
|
[
"task_categories:image-classification",
"region:us"
] |
2023-02-05T12:14:31+00:00
|
{"task_categories": ["image-classification"]}
|
2023-02-05T13:01:33+00:00
|
2674e993647c13831e07b1bed72dcf7b99878649
|
verystochastic/running
|
[
"license:mit",
"region:us"
] |
2023-02-05T14:35:22+00:00
|
{"license": "mit"}
|
2023-02-05T14:35:22+00:00
|
|
42bd36ef98feca9b38f038f118e85538c2dbdb55
|
# Dataset Card for "mozilla-vie-speech2text"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ademax/mozilla-vie-speech2text
|
[
"region:us"
] |
2023-02-05T16:39:09+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 351039045.6835097, "num_examples": 14338}, {"name": "test", "num_bytes": 25069782.960490286, "num_examples": 1000}], "download_size": 365566062, "dataset_size": 376108828.644}}
|
2023-02-06T04:07:48+00:00
|
1c937fd68293095dc38dc40253ce4a522f410de3
|
# Dataset Card for "vivos-vie-speech2text"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ademax/vivos-vie-speech2text
|
[
"region:us"
] |
2023-02-05T16:49:25+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}, {"name": "raw_transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1665722954.5, "num_examples": 11420}, {"name": "test", "num_bytes": 141949259.0, "num_examples": 1000}], "download_size": 1776326496, "dataset_size": 1807672213.5}}
|
2023-08-26T03:21:56+00:00
|
0c967e194d7079f029907148e327fe9ecc55de40
|
# Dataset Card for "tatoeba-nds"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
danielpleus/tatoeba-nds
|
[
"region:us"
] |
2023-02-05T16:51:28+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 692245, "num_examples": 18101}], "download_size": 478178, "dataset_size": 692245}}
|
2023-02-05T16:52:14+00:00
|
55726e3d237abdffd011e5f393f6eb3d96f660ca
|
# Dataset Card for "faces"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
SDbiaseval/faces
|
[
"region:us"
] |
2023-02-05T17:25:53+00:00
|
{"dataset_info": {"features": [{"name": "model", "dtype": "string"}, {"name": "adjective", "dtype": "string"}, {"name": "profession", "dtype": "string"}, {"name": "no", "dtype": "int32"}, {"name": "image_name", "dtype": "string"}, {"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 3432470489.253643, "num_examples": 88708}], "download_size": 1970670181, "dataset_size": 3432470489.253643}}
|
2023-02-05T17:53:23+00:00
|
07bbbcc551794e7b5b9343788d9500809b486681
|
# Dataset Card for faces
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|
stable-bias/faces
|
[
"language:en",
"license:cc-by-sa-4.0",
"region:us"
] |
2023-02-05T17:27:44+00:00
|
{"language": ["en"], "license": "cc-by-sa-4.0", "dataset_info": {"features": [{"name": "model", "dtype": "string"}, {"name": "adjective", "dtype": "string"}, {"name": "profession", "dtype": "string"}, {"name": "no", "dtype": "int32"}, {"name": "image_name", "dtype": "string"}, {"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 3432470489.253643, "num_examples": 88708}], "download_size": 1970670181, "dataset_size": 3432470489.253643}}
|
2023-08-11T10:11:20+00:00
|
8420d9b71b53b289b8549b230e8ea8662d35bb12
|
ectorrodrigues/my_dataset
|
[
"region:us"
] |
2023-02-05T17:35:09+00:00
|
{}
|
2023-02-05T18:10:39+00:00
|
|
7310f5d3a185ee835cc5e5f715c574d51c5d93db
|
# Dataset Card for feature vector embeddings of the 20newsgroup dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset contains vector embeddings of the [20newsgroups dataset](http://qwone.com/~jason/20Newsgroups/).
The embeddings were created with the [Sentence Transformers library](https://www.sbert.net/index.html) using the `multi-qa-MiniLM-L6-cos-v1` model.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|
fscheffczyk/20newsgroups_embeddings
|
[
"task_categories:feature-extraction",
"task_categories:sentence-similarity",
"task_categories:question-answering",
"multilinguality:monolingual",
"size_categories:unknown",
"language:en",
"news",
"20newsgroups",
"region:us"
] |
2023-02-05T17:48:30+00:00
|
{"annotations_creators": [], "language_creators": [], "language": ["en"], "license": [], "multilinguality": ["monolingual"], "size_categories": ["unknown"], "source_datasets": [{"20newsgroups dataset": "http://qwone.com/~jason/20Newsgroups/"}], "task_categories": ["feature-extraction", "sentence-similarity", "question-answering"], "task_ids": [], "pretty_name": "Feature vector embeddings of the 20newsgroup dataset", "tags": ["news", "20newsgroups"]}
|
2023-02-05T17:59:34+00:00
|
61216531599b60819916aad034086d5d30027827
|
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
enankobh1/ASR_primock_data
|
[
"region:us"
] |
2023-02-05T18:10:51+00:00
|
{}
|
2023-02-06T18:27:49+00:00
|
da22d598c8a586a169a5c61a33296ebece08c707
|
# Dataset Card for feature vector embeddings of the 20newsgroup dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset contains dimensional reduced vector embeddings of the [20newsgroups dataset](http://qwone.com/~jason/20Newsgroups/). This dataset contains two dimensions.
The dimensional reduced embeddings were created with the [TruncatedSVD function](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD) from the [scikit-learn library](https://scikit-learn.org/stable/index.html).
These reduced feature vectors are based on the [fscheffczyk/20newsgroup_embeddings dataset](https://huggingface.co/datasets/fscheffczyk/20newsgroups_embeddings).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|
fscheffczyk/2D_20newsgroups_embeddings
|
[
"task_categories:feature-extraction",
"task_categories:sentence-similarity",
"task_categories:question-answering",
"multilinguality:monolingual",
"size_categories:unknown",
"source_datasets:extended|fscheffczyk/20newsgroups_embeddings",
"language:en",
"news",
"20newsgroups",
"region:us"
] |
2023-02-05T18:52:06+00:00
|
{"annotations_creators": [], "language_creators": [], "language": ["en"], "license": [], "multilinguality": ["monolingual"], "size_categories": ["unknown"], "source_datasets": ["extended|fscheffczyk/20newsgroups_embeddings"], "task_categories": ["feature-extraction", "sentence-similarity", "question-answering"], "task_ids": [], "pretty_name": "Dimensional reduced feature vector embeddings of the 20newsgroup dataset", "tags": ["news", "20newsgroups"]}
|
2023-02-05T18:57:29+00:00
|
7ff87b42200ddf84111e60c299bda1b02351988b
|
research-backup/relational_similarity
|
[
"region:us"
] |
2023-02-05T18:54:31+00:00
|
{}
|
2023-02-05T20:32:57+00:00
|
|
e4e6b87898b041b9fd0171d5313fc6fc01681468
|
# Dataset Card for "selector_output_preprocessed"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Reza-Madani/selector_output_preprocessed
|
[
"region:us"
] |
2023-02-05T19:45:36+00:00
|
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "dtype": "int64"}, {"name": "token_type_ids", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 1139584, "num_examples": 9824}], "download_size": 139270, "dataset_size": 1139584}}
|
2023-02-05T19:45:46+00:00
|
dc0a2517058a8e8f7873392f0a55ca30d98b04a4
|
# Dataset Card for "yolochess_lichess-elite_2211"
Source: https://database.nikonoel.fr/ - filtered from https://database.lichess.org for November 2022
Features:
- fen = Chess board position in [FEN](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation) format
- move = Move played by a strong human player in this position
- result = Final result of the match
- eco = [ECO](https://en.wikipedia.org/wiki/Encyclopaedia_of_Chess_Openings)-code of the Opening played
Samples: 22.1 million
|
jrahn/yolochess_lichess-elite_2211
|
[
"task_categories:text-classification",
"task_categories:reinforcement-learning",
"size_categories:10M<n<100M",
"license:cc",
"chess",
"region:us"
] |
2023-02-05T20:51:21+00:00
|
{"license": "cc", "size_categories": ["10M<n<100M"], "task_categories": ["text-classification", "reinforcement-learning"], "dataset_info": {"features": [{"name": "fen", "dtype": "string"}, {"name": "move", "dtype": "string"}, {"name": "result", "dtype": "string"}, {"name": "eco", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1794337922, "num_examples": 22116598}], "download_size": 1044871571, "dataset_size": 1794337922}, "tags": ["chess"]}
|
2023-02-08T07:19:54+00:00
|
470866e0e33914e3aaed70c5dd58afc49621239a
|
# Dataset Card for "sentiment-analysis-finetune"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
racro/sentiment-analysis-finetune
|
[
"region:us"
] |
2023-02-05T21:28:45+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 119146, "num_examples": 751}], "download_size": 0, "dataset_size": 119146}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-10-16T18:46:08+00:00
|
cc66c5efce8b1e13473ab99064d276b36d4c5583
|
# Dataset Card for "bert-mini-predictor-output"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Reza-Madani/bert-mini-predictor-output
|
[
"region:us"
] |
2023-02-05T22:55:18+00:00
|
{"dataset_info": {"features": [{"name": "predictions", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 78592, "num_examples": 9824}], "download_size": 6138, "dataset_size": 78592}}
|
2023-02-05T22:55:22+00:00
|
0ffadef43894936bb3d0295d808bb6f6cf14a466
|
othertea/epigenetic_marks_pham2005
|
[
"region:us"
] |
2023-02-06T00:45:11+00:00
|
{"dataset_info": [{"config_name": "h3", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 2641639, "num_examples": 4988}, {"name": "fold1", "num_bytes": 2641787, "num_examples": 4988}, {"name": "fold2", "num_bytes": 2642499, "num_examples": 4989}], "download_size": 7806318, "dataset_size": 7925925}, {"config_name": "h4", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 2576509, "num_examples": 4867}, {"name": "fold1", "num_bytes": 2576958, "num_examples": 4867}, {"name": "fold2", "num_bytes": 2577112, "num_examples": 4867}], "download_size": 7613876, "dataset_size": 7730579}, {"config_name": "h3k9ac", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 4908307, "num_examples": 9260}, {"name": "fold1", "num_bytes": 4908669, "num_examples": 9261}, {"name": "fold2", "num_bytes": 4909208, "num_examples": 9261}], "download_size": 14504069, "dataset_size": 14726184}, {"config_name": "h3k14ac", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 5840246, "num_examples": 11016}, {"name": "fold1", "num_bytes": 5840541, "num_examples": 11016}, {"name": "fold2", "num_bytes": 5840196, "num_examples": 11016}], "download_size": 17256808, "dataset_size": 17520983}, {"config_name": "h3k4me1", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 5598573, "num_examples": 10559}, {"name": "fold1", "num_bytes": 5598650, "num_examples": 10559}, {"name": "fold2", "num_bytes": 5599277, "num_examples": 10559}], "download_size": 16543265, "dataset_size": 16796500}, {"config_name": "h3k4me2", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 5423478, "num_examples": 10227}, {"name": "fold1", "num_bytes": 5423979, "num_examples": 10228}, {"name": "fold2", "num_bytes": 5424585, "num_examples": 10228}], "download_size": 16026783, "dataset_size": 16272042}, {"config_name": "h3k36me3", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 6164246, "num_examples": 11626}, {"name": "fold1", "num_bytes": 6164668, "num_examples": 11627}, {"name": "fold2", "num_bytes": 6164985, "num_examples": 11627}], "download_size": 18215056, "dataset_size": 18493899}, {"config_name": "h3k79me3", "features": [{"name": "description", "dtype": "string"}, {"name": "sequence", "dtype": "string"}, {"name": "label", "dtype": "int32"}], "splits": [{"name": "fold0", "num_bytes": 5095638, "num_examples": 9612}, {"name": "fold1", "num_bytes": 5095453, "num_examples": 9612}, {"name": "fold2", "num_bytes": 5095907, "num_examples": 9613}], "download_size": 15056451, "dataset_size": 15286998}]}
|
2023-02-06T00:54:14+00:00
|
|
44df4f82f6af47ad7f746bc1120097066e538457
|
# Dataset Card for "small-coco"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
RIW/small-coco
|
[
"region:us"
] |
2023-02-06T00:57:39+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "status", "dtype": "string"}, {"name": "error_message", "dtype": "null"}, {"name": "width", "dtype": "int64"}, {"name": "height", "dtype": "int64"}, {"name": "original_width", "dtype": "int64"}, {"name": "original_height", "dtype": "int64"}, {"name": "exif", "dtype": "string"}, {"name": "sha256", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1946738057.45, "num_examples": 9890}, {"name": "validation", "num_bytes": 1953823510.0, "num_examples": 9893}], "download_size": 1313384992, "dataset_size": 3900561567.45}}
|
2023-02-06T01:06:04+00:00
|
9a298a58b021256922e359d8d59737383c14a281
|
# Dataset Card for "Caltech101_not_background_test_facebook_opt_6.7b_Attributes_Caption_ns_5647_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_6.7b_Attributes_Caption_ns_5647_random
|
[
"region:us"
] |
2023-02-06T01:05:26+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 85893435.125, "num_examples": 5647}, {"name": "fewshot_3_bs_16", "num_bytes": 88898369.125, "num_examples": 5647}], "download_size": 160743632, "dataset_size": 174791804.25}}
|
2023-02-06T02:44:47+00:00
|
000f81f3b4dd849e056cda4d2d81d16548277c0a
|
nateraw/fuego-20230205-204917-9e4970
|
[
"fuego",
"region:us"
] |
2023-02-06T01:49:18+00:00
|
{"tags": ["fuego"], "fuego": {"id": "20230205-204917-9e4970", "status": "done", "script": "main.py", "requirements_file": "requirements.txt", "space_id": "nateraw/fuego-20230205-204917-9e4970", "space_hardware": "cpu-basic", "github_repo_id": "pytorch/examples", "github_repo_branch": "main", "github_repo_sha": "d8456a36d1bbb22f72b003f59406a19a0a0547c3"}}
|
2023-02-06T01:54:42+00:00
|
|
393f7c68e114ac599f1cabe6ca00fc676ecfb4b4
|
# Dataset Card for "Caltech101_not_background_test_facebook_opt_6.7b_Visclues_ns_5647_random"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_6.7b_Visclues_ns_5647_random
|
[
"region:us"
] |
2023-02-06T01:49:36+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_1_bs_16", "num_bytes": 86816009.125, "num_examples": 5647}, {"name": "fewshot_3_bs_16", "num_bytes": 90735172.125, "num_examples": 5647}], "download_size": 162358362, "dataset_size": 177551181.25}}
|
2023-02-06T03:55:04+00:00
|
397f87aa0134f5a585b28f066703b98658c65edb
|
nateraw/fuego-20230205-205350-24e650
|
[
"fuego",
"region:us"
] |
2023-02-06T01:53:51+00:00
|
{"tags": ["fuego"], "fuego": {"id": "20230205-205350-24e650", "status": "running", "script": "run_glue.py", "requirements_file": "requirements.txt", "space_id": "nateraw/fuego-20230205-205350-24e650", "space_hardware": "cpu-basic", "github_repo_id": "huggingface/transformers", "github_repo_branch": "main", "github_repo_sha": "59d5edef34ae0fa56065a2e863736d4f133c558b"}}
|
2023-02-06T01:58:17+00:00
|
|
79223f346724796be6098aa3e4b1b9183264e25f
|
nateraw/fuego-20230206-040851-d8a7d1
|
[
"fuego",
"region:us"
] |
2023-02-06T03:08:52+00:00
|
{"tags": ["fuego"], "fuego": {"id": "20230206-040851-d8a7d1", "status": "done", "script": "run_glue.py", "requirements_file": "requirements.txt", "space_id": "nateraw/fuego-20230206-040851-d8a7d1", "space_hardware": "t4-small", "github_repo_id": "huggingface/transformers", "github_repo_branch": "main", "github_repo_sha": "59d5edef34ae0fa56065a2e863736d4f133c558b"}}
|
2023-02-06T03:23:13+00:00
|
|
34cb8006acbb117a169204b16728928c7faa5a63
|
# Dataset Card for "ko-conversation-sentiment"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mk9165/ko-conversation-sentiment
|
[
"region:us"
] |
2023-02-06T04:25:10+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label1", "dtype": "string"}, {"name": "label2", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 25376313, "num_examples": 51630}, {"name": "test", "num_bytes": 3144865, "num_examples": 6641}], "download_size": 13431512, "dataset_size": 28521178}}
|
2023-02-06T04:25:18+00:00
|
e2ece7cd92a906971f9b7a1e68f2865a24146440
|
# Dataset Card for "Caltech101_not_background_test_facebook_opt_6.7b_Attributes_Caption_ns_5647"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_6.7b_Attributes_Caption_ns_5647
|
[
"region:us"
] |
2023-02-06T04:28:50+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_0_bs_16", "num_bytes": 84389801.125, "num_examples": 5647}, {"name": "fewshot_1_bs_16", "num_bytes": 85882598.125, "num_examples": 5647}, {"name": "fewshot_3_bs_16", "num_bytes": 88873041.125, "num_examples": 5647}], "download_size": 237858362, "dataset_size": 259145440.375}}
|
2023-02-06T16:49:21+00:00
|
64b71ea804fe12b54af13bc9827956a9b3d5acd0
|
Quoc09/MRI
|
[
"region:us"
] |
2023-02-06T04:53:29+00:00
|
{}
|
2023-02-06T04:54:50+00:00
|
|
f6d37acc6c3c9eb6184f9a2b7463bf08bd77e546
|
# Dataset Card for "Caltech101_not_background_test_facebook_opt_6.7b_Visclues_ns_5647"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_6.7b_Visclues_ns_5647
|
[
"region:us"
] |
2023-02-06T05:04:03+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}, {"name": "scores", "sequence": "float64"}], "splits": [{"name": "fewshot_0_bs_16", "num_bytes": 84854811.125, "num_examples": 5647}, {"name": "fewshot_1_bs_16", "num_bytes": 86808883.125, "num_examples": 5647}], "download_size": 158701717, "dataset_size": 171663694.25}}
|
2023-02-06T15:56:03+00:00
|
363f21afd8e16507c7e85676d244647a0eea31cc
|
Ongoing work in extracting the largest amount of text data from the internet!
text-dataset.txt is a placeholder dataset, it's made from a miiverse archive as a parsing demo.
|
BirdL/TheLandfill
|
[
"region:us"
] |
2023-02-06T05:20:12+00:00
|
{}
|
2023-02-06T05:25:27+00:00
|
60efb980f44203ce28dc60eeed4b77dffa78c001
|
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
flow3rdown/MARS
|
[
"language:en",
"region:us"
] |
2023-02-06T05:57:19+00:00
|
{"language": ["en"]}
|
2023-02-06T05:59:27+00:00
|
b63bd9b51c4612370cbddcd276ff6faf63fce9c0
|
afschowdhury/mujib-dataset
|
[
"task_categories:question-answering",
"task_categories:sentence-similarity",
"size_categories:n<1K",
"language:bn",
"region:us"
] |
2023-02-06T06:30:31+00:00
|
{"language": ["bn"], "size_categories": ["n<1K"], "task_categories": ["question-answering", "sentence-similarity"]}
|
2024-01-15T19:04:26+00:00
|
|
9be119b75fbfa0f97446b39ff279187e560ee418
|
figfig/restaurant_order_test
|
[
"license:afl-3.0",
"region:us"
] |
2023-02-06T06:34:42+00:00
|
{"license": "afl-3.0"}
|
2023-02-06T14:31:49+00:00
|
|
bf15bd217b87ec6a1f9ea91c30809fa95ef78520
|
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
xfh/lexica_6k
|
[
"region:us"
] |
2023-02-06T06:37:28+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "md5", "dtype": "string"}, {"name": "tag", "dtype": "string"}], "splits": [{"name": "train", "num_examples": 12048}]}}
|
2023-02-06T08:17:40+00:00
|
49c279a413d54ac000ab2af416c0c14fbfb0db6d
|
# Dataset Card for "female-it-engineer"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
abhijit1247/female-it-engineer
|
[
"region:us"
] |
2023-02-06T07:33:36+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 436309940.896, "num_examples": 5509}], "download_size": 509782344, "dataset_size": 436309940.896}}
|
2023-02-06T07:34:07+00:00
|
61176010c9e5215b71482a289d40b36461ef2f7d
|
# Dataset Card for "Fin_Corpus_News"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
FINDA-FIT/Fin_Corpus_News
|
[
"region:us"
] |
2023-02-06T07:46:04+00:00
|
{"dataset_info": {"features": [{"name": "ID", "dtype": "string"}, {"name": "CONTEXT", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2383214453, "num_examples": 765104}], "download_size": 1335325915, "dataset_size": 2383214453}}
|
2023-02-06T07:47:07+00:00
|
5262fe28414e6e31759546f37a37657fa140b772
|
Sophie0523/text_id_01
|
[
"license:apache-2.0",
"region:us"
] |
2023-02-06T08:15:24+00:00
|
{"license": "apache-2.0"}
|
2023-02-08T04:13:07+00:00
|
|
3b949997bc8b1f4a33e406ff895bea959ed540dc
|
# RTV SLO Comments - Top 5 Users - Without OOC
## Other related models
| Includes the OOC class? | 5 classes | 10 classes | 20 classes | 50 classes | 100 classes |
| ------------------------| --------- | ---------- | ---------- | ---------- | ----------- |
| No | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop5UsersWithoutOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop10UsersWithoutOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop20UsersWithoutOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop50UsersWithoutOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop100UsersWithoutOOC) |
| Yes | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop5UsersWithOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop10UsersWithOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop20UsersWithOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop50UsersWithOOC) | [link](https://huggingface.co/datasets/gregorgabrovsek/RTVCommentsTop100UsersWithOOC) |
|
gregorgabrovsek/RTVCommentsTop5UsersWithoutOOC
|
[
"region:us"
] |
2023-02-06T08:31:19+00:00
|
{}
|
2023-08-21T21:07:40+00:00
|
81942555a231852a4b52bf8af2b48b5fe6b7221a
|
MihaiIonascu/Azure_IaC
|
[
"license:apache-2.0",
"region:us"
] |
2023-02-06T10:55:26+00:00
|
{"license": "apache-2.0"}
|
2023-05-16T09:13:56+00:00
|
|
4f91c7f84406b33fbf510d2b5b36bcbe209fc0d6
|
# Dataset Card for "catalan_commonvoice_first15hr"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
shields/catalan_commonvoice_first15hr
|
[
"region:us"
] |
2023-02-06T11:08:42+00:00
|
{"dataset_info": {"features": [{"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}, {"name": "sentence", "dtype": "string"}, {"name": "up_votes", "dtype": "int64"}, {"name": "down_votes", "dtype": "int64"}, {"name": "age", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "segment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 287860990.0, "num_examples": 7000}, {"name": "val", "num_bytes": 118983362.0, "num_examples": 3000}], "download_size": 386267835, "dataset_size": 406844352.0}}
|
2023-02-06T11:09:34+00:00
|
429b7e8594bd3eca014c0fef73af83294584354b
|
# Dataset Card for "vlsp-vie-speech2text"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ademax/vlsp-vie-speech2text
|
[
"region:us"
] |
2023-02-06T11:11:16+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11442518990.931095, "num_examples": 55427}, {"name": "test", "num_bytes": 203388934.0569054, "num_examples": 1000}], "download_size": 11650527572, "dataset_size": 11645907924.988}}
|
2023-02-06T12:24:42+00:00
|
e81d9f42cd2cfffc335e7e9102afa6dd7297c843
|
# Dataset Card for "fpt-vie-speech2text"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ademax/fpt-vie-speech2text
|
[
"region:us"
] |
2023-02-06T11:44:27+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 807889708.0629112, "num_examples": 24921}, {"name": "test", "num_bytes": 32503643.295088924, "num_examples": 1000}], "download_size": 819824750, "dataset_size": 840393351.358}}
|
2023-02-06T11:46:12+00:00
|
34b2b51c0df49436561f667327f17cf2254236d9
|
biu-nlp/qa_adj
|
[
"license:cc-by-4.0",
"region:us"
] |
2023-02-06T12:05:59+00:00
|
{"license": "cc-by-4.0"}
|
2023-02-06T21:23:15+00:00
|
|
d8343e497dc9a771fa5678d43490c0530eb7175a
|
# Dataset Card for "catalan_commonvoice_first15hr_processed_with_noise"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
shields/catalan_commonvoice_first15hr_processed_with_noise
|
[
"region:us"
] |
2023-02-06T12:18:04+00:00
|
{"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 6723710888, "num_examples": 7000}, {"name": "val", "num_bytes": 2881592776, "num_examples": 3000}], "download_size": 1776942256, "dataset_size": 9605303664}}
|
2023-02-06T12:23:28+00:00
|
bdf8b5a5c9d8448047ad825ae638db869120d405
|
zzjcarrot/baselineconll
|
[
"region:us"
] |
2023-02-06T12:35:09+00:00
|
{}
|
2023-02-06T12:37:19+00:00
|
|
4953f974b130e8be5d3372701633904c84aa63e4
|
# Dataset Card for "catalan_commonvoice_first15hr_processed"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
shields/catalan_commonvoice_first15hr_processed
|
[
"region:us"
] |
2023-02-06T12:39:56+00:00
|
{"dataset_info": {"features": [{"name": "input_features", "sequence": {"sequence": "float32"}}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 6723710888, "num_examples": 7000}, {"name": "val", "num_bytes": 2881592776, "num_examples": 3000}], "download_size": 1776942256, "dataset_size": 9605303664}}
|
2023-02-06T12:45:19+00:00
|
da8e6559c52dd5bfc14e8bd1bd85f0090cadabcc
|
## ita2medieval
The **ita2medieval** dataset contains sentences from medieval italian along with paraphrases in contemporary italian (approximately 6.5k pairs in total). The medieval italian sentences are extracted from texts by Dante, Petrarca, Guinizelli and Cavalcanti.
It is intended to perform text-style-transfer from contemporary to medieval italian and vice-versa.
## Loading the dataset
```
from datasets import load_dataset
dataset = load_dataset("leobertolazzi/ita2medieval")
```
Note: due to the small size of the dataset there are no predefined train and test splits.
## Dataset creation
**ita2medieval** was created by scraping [letteritaliana.weebly.com](https://letteritaliana.weebly.com/).
|
leobertolazzi/ita2medieval
|
[
"task_categories:text2text-generation",
"size_categories:1K<n<10K",
"language:it",
"region:us"
] |
2023-02-06T12:40:21+00:00
|
{"language": ["it"], "size_categories": ["1K<n<10K"], "task_categories": ["text2text-generation"]}
|
2023-02-06T13:00:18+00:00
|
f5546ef1e91613ffdb1ae9b339b3462e8aa02e23
|
# Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: knkarthick/MEETING_SUMMARY
* Dataset: samsum
* Config: samsum
* Split: test
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@TheAlphaQ](https://huggingface.co/TheAlphaQ) for evaluating this model.
|
autoevaluate/autoeval-eval-samsum-samsum-6999f5-3301091732
|
[
"autotrain",
"evaluation",
"region:us"
] |
2023-02-06T13:31:31+00:00
|
{"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "knkarthick/MEETING_SUMMARY", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}}
|
2023-02-06T13:33:58+00:00
|
3dc8695adf6831109645ca26ce71440aa1c1e763
|
Images trained for my [phantom diffusion s2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s2) series.
Since they are all AI generated images that are public domain under the US law, I claim it is legal to redistribute them as public domain.
However, they might have copyright in your/their original country.
Still, many countries including Japan allow us to use them for training an AI under their copyrights law, and because all the artists here are from Japan, I assume it should be allowed to reuse it for training globally.
|
Phantom-Artist/phantom-diffusion-s2-dataset
|
[
"license:cc0-1.0",
"region:us"
] |
2023-02-06T13:35:24+00:00
|
{"license": "cc0-1.0"}
|
2023-02-06T13:39:34+00:00
|
da96923fa7771a2cc4537bb5e17d324a5ea1dd69
|
# Dataset Card for "boostcamp-docvqa-marker"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Ssunbell/boostcamp-docvqa-marker
|
[
"region:us"
] |
2023-02-06T13:48:16+00:00
|
{"dataset_info": {"features": [{"name": "questionId", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "sequence": {"sequence": {"sequence": "uint8"}}}, {"name": "docId", "dtype": "int64"}, {"name": "ucsf_document_id", "dtype": "string"}, {"name": "ucsf_document_page_no", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "data_split", "dtype": "string"}, {"name": "words", "sequence": "string"}, {"name": "boxes", "sequence": {"sequence": "int64"}}, {"name": "question_m", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6384754744, "num_examples": 39454}, {"name": "val", "num_bytes": 869779916, "num_examples": 5349}], "download_size": 2580109440, "dataset_size": 7254534660}}
|
2023-02-06T15:18:58+00:00
|
db3142686aca5ed32b1658df8b97c1fe2fe41e58
|
# Dataset Card for "boostcamp-docvqa-marker-test"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Ssunbell/boostcamp-docvqa-marker-test
|
[
"region:us"
] |
2023-02-06T13:48:25+00:00
|
{"dataset_info": {"features": [{"name": "questionId", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "sequence": {"sequence": {"sequence": "uint8"}}}, {"name": "docId", "dtype": "int64"}, {"name": "ucsf_document_id", "dtype": "string"}, {"name": "ucsf_document_page_no", "dtype": "string"}, {"name": "data_split", "dtype": "string"}, {"name": "words", "sequence": "string"}, {"name": "boxes", "sequence": {"sequence": "int64"}}, {"name": "question_m", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 843485050, "num_examples": 5188}], "download_size": 296954981, "dataset_size": 843485050}}
|
2023-02-06T15:33:30+00:00
|
3b8e27543cd0bafc236d43c57bdae4e6b5c1689b
|
# Dataset Card for Media-Bias-Identification-Benchmark
## Table of Contents
- [Dataset Card for Media-Bias-Identification-Benchmark](#dataset-card-for-mbib)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Tasks and Information](#tasks-and-information)
- [Baseline](#baseline)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [cognitive-bias](#cognitive-bias)
- [Data Fields](#data-fields)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Repository:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Paper:** https://doi.org/10.1145/3539618.3591882
- **Point of Contact:** [Martin Wessel](mailto:[email protected])
### Baseline
<table>
<tr><td><b>Task</b></td><td><b>Model</b></td><td><b>Micro F1</b></td><td><b>Macro F1</b></td></tr>
<td>cognitive-bias</td> <td> ConvBERT/ConvBERT</td> <td>0.7126</td> <td> 0.7664</td></tr>
<td>fake-news</td> <td>Bart/RoBERTa-T</td> <td>0.6811</td> <td> 0.7533</td> </tr>
<td>gender-bias</td> <td> RoBERTa-T/ELECTRA</td> <td>0.8334</td> <td>0.8211</td> </tr>
<td>hate-speech</td> <td>RoBERTA-T/Bart</td> <td>0.8897</td> <td> 0.7310</td> </tr>
<td>linguistic-bias</td> <td> ConvBERT/Bart </td> <td> 0.7044 </td> <td> 0.4995 </td> </tr>
<td>political-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7041 </td> <td> 0.7110 </td> </tr>
<td>racial-bias</td> <td> ConvBERT/ELECTRA </td> <td> 0.8772 </td> <td> 0.6170 </td> </tr>
<td>text-leve-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7697</td> <td> 0.7532 </td> </tr>
</table>
### Languages
All datasets are in English
## Dataset Structure
### Data Instances
#### cognitive-bias
An example of one training instance looks as follows.
```json
{
"text": "A defense bill includes language that would require military hospitals to provide abortions on demand",
"label": 1
}
```
### Data Fields
- `text`: a sentence from various sources (eg., news articles, twitter, other social media).
- `label`: binary indicator of bias (0 = unbiased, 1 = biased)
## Considerations for Using the Data
### Social Impact of Dataset
We believe that MBIB offers a new common ground
for research in the domain, especially given the rising amount of
(research) attention directed toward media bias
### Citation Information
```
@inproceedings{
title = {Introducing MBIB - the first Media Bias Identification Benchmark Task and Dataset Collection},
author = {Wessel, Martin and Spinde, Timo and Horych, Tomáš and Ruas, Terry and Aizawa, Akiko and Gipp, Bela},
year = {2023},
note = {[in review]}
}
```
|
mediabiasgroup/mbib-base
|
[
"task_categories:text-classification",
"size_categories:1M<n<10M",
"language:en",
"license:cc-by-nc-nd-4.0",
"media",
"mediabias",
"media-bias",
"media bias",
"region:us"
] |
2023-02-06T13:51:22+00:00
|
{"language": ["en"], "license": "cc-by-nc-nd-4.0", "size_categories": ["1M<n<10M"], "task_categories": ["text-classification"], "tags": ["media", "mediabias", "media-bias", "media bias"], "dataset_info": {"config_name": "plain_text", "splits": [{"name": "cognitive_bias"}, {"name": "fake_news"}, {"name": "gender_bias"}, {"name": "hate_speech"}, {"name": "linguistic_bias"}, {"name": "political_bias"}, {"name": "racial_bias"}, {"name": "text_level_bias"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "cognitive_bias", "path": "mbib-aggregated/cognitive-bias.csv"}, {"split": "fake_news", "path": "mbib-aggregated/fake-news.csv"}, {"split": "gender_bias", "path": "mbib-aggregated/gender-bias.csv"}, {"split": "hate_speech", "path": "mbib-aggregated/hate-speech.csv"}, {"split": "linguistic_bias", "path": "mbib-aggregated/linguistic-bias.csv"}, {"split": "political_bias", "path": "mbib-aggregated/political-bias.csv"}, {"split": "racial_bias", "path": "mbib-aggregated/racial-bias.csv"}, {"split": "text_level_bias", "path": "mbib-aggregated/text-level-bias.csv"}]}]}
|
2024-02-06T15:57:17+00:00
|
692c335ffe3919a7074cc2bdd763ac08d0ff9ab1
|
leticis/monaka
|
[
"license:unknown",
"region:us"
] |
2023-02-06T13:54:10+00:00
|
{"license": "unknown"}
|
2023-02-06T13:54:10+00:00
|
|
e0e1bb08a4f7d0c0cdfb92e9dc8685cc3bc0e09e
|
kibelomadas/my_dataset
|
[
"language:en",
"license:creativeml-openrail-m",
"region:us"
] |
2023-02-06T14:05:32+00:00
|
{"language": ["en"], "license": "creativeml-openrail-m", "pretty_name": "my_dataset_card"}
|
2023-02-06T14:06:02+00:00
|
|
7742bbffa1e85e5a95bbd583cd0132fb11e9f279
|
# Dataset Card for "dreambooth-bee-images"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Zenodia/dreambooth-bee-images
|
[
"region:us"
] |
2023-02-06T14:12:50+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 1640816.0, "num_examples": 6}], "download_size": 1626376, "dataset_size": 1640816.0}}
|
2023-02-06T14:18:36+00:00
|
b8502adb4a7d804c759e799df95c2fafb6df8139
|
## Dataset instance structure
{'audio': {'path': '/path/to/wav.wav',
'array': array([wav numpy array]), dtype=float32),
'sampling_rate': 16000},
'transcription': 'транскрипция'}
## Dataset audio info
- 16000 Hz
- wav
- mono
- Russian speech from audiobooks
## Citation
@misc{sova2021rudevices,
author = {Zubarev, Egor and Moskalets, Timofey and SOVA.ai},
title = {SOVA RuDevices Dataset: free public STT/ASR dataset with manually annotated live speech},
publisher = {GitHub},
journal = {GitHub repository},
year = {2021},
howpublished = {\url{https://github.com/sovaai/sova-dataset}},
}
|
dangrebenkin/sova_rudevices_audiobooks
|
[
"license:apache-2.0",
"region:us"
] |
2023-02-06T14:15:49+00:00
|
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 29311788948.030003, "num_examples": 182835}, {"name": "test", "num_bytes": 3181370673.15, "num_examples": 20315}], "download_size": 29701298876, "dataset_size": 32493159621.180004}}
|
2023-02-06T19:22:04+00:00
|
678ae2f35e12df2a5540b538d8257732cd26160e
|
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
LorenzoG27/data_principals
|
[
"region:us"
] |
2023-02-06T15:00:47+00:00
|
{}
|
2023-02-06T15:27:14+00:00
|
93552494f53a4ca0687a1c151f0f57a641a8c080
|
# Dataset Card for NeuMARCO
## Dataset Description
- **Website:** https://neuclir.github.io/
### Dataset Summary
This is the dataset created for TREC 2022 NeuCLIR Track. The collection consists of documents from [`msmarco-passage`](https://ir-datasets.com/msmarco-passage) translated into
Chinese, Persian, and Russian.
### Languages
- Chinese
- Persian
- Russian
## Dataset Structure
### Data Instances
| Split | Documents |
|-----------------|----------:|
| `fas` (Persian) | 8.8M |
| `rus` (Russian) | 8.8M |
| `zho` (Chinese) | 8.8M |
### Data Fields
- `doc_id`: unique identifier for this document
- `text`: translated passage text
## Dataset Usage
Using 🤗 Datasets:
```python
from datasets import load_dataset
dataset = load_dataset('neuclir/neumarco')
dataset['fas'] # Persian passages
dataset['rus'] # Russian passages
dataset['zho'] # Chinese passages
```
|
neuclir/neumarco
|
[
"task_categories:text-retrieval",
"annotations_creators:machine-generated",
"language_creators:machine-generated",
"multilinguality:multilingual",
"size_categories:1M<n<10M",
"source_datasets:extended|irds/msmarco-passage",
"language:fa",
"language:ru",
"language:zh",
"region:us"
] |
2023-02-06T15:19:57+00:00
|
{"annotations_creators": ["machine-generated"], "language_creators": ["machine-generated"], "language": ["fa", "ru", "zh"], "multilinguality": ["multilingual"], "size_categories": ["1M<n<10M"], "source_datasets": ["extended|irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "NeuMARCO", "tags": []}
|
2023-02-06T16:16:37+00:00
|
c68ac8e5f2418f75df2e7dc37cf902b443a83f6f
|
# Dataset Card for "model_cards_with_readmes"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
davanstrien/model_cards_with_readmes
|
[
"region:us"
] |
2023-02-06T15:35:19+00:00
|
{"dataset_info": {"features": [{"name": "repo_id", "dtype": "string"}, {"name": "author", "dtype": "string"}, {"name": "model_type", "dtype": "string"}, {"name": "files_per_repo", "dtype": "int64"}, {"name": "downloads_30d", "dtype": "int64"}, {"name": "library", "dtype": "string"}, {"name": "likes", "dtype": "int64"}, {"name": "pipeline", "dtype": "string"}, {"name": "pytorch", "dtype": "bool"}, {"name": "tensorflow", "dtype": "bool"}, {"name": "jax", "dtype": "bool"}, {"name": "license", "dtype": "string"}, {"name": "languages", "dtype": "string"}, {"name": "datasets", "dtype": "string"}, {"name": "co2", "dtype": "string"}, {"name": "prs_count", "dtype": "int64"}, {"name": "prs_open", "dtype": "int64"}, {"name": "prs_merged", "dtype": "int64"}, {"name": "prs_closed", "dtype": "int64"}, {"name": "discussions_count", "dtype": "int64"}, {"name": "discussions_open", "dtype": "int64"}, {"name": "discussions_closed", "dtype": "int64"}, {"name": "tags", "dtype": "string"}, {"name": "has_model_index", "dtype": "bool"}, {"name": "has_metadata", "dtype": "bool"}, {"name": "has_text", "dtype": "bool"}, {"name": "text_length", "dtype": "int64"}, {"name": "is_nc", "dtype": "bool"}, {"name": "readme", "dtype": "string"}, {"name": "hash", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 91746845.07931802, "num_examples": 29806}], "download_size": 37088334, "dataset_size": 91746845.07931802}}
|
2023-02-16T22:35:39+00:00
|
64e8dc029e97818d4fd3a11e47d424d5ec04ff44
|
lotrlol/test-set-1
|
[
"license:openrail",
"region:us"
] |
2023-02-06T15:37:23+00:00
|
{"license": "openrail"}
|
2023-02-06T15:52:47+00:00
|
|
3f5b3917888600c2dc377e670ff22ecf38f637a0
|
# Dataset Card for "bookcorpus_ALL_SV"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MartinKu/bookcorpus_ALL_SV
|
[
"region:us"
] |
2023-02-06T15:54:32+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2210939478, "num_examples": 111661463}], "download_size": 1422662083, "dataset_size": 2210939478}}
|
2023-02-09T19:44:07+00:00
|
c47327ea18e632ab2a4b2f54d51c557175d99df1
|
# Dataset Card for "bookcorpus_ALL_OC"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MartinKu/bookcorpus_ALL_OC
|
[
"region:us"
] |
2023-02-06T15:55:56+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2991397965, "num_examples": 100095502}], "download_size": 2020456946, "dataset_size": 2991397965}}
|
2023-02-09T20:09:14+00:00
|
1302d18f3afcd82fbad91907b9578aa89ec4991b
|
# Dataset Card for "amazon-shoe-reviews"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mesmalif/amazon-shoe-reviews
|
[
"region:us"
] |
2023-02-06T16:06:43+00:00
|
{"dataset_info": {"features": [{"name": "marketplace", "dtype": "string"}, {"name": "customer_id", "dtype": "string"}, {"name": "review_id", "dtype": "string"}, {"name": "product_id", "dtype": "string"}, {"name": "product_parent", "dtype": "string"}, {"name": "product_title", "dtype": "string"}, {"name": "product_category", "dtype": "string"}, {"name": "labels", "dtype": "int64"}, {"name": "helpful_votes", "dtype": "int64"}, {"name": "total_votes", "dtype": "int64"}, {"name": "vine", "dtype": "int64"}, {"name": "verified_purchase", "dtype": "int64"}, {"name": "review_headline", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "review_date", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 34784832.6, "num_examples": 90000}, {"name": "test", "num_bytes": 3864981.4, "num_examples": 10000}], "download_size": 21283157, "dataset_size": 38649814.0}}
|
2023-02-06T16:07:08+00:00
|
a79260be92ca6279d0b6edb1e2654efc4c454f2d
|
# ml4pubmed/pubmed-classification-20k
- 20k subset of pubmed text classification from course
|
ml4pubmed/pubmed-classification-20k
|
[
"task_categories:text-classification",
"size_categories:10K<n<100K",
"language:en",
"license:apache-2.0",
"pubmed",
"region:us"
] |
2023-02-06T16:16:31+00:00
|
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "tags": ["pubmed"]}
|
2023-02-17T06:31:13+00:00
|
afab1080849081e976fd0dd4948d720f5b2a2555
|
# Dataset Card for "dreambooth-mooncake"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Zenodia/dreambooth-mooncake
|
[
"region:us"
] |
2023-02-06T16:20:02+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 7535176.0, "num_examples": 15}], "download_size": 7499175, "dataset_size": 7535176.0}}
|
2023-02-06T16:20:09+00:00
|
1f7e8ab74762318dd169d32b68e80c7202a2b32e
|
# ml4pubmed/pubmed-text-classification-cased
A parsed/cleaned version of the source data retaining case.
|
ml4pubmed/pubmed-text-classification-cased
|
[
"task_categories:text-classification",
"size_categories:1M<n<10M",
"source_datasets:pubmed",
"language:en",
"license:apache-2.0",
"pubmed",
"region:us"
] |
2023-02-06T16:20:15+00:00
|
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "source_datasets": "pubmed", "task_categories": ["text-classification"], "tags": ["pubmed"]}
|
2023-02-06T16:43:19+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.