sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
4959fb5156d5951aff72852f401e8a4b10406c98
VLyb/FB15k-237
[ "license:unlicense", "region:us" ]
2023-02-16T07:56:35+00:00
{"license": "unlicense"}
2023-02-16T07:59:38+00:00
39924ccbc52c7e9e5a1b1adab590c62a307483e2
VLyb/WN18RR
[ "license:unlicense", "region:us" ]
2023-02-16T08:02:26+00:00
{"license": "unlicense"}
2023-02-16T08:07:01+00:00
ecb04758ade513529e118c5c97bca4252a6bec67
VLyb/YAGO3-10
[ "license:unlicense", "region:us" ]
2023-02-16T08:08:57+00:00
{"license": "unlicense"}
2023-02-16T08:14:16+00:00
99c6bf9ddcb252be5dd4511c5818de46177c7e1a
VLyb/Nations
[ "license:unlicense", "region:us" ]
2023-02-16T08:15:55+00:00
{"license": "unlicense"}
2023-02-16T08:16:08+00:00
1ba3ef93bac4272eb598b618f21a4e50b42b5848
VLyb/DBpedia50
[ "license:unlicense", "region:us" ]
2023-02-16T08:18:27+00:00
{"license": "unlicense"}
2023-02-16T08:18:51+00:00
dc55170d2a33a4c613fe8dacfb9daafef0eaa318
VLyb/DBpedia500
[ "license:unlicense", "region:us" ]
2023-02-16T08:23:11+00:00
{"license": "unlicense"}
2023-02-16T08:39:36+00:00
e825221228f24e9a37cf92fd280ad3799c06f650
VLyb/Kinship
[ "license:unlicense", "region:us" ]
2023-02-16T08:45:10+00:00
{"license": "unlicense"}
2023-02-16T08:46:09+00:00
dd4668d4cd1a73cabac3f3a62fd0a20d687a1fe9
VLyb/UMLS
[ "license:unlicense", "region:us" ]
2023-02-16T08:49:31+00:00
{"license": "unlicense"}
2023-02-16T09:13:21+00:00
1d611b7384148ac997a7c004ef98ba18d215c2ea
# Dataset Card for Helpful Instructions ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact: Lewis Tunstall** ### Dataset Summary Helpful Instructions is a dataset of `(instruction, demonstration)` pairs that are derived from public datasets. As the name suggests, it focuses on instructions that are "helpful", i.e. the kind of questions or tasks a human user might instruct an AI assistant to perform. You can load the dataset as follows: ```python from datasets import load_dataset # Load all subsets helpful_instructions = load_dataset("HuggingFaceH4/helpful_instructions") # Load a single subset helpful_instructions_subset = load_dataset("HuggingFaceH4/helpful_instructions", data_dir="data/helpful-anthropic-raw") ``` ### Supported Tasks and Leaderboards This dataset can be used to fine-tune pretrained language models to follow instructions. ### Languages English ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
HuggingFaceH4/helpful-instructions
[ "license:apache-2.0", "human-feedback", "region:us" ]
2023-02-16T09:12:16+00:00
{"license": "apache-2.0", "pretty_name": "Helpful Instructions", "tags": ["human-feedback"]}
2023-02-20T08:58:24+00:00
6e58ad4f493bf9e409c56e9a3f3ef42012db7a3f
# AutoTrain Dataset for project: bbc-news-classifier ## Dataset Description This dataset has been automatically processed by AutoTrain for project bbc-news-classifier. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "text": "tv debate urged for party chiefs broadcasters should fix a date for a pre-election televised debate between the three main political leaders according to the hansard society. it would then be up to tony blair michael howard and charles kennedy to decide whether to take part the non-partisan charity said. chairman lord holme argued that prime ministers should not have the right of veto on a matter of public interest . the broadcasters should make the decision to go ahead he said. lord holme s proposal for a televised debate comes just four months after millions of viewers were able to watch us president george w bush slug it out verbally with his democratic challenger john kerry. he said it was a democratically dubious proposition that it was up to the incumbent prime minister to decide whether a similar event takes place here. if mr blair did not want to take part the broadcasters could go ahead with an empty chair or cancel the event and explain their reasons why lord holme said. what makes the present situation even less acceptable is that although mr howard and mr kennedy have said they would welcome a debate no-one has heard directly from the prime minister he said. it has been left to nudges and winks hints and briefings from his aides and campaign managers to imply that mr blair doesn t want one but we haven t heard from the prime minister himself. lord holme who has campaigned for televised debates at previous elections said broadcasters were more than willing to cooperate with the arrangements . opinion polls suggested that the idea had the backing of the public who like comparing the personalities and policies of the contenders in their own homes he said. lord holme argued that as part of their public service obligations broadcasters should make the decision to go ahead as soon as the election is called. an independent third-party body such as the hansard society or electoral commission could work out the ground rules so they were fair to participants and informative to the public he said. it would be up to each party leader to accept or refuse said lord holme. if the prime minister s reported position is true and he does want to take part he would then be obliged to say why publicly. the broadcasters would then have the option of cancelling the event for obvious and well-understood reasons or going ahead with an empty chair. either way would be preferable to the present hidden veto. the hansard society has long campaigned for televised debates and has published reports on the issue in 1997 and 2001. tony blair has already ruled out taking part in a televised debate during the forthcoming election campaign. last month he said: we answer this every election campaign and for the reasons i have given before the answer is no he said at his monthly news conference.", "target": 2 }, { "text": "ecb holds rates amid growth fears the european central bank has left its key interest rate unchanged at 2% for the 19th month in succession. borrowing costs have remained on hold amid concerns about the strength of economic growth in the 12 nations sharing the euro analysts said. despite signs of pick-up labour markets and consumer demand remain sluggish while firms are eyeing cost cutting measures such as redundancies. high oil prices meanwhile have put upward pressure on the inflation rate. surveys of economists have shown that the majority expect borrowing costs to stay at 2% in coming months with an increase of a quarter of a percentage point predicted some time in the second half of the year. if anything there may be greater calls for an interest rate cut especially with the euro continuing to strengthen against the dollar. the euro land economy is still struggling with this recovery said economist dirk schumacher. the ecb may sound rather hawkish but once the data allows them to cut again they will. data coming out of germany on thursday underlined the problems facing european policy makers. while germany s economy expanded by 1.7% in 2004 growth was driven by export sales and lost some of its momentum in the last three months of the year. the strength of the euro is threatening to dampen that foreign demand in 2005 and domestic consumption currently is not strong enough to take up the slack. inflation in the eurozone however is estimated at about 2.3% in december above ecb guidelines of 2%. ecb president jean-claude trichet has remained upbeat about prospects for the region and inflation is expected to drop below 2% later in 2005. the ecb has forecast economic growth in the eurozone of 1.9% in 2005.", "target": 0 } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "text": "Value(dtype='string', id=None)", "target": "ClassLabel(names=['business', 'entertainment', 'politics', 'sport', 'technology'], id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 198 | | valid | 52 |
Saripudin/autotrain-data-bbc-news-classifier
[ "task_categories:text-classification", "region:us" ]
2023-02-16T09:50:57+00:00
{"task_categories": ["text-classification"]}
2023-02-16T09:54:19+00:00
aa399ffcba12f6baa52e5bff826b59bf2ab86e51
# Dataset Card for "ismus" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tiro-is/ismus
[ "region:us" ]
2023-02-16T11:50:58+00:00
{"dataset_info": {"features": [{"name": "audio_id", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "normalized_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15107936585.61, "num_examples": 109511}, {"name": "test", "num_bytes": 947114213.608, "num_examples": 3184}], "download_size": 16411953840, "dataset_size": 16055050799.218}}
2023-02-16T12:11:03+00:00
164fbe58548fe426e4fa13afcbf4de34732f68e9
# AutoTrain Dataset for project: new_1000_respostas ## Dataset Description This dataset has been automatically processed by AutoTrain for project new_1000_respostas. ### Languages The BCP-47 code for the dataset's language is pt. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "target": 0, "text": " Ol\u00e1, no meu \u00faltimo pedido eu paguei o item errado. Paguei a cerveja long neck, quando o correto \u00e9 a garrafa de 600ml." }, { "target": 4, "text": " Boa tarde!!! Sou moradora do Citt\u00e0 Imbu\u00ed, hoje 15/01 por volta das 11:50, meu filho tentou comprar uma coca cola e n\u00e3o conseguiu, mas o valor do produto foi debitado. Voc\u00eas podem verificar nas imagens e externar o valor? Desde j\u00e1, agrade\u00e7o. Att, Ana Carla" } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "target": "ClassLabel(names=['Compra Equivocada', 'Cr\u00e9dito n\u00e3o compensado', 'Desativa\u00e7\u00e3o de conta', 'Dificuldade para finalizar a compra', 'Estorno/devolu\u00e7\u00e3o de valor', 'Problemas com destrava', 'Problemas com promo\u00e7\u00f5es', 'Produto danificado/Vencido', 'Produto n\u00e3o encontrado', 'Solicita\u00e7\u00e3o de reposi\u00e7\u00e3o'], id=None)", "text": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 715 | | valid | 182 |
pedro-m4u/autotrain-data-new_1000_respostas
[ "task_categories:text-classification", "language:pt", "region:us" ]
2023-02-16T12:15:49+00:00
{"language": ["pt"], "task_categories": ["text-classification"]}
2023-02-16T12:20:00+00:00
1653a2b77349fb0dbf41c677bc74fa3bad7874b2
# Dataset Card for Dataset CityLearn This dataset is used to train a decision Transformer for the CityLearn 2022 environment https://www.aicrowd.com/challenges/neurips-2022-citylearn-challenge. You can load data from this dataset via: datasets.load_dataset('TobiTob/CityLearn', 'data_name') A short description of all data sets can be found in file CityLearn.py
TobiTob/CityLearn
[ "region:us" ]
2023-02-16T12:16:52+00:00
{}
2023-06-27T10:14:53+00:00
5878918b23b4c415df7158ec75eee187247b4801
# danbooru-metadata Dump of various portions danbooru's metadata, as of Feburary 2023. Everything was taken directly from their JSON API. The directory structure follows the Danbooru20XX format of each subfolder for a record type being the record's ID modulo 1000. The `.zip` files can sometimes hold hundreds of thousands of small JSON files when put together, so use caution when extracting.
stma/danbooru-metadata
[ "region:us" ]
2023-02-16T13:10:54+00:00
{}
2023-02-17T06:21:00+00:00
9791b5eef6ed8c26e9dfaed7de915775d7659b7c
DanteKallen/Aqua_Konosuba_Lykon_Lora
[ "license:unlicense", "region:us" ]
2023-02-16T13:21:11+00:00
{"license": "unlicense"}
2023-02-16T13:46:57+00:00
c7cc0096855ca88268882f824569d4b3ce3f48ef
# Dataset Card for "diffusiondb_2m_first_5k_canny" Process [diffusiondb 2m first 5k canny](https://huggingface.co/datasets/poloclub/diffusiondb) to edges by Canny algorithm. [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HighCWu/diffusiondb_2m_first_5k_canny
[ "task_categories:text-to-image", "size_categories:1K<n<10K", "language:en", "license:openrail", "region:us" ]
2023-02-16T14:16:14+00:00
{"language": ["en"], "license": "openrail", "size_categories": ["1K<n<10K"], "task_categories": ["text-to-image"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "guide", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3204091410, "num_examples": 5000}], "download_size": 3203076374, "dataset_size": 3204091410}}
2023-02-16T14:53:35+00:00
450d4826a01ad05624b9a5e0e0de3e062983e479
emergentorder/StarTrekMemoryAlpha20230216
[ "task_categories:fill-mask", "task_ids:masked-language-modeling", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "language:en", "license:cc-by-nc-4.0", "star trek", "memory alpha", "region:us" ]
2023-02-16T15:10:47+00:00
{"annotations_creators": [], "language_creators": ["found"], "language": ["en"], "license": ["cc-by-nc-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": [], "task_categories": ["fill-mask"], "task_ids": ["masked-language-modeling"], "pretty_name": "Memory Alpha - The Star Trek Wiki -Full Database Dump as of 20230216", "tags": ["star trek", "memory alpha"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 115575629, "num_examples": 54234}], "download_size": 64791573, "dataset_size": 115575629}}
2023-02-16T15:47:01+00:00
8086bd9dd6f601e50c44eddb7ecbc3a3c345571b
![](https://media.discordapp.net/attachments/956897733459972096/1073623585027010662/sex.gif)
xJunko/Eden
[ "region:us" ]
2023-02-16T15:34:29+00:00
{"license": "other", "pretty_name": "Random LoRA(s)"}
2023-05-07T16:31:19+00:00
4557380c0675f2ccb443c71c829de7dc7578efd1
# Dataset Card for "wikitext103_VALUE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
liuyanchen1015/wikitext103_VALUE
[ "region:us" ]
2023-02-16T15:42:47+00:00
{"dataset_info": {"features": [{"name": "sentence-glue", "dtype": "string"}, {"name": "sentence-glue-html", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "sentence-ass", "dtype": "int64"}, {"name": "sentence-been_done", "dtype": "int64"}, {"name": "sentence-dey_it", "dtype": "int64"}, {"name": "sentence-drop_aux", "dtype": "int64"}, {"name": "sentence-got", "dtype": "int64"}, {"name": "sentence-lexical", "dtype": "int64"}, {"name": "sentence-negative_concord", "dtype": "int64"}, {"name": "sentence-negative_inversion", "dtype": "int64"}, {"name": "sentence-null_genetive", "dtype": "int64"}, {"name": "sentence-null_relcl", "dtype": "int64"}, {"name": "sentence-total", "dtype": "int64"}, {"name": "sentence-uninflect", "dtype": "int64"}], "splits": [{"name": "test", "num_bytes": 4493075, "num_examples": 2891}, {"name": "train", "num_bytes": 1880407626, "num_examples": 1164310}, {"name": "validation", "num_bytes": 3962030, "num_examples": 2411}], "download_size": 988572681, "dataset_size": 1888862731}}
2023-02-16T15:43:18+00:00
bf85d5046c2cf17ba9c2dbebd52b24ad154e9207
polinaeterna/audio_configs_default
[ "region:us" ]
2023-02-16T15:49:43+00:00
{"configs_kwargs": {"data_dir": "v1", "drop_labels": true}, "duplicated_from": "polinaeterna/audio_configs2"}
2023-02-16T17:01:39+00:00
833a1ba016f422c65ed6ee990fe1db03f9597386
### RTHK News Dataset (RTHK)[https://www.rthk.hk/] is a public broadcasting service under the Hong Kong Government according to (Wikipedia)[https://en.wikipedia.org/wiki/RTHK] This dataset at the moment is obtained from exporting messages from their (telegram channel)[https://t.me/rthk_new_c], which contains news since April 2018. I will update this dataset with more data in the future.
jed351/rthk_news
[ "language:zh", "region:us" ]
2023-02-16T16:44:01+00:00
{"language": ["zh"]}
2023-02-16T17:24:50+00:00
a01c3fa42e2f2e17804738075cfdc6752f11f93a
# AutoTrain Dataset for project: air ## Dataset Description This dataset has been automatically processed by AutoTrain for project air. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "target": 0.04100000113248825, "id": 1, "feat_split": "train" }, { "target": 0.04800000041723251, "id": 2, "feat_split": "train" } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "target": "Value(dtype='float32', id=None)", "id": "Value(dtype='int64', id=None)", "feat_split": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 1467 | | valid | 1467 |
abhishekDTU/autotrain-data-air
[ "region:us" ]
2023-02-16T16:45:02+00:00
{}
2023-02-16T17:09:28+00:00
3c6edf515625069decca7ec7a21d2e7a2813bfae
plogp/MIO_DiffSinger
[ "license:apache-2.0", "region:us" ]
2023-02-16T17:05:15+00:00
{"license": "apache-2.0"}
2023-02-16T17:05:15+00:00
c299be4298b58f71d60f2718273b7c0d64d3aacd
# Dataset Summary This dataset contains all MQM human annotations from previous [WMT Metrics shared tasks](https://wmt-metrics-task.github.io/) and the MQM annotations from [Experts, Errors, and Context](https://aclanthology.org/2021.tacl-1.87/). The data is organised into 8 columns: - lp: language pair - src: input text - mt: translation - ref: reference translation - score: MQM score - system: MT Engine that produced the translation - annotators: number of annotators - domain: domain of the input text (e.g. news) - year: collection year You can also find the original data [here](https://github.com/google/wmt-mqm-human-evaluation). We recommend using the original repo if you are interested in annotation spans and not just the final score. ## Python usage: ```python from datasets import load_dataset dataset = load_dataset("RicardoRei/wmt-mqm-human-evaluation", split="train") ``` There is no standard train/test split for this dataset but you can easily split it according to year, language pair or domain. E.g. : ```python # split by year data = dataset.filter(lambda example: example["year"] == 2022) # split by LP data = dataset.filter(lambda example: example["lp"] == "en-de") # split by domain data = dataset.filter(lambda example: example["domain"] == "ted") ``` ## Citation Information If you use this data please cite the following works: - [Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation](https://aclanthology.org/2021.tacl-1.87/) - [Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations on TED and News Domain](https://aclanthology.org/2021.wmt-1.73/) - [Results of WMT22 Metrics Shared Task: Stop Using BLEU – Neural Metrics Are Better and More Robust](https://aclanthology.org/2022.wmt-1.2/)
RicardoRei/wmt-mqm-human-evaluation
[ "size_categories:100K<n<1M", "language:en", "language:de", "language:ru", "language:zh", "license:apache-2.0", "mt-evaluation", "WMT", "region:us" ]
2023-02-16T17:14:16+00:00
{"language": ["en", "de", "ru", "zh"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "tags": ["mt-evaluation", "WMT"]}
2023-02-16T18:29:11+00:00
f95ffe58983638bf31a5c80d43687fdf1cba56e0
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information If you used the datasets and models in this repository, please cite it. ```bibtex @misc{https://doi.org/10.48550/arxiv.2302.09611, doi = {10.48550/ARXIV.2302.09611}, url = {https://arxiv.org/abs/2302.09611}, author = {Sartipi, Amir and Fatemi, Afsaneh}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### Contributions [More Information Needed]
Amir13/conll2003-persian
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:crowdsourced", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|conll2003", "language:fa", "license:other", "named entity recognition", "arxiv:2302.09611", "region:us" ]
2023-02-16T17:36:24+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["machine-generated"], "language": ["fa"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["extended|conll2003"], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition"], "pretty_name": "conll2003-persian", "tags": ["named entity recognition"], "train-eval-index": [{"col_mapping": {"ner_tags": "tags", "tokens": "tokens"}, "config": "conll2003", "metrics": [{"name": "seqeval", "type": "seqeval"}], "splits": {"eval_split": "test", "train_split": "train"}, "task": "token-classification", "task_id": "entity_extraction"}]}
2023-02-21T06:54:17+00:00
97436e50a8873f5b236e1de91bb55465988fa748
Come collect LoRAs from CivitAI for all your generating needs! Explore the SafeDump for SFW LoRAs or dive head-deep into the CumDump for... well, I think you get it. Disclaimer: Absolutely none of these LoRAs belong to me. I am uploading these files here for my own personal use. Support their creators by liking their works and following them on civitai.com Enjoy! --- license: other ---
Ubque/The_LoRA_Dump
[ "region:us" ]
2023-02-16T17:43:24+00:00
{}
2023-03-01T03:32:57+00:00
00b823e0df95a3ad565436da3a9874cb18bf625e
# Dataset Card for "miniwobplusplus_episodes" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LucasThil/miniwobplusplus_episodes
[ "region:us" ]
2023-02-16T17:59:24+00:00
{"dataset_info": {"features": [{"name": "episodes", "dtype": "string"}, {"name": "actions", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3384285009, "num_examples": 16794}], "download_size": 276652178, "dataset_size": 3384285009}}
2023-02-16T18:09:20+00:00
ab45e601c6c268738bbce1c95974000f96cdf294
# Dataset Card for "icdar2023vqabd-small-tables-train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joytafty/icdar2023vqabd-small-tables-train
[ "region:us" ]
2023-02-16T18:09:16+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 3153797.0, "num_examples": 244}], "download_size": 2872591, "dataset_size": 3153797.0}}
2023-02-16T18:09:21+00:00
bc3acfc5a0fda60e6705161469e54a204381a1b4
# Dataset Card for "icdar2023vqabd-small-tables-val" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joytafty/icdar2023vqabd-small-tables-val
[ "region:us" ]
2023-02-16T18:09:22+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "validation", "num_bytes": 305631.0, "num_examples": 19}], "download_size": 274240, "dataset_size": 305631.0}}
2023-02-16T18:09:27+00:00
bad9ab569d347d88e8e48bc69c15af32c6ce8495
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information If you used the datasets and models in this repository, please cite it. ```bibtex @misc{https://doi.org/10.48550/arxiv.2302.09611, doi = {10.48550/ARXIV.2302.09611}, url = {https://arxiv.org/abs/2302.09611}, author = {Sartipi, Amir and Fatemi, Afsaneh}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### Contributions [More Information Needed]
Amir13/ontonotes5-persian
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|conll2012_ontonotesv5", "language:fa", "license:other", "named entity recognition", "arxiv:2302.09611", "region:us" ]
2023-02-16T18:21:35+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["machine-generated"], "language": ["fa"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["extended|conll2012_ontonotesv5"], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition"], "pretty_name": "ontonotes5-persian", "tags": ["named entity recognition"]}
2023-02-21T06:54:46+00:00
7c2a91c95ae7ebaaa8d24092754b1069afdff612
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information If you used the datasets and models in this repository, please cite it. ```bibtex @misc{https://doi.org/10.48550/arxiv.2302.09611, doi = {10.48550/ARXIV.2302.09611}, url = {https://arxiv.org/abs/2302.09611}, author = {Sartipi, Amir and Fatemi, Afsaneh}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### Contributions [More Information Needed]
Amir13/wnut2017-persian
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:crowdsourced", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "language:fa", "license:other", "named entity recognition", "arxiv:2302.09611", "region:us" ]
2023-02-16T18:25:53+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["machine-generated"], "language": ["fa"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition"], "pretty_name": "wnut2017-persian", "tags": ["named entity recognition"]}
2023-02-21T06:55:18+00:00
c337ba66b452b10b7fafc8e4da54302c6f785e2d
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information If you used the datasets and models in this repository, please cite it. ```bibtex @misc{https://doi.org/10.48550/arxiv.2302.09611, doi = {10.48550/ARXIV.2302.09611}, url = {https://arxiv.org/abs/2302.09611}, author = {Sartipi, Amir and Fatemi, Afsaneh}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### Contributions [More Information Needed]
Amir13/ncbi-persian
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:extended|ncbi_disease", "language:fa", "license:other", "named entity recognition", "arxiv:2302.09611", "region:us" ]
2023-02-16T18:31:51+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["machine-generated"], "language": ["fa"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["extended|ncbi_disease"], "task_categories": ["token-classification"], "task_ids": ["named-entity-recognition"], "pretty_name": "ncbi-persian", "tags": ["named entity recognition"], "train-eval-index": [{"col_mapping": {"ner_tags": "target", "tokens": "text"}, "config": "ncbi_disease", "metrics": [{"name": "Accuracy", "type": "accuracy"}, {"args": {"average": "macro"}, "name": "F1 macro", "type": "f1"}, {"args": {"average": "micro"}, "name": "F1 micro", "type": "f1"}, {"args": {"average": "weighted"}, "name": "F1 weighted", "type": "f1"}, {"args": {"average": "macro"}, "name": "Precision macro", "type": "precision"}, {"args": {"average": "micro"}, "name": "Precision micro", "type": "precision"}, {"args": {"average": "weighted"}, "name": "Precision weighted", "type": "precision"}, {"args": {"average": "macro"}, "name": "Recall macro", "type": "recall"}, {"args": {"average": "micro"}, "name": "Recall micro", "type": "recall"}, {"args": {"average": "weighted"}, "name": "Recall weighted", "type": "recall"}], "splits": {"eval_split": "test", "train_split": "train"}, "task": "token-classification"}]}
2023-02-21T06:55:44+00:00
18f9115288791e4fa26a675c19cf9b19a57b458a
PlinStudios/plynkz
[ "license:cc", "region:us" ]
2023-02-16T18:42:44+00:00
{"license": "cc"}
2023-02-16T19:20:50+00:00
301de385bf05b0c00a8f4be74965e186164dd425
# Dataset Summary This dataset contains all DA human annotations from previous WMT News Translation shared tasks. The data is organised into 8 columns: - lp: language pair - src: input text - mt: translation - ref: reference translation - score: z score - raw: direct assessment - annotators: number of annotators - domain: domain of the input text (e.g. news) - year: collection year You can also find the original data for each year in the results section https://www.statmt.org/wmt{YEAR}/results.html e.g: for 2020 data: [https://www.statmt.org/wmt20/results.html](https://www.statmt.org/wmt20/results.html) ## Python usage: ```python from datasets import load_dataset dataset = load_dataset("RicardoRei/wmt-da-human-evaluation", split="train") ``` There is no standard train/test split for this dataset but you can easily split it according to year, language pair or domain. E.g. : ```python # split by year data = dataset.filter(lambda example: example["year"] == 2022) # split by LP data = dataset.filter(lambda example: example["lp"] == "en-de") # split by domain data = dataset.filter(lambda example: example["domain"] == "news") ``` Note that most data is from News domain. ## Citation Information If you use this data please cite the WMT findings from previous years: - [Findings of the 2017 Conference on Machine Translation (WMT17)](https://aclanthology.org/W17-4717.pdf) - [Findings of the 2018 Conference on Machine Translation (WMT18)](https://aclanthology.org/W18-6401.pdf) - [Findings of the 2019 Conference on Machine Translation (WMT19)](https://aclanthology.org/W19-5301.pdf) - [Findings of the 2020 Conference on Machine Translation (WMT20)](https://aclanthology.org/2020.wmt-1.1.pdf) - [Findings of the 2021 Conference on Machine Translation (WMT21)](https://aclanthology.org/2021.wmt-1.1.pdf) - [Findings of the 2022 Conference on Machine Translation (WMT22)](https://aclanthology.org/2022.wmt-1.1.pdf)
RicardoRei/wmt-da-human-evaluation
[ "size_categories:1M<n<10M", "language:bn", "language:cs", "language:de", "language:en", "language:et", "language:fi", "language:fr", "language:gu", "language:ha", "language:hi", "language:is", "language:ja", "language:kk", "language:km", "language:lt", "language:lv", "language:pl", "language:ps", "language:ru", "language:ta", "language:tr", "language:uk", "language:xh", "language:zh", "language:zu", "license:apache-2.0", "mt-evaluation", "WMT", "41-lang-pairs", "region:us" ]
2023-02-16T18:49:07+00:00
{"language": ["bn", "cs", "de", "en", "et", "fi", "fr", "gu", "ha", "hi", "is", "ja", "kk", "km", "lt", "lv", "pl", "ps", "ru", "ta", "tr", "uk", "xh", "zh", "zu"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "tags": ["mt-evaluation", "WMT", "41-lang-pairs"]}
2023-02-17T10:41:18+00:00
ce9bd9084eb48db58311f5b5dd8f5cbd942d9039
# Dataset Card for "miniwobplusplus_ready" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LucasThil/miniwobplusplus_ready
[ "region:us" ]
2023-02-16T19:09:31+00:00
{"dataset_info": {"features": [{"name": "episodes", "dtype": "string"}, {"name": "actions", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3387412534, "num_examples": 815482}], "download_size": 288210838, "dataset_size": 3387412534}}
2023-02-16T19:25:21+00:00
90fdd110608a6eed95977ed0962be8d2804ca1d7
nicoco404/AITA_labeled_posts
[ "region:us" ]
2023-02-16T20:10:19+00:00
{}
2023-02-16T22:35:49+00:00
e4c0747eef9da8eb14de6036a1396f3e8c9634cf
# Dataset Card for "home_depot" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) [source](https://www.kaggle.com/competitions/home-depot-product-search-relevance) Dataset Description This data set contains a number of products and real customer search terms from Home Depot's website. The challenge is to predict a relevance score for the provided combinations of search terms and products. To create the ground truth labels, Home Depot has crowdsourced the search/product pairs to multiple human raters. The relevance is a number between 1 (not relevant) to 3 (highly relevant). For example, a search for "AA battery" would be considered highly relevant to a pack of size AA batteries (relevance = 3), mildly relevant to a cordless drill battery (relevance = 2), and not relevant to a snow shovel (relevance = 1). Each pair was evaluated by at least three human raters. The provided relevance scores are the average value of the ratings. There are three additional things to know about the ratings: The specific instructions given to the raters is provided in relevance_instructions.docx. Raters did not have access to the attributes. Raters had access to product images, while the competition does not include images. Your task is to predict the relevance for each pair listed in the test set. Note that the test set contains both seen and unseen search terms.
bstds/home_depot
[ "region:us" ]
2023-02-16T20:34:34+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "entity_id", "dtype": "int64"}, {"name": "name", "dtype": "string"}, {"name": "query", "dtype": "string"}, {"name": "relevance", "dtype": "float64"}, {"name": "description", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 74803048, "num_examples": 74067}], "download_size": 32449185, "dataset_size": 74803048}}
2023-02-16T20:35:36+00:00
3f63b31100a09af8e3f2c320f27c8eadaa0e910d
# Dataset Card for "large-algae-wirs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
samitizerxu/large-algae-wirs
[ "region:us" ]
2023-02-16T20:49:51+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "1", "1": "2", "2": "3", "3": "4", "4": "5", "5": "test"}}}}, {"name": "uid", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 390000704.53, "num_examples": 17035}, {"name": "test", "num_bytes": 140940912.244, "num_examples": 6494}], "download_size": 520667798, "dataset_size": 530941616.7739999}}
2023-02-17T02:44:23+00:00
8eb50ecb70db4ac1a7184b5506396cc542b4c664
# Dataset Card for "large-algae-rgb" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
samitizerxu/large-algae-rgb
[ "region:us" ]
2023-02-16T20:54:05+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "1", "1": "2", "2": "3", "3": "4", "4": "5", "5": "test"}}}}, {"name": "uid", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 344037940.735, "num_examples": 17035}, {"name": "test", "num_bytes": 128411265.258, "num_examples": 6494}], "download_size": 461637680, "dataset_size": 472449205.99300003}}
2023-02-17T02:39:49+00:00
96beb9a3390e597560c1fedb72b81e244bc00856
# Dataset Card for "sq-babi_nli_indefinite-knowledge" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
niv-al/sq-babi_nli_indefinite-knowledge
[ "language:sq", "region:us" ]
2023-02-16T20:58:43+00:00
{"language": ["sq"], "dataset_info": {"features": [{"name": "sentence1", "dtype": "string"}, {"name": "sentence2", "dtype": "string"}, {"name": "labels", "dtype": {"class_label": {"names": {"0": "not-entailed", "1": "entailed"}}}}], "splits": [{"name": "train", "num_bytes": 160256, "num_examples": 1000}, {"name": "validation", "num_bytes": 23468, "num_examples": 144}, {"name": "test", "num_bytes": 23128, "num_examples": 144}], "download_size": 41242, "dataset_size": 206852}}
2023-02-18T20:00:06+00:00
b52e930385cf5ed7f063072c3f7bd17b599a16cf
# Dataset Card for AfriSenti Dataset <p align="center"> <img src="https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/images/afrisenti-twitter.png", width="700" height="500"> -------------------------------------------------------------------------------- ## Dataset Description - **Homepage:** https://github.com/afrisenti-semeval/afrisent-semeval-2023 - **Repository:** [GitHub](https://github.com/afrisenti-semeval/afrisent-semeval-2023) - **Paper:** [AfriSenti: AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages](https://arxiv.org/pdf/2302.08956.pdf) - **Paper:** [SemEval-2023 Task 12: Sentiment Analysis for African Languages (AfriSenti-SemEval)](https://arxiv.org/pdf/2304.06845.pdf) - **Paper:** [NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis](https://arxiv.org/pdf/2201.08277.pdf) - **Leaderboard:** N/A - **Point of Contact:** [shamsuddeen Muhammad]([email protected]) ### Dataset Summary AfriSenti is the largest sentiment analysis dataset for under-represented African languages, covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba). The datasets are used in the first Afrocentric SemEval shared task, SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval). AfriSenti allows the research community to build sentiment analysis systems for various African languages and enables the study of sentiment and contemporary language use in African languages. ### Supported Tasks and Leaderboards The AfriSenti can be used for a wide range of sentiment analysis tasks in African languages, such as sentiment classification, sentiment intensity analysis, and emotion detection. This dataset is suitable for training and evaluating machine learning models for various NLP tasks related to sentiment analysis in African languages. [SemEval 2023 Task 12 : Sentiment Analysis for African Languages](https://codalab.lisn.upsaclay.fr/competitions/7320) ### Languages 14 African languages (Amharic (amh), Algerian Arabic (ary), Hausa(hau), Igbo(ibo), Kinyarwanda(kin), Moroccan Arabic/Darija(arq), Mozambican Portuguese(por), Nigerian Pidgin (pcm), Oromo (oro), Swahili(swa), Tigrinya(tir), Twi(twi), Xitsonga(tso), and Yoruba(yor)). ## Dataset Structure ### Data Instances For each instance, there is a string for the tweet and a string for the label. See the AfriSenti [dataset viewer](https://huggingface.co/datasets/shmuhammad/AfriSenti/viewer/shmuhammad--AfriSenti/train) to explore more examples. ``` { "tweet": "string", "label": "string" } ``` ### Data Fields The data fields are: ``` tweet: a string feature. label: a classification label, with possible values including positive, negative and neutral. ``` ### Data Splits The AfriSenti dataset has 3 splits: train, validation, and test. Below are the statistics for Version 1.0.0 of the dataset. | | ama | arq | hau | ibo | ary | orm | pcm | pt-MZ | kin | swa | tir | tso | twi | yo | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | train | 5,982 | 1,652 | 14,173 | 10,193 | 5,584| - | 5,122 | 3,064 | 3,303 | 1,811 | - | 805 | 3,482| 8,523 | | dev | 1,498 | 415 | 2,678 | 1,842 | 1,216 | 397 | 1,282 | 768 | 828 | 454 | 399 | 204 | 389 | 2,091 | | test | 2,000 | 959 | 5,304 | 3,683 | 2,962 | 2,097 | 4,155 | 3,663 | 1,027 | 749 | 2,001 | 255 | 950 | 4,516 | | total | 9,483 | 3,062 | 22,155 | 15,718 | 9,762 | 2,494 | 10,559 | 7,495 | 5,158 | 3,014 | 2,400 | 1,264 | 4,821 | 15,130 | ### How to use it ```python from datasets import load_dataset # you can load specific languages (e.g., Amharic). This download train, validation and test sets. ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh") # train set only ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "train") # test set only ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "test") # validation set only ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "validation") ``` ## Dataset Creation ### Curation Rationale AfriSenti Version 1.0.0 aimed to be used in the first Afrocentric SemEval shared task **[SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval)](https://afrisenti-semeval.github.io)**. ### Source Data Twitter #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information We anonymized the tweets by replacing all *@mentions* by *@user* and removed all URLs. ## Considerations for Using the Data ### Social Impact of Dataset The Afrisenti dataset has the potential to improve sentiment analysis for African languages, which is essential for understanding and analyzing the diverse perspectives of people in the African continent. This dataset can enable researchers and developers to create sentiment analysis models that are specific to African languages, which can be used to gain insights into the social, cultural, and political views of people in African countries. Furthermore, this dataset can help address the issue of underrepresentation of African languages in natural language processing, paving the way for more equitable and inclusive AI technologies. [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators AfriSenti is an extension of NaijaSenti, a dataset consisting of four Nigerian languages: Hausa, Yoruba, Igbo, and Nigerian-Pidgin. This dataset has been expanded to include other 10 African languages, and was curated with the help of the following: | Language | Dataset Curators | |---|---| | Algerian Arabic (arq) | Nedjma Ousidhoum, Meriem Beloucif | | Amharic (ama) | Abinew Ali Ayele, Seid Muhie Yimam | | Hausa (hau) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | | Igbo (ibo) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | | Kinyarwanda (kin)| Samuel Rutunda | | Moroccan Arabic/Darija (ary) | Oumaima Hourrane | | Mozambique Portuguese (pt-MZ) | Felermino Dário Mário António Ali | | Nigerian Pidgin (pcm) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | | Oromo (orm) | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell, Tadesse Belay | | Swahili (swa) | Davis Davis | | Tigrinya (tir) | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell, Tadesse Belay | | Twi (twi) | Salomey Osei, Bernard Opoku, Steven Arthur | | Xithonga (tso) | Felermino Dário Mário António Ali | | Yoruba (yor) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | ### Licensing Information This AfriSenti is licensed under a Creative Commons Attribution 4.0 International License ### Citation Information ``` @inproceedings{Muhammad2023AfriSentiAT, title={AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages}, author={Shamsuddeen Hassan Muhammad and Idris Abdulmumin and Abinew Ali Ayele and Nedjma Ousidhoum and David Ifeoluwa Adelani and Seid Muhie Yimam and Ibrahim Sa'id Ahmad and Meriem Beloucif and Saif Mohammad and Sebastian Ruder and Oumaima Hourrane and Pavel Brazdil and Felermino D'ario M'ario Ant'onio Ali and Davis Davis and Salomey Osei and Bello Shehu Bello and Falalu Ibrahim and Tajuddeen Gwadabe and Samuel Rutunda and Tadesse Belay and Wendimu Baye Messelle and Hailu Beshada Balcha and Sisay Adugna Chala and Hagos Tesfahun Gebremichael and Bernard Opoku and Steven Arthur}, year={2023} } ``` ``` @article{muhammad2023semeval, title={SemEval-2023 Task 12: Sentiment Analysis for African Languages (AfriSenti-SemEval)}, author={Muhammad, Shamsuddeen Hassan and Abdulmumin, Idris and Yimam, Seid Muhie and Adelani, David Ifeoluwa and Ahmad, Ibrahim Sa'id and Ousidhoum, Nedjma and Ayele, Abinew and Mohammad, Saif M and Beloucif, Meriem}, journal={arXiv preprint arXiv:2304.06845}, year={2023} } ``` ### Contributions [More Information Needed]
shmuhammad/AfriSenti-twitter-sentiment
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-classification", "task_ids:sentiment-scoring", "task_ids:semantic-similarity-classification", "task_ids:semantic-similarity-scoring", "multilinguality:monolingual", "multilinguality:multilingual", "size_categories:100K<n<1M", "language:amh", "language:ary", "language:ar", "language:arq", "language:hau", "language:ibo", "language:kin", "language:por", "language:pcm", "language:eng", "language:oro", "language:swa", "language:tir", "language:twi", "language:tso", "language:yor", "sentiment analysis, Twitter, tweets", "sentiment", "arxiv:2302.08956", "arxiv:2304.06845", "arxiv:2201.08277", "region:us" ]
2023-02-16T21:02:20+00:00
{"language": ["amh", "ary", "ar", "arq", "hau", "ibo", "kin", "por", "pcm", "eng", "oro", "swa", "tir", "twi", "tso", "yor"], "multilinguality": ["monolingual", "multilingual"], "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis", "sentiment-classification", "sentiment-scoring", "semantic-similarity-classification", "semantic-similarity-scoring"], "pretty_name": "AfriSenti", "tags": ["sentiment analysis, Twitter, tweets", "sentiment"]}
2023-09-03T08:59:15+00:00
f85b9387a7f10190376806d3c7d959e201ef21b2
# Dataset Card for "class_dataset_real" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real
[ "region:us" ]
2023-02-16T22:01:29+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz_h", "1": "bilanz_v", "2": "guv", "3": "kontennachweis_bilanz", "4": "kontennachweis_guv", "5": "other", "6": "text"}}}}], "splits": [{"name": "train", "num_bytes": 330330968.875, "num_examples": 1117}, {"name": "test", "num_bytes": 99656474.0, "num_examples": 280}], "download_size": 400425817, "dataset_size": 429987442.875}}
2023-02-16T22:03:16+00:00
bb0d3c02dc82d9d5a24be1b92661753634268191
# Dataset Card for "class_dataset_real2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real2
[ "region:us" ]
2023-02-16T22:04:23+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz_h", "1": "bilanz_v", "2": "guv", "3": "kontennachweis_bilanz", "4": "kontennachweis_guv", "5": "other"}}}}], "splits": [{"name": "train", "num_bytes": 345218235.409, "num_examples": 1117}, {"name": "test", "num_bytes": 87105530.0, "num_examples": 280}], "download_size": 400622867, "dataset_size": 432323765.409}}
2023-02-16T22:06:16+00:00
42c411e39c022f293eaae02d651fa8ec4ad2869f
# Dataset Card for "class_dataset_real3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real3
[ "region:us" ]
2023-02-16T22:18:06+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz", "1": "guv", "2": "kontennachweis_bilanz", "3": "kontennachweis_guv", "4": "other"}}}}], "splits": [{"name": "train", "num_bytes": 328417078.735, "num_examples": 1117}, {"name": "test", "num_bytes": 99582960.0, "num_examples": 280}], "download_size": 400600544, "dataset_size": 428000038.735}}
2023-02-16T22:19:27+00:00
cb0283cf4334bb144010dbfa18769254c86afecd
Eneru2/text-to-svsprites
[ "license:wtfpl", "region:us" ]
2023-02-16T22:20:54+00:00
{"license": "wtfpl"}
2023-02-16T22:35:33+00:00
57d34fad1cf7d4d9e71774ea17c4c1a7f57af8d4
# Implicit Hate Speech _Latent Hatred: A Benchmark for Understanding Implicit Hate Speech_ [[Read the Paper]](https://aclanthology.org/2021.emnlp-main.29/) | [[Take a Survey to Access the Data]](https://forms.gle/QxCpEbVp91Z35hWFA) | [[Download the Data]](https://www.dropbox.com/s/24meryhqi1oo0xk/implicit-hate-corpus.zip?dl=0) <img src="frontpage.png" alt="frontpage" width="650"/> ## *Why Implicit Hate?* It is important to consider the subtle tricks that many extremists use to mask their threats and abuse. These more implicit forms of hate speech may easily go undetected by keyword detection systems, and even the most advanced architectures can fail if they have not been trained on implicit hate speech ([Caselli et al. 2020](https://aclanthology.org/2020.lrec-1.760/)). ## *Where can I download the data?* If you have not already, please first complete a short [survey](https://forms.gle/QxCpEbVp91Z35hWFA). Then follow [this link to download](https://www.dropbox.com/s/p1ctnsg3xlnupwr/implicit-hate-corpus.zip?dl=0) (2 MB, expands to 6 MB). ## *What's 'in the box?'* This dataset contains **22,056** tweets from the most prominent extremist groups in the United States; **6,346** of these tweets contain *implicit hate speech.* We decompose the implicit hate class using the following taxonomy (distribution shown on the left). * (24.2%) **Grievance:** frustration over a minority group's perceived privilege. * (20.0%) **Incitement:** implicitly promoting known hate groups and ideologies (e.g. by flaunting in-group power). * (13.6%) **Inferiority:** implying some group or person is of lesser value than another. * (12.6%) **Irony:** using sarcasm, humor, and satire to demean someone. * (17.9%) **Stereotypes:** associating a group with negative attribute using euphemisms, circumlocution, or metaphorical language. * (10.5%) **Threats:** making an indirect commitment to attack someone's body, well-being, reputation, liberty, etc. * (1.2%) **Other** Each of the 6,346 implicit hate tweets also has free-text annotations for *target demographic group* and an *implied statement* to describe the underlying message (see banner image above). ## *What can I do with this data?* State-of-the-art neural models may be able to learn from our data how to (1) classify this more difficult class of hate speech and (3) explain implicit hate by generating descriptions of both the *target* and the *implied message.* As our [paper baselines](#) show, neural models still have a ways to go, especially with classifying *implicit hate categories*, but overall, the results are promising, especially with *implied statement generation,* an admittedly challenging task. We hope you can extend our baselines and further our efforts to understand and address some of these most pernicious forms of language that plague the web, especially among extremist groups. ## *How do I cite this work?* **Citation:** > ElSherief, M., Ziems, C., Muchlinski, D., Anupindi, V., Seybolt, J., De Choudhury, M., & Yang, D. (2021). Latent Hatred: A Benchmark for Understanding Implicit Hate Speech. In _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)_. **BibTeX:** ```tex @inproceedings{elsherief-etal-2021-latent, title = "Latent Hatred: A Benchmark for Understanding Implicit Hate Speech", author = "ElSherief, Mai and Ziems, Caleb and Muchlinski, David and Anupindi, Vaishnavi and Seybolt, Jordyn and De Choudhury, Munmun and Yang, Diyi", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.29", pages = "345--363" } ```
SALT-NLP/ImplicitHate
[ "region:us" ]
2023-02-16T22:45:19+00:00
{}
2023-02-16T23:00:38+00:00
a3fe78950263236caa5b6d8e94a9936020212cbb
# `peptides-functional` ### Dataset Summary | Dataset | Domain | Task | Node Feat. (dim) | Edge Feat. (dim) | Perf. Metric | |---|---|---|---|---|---| | Peptides-func | Chemistry | Graph Classification | Atom Encoder (9) | Bond Encoder (3) | AP | Dataset | # Graphs | # Nodes | μ Nodes | μ Deg. | # Edges | μ Edges | μ Short. Path | μ Diameter |---|---:|---:|---:|:---:|---:|---:|---:|---:| | Peptides-func | 15,535 | 2,344,859 | 150.94 | 2.04 | 4,773,974 | 307.30 | 20.89±9.79 | 56.99±28.72 | ## Additional Information ### Dataset Curators * Vijay Prakash Dwivedi ([vijaydwivedi75](https://github.com/vijaydwivedi75)) ### Citation Information ``` @article{dwivedi2022LRGB, title={Long Range Graph Benchmark}, author={Dwivedi, Vijay Prakash and Rampášek, Ladislav and Galkin, Mikhail and Parviz, Ali and Wolf, Guy and Luu, Anh Tuan and Beaini, Dominique}, journal={arXiv:2206.08164}, year={2022} } ```
LRGB/peptides-functional
[ "task_categories:graph-ml", "size_categories:1M<n<10M", "license:cc-by-nc-4.0", "lrgb", "region:us" ]
2023-02-16T23:28:39+00:00
{"license": "cc-by-nc-4.0", "size_categories": ["1M<n<10M"], "task_categories": ["graph-ml"], "tags": ["lrgb"]}
2023-02-16T23:32:21+00:00
11eeb2144def00a55deb2a4f8fada24ea7b207af
# `peptides-functional` ### Dataset Summary | Dataset | Domain | Task | Node Feat. (dim) | Edge Feat. (dim) | Perf. Metric | |---|---|---|---|---|---| | Peptides-struct | Chemistry | Graph Regression | Atom Encoder (9) | Bond Encoder (3) | MAE | | Dataset | # Graphs | # Nodes | μ Nodes | μ Deg. | # Edges | μ Edges | μ Short. Path | μ Diameter |---|---:|---:|---:|:---:|---:|---:|---:|---:| | Peptides-struct | 15,535 | 2,344,859 | 150.94 | 2.04 | 4,773,974 | 307.30 | 20.89±9.79 | 56.99±28.72 | ## Additional Information ### Dataset Curators * Vijay Prakash Dwivedi ([vijaydwivedi75](https://github.com/vijaydwivedi75)) ### Citation Information ``` @article{dwivedi2022LRGB, title={Long Range Graph Benchmark}, author={Dwivedi, Vijay Prakash and Rampášek, Ladislav and Galkin, Mikhail and Parviz, Ali and Wolf, Guy and Luu, Anh Tuan and Beaini, Dominique}, journal={arXiv:2206.08164}, year={2022} } ```
LRGB/peptides-structural
[ "task_categories:graph-ml", "size_categories:1M<n<10M", "license:cc-by-nc-4.0", "lrgb", "region:us" ]
2023-02-16T23:35:22+00:00
{"license": "cc-by-nc-4.0", "size_categories": ["1M<n<10M"], "task_categories": ["graph-ml"], "tags": ["lrgb"]}
2023-02-16T23:37:39+00:00
c15bc4801b8444245a88afc4fd024f3b45f95117
# `peptides-functional` ### Dataset Summary | Dataset | Domain | Task | Node Feat. (dim) | Edge Feat. (dim) | Perf. Metric | |---|---|---|---|---|---| | PCQM-Contact | Quantum Chemistry | Link Prediction | Atom Encoder (9) | Bond Encoder (3) | Hits@K, MRR | Dataset | # Graphs | # Nodes | μ Nodes | μ Deg. | # Edges | μ Edges | μ Short. Path | μ Diameter |---|---:|---:|---:|:---:|---:|---:|---:|---:| | PCQM-Contact | 529,434 | 15,955,687 | 30.14 | 2.03 | 32,341,644 | 61.09 |4.63±0.63 | 9.86±1.79 | ## Additional Information ### Dataset Curators * Vijay Prakash Dwivedi ([vijaydwivedi75](https://github.com/vijaydwivedi75)) ### Citation Information ``` @article{dwivedi2022LRGB, title={Long Range Graph Benchmark}, author={Dwivedi, Vijay Prakash and Rampášek, Ladislav and Galkin, Mikhail and Parviz, Ali and Wolf, Guy and Luu, Anh Tuan and Beaini, Dominique}, journal={arXiv:2206.08164}, year={2022} } ```
LRGB/PCQM-Contact
[ "task_categories:graph-ml", "size_categories:1M<n<10M", "license:cc-by-4.0", "lrgb", "region:us" ]
2023-02-16T23:38:03+00:00
{"license": "cc-by-4.0", "size_categories": ["1M<n<10M"], "task_categories": ["graph-ml"], "tags": ["lrgb"]}
2023-02-17T01:55:38+00:00
0a5be68bc47be0ffcdbe098cce5f738db81782a7
01:00:21 BTW AlDS: Smashing! 01:28:47 BTW AlDS: Smashing! 14:01:13 BTW AlDS: Smashing! 15:04:01 BTW AlDS: Smashing! 21:22:56 CaptainOnLSD: Adaadaaa 21:34:53 CaptainOnLSD: Dadaaaddddw123dd 22:01:19 CaptainOnLSD: Aaaadad 22:01:50 <img=2>BTW AlDS: !Ttm 22:58:19 <img=2>Gym Tool: No jaw? 22:58:24 <img=2>KC Chiefz: 0nope 22:58:30 <img=2>Gym Tool: Y 22:58:38 <img=2>Gym Tool: No cgaunt?!!? 22:58:53 <img=2>KC Chiefz: I've only gotten like 3 basalisk tasks 22:59:15 <img=2>KC Chiefz: I don't like bossing lol 22:59:22 <img=2>Gym Tool: Oof 22:59:38 <img=2>KC Chiefz: Maybe I'll try more after maxing 23:00:40 <img=2>KC Chiefz: Little discouraging not getting a b.P. Til 1840 kc lol 03:26:15 ShivaRio: Ok 03:26:16 SmokeTreesK: I can convert it 03:26:16 ZombieJJB: Zero 03:26:19 ShivaRio: Doubling money max 1m 03:26:20 ZombieJJB: Zer9 03:26:20 Frost S1Q2: Gòrâkpùrê hâs bëën Pãíd: 90K @ 03:26:20 03:26:25 KINDPRINCE: Doubling money 03:26:25 Frost S1Q2: <lt>31<gt> Fròsty Bëts! F2P-drëssëd 'bòts' cán't trådë pàyòùts! 03:26:28 FreeCrackNub: I only have 18k 03:26:28 ofl86k2k1cu: Doubling money 03:26:31 KINDPRINCE: Doubling money 03:26:32 FreeCrackNub: ;/ 03:26:32 Frost S1Q2: <lt>32<gt> Fròsty Bëts! Rècëívë mystèry bòxës ëvëry 5 bëts <lt><gt> (10K-500M) <lt><gt> 03:26:34 I Dumbledore: He is scamming 03:26:35 ShivaRio: Doubling money max 1m 03:26:35 humajutt jan: 10m amx 03:26:38 KINDPRINCE: Doubling money 03:26:42 L88r: Show 20m 03:26:43 Returnjosh: Can i have cape 03:26:44 chagmon: Sell full gilded 24m 03:26:46 little zalim: Hi 03:26:50 POV stepsis: Rat papi 50m pls i need i por 03:26:50 Carsuper: Np 03:26:51 Rat Papi: Geoff you look good 03:26:51 Lil Guah: Hi 03:26:51 HumblyThot: R u discord mod?? 03:26:52 CraelNutella: ().34 u s d | M ----``" O s r s g d , C O M ``"no verification 03:26:53 Puretheif310: <lt>3 03:26:53 Carsuper: Lol 03:26:55 GeoffKelly11: Posing and everything 03:26:56 Carsuper: <lt>3 03:26:56 QUEEN 1000 S: Hi 03:26:58 Rat Papi: You need 50 m 03:26:58 Puretheif310: Xd 03:27:00 Rat Papi: I got you sec 03:27:01 POV stepsis: Pls 03:27:02 QUEEN 1000 S: Grjytti 03:27:02 GeoffKelly11: Just trying to be like you 03:27:03 POV stepsis: I por. 03:27:04 L88r: How u gonna scam successfully if u cant even show 03:27:10 chagmon: Sell full gilded 24m 03:27:11 little zalim: Bor halp 03:27:11 Carsuper: I make miracles happen 03:27:15 Carsuper: Xd 03:27:16 QUEEN 1000 S: J 03:27:18 Bakaribz: U are nt half my coin 03:27:19 Scream pie: Halfing any gp 1 trade 03:27:19 FreeCrackNub: Anyone so are a bind so I can go to sand crabs ? 03:27:19 GoreQuench: Can anyone please spare me a bond 03:27:20 ItsAramir: Anyone got a rune set? 03:27:23 McBushes: Oooh 03:27:25 humajutt jan: I got 5b 03:27:26 McBushes: Tryana scam 03:27:27 ItsAramir: Please 03:27:29 L88r: No u aint got shit lol 03:27:30 AlmightyYose: A rock 03:27:30 yoink07: Tf u scamming on a 126 for anyways 03:27:30 Bakaribz: Scammer <gt> 03:27:30 ShivaRio: Doubling money max 1m 03:27:31 sourpatch89: All items must go 03:27:31 KINDPRINCE: Doubling money 03:27:34 ItsAramir: Pretty please 03:27:36 L88r: 10k if ur lucky 03:27:37 ZombieJJB: What you mean 03:27:37 KINDPRINCE: Doubling money 03:27:39 FreeCrackNub: Can anyone donate a bond so I can go to sand crabs ? 03:27:39 Coin2p: No 03:27:43 Brentyr: For 250k, which in game pet I hate the most? 03:27:46 Msuomi69: Buy bond 6m 03:27:46 ShivaRio: Doubling money 03:27:47 ZombieJJB: I show you fiwh 03:27:49 KINDPRINCE: Doubling money 03:27:49 Trading4you: Buying burnt food 80 per 03:27:51 Rat Papi: Love you too 03:27:53 Carsuper: U look hot af 03:27:54 GeoffKelly11: Thats what im saying 03:27:59 ggk0kid: Ok i need do this gg guys 03:28:01 ATHENA-M11: Ofc 03:28:04 ggk0kid: Peace 03:28:08 4BetFold: Gllll pce 03:28:45 4BetFold: Or items 03:28:46 ATHENA-M11: Lol he scaming 03:29:15 7 Wise 2719: Se|l g()|d-----``" O s r s g d , C O M ``" No id ~No wait 03:29:31 Brentyr: Yeah, baby mole 03:29:31 Trading4you: Buying burnt food 80 per 03:29:32 KINDPRINCE: Doubling money 03:29:34 GUTS0493: Buy burnt food and flyer 03:29:34 Brentyr: Fk that mole 03:29:34 humajutt jan: 10m for 30m 03:29:35 ggk0kid: Hahah 03:29:35 Trading4you: Buying burnt food 80 per 03:29:36 SmokeTreesK: I have a untradable bond 03:29:36 L88r: Naked mole bis 03:29:37 AlexEdsell: Ayoo 03:29:37 KINDPRINCE: Doubling money 03:29:37 HumblyThot: I see 03:29:38 BreadDorito1: Can someone give me some coins 03:29:38 Trading4you: Buying burnt food 80 per 03:29:39 KINDPRINCE: 03:29:40 L88r: Ok 1 trade 03:29:43 Anya Starr: Need any donations pleasee 03:29:43 KINDPRINCE: 03:29:43 KINDPRINCE: 03:29:44 Msuomi69: Buy bond 6m 03:29:45 Luckyxxday: Enjoy 03:29:45 ZombieJJB: Ye need g9 mining actually 03:29:46 Returnjosh: Ty 03:29:48 GUTS0493: Buy burnt food and flyer 03:29:49 AlexEdsell: Yea frick that mole 03:29:50 humajutt jan: No 03:29:52 humajutt jan: 2 trade 03:29:52 Trading4you: ? 03:29:52 GoreQuench: Nice levels 03:29:53 L88r: Kk 03:29:55 jack skills: Lamb chops 03:29:55 SmokeTreesK: Selling untradable bond 03:29:56 Luckyxxday: Doubling 1m min 03:29:59 Msuomi69: ? 03:29:59 ShortyGemini: Help plz 03:30:00 Lambs Chop: Hi 03:30:00 GoreQuench: Can anyone please spare me a bond 03:30:02 GUTS0493: Buy burnt food and flyer 03:30:02 Dope Deala: Thx g 03:30:04 Returnjosh: Whoa 03:30:05 Dope Deala: Nice gear 03:30:05 GoreQuench: Willing to pay 1m extra in p2p 03:30:07 BreadDorito1: Can someone give me some coins 03:30:07 Anya Starr: Need any donations pleasee 03:30:07 Brentyr: Almost 7k mole kc and no pet 03:30:07 ZombieJJB: S3lling crack 03:30:07 AlmightyYose: Poor man need money to feed family 03:30:07 SmokeTreesK: Woah 03:30:07 Returnjosh: Thats gotta be rare? 03:30:08 ofl86k2k1cu: Doubling money 5k max 03:30:10 Bakaribz: 1 trade ? 03:30:11 L88r: Wtf 03:30:11 GoreQuench: Thnaks man 03:30:13 jack skills: Would you like to join my clan? 03:30:14 AntanasQ: Buy rune items 03:30:15 SmokeTreesK: I cant convert it 03:30:16 GUTS0493: Buy burnt food and flyer 03:30:16 AlexEdsell: Thats unreal lol 03:30:16 Z7z7Zzz: How long? 03:30:17 Luckyxxday: Doubling 1m minn50m max 03:30:17 L88r: On what acc 03:30:18 SmokeTreesK: 500k pls 03:30:19 ShivaRio: ??? 03:30:19 Brentyr: Yeah wtf 03:30:19 KINDPRINCE: Doubling money 03:30:20 jakkal_81: Don't trust Kindprince 03:30:20 ZombieJJB: Sellin meth 03:30:21 humajutt jan: 4k accpe 03:30:21 GoreQuench: Can anyone please spare me a bond 03:30:22 worksuks: Get it? 03:30:23 Lambs Chop: I'm good. Thanks 03:30:24 Brentyr: Veratyr 03:30:24 Dope Deala: I would but cant take the risk 03:30:25 GoreQuench: Fml 03:30:26 AntanasQ: Buy rune items 03:30:27 jack skills: Enjoy 03:30:27 Luckyxxday: Doubling 1m min 03:30:27 KINDPRINCE: Doubling money 03:30:28 GoreQuench: No sir 03:30:28 ShivaRio: Doubling money last 500k 03:30:29 GUTS0493: Buy burntnfood and flyer 03:30:29 Trading4you: Buying burnt food 80 per 03:30:30 ZombieJJB: S3lling meth 03:30:32 ofl86k2k1cu: Doubling money 5k max 03:30:32 Anya Starr: Need any donations pleaseee 03:30:33 L88r: Nuts 03:30:34 AlmightyYose: Poor man need money to feed family 03:30:34 FreeCrackNub: I need a bond too 03:30:36 Brentyr: I think it's at 6500 kc actually 03:30:40 humajutt jan: Enjoy 03:30:41 FreeCrackNub: I wanna go to sand crabs 03:30:42 AntanasQ: Buy rune items 03:30:42 Z7z7Zzz: How long? 03:30:43 GUTS0493: Buy burnt food and flyer 03:30:43 Returnjosh: Will u buy me the wolf cloak 03:30:44 L88r: Give it up 03:30:47 L88r: Made bank atleast 03:30:47 AntanasQ: Buy rune items 03:30:47 KINDPRINCE: Dobuling money 03:30:47 ShivaRio: Doubling money last 500k 03:30:48 Z7z7Zzz: How long? 03:30:49 Luckyxxday: Doubking for 5 mins 1 m min 03:30:49 humajutt jan: 10m for 30m 03:30:49 Dope Deala: Ty 03:30:49 L88r: U got diarys? 03:30:50 Charso Beees: Njoy 03:30:50 humajutt jan: 1mf or 3m 03:30:53 Brentyr: Yeah 03:30:53 ZombieJJB: Sellin meth 03:30:53 Trading4you: Buying burnt food 80 per 03:30:53 GoreQuench: 13 bucks is too mcuh man 03:30:53 KINDPRINCE: Doubling money 03:30:55 L88r: Good 03:30:56 Msuomi69: Buy bond 6m 03:30:56 GoreQuench: Idkkk abotu this 03:30:56 Trading4you: Buying burnt food 80 per 03:30:59 FreeCrackNub: Yeah it is 03:30:59 Msuomi69: Buy bond 6m 03:31:00 ofl86k2k1cu: Doubling money 5k max 03:31:02 sourpatch89: $$$$ 03:31:02 ZombieJJB: Wat you want 03:31:02 GUTS0493: Buy burntnfood and flyer 03:31:02 humajutt jan: 1m max 03:31:02 KINDPRINCE: Doublig money 03:31:03 Msuomi69: Buy bond 6m 03:31:05 Brentyr: Didn't help at all 03:31:05 Anya Starr: Need donations pleasee 03:31:07 jakkal_81: Don't trust Kikindkindprince 03:31:08 Msuomi69: Buy bond 6m 03:31:09 Brentyr: Fking bs 03:31:10 ZombieJJB: Meth or crack 03:31:10 Returnjosh: Dabb 03:31:11 Luckyxxday: 2 trade sir. 03:31:12 FreeCrackNub: Can anyone spare bond ? I wanna go to snow crabs 03:31:12 GUTS0493: Buy burntnfood wne flyer 03:31:13 GoreQuench: Can anyone please spare me a bond 03:31:13 Msuomi69: Buy bond 6m 03:31:13 KINDPRINCE: Double bonds 03:31:17 AntanasQ: Buy rune items 03:31:17 KINDPRINCE: Double bonds 03:31:18 Bakaribz: 1 trade 03:31:19 L88r: Lol its just good for loot 03:31:20 L88r: Noted shit 03:31:23 KINDPRINCE: Double bondds 03:31:24 jakkal_81: Don't trust kindprince 03:31:25 ZombieJJB: Sell8n meth 03:31:25 ShivaRio: Doubling money last 500k 03:31:26 GUTS0493: Buy bunt good and flyer 03:31:32 AlmightyYose: Lady vixen how much 03:31:32 Brentyr: Kinda rage quitted after I saw plenty of my clans members getting in 100kc or so 03:31:35 ShivaRio: Sorry double trade only 03:31:36 HumblyThot: Rat u look lovely 03:31:40 Bakaribz: Lol 03:31:52 GUTS0493: Buy burnt food snd flyer 03:31:52 HumblyThot: Cya <lt>3 03:31:53 FancyBunny: Cya im heading outt too 03:31:53 GlizzySlurpn: Nice 03:31:53 KINDPRINCE: Doubling money 03:31:56 Brentyr: Farming pet is being a nuisance as well 03:31:56 ShivaRio: I have successfully doubled 5 players today 03:31:57 KINDPRINCE: Doubling money 03:31:58 HumblyThot: Allright gn 03:31:59 ZombieJJB: Meth expensive ? 03:32:01 FancyBunny: Have fun 03:32:01 KINDPRINCE: Doubling money 03:32:01 GUTS0493: Buy burnt good and flyer 03:32:01 L88r: Agree 03:32:02 L88r: !Pets 03:32:03 Heromunch: Bruh why am i so bored rn 03:32:05 KINDPRINCE: Doubling money 03:32:06 POV stepsis: Rat papi what kind of drip is that 03:32:08 POV stepsis: You need bronze. 03:32:08 jakkal_81: Don't trust kindprince 03:32:10 L88r: Oh i got it on here lmfao 03:32:10 humajutt jan: Lol 03:32:11 KINDPRINCE: Doubling money 03:32:12 Msuomi69: Buy bond 6m 03:32:13 humajutt jan: Fake pets 03:32:13 L88r: Been grinding it on my other acc 03:32:14 Msuomi69: Buy bond 6m 03:32:14 ZombieJJB: Not free honey go 03:32:14 GlizzySlurpn: No 03:32:14 Brentyr: ¬¬ 03:32:17 GUTS0493: Buy burnt food and Flyer 03:32:17 Msuomi69: Buy bond 6m 03:32:19 ZombieJJB: Get money 03:32:23 Bakaribz: !Pet 03:32:25 Msuomi69: Buy bond 6m 03:32:25 POV stepsis: Selling bond 7m 03:32:25 ZombieJJB: Come back 03:32:26 Gimi: Cool cape and fit 03:32:26 BreadDorito1: Can someone give some coins 03:32:29 Msuomi69: Buy bond 6m 03:32:29 L88r: !Dbstats 03:32:31 AntanasQ: Buy rune items 03:32:31 Puretheif310: Hii 03:32:32 Joge the 3rd: Lookin for donations 03:32:32 Brentyr: When I get time I'll get back to grinding pets 03:32:32 HumblyThot: We look like bushy ballz 03:32:32 L88r: !Bdstats 03:32:35 GlizzySlurpn: Oh, ur trying to lure me 03:32:36 Msuomi69: Buy bond 6m 03:32:37 MagicMark97: Thanks man 03:32:37 Gimi: I want to get 99 craft 03:32:38 Joge the 3rd: Lookin for donations 03:32:38 HumblyThot: Ooop 03:32:38 AntanasQ: Buy rune itens 03:32:38 GUTS0493: Buy burnt food and flyer 03:32:40 Brentyr: Think I got only 7 pets or so 03:32:41 ZombieJJB: Then get free crack 03:32:42 POV stepsis: Get it 03:32:42 AntanasQ: Buy rune items 03:32:42 GlizzySlurpn: Lol 03:32:42 Puretheif310: Hii 03:32:42 McBushes: He just needs time to count money\ 03:32:43 Bakaribz: Pet! 03:32:43 L88r: Been doing champion scrolls lately 03:32:45 Bakaribz: Pet! 03:32:45 ShivaRio: Pls spread the word 03:32:46 HumblyThot: Just 1 ball 03:32:46 McBushes: Thats why 2 trades 03:32:46 Joge the 3rd: Lookin for donations please 03:32:47 Brentyr: Dang 03:32:48 MagicMark97: Suh 03:32:49 Brentyr: That's hardcore 03:32:50 Gimi: Need to earn more first 03:32:50 ShivaRio: Enjoy 03:32:51 GUTS0493: Buy burntnfood ane flyer 03:32:51 McBushes: Lmfao 03:32:53 L88r: 3/7 or whatever 03:32:56 HumblyThot: Oop 03:32:57 worksuks: I gotcha 03:32:58 Singlewood: 5 k 03:32:58 ZombieJJB: Buy me5h free crqck 03:32:58 Gimi: Then my next goal:D 03:32:59 L88r: Got jogre in 500 kills last night 03:33:02 HumblyThot: Nice 03:33:04 Brentyr: Dope 03:33:05 POV stepsis: Heromunch said hell lend you some money 03:33:05 HumblyThot: Successs 03:33:06 ShivaRio: Doubling money last 500k 03:33:08 POV stepsis: For your crafting journey 03:33:09 Shunakoma: Trading up 03:33:10 Joge the 3rd: Anybody wanna lend me some dough 03:33:13 Heromunch: :D 03:33:17 SHAHBAZ DAG: Fp200k 03:33:17 Rat Papi: Buying gf 03:33:25 Gimi: Damn thanks 03:33:28 POV stepsis: Selling organic bananas 300k ea. 03:33:28 HumblyThot: Ehm ehm 03:33:40 Nunney43: Do u have to be men to get 99 cape 03:33:40 4BetFold: Selling rune scimitar 1 trillion gp 03:33:51 Joge the 3rd: Lookin for gp loan or gp donations joge 03:33:51 SHAHBAZ DAG: Fp60b 03:33:52 POV stepsis: 1 trillion too much 03:33:53 Rat Papi: Buying gf 03:34:06 Heromunch: Hey yose 03:34:07 AlmightyYose: My man hero!! 03:34:10 worksuks: Rat I gotta wwig 03:34:10 SHAHBAZ DAG: Sty 03:34:10 HumblyThot: U lil stupid ahh bih i aint fukin with uuuu 03:34:14 Joge the 3rd: Lookin for gp loan or donation 03:34:14 SHAHBAZ DAG: Sry 03:34:16 Rat Papi: Hmmm 03:34:16 4BetFold: Buying a bidet 03:34:17 AlmightyYose: Wassup king 03:34:19 Heromunch: Hows things? 03:34:20 Rat Papi: I'll take it 03:34:21 POV stepsis: Does anyone have superbowl bets that'll make me 100k from $10 03:34:24 Nunney43: Do u have to be a member to get a 99 cape 03:34:26 worksuks: Sold 03:34:28 Joge the 3rd: Sup jose 03:34:30 AlmightyYose: Same old hbu 03:34:32 Heromunch: I can make you one 03:34:33 BTW AlDS: Smashing! 03:34:33 worksuks: Yes 03:34:37 Heromunch: Will take time though 03:34:40 Heromunch: Hahahaha 03:34:42 3Daph: ? 03:34:42 Nunney43: Damn okay 03:34:44 POV stepsis: How many legs 03:34:49 Heromunch: Alot 03:34:49 4BetFold: 4 03:35:13 worksuks: Hm are claws now? 80m? 03:35:14 Rat Papi: Hi 03:35:16 Rat Papi: Love you 03:35:20 POV stepsis: Do you watch nfl tho 03:35:20 Rat Papi: 90m rn 03:35:25 worksuks: Jesus 03:35:25 Queen Amelia: Lol 03:35:27 HumblyThot: 10gp from django 03:35:28 Heromunch: Come on maaaaaan 03:35:38 Heromunch: Of course i do 03:35:41 Lil Guah: Ay let me hold those claws 03:35:41 HumblyThot: If u dc about brands 03:35:43 POV stepsis: Brother im fucking listening then 03:35:44 GlizzySlurpn: Selling my ass west varrock basement 03:35:44 POV stepsis: Because i dont 03:35:47 Joge the 3rd: Anybody willin to lend me a few mill? 03:35:50 Heromunch: Hahahahaha 03:35:51 Rat Papi: Lets go 03:35:52 POV stepsis: Im waiting for afl to start 03:35:55 Rat Papi: How much 03:35:55 4BetFold: 3 way 03:36:05 McSwaggertro: Yo Ulooked Awful! 03:36:06 glitterpig: Iknow hahah 03:36:10 GlizzySlurpn: Selling my ass in west varrock basement 03:36:20 Rat Papi: How much 03:36:41 GlizzySlurpn: Hmm 03:36:49 Rat Papi: Go easy on me im poor 03:36:57 GlizzySlurpn: Cum 03:37:14 GlizzySlurpn: Sit 03:37:43 GlizzySlurpn: Give me ur bonds 03:37:44 Rat Papi: Is this enough 03:37:55 GlizzySlurpn: Hmm 03:38:02 Rat Papi: Or do i need to go get more 03:38:09 GlizzySlurpn: I only7 need a dime bag 03:38:20 GlizzySlurpn: Get back intk the real world n shit 03:38:29 Rat Papi: I feel ya 03:39:44 Twxct: I only have gilded axe 03:42:09 Scream pie: Cold milks the R****** 03:42:10 Scream pie: Hahahha 03:42:13 Cold Milks: Daa\ 03:42:15 Cold Milks: Buy more 03:42:25 Cold Milks: L0l 03:42:27 Cold Milks: Haters 03:42:50 Heromunch: Yep 03:42:50 AlmightyYose: He gave me 5000 03:42:52 ZombieJJB: Ill report you if anything 03:42:55 Frost S1Q9: <lt>13<gt> Fròsty Bëts! Dòësn't shòw fîrst tràdë G.P? Thë fåkè cån't påyòüt 03:42:59 royal 1G5N: Tridding Humajatt Jan 03:42:59 Heromunch: Its a little rough but i like the odds 03:43:00 SmokeTreesK: Fk u 03:43:00 Frost S1Q9: <lt>14<gt> Fròsty Bëts! Yòü wîll gët à vërífîcòín ånd Í.D! <lt><gt> (10K-500M) <lt><gt> 03:43:02 POV stepsis: Odds at 50 03:43:02 AlmightyYose: Smoke go 03:43:02 McBushes: Yo 03:43:05 SmokeTreesK: Jesus is watching 03:43:08 POV stepsis: I like it 03:43:08 Frost S1Q9: <lt>15<gt> Fròsty Bëts! Gâmès: (!H !L !W !F !D !S !C !J) <lt><gt> (10K-500M) <lt><gt> 03:43:09 royal 1G5N: Green:Cashed! 3M 03:43:10 Joge the 3rd: Mmm 03:43:11 AlmightyYose: Cool beans 03:43:11 A5IA: Can anyone spare some lgs 03:43:12 SmokeTreesK: Scammers 03:43:14 Heromunch: I put 50 on 03:43:14 McBushes: \scroll: taking big fat donations cash plz 03:43:17 royal 1G5N: Cashed! 3M 03:43:19 Brentyr: Fail 03:43:20 Heromunch: So fingers crossed 03:43:21 AlmightyYose: Tell Jesus to eat up 03:43:23 McBushes: Lol 03:43:26 S0RCERERKING: Wont back up ur comment ? 03:43:27 A5IA: Anyone spare logs pls?Uwu 03:43:28 Beerus 2017: Lmfao whats going on 03:43:28 POV stepsis: Ill put 50 aswell 03:43:31 POV stepsis: Lets get it baby 03:43:31 Z7z7Zzz: What crased? 03:43:34 royal 1G5N: Chaeds Yes Won 6M 03:43:36 SmokeTreesK: I got scammed 03:43:42 SmokeTreesK: He ssid he would double 03:43:42 AlmightyYose: No smoke didn't 03:43:45 SmokeTreesK: Took my 130k 03:43:47 royal 1G5N: 6M Pid Won 03:43:47 McBushes: Taking fat donations cash plz 03:43:48 Heromunch: I like to make couple roughies 03:43:51 humajutt jan: Thanks 03:43:53 A5IA: Anyone spare logs pls uwj? 03:43:55 AlmightyYose: Smoke just complaining 03:43:59 Brentyr: First to trade gets Thor's Mjolnir for free 03:44:05 Beerus 2017: Its 2023 and people still think doubling happens.. 03:44:11 Returnjosh: Much better 03:44:14 Rat Papi: =] 03:44:17 McBushes: That bot zoomed u see that lol 03:44:24 Brentyr: Gratz now you are the new god of thunder 03:44:34 AlmightyYose: Lies 03:44:38 <img=2>IMvorkathlic: Lies 03:44:38 Rat Papi: Drippy 03:44:42 AlmightyYose: You just want attention 03:44:42 McBushes: He just alched it bro 03:44:50 AlmightyYose: No I didn't 03:44:50 A5IA: Anyone spare some logs pls? 03:44:50 S0RCERERKING: Yep 03:44:51 Returnjosh: Yeaaa 03:44:53 KEKBARNIEKEK: Hello there 03:44:55 the f2p tour: Ok i found one 03:44:55 Brentyr: Yeah kratos will get his ass anyway 03:44:55 McBushes: Loooooooooooool 03:44:56 <img=2>IMvorkathlic: 2007 called, it wants its scam back 03:45:01 Rat Papi: Tyty 03:45:02 Gentlyfew365: I need bread 03:45:04 Returnjosh: Looking good now boss, and the flex is still there 03:45:10 McBushes: Here 03:45:16 the f2p tour: To find a item u first need to buy it for higher then normal 03:45:19 ShivaRio: Doubling money last 200k 03:45:22 McBushes: U can be god of swordfish 03:45:25 the f2p tour: Just to see for what price it buys 03:45:28 Gentlyfew365: Dread? 03:45:29 AlmightyYose: Far from it 03:45:31 Brentyr: Dont starve brah 03:45:32 Rat Papi: Im poor D: 03:45:35 infeln4: Si manoo 03:45:35 Gentlyfew365: Bread? 03:45:37 Th0th C0smic: I need help with bond pls 03:45:39 Brentyr: Have these seasong cooked meat 03:45:40 Rat Papi: Lol 03:45:42 AlmightyYose: Smoke you better go smoke weirdo 03:45:43 Brentyr: Seasoned* 03:45:44 the f2p tour: Then u sell for lower then normal to see for how much u can buy it in 03:45:44 Returnjosh: Lol 03:45:46 Rat Papi: Im gonna go annoy people 03:45:48 Dig G: Sell bonds 03:45:49 Gentlyfew365: Thank you 03:45:51 Returnjosh: Same 03:45:53 Returnjosh: Gl 03:45:54 the f2p tour: In this case i found out 03:45:54 <img=2>IMvorkathlic: I dare someone to use a bond on me.. 03:45:55 Dig G: Selling bonds 03:45:57 Rat Papi: Can i have a bond 03:45:57 Gentlyfew365: I need bread 03:45:58 Dig G: Sellings bonds 03:45:58 McBushes: Yo 03:45:59 Th0th C0smic: I need help with bond pls 03:46:03 Th0th C0smic: Ill sell item member 03:46:05 Dig G: Selling bods 03:46:05 Rat Papi: For free 03:46:05 Gentlyfew365: For a steak sandwich 03:46:07 the f2p tour: A swordfish is bought at for 241 coins each. 03:46:10 Rat Papi: Oh 03:46:10 Returnjosh: Tiger 03:46:11 Rat Papi: Uh 03:46:12 McBushes: Warning Need Money Plz Donate 03:46:13 Besliuth: Here we go 03:46:13 Returnjosh: What are you cooking 03:46:16 the f2p tour: And i can sell it for 247 each 03:46:16 Rat Papi: I dont have money 03:46:22 Th0th C0smic: Can someone help me with bond pls 03:46:25 Dig G: Selling bonds 03:46:25 Th0th C0smic: Ill sell item and add some more idc 03:46:28 Universe188: A q p 03:46:28 Universe188: W 03:46:29 <img=2>IMvorkathlic: Iidc lol 03:46:31 A5IA: Anyone donate logs pls? 03:46:33 Th0th C0smic: Can someone help me with bond pls 03:46:36 Gentlyfew365: I need bread 03:46:38 Dig G: Selligs bonds 03:46:40 LordOldNSad: Nice 03:46:46 Th0th C0smic: Can someone help me with bond il add more idc 03:46:47 Th0th C0smic: Please 03:46:48 the f2p tour: So the flip here is: buy a cooked swordfish 241, sell 247 03:46:49 gorakpure: !S 03:46:51 Gentlyfew365: Loki g for bread 03:46:51 McBushes: Doing Strange For Change Plz Donate 03:46:58 Returnjosh: Ses 03:47:02 Returnjosh: What are u cooking 03:47:03 Th0th C0smic: Its someone couol dhandle me a bond 03:47:10 the f2p tour: Doesnt seem much but with 1 mill its a 40k profit 03:47:11 Th0th C0smic: Ill sell items p2p and return it ill add more right now no worries 03:47:17 Gentlyfew365: Anyone got bread 03:47:19 Besliuth: Man yesterday was my day 03:47:21 the f2p tour: Without doing anything 03:47:21 AlmightyYose: Let me have a bond 03:47:28 Blackdead16: I do that with gold bars atm 03:47:29 Heromunch: Jalen hurts 03:47:31 Rat Papi: You gonna get it chopped 03:47:34 Heromunch: A.J brown 03:47:35 Joge the 3rd: Yes 03:47:35 Rat Papi: Just for me 03:47:40 Joge the 3rd: Ofc 03:47:44 Rat Papi: How kind of you 03:47:48 AlmightyYose: Hero you like the eagles?! 03:47:49 Joge the 3rd: But he chargeds me a lot more then usual 03:47:53 KaizenOG: Jeez 03:47:54 Rat Papi: Get me a bond and i'll concider it 03:47:55 Joge the 3rd: Charges* 03:47:55 Heromunch: Kansas 1-13 03:47:58 GlizzySlurpn: May a big daddy come push his lil bond inside of me? 03:48:02 AlmightyYose: Devonte smith 03:48:03 Joge the 3rd: Haha i got u on the 28th 03:48:07 worksuks: Kc is going down 03:48:07 Joge the 3rd: If u dont have it by then 03:48:07 Rat Papi: Lol 03:48:07 KaizenOG: This is what coming back to f2p looks like 03:48:18 POV stepsis: Odds wont go any higher 03:48:22 POV stepsis: Capped at 2501 odds for me 03:48:25 POV stepsis: At 6 legs 03:48:31 GlizzySlurpn: Itsw me 03:48:38 GlizzySlurpn: Ur mistress, n i want ur money 03:48:43 Rat Papi: Ohh 03:48:44 GlizzySlurpn: For the 3 mins 03:48:48 Rat Papi: Why didnt you just say so 03:48:50 Heromunch: Bahaha 03:48:51 AlmightyYose: What's your picks hero? 03:48:56 Heromunch: Dang hold up 03:49:11 POV stepsis: Nah i like it im gonna place 03:49:13 POV stepsis: $5 03:49:24 Duhkilluh: Lol 03:49:29 Joge the 3rd: Gg 03:49:34 Joge the 3rd: Can a brotha borrow some coins 03:49:36 ggk0kid: Yo 03:49:43 Heromunch: I would run the cap 6 leg 03:49:47 Heromunch: 5 legs 03:49:47 ggk0kid: I need 1.3 mil for my bond homie lol 03:49:52 Heromunch: Sorry $5 03:49:53 KaizenOG: Whats the best way to make money in f2p l0l 03:49:54 GlizzySlurpn: Shit bro, its like we live on streets man 03:50:07 ggk0kid: Sorry i neeed kll shit] 03:50:09 POV stepsis: $5 paying 12.5k ill take it 03:50:11 cutthroatmom: Hazzah!! Rejoice!! 03:50:16 Nunney43: What does the ring of 3rd age do? 03:50:17 luvhex: Ball sack!!!!!!!!!!!!!! 03:50:18 prodigy pang: Here we are 03:50:19 Heromunch: That is a roughieeeeeee 03:50:24 POV stepsis: I know 03:50:27 Heromunch: Nek minut we both loaded 03:50:28 POV stepsis: This roughie will hit. 03:50:30 POV stepsis: Manifest it 03:50:37 Trusty RNG: Shut up meg 03:50:42 ofl86k2k1cu: Doubling money 03:50:43 ZombieJJB: Hurry 03:51:03 SmokeTreesK: Omgg 03:51:04 cutthroatmom: The land of gold 03:51:08 SmokeTreesK: Now i got wolf cloak 03:51:12 Longdickky: Anyone selling a bond on the lows 03:51:12 Charso Beees: Free 03:51:15 luvhex: Thanks for showing me this place 03:51:24 luvhex: Im about to make so much doubling my money! 03:51:27 Returnjosh: Tyvm!!! 03:51:31 SmokeTreesK: Np 03:51:35 Charso Beees: Enjoy 03:51:37 Returnjosh: <lt>3 03:51:37 SmokeTreesK: I did quit 03:51:39 KaizenOG: Nice 03:51:40 iburyabones: Yum 03:51:40 SmokeTreesK: Now im back 03:51:45 Sloth Def: Horny 4 cock 03:51:48 Charso Beees: Want more? 03:51:48 Returnjosh: Kaizen 03:51:51 Enslisig: Yuuuh 03:51:52 KaizenOG: Yeah 03:51:52 SmokeTreesK: Yes 03:51:52 Returnjosh: Like my cloak? 03:51:54 Enslisig: Woow 03:51:54 Charso Beees: U can have 03:51:56 iburyabones: I full thnx 03:51:57 KaizenOG: Nope 03:52:01 Returnjosh: Tf man 03:52:02 KaizenOG: Now 03:52:03 Charso Beees: Ok 03:52:06 ZombieJJB: Never 03:52:09 KaizenOG: Tell me whats the best way to make money 03:52:13 KaizenOG: On f2p server 03:52:16 SmokeTreesK: Alch 03:52:18 Returnjosh: On f2p? 03:52:19 KaizenOG: So i can get the fuck outta here 03:52:19 ZombieJJB: Bruh 03:52:19 Returnjosh: Idk alch? 03:52:23 Enslisig: Bring me luck! 03:52:25 ofl86k2k1cu: Doubling all money 03:52:28 Charso Beees: Yum in the tum 03:52:28 ofl86k2k1cu: Doubling all moeny 03:52:30 iburyabones: Ty 03:52:30 ZombieJJB: 2ik 03:52:33 ofl86k2k1cu: Doubling all money 03:52:38 iburyabones: Needed tht 03:52:40 S0RCERERKING: Show money 03:52:40 McBushes: Whats this 03:52:42 Charso Beees: This will get me a bond 03:52:42 Sloth Def: I love big cock 03:52:44 Enslisig: May need to take a loan lol, i can't stop 03:52:45 <img=2>IMvorkathlic: Just beg for a lil bit 03:52:46 Longdickky: Buying bond for 5.7mplease 03:52:52 KaizenOG: I rather get cancer 03:52:54 KaizenOG: Than beg 03:52:55 Charso Beees: Free pizzas 03:52:56 ZombieJJB: Bruh buy th3s3 arrows 03:52:56 SmokeTreesK: Fish? 03:52:58 Nunney43: Buying 3rd age ring 03:53:00 Returnjosh: Well u can start by getting a cool wolf cloak 03:53:02 <img=2>IMvorkathlic: Then don't ask for the best gp method ya crank 03:53:03 S0RCERERKING: Show money 03:53:04 chaos t i t: Hi 03:53:07 Nunney43: Buying 3rd age ring 03:53:10 Charso Beees: Free pizzas 03:53:14 KaizenOG: I need to sell my tasset 03:53:16 prodigy pang: Wtf how u hit lvl 126 03:53:18 ggk0kid: 50 ?? 03:53:19 Nunney43: Buying 3rd age ring 03:53:19 ofl86k2k1cu: To muhc 03:53:21 ggk0kid: Money bal ;p; 03:53:24 SmokeTreesK: Fk these guys 03:53:24 ofl86k2k1cu: Cant doublke that 03:53:26 ZombieJJB: I need coin 03:53:27 prodigy pang: Pls teach me ur ways 03:53:30 SmokeTreesK: Giving all my money away 03:53:31 2_1z1: Thanks 03:53:31 Charso Beees: Enjoy 03:53:31 Brian4755: Swag swag 03:53:34 Succubus Imp: Buying Rune 2 hander 35k 03:53:34 Returnjosh: Whats up smoke 03:53:34 McBushes: Taking donations 03:53:36 Nunney43: Buying 3rd age ring 03:53:36 Charso Beees: Free pizzas 03:53:36 Sloth Def: Big cocks msg me plsssss 03:53:37 ofl86k2k1cu: Doubling all money 03:53:37 ZombieJJB: K 03:53:38 Returnjosh: Whyyyyyyy 03:53:45 ofl86k2k1cu: Doubling all money 03:53:45 <img=2>IMvorkathlic: Cos it's an attention seeker 03:53:48 ofl86k2k1cu: Doubling all moeny 03:53:49 Charso Beees: Free pizzas 03:53:50 ZombieJJB: Here 03:53:50 <img=2>IMvorkathlic: Quits twice in 2 mins 03:53:53 Returnjosh: Nono he bought me cloak 03:53:54 <img=2>IMvorkathlic: Siiiiiick 03:54:03 whosTK: Hola 03:54:04 Succubus Imp: Buying Rune 2 hander 35k 03:54:10 Blackdead16: 1 trade 03:54:51 abc def fgh: Nice robes 03:54:56 Wokie: Tyty 03:55:16 abc def fgh: No worries 03:55:16 ofl86k2k1cu: Needing money donation 03:55:19 ofl86k2k1cu: Needing money donations please 03:55:23 ofl86k2k1cu: Need money donations please 03:55:29 ofl86k2k1cu: Any spare change will help 03:55:34 abc def fgh: Wuu2 03:55:35 Blackdead16: Ty 03:55:42 ofl86k2k1cu: Needing money donations please 03:55:43 Wokie: Nmnm just hanging 03:55:45 Chaboni: Yw 03:55:49 abc def fgh: Sweet 03:55:54 Wokie: Wby 03:56:02 abc def fgh: I'm going for u0 magic 03:56:08 abc def fgh: 70 03:56:12 quiiiiip: !Price bronze 2h 03:56:14 Wokie: Ooo nice dude 03:56:17 abc def fgh: 7 levels off 03:56:27 abc def fgh: Ran out of nats lol 03:56:28 Wokie: Won't take long mate 03:56:31 Nunney43: Buying 3rd age ring 03:56:39 Succubus Imp: Buying 2 hander 35k 03:56:42 Nunney43: Buying 3rd age ring 03:56:42 Shunakoma: Trading up 03:56:48 Piloten25: Long time ago i played osrs 03:56:55 Nahkanaamari: Same 03:57:00 Besliuth: !J 03:57:07 Shunakoma: Trade me up 03:57:08 Succubus Imp: Buying Rune 2 hander 35k 03:57:13 Shunakoma: Trade me up 03:57:13 Piloten25: 5 yrars ago 03:57:19 Shunakoma: Trade me up need a gilded pic 03:57:21 Longdickky: Hey boss 03:57:27 Longdickky: You tryna bless me 800k 03:57:27 ofl86k2k1cu: Need amulate accusarry 03:57:42 Shunakoma: Nitty 03:57:48 Shunakoma: Trading up 03:57:49 BigHMoe099: Can someone help me get a bind pls 03:57:53 Succubus Imp: Anyone have a rune 2hander?? 03:57:54 Shunakoma: Help me trade up plz 03:58:03 SesAvci: Can anyone double my 50k pls? 03:58:06 BigHMoe099: Can someone help me get a bond pls 03:58:11 Shunakoma: Plz help me trade up to a gilded pic axe 03:58:22 Returnjosh: Shun 03:58:25 Shunakoma: Yo bro 03:58:25 BigHMoe099: Can someone help me get an one pls 03:58:30 Returnjosh: Can i have one of those armor sets now 03:58:36 Piloten25: 1 trade? 03:58:36 Returnjosh: Youve been trying all night 03:58:42 Shunakoma: Nah g I need to trade them up 03:58:46 SesAvci: Yes pls 03:58:46 abc def fgh: Can anyone lend me 5k nats 03:58:46 ofl86k2k1cu: 2 trade 03:58:46 Succubus Imp: Wtb Rune 2hander 03:58:48 Shunakoma: Red a gilded pic 03:58:54 BigHMoe099: Someone help me get a bond pls 03:58:55 Shunakoma: Need a gilded pic axe 03:59:01 Returnjosh: I dont think anyone has one 03:59:04 Returnjosh: Too rare 03:59:06 whosTK: 1 i had one 03:59:06 SesAvci: Tysm <lt>3 03:59:09 Shunakoma: I need cash 03:59:11 Piloten25: Np 03:59:12 Shunakoma: And il buy it 03:59:13 whosTK: I had a pic 03:59:18 BigHMoe099: Can anyone help me get a bond pls 03:59:21 ofl86k2k1cu: Accepting donations 03:59:21 maxwestsideg: You want only 20k right? 03:59:23 Returnjosh: Oh they are like 4.5m 03:59:24 ofl86k2k1cu: Acceting donatiosn 03:59:25 whosTK: Got given it for free 03:59:28 Shunakoma: Yh 03:59:30 ofl86k2k1cu: Need donations please 03:59:33 Shunakoma: So I'm 3mill off 03:59:34 Puretheif310: Yes 03:59:36 Returnjosh: Maybe i f u gimme an armor set 03:59:41 whosTK: Got given that and few bonds 03:59:41 Returnjosh: Karma will be good 03:59:43 maxwestsideg: 20k is not mucch so i will give it to you 03:59:43 Puretheif310: O + 03:59:51 ofl86k2k1cu: Need 10k please 03:59:56 ofl86k2k1cu: Need 10k please 03:59:57 BigHMoe099: Someone help me get a bond pls 04:00:00 ofl86k2k1cu: Anyone able to help 04:00:00 Puretheif310: No hablo mucho ingles 04:00:13 maxwestsideg: Here you go 04:00:15 ofl86k2k1cu: Need help 10k please 04:00:16 Puretheif310: Thanks 04:00:19 maxwestsideg: No problem 04:00:22 S0RCERERKING: U need help? 04:00:22 ofl86k2k1cu: Needing help 10k please 04:00:28 Returnjosh: Like it can be one of the inexpensive ones 04:00:28 Puretheif310: I loviu 04:00:28 BigHMoe099: Yes pls lol 04:00:30 Returnjosh: I just want to match 04:00:34 maxwestsideg: I love you too 04:00:36 BigHMoe099: Tired of f2p 04:00:38 Shunakoma: Trading up 04:00:39 whosTK: What u got 04:00:41 ofl86k2k1cu: Need 10k donations please 04:00:54 Shunakoma: Help plz 04:00:57 S0RCERERKING: Cool, go play the game and make some money 04:00:58 Returnjosh: Tk will u buy me an armor set that he has 04:01:00 Shunakoma: Need a gilded pic 04:01:04 Shunakoma: Can you help me get 1? 04:01:09 BigHMoe099: Thanks for advice lol 04:01:19 Returnjosh: Wow thanks 04:01:22 BigHMoe099: Can someone help me get a bind pls 04:01:24 whosTK: <lt>3 04:01:25 Shunakoma: ? 04:01:31 Shunakoma: Any for me plz love 04:01:33 whosTK: He needed armour 04:01:36 whosTK: You have 04:01:39 Shunakoma: I really need a gilded pic axe 04:01:40 McBushes: W0000 04:01:40 whosTK: He wanted what you have 04:01:43 Shunakoma: He had srmour 04:01:44 Blackdead16: How much u got 04:01:47 McBushes: Awhh 04:01:51 BigHMoe099: A mill 04:01:53 whosTK: Now he has more 04:01:58 Returnjosh: :) 04:02:00 whosTK: Cause he asked nicely 04:02:00 Returnjosh: <lt>3 ty 04:02:01 Blackdead16: Mage lvl 04:02:03 whosTK: Manners goes along way 04:02:11 Shunakoma: Did I not say please or something 04:02:19 BigHMoe099: 27 04:02:24 whosTK: Vibes are off 04:02:24 Mzxs1: 8m need me guys 04:02:30 whosTK: Bye 04:02:31 Shunakoma: Yh for real 04:02:31 Mzxs1: 8m ened 04:02:33 McBushes: Awhh 04:02:36 Blackdead16: Train to 55 and go high alch 04:02:38 McBushes: Im out 04:02:40 Shunakoma: Wow 04:02:40 Longdickky: Yo 04:02:43 BigHMoe099: Yea but issue is 04:02:49 whosTK: Welcome back 04:02:50 BigHMoe099: Runes are so expensive 04:02:51 Mzxs1: 8m need me gusy 04:02:55 Shunakoma: Hi 04:02:58 Shunakoma: You ok 04:03:02 whosTK: Always 04:03:08 Shunakoma: Nice to meet you 04:03:08 BigHMoe099: Death and chaos runes so expensive 04:03:10 Blackdead16: Use a staff and a lower sspl 04:03:12 whosTK: Likewise 04:03:16 humajutt jan: !S 04:03:18 Shunakoma: How's your day 04:03:25 whosTK: Swell 04:03:26 Legolas NZ: Will pay 4 people 25k each if they follow me an join my clan 04:03:28 McBushes: Here comes the lure 04:03:31 Blackdead16: Till 55 want take long 04:03:40 Shunakoma: Morning or night for you 04:03:42 BigHMoe099: How much can high alchemy make 04:03:48 Blackdead16: Got like ²20m now 04:03:54 whosTK: Night 04:03:57 BigHMoe099: Wth 04:04:02 humajutt jan: Thanks 04:04:04 Blackdead16: On 200 kites 100k profit 04:04:04 BigHMoe099: How long did that take u 04:04:11 Shunakoma: Ga'day mate 04:04:17 whosTK: Huh? 04:04:27 Shunakoma: Thought you was Australian hahaha 04:04:30 BigHMoe099: 200 rune kites? 04:04:36 whosTK: Why? 04:04:42 Mzxs1: 8m ened 04:04:42 Shunakoma: Time zone 04:04:45 Blackdead16: Yes or ²200 full helms 04:04:50 And goodbye: It is positively popping I here 04:04:51 Calistar99: Anyone have any extra runes i can have ? 04:04:51 BigHMoe099: Gah dayum 04:04:55 BigHMoe099: Wth 04:05:15 S0RCERERKING: Good money 04:05:18 Shunakoma: Can I ask you for a favour my new friend Tk 04:05:20 BigHMoe099: Wait 200 runs kites 04:05:23 And goodbye: Trivia game!! Win Gppp 04:05:25 whosTK: Depends on what it is 04:05:27 BigHMoe099: U make 100k? 04:05:30 And goodbye: Trivia game win gp 04:05:32 Calistar99: Could someone help me with runes please 04:05:34 SPAESATO: I list 250k 04:05:37 Blackdead16: Yes cost 15 min 04:05:40 SPAESATO: Scammer 04:05:45 BigHMoe099: Dang wth 04:05:46 Shunakoma: It would be to help me toward getting a gilded pic axe my good friend 04:05:49 Mzxs1: 7m need 04:06:03 S0RCERERKING: 1200 Alcs/ hr approx 300 go ea. 04:06:03 BigHMoe099: I'm boutta try leveling up magic 04:06:03 whosTK: You should high alch 04:06:08 And goodbye: Trivia game 500k total 04:06:11 Tobi994: For what 04:06:15 Shunakoma: I tried but I can never buy items 04:06:19 Shunakoma: Even with over paying 04:06:28 Shunakoma: And over pay to much it ain't proper ctsboe lol 04:06:33 Shunakoma: Profitable 04:06:45 And goodbye: Trivia game here 500k!!! 04:06:49 whosTK: Profit is profit 04:06:52 humajutt jan: Tyytytyytyt 04:06:56 whosTK: Gotta keep at it 04:07:03 Shunakoma: Yh it don't let me buy the items 04:07:11 whosTK: There's a time limit 04:07:12 Shunakoma: Even if it made 10gp each I would do it 04:07:13 whosTK: Gotta get creative 04:07:18 Shunakoma: What's the time limit? 04:07:24 Duhkilluh: ? 04:07:24 whosTK: Depends on the item 04:07:32 Shunakoma: Rune? 04:07:37 whosTK: Anything 04:07:46 whosTK: Some have time limit 04:07:46 ShivaRio: 500k trivia game 04:07:49 whosTK: Some don't 04:07:49 And goodbye: 500k trivia fall in all poors 04:07:51 Shunakoma: Ok 04:08:07 whosTK: Gotta use rune lite and do research 04:08:16 whosTK: Cause it can change, but there's always profit 04:08:22 Shunakoma: Ok thanks 04:08:26 Shunakoma: Would you help me ? 04:08:27 whosTK: Np 04:08:45 whosTK: There's a clan chat but not sure what its called 04:08:55 whosTK: Im a noob 16:58:03 Mot Ponsta: Gz noob 21:29:31 Cow Father: Gzzz 21:29:37 Cow Father: Wc 21:59:56 BTW AlDS: Smashing! 22:15:24 <img=2>BTW AlDS: .//imagine 23:19:39 <img=41>IronMuffn: G 12:27:19 CitySound: Saving for runite scim anything helps <lt>3 12:27:50 CitySound: Saving for runite scim anything helps 12:28:16 Jade927: Well ashes dude 12:28:19 CitySound: Saving for runite scim anything helps 12:28:22 Jade927: Sell 12:28:42 blikje coki: These fking beggers 12:28:42 blikje coki: These fking beggers 12:28:52 CitySound: Saving for rune scim anything helps 12:28:52 CitySound: Saving for rune scim anything helps 12:29:28 CitySound: Saving for runite scim anything helps 12:29:28 CitySound: Saving for runite scim anything helps 12:29:29 mahiyo11: Hey 12:29:29 mahiyo11: Hey 12:29:52 mahiyo11: Hey dear 12:29:52 mahiyo11: Hey dear 12:29:53 CitySound: Saving for runite scim anything helps 12:29:53 CitySound: Saving for runite scim anything helps 12:30:10 mahiyo11: Bro 12:30:10 mahiyo11: Bro 12:30:10 power mag3r: Yo 12:30:10 power mag3r: Yo 12:30:19 mahiyo11: I need help 12:30:19 mahiyo11: I need help 12:30:23 power mag3r: With 12:30:23 power mag3r: With 12:30:31 mahiyo11: Gold 12:30:31 mahiyo11: Gold 12:30:34 CitySound: Saving for runite scim anything helps ty <lt>3 12:30:34 CitySound: Saving for runite scim anything helps ty <lt>3 12:30:50 mahiyo11: Just 500k 12:30:50 mahiyo11: Just 500k 12:30:56 power mag3r: Lol 12:30:56 power mag3r: Lol 12:31:01 elhombreyeso: Xddddd 12:31:01 elhombreyeso: Xddddd 12:31:05 blikje coki: Stop begging for gold losers 12:31:05 blikje coki: Stop begging for gold losers 12:31:07 power mag3r: I'm save it for bond 12:31:07 power mag3r: I'm save it for bond 12:31:16 CitySound: Ok 12:31:16 power mag3r: Have some wine 12:31:16 CitySound: Ok 12:31:16 power mag3r: Have some wine 12:31:22 blikje coki: Just earn ur own 12:31:22 blikje coki: Just earn ur own 12:31:26 CitySound: Ok 12:31:26 CitySound: Ok 12:31:39 CitySound: Saving for runite scim anything helps 12:31:39 CitySound: Saving for runite scim anything helps 12:31:41 mahiyo11: Thanks dear brother 12:31:41 mahiyo11: Thanks dear brother 12:31:47 Jade927: A full inventory of ashes is almost 5000 gp 12:31:47 Jade927: A full inventory of ashes is almost 5000 gp 12:31:56 elhombreyeso: No way 12:31:56 elhombreyeso: No way 12:32:10 Jade927: Yes 12:32:10 Jade927: Yes 12:32:13 CitySound: Saving for runite scim anything helps 12:32:13 CitySound: Saving for runite scim anything helps 12:32:31 blikje coki: This is just a bot spamming though 12:32:31 blikje coki: This is just a bot spamming though 12:32:35 Jade927: I just made 50k off these guys and their fires 12:32:35 Jade927: I just made 50k off these guys and their fires 12:32:38 CitySound: No it's not 12:32:38 CitySound: No it's not 12:32:43 CitySound: I'm on mobile lol 12:32:43 CitySound: I'm on mobile lol 12:32:45 mahiyo11: But this so thanks dear heart 12:32:45 mahiyo11: But this so thanks dear heart 12:32:47 blikje coki: Lol 12:32:47 blikje coki: Lol 12:32:55 mahiyo11: Love you brothar 12:32:55 mahiyo11: Love you brothar 12:33:05 power mag3r: Np should help 12:33:05 power mag3r: Np should help 12:33:06 blikje coki: U can pick up ashes on mobile too 12:33:06 blikje coki: U can pick up ashes on mobile too 12:33:11 CitySound: I'm trying to get a scimmy to train str 12:33:11 CitySound: I'm trying to get a scimmy to train str 12:33:14 CitySound: I am 12:33:14 CitySound: I am 12:33:32 blikje coki: Ull be there soon 12:33:32 blikje coki: Ull be there soon 12:44:44 sipwell: Hi 12:44:55 sipwell: <lt>hi scemmys 12:45:01 Scemmys: Hey there 12:45:07 sipwell: How are you ? 12:48:52 sipwell: 12 12:49:01 sipwell: Just got back to it 12:49:11 Detoxy: At 27 u can use lvl 2 enchant 12:49:11 sipwell: Dont got much money 12:49:16 sipwell: Or runes 12:53:55 Pker595: Finally 2277 ttl, hosting a huge party up to 523mil, Y0tube - Zet9158 12:54:35 Roxicotten: Taco please. 12:58:07 Final Hit077: Finally 2277 ttl, hosting a huge party up to 524mil, Y0tube - Zet9158 13:09:58 schwamalam: This is my nightmare lol 13:13:47 Crumby Brad: Ive gotten a few for 100k+ 13:13:54 2Cue: Good shit 14:32:16 <img=2>Hrathi: Gzzz 16:09:00 baragouda: Anyone know 16:09:15 baragouda: ? 16:09:40 baragouda: Does anyone know wher i can find rogues 16:09:57 GlizzySlurpn: Go ask chatgpt 16:10:00 GlizzySlurpn: Noob 16:23:23 BTW AlDS: Smashing! 17:24:46 Godss Dangle: Hahah 17:49:25 Hi Anxiety: Well this is a convenient spot 17:56:29 <img=41>TiltedIguana: Lol 17:56:31 <img=41>TiltedIguana: I just noticed 18:12:24 Gatorz24: Lol 18:29:22 <img=2>I M Camry: 11111111111 18:31:57 <img=2>I M Camry: 111 18:39:16 <img=2>I M Camry: 11111111111 18:41:18 <img=2>I M Camry: 1111 18:41:51 <img=2>I M Camry: 111 18:43:25 <img=2>I M Camry: 1111111111111111111 18:44:42 <img=2>I M Camry: 1111111111111111 19:02:56 F33l m3 up: 1111111111111 19:13:39 BTW AlDS: Smashing! 17:11:24 poon fisher: !Lvl mining 17:21:18 SteamAdvent: P 18:21:51 C Engineer: Level up: completed. 18:22:26 <img=2>BTW AlDS: !Ttm
Jelloleaf/gotr
[ "region:us" ]
2023-02-16T23:53:11+00:00
{}
2023-02-16T23:56:38+00:00
96dfd7bd75d769f70e7e6ff1b84464fe432d4eda
Joe02/satou_kuuki_refs
[ "license:other", "region:us" ]
2023-02-17T00:19:07+00:00
{"license": "other"}
2023-02-17T00:19:19+00:00
ea7c6e29c1c28f8d09674ec22fe11a7dfcbf541c
# Birds of Australia As described on RAWPIXEL: Considered the “Father of bird study in Australia”, John Gould (1804–1881) is one of the most celebrated publications on ornithology worldwide. His book "Birds of Australia" (1840–1848) illustrated by his wife, Elizabeth Gould (1804–1841) introduced more than 300 new birds to the world. His work also contributed to the much revered Charles Darwin’s book ‘On the Origins of Species’. Available under the Creative Commons 0 license. Created from CC-0 files on RawPixel.com Image file can either be downloaded with your own script using the direct url column, or use the image data saved directly into the image column. <https://www.rawpixel.com/search?page=1&sort=curated&tags=%24thebirdsofaustralia&topic=%24thebirdsofaustralia&topic_group=%24publicdomain> Parquet file created here: <https://github.com/mediocreatmybest/gaslightingeveryone/blob/main/tools/images2parq.py> File can also be extracted from here: <https://github.com/mediocreatmybest/gaslightingeveryone/blob/main/tools/parq2folder.py>
Mediocreatmybest/John_Gould_Birds_of_Australia
[ "language:en", "license:cc0-1.0", "region:us" ]
2023-02-17T01:58:01+00:00
{"language": ["en"], "license": "cc0-1.0"}
2023-02-25T10:50:57+00:00
a27dd8c5395c3c899a9f75c1a65fc44f87a26939
# Do what you will with the data this is old photos of crafts I used to make - just abide by the liscence above and you good to go!
Capsekai/Badge_crafts
[ "task_categories:text-to-image", "task_categories:image-classification", "size_categories:1K<n<10K", "language:en", "license:creativeml-openrail-m", "badges", "crafts", "region:us" ]
2023-02-17T02:57:41+00:00
{"language": ["en"], "license": "creativeml-openrail-m", "size_categories": ["1K<n<10K"], "task_categories": ["text-to-image", "image-classification"], "pretty_name": "Badge Craft Dataset", "tags": ["badges", "crafts"]}
2023-02-26T10:34:30+00:00
665fe0ced5dc3fb2d4be0750edd3f308c9910ba4
kn568/ussupremecourt_75cases
[ "license:cc-by-nc-4.0", "region:us" ]
2023-02-17T03:10:43+00:00
{"license": "cc-by-nc-4.0"}
2023-02-17T03:11:35+00:00
1a2c4250e19f042e4e2655d386ee4bb004790c3c
A dataset of AI-generated images or images modified from them. Products using this dataset - [empty-eyes-LoRAs](https://huggingface.co/xenon3134-mc/empty-eyes-LoRAs)
xenon3134-mc/empty-eyes-dataset
[ "size_categories:n<1K", "license:mit", "region:us" ]
2023-02-17T03:17:51+00:00
{"license": "mit", "size_categories": ["n<1K"]}
2023-02-17T03:46:02+00:00
6f2bec3903eea34c0302fe4427b7fe200af5e954
# Dataset Card for "pile" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lsb/pile
[ "region:us" ]
2023-02-17T03:26:26+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "meta", "struct": [{"name": "pile_set_name", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1311748175503, "num_examples": 210607728}, {"name": "validation", "num_bytes": 1348824258, "num_examples": 214670}, {"name": "test", "num_bytes": 1317125199, "num_examples": 214584}], "download_size": 539336008819, "dataset_size": 1314414124960}}
2023-02-18T10:00:39+00:00
3a67e1f11995589f4c00b67eaef4caa12c740ade
<div style='background: #ffeec0; border: 1px solid #ffd86d; padding:1em; border-radius:3px;'> <h3 style='margin:0'>Outdated!</h3> <p style='margin:0'>This dataset has been superseded by:</p> <p style='margin:0'><a style="font-size: 2em;" href='https://huggingface.co/datasets/hearmeneigh/e621-rising-v3-curated'>E621 Rising V3 Curated Image Dataset</a></p> </div> **Warning: THIS dataset is NOT suitable for use by minors. The dataset contains X-rated/NFSW content.** # E621 Rising: Curated Image Dataset v2 **285,466** images (~125GB) downloaded from `e621.net` with [tags](https://huggingface.co/datasets/hearmeneigh/e621-rising-v2-curated/raw/main/meta/tag-counts.by-name.json). This is a curated dataset, picked from the E621 Rising: Raw Image Dataset v2 [available here](https://huggingface.co/datasets/hearmeneigh/e621-rising-v2-raw). ## Image Processing * Only `jpg` and `png` images were considered * Image width and height have been clamped to `(0, 4096]px`; larger images have been resized to meet the limit * Alpha channels have been removed * All images have been converted to `jpg` format * All images have been converted to TrueColor `RGB` * All images have been verified to load with `Pillow` * Metadata from E621 is [available here](https://huggingface.co/datasets/hearmeneigh/e621-rising-v2-raw/tree/main/meta) ## Tags Comprehensive list of tags and counts: * [By name](https://huggingface.co/datasets/hearmeneigh/e621-rising-v2-curated/raw/main/meta/tag-counts.by-name.json) * [By count](https://huggingface.co/datasets/hearmeneigh/e621-rising-v2-curated/raw/main/meta/tag-counts.by-count.json) ### Changes From E621 * Tag names have been rewritten to `[a-z0-9_]` or `<category>:[a-z0-9_]`, e.g. * `digital_media_(artwork)` => `meta:digital_media_artwork` * `half-closed_eyes` => `halfclosed_eyes` * Symbols have been prefixed with `symbol:`, e.g. `symbol:<3` * Aspect ratio has been prefixed with `aspect_ratio:`, e.g. `aspect_ratio:16_9` * All categories except `general` have been prefixed with the category name, e.g. `artist:somename`. The categories are: * `artist` * `copyright` * `character` * `species` * `invalid` * `meta` * `lore` ### Additional Tags * Image rating * `rating:explicit` * `rating:questionable` * `rating:safe`
hearmeneigh/e621-rising-v2-curated
[ "size_categories:100K<n<1M", "furry", "anthro", "nsfw", "e621", "not-for-all-audiences", "region:us" ]
2023-02-17T04:43:33+00:00
{"size_categories": ["100K<n<1M"], "pretty_name": "E621 Rising: Curated Image Dataset v2", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 135370373465.422, "num_examples": 285466}], "download_size": 133991087241, "dataset_size": 135370373465.422}, "viewer": false, "tags": ["furry", "anthro", "nsfw", "e621", "not-for-all-audiences"]}
2023-10-09T17:56:52+00:00
0243f2e6d606a615ccc68744869108d4de27d869
# Dataset Card for "wikipedia.reorder.natural.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.natural.pl
[ "region:us" ]
2023-02-17T08:27:57+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 523553918, "dataset_size": 1958124685}}
2023-02-17T12:00:27+00:00
ee478e9afd9139966912c12161b4597124dd3349
# Dataset Card for "augment_train_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/augment_train_dataset
[ "region:us" ]
2023-02-17T09:47:16+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8532425445.0, "num_examples": 81760}, {"name": "eval", "num_bytes": 304561718.0, "num_examples": 10440}], "download_size": 8179433148, "dataset_size": 8836987163.0}}
2023-02-17T09:53:57+00:00
49bad0c575d4f8a9de6a51afff3484651a582567
# Dataset Card for "class_dataset_real_donut" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real_donut
[ "region:us" ]
2023-02-17T09:51:22+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz_h", "1": "bilanz_v", "2": "guv", "3": "kontennachweis_bilanz", "4": "kontennachweis_guv", "5": "other", "6": "text"}}}}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 327762478.0, "num_examples": 1117}, {"name": "test", "num_bytes": 99667843.0, "num_examples": 280}], "download_size": 400428133, "dataset_size": 427430321.0}}
2023-02-17T09:51:49+00:00
c3e3f423063e1c822b25d5c677370991b612ead7
# Dataset Card for "class_dataset_real2_donut" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real2_donut
[ "region:us" ]
2023-02-17T10:00:13+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz_h", "1": "bilanz_v", "2": "guv", "3": "kontennachweis_bilanz", "4": "kontennachweis_guv", "5": "other"}}}}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 340313532.0, "num_examples": 1117}, {"name": "test", "num_bytes": 87116926.0, "num_examples": 280}], "download_size": 400625159, "dataset_size": 427430458.0}}
2023-02-17T10:00:38+00:00
d794c4fec04839020f54b071d3871f17e944638f
An imitation learning environment for the atari_pong environment, sample for the policy atari_2B_atari_pong_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_pong_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-17T10:04:25+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:07:48+00:00
b395321beb1b0eb4305283b7657248c794c68916
# Dataset Card for "class_dataset_real3_donut" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real3_donut
[ "region:us" ]
2023-02-17T10:14:22+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz", "1": "guv", "2": "kontennachweis_bilanz", "3": "kontennachweis_guv", "4": "other"}}}}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 327835672.0, "num_examples": 1117}, {"name": "test", "num_bytes": 99594248.0, "num_examples": 280}], "download_size": 400602803, "dataset_size": 427429920.0}}
2023-02-17T10:14:49+00:00
2ca3012ef85a60143a8f97b83a45bb1a7b5c2244
# VGGSound VGG-Sound is an audio-visual correspondent dataset consisting of short clips of audio sounds, extracted from videos uploaded to YouTube. - **Homepage:** https://www.robots.ox.ac.uk/~vgg/data/vggsound/ - **Paper:** https://arxiv.org/abs/2004.14368 - **Github:** https://github.com/hche11/VGGSound ## Analysis - **310+ classes:** VGG-Sound contains audios spanning a large number of challenging acoustic environments and noise characteristics of real applications. - **200,000+ videos:** All videos are captured "in the wild" with audio-visual correspondence in the sense that the sound source is visually evident. - **550+ hours:** VGG-Sound consists of both audio and video. Each segment is 10 seconds long. ![](src/data.png) ## Download We provide a csv file. For each YouTube video, we provide YouTube URLs, time stamps, audio labels and train/test split. Each line in the csv file has columns defined by here. ``` # YouTube ID, start seconds, label, train/test split. ``` And you can download VGGSound directly from this [repository](https://huggingface.co/datasets/Loie/VGGSound/tree/main). ## License The VGG-Sound dataset is available to download for commercial/research purposes under a Creative Commons Attribution 4.0 International License. The copyright remains with the original owners of the video. A complete version of the license can be found [here](https://thor.robots.ox.ac.uk/datasets/vggsound/license_vggsound.txt). ## Citation Please cite the following if you make use of the dataset. ``` @InProceedings{Chen20, author = "Honglie Chen and Weidi Xie and Andrea Vedaldi and Andrew Zisserman", title = "VGGSound: A Large-scale Audio-Visual Dataset", booktitle = "International Conference on Acoustics, Speech, and Signal Processing (ICASSP)", year = "2020", } ```
Loie/VGGSound
[ "task_categories:audio-classification", "size_categories:100B<n<1T", "arxiv:2004.14368", "region:us" ]
2023-02-17T10:27:55+00:00
{"size_categories": ["100B<n<1T"], "task_categories": ["audio-classification"]}
2023-03-26T12:25:40+00:00
6104284646a7a83f493f1825830c4b13f751ea2a
# Dataset Summary In 2022, several changes were made to the annotation procedure used in the WMT Translation task. In contrast to the standard DA (sliding scale from 0-100) used in previous years, in 2022 annotators performed DA+SQM (Direct Assessment + Scalar Quality Metric). In DA+SQM, the annotators still provide a raw score between 0 and 100, but also are presented with seven labeled tick marks. DA+SQM helps to stabilize scores across annotators (as compared to DA). The data is organised into 8 columns: - lp: language pair - src: input text - mt: translation - ref: reference translation - score: direct assessment - system: MT engine that produced the `mt` - annotators: number of annotators - domain: domain of the input text (e.g. news) - year: collection year You can also find the original data [here](https://www.statmt.org/wmt22/results.html) ## Python usage: ```python from datasets import load_dataset dataset = load_dataset("RicardoRei/wmt-sqm-human-evaluation", split="train") ``` There is no standard train/test split for this dataset but you can easily split it according to year, language pair or domain. E.g. : ```python # split by year data = dataset.filter(lambda example: example["year"] == 2022) # split by LP data = dataset.filter(lambda example: example["lp"] == "en-de") # split by domain data = dataset.filter(lambda example: example["domain"] == "news") ``` Note that, so far, all data is from [2022 General Translation task](https://www.statmt.org/wmt22/translation-task.html) ## Citation Information If you use this data please cite the WMT findings: - [Findings of the 2022 Conference on Machine Translation (WMT22)](https://aclanthology.org/2022.wmt-1.1.pdf)
RicardoRei/wmt-sqm-human-evaluation
[ "size_categories:1M<n<10M", "language:cs", "language:de", "language:en", "language:hr", "language:ja", "language:liv", "language:ru", "language:sah", "language:uk", "language:zh", "license:apache-2.0", "mt-evaluation", "WMT", "12-lang-pairs", "region:us" ]
2023-02-17T10:42:46+00:00
{"language": ["cs", "de", "en", "hr", "ja", "liv", "ru", "sah", "uk", "zh"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "tags": ["mt-evaluation", "WMT", "12-lang-pairs"]}
2023-02-17T11:10:39+00:00
61c12eca3fc3748f1473bf5350037171782686da
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [mpii](http://human-pose.mpi-inf.mpg.de/) #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
HighCWu/mpii_100_openpose
[ "task_categories:text-to-image", "size_categories:n<1K", "language:en", "license:bsd", "region:us" ]
2023-02-17T10:45:11+00:00
{"language": ["en"], "license": "bsd", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "guide", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 51273540, "num_examples": 100}], "download_size": 49905504, "dataset_size": 51273540}}
2023-02-17T10:54:59+00:00
de82c2a34623438152d6260c3218c5a2db1a8382
mimbres/testset
[ "license:apache-2.0", "region:us" ]
2023-02-17T11:19:06+00:00
{"license": "apache-2.0"}
2023-02-17T11:19:06+00:00
fe1ded4cdee0afb20020d59b5146c7643de2571e
toto10/edogos
[ "license:openrail", "doi:10.57967/hf/0378", "region:us" ]
2023-02-17T11:45:00+00:00
{"license": "openrail"}
2023-02-17T12:01:17+00:00
988afa241a2743b0c2fb4fbfd32ad2fa2e92a2e4
DEEPBIND v0.11 -------------- The deepbind command-line executable can be used to score DNA/RNA sequences according to any RBP/TF model listed in the DeepBind web repository: http://tools.genes.toronto.edu/deepbind For each input sequence, the deepbind executable scores each subsequence of a pre-determined length (e.g. 20) and returns only the maximum or the average over these per-position scores. Larger scores indicated stronger binding. The scores themselves are on an arbitrary scale, and vary from model to model due to variation in the quality of training data for different proteins. EXAMPLE ------- To generate predictions with DeepBind, you need two things: 1) a list of model IDs, and 2) 3) a list of DNA/RNA sequences. The file example.ids contains 4 example model IDs, one on each line, reproduced here: * D00210.001 # RBFOX1 (RNAcompete) * D00120.001 # MBNL1 (RNAcompete) * D00410.003 # GATA3 (SELEX) * D00328.003 # CTCF (SELEX) The file example.seq contains 4 example sequences, which were chosen such that the nth sequence scores highly for the nth model. The file example.seq is reproduced here: * AGGUAAUAAUUUGCAUGAAAUAACUUGGAGAGGAUAGC * AGACAGAGCUUCCAUCAGCGCUAGCAGCAGAGACCAUU * GAGGTTACGCGGCAAGATAA * TACCACTAGGGGGCGCCACC To generate 16 predictions (4 models, 4 sequences), run the deepbind executable as follows: % deepbind example.ids < example.seq |D00210.001| D00120.001| D00410.003| D00328.003| | :----:| :----: | :----: |:----: | | 7.451420 | -0.166146 | -0.408751| -0.026180| | -0.155398 | 4.113817 | 0.516956| -0.248167| | -0.140683 | 0.181295 | 5.885349| -0.026180| | -0.174985 | -0.152521 | -0.379695| 17.682623| To see details of each ID, use the --dump-info flag: % deepbind --dump-info example.ids |ID | Protein | Type | Species | Family | Class Experiment | | :----:| :----: | :----: |:----: | :----: | :----: | | D00210.001 |RBFOX1 |RBP |Homo sapiens |RRM |RNAcompete | | D00120.001 |MBNL1 |RBP |Homo sapiens |Znf |RNAcompete | | D00410.003 |GATA3 |TF |Homo sapiens |GATA |SELEX | | D00328.003 |CTCF |TF |Homo sapiens |C2H2 ZF |SELEX | CHANGES v0.1 -> v0.11 --------------------- - Fixed bug where last position in input sequence was not evaluated for a score; suggested by Irene Kaplow. - Added --window-size and --average flags based on feedback.
thewall/DeepBindWeight
[ "license:openrail", "region:us" ]
2023-02-17T11:56:41+00:00
{"license": "openrail"}
2023-04-18T08:28:48+00:00
555da8cef2a33698b8779e4b3389c0a4958d68a5
# Dataset Card for "wikipedia.reorder.svo.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.svo.pl
[ "region:us" ]
2023-02-17T12:01:28+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 546155672, "dataset_size": 1958124685}}
2023-02-17T12:02:16+00:00
879a22f6fc5c157b6dc1c70b23f0148dba5140e9
# Dataset Card for "wikipedia.reorder.vos.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.vos.pl
[ "region:us" ]
2023-02-17T12:03:12+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 548528129, "dataset_size": 1958124685}}
2023-02-17T12:04:00+00:00
d117136d39daf9cabb078a697f8510eed4e5d02e
# Dataset Card for "wikipedia.reorder.osv.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.osv.pl
[ "region:us" ]
2023-02-17T12:04:54+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 548655232, "dataset_size": 1958124685}}
2023-02-17T12:05:42+00:00
883551164f43a3e79dcea520b62279987e562438
# Dataset Card for "wikipedia.reorder.sov.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.sov.pl
[ "region:us" ]
2023-02-17T12:06:34+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 549518463, "dataset_size": 1958124685}}
2023-02-17T12:07:22+00:00
fec0ef9498c2c9d73a18cf13f8c61d5e2bdf9bd1
# Dataset Card for "wikipedia.reorder.vso.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.vso.pl
[ "region:us" ]
2023-02-17T12:08:18+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 546698042, "dataset_size": 1958124685}}
2023-02-17T12:09:07+00:00
e695c8582575dc316ec4c7aa0c44013845241a66
# Dataset Card for "wikipedia.reorder.ovs.pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.ovs.pl
[ "region:us" ]
2023-02-17T12:10:04+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958124685, "num_examples": 1772445}], "download_size": 547217506, "dataset_size": 1958124685}}
2023-02-17T12:10:53+00:00
c130c205afb7631713b07ad9758431966a6a2c5f
steinhaug/regularization
[ "license:mit", "region:us" ]
2023-02-17T12:32:10+00:00
{"license": "mit"}
2023-06-06T14:34:55+00:00
5fa5090bf70b26e6bee09f4ee6a04c363f24b724
# Dataset Card for "miniwobplusplus_train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LucasThil/miniwobplusplus_train
[ "region:us" ]
2023-02-17T12:32:47+00:00
{"dataset_info": {"features": [{"name": "episodes", "dtype": "string"}, {"name": "actions", "dtype": "string"}, {"name": "refs", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2707524886, "num_examples": 652385}, {"name": "test", "num_bytes": 338733634, "num_examples": 81549}, {"name": "validate", "num_bytes": 339687103, "num_examples": 81548}], "download_size": 607473807, "dataset_size": 3385945623}}
2023-02-17T12:40:36+00:00
7e0d5fad90f665702280e08718d77275f13bbf82
# Definición de campos 1. **uci_id**: UniChEM identifier. 2. **chembl_id**: ChEMBL identifier. 3. **molecule_type**: Type of molecule (Small molecule, Protein, Antibody, Oligosaccharide, Oligonucleotide, Cell, Unknown).⁶ 4. **alogp**: Calculated ALogP. Ghose-Crippen-Viswanadhan octanol-water partition coefficient (ALogP).¹ ² 5. **aromatic_rings**: number of aromatic rings. Aromatic rings are common structural components of polymers. 6. **cx_logd**: The calculated octanol/water distribution coefficient at pH7.4 using ChemAxon v17.29.0.³ 7. **cx_logp**: The calculated octanol/water partition coefficient using ChemAxon v17.29.0.³ 8. **cx_most_apka**: The most acidic pKa calculated using ChemAxon v17.29.0.³ 9. **cx_most_bpka**: The most basic pKa calculated using ChemAxon v17.29.0.³ 10. **full_molformula**: Molecular formula for the full compound (including any salt).⁴ 11. **full_mwt**: Molecular weight of the full compound including any salts.⁴ 12. **hba**: Number hydrogen bond acceptors.⁴ 13. **hba_lipinski**: Number of hydrogen bond acceptors calculated according to Lipinski's original rules (i.e., N + O count)).⁴ 14. **hbd**: Number hydrogen bond donors.⁴ 15. **hbd_lipinski**: Number of hydrogen bond donors calculated according to Lipinski's original rules (i.e., NH + OH count).⁴ 16. **heavy_atoms**: Number of heavy (non-hydrogen) atoms.⁴ 17. **molecular_species**: Indicates whether the compound is an acid/base/neutral.⁵ 18. **mw_freebase**: Molecular weight of parent compound.⁴ 19. **mw_monoisotopic**: Monoisotopic parent molecular weight.⁴ 20. **num_lipinski_ro5_violations**: Number of violations of Lipinski's rule of five using HBA_LIPINSKI and HBD_LIPINSKI counts.⁵ 21. **num_ro5_violations**: Number of violations of Lipinski's rule-of-five, using HBA and HBD definitions.⁵ 22. **psa**: Polar surface area.⁴ 23. **qed_weighted**: Weighted quantitative estimate of drug likeness (as defined by Bickerton et al., Nature Chem 2012).⁴ 24. **ro3_pass**: Indicates whether the compound passes the rule-of-three (mw < 300, logP < 3 etc).⁵ 25. **rtb**: Number rotatable bonds.⁴ 26. **canonical_smiles**: Canonical smiles, with no stereochemistry information. Generated using pipeline pilot.⁵ 27. **standard_inchi**: IUPAC standard InChI for the compound.⁵ 28. **standard_inchi_key**: IUPAC standard InChI key for the compound.⁵ 29. **natural_product**: Indicates whether the compound is natural product-derived (currently curated only for drugs).⁶ 30. **inorganic_flag**: Indicates whether the molecule is inorganic (i.e., containing only metal atoms and <2 carbon atoms).⁶ 31. **therapeutic_flag**: Indicates that a drug has a therapeutic application (as opposed to e.g., an imaging agent, additive etc).⁶ 32. **biotherapeutic**: A single related resource. Can be either a URI or set of nested resource data.⁶ 33. **polymer_flag**: Indicates whether a molecule is a small molecule polymer (e.g., polistyrex).⁶ 34. **prodrug**: Indicates that the molecule is a pro-drug (see molecule hierarchy for active component, where known).⁶ 35. **kegg_id**: KEGG identifier. 36. **formula**: Molecular formula for the full compound. 37. **exact_mass**: Mass of the compound (from KEGG). 38. **mol_weight**: mass of a molecule of a substance, based on 12 as the atomic weight of carbon-12.⁸ 39. atom: An ATOM entry represents KEGG Atom Type .¹⁰ 40. **bond**: A BOND entry is defined as a pair of ATOM entries that form a chemical bond in a molecule, corresponding to many named bonds in organic chemistry and biochemistry. ¹⁰ 41. **chebi_id**: ChEBI identifier. 42. **definition**: A simple definition of this compound. 43. **mass**: Returns the average mass. The relative masses are calculated from tables of relative atomic masses (atomic weights) published by IUPAC. (from CheBI).⁷ 44. **mol**: ChEBI stores the two-dimensional or three-dimensional structural diagrams as connection tables in MDL molfile format.⁷ 45. **smiles**: The simplified molecular-input line-entry system (SMILES) is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings. 46. **inchi**: The International Chemical Identifier (InChI) is a textual identifier for chemical substances, designed to provide a standard way to encode molecular information and to facilitate the search for such information in databases and on the web. 47. **inchi_key**: The InChIKey, sometimes referred to as a hashed InChI, is a fixed length (27 character) condensed digital representation of the InChI that is not human-understandable. 48. **cas_id**: CAS Registry Number. A CAS Registry Number is a unique and unambiguous identifier for a specific substance that allows clear communication and, with the help of CAS scientists, links together all available data and research about that substance. 49. **substance**: Full substance name as recognized by CFSAN (FDA). ⁹ 50. **regs**: Code of Federal Regulations associated numbers of this compound (FDA). ⁹ 51. **syns**: Synonyms of the compound (FDA). 52. **used_for**: The physical or technical effect(s) the substance has in or on food; see 21 CFR 170.3(o) for definitions. (FDA). ⁹ ¹ http://chemgps.bmc.uu.se/help/dragonx/GhoseCrippenViswanadhanAlogP.html ² http://www.talete.mi.it/help/dproperties_help/index.html?molecular_properties.htm ³ http://chembl.blogspot.com/2020/03/chembl-26-released.html ⁴ https://micha-protocol.org/glossary/index ⁵ https://www.ebi.ac.uk/chembl/api/data/drug/schema ⁶ https://www.ebi.ac.uk/chembl/api/data/molecule/schema ⁷ http://libchebi.github.io/libChEBI%20API.pdf ⁸ https://www.britannica.com/science/molecular-weight ⁹ https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FoodSubstances&sort=Used_for_Technical_Effect ¹⁰ https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-7-S6-S2
blux-food/compounds
[ "region:us" ]
2023-02-17T12:42:10+00:00
{}
2023-05-22T01:32:45+00:00
daabe51383f4196e9e8df6171dc74f16a4a96984
# Dataset Card for "class_dataset_real_donut_train_val" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LFBMS/class_dataset_real_donut_train_val
[ "region:us" ]
2023-02-17T12:54:48+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "bilanz_h", "1": "bilanz_v", "2": "guv", "3": "kontennachweis_bilanz", "4": "kontennachweis_guv", "5": "other", "6": "text"}}}}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 294898200.8863026, "num_examples": 1005}, {"name": "test", "num_bytes": 32864277.113697402, "num_examples": 112}], "download_size": 307756703, "dataset_size": 327762478.0}}
2023-02-17T12:54:59+00:00
33cbb68734aa1b49688cfe174ea53eb587d35799
# Dataset Card for "salvadoran-news-elsalvadorgram" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
justinian336/salvadoran-news-elsalvadorgram
[ "region:us" ]
2023-02-17T13:25:16+00:00
{"dataset_info": {"features": [{"name": "image_src", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "category", "dtype": {"class_label": {"names": {"0": "Internacional", "1": "Nacional", "2": "Arte y Cultura", "3": "Espect\u00e1culos", "4": "Trends", "5": "Econom\u00eda", "6": "Negocios", "7": "Tips", "8": "Deportes", "9": "Pol\u00edtica", "10": "Cine y TV", "11": "Turismo"}}}}, {"name": "link", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3423673, "num_examples": 1998}], "download_size": 1930392, "dataset_size": 3423673}}
2023-06-26T00:24:13+00:00
7e0fd00dc883470dc0f962692c03606b39b08abc
# Dataset Card for "santacoder-token-usage" Token usage count per language when tokenizing the `"bigcode/stack-dedup-alt-comments"` dataset with the `santacoder` tokenizer. There are less tokens than in the tokenizer because of vocabulary mismatch between the datasets used to train the tokenizer and the ones that ended up being used to train the model. [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
bigcode/santacoder-token-usage
[ "region:us" ]
2023-02-17T14:51:59+00:00
{"dataset_info": {"features": [{"name": "token", "dtype": "int64"}, {"name": "Java", "dtype": "int64"}, {"name": "JavaScript", "dtype": "int64"}, {"name": "Python", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1571808, "num_examples": 49119}], "download_size": 1165252, "dataset_size": 1571808}}
2023-02-17T14:53:34+00:00
47fcb1e525a966b4bc1bd64226d3a0c61b85da8b
p1atdev/nijijourney
[ "license:cc0-1.0", "region:us" ]
2023-02-17T15:19:26+00:00
{"license": "cc0-1.0"}
2023-02-19T10:03:56+00:00
b1e1fd0f6afae67b7ed711122cb0059083cf3c21
twigwam/fuego-20230217-163523-5ea371
[ "fuego", "region:us" ]
2023-02-17T15:35:24+00:00
{"tags": ["fuego"], "fuego": {"id": "20230217-163523-5ea371", "status": "done", "script": "run_glue.py", "requirements_file": "requirements.txt", "space_id": "twigwam/fuego-20230217-163523-5ea371", "space_hardware": "cpu-basic", "github_repo_id": "huggingface/transformers", "github_repo_branch": "main", "github_repo_sha": "a8eb4f79f946c5785f0e91b356ce328248916a05"}}
2023-02-17T20:55:14+00:00
94c4fcbe9a68086362cae1abfda6a4b3ca51379b
# Dataset Card for "RSD46-WHU" ## Dataset Description - **Paper** [Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks](https://ieeexplore.ieee.org/iel7/36/7880748/07827088.pdf) - **Paper** [High-Resolution Remote Sensing Image Retrieval Based on CNNs from a Dimensional Perspective](https://www.mdpi.com/209338) - **Split** Validation ## Split Information This HuggingFace dataset repository contains just the Validation split. ### Licensing Information [Free for education, research and commercial use.](https://github.com/RSIA-LIESMARS-WHU/RSD46-WHU) ## Citation Information [Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks](https://ieeexplore.ieee.org/iel7/36/7880748/07827088.pdf) [High-Resolution Remote Sensing Image Retrieval Based on CNNs from a Dimensional Perspective](https://www.mdpi.com/209338) ``` @article{long2017accurate, title = {Accurate object localization in remote sensing images based on convolutional neural networks}, author = {Long, Yang and Gong, Yiping and Xiao, Zhifeng and Liu, Qing}, year = 2017, journal = {IEEE Transactions on Geoscience and Remote Sensing}, publisher = {IEEE}, volume = 55, number = 5, pages = {2486--2498} } @article{xiao2017high, title = {High-resolution remote sensing image retrieval based on CNNs from a dimensional perspective}, author = {Xiao, Zhifeng and Long, Yang and Li, Deren and Wei, Chunshan and Tang, Gefu and Liu, Junyi}, year = 2017, journal = {Remote Sensing}, publisher = {MDPI}, volume = 9, number = 7, pages = 725 } ```
jonathan-roberts1/RSD46-WHU
[ "license:other", "region:us" ]
2023-02-17T15:41:45+00:00
{"license": "other", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "airplane", "1": "airport", "2": "artificial dense forest land", "3": "artificial sparse forest land", "4": "bare land", "5": "basketball court", "6": "blue structured factory building", "7": "building", "8": "construction site", "9": "cross river bridge", "10": "crossroads", "11": "dense tall building", "12": "dock", "13": "fish pond", "14": "footbridge", "15": "graff", "16": "grassland", "17": "irregular farmland", "18": "low scattered building", "19": "medium density scattered building", "20": "medium density structured building", "21": "natural dense forest land", "22": "natural sparse forest land", "23": "oil tank", "24": "overpass", "25": "parking lot", "26": "plastic greenhouse", "27": "playground", "28": "railway", "29": "red structured factory building", "30": "refinery", "31": "regular farmland", "32": "scattered blue roof factory building", "33": "scattered red roof factory building", "34": "sewage plant-type-one", "35": "sewage plant-type-two", "36": "ship", "37": "solar power station", "38": "sparse residential area", "39": "square", "40": "steelworks", "41": "storage land", "42": "tennis court", "43": "thermal power plant", "44": "vegetable plot", "45": "water"}}}}], "splits": [{"name": "train", "num_bytes": 1650045051.96, "num_examples": 17516}], "download_size": 2184490825, "dataset_size": 1650045051.96}}
2023-03-31T13:43:55+00:00
6c79cd8536e2f3ace62c869ce1ae09fa85b517d3
# Dataset Card for "Optimal-31" ## Dataset Description - **Paper** [Scene classification with recurrent attention of VHR remote sensing images](https://ieeexplore.ieee.org/iel7/5/8045830/07891544.pdf) ### Licensing Information [No license for now, cite the paper below.] ## Citation Information [Scene classification with recurrent attention of VHR remote sensing images](https://ieeexplore.ieee.org/iel7/5/8045830/07891544.pdf) ``` @article{wang2018scene, title = {Scene classification with recurrent attention of VHR remote sensing images}, author = {Wang, Qi and Liu, Shaoteng and Chanussot, Jocelyn and Li, Xuelong}, year = 2018, journal = {IEEE Transactions on Geoscience and Remote Sensing}, publisher = {IEEE}, volume = 57, number = 2, pages = {1155--1167} } ```
jonathan-roberts1/Optimal-31
[ "task_categories:image-classification", "task_categories:zero-shot-image-classification", "license:other", "region:us" ]
2023-02-17T15:53:58+00:00
{"license": "other", "task_categories": ["image-classification", "zero-shot-image-classification"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "airplane", "1": "airport", "2": "baseball diamond", "3": "basketball court", "4": "beach", "5": "bridge", "6": "chaparral", "7": "church", "8": "circular farmland", "9": "commercial area", "10": "dense residential", "11": "desert", "12": "forest", "13": "freeway", "14": "golf course", "15": "ground track field", "16": "harbor", "17": "industrial area", "18": "intersection", "19": "island", "20": "lake", "21": "meadow", "22": "medium residential", "23": "mobile home park", "24": "mountain", "25": "overpass", "26": "parking lot", "27": "railway", "28": "rectangular farmland", "29": "roundabout", "30": "runway"}}}}], "splits": [{"name": "train", "num_bytes": 25100636.72, "num_examples": 1860}], "download_size": 25105452, "dataset_size": 25100636.72}}
2023-03-31T16:06:29+00:00
7d50e8214fcc2f4d5fb0fd6b6835114987fb436c
# Dataset Card for "Airbus-Wind-Turbines-Patches" ## Dataset Description - **Paper** [Airbus Wind Turbine Patches](https://www.kaggle.com/datasets/airbusgeo/airbus-wind-turbines-patches) - **Split** Validation ## Split Information This HuggingFace dataset repository contains just the Validation split. ### Licensing Information [CC BY-NC-SA 4.0](https://www.kaggle.com/datasets/airbusgeo/airbus-wind-turbines-patches) ## Citation Information [Airbus Wind Turbine Patches](https://www.kaggle.com/datasets/airbusgeo/airbus-wind-turbines-patches) ``` @misc{kaggle_awtp, author = {Airbus DS GEO S.A.}, title = {Airbus Wind Turbine Patches}, howpublished = {\url{https://www.kaggle.com/datasets/airbusgeo/airbus-wind-turbines-patches}}, year = {2021}, version = {1.0} } ```
jonathan-roberts1/Airbus-Wind-Turbines-Patches
[ "license:other", "region:us" ]
2023-02-17T15:56:30+00:00
{"license": "other", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "no wind turbine", "1": "wind turbine"}}}}], "splits": [{"name": "train", "num_bytes": 169946184.648, "num_examples": 71504}], "download_size": 147716132, "dataset_size": 169946184.648}}
2023-03-31T14:23:50+00:00
784d8e198f48b745fa3705b1e19d10e735d039d8
# Dataset Card for "SRV-Europarl-ST-processed-mt-es" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-es
[ "region:us" ]
2023-02-17T15:59:36+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 133686385.86889735, "num_examples": 553896}, {"name": "valid", "num_bytes": 17228528.617501996, "num_examples": 74770}, {"name": "test", "num_bytes": 17351036.302417863, "num_examples": 77952}], "download_size": 132237051, "dataset_size": 168265950.78881723}}
2023-02-17T18:04:59+00:00
d4ca5fb9fe47dabf9386606354c19b6a9c2ffdc4
# Dataset Card for "SRV-Europarl-ST-processed-mt-de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-de
[ "region:us" ]
2023-02-17T16:00:21+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 142212387.7873306, "num_examples": 570077}, {"name": "valid", "num_bytes": 18480669.707563575, "num_examples": 77255}, {"name": "test", "num_bytes": 18441786.554772235, "num_examples": 79827}], "download_size": 137284138, "dataset_size": 179134844.0496664}}
2023-02-17T18:05:50+00:00
71ef61dbd1bfdfd8369aec868564dfdc1ab42675
# Dataset Card for "SRV-Europarl-ST-processed-mt-en" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-en
[ "region:us" ]
2023-02-17T16:01:09+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 159929144.55095986, "num_examples": 602605}, {"name": "valid", "num_bytes": 21162053.230128862, "num_examples": 81968}, {"name": "test", "num_bytes": 22144424.302616265, "num_examples": 86170}], "download_size": 138665727, "dataset_size": 203235622.08370498}}
2023-02-17T18:06:42+00:00
487f9f41aff3d7d32a9cbd3160666d7214641bb5
# Dataset Card for "SRV-Europarl-ST-processed-mt-fr" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-fr
[ "region:us" ]
2023-02-17T16:01:57+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 141253195.15623656, "num_examples": 560866}, {"name": "valid", "num_bytes": 17488315.87666781, "num_examples": 74712}, {"name": "test", "num_bytes": 17809265.33287921, "num_examples": 77906}], "download_size": 134077385, "dataset_size": 176550776.36578357}}
2023-02-17T18:07:31+00:00
4703af7fb3e5b9fb9c894c5331cfa4d38ae47980
# Dataset Card for "SRV-Europarl-ST-processed-mt-nl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-nl
[ "region:us" ]
2023-02-17T16:02:43+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 129720449.98097737, "num_examples": 545306}, {"name": "valid", "num_bytes": 16521264.566455696, "num_examples": 73282}, {"name": "test", "num_bytes": 16814900.166492514, "num_examples": 76545}], "download_size": 127174917, "dataset_size": 163056614.7139256}}
2023-02-17T18:08:26+00:00
d3a0e889a857aea070327116cd771cee035b9434
# Dataset Card for "SRV-Europarl-ST-processed-mt-pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-pl
[ "region:us" ]
2023-02-17T16:03:28+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 131997833.26896666, "num_examples": 552558}, {"name": "valid", "num_bytes": 16413231.013342457, "num_examples": 73364}, {"name": "test", "num_bytes": 17199836.022855934, "num_examples": 77684}], "download_size": 132441622, "dataset_size": 165610900.30516505}}
2023-02-17T18:09:13+00:00
b3f6f9c34147c2013c07e25663ab0a0cea7cbf96
# Dataset Card for "SRV-Europarl-ST-processed-mt-pt" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-pt
[ "region:us" ]
2023-02-17T16:04:16+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 131601003.22950283, "num_examples": 549976}, {"name": "valid", "num_bytes": 16576935.543191927, "num_examples": 73404}, {"name": "test", "num_bytes": 17257821.503147982, "num_examples": 77286}], "download_size": 129352823, "dataset_size": 165435760.27584276}}
2023-02-17T18:10:02+00:00
3500fbb407ff985a7dff60482af5cdef4412306b
# Dataset Card for "SRV-Europarl-ST-processed-mt-ro" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-ro
[ "region:us" ]
2023-02-17T16:05:00+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 120639323.35744976, "num_examples": 514205}, {"name": "valid", "num_bytes": 14691546.077845251, "num_examples": 66754}, {"name": "test", "num_bytes": 14869510.309176764, "num_examples": 69702}], "download_size": 120668347, "dataset_size": 150200379.7444718}}
2023-02-17T18:10:50+00:00
9c8ed09afa42bb9abc4d3bf02cf5be8e904196e4
# Dataset Card for "SRV-Europarl-ST-processed-mt-it" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tj-solergibert/SRV-Europarl-ST-processed-mt-it
[ "region:us" ]
2023-02-17T16:05:47+00:00
{"dataset_info": {"features": [{"name": "source_text", "dtype": "string"}, {"name": "dest_text", "dtype": "string"}, {"name": "dest_lang", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 121979892.4315265, "num_examples": 504773}, {"name": "valid", "num_bytes": 15246425.496728532, "num_examples": 67701}, {"name": "test", "num_bytes": 15677401.348182635, "num_examples": 70814}], "download_size": 118670951, "dataset_size": 152903719.27643767}}
2023-02-17T18:11:38+00:00
dc712549b309cf07d54446f2fc21dc16dcf7400d
# Dataset Card for "enwiki20230101" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lsb/enwiki20230101
[ "region:us" ]
2023-02-17T16:31:59+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20961930875, "num_examples": 6593739}], "download_size": 8418949922, "dataset_size": 20961930875}}
2023-02-17T17:12:32+00:00
9bd9b97cd026d93274e735e9489565f519130deb
Ubque/The_Model_Dump
[ "license:other", "region:us" ]
2023-02-17T16:36:56+00:00
{"license": "other"}
2023-02-18T22:06:26+00:00
9de1d4221701600b0f3f8ae0e0367506ce63b493
# Dataset Card for "Ships-In-Satellite-Imagery" ## Dataset Description - **Paper:** [Ships in Satellite Imagery](https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery) ### Licensing Information CC BY-SA 4.0 ## Citation Information [Ships in Satellite Imagery](https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery) ``` @misc{kaggle_sisi, author = {Hammell, Robert}, title = {Ships in Satellite Imagery}, howpublished = {\url{https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery}}, year = {2018}, version = {9.0} } ```
jonathan-roberts1/Ships-In-Satellite-Imagery
[ "license:cc-by-sa-4.0", "region:us" ]
2023-02-17T16:48:59+00:00
{"license": "cc-by-sa-4.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "an entire ship", "1": "no ship or part of a ship"}}}}], "splits": [{"name": "train", "num_bytes": 41806886, "num_examples": 4000}], "download_size": 0, "dataset_size": 41806886}}
2023-03-31T13:38:12+00:00
ae5610f3c92dd06f8c8e0024a6df56b042a63eb1
Ubque/The_Hypernetwork_Dump
[ "license:other", "region:us" ]
2023-02-17T17:03:52+00:00
{"license": "other"}
2023-02-18T05:15:33+00:00
4bb60de01b2d9e323d364d76d8b08c2eaeef1a64
# Dataset Card for "Satellite-Images-of-Hurricane-Damage" ## Dataset Description - **Paper** [Deep learning based damage detection on post-hurricane satellite imagery](https://arxiv.org/pdf/1807.01688.pdf) - **Data** [IEEE-Dataport](https://ieee-dataport.org/open-access/detecting-damaged-buildings-post-hurricane-satellite-imagery-based-customized) - **Split** Train_another - **GitHub** [DamageDetection](https://github.com/qcao10/DamageDetection) ## Split Information This HuggingFace dataset repository contains just the Train_another split. ### Licensing Information [CC BY 4.0](https://ieee-dataport.org/open-access/detecting-damaged-buildings-post-hurricane-satellite-imagery-based-customized) ## Citation Information [Deep learning based damage detection on post-hurricane satellite imagery](https://arxiv.org/pdf/1807.01688.pdf) [IEEE-Dataport](https://ieee-dataport.org/open-access/detecting-damaged-buildings-post-hurricane-satellite-imagery-based-customized) ``` @misc{sdad-1e56-18, title = {Detecting Damaged Buildings on Post-Hurricane Satellite Imagery Based on Customized Convolutional Neural Networks}, author = {Cao, Quoc Dung and Choe, Youngjun}, year = 2018, publisher = {IEEE Dataport}, doi = {10.21227/sdad-1e56}, url = {https://dx.doi.org/10.21227/sdad-1e56} } @article{cao2018deep, title={Deep learning based damage detection on post-hurricane satellite imagery}, author={Cao, Quoc Dung and Choe, Youngjun}, journal={arXiv preprint arXiv:1807.01688}, year={2018} } ```
jonathan-roberts1/Satellite-Images-of-Hurricane-Damage
[ "license:cc-by-4.0", "arxiv:1807.01688", "region:us" ]
2023-02-17T17:22:30+00:00
{"license": "cc-by-4.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "flooded or damaged buildings", "1": "undamaged buildings"}}}}], "splits": [{"name": "train", "num_bytes": 25588780, "num_examples": 10000}], "download_size": 26998688, "dataset_size": 25588780}}
2023-03-31T13:53:28+00:00