sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
b9c046b2bb0b97ee11c86b9647f89c15f183c64f
An imitation learning environment for the atari_frostbite environment, sample for the policy atari_2B_atari_frostbite_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_frostbite_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T15:26:26+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T15:27:18+00:00
d2cb6068cb0ca6864621ae61d5508d11c6757cb0
An imitation learning environment for the atari_gopher environment, sample for the policy atari_2B_atari_gopher_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_gopher_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T15:32:46+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T15:33:46+00:00
bbf9e1317a1558c8af39e315301a74f1ed3e6349
An imitation learning environment for the atari_gravitar environment, sample for the policy atari_2B_atari_gravitar_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_gravitar_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T15:40:13+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T15:41:08+00:00
95ab9a687849050caf6094336c84c3b4cdbf4e49
An imitation learning environment for the atari_hero environment, sample for the policy atari_2B_atari_hero_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_hero_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T15:47:57+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T15:48:43+00:00
8f435ec3d8d968a2a9a5e606800aa127d624d672
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** https://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/blogset-br/ - **Leaderboard:** Grupo de Processamento da Linguagem Natural da PUC-RS - **Point of Contact:** Site oficial ### Dataset Summary Este Dataset foi criado a partir dos dados disponibilizados pelo Grupo de Processamento de Linguagem Natural da PUC-RS. O site oficial pode ser encontrado aqui: https://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/blogset-br/ ### Supported Tasks and Leaderboards Indicado para treinamento de modelos de linguagem. ### Languages Português do Brasil #### Initial Data Collection and Normalization Informações sobre a criação do Dataset podem ser encontradas aqui: https://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/blogset-br/ ### Licensing Information Apache V2 ### Contributions Esta página é meramente uma configuração para o formato Huggingface do trabalho realizado pelo equipe PLN da PUC-RS. ### Huggingface format O código a seguir foi utilizado para a criação do dataset. Decisões quanto a estrutura: 1. Somente a coluna relacionada ao texto foi utilizada (coluna 4). 2. Foi aplicada uma bateria de ajustes visando limpar o texto conforme pode ser observado no código. 3. Procurou-se manter o limite de 512 palavras em cada linha. Gist: https://gist.github.com/rdemorais/ce2e708af4c07aba47930bc12ed92472
thegoodfellas/blogset-br
[ "size_categories:1M<n<10M", "language:pt", "license:apache-2.0", "region:us" ]
2023-02-21T15:50:05+00:00
{"language": ["pt"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "pretty_name": "Blogset BR"}
2023-02-21T21:53:47+00:00
910b430979efa6990b6a2346f9bf0c8a75241792
An imitation learning environment for the atari_icehockey environment, sample for the policy atari_2B_atari_icehockey_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_icehockey_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T15:54:51+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T15:55:27+00:00
fd67f1921093ed31b2d823e191e78875232a6c43
An imitation learning environment for the atari_jamesbond environment, sample for the policy atari_2B_atari_jamesbond_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_jamesbond_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:01:19+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:02:42+00:00
b3dba1ae680fce5482413bf911dba26b679f7a0e
An imitation learning environment for the atari_kangaroo environment, sample for the policy atari_2B_atari_kangaroo_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_kangaroo_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:09:09+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:10:11+00:00
1748e48bf30a5ad16c45ab3c60213d3e0bf15a4e
An imitation learning environment for the atari_krull environment, sample for the policy atari_2B_atari_krull_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_krull_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:16:44+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:17:56+00:00
14c70843bab946e6fe9d3433c719aab080454880
About Dataset This dataset is taken from https://www.kaggle.com/datasets/bolattleubayev/nursultan-nazarbayev-speech-dataset The dataset consists of manually labelled 9341 wav files (around 14.8 hours) taken from speeches of The First President of the Republic of Kazakhstan Nursultan Nazarbayev published online. 7919 files (12.1 hours) are in Russian and 1422 files (2.7 hours) in Kazakh. Minimum duration: 0.42 sec, maximum: 13.00 sec, mean: 5.71 sec. The dataset was collected as a part of a research effort of Nazarabyev University Human-Robot Interaction Lab by Bolat Tleubayev, Ruslan Polichshuk, Zhanel Zhexenova, and Anara Sandygulova. This is ongoing open source project, so the dataset might expand in future. The .csv files are separated by '|' instead of ',' to avoid confusion with punctuation.
Shirali/N_Nazarbayev_Speech_corpus
[ "license:cc0-1.0", "region:us" ]
2023-02-21T16:23:03+00:00
{"license": "cc0-1.0"}
2023-02-22T17:33:57+00:00
62a6615f1955648f927541ac3570029619dd48cd
An imitation learning environment for the atari_kongfumaster environment, sample for the policy atari_2B_atari_kongfumaster_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_kongfumaster_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:24:17+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:25:14+00:00
0edc9437459f81e54118765e7d826d714f546123
An imitation learning environment for the atari_montezuma environment, sample for the policy atari_2B_atari_montezuma_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_montezuma_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:31:42+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:32:32+00:00
a9e01ca7953a654a8559e139ab01bc4991b8eb62
An imitation learning environment for the atari_mspacman environment, sample for the policy atari_2B_atari_mspacman_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_mspacman_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:38:31+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:39:30+00:00
8756ca81f6c2aada2e7a6176795f58fd0efe17af
An imitation learning environment for the atari_namethisgame environment, sample for the policy atari_2B_atari_namethisgame_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_namethisgame_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:45:28+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:46:14+00:00
00351445810c2c701b1f2a280d0a34bbf5fa89a9
An imitation learning environment for the atari_phoenix environment, sample for the policy atari_2B_atari_phoenix_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_phoenix_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T16:51:48+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T16:54:05+00:00
dd9595d00ba533605177c5d62b2f4622750d6646
# Dataset Card for "smithsonian_butterflies_subset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hotfinda/smithsonian_butterflies_subset
[ "region:us" ]
2023-02-21T16:58:41+00:00
{"dataset_info": {"features": [{"name": "image_url", "dtype": "string"}, {"name": "image_alt", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "scientific_name", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "taxonomy", "dtype": "string"}, {"name": "region", "dtype": "string"}, {"name": "locality", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "usnm_no", "dtype": "string"}, {"name": "guid", "dtype": "string"}, {"name": "edan_url", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "stage", "dtype": "float64"}, {"name": "image", "dtype": "image"}, {"name": "image_hash", "dtype": "string"}, {"name": "sim_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 237753960.0, "num_examples": 1000}], "download_size": 237446351, "dataset_size": 237753960.0}}
2023-02-21T16:59:11+00:00
974219a4e44ae5ecdba6e3ae42dba27eca911a26
An imitation learning environment for the atari_pitfall environment, sample for the policy atari_2B_atari_pitfall_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_pitfall_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:00:10+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:00:54+00:00
b1ca27589a10a019f92e63e71f5efc8913a08159
nielsgl/dreambooth-ace
[ "license:mit", "region:us" ]
2023-02-21T17:07:37+00:00
{"license": "mit"}
2023-03-24T10:47:57+00:00
bb9a1dda6ffd86b32384b7de5b77f3b3b45283e0
An imitation learning environment for the atari_privateye environment, sample for the policy atari_2B_atari_privateye_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_privateye_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:14:08+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:15:03+00:00
680cf894d52eb65dfd9a1405dcf0ebfcef9b1656
An imitation learning environment for the atari_qbert environment, sample for the policy atari_2B_atari_qbert_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_qbert_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:21:02+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:21:39+00:00
768b0061fd2949b96d6a941a865137a5afea2e71
An imitation learning environment for the atari_riverraid environment, sample for the policy atari_2B_atari_riverraid_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_riverraid_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:28:21+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:29:14+00:00
1aeb7b2090f442881daa6ce67c688419742c3c12
An imitation learning environment for the atari_roadrunner environment, sample for the policy atari_2B_atari_roadrunner_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_roadrunner_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:35:34+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:36:10+00:00
9259a62218165a4c4c971de8a0e2a0a9a8cf8f17
An imitation learning environment for the atari_robotank environment, sample for the policy atari_2B_atari_robotank_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_robotank_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:42:55+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:43:49+00:00
536155fd0d2282076a369d27374c74bd68f84f6e
An imitation learning environment for the atari_seaquest environment, sample for the policy atari_2B_atari_seaquest_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_seaquest_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:49:45+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:50:23+00:00
c800301a1388ccfde9409838f45f2cfe06024548
An imitation learning environment for the atari_skiing environment, sample for the policy atari_2B_atari_skiing_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_skiing_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T17:56:35+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T17:57:29+00:00
6ccc62e107cadb979bb799bdfc99d305147d7bf1
An imitation learning environment for the atari_solaris environment, sample for the policy atari_2B_atari_solaris_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_solaris_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:04:03+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:05:14+00:00
25600e8556dcdc22c32f221ec4394d219fad9466
An imitation learning environment for the atari_spaceinvaders environment, sample for the policy atari_2B_atari_spaceinvaders_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_spaceinvaders_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:10:43+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:11:49+00:00
09538f1d7efeeb1e44878bb36cf572058e4798d1
An imitation learning environment for the atari_stargunner environment, sample for the policy atari_2B_atari_stargunner_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_stargunner_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:17:28+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:18:11+00:00
145cbdb9a725d8a22b4b1be3b4b46899309757d0
An imitation learning environment for the atari_tennis environment, sample for the policy atari_2B_atari_tennis_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_tennis_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:24:20+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:25:30+00:00
bbc5108726a9cf0cc9ccf71140b100ea3ca0b7a6
An imitation learning environment for the atari_timepilot environment, sample for the policy atari_2B_atari_timepilot_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_timepilot_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:31:00+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:32:51+00:00
11a32e3725358c0702ce11a725c487131715154c
An imitation learning environment for the atari_tutankham environment, sample for the policy atari_2B_atari_tutankham_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_tutankham_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:38:33+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:40:10+00:00
cdc71f25a76eac312a6c3347e351a2c785f0fa02
An imitation learning environment for the atari_upndown environment, sample for the policy atari_2B_atari_upndown_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_upndown_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:47:28+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:48:32+00:00
ea3c08c3b0dade898136ba912f64544dcd25ac37
An imitation learning environment for the atari_venture environment, sample for the policy atari_2B_atari_venture_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_venture_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T18:54:32+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T18:55:16+00:00
959a0bcbfa06df12f14c5530d3aaa6859f342dc5
An imitation learning environment for the atari_videopinball environment, sample for the policy atari_2B_atari_videopinball_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_videopinball_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T19:01:50+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T19:02:43+00:00
fdf505c8d6afb78e62e71b58c012f80657fb7289
An imitation learning environment for the atari_wizardofwor environment, sample for the policy atari_2B_atari_wizardofwor_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_wizardofwor_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T19:08:26+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T19:09:20+00:00
9862df54ca61d77cc881660cc339d3c4daaf690e
An imitation learning environment for the atari_yarsrevenge environment, sample for the policy atari_2B_atari_yarsrevenge_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_yarsrevenge_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T19:14:58+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T19:15:52+00:00
b788f7d8c47455a0d24b6c04a1bfed0c2c79c895
An imitation learning environment for the atari_zaxxon environment, sample for the policy atari_2B_atari_zaxxon_1111 This environment was created as part of the Generally Intelligent Agents project gia: https://github.com/huggingface/gia
edbeeching/prj_gia_dataset_atari_2B_atari_zaxxon_1111
[ "deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning", "region:us" ]
2023-02-21T19:21:45+00:00
{"library_name": "gia", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "gia", "multi-task", "multi-modal", "imitation-learning", "offline-reinforcement-learning"]}
2023-02-21T19:22:40+00:00
0bef29bf7e2719b2c8a44835b96d91d64c836b2f
# Dataset Card for "product-10k-part1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
matterr/product-10k-part1
[ "region:us" ]
2023-02-21T19:47:48+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 751920.0, "num_examples": 2}], "download_size": 754822, "dataset_size": 751920.0}}
2023-02-21T20:35:59+00:00
7d31f770123adbf09829cc14dbb707a72a98d741
# Dataset Card for "wikipedia.reorder.natural.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.natural.de
[ "region:us" ]
2023-02-21T19:55:17+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 0, "dataset_size": 2385745587}}
2023-02-21T20:24:01+00:00
234801d97bbee2422cbe97bc9ba6f286e4d3f642
# Dataset Card for "wikipedia.reorder.svo.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.svo.de
[ "region:us" ]
2023-02-21T20:00:17+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 1063402086, "dataset_size": 2385745587}}
2023-02-21T20:02:49+00:00
765d7785ff409c71c8e4c0347f8daa7b29474f3d
# Dataset Card for "wikipedia.reorder.vos.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.vos.de
[ "region:us" ]
2023-02-21T20:06:21+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 1068076681, "dataset_size": 2385745587}}
2023-02-21T20:08:01+00:00
88c570e2c28e45290aa502e34c174a9516cd3d36
this is a very bad dataset. a better one comming soon.
breadlicker45/youtube-comments
[ "region:us" ]
2023-02-21T20:07:34+00:00
{}
2023-02-22T20:45:23+00:00
785ea48ca190d3e15adde61cec84eae357ad1b2f
# Binhvq News - Source: https://github.com/binhvq/news-corpus - Num examples: 19,365,593 - Language: Vietnamese ```python from datasets import load_dataset load_dataset("tdtunlp/binhvq_news_vi") ```
vietgpt/binhvq_news_vi
[ "task_categories:text-generation", "size_categories:10M<n<100M", "language:vi", "LM", "region:us" ]
2023-02-21T20:08:06+00:00
{"language": ["vi"], "size_categories": ["10M<n<100M"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8211350978.574438, "num_examples": 19365593}], "download_size": 4780706833, "dataset_size": 8211350978.574438}, "tags": ["LM"]}
2023-03-30T17:58:53+00:00
6730e6512892378562b4055f6483a9691139d937
# Dataset Card for "wikipedia.reorder.osv.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.osv.de
[ "region:us" ]
2023-02-21T20:09:23+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 1065735715, "dataset_size": 2385745587}}
2023-02-21T20:11:06+00:00
7f0c663fabfbd4e1bd0f5bb352257e487ecc2f71
# Dataset Card for "wikipedia.reorder.sov.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.sov.de
[ "region:us" ]
2023-02-21T20:12:27+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 1068439913, "dataset_size": 2385745587}}
2023-02-21T20:14:11+00:00
177b5220bea8df17d089a5cdd714eae93d17f4d8
# Dataset Card for "wikipedia.reorder.vso.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.vso.de
[ "region:us" ]
2023-02-21T20:15:24+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 1063715741, "dataset_size": 2385745587}}
2023-02-21T20:16:45+00:00
28351f3479088c8c4ac5bfdc185773e387db93a0
# Dataset Card for "wikipedia.reorder.ovs.de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lshowway/wikipedia.reorder.ovs.de
[ "region:us" ]
2023-02-21T20:17:11+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2385745587, "num_examples": 1137317}], "download_size": 1064795572, "dataset_size": 2385745587}}
2023-02-21T20:27:31+00:00
64ecf097c8db0f6dcfc86046e3450de8da5a3e41
# Wikipedia - Source: https://huggingface.co/datasets/wikipedia - Num examples: 1,281,412 - Language: Vietnamese ```python from datasets import load_dataset load_dataset("tdtunlp/wikipedia_vi") ```
vietgpt/wikipedia_vi
[ "task_categories:text-generation", "size_categories:1M<n<10M", "language:vi", "LM", "region:us" ]
2023-02-21T20:39:38+00:00
{"language": ["vi"], "size_categories": ["1M<n<10M"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "revid", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1053551922.960177, "num_examples": 1284930}], "download_size": 569515706, "dataset_size": 1053551922.960177}, "tags": ["LM"]}
2023-09-16T04:11:18+00:00
35e7ad2906ea22bfb293e0b82ca1f153fa8bb399
# Dataset Card for "patched_test_p_10_f_SPOUT_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_10_f_SPOUT_v4
[ "region:us" ]
2023-02-21T20:40:47+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 537304297, "num_examples": 1675599}], "download_size": 54326651, "dataset_size": 537304297}}
2023-02-21T20:41:00+00:00
f9e872d95e3585575d77e0630461d525f4fde0f2
# Dataset Card for "patched_test_p_20_f_SPOUT_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_20_f_SPOUT_v4
[ "region:us" ]
2023-02-21T20:41:46+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 517784141, "num_examples": 1607399}], "download_size": 52108156, "dataset_size": 517784141}}
2023-02-21T20:41:58+00:00
b10bf4a93c64501fdf23e4fc98e6bafc20d2c244
# Dataset Card for "patched_test_p_40_f_SPOUT_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_40_f_SPOUT_v4
[ "region:us" ]
2023-02-21T20:42:28+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 478745882, "num_examples": 1470999}], "download_size": 0, "dataset_size": 478745882}}
2023-02-21T20:43:09+00:00
a087db33e07fb6087eec13c8267f7e324b7f49d5
# Dataset Card for "patched_test_p_10_f_ATCaseOTCase_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_10_f_ATCaseOTCase_v4
[ "region:us" ]
2023-02-21T20:43:52+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 52568328, "num_examples": 143667}], "download_size": 5044378, "dataset_size": 52568328}}
2023-02-21T20:43:59+00:00
a43f98cad170ead879adbf26c415b1527522d9c0
# Dataset Card for "patched_test_p_20_f_ATCaseOTCase_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_20_f_ATCaseOTCase_v4
[ "region:us" ]
2023-02-21T20:44:33+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 50950318, "num_examples": 139207}], "download_size": 4851567, "dataset_size": 50950318}}
2023-02-21T20:44:40+00:00
72f47cf00e5c7f885a4e1ed1cbd6c020eaaa5c38
# Dataset Card for "patched_test_p_40_f_ATCaseOTCase_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_40_f_ATCaseOTCase_v4
[ "region:us" ]
2023-02-21T20:46:47+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 47714312, "num_examples": 130287}], "download_size": 4461993, "dataset_size": 47714312}}
2023-02-21T20:46:53+00:00
4b8f55e5df3fa7117687066e015c466aa523e927
# Dataset Card for "patched_test_p_40_f_membrane_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_40_f_membrane_v4
[ "region:us" ]
2023-02-21T20:47:15+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1946930959, "num_examples": 3134581}], "download_size": 162353372, "dataset_size": 1946930959}}
2023-02-21T20:47:43+00:00
f6ea6e9fa5ec42907140665c6e0f4ec7a72aaf9e
# Dataset Card for "patched_test_p_80_f_membrane_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_80_f_membrane_v4
[ "region:us" ]
2023-02-21T20:49:23+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1802548319, "num_examples": 2865341}], "download_size": 151479669, "dataset_size": 1802548319}}
2023-02-21T20:49:52+00:00
eb22e64311cc724864cbc610d668d0084326160a
# Dataset Card for "patched_test_p_150_f_membrane_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_150_f_membrane_v4
[ "region:us" ]
2023-02-21T20:50:09+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1552272870, "num_examples": 2394171}], "download_size": 128097844, "dataset_size": 1552272870}}
2023-02-21T20:50:32+00:00
bc0824e81679ac2c895d0a0f9a4eb447afbd8c72
# Dataset Card for "patched_test_p_200_f_membrane_v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_200_f_membrane_v4
[ "region:us" ]
2023-02-21T20:50:54+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1371458168, "num_examples": 2057621}], "download_size": 112398698, "dataset_size": 1371458168}}
2023-02-21T20:51:13+00:00
81d3b7c52745184913fea4455689c8127d8dc47f
# Wikipedia - Source: https://huggingface.co/datasets/wikipedia - Num examples: 6,623,239 - Language: English ```python from datasets import load_dataset load_dataset("tdtunlp/wikipedia_en") ```
vietgpt/wikipedia_en
[ "task_categories:text-generation", "size_categories:1M<n<10M", "language:en", "LM", "region:us" ]
2023-02-21T20:52:04+00:00
{"language": ["en"], "size_categories": ["1M<n<10M"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21102365479, "num_examples": 6623239}], "download_size": 12161597141, "dataset_size": 21102365479}, "tags": ["LM"]}
2023-03-30T17:35:12+00:00
fe6c56666c2907859caa531e8eb4dd35717d8b20
# OpenSubtitles - Source: https://huggingface.co/datasets/open_subtitles - Num examples: 3,505,276 - Language: English ```python from datasets import load_dataset load_dataset("tdtunlp/open_subtitles_envi") ``` - Format for Translation task ```python def preprocess( sample, instruction_key="### Instruction:", input_key="Input:", response_key="<|endofprompt|>", end_key="<|endoftext|>", en2vi=True, ): if en2vi: if random.random() < 0.5: instruction = "Translate the following sentences from English into Vietnamese." else: instruction = "Dịch các câu sau từ tiếng Anh sang tiếng Việt." input = sample['en'].strip() response = sample['vi'].strip() else: if random.random() < 0.5: instruction = "Translate the following sentences from Vietnamese into English." else: instruction = "Dịch các câu sau từ tiếng Việt sang tiếng Anh." input = sample['vi'].strip() response = sample['en'].strip() return {'text': """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. {instruction_key} {instruction} {input_key} {input} {response_key} {response} {end_key}""".format( instruction_key=instruction_key, instruction=instruction, input_key=input_key, input=input, response_key=response_key, response=response, end_key=end_key, )} """ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Dịch các câu sau từ tiếng Anh sang tiếng Việt. Input: Line up, I say! <|endofprompt|> Sắp hàng, nghe chưa! <|endoftext|> """ ```
vietgpt/open_subtitles_envi
[ "task_categories:translation", "size_categories:1M<n<10M", "language:en", "language:vi", "LM", "region:us" ]
2023-02-21T21:01:10+00:00
{"language": ["en", "vi"], "size_categories": ["1M<n<10M"], "task_categories": ["translation"], "dataset_info": {"features": [{"name": "en", "dtype": "string"}, {"name": "vi", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 280063489, "num_examples": 3505276}], "download_size": 176803145, "dataset_size": 280063489}, "tags": ["LM"]}
2023-07-03T16:52:41+00:00
cb9b5b1d39ea76d36db00322c4b8d984e388f3cf
alignment/mm-cot
[ "license:apache-2.0", "region:us" ]
2023-02-21T21:03:17+00:00
{"license": "apache-2.0"}
2023-02-22T01:41:00+00:00
62aff9ab74aa4b73a36c45a9f6c91279a57db5d3
# Ted Talks - Source: https://huggingface.co/datasets/ted_talks_iwslt - Num examples: 2,293 - Language: English ```python from datasets import load_dataset load_dataset("tdtunlp/ted_talks_iwslt_en") ```
vietgpt/ted_talks_iwslt_en
[ "task_categories:text-generation", "size_categories:1K<n<10K", "language:en", "LM", "region:us" ]
2023-02-21T21:22:06+00:00
{"language": ["en"], "size_categories": ["1K<n<10K"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 27242341, "num_examples": 2293}], "download_size": 15366817, "dataset_size": 27242341}, "tags": ["LM"]}
2023-03-30T17:28:08+00:00
b33d09325104597f1ea2dc19caffe68b79f8998d
krishnagarg09/SemEval2016Task6
[ "license:mit", "region:us" ]
2023-02-21T21:51:48+00:00
{"license": "mit"}
2023-02-21T21:58:21+00:00
4cc7f8afebc04cfae966086ee9286148c6c1001f
- This Dataset has been downloaded from PubMed - It has abstracts and titles that are related to Lung Cancer - the data has been cleaned before uploading - it could be used for any NLP task, such as Domain Adaptation
Gaborandi/Lung_Cancer_pubmed_abstracts
[ "region:us" ]
2023-02-21T22:14:05+00:00
{}
2023-02-21T23:20:11+00:00
049b6d3855cf4f9c75489457e5e7f66864501348
- This Dataset has been downloaded from PubMed - It has abstracts and titles that are related to type 2 DM - the data has been cleaned before uploading - it could be used for any NLP task, such as Domain Adaptation
Gaborandi/diabetes_mellitus_type2_pubmed_abstracts
[ "region:us" ]
2023-02-21T22:22:15+00:00
{}
2023-02-21T23:10:29+00:00
1bd89a6d51f3a71656e17e3aec8c209c49b7ba10
# Dataset Card for "trivia_qa_wiki_validation" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
manu/trivia_qa_wiki
[ "region:us" ]
2023-02-21T22:25:14+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question_source", "dtype": "string"}, {"name": "entity_pages", "sequence": [{"name": "doc_source", "dtype": "string"}, {"name": "filename", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "wiki_context", "dtype": "string"}]}, {"name": "search_results", "sequence": [{"name": "description", "dtype": "string"}, {"name": "filename", "dtype": "string"}, {"name": "rank", "dtype": "int32"}, {"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "search_context", "dtype": "string"}]}, {"name": "answer", "struct": [{"name": "aliases", "sequence": "string"}, {"name": "normalized_aliases", "sequence": "string"}, {"name": "matched_wiki_entity_name", "dtype": "string"}, {"name": "normalized_matched_wiki_entity_name", "dtype": "string"}, {"name": "normalized_value", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 430166050, "num_examples": 7993}], "download_size": 234775285, "dataset_size": 430166050}}
2023-02-21T22:25:45+00:00
160ae214bccc54d9b716e53eb6b0b50ee50ec39c
# Dataset Card for "patched_test_p_10_f_SPOUT_m1_predictions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
roa7n/patched_test_p_10_f_SPOUT_m1_predictions
[ "region:us" ]
2023-02-22T00:19:01+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sequence_str", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "m1_preds", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 544006693, "num_examples": 1675599}], "download_size": 55789813, "dataset_size": 544006693}}
2023-02-22T00:19:13+00:00
5cf6eb2c2622d5ee0ca97df42c62bfd3fd1fabc4
# Dataset Card for "nldv" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fifi777/nldv
[ "region:us" ]
2023-02-22T00:20:52+00:00
{"dataset_info": {"features": [{"name": "repo_name", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "copies", "dtype": "string"}, {"name": "size", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "hash", "dtype": "int64"}, {"name": "line_mean", "dtype": "float64"}, {"name": "line_max", "dtype": "int64"}, {"name": "alpha_frac", "dtype": "float64"}, {"name": "autogenerated", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 3231756186.42971, "num_examples": 235728}, {"name": "valid", "num_bytes": 65957285.57029006, "num_examples": 4811}], "download_size": 24134199, "dataset_size": 3297713472.0}}
2023-02-24T05:40:14+00:00
6a9105995137339c23500017e0adc23f779bfed1
# Dataset Card for "rlhf-qa-conditional-generation" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
kastan/rlhf-qa-conditional-generation
[ "region:us" ]
2023-02-22T00:28:08+00:00
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "completion", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 27303.451327433628, "num_examples": 90}, {"name": "valid", "num_bytes": 6977.548672566371, "num_examples": 23}], "download_size": 6067, "dataset_size": 34281.0}}
2023-03-06T20:36:48+00:00
af96311d66ccf05456d5c9018f3a5037b9d6bb5c
# Dataset Card for "simpsons-blip-captions-pil" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jinmel/simpsons-blip-captions-pil
[ "region:us" ]
2023-02-22T02:02:08+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 27091297.0, "num_examples": 755}], "download_size": 26505319, "dataset_size": 27091297.0}}
2023-02-22T02:17:04+00:00
0d9a0ccf4a30b81e5b1867894af5259de4fdec02
Plachta/GLIP-test-images
[ "license:apache-2.0", "region:us" ]
2023-02-22T03:36:33+00:00
{"license": "apache-2.0"}
2023-02-22T07:00:11+00:00
6a809b2996ee5319983402858dd76796354c3dc3
Metahunter/ddpm-butterflies-128
[ "license:cc-by-nc-sa-4.0", "region:us" ]
2023-02-22T03:56:57+00:00
{"license": "cc-by-nc-sa-4.0"}
2023-02-22T03:56:57+00:00
df984f873641538b8e9da6e870e6faa8597f0301
# Dataset Card for "1.predict_last_word" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lansinuote/nlp.1.predict_last_word
[ "region:us" ]
2023-02-22T06:22:11+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 4628980, "num_examples": 39905}, {"name": "validation", "num_bytes": 98368, "num_examples": 848}, {"name": "test", "num_bytes": 200680, "num_examples": 1730}], "download_size": 0, "dataset_size": 4928028}}
2023-02-22T11:26:30+00:00
052bb3029a972578757f03071e53af45849597ae
Hobospider132/Mahiru-Proto
[ "license:gpl-3.0", "region:us" ]
2023-02-22T07:38:38+00:00
{"license": "gpl-3.0", "dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "line", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 285269, "num_examples": 5243}], "download_size": 155441, "dataset_size": 285269}}
2023-04-21T12:25:14+00:00
a1d33300f1b3d2d2b650725ee0c0c10256faa031
# m0_fine_tuning_ref_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : ground-truth * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ref_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ref_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_fine_tuning_ref_cmbert_io")
nlpso/m0_fine_tuning_ref_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T07:59:18+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T07:59:33+00:00
7e298b9cb1c1b1663e48a9a3eafadff9577a59dd
# m0_fine_tuning_ref_ptrn_cmbert_io ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : ground-truth * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ref_ptrn_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ref_ptrn_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_fine_tuning_ref_ptrn_cmbert_io")
nlpso/m0_fine_tuning_ref_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T07:59:34+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T07:59:50+00:00
e2bfd9d3f3402d9b73eca0e6ded84296137bd421
# m0_fine_tuning_ocr_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ocr_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ocr_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_fine_tuning_ocr_cmbert_io")
nlpso/m0_fine_tuning_ocr_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T07:59:51+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:00:08+00:00
9ffe7505d9ffbd4b89bffe83b64ae2aa22d26726
# m0_fine_tuning_ocr_ptrn_cmbert_io ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : noisy (Pero OCR) * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ocr_ptrn_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ocr_ptrn_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_fine_tuning_ocr_ptrn_cmbert_io")
nlpso/m0_fine_tuning_ocr_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:00:09+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:00:25+00:00
b7fdc0584cf7557e3243a13062649b4ff397ac22
# m1_fine_tuning_ref_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : ground-truth * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ref_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_io_level_1) * Level 2 : [nlpso/m1_ind_layers_ref_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_io_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_cmbert_io")
nlpso/m1_fine_tuning_ref_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:00:26+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:38:54+00:00
58f017c9f7c788fe1d270e77529dac55e50ec80e
# m1_fine_tuning_ref_ptrn_cmbert_io ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : ground-truth * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1) * Level 2 : [nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_ptrn_cmbert_io")
nlpso/m1_fine_tuning_ref_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:00:43+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:39:11+00:00
9515895676b077111c27ddb25b6810fa2ce2d9f4
# m1_fine_tuning_ref_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : ground-truth * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ref_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_iob2_level_1) * Level 2 : [nlpso/m1_ind_layers_ref_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_iob2_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_cmbert_iob2")
nlpso/m1_fine_tuning_ref_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:01:00+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:39:28+00:00
e05852d2522a90922dc79f2226708d87fb8ed77e
# m1_fine_tuning_ref_ptrn_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : ground-truth * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1) * Level 2 : [nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_ptrn_cmbert_iob2")
nlpso/m1_fine_tuning_ref_ptrn_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:01:17+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:39:45+00:00
d98466297b61f9ebd2bb0935ccffd6c8e8f85144
# m1_fine_tuning_ocr_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ocr_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ocr_cmbert_io_level_1) * Level 2 : [nlpso/m1_ind_layers_ocr_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ocr_cmbert_io_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ocr_cmbert_io")
nlpso/m1_fine_tuning_ocr_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:01:33+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:40:03+00:00
93c57e74f8dda7b5da11bf541fc0d69aef22b3ea
# m1_fine_tuning_ocr_ptrn_cmbert_io ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : noisy (Pero OCR) * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_1) * Level 2 : [nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ocr_ptrn_cmbert_io")
nlpso/m1_fine_tuning_ocr_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:01:50+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:40:20+00:00
1706a26a28960d69cc338419dcb2e1355831fdfc
# m1_fine_tuning_ocr_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ocr_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ocr_cmbert_iob2_level_1) * Level 2 : [nlpso/m1_ind_layers_ocr_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ocr_cmbert_iob2_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ocr_cmbert_iob2")
nlpso/m1_fine_tuning_ocr_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:02:06+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:40:38+00:00
911cbf35e1a1d3f8fc63ab119dc2e9e0003e7229
# m1_fine_tuning_ocr_ptrn_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approach : M1 * Dataset type : noisy (Pero OCR) * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * Level-1 : [nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_1) * Level 2 : [nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m1_fine_tuning_ocr_ptrn_cmbert_iob2")
nlpso/m1_fine_tuning_ocr_ptrn_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:02:22+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:40:55+00:00
e13c439b5bb9039fe4e01ac52624e513412a7cc4
# m2m3_fine_tuning_ref_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : ground-truth * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ref_cmbert_io](https://huggingface.co/nlpso/m2_joint_label_ref_cmbert_io) * M3 : [nlpso/m3_hierarchical_ner_ref_cmbert_io](https://huggingface.co/nlpso/m3_hierarchical_ner_ref_cmbert_io) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ref_cmbert_io")
nlpso/m2m3_fine_tuning_ref_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:02:39+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:02:54+00:00
ad7af67ab3af8550be9a1c9eeba509f81f9ad06b
# m2m3_fine_tuning_ref_ptrn_cmbert_io ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : ground-truth * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ref_ptrn_cmbert_io](https://huggingface.co/nlpso/m2_joint_label_ref_ptrn_cmbert_io) * M3 : [nlpso/m3_hierarchical_ner_ref_ptrn_cmbert_io](https://huggingface.co/nlpso/m3_hierarchical_ner_ref_ptrn_cmbert_io) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_io")
nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:02:55+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:03:10+00:00
16e2ff4dd53420c35c41ead732be8f3de2181e90
# m2m3_fine_tuning_ref_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : ground-truth * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ref_cmbert_iob2](https://huggingface.co/nlpso/m2_joint_label_ref_cmbert_iob2) * M3 : [nlpso/m3_hierarchical_ner_ref_cmbert_iob2](https://huggingface.co/nlpso/m3_hierarchical_ner_ref_cmbert_iob2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ref_cmbert_iob2")
nlpso/m2m3_fine_tuning_ref_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:03:11+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:03:27+00:00
a177274163f64ee1eaf97c7ed93d0de2bfbd3261
# m2m3_fine_tuning_ref_ptrn_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : ground-truth * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ref_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m2_joint_label_ref_ptrn_cmbert_iob2) * M3 : [nlpso/m3_hierarchical_ner_ref_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m3_hierarchical_ner_ref_ptrn_cmbert_iob2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_iob2")
nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:03:28+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:03:43+00:00
9be3fa1235e9381a04829250488e5feefe14400b
# m0_qualitative_analysis_ref_cmbert_io ## Introduction This dataset was used to perform **qualitative analysis** of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : ground-truth * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ref_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ref_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_qualitative_analysis_ref_cmbert_io")
nlpso/m0_qualitative_analysis_ref_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:03:43+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:06:23+00:00
74ebc32ee7c7c702b25485d8e948e435b8adfbb3
# m2m3_fine_tuning_ocr_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ocr_cmbert_io](https://huggingface.co/nlpso/m2_joint_label_ocr_cmbert_io) * M3 : [nlpso/m3_hierarchical_ner_ocr_cmbert_io](https://huggingface.co/nlpso/m3_hierarchical_ner_ocr_cmbert_io) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ocr_cmbert_io")
nlpso/m2m3_fine_tuning_ocr_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:03:44+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:04:00+00:00
318b02b7a0b61427fbe5448a9d277b477fd634e1
# m0_qualitative_analysis_ref_ptrn_cmbert_io ## Introduction This dataset was used to perform **qualitative analysis** of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : ground-truth * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ref_ptrn_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ref_ptrn_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_qualitative_analysis_ref_ptrn_cmbert_io")
nlpso/m0_qualitative_analysis_ref_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:04:00+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:06:25+00:00
11fa31d795706f2ec314864d40462657f5c745ff
# m2m3_fine_tuning_ocr_ptrn_cmbert_io ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : noisy (Pero OCR) * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ocr_ptrn_cmbert_io](https://huggingface.co/nlpso/m2_joint_label_ocr_ptrn_cmbert_io) * M3 : [nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_io](https://huggingface.co/nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_io) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_io")
nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:04:01+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:04:16+00:00
2366871f90b5d11baf60c17810b032d5db8bed0d
# m0_qualitative_analysis_ocr_cmbert_io ## Introduction This dataset was used to perform **qualitative analysis** of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ocr_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ocr_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_qualitative_analysis_ocr_cmbert_io")
nlpso/m0_qualitative_analysis_ocr_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:04:16+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:06:27+00:00
5f3cfb133d13e8aeb82b2889cbea39305e95e4a9
# m2m3_fine_tuning_ocr_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ocr_cmbert_iob2](https://huggingface.co/nlpso/m2_joint_label_ocr_cmbert_iob2) * M3 : [nlpso/m3_hierarchical_ner_ocr_cmbert_iob2](https://huggingface.co/nlpso/m3_hierarchical_ner_ocr_cmbert_iob2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ocr_cmbert_iob2")
nlpso/m2m3_fine_tuning_ocr_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:04:18+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:04:33+00:00
365c34e1e047594037d8f82ddbc8149c7de9c24a
# m0_qualitative_analysis_ocr_ptrn_cmbert_io ## Introduction This dataset was used to perform **qualitative analysis** of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on **flat NER task** using Flat NER approach [M0]. It contains 19th-century Paris trade directories' entries. ## Dataset parameters * Approach : M0 * Dataset type : noisy (Pero OCR) * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned model : [nlpso/m0_flat_ner_ocr_ptrn_cmbert_io](https://huggingface.co/nlpso/m0_flat_ner_ocr_ptrn_cmbert_io) ## Entity types Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m0_qualitative_analysis_ocr_ptrn_cmbert_io")
nlpso/m0_qualitative_analysis_ocr_ptrn_cmbert_io
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:04:33+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:06:29+00:00
b5b6c9bf5d62859c37bdf48d329a0117c0091123
# m2m3_fine_tuning_ocr_ptrn_cmbert_iob2 ## Introduction This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : noisy (Pero OCR) * Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Tagging format : IOB2 * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ocr_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m2_joint_label_ocr_ptrn_cmbert_iob2) * M3 : [nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_iob2")
nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_iob2
[ "task_categories:token-classification", "multilinguality:monolingual", "language:fr", "region:us" ]
2023-02-22T08:04:34+00:00
{"language": ["fr"], "multilinguality": ["monolingual"], "task_categories": ["token-classification"]}
2023-02-22T08:04:49+00:00
9b17ba5b7b152cd7db4d591b8f43f39326dd0a38
# Dataset Card for "nlp.2.predict_middle_word" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lansinuote/nlp.2.predict_middle_word
[ "region:us" ]
2023-02-22T08:04:56+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 5711991, "num_examples": 44279}, {"name": "validation", "num_bytes": 111069, "num_examples": 861}, {"name": "test", "num_bytes": 229104, "num_examples": 1776}], "download_size": 0, "dataset_size": 6052164}}
2023-02-22T11:26:32+00:00
81b1f95c8cdc378b77cc693737b17f78afa58e2b
# Dataset Card for "nlp.3.reading_for_understanding" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lansinuote/nlp.3.reading_for_understanding
[ "region:us" ]
2023-02-22T08:26:57+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "start_positions", "dtype": "int64"}, {"name": "end_positions", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19646064, "num_examples": 10106}, {"name": "validation", "num_bytes": 398520, "num_examples": 205}], "download_size": 3916983, "dataset_size": 20044584}}
2023-02-23T02:10:06+00:00