sha
stringlengths 40
40
| text
stringlengths 0
13.4M
| id
stringlengths 2
117
| tags
list | created_at
stringlengths 25
25
| metadata
stringlengths 2
31.7M
| last_modified
stringlengths 25
25
|
---|---|---|---|---|---|---|
5bee272d323fd90edcde1934d7dbb437713a7171
|
# Dataset Card for "lighttestout"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ioclab/lighttestout
|
[
"region:us"
] |
2023-04-25T05:00:25+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "tags", "dtype": "string"}, {"name": "conditioning_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 846755243.74, "num_examples": 3970}], "download_size": 843460816, "dataset_size": 846755243.74}}
|
2023-04-25T05:13:09+00:00
|
903f93a5ac9ab6b74533979f821f5fa72d0b693b
|
status: incomplete (need further adjustments)
This dataset was created by translating "databricks-dolly-15k.jsonl" from english into indonesian using facebook/m2m100_418M and applying further adjustments.
Further adjustments includes:
1. fixing words which are still in english
2. adjusting responses which start with stopwords e.g.: "oleh", "di", "dengan"
3. fixing repetitions which occur in multi-line text ("Everything Everything Everything Everything ...")
This dataset can be used for any purpose, whether academic or commercial, under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.
## Caveats
The current databricks' dolly 15k dataset may not completely match with this one
Row indeces that contain repetition erorrs (207):
96
112
262
273
369
376
389
410
415
432
581
586
597
685
870
886
936
957
964
979
985
1025
1120
1216
1223
1246
1251
1262
1316
1495
1552
1614
1684
1697
1733
1756
1808
1878
1893
2060
2118
2152
2168
2464
2474
2615
2663
2712
2829
2971
3046
3068
3123
3154
3178
3289
3336
3340
3401
3545
3574
3593
3599
3629
3745
3883
3889
3896
3967
3978
3993
4181
4186
4220
4232
4338
4358
4460
4497
4516
4614
4645
4689
4757
4809
4826
4865
5107
5232
5266
5296
5418
5493
5754
5791
5797
5819
5852
5968
6354
6409
6481
6499
6553
6555
6580
6659
6866
6911
6944
7020
7074
7116
7169
7390
7599
7777
7787
7846
7870
7894
8036
8051
8090
8144
8188
8294
8349
8406
8471
8527
8546
8552
8777
8836
8852
9026
9133
9136
9186
9287
9329
9335
9365
9475
9508
9509
9607
9630
9701
9731
9790
9822
9855
10214
10251
10308
10475
10536
10546
10683
10776
10803
10972
11069
11085
11199
11334
11350
11407
11421
11540
11570
11658
11758
11774
12004
12064
12374
12380
12519
12591
12623
12764
12844
12849
12923
12926
12953
13099
13225
13231
13352
13428
13602
13634
13810
13833
13851
13893
14021
14097
14145
14234
14240
14826
14884
|
umarzein/databricks-dolly-15k-id
|
[
"license:cc-by-sa-3.0",
"region:us"
] |
2023-04-25T05:48:42+00:00
|
{"license": "cc-by-sa-3.0"}
|
2023-05-07T02:30:25+00:00
|
1b2dff345e882f2fa831a3d16653901408919a93
|
# Dataset Card for "wikipedia_mt"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
amitness/wikipedia_mt
|
[
"language:mt",
"region:us"
] |
2023-04-25T05:53:59+00:00
|
{"language": "mt", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26154083, "num_examples": 5326}], "download_size": 15314612, "dataset_size": 26154083}}
|
2023-08-14T08:44:46+00:00
|
6d43f5fffe2ba4899559d9fff882cee311c325b1
|
# Dataset Card for "testdataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
tracinginsights/testdataset
|
[
"region:us"
] |
2023-04-25T05:54:51+00:00
|
{"dataset_info": {"features": [{"name": "Driver", "dtype": "string"}, {"name": "LapTime", "dtype": "float64"}, {"name": "Diff", "dtype": "float64"}, {"name": "Team", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 730, "num_examples": 20}], "download_size": 2745, "dataset_size": 730}}
|
2023-04-25T07:26:01+00:00
|
37f8825c6bb90e44276026b2635440e9aba97ea8
|
# Dataset Card for "ta-news-corp"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
livinNector/ta-news-corp
|
[
"region:us"
] |
2023-04-25T06:15:37+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "tamil_murasu", "num_bytes": 499641675, "num_examples": 263669}, {"name": "dinamalar", "num_bytes": 5225297151, "num_examples": 4125162}], "download_size": 1955475887, "dataset_size": 5724938826}}
|
2023-04-25T06:16:49+00:00
|
806bea24f9ae5ed1283473d6dd81671b519c8163
|
swikrit/embedding
|
[
"license:mit",
"region:us"
] |
2023-04-25T06:46:05+00:00
|
{"license": "mit"}
|
2023-04-25T06:48:42+00:00
|
|
6e4e1a4e97aba69236d07f2a91cc6b6c8a66d64f
|
LORA EDITION - for you LORA MERGING NERDS!
We're gonna re-do this in lycoris for you lyco-hoarding nerds.
Also we're not at fault for anything you do with this, don't do anything illegal with it, and please SERIOUSLY if she shows up in the middle of the night don't feed her - you've watched Gremlins you know how this goes.
If this model isn't exactly perfect, we're a little new to doing anything outside the generic waifu/nerd realm - Purgatori, Lady Death were things we enjoyed seeing the alternative art styles - but were never allowed to read them until adulthood - So uh YEA ENJOY! (And that's also to say that if it needs retraining, give us time lol)
Also: You like what you see? Hit the rating button and then consider one of the following socials or coffee related sites to support us at:
Twitter: https://twitter.com/DuskfallCrew
Youtube: https://www.youtube.com/channel/UCk7MGP7nrJz5awBSP75xmVw
Spotify (We do of course make music): https://open.spotify.com/playlist/00R8x00YktB4u541imdSSf?si=3806082ef8824a29
Instagram: https://instagram.com/duskfallcrew
About Us: https://duskfallcrew.carrd.co/#
Membership / Ko-Fi: https://ko-fi.com/Duskfallcrew/
Buy Me A Pizza/Coffee: https://www.buymeacoffee.com/duskfallxcrew
|
EarthnDusk/V1_Purgatory_Character
|
[
"task_categories:text-to-image",
"size_categories:n<1K",
"language:en",
"license:creativeml-openrail-m",
"stable diffusion",
"LORA",
"comic book",
"illustration",
"region:us"
] |
2023-04-25T07:45:29+00:00
|
{"language": ["en"], "license": "creativeml-openrail-m", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "pretty_name": "Purgatori LoRa", "tags": ["stable diffusion", "LORA", "comic book", "illustration"]}
|
2023-04-25T08:02:44+00:00
|
771f1c145005977f581b42594582ae59395d3a5e
|
# Dataset Card for NST Bokmål test (< 15 sec. segments)
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** <https://github.com/scribe-project/nodalida_2023_combined_training>
- **Paper:**
```
@inproceedings{
solberg2023improving,
title={Improving Generalization of Norwegian {ASR} with Limited Linguistic Resources},
author={Per Erik Solberg and Pablo Ortiz and Phoebe Parsons and Torbj{\o}rn Svendsen and Giampiero Salvi},
booktitle={The 24rd Nordic Conference on Computational Linguistics},
year={2023}
}
```
- **Point of Contact:** [Per Erik Solberg](mailto:[email protected])
### Dataset Summary
This is the version of the Bokmål part of the Norwegian NST dataset used for testing the models
in the paper *Improving Generalization of Norwegian ASR with Limited Linguistic Resources* presented at NoDaLiDa 2023.
It only contains segments of a length < 15 sec and only the test set. For a full version of the NST, see [this repository](https://huggingface.co/datasets/NbAiLab/NST).
### Languages
Norwegian Bokmål
## Dataset Creation
### Source Data
The full version of this dataset is found in [the repository of the Norwegian Language Bank](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-54/)
#### Initial Data Collection and Normalization
The data was retrieved using the [Spraakbanken downloader](https://pypi.org/project/spraakbanken-downloader/) and standardized
using the [combined dataset standardization scripts](https://github.com/scribe-project/asr-standardized-combined). Bokmål segments with a duration < 15 seconds were
extracted using [this code](https://github.com/scribe-project/nodalida_2023_combined_training/blob/main/make_datasets/make_nst_csvs.ipynb).
## Licensing Information
[CC0](https://creativecommons.org/share-your-work/public-domain/cc0/)
### Citation Information
```
@inproceedings{
solberg2023improving,
title={Improving Generalization of Norwegian {ASR} with Limited Linguistic Resources},
author={Per Erik Solberg and Pablo Ortiz and Phoebe Parsons and Torbj{\o}rn Svendsen and Giampiero Salvi},
booktitle={The 24rd Nordic Conference on Computational Linguistics},
year={2023}
}
```
|
scribe-project/nst_nb_test
|
[
"region:us"
] |
2023-04-25T08:21:38+00:00
|
{"dataset_info": {"features": [{"name": "speaker_id", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "utterance_id", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "raw_text", "dtype": "string"}, {"name": "full_audio_file", "dtype": "string"}, {"name": "original_data_split", "dtype": "string"}, {"name": "region", "dtype": "string"}, {"name": "duration", "dtype": "float64"}, {"name": "start", "dtype": "int64"}, {"name": "end", "dtype": "float64"}, {"name": "utterance_audio_file", "dtype": "audio"}, {"name": "standardized_text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3046340447.0, "num_examples": 15756}], "download_size": 2790946881, "dataset_size": 3046340447.0}}
|
2023-04-25T09:34:10+00:00
|
d2ab8176a42d3fc250b290a89c90a792e94869f9
|
This is the training data of WizardLM.
## News
- 🔥 🔥 🔥 [08/11/2023] We release **WizardMath** Models.
- 🔥 Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**.
- 🔥 Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM.
- 🔥 Our **WizardMath-70B-V1.0** model achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM.
| Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
| ----- |------| ---- |------|-------| ----- | ----- |
| WizardMath-70B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
<font size=4>
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>WizardEval</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- |
| <sup>WizardLM-13B-V1.2</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> | <sup>101.4% </sup>|<sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> 🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | <sup>99.3% </sup> |<sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | <sup>97.8% </sup> | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | <sup>89.1% </sup> |<sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>| <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | <sup>78.0% </sup> |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
| <sup>WizardCoder-15B-V1.0</sup> | <sup> 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a></sup> | <sup>📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a></sup> | || |<sup> 57.3 pass@1 </sup> | <sup> <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a></sup> |
</font>
|
WizardLM/WizardLM_evol_instruct_70k
|
[
"arxiv:2308.09583",
"arxiv:2304.12244",
"arxiv:2306.08568",
"region:us"
] |
2023-04-25T08:57:27+00:00
|
{}
|
2023-08-24T02:59:32+00:00
|
b28996e04d0434f4948ec0301f9a19da9830215e
|
# Dataset Card for "Denoised_data_jason1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/Denoised_data_jason1
|
[
"region:us"
] |
2023-04-25T08:58:51+00:00
|
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1158326946, "num_examples": 2000}], "download_size": 286288407, "dataset_size": 1158326946}}
|
2023-04-25T08:59:06+00:00
|
8ec893f198dada5a72ba6e569f9104efb7d6602b
|
# Dataset Card for "Denoised_data_jason2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/Denoised_data_jason2
|
[
"region:us"
] |
2023-04-25T09:09:48+00:00
|
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1127259888, "num_examples": 2000}], "download_size": 278526142, "dataset_size": 1127259888}}
|
2023-04-25T09:10:04+00:00
|
b9ebeb2be6365fccf2d1a1ee2328ada18e5c91f6
|
ds3lab/ac-sgd-arxiv21
|
[
"license:apache-2.0",
"region:us"
] |
2023-04-25T09:23:52+00:00
|
{"license": "apache-2.0"}
|
2023-04-25T09:45:37+00:00
|
|
bb9152455b22a614325945547d8868195c89afe4
|
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("patomp/thai-mscoco-2014-captions")
dataset
```
output
```python
DatasetDict({
train: Dataset({
features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'],
num_rows: 113287
})
validation: Dataset({
features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'],
num_rows: 5000
})
test: Dataset({
features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'],
num_rows: 5000
})
})
```
A sample
```python
dataset["validation"][0]
```
output
```python
{
"image":<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x7F6C5A83F430>,
"filepath":"COCO_val2014_000000184613.jpg",
"sentids":[474921,479322,479334,481560,483594],
"filename":"COCO_val2014_000000184613.jpg",
"imgid":2,
"split":"val",
"sentences_tokens":[
["a", "child","holding", "a","flowered","umbrella","and","petting","a","yak"],["a","young","man","holding","an","umbrella","next","to","a","herd","of","cattle"],
["a","young","boy","barefoot","holding","an","umbrella","touching","the","horn","of","a","cow"],
["a","young","boy","with","an","umbrella","who","is","touching","the","horn","of","a","cow"],
["a","boy","holding","an","umbrella","while","standing","next","to","livestock"]
],
"sentences_raw":[
"A child holding a flowered umbrella and petting a yak.",
"A young man holding an umbrella next to a herd of cattle.",
"a young boy barefoot holding an umbrella touching the horn of a cow",
"A young boy with an umbrella who is touching the horn of a cow.",
"A boy holding an umbrella while standing next to livestock."
],
"sentences_sentid":[474921,479322,479334,481560,483594],
"cocoid":184613,
"th_sentences_raw":[
"เด็กถือร่มที่มีดอกหนึ่งคันและลูบคลูบลํา",
"ชายหนุ่มคนหนึ่งถือร่มไว้ข้างๆ ฝูงวัว",
"เด็กหนุ่มคนหนึ่งเท้าเปล่าจับร่มจับแตรของวัว",
"เด็กชายที่มีร่มสัมผัสแตรของวัว",
"เด็กชายถือร่มในขณะที่ยืนถัดจากปศุสัตว์"
]
}
```
## Dataset Construction
The dataset contructed from translating the captions of [MS COCO 2014 dataset](https://huggingface.co/datasets/HuggingFaceM4/COCO) [1] to Thai by using [NMT](https://airesearch.in.th/releases/machine-translation-models/) provided by VISTEC-depa Thailand Artificial Intelligence Research Institute [2]. The translated of 3 splits (train, validation and test) dataset was published in the [Huggingface](https://huggingface.co/datasets/patomp/thai-mscoco-2014-captions).
## References
[1] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014, Springer International Publishing, Cham, 740–755.
[2] English-Thai Machine Translation Models. (2020, June 23). VISTEC-depa Thailand Artificial Intelligence Research Institute. https://airesearch.in.th/releases/machine-translation-models/
|
patomp/thai-mscoco-2014-captions
|
[
"region:us"
] |
2023-04-25T09:38:36+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "filepath", "dtype": "string"}, {"name": "sentids", "list": "int32"}, {"name": "filename", "dtype": "string"}, {"name": "imgid", "dtype": "int32"}, {"name": "split", "dtype": "string"}, {"name": "sentences_tokens", "list": {"list": "string"}}, {"name": "sentences_raw", "list": "string"}, {"name": "sentences_sentid", "list": "int32"}, {"name": "cocoid", "dtype": "int32"}, {"name": "th_sentences_raw", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 819234726.0, "num_examples": 5000}, {"name": "validation", "num_bytes": 807387321.0, "num_examples": 5000}, {"name": "train", "num_bytes": 18882795327.165, "num_examples": 113287}], "download_size": 20158273111, "dataset_size": 20509417374.165}}
|
2023-05-02T14:52:54+00:00
|
e90159c21978bcb9cd7b078b4cb66aab9fae4959
|
Free luts file list
|
NeoGraph/Luts_Cube
|
[
"license:other",
"region:us"
] |
2023-04-25T10:16:08+00:00
|
{"license": "other"}
|
2023-04-25T10:23:29+00:00
|
0a36dd90b2d7f7816f4c2761f597195e0cb33da4
|
zab74463/ks3
|
[
"task_categories:question-answering",
"language:es",
"region:us"
] |
2023-04-25T10:21:47+00:00
|
{"language": ["es"], "task_categories": ["question-answering"]}
|
2023-04-25T10:22:18+00:00
|
|
1a0fcd2bf08861a799acc3f91be46188ffbd7675
|
# Dataset Card for "Denoised_data_jason3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/Denoised_data_jason3
|
[
"region:us"
] |
2023-04-25T11:50:12+00:00
|
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1113923195, "num_examples": 2000}], "download_size": 275899919, "dataset_size": 1113923195}}
|
2023-04-25T11:50:31+00:00
|
de0690e8829b48652ff32307c3ac31ce4971cc47
|
riffusion manipulated google/MusicCaps
|
Hyeon2/riffusion-musiccaps-dataset
|
[
"task_categories:text-to-image",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-4.0",
"music",
"region:us"
] |
2023-04-25T12:02:53+00:00
|
{"language": "en", "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-to-image"], "pretty_name": "riffusion manipulated google/musiccap", "viewer": true, "tags": ["music"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2521001438.24, "num_examples": 20588}], "download_size": 2509138106, "dataset_size": 2521001438.24}}
|
2023-07-15T14:43:17+00:00
|
c3d466839f8c176fa314c40adc8030b600425e27
|
# Dataset Card for "Denoised_data_jason4"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/Denoised_data_jason4
|
[
"region:us"
] |
2023-04-25T12:10:42+00:00
|
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1078347063, "num_examples": 2000}], "download_size": 265545890, "dataset_size": 1078347063}}
|
2023-04-25T12:10:56+00:00
|
5d31975519603541d4bec7e1f4013cc4490ed997
|
# Dataset Card for PMC-Patients
## Dataset Description
- **Homepage:** https://github.com/pmc-patients/pmc-patients
- **Repository:** https://github.com/pmc-patients/pmc-patients
- **Paper:** https://arxiv.org/pdf/2202.13876.pdf
- **Leaderboard:** https://pmc-patients.github.io/
- **Point of Contact:** [email protected]
### Dataset Summary
**PMC-Patients** is a first-of-its-kind dataset consisting of 167k patient summaries extracted from case reports in PubMed Central (PMC), 3.1M patient-article relevance and 293k patient-patient similarity annotations defined by PubMed citation graph.
### Supported Tasks and Leaderboards
**This is purely the patient summary dataset with relational annotations. For ReCDS benchmark, refer to [this dataset](https://huggingface.co/datasets/zhengyun21/PMC-Patients-ReCDS)**
Based on PMC-Patients, we define two tasks to benchmark Retrieval-based Clinical Decision Support (ReCDS) systems: Patient-to-Article Retrieval (PAR) and Patient-to-Patient Retrieval (PPR).
For details, please refer to [our paper](https://arxiv.org/pdf/2202.13876.pdf) and [leaderboard](https://pmc-patients.github.io/).
### Languages
English (en).
## Dataset Structure
### PMC-Paitents.csv
This file contains all information about patients summaries in PMC-Patients, with the following columns:
- `patient_id`: string. A continuous id of patients, starting from 0.
- `patient_uid`: string. Unique ID for each patient, with format PMID-x, where PMID is the PubMed Identifier of the source article of the patient and x denotes index of the patient in source article.
- `PMID`: string. PMID for source article.
- `file_path`: string. File path of xml file of source article.
- `title`: string. Source article title.
- `patient`: string. Patient summary.
- `age`: list of tuples. Each entry is in format `(value, unit)` where value is a float number and unit is in 'year', 'month', 'week', 'day' and 'hour' indicating age unit. For example, `[[1.0, 'year'], [2.0, 'month']]` indicating the patient is a one-year- and two-month-old infant.
- `gender`: 'M' or 'F'. Male or Female.
- `relevant_articles`: dict. The key is PMID of the relevant articles and the corresponding value is its relevance score (2 or 1 as defined in the ``Methods'' section).
- `similar_patients`: dict. The key is patient_uid of the similar patients and the corresponding value is its similarity score (2 or 1 as defined in the ``Methods'' section).
## Dataset Creation
If you are interested in the collection of PMC-Patients and reproducing our baselines, please refer to [this reporsitory](https://github.com/zhao-zy15/PMC-Patients).
### Citation Information
If you find PMC-Patients helpful in your research, please cite our work by:
```
@article{zhao2023large,
title={A large-scale dataset of patient summaries for retrieval-based clinical decision support systems},
author={Zhao, Zhengyun and Jin, Qiao and Chen, Fangyuan and Peng, Tuorui and Yu, Sheng},
journal={Scientific Data},
volume={10},
number={1},
pages={909},
year={2023},
publisher={Nature Publishing Group UK London}
}
```
|
zhengyun21/PMC-Patients
|
[
"size_categories:100K<n<1M",
"language:en",
"license:cc-by-nc-sa-4.0",
"patient summary",
"medical",
"biology",
"arxiv:2202.13876",
"region:us"
] |
2023-04-25T12:20:16+00:00
|
{"language": ["en"], "license": "cc-by-nc-sa-4.0", "size_categories": ["100K<n<1M"], "tags": ["patient summary", "medical", "biology"]}
|
2024-01-06T01:01:34+00:00
|
04e271241a2ee3784f6d90afd5588ab789fcff58
|
# Dataset Card for "Denoised_data_jason5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/Denoised_data_jason5
|
[
"region:us"
] |
2023-04-25T12:20:36+00:00
|
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1110556941, "num_examples": 2000}], "download_size": 276119959, "dataset_size": 1110556941}}
|
2023-04-25T12:20:50+00:00
|
5b466a00d71fcbff0a8025ca74addf9b4738ceac
|
MITCriticalData/Unlabeled_top_10_cities_forward_backward_alg
|
[
"license:mit",
"region:us"
] |
2023-04-25T12:25:39+00:00
|
{"license": "mit"}
|
2023-04-25T13:21:35+00:00
|
|
131caea74b3a837bfa9257e46611068c78cf591d
|
# Dataset Card for "Denoised_data_jason6"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/Denoised_data_jason6
|
[
"region:us"
] |
2023-04-25T12:28:14+00:00
|
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 229305985, "num_examples": 440}], "download_size": 57136919, "dataset_size": 229305985}}
|
2023-04-25T12:28:21+00:00
|
8006ed32edbf51aa3b460333dd15c4699d496de2
|
# Dataset Card for "cool_new_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Pedrampedram/cool_new_dataset
|
[
"region:us"
] |
2023-04-25T12:55:28+00:00
|
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "ad", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3149, "num_examples": 5}], "download_size": 7636, "dataset_size": 3149}}
|
2023-04-25T12:55:32+00:00
|
361c45c06bb3b4e1ff65f0ca244dec76df0f10ee
|
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
|
LauraPanizo/demo_dataset
|
[
"region:us"
] |
2023-04-25T13:04:27+00:00
|
{}
|
2023-04-26T12:48:43+00:00
|
8255deffe2716c957def82d600492a1764a57489
|
# Dataset Card for "clothing_new_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Pedrampedram/clothing_new_dataset
|
[
"region:us"
] |
2023-04-25T13:16:35+00:00
|
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "ad", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2251, "num_examples": 5}], "download_size": 5909, "dataset_size": 2251}}
|
2023-04-25T13:16:37+00:00
|
85fc336e617e0ae63a5c57c81da654d9d476b454
|
# Dataset Card for "imbalanced_eval"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
amishshah/imbalanced_eval
|
[
"region:us"
] |
2023-04-25T13:36:03+00:00
|
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1003703.772, "num_examples": 600}], "download_size": 633391, "dataset_size": 1003703.772}}
|
2023-04-25T20:59:11+00:00
|
6b51d160db1044d6bd568c390984bbce37519b62
|
gadams/ruby
|
[
"license:other",
"region:us"
] |
2023-04-25T14:16:59+00:00
|
{"license": "other"}
|
2023-04-25T14:17:57+00:00
|
|
496e7a08f2c0932a59cc5d0d744557cb0b1fa901
|
qiuqiangkong/audioset
|
[
"license:unknown",
"region:us"
] |
2023-04-25T14:51:39+00:00
|
{"license": "unknown"}
|
2023-04-25T14:51:39+00:00
|
|
9a3e2920bc9e7a4cfc8c2e08ac3c1378722e1893
|
# Dataset Card for "EmoNoBa"
### Dataset Summary
Detecting Multi-labeled Emotion for 6 emotion categories, namely Love, Joy, Surprise, Anger, Sadness, Fear.
### Citation Information
```
@inproceedings{islam2022emonoba,
title={EmoNoBa: A Dataset for Analyzing Fine-Grained Emotions on Noisy Bangla Texts},
author={Islam, Khondoker Ittehadul and Yuvraz, Tanvir and Islam, Md Saiful and Hassan, Enamul},
booktitle={Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing},
pages={128--134},
year={2022}
}
```
|
sustcsenlp/bn_emotion_noisy_dataset
|
[
"task_categories:text-classification",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"multilinguality:monolingual",
"language:bn",
"license:other",
"emotion",
"region:us"
] |
2023-04-25T15:03:34+00:00
|
{"language": ["bn"], "license": "other", "multilinguality": ["monolingual"], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification", "multi-label-classification"], "paperswithcode_id": "emonoba", "pretty_name": "EmoNoBa", "tags": ["emotion"]}
|
2023-04-25T15:25:59+00:00
|
62e4677ee7389c5a8be45c805f94ed3482e18507
|
# Victorian Era Authorship Attribution Data Set
> GUNGOR, ABDULMECIT, Benchmarking Authorship Attribution Techniques Using Over A Thousand Books by Fifty Victorian Era Novelists, Purdue Master of Thesis, 2018-04
## NOTICE
This dataset was downloaded from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php) at [this link](https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution).
The [description](#description) of this dataset was copied from the source's dataset card. However, I have applied Markdown styling to prettify it and make it easier to navigate.
## Description
> **Abstract**: To create the largest authorship attribution dataset, we extracted works of 50 well-known authors. To have a non-exhaustive learning, in training there are 45 authors whereas, in the testing, it's 50
### Source
They're extracted from the GDELT database. The GDELT Project is an open platform for research and analysis of global society and thus all datasets released by the GDELT Project are available for unlimited and unrestricted use for any academic, commercial, or governmental use of any kind without fee.
### Data Set Information
To decrease the bias and create a reliable authorship attribution dataset the following criteria have been chosen to filter out authors in Gdelt database: English language writing authors, authors that have enough books available (at least 5), 19th century authors. With these criteria 50 authors have been selected and their books were queried through Big Query Gdelt database. The next task has been cleaning the dataset due to OCR reading problems in the original raw form. To achieve that, firstly all books have been scanned through to get the overall number of unique words and each words frequencies. While scanning the texts, the first 500 words and the last 500 words have been removed to take out specific features such as the name of the author, the name of the book and other word specific features that could make the classification task easier. After this step, we have chosen top 10,000 words that occurred in the whole 50 authors text data corpus. The words that are not in top 10,000 words were removed while keeping the rest of the sentence structure intact. The entire book is split into text fragments with 1000 words each. We separately maintained author and book identification number for each one of them in different arrays. Text segments with less than 1000 words were filled with zeros to keep them in the dataset as well. 1000 words make approximately 2 pages of writing, which is long enough to extract a variety of features from the document. Each instance in the training set consists of a text piece of 1000 words and an author id attached. In the testing set, there is only the text piece of 1000 words to do authorship attribution. Training data consists of 45 authors and testing data has 50 information. %34 of testing data is the percentile of unknown authors in the testing set.
### Attribute Information
Each instance consists of 1000 word sequences that are divided from the works of every author's book. In the training, the author id is also provided.
### Relevant Papers
* E. Stamatatos, A Survey of Modern Authorship Attribution Methods. Journal of the American Society for Information Science and Technology, 2009.
## Citation Request:
* `GUNGOR, ABDULMECIT, Benchmarking Authorship Attribution Techniques Using Over A Thousand Books by Fifty Victorian Era Novelists, Purdue Master of Thesis, 2018-04`
|
NicholasSynovic/Victorian-Era-Authorship-Attribution
|
[
"task_categories:text-classification",
"size_categories:10K<n<100K",
"language:en",
"region:us"
] |
2023-04-25T15:30:22+00:00
|
{"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "pretty_name": "Victorian Era Authorship Attribution Data Set"}
|
2023-04-25T16:32:52+00:00
|
7bd5274831ae4ef5f0c824c0487933ea0c95738a
|
# Source Datasets #
<li>1 - news from the website of the Komi administration (https://rkomi.ru/)</li>
<li>2 - Komi media library (http://videocorpora.ru/)</li>
<li>3 - Millet porridge by Ivan Toropov (adaptation)</li>
<br>
# Authors #
Shilova Nadezhda<br>
Chernousov Georgy
|
Horeknad/komi-russian-parallel-corpora
|
[
"task_categories:translation",
"annotations_creators:found",
"size_categories:10K<n<100K",
"source_datasets:Millet porridge by Ivan Toropov (adaptation)",
"source_datasets:Komi media library (http://videocorpora.ru/)",
"source_datasets:news from the website of the Komi administration (https://rkomi.ru/)",
"language:ru",
"language:kv",
"license:cc-by-4.0",
"text",
"region:us"
] |
2023-04-25T15:30:43+00:00
|
{"annotations_creators": ["found"], "language": ["ru", "kv"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "source_datasets": ["Millet porridge by Ivan Toropov (adaptation)", "Komi media library (http://videocorpora.ru/)", "news from the website of the Komi administration (https://rkomi.ru/)"], "task_categories": ["translation"], "tags": ["text"]}
|
2023-04-27T21:55:49+00:00
|
e8ec9ef999f4cf1810467f5fb7307b267671e4cf
|
# h2oGPT Data Card
## Summary
H2O.ai's `h2ogpt-oig-oasst1-instruct-cleaned-v2` is an open-source instruct-type dataset for fine-tuning of large language models, licensed for commercial use.
- Number of rows: `350581`
- Number of columns: `3`
- Column names: `['input', 'source', 'prompt_type']`
## Source
- [Original LAION OIG Dataset](https://github.com/LAION-AI/Open-Instruction-Generalist)
- [LAION OIG data detoxed and filtered down by scripts in h2oGPT repository](https://github.com/h2oai/h2ogpt/blob/main/FINETUNE.md#high-quality-oig-based-instruct-data)
- [Original Open Assistant data in tree structure](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [This flattened dataset created by script in h2oGPT repository](https://github.com/h2oai/h2ogpt/blob/0e70c2fbb16410bd8e6992d879b4c55cd981211f/create_data.py#L1375-L1415)
|
h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v2
|
[
"language:en",
"license:apache-2.0",
"gpt",
"llm",
"large language model",
"open-source",
"region:us"
] |
2023-04-25T15:40:25+00:00
|
{"language": ["en"], "license": "apache-2.0", "thumbnail": "https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico", "tags": ["gpt", "llm", "large language model", "open-source"]}
|
2023-04-25T15:43:40+00:00
|
5956d95d675679008ae65f489784785a214976de
|
# Dataset Card for "diffusers_animate_character"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mohammadhia/diffusers_animate_character
|
[
"region:us"
] |
2023-04-25T15:47:25+00:00
|
{"dataset_info": {"features": [{"name": "input_image", "dtype": "image"}, {"name": "edit_prompt", "dtype": "string"}, {"name": "edited_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 29092003.0, "num_examples": 20}], "download_size": 29095136, "dataset_size": 29092003.0}}
|
2023-04-26T12:32:54+00:00
|
41aa397bbcf13dfbd90be57cfc4e96cadeb89bfa
|
# Dataset Card for "ta_wiki_corp"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
AnanthZeke/ta_wiki_corp
|
[
"region:us"
] |
2023-04-25T15:55:45+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "tawikibooks", "num_bytes": 4715085, "num_examples": 3919}, {"name": "tawikiquote", "num_bytes": 6483039, "num_examples": 4247}, {"name": "tawiktionary", "num_bytes": 37131161, "num_examples": 37123}, {"name": "tawiki", "num_bytes": 746635361, "num_examples": 819561}, {"name": "tawikinews", "num_bytes": 5609521.157164647, "num_examples": 26536}, {"name": "tawikisource", "num_bytes": 114857302, "num_examples": 68028}], "download_size": 4978896, "dataset_size": 915431469.1571647}}
|
2023-04-25T16:06:16+00:00
|
9ac97963ce0a32b096512f77ab5f18de5c7d983d
|

|
VM89/images
|
[
"region:us"
] |
2023-04-25T16:00:55+00:00
|
{}
|
2023-04-25T16:05:23+00:00
|
b0fb4aae71e7b0d731eda5d808bd2a5f04f2a3ed
|
# Dataset Card for "cv_11_arabic_test_denoisy_II"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/cv_11_arabic_test_denoisy_II
|
[
"region:us"
] |
2023-04-25T16:15:52+00:00
|
{"dataset_info": {"features": [{"name": "audio", "sequence": "float64"}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5817636498, "num_examples": 10440}], "download_size": 2897757284, "dataset_size": 5817636498}}
|
2023-04-25T16:22:24+00:00
|
47d4c80dc21a91bb7a543660f24aea88a6c9a523
|
# Free AutoTrain VEAA
> Victorian Era Authorship Attribution Data Set (For Free AutoTrain Account)
## About
See the [original HF-hosted dataset](https://huggingface.co/datasets/NicholasSynovic/Victorian-Era-Authorship-Attribution) for more information.
The code to generate this dataset came from this [GitHub Repo](https://github.com/NicholasSynovic/nlp-victorianAuthor).
|
NicholasSynovic/Free-AutoTrain-VEAA
|
[
"task_categories:text-classification",
"size_categories:1K<n<10K",
"source_datasets:NicholasSynovic/Victorian-Era-Authorship-Attribution",
"language:en",
"license:agpl-3.0",
"region:us"
] |
2023-04-25T16:33:55+00:00
|
{"language": ["en"], "license": "agpl-3.0", "size_categories": ["1K<n<10K"], "source_datasets": ["NicholasSynovic/Victorian-Era-Authorship-Attribution"], "task_categories": ["text-classification"], "pretty_name": "Victorian Era Authorship Attribution Data Set (For Free AutoTrain Account)"}
|
2023-04-25T16:42:58+00:00
|
3d453f57d79ea3ff2f6ef2c49982639ff4d73ee9
|
# Dataset Card for "VQAv2Validation_ViT_L_14_A_T_C_D-PNP-FILTER_benchmarks_10"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
LambdaTests/VQAv2Validation_ViT_L_14_A_T_C_D-PNP-FILTER_benchmarks_10
|
[
"region:us"
] |
2023-04-25T16:55:44+00:00
|
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 384, "num_examples": 10}], "download_size": 0, "dataset_size": 384}}
|
2023-04-25T16:58:03+00:00
|
fb157cfff9f1fccd79586e5185ea28e844a6478b
|
# Dataset Card for "generadai-sample"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Pedrampedram/generadai-sample
|
[
"region:us"
] |
2023-04-25T16:58:02+00:00
|
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "ad", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2197, "num_examples": 5}], "download_size": 5819, "dataset_size": 2197}}
|
2023-04-25T16:58:05+00:00
|
d1379a81828e8346525c71cfcf7901b984c4a68b
|
# Dataset Card for "layoutlm_sqad"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Sharka/layoutlm_sqad
|
[
"region:us"
] |
2023-04-25T17:02:51+00:00
|
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "start_positions", "dtype": "int64"}, {"name": "end_positions", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 123617016, "num_examples": 63589}], "download_size": 16376332, "dataset_size": 123617016}}
|
2023-04-25T17:02:58+00:00
|
e1c1b9f3132ef41bd734c727dc67e61661f7e5b3
|
gadams/ruby-study
|
[
"license:other",
"region:us"
] |
2023-04-25T17:22:26+00:00
|
{"license": "other"}
|
2023-04-25T17:23:04+00:00
|
|
1effa66763fbf69a941a3965a76c6d9e5d01a736
|
DataAgent/medical-qa-instruction-zhtw
|
[
"license:cc",
"region:us"
] |
2023-04-25T18:28:15+00:00
|
{"license": "cc"}
|
2023-04-25T18:29:32+00:00
|
|
f6af719e8add7f7bd94fb71cbdccaf8d124aca74
|
# Bundesliga Results from 2010 to 2023
This dataset contains the results of all matches in the German Bundesliga from 2010 to 2023. The raw data was collected from the OpenLigaDB API.
**The dataset has been prepared and adjusted by me** to make it more suitable for machine learning training purposes.
## Dataset Information
The dataset has 20 columns, including:
| Column Name | Description |
|-------------------------|--------------------------------------------------------------------------|
| ***matchID*** | The unique identifier for each match. |
| ***matchDateTime*** | The date and time when the match was scheduled to start. |
| ***timeZoneID*** | The timezone of the match. |
| ***leagueName*** | The name of the league where the match took place. |
| ***leagueSeason*** | The season of the league where the match took place. |
| ***leagueShortcut*** | The abbreviated name of the league where the match took place. |
| ***matchDateTimeUTC*** | The date and time when the match was scheduled to start in UTC timezone. |
| ***lastUpdateDateTime*** | The date and time when the match data was last updated. |
| ***matchIsFinished*** | A boolean value indicating whether the match is finished or not. |
| ***numberOfViewers*** | The number of viewers who watched the match. |
| ***locationCity*** | The city where the match took place. |
| ***locationStadium*** | The name of the stadium where the match took place. |
| ***team1_Name*** | The name of the first team in the match. |
| ***team1_shortName*** | The abbreviated name of the first team in the match. |
| ***team1_teamIconUrl*** | The URL of the icon for the first team in the match. |
| ***team1_GroupName*** | The group name of the first team in the match. |
| ***team2_Name*** | The name of the second team in the match. |
| ***team2_shortName*** | The abbreviated name of the second team in the match. |
| ***team2_teamIconUrl*** | The URL of the icon for the second team in the match. |
| ***team2_GroupName*** | The group name of the second team in the match. |
| ***finalresult_pointsTeam1*** | The final score of the first team in the match. |
| ***finalresult_pointsTeam2*** | The final score of the second team in the match. |
| ***halftime_pointsTeam1*** | The score of the first team in the match at halftime. |
| ***halftime_pointsTeam2*** | The score of the second team in the match at halftime. |
The dataset is sorted by ***matchDateTime*** in ascending order, which means that the first row in the dataset is the earliest match, and the last row is the latest match.
|
anasselhoud/Bundesliga-2010-2023
|
[
"size_categories:1K<n<10K",
"license:openrail",
"region:us"
] |
2023-04-25T18:57:24+00:00
|
{"license": "openrail", "size_categories": ["1K<n<10K"]}
|
2023-04-26T15:35:45+00:00
|
1942726b3f07d500001591b635717ecc0c46aa7c
|
# Dataset Card for "stackoverflow-chat-data"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
0x70DA/stackoverflow-chat-data
|
[
"region:us"
] |
2023-04-25T19:02:37+00:00
|
{"dataset_info": {"features": [{"name": "topic", "dtype": "string"}, {"name": "input", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 64250569.71566806, "num_examples": 50000}, {"name": "validation", "num_bytes": 6425056.971566806, "num_examples": 5000}, {"name": "test", "num_bytes": 2570022.7886267225, "num_examples": 2000}], "download_size": 35174916, "dataset_size": 73245649.47586158}}
|
2023-04-25T19:02:51+00:00
|
43b926e68ec6e91d3d5d10b446937020117667e3
|
# Dataset Card for Online Shoppers Purchasing Intention Dataset
## Dataset Description
- **Homepage**: https://archive-beta.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
### Dataset Summary
This dataset is a reupload of the Online Shoppers Purchasing Intention Dataset from the [UCI Machine Learning Repository](https://archive-beta.ics.uci.edu/).
> **NOTE:** The information below is from the original dataset description from UCI's website.
>
> ### Overview
>
> Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class samples that did not end with shopping,
> and the rest (1908) were positive class samples ending with shopping.
>
> #### Additional Information
>
> The dataset consists of feature vectors belonging to 12,330 sessions. The dataset was formed so that
> each session would belong to a different user in a 1-year period to avoid any tendency to a specific campaign,
> special day, user profile, or period.
|
jlh/uci-shopper
|
[
"task_categories:tabular-classification",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-4.0",
"region:us"
] |
2023-04-25T19:26:11+00:00
|
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["tabular-classification"], "pretty_name": "Online Shoppers Purchasing Intention Dataset", "dataset_info": {"features": [{"name": "Administrative", "dtype": "int64"}, {"name": "Administrative_Duration", "dtype": "float64"}, {"name": "Informational", "dtype": "int64"}, {"name": "Informational_Duration", "dtype": "float64"}, {"name": "ProductRelated", "dtype": "int64"}, {"name": "ProductRelated_Duration", "dtype": "float64"}, {"name": "BounceRates", "dtype": "float64"}, {"name": "ExitRates", "dtype": "float64"}, {"name": "PageValues", "dtype": "float64"}, {"name": "SpecialDay", "dtype": "float64"}, {"name": "Month", "dtype": "string"}, {"name": "OperatingSystems", "dtype": "int64"}, {"name": "Browser", "dtype": "int64"}, {"name": "Region", "dtype": "int64"}, {"name": "TrafficType", "dtype": "int64"}, {"name": "VisitorType", "dtype": "string"}, {"name": "Weekend", "dtype": "bool"}, {"name": "Revenue", "dtype": {"class_label": {"names": {"0": "False", "1": "True"}}}}], "splits": [{"name": "train", "num_bytes": 1815486, "num_examples": 12330}], "download_size": 425014, "dataset_size": 1815486}}
|
2023-05-03T20:08:59+00:00
|
844287457988e9b1b37827b13058fc6b0b4ed1da
|
# Dataset Card for "uci-bank"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jlh/uci-bank
|
[
"region:us"
] |
2023-04-25T19:39:31+00:00
|
{"dataset_info": {"features": [{"name": "age", "dtype": "int64"}, {"name": "job", "dtype": "string"}, {"name": "marital", "dtype": "string"}, {"name": "education", "dtype": "string"}, {"name": "default", "dtype": "string"}, {"name": "balance", "dtype": "int64"}, {"name": "housing", "dtype": "string"}, {"name": "loan", "dtype": "string"}, {"name": "contact", "dtype": "string"}, {"name": "day", "dtype": "int64"}, {"name": "month", "dtype": "string"}, {"name": "duration", "dtype": "int64"}, {"name": "campaign", "dtype": "int64"}, {"name": "pdays", "dtype": "int64"}, {"name": "previous", "dtype": "int64"}, {"name": "poutcome", "dtype": "string"}, {"name": "y", "dtype": {"class_label": {"names": {"0": "no", "1": "yes"}}}}], "splits": [{"name": "train", "num_bytes": 674228, "num_examples": 4521}], "download_size": 92171, "dataset_size": 674228}}
|
2023-04-25T22:22:38+00:00
|
e4b0c1de4dc1e9c9ee9370c603c7010dcd255e3d
|
matejklemen/clc_fce
|
[
"license:other",
"region:us"
] |
2023-04-25T19:48:07+00:00
|
{"license": "other", "dataset_info": {"features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8658209, "num_examples": 28350}, {"name": "validation", "num_bytes": 668073, "num_examples": 2191}, {"name": "test", "num_bytes": 823872, "num_examples": 2695}], "download_size": 2774021, "dataset_size": 10150154}}
|
2023-04-25T20:00:20+00:00
|
|
92f04359122b0896f162ec2f6d22f86f31f12de7
|
# Dataset Card for "chatml-evaluation"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
AlekseyKorshuk/chatml-evaluation
|
[
"region:us"
] |
2023-04-25T20:05:40+00:00
|
{"dataset_info": {"features": [{"name": "prompt", "list": [{"name": "from", "dtype": "string"}, {"name": "role_type", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "response", "struct": [{"name": "from", "dtype": "string"}, {"name": "role_type", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "source", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1442834, "num_examples": 319}], "download_size": 0, "dataset_size": 1442834}}
|
2023-04-25T22:06:26+00:00
|
27d71149cd97680c5f28b2e37167e039192dbaa2
|
matejklemen/wi_locness
|
[
"license:other",
"region:us"
] |
2023-04-25T20:12:40+00:00
|
{"license": "other", "dataset_info": [{"config_name": "A", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3847179, "num_examples": 10493}, {"name": "validation", "num_bytes": 392622, "num_examples": 1037}], "download_size": 6120469, "dataset_size": 4239801}, {"config_name": "B", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4649805, "num_examples": 13032}, {"name": "validation", "num_bytes": 468078, "num_examples": 1290}], "download_size": 6120469, "dataset_size": 5117883}, {"config_name": "C", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3765831, "num_examples": 10783}, {"name": "validation", "num_bytes": 390439, "num_examples": 1069}], "download_size": 6120469, "dataset_size": 4156270}, {"config_name": "N", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 421656, "num_examples": 988}], "download_size": 6120469, "dataset_size": 421656}, {"config_name": "all", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 12262815, "num_examples": 34308}, {"name": "validation", "num_bytes": 1672795, "num_examples": 4384}], "download_size": 6120469, "dataset_size": 13935610}]}
|
2023-04-25T20:39:04+00:00
|
|
bcb382ac958fa345a3d0d5dafa6adbde3cc54f08
|
# Dataset Card for "amazon-shoe-reviews"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
sabtalha/amazon-shoe-reviews
|
[
"region:us"
] |
2023-04-25T20:31:08+00:00
|
{"dataset_info": {"features": [{"name": "labels", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 492352.2, "num_examples": 2700}, {"name": "test", "num_bytes": 54705.8, "num_examples": 300}], "download_size": 331310, "dataset_size": 547058.0}}
|
2023-04-26T01:16:34+00:00
|
cce22af7e53301286b3af03ee608cd9c2f6b7f6a
|
# Dataset Card for "uci-census-income-94"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jlh/uci-census-income-94
|
[
"region:us"
] |
2023-04-25T20:34:50+00:00
|
{"dataset_info": {"features": [{"name": "age", "dtype": "string"}, {"name": "class_of_worker", "dtype": "int64"}, {"name": "detailed_industry_recode", "dtype": "int64"}, {"name": "detailed_occupation_recode", "dtype": "string"}, {"name": "education", "dtype": "int64"}, {"name": "wage_per_hour", "dtype": "string"}, {"name": "enroll_in_edu_inst_last_wk", "dtype": "string"}, {"name": "marital_stat", "dtype": "string"}, {"name": "major_industry_code", "dtype": "string"}, {"name": "major_occupation_code", "dtype": "string"}, {"name": "race", "dtype": "string"}, {"name": "hispanic_origin", "dtype": "string"}, {"name": "sex", "dtype": "string"}, {"name": "member_of_a_labor_union", "dtype": "string"}, {"name": "reason_for_unemployment", "dtype": "string"}, {"name": "full_or_part_time_employment_stat", "dtype": "int64"}, {"name": "capital_gains", "dtype": "int64"}, {"name": "capital_losses", "dtype": "int64"}, {"name": "dividends_from_stocks", "dtype": "string"}, {"name": "tax_filer_stat", "dtype": "string"}, {"name": "region_of_previous_residence", "dtype": "string"}, {"name": "state_of_previous_residence", "dtype": "string"}, {"name": "detailed_household_and_family_stat", "dtype": "string"}, {"name": "detailed_household_summary_in_household", "dtype": "float64"}, {"name": "migration_code-change_in_msa", "dtype": "string"}, {"name": "migration_code-change_in_reg", "dtype": "string"}, {"name": "migration_code-move_within_reg", "dtype": "string"}, {"name": "live_in_this_house_1_year_ago", "dtype": "string"}, {"name": "migration_prev_res_in_sunbelt", "dtype": "string"}, {"name": "num_persons_worked_for_employer", "dtype": "int64"}, {"name": "family_members_under_18", "dtype": "string"}, {"name": "country_of_birth_father", "dtype": "string"}, {"name": "country_of_birth_mother", "dtype": "string"}, {"name": "country_of_birth_self", "dtype": "string"}, {"name": "citizenship", "dtype": "string"}, {"name": "own_business_or_self_employed", "dtype": "int64"}, {"name": "fill_inc_questionnaire_for_veteran's_admin", "dtype": "string"}, {"name": "veterans_benefits", "dtype": "int64"}, {"name": "weeks_worked_in_year", "dtype": "int64"}, {"name": "year", "dtype": "int64"}, {"name": "income", "dtype": {"class_label": {"names": {"0": " - 50000.", "1": " 50000+."}}}}], "splits": [{"name": "train", "num_bytes": 129952005, "num_examples": 199523}], "download_size": 7989520, "dataset_size": 129952005}}
|
2023-04-25T22:21:08+00:00
|
353b870c55d57b442de18fa7d46df3a1583aefca
|
# Dataset Card for "wiki_books"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jxie/wiki_books
|
[
"region:us"
] |
2023-04-25T20:35:55+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22230107891, "num_examples": 23464781}], "download_size": 13136529693, "dataset_size": 22230107891}}
|
2023-05-06T08:03:28+00:00
|
785b18a717ddfc47b09f30d50b5980e49910efd7
|
# Dataset Card for "uci-adult-income"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jlh/uci-adult-income
|
[
"region:us"
] |
2023-04-25T20:40:16+00:00
|
{"dataset_info": {"features": [{"name": "age", "dtype": "int64"}, {"name": "workclass", "dtype": "string"}, {"name": "fnlwgt", "dtype": "int64"}, {"name": "education", "dtype": "string"}, {"name": "education-num", "dtype": "int64"}, {"name": "marital-status", "dtype": "string"}, {"name": "occupation", "dtype": "string"}, {"name": "relationship", "dtype": "string"}, {"name": "race", "dtype": "string"}, {"name": "sex", "dtype": "string"}, {"name": "capital-gain", "dtype": "int64"}, {"name": "capital-loss", "dtype": "int64"}, {"name": "hours-per-week", "dtype": "int64"}, {"name": "native-country", "dtype": "string"}, {"name": "income", "dtype": {"class_label": {"names": {"0": " <=50K", "1": " >50K"}}}}], "splits": [{"name": "train", "num_bytes": 5552570, "num_examples": 32561}], "download_size": 586658, "dataset_size": 5552570}}
|
2023-04-25T22:19:35+00:00
|
c102bebe315b0c7d4483c78a7376aac85bf0a332
|
**Important**: This is only a script for loading the data, but the data itself is private. The script will only work in case you have access to the data, which you may request for non-commercial purposes [here](https://sterling8.d2.comp.nus.edu.sg/nucle_download/nucle.php).
```python
data = datasets.load_dataset("matejklemen/nucle", "private", data_dir=<dir-of-private-data>, ignore_verifications=True)"
```
The `ignore_verifications=True` is important as the datasets library initially builds validation statistics that it verifies against,
and these cannot be correctly computed when the data is not public.
|
matejklemen/nucle
|
[
"license:other",
"region:us"
] |
2023-04-25T20:42:44+00:00
|
{"license": "other", "dataset_info": [{"config_name": "public", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train"}], "download_size": 0, "dataset_size": 0}, {"config_name": "private", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train"}], "download_size": 0, "dataset_size": 0}]}
|
2024-01-24T18:29:47+00:00
|
9664244f74582769de7d73faf64bbd1726392d78
|
# Dataset Card for "minipile_train_tokenized"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
andersonbcdefg/minipile_train_tokenized
|
[
"region:us"
] |
2023-04-25T20:48:09+00:00
|
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "targets", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 17885906464, "num_examples": 2907332}], "download_size": 6111746975, "dataset_size": 17885906464}}
|
2023-04-26T20:45:47+00:00
|
7fc85e95b7538f857bcf9a7617e71b1163b393eb
|
# Dataset Card for "uci-mushrooms"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jlh/uci-mushrooms
|
[
"region:us"
] |
2023-04-25T20:50:08+00:00
|
{"dataset_info": {"features": [{"name": "poisonous", "dtype": {"class_label": {"names": {"0": "e", "1": "p"}}}}, {"name": "cap-shape", "dtype": "string"}, {"name": "cap-surface", "dtype": "string"}, {"name": "cap-color", "dtype": "string"}, {"name": "bruises", "dtype": "string"}, {"name": "odor", "dtype": "string"}, {"name": "gill-attachment", "dtype": "string"}, {"name": "gill-spacing", "dtype": "string"}, {"name": "gill-size", "dtype": "string"}, {"name": "gill-color", "dtype": "string"}, {"name": "stalk-shape", "dtype": "string"}, {"name": "stalk-root", "dtype": "string"}, {"name": "stalk-surface-above-ring", "dtype": "string"}, {"name": "stalk-surface-below-ring", "dtype": "string"}, {"name": "stalk-color-above-ring", "dtype": "string"}, {"name": "stalk-color-below-ring", "dtype": "string"}, {"name": "veil-type", "dtype": "string"}, {"name": "veil-color", "dtype": "string"}, {"name": "ring-number", "dtype": "string"}, {"name": "ring-type", "dtype": "string"}, {"name": "spore-print-color", "dtype": "string"}, {"name": "population", "dtype": "string"}, {"name": "habitat", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 958632, "num_examples": 8124}], "download_size": 90673, "dataset_size": 958632}}
|
2023-04-25T22:14:41+00:00
|
4a89da646a7b35e2b3dbd62a08519a114fac048f
|
# Dataset Card for "home-credit"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jlh/home-credit
|
[
"region:us"
] |
2023-04-25T20:52:14+00:00
|
{"dataset_info": {"features": [{"name": "SK_ID_CURR", "dtype": "int64"}, {"name": "TARGET", "dtype": {"class_label": {"names": {"0": "0", "1": "1"}}}}, {"name": "NAME_CONTRACT_TYPE", "dtype": "string"}, {"name": "CODE_GENDER", "dtype": "string"}, {"name": "FLAG_OWN_CAR", "dtype": "string"}, {"name": "FLAG_OWN_REALTY", "dtype": "string"}, {"name": "CNT_CHILDREN", "dtype": "int64"}, {"name": "AMT_INCOME_TOTAL", "dtype": "float64"}, {"name": "AMT_CREDIT", "dtype": "float64"}, {"name": "AMT_ANNUITY", "dtype": "float64"}, {"name": "AMT_GOODS_PRICE", "dtype": "float64"}, {"name": "NAME_TYPE_SUITE", "dtype": "string"}, {"name": "NAME_INCOME_TYPE", "dtype": "string"}, {"name": "NAME_EDUCATION_TYPE", "dtype": "string"}, {"name": "NAME_FAMILY_STATUS", "dtype": "string"}, {"name": "NAME_HOUSING_TYPE", "dtype": "string"}, {"name": "REGION_POPULATION_RELATIVE", "dtype": "float64"}, {"name": "DAYS_BIRTH", "dtype": "int64"}, {"name": "DAYS_EMPLOYED", "dtype": "int64"}, {"name": "DAYS_REGISTRATION", "dtype": "float64"}, {"name": "DAYS_ID_PUBLISH", "dtype": "int64"}, {"name": "OWN_CAR_AGE", "dtype": "float64"}, {"name": "FLAG_MOBIL", "dtype": "int64"}, {"name": "FLAG_EMP_PHONE", "dtype": "int64"}, {"name": "FLAG_WORK_PHONE", "dtype": "int64"}, {"name": "FLAG_CONT_MOBILE", "dtype": "int64"}, {"name": "FLAG_PHONE", "dtype": "int64"}, {"name": "FLAG_EMAIL", "dtype": "int64"}, {"name": "OCCUPATION_TYPE", "dtype": "string"}, {"name": "CNT_FAM_MEMBERS", "dtype": "float64"}, {"name": "REGION_RATING_CLIENT", "dtype": "int64"}, {"name": "REGION_RATING_CLIENT_W_CITY", "dtype": "int64"}, {"name": "WEEKDAY_APPR_PROCESS_START", "dtype": "string"}, {"name": "HOUR_APPR_PROCESS_START", "dtype": "int64"}, {"name": "REG_REGION_NOT_LIVE_REGION", "dtype": "int64"}, {"name": "REG_REGION_NOT_WORK_REGION", "dtype": "int64"}, {"name": "LIVE_REGION_NOT_WORK_REGION", "dtype": "int64"}, {"name": "REG_CITY_NOT_LIVE_CITY", "dtype": "int64"}, {"name": "REG_CITY_NOT_WORK_CITY", "dtype": "int64"}, {"name": "LIVE_CITY_NOT_WORK_CITY", "dtype": "int64"}, {"name": "ORGANIZATION_TYPE", "dtype": "string"}, {"name": "EXT_SOURCE_1", "dtype": "float64"}, {"name": "EXT_SOURCE_2", "dtype": "float64"}, {"name": "EXT_SOURCE_3", "dtype": "float64"}, {"name": "APARTMENTS_AVG", "dtype": "float64"}, {"name": "BASEMENTAREA_AVG", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_AVG", "dtype": "float64"}, {"name": "YEARS_BUILD_AVG", "dtype": "float64"}, {"name": "COMMONAREA_AVG", "dtype": "float64"}, {"name": "ELEVATORS_AVG", "dtype": "float64"}, {"name": "ENTRANCES_AVG", "dtype": "float64"}, {"name": "FLOORSMAX_AVG", "dtype": "float64"}, {"name": "FLOORSMIN_AVG", "dtype": "float64"}, {"name": "LANDAREA_AVG", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "LIVINGAREA_AVG", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "NONLIVINGAREA_AVG", "dtype": "float64"}, {"name": "APARTMENTS_MODE", "dtype": "float64"}, {"name": "BASEMENTAREA_MODE", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MODE", "dtype": "float64"}, {"name": "YEARS_BUILD_MODE", "dtype": "float64"}, {"name": "COMMONAREA_MODE", "dtype": "float64"}, {"name": "ELEVATORS_MODE", "dtype": "float64"}, {"name": "ENTRANCES_MODE", "dtype": "float64"}, {"name": "FLOORSMAX_MODE", "dtype": "float64"}, {"name": "FLOORSMIN_MODE", "dtype": "float64"}, {"name": "LANDAREA_MODE", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "LIVINGAREA_MODE", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "NONLIVINGAREA_MODE", "dtype": "float64"}, {"name": "APARTMENTS_MEDI", "dtype": "float64"}, {"name": "BASEMENTAREA_MEDI", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MEDI", "dtype": "float64"}, {"name": "YEARS_BUILD_MEDI", "dtype": "float64"}, {"name": "COMMONAREA_MEDI", "dtype": "float64"}, {"name": "ELEVATORS_MEDI", "dtype": "float64"}, {"name": "ENTRANCES_MEDI", "dtype": "float64"}, {"name": "FLOORSMAX_MEDI", "dtype": "float64"}, {"name": "FLOORSMIN_MEDI", "dtype": "float64"}, {"name": "LANDAREA_MEDI", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "LIVINGAREA_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAREA_MEDI", "dtype": "float64"}, {"name": "FONDKAPREMONT_MODE", "dtype": "string"}, {"name": "HOUSETYPE_MODE", "dtype": "string"}, {"name": "TOTALAREA_MODE", "dtype": "float64"}, {"name": "WALLSMATERIAL_MODE", "dtype": "string"}, {"name": "EMERGENCYSTATE_MODE", "dtype": "string"}, {"name": "OBS_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "OBS_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DAYS_LAST_PHONE_CHANGE", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_2", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_3", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_4", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_5", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_6", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_7", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_8", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_9", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_10", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_11", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_12", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_13", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_14", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_15", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_16", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_17", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_18", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_19", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_20", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_21", "dtype": "int64"}, {"name": "AMT_REQ_CREDIT_BUREAU_HOUR", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_DAY", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_WEEK", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_MON", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_QRT", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_YEAR", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 323536216, "num_examples": 307511}], "download_size": 0, "dataset_size": 323536216}}
|
2023-04-25T21:58:10+00:00
|
e96010bbbc52f19b52462d28652370c7d4dbc9d0
|
# Dataset Card for "cv_11_arabic_test_denoisy"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
MohammedNasri/cv_11_arabic_test_denoisy
|
[
"region:us"
] |
2023-04-25T20:55:29+00:00
|
{"dataset_info": {"features": [{"name": "audio", "sequence": "float64"}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5817636498, "num_examples": 10440}], "download_size": 2823357222, "dataset_size": 5817636498}}
|
2023-04-25T21:01:50+00:00
|
4195ef19efb2d0e8cfa9f49c6d19df1833f34661
|
# Dataset Card for QUAERO
## Dataset Description
- **Homepage:** https://quaerofrenchmed.limsi.fr/
- **Pubmed:** True
- **Public:** True
- **Tasks:** Named-Entity Recognition (NER)
The QUAERO French Medical Corpus has been initially developed as a resource for named entity recognition and normalization [1]. It was then improved with the purpose of creating a gold standard set of normalized entities for French biomedical text, that was used in the CLEF eHealth evaluation lab [2][3].
A selection of MEDLINE titles and EMEA documents were manually annotated. The annotation process was guided by concepts in the Unified Medical Language System (UMLS):
1. Ten types of clinical entities, as defined by the following UMLS Semantic Groups (Bodenreider and McCray 2003) were annotated: Anatomy, Chemical and Drugs, Devices, Disorders, Geographic Areas, Living Beings, Objects, Phenomena, Physiology, Procedures.
2. The annotations were made in a comprehensive fashion, so that nested entities were marked, and entities could be mapped to more than one UMLS concept. In particular: (a) If a mention can refer to more than one Semantic Group, all the relevant Semantic Groups should be annotated. For instance, the mention “récidive” (recurrence) in the phrase “prévention des récidives” (recurrence prevention) should be annotated with the category “DISORDER” (CUI C2825055) and the category “PHENOMENON” (CUI C0034897); (b) If a mention can refer to more than one UMLS concept within the same Semantic Group, all the relevant concepts should be annotated. For instance, the mention “maniaques” (obsessive) in the phrase “patients maniaques” (obsessive patients) should be annotated with CUIs C0564408 and C0338831 (category “DISORDER”); (c) Entities which span overlaps with that of another entity should still be annotated. For instance, in the phrase “infarctus du myocarde” (myocardial infarction), the mention “myocarde” (myocardium) should be annotated with category “ANATOMY” (CUI C0027061) and the mention “infarctus du myocarde” should be annotated with category “DISORDER” (CUI C0027051)
The QUAERO French Medical Corpus BioC release comprises a subset of the QUAERO French Medical corpus, as follows:
Training data (BRAT version used in CLEF eHealth 2015 task 1b as training data):
- MEDLINE_train_bioc file: 833 MEDLINE titles, annotated with normalized entities in the BioC format
- EMEA_train_bioc file: 3 EMEA documents, segmented into 11 sub-documents, annotated with normalized entities in the BioC format
Development data (BRAT version used in CLEF eHealth 2015 task 1b as test data and in CLEF eHealth 2016 task 2 as development data):
- MEDLINE_dev_bioc file: 832 MEDLINE titles, annotated with normalized entities in the BioC format
- EMEA_dev_bioc file: 3 EMEA documents, segmented into 12 sub-documents, annotated with normalized entities in the BioC format
Test data (BRAT version used in CLEF eHealth 2016 task 2 as test data):
- MEDLINE_test_bioc folder: 833 MEDLINE titles, annotated with normalized entities in the BioC format
- EMEA folder_test_bioc: 4 EMEA documents, segmented into 15 sub-documents, annotated with normalized entities in the BioC format
This release of the QUAERO French medical corpus, BioC version, comes in the BioC format, through automatic conversion from the original BRAT format obtained with the Brat2BioC tool https://bitbucket.org/nicta_biomed/brat2bioc developped by Jimeno Yepes et al.
Antonio Jimeno Yepes, Mariana Neves, Karin Verspoor
Brat2BioC: conversion tool between brat and BioC
BioCreative IV track 1 - BioC: The BioCreative Interoperability Initiative, 2013
Please note that the original version of the QUAERO corpus distributed in the CLEF eHealth challenge 2015 and 2016 came in the BRAT stand alone format. It was distributed with the CLEF eHealth evaluation tool. This original distribution of the QUAERO French Medical corpus is available separately from https://quaerofrenchmed.limsi.fr
All questions regarding the task or data should be addressed to [email protected]
## Citation Information
```
@InProceedings{neveol14quaero,
author = {Névéol, Aurélie and Grouin, Cyril and Leixa, Jeremy
and Rosset, Sophie and Zweigenbaum, Pierre},
title = {The {QUAERO} {French} Medical Corpus: A Ressource for
Medical Entity Recognition and Normalization},
OPTbooktitle = {Proceedings of the Fourth Workshop on Building
and Evaluating Ressources for Health and Biomedical
Text Processing},
booktitle = {Proc of BioTextMining Work},
OPTseries = {BioTxtM 2014},
year = {2014},
pages = {24--30},
}
```
|
DrBenchmark/QUAERO
|
[
"task_categories:token-classification",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"language:fr",
"license:other",
"medical",
"region:us"
] |
2023-04-25T21:01:52+00:00
|
{"language": ["fr"], "license": "other", "multilinguality": "monolingual", "size_categories": ["1K<n<10K"], "task_categories": ["token-classification"], "pretty_name": "QUAERO", "homepage": "https://quaerofrenchmed.limsi.fr/", "tags": ["medical"]}
|
2023-06-12T19:53:41+00:00
|
e840fc01ea9627839d7c3f65786fcf91ed025c16
|
# Dataset Card for "test-dataset-all-splits"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
HuggingFaceH4/test-dataset-all-splits
|
[
"region:us"
] |
2023-04-25T21:09:40+00:00
|
{"dataset_info": {"features": [{"name": "chosen", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "rejected", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "prompt", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train_ift", "num_bytes": 230850, "num_examples": 100}, {"name": "train_rl", "num_bytes": 369068, "num_examples": 100}, {"name": "train_rm", "num_bytes": 369068, "num_examples": 100}, {"name": "test_rm", "num_bytes": 312141, "num_examples": 100}, {"name": "test_rl", "num_bytes": 312141, "num_examples": 100}, {"name": "test_ift", "num_bytes": 218856, "num_examples": 100}], "download_size": 1071322, "dataset_size": 1812124}}
|
2023-04-25T21:09:49+00:00
|
e0e28b570e7e723d9609c189024b253fe12b5435
|
# Dataset Card for "bookcorpus"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jxie/bookcorpus
|
[
"region:us"
] |
2023-04-25T21:14:04+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4484644404, "num_examples": 4593890}], "download_size": 2712558918, "dataset_size": 4484644404}}
|
2023-04-25T21:18:29+00:00
|
db4d65636c12c45d7ce378312cd1b8d1bbc4cede
|
# Dataset Card for "oig_small_chip2_python"
### Dataset Summary
From [LAION's Open Instruction Generalist (OIG) dataset](https://huggingface.co/datasets/laion/OIG), we use a 4775-prompt segment pertaining to Python code generation. OIG text elements are formatted as dialogue exerpts between a "human" and "bot" agent. The code generation prompt is parsed from the initial "human" agent's statement and the resultant response from the "bot" agent's statement. We then reformat the text/response pairs according to the format of the original Alpaca dataset; that is, instruction/input/output triplets. In cases where the instruction field does not specify the code language, we provide "Write the code in Python" in the input field. Otherwise, the input field is left blank.
The OIG dataset was prepared by LAION, and released under the Apache 2.0 license.
Numbers:
- **Prompts**: 4775
- **Tokens**: 578083 using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer (counting instruction+input+output)
|
lucasmccabe-lmi/oig_small_chip2_python
|
[
"task_categories:text-generation",
"size_categories:1K<n<10K",
"language:en",
"license:apache-2.0",
"code",
"python",
"code-generation",
"region:us"
] |
2023-04-25T21:14:09+00:00
|
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1930175, "num_examples": 4742}], "download_size": 741759, "dataset_size": 1930175}, "tags": ["code", "python", "code-generation"]}
|
2023-04-25T21:30:03+00:00
|
b86d96510a3c32a1ff7407bd4522dea7aa2ac1b5
|
# Dataset Card for "shEMO"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
minoosh/shEMO
|
[
"region:us"
] |
2023-04-25T21:15:28+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "emotion", "dtype": {"class_label": {"names": {"0": "A", "1": "H", "2": "N", "3": "S", "4": "W", "5": "F"}}}}], "splits": [{"name": "train", "num_bytes": 844671640.8, "num_examples": 2400}, {"name": "test", "num_bytes": 103378583.5, "num_examples": 300}, {"name": "valid", "num_bytes": 115098795.5, "num_examples": 300}], "download_size": 1043545626, "dataset_size": 1063149019.8}}
|
2023-04-25T21:57:28+00:00
|
973e27667822866f6fa6a050223dd76e58022bd0
|
# Dataset Card for "wikipedia"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jxie/wikipedia
|
[
"region:us"
] |
2023-04-25T21:18:29+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 17745463487, "num_examples": 18870891}], "download_size": 10424169925, "dataset_size": 17745463487}}
|
2023-04-25T21:35:18+00:00
|
b622fd84c488b50c005763b992ec8c18621c5a34
|
# Dataset Card for "balanced"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
amishshah/balanced
|
[
"region:us"
] |
2023-04-25T21:47:52+00:00
|
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 58351317.12, "num_examples": 27000}, {"name": "test", "num_bytes": 6483479.68, "num_examples": 3000}, {"name": "eval", "num_bytes": 6483479.68, "num_examples": 3000}], "download_size": 3311033, "dataset_size": 71318276.47999999}}
|
2023-04-26T06:53:49+00:00
|
7e6dc76ef9e67f7d43ed5b59d2243c7f4baf655f
|
# Dataset Card for "reading_comprehension_exercise_dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jmartin233/reading_comprehension_exercise_dataset
|
[
"region:us"
] |
2023-04-25T21:49:43+00:00
|
{"dataset_info": {"features": [{"name": "person", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "grammar", "dtype": "string"}, {"name": "level", "dtype": "string"}, {"name": "passage", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25230, "num_examples": 41}], "download_size": 19938, "dataset_size": 25230}}
|
2023-04-26T15:43:00+00:00
|
3225ef805116c27547a39afa7235d0344d59701d
|
# Dataset Card for "uci-car-evaluation"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
jlh/uci-car-evaluation
|
[
"region:us"
] |
2023-04-25T22:08:49+00:00
|
{"dataset_info": {"features": [{"name": "buying", "dtype": "string"}, {"name": "maint", "dtype": "string"}, {"name": "doors", "dtype": "string"}, {"name": "persons", "dtype": "string"}, {"name": "lug_boot", "dtype": "string"}, {"name": "safety", "dtype": "string"}, {"name": "quality", "dtype": {"class_label": {"names": {"0": "acc", "1": "good", "2": "unacc", "3": "vgood"}}}}], "splits": [{"name": "train", "num_bytes": 87264, "num_examples": 1728}], "download_size": 5480, "dataset_size": 87264}}
|
2023-04-25T22:18:06+00:00
|
300cf4d7a86c534619ab8cc1bcc1a08d6ee7e649
|
GranamyrBR/juris
|
[
"license:mit",
"region:us"
] |
2023-04-25T22:20:38+00:00
|
{"license": "mit"}
|
2023-04-25T22:20:38+00:00
|
|
6cdd73eae28e41913824247bb2afa9167f7b3c58
|
# Dataset Card for "codex_math_qa_alpaca_style"
This dataset consists of code responses generated by `codex-davinci-002` for solving math word problems from [math_qa](https://huggingface.co/datasets/math_qa). This dataset is equivalent to [theblackcat102/codex-math-qa](https://huggingface.co/datasets/theblackcat102/codex-math-qa), but has been slightly modified to fit the Alpaca format.
Numbers:
- **Prompts**: 28050
- **Tokens**: 6626950 using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer (counting instruction+input+output)
|
lucasmccabe-lmi/codex_math_qa_alpaca_style
|
[
"region:us"
] |
2023-04-25T22:28:58+00:00
|
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23778428.0, "num_examples": 28050}], "download_size": 8824844, "dataset_size": 23778428.0}}
|
2023-04-25T22:29:46+00:00
|
3eca6af497ac4c90bebce234bdba8f4e8002fd7f
|
# Dataset Card for "openai_humaneval_alpaca_style"
This dataset consists of hand-written Python solutions to 164 programming problems by OpenAI. This dataset is equivalent to [openai_humaneval](https://huggingface.co/datasets/openai_humaneval), but has been slightly modified to fit the Alpaca format and include an input field ("The prompt's code is written in Python. Write corresponding response code in Python, as well.") when Python is not explicitly mentioned in the prompt.
Numbers:
- **Prompts**: 164
- **Tokens**: 36644 using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer (counting instruction+input+output)
|
lucasmccabe-lmi/openai_humaneval_alpaca_style
|
[
"region:us"
] |
2023-04-25T22:42:13+00:00
|
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 120769.0, "num_examples": 164}], "download_size": 57282, "dataset_size": 120769.0}}
|
2023-04-25T22:45:56+00:00
|
2fe3b797ffb3e6d1beccfa5f1ac12a2483c64f60
|
# Dataset Card for "VQAv2_validation_no_image"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_validation_no_image
|
[
"region:us"
] |
2023-04-25T22:49:22+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_ViT_B_16_with_openai", "sequence": "string"}], "splits": [{"name": "validation", "num_bytes": 11070187868, "num_examples": 214354}], "download_size": 2794930371, "dataset_size": 11070187868}}
|
2023-05-04T04:39:30+00:00
|
f512536aa99c032b90b0cddf7de5a352bbceb258
|
# Dataset Card for "VQAv2_test_no_image"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_test_no_image
|
[
"region:us"
] |
2023-04-25T22:57:55+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "answers", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 21976237587, "num_examples": 447793}], "download_size": 5670512625, "dataset_size": 21976237587}}
|
2023-05-13T19:39:01+00:00
|
8a191628e2ecb6db3db17f6ff799ddd567c1c24a
|
# Dataset Card for "VQAv2_train_no_image"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_train_no_image
|
[
"region:us"
] |
2023-04-25T23:02:39+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 2355752129, "num_examples": 443757}], "download_size": 306629539, "dataset_size": 2355752129}}
|
2023-04-25T23:03:35+00:00
|
bf6eb5d9f0503e3435b647a799841dc6d6f56eb7
|
# Dataset Card for "full-hh-rlhf-chatml-chatml"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
sam-mosaic/full-hh-rlhf-chatml
|
[
"language:en",
"region:us"
] |
2023-04-25T23:27:24+00:00
|
{"language": "en", "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 155301546, "num_examples": 147351}, {"name": "test", "num_bytes": 16963667, "num_examples": 16255}], "download_size": 68690705, "dataset_size": 172265213}}
|
2023-07-17T23:28:22+00:00
|
b1b7f34c7664b1110b329ee46d5fc57b52f7a5a3
|
# Dataset Card for "VQAv2_test_sample"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_test_sample
|
[
"region:us"
] |
2023-04-25T23:37:52+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}], "splits": [{"name": "test", "num_bytes": 213533490.0, "num_examples": 1000}], "download_size": 44562556, "dataset_size": 213533490.0}}
|
2023-04-26T00:09:42+00:00
|
5e77c8926b02f7397644d45ad5c7f10413a3d3cc
|
# Dataset Card for "mmlu-abstract_algebra-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-abstract_algebra-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:44:21+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 5843, "num_examples": 5}, {"name": "test", "num_bytes": 553714, "num_examples": 100}], "download_size": 89926, "dataset_size": 559557}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:27:08+00:00
|
c3906aa840284067c855135cd9aa23cfbc976e75
|
# Dataset Card for "mmlu-anatomy-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-anatomy-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:44:29+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 5642, "num_examples": 5}, {"name": "test", "num_bytes": 826330, "num_examples": 135}], "download_size": 127065, "dataset_size": 831972}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:27:41+00:00
|
b6452fa2ace15dabb6da9c0799cec13491c2fbbf
|
# Dataset Card for "mmlu-astronomy-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-astronomy-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:44:37+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9251, "num_examples": 5}, {"name": "test", "num_bytes": 1792879, "num_examples": 152}], "download_size": 146597, "dataset_size": 1802130}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:28:14+00:00
|
f6ce4983a66d3ded594940017e89a32e22d8a136
|
# Dataset Card for "mmlu-business_ethics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-business_ethics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:44:45+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 11347, "num_examples": 5}, {"name": "test", "num_bytes": 1323050, "num_examples": 100}], "download_size": 131380, "dataset_size": 1334397}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:28:48+00:00
|
4d462d1c83eaeaa1d391da0670de23a552b8767e
|
# Dataset Card for "mmlu-clinical_knowledge-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-clinical_knowledge-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:44:53+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6643, "num_examples": 5}, {"name": "test", "num_bytes": 1915838, "num_examples": 265}], "download_size": 205749, "dataset_size": 1922481}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:29:21+00:00
|
e038b7b0f430ed8f66ea439c24c7cee7827edd66
|
# Dataset Card for "mmlu-college_biology-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-college_biology-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:45:57+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8293, "num_examples": 5}, {"name": "test", "num_bytes": 1336385, "num_examples": 144}], "download_size": 191456, "dataset_size": 1344678}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:29:52+00:00
|
9bd1decc706d8b3e39a9753472c161f1d79bf68e
|
# Dataset Card for "mmlu-college_chemistry-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-college_chemistry-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:05+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7604, "num_examples": 5}, {"name": "test", "num_bytes": 807404, "num_examples": 100}], "download_size": 137885, "dataset_size": 815008}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:30:24+00:00
|
96f4277618c8e08a2ca4ea5e0b0bed1768dc8058
|
# Dataset Card for "mmlu-college_computer_science-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-college_computer_science-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:13+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 12762, "num_examples": 5}, {"name": "test", "num_bytes": 1187769, "num_examples": 100}], "download_size": 152607, "dataset_size": 1200531}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:30:56+00:00
|
ef86a2ff76cfa92f50be1e204007e744a3acea96
|
# Dataset Card for "mmlu-college_mathematics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-college_mathematics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:21+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9276, "num_examples": 5}, {"name": "test", "num_bytes": 924997, "num_examples": 100}], "download_size": 148273, "dataset_size": 934273}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:31:30+00:00
|
6601da3c46e7c2d9dd5065bdc74a7dc2ad9c7c77
|
# Dataset Card for "mmlu-college_medicine-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-college_medicine-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:29+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8383, "num_examples": 5}, {"name": "test", "num_bytes": 1791760, "num_examples": 173}], "download_size": 247355, "dataset_size": 1800143}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:32:04+00:00
|
638a3a1764b99f3ba40b2269eda9eb2aff6926cd
|
# Dataset Card for "mmlu-college_physics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-college_physics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:37+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8555, "num_examples": 5}, {"name": "test", "num_bytes": 871253, "num_examples": 102}], "download_size": 146820, "dataset_size": 879808}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:32:37+00:00
|
346a214dd6ea7368d4a4d406fcbf754bc916ac0a
|
# Dataset Card for "mmlu-computer_security-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-computer_security-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:45+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6196, "num_examples": 5}, {"name": "test", "num_bytes": 687108, "num_examples": 100}], "download_size": 128252, "dataset_size": 693304}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:33:10+00:00
|
65fa846716596c0a9dc51e23b5d5485c6cb54daf
|
# Dataset Card for "mmlu-conceptual_physics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-conceptual_physics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:46:53+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 5977, "num_examples": 5}, {"name": "test", "num_bytes": 1344080, "num_examples": 235}], "download_size": 154457, "dataset_size": 1350057}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:33:43+00:00
|
2889289855b2812be5479e667ba22a11743f8fa7
|
# Dataset Card for "mmlu-econometrics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-econometrics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:47:01+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9477, "num_examples": 5}, {"name": "test", "num_bytes": 1159021, "num_examples": 114}], "download_size": 174731, "dataset_size": 1168498}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:34:15+00:00
|
c9485ccb4c4864bcf7f10b6f7c2defe7abf23f81
|
# Dataset Card for "mmlu-electrical_engineering-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-electrical_engineering-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:47:16+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6493, "num_examples": 5}, {"name": "test", "num_bytes": 855411, "num_examples": 145}], "download_size": 121276, "dataset_size": 861904}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:34:48+00:00
|
e587577830b65a5d0067df0782f079d8156cd9b2
|
# Dataset Card for "mmlu-elementary_mathematics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-elementary_mathematics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:47:25+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7553, "num_examples": 5}, {"name": "test", "num_bytes": 2923400, "num_examples": 378}], "download_size": 247025, "dataset_size": 2930953}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:35:21+00:00
|
98729b3837c4556034bcf2e461b72f8d6432cb9c
|
# Dataset Card for "mmlu-formal_logic-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-formal_logic-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:47:35+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9134, "num_examples": 5}, {"name": "test", "num_bytes": 1353581, "num_examples": 126}], "download_size": 164902, "dataset_size": 1362715}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:35:53+00:00
|
3e189bfb1547c81e732ed9013e3742b957b0651f
|
# Dataset Card for "mmlu-global_facts-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-global_facts-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:47:43+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6936, "num_examples": 5}, {"name": "test", "num_bytes": 729161, "num_examples": 100}], "download_size": 107923, "dataset_size": 736097}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:36:23+00:00
|
cd1ddc9b4999f62af69610e58d1aa0e9d7cd8e14
|
# Dataset Card for "mmlu-high_school_biology-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_biology-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:47:51+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8554, "num_examples": 5}, {"name": "test", "num_bytes": 3104302, "num_examples": 310}], "download_size": 323194, "dataset_size": 3112856}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:36:56+00:00
|
a6ff23ec9f30f052be16d914d94bbb35456db73a
|
# Dataset Card for "mmlu-high_school_chemistry-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_chemistry-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:48:19+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6741, "num_examples": 5}, {"name": "test", "num_bytes": 1306617, "num_examples": 203}], "download_size": 183058, "dataset_size": 1313358}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:37:30+00:00
|
83a666e0235b3760b8b8a79ea1fbc82b27c0c38e
|
# Dataset Card for "mmlu-high_school_computer_science-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_computer_science-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:48:28+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 12245, "num_examples": 5}, {"name": "test", "num_bytes": 1422094, "num_examples": 100}], "download_size": 149744, "dataset_size": 1434339}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:38:02+00:00
|
01570ce3dda3004eb5b0d1eb8bb2aebb3aac008a
|
# Dataset Card for "mmlu-high_school_european_history-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_european_history-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:48:41+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 38149, "num_examples": 5}, {"name": "test", "num_bytes": 5870111, "num_examples": 165}], "download_size": 575851, "dataset_size": 5908260}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:38:39+00:00
|
1e7538e5d110561debf6475a5940f2aa93dacfb1
|
# Dataset Card for "mmlu-high_school_geography-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_geography-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:48:56+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7278, "num_examples": 5}, {"name": "test", "num_bytes": 1611002, "num_examples": 198}], "download_size": 173122, "dataset_size": 1618280}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:39:10+00:00
|
705d5077c3471e73e4a3f845a2c862a10937df32
|
# Dataset Card for "mmlu-high_school_government_and_politics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_government_and_politics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:49:04+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8462, "num_examples": 5}, {"name": "test", "num_bytes": 2014297, "num_examples": 193}], "download_size": 221285, "dataset_size": 2022759}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:39:42+00:00
|
be6f2f8566c5e77916b4b6e17c11584f95f1b2b8
|
# Dataset Card for "mmlu-high_school_macroeconomics-neg-prepend"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joey234/mmlu-high_school_macroeconomics-neg-prepend
|
[
"region:us"
] |
2023-04-26T00:49:13+00:00
|
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6771, "num_examples": 5}, {"name": "test", "num_bytes": 3153207, "num_examples": 390}], "download_size": 281037, "dataset_size": 3159978}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
|
2023-08-23T03:40:15+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.