sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
5bee272d323fd90edcde1934d7dbb437713a7171
# Dataset Card for "lighttestout" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ioclab/lighttestout
[ "region:us" ]
2023-04-25T05:00:25+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "tags", "dtype": "string"}, {"name": "conditioning_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 846755243.74, "num_examples": 3970}], "download_size": 843460816, "dataset_size": 846755243.74}}
2023-04-25T05:13:09+00:00
903f93a5ac9ab6b74533979f821f5fa72d0b693b
status: incomplete (need further adjustments) This dataset was created by translating "databricks-dolly-15k.jsonl" from english into indonesian using facebook/m2m100_418M and applying further adjustments. Further adjustments includes: 1. fixing words which are still in english 2. adjusting responses which start with stopwords e.g.: "oleh", "di", "dengan" 3. fixing repetitions which occur in multi-line text ("Everything Everything Everything Everything ...") This dataset can be used for any purpose, whether academic or commercial, under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License. ## Caveats The current databricks' dolly 15k dataset may not completely match with this one Row indeces that contain repetition erorrs (207): 96 112 262 273 369 376 389 410 415 432 581 586 597 685 870 886 936 957 964 979 985 1025 1120 1216 1223 1246 1251 1262 1316 1495 1552 1614 1684 1697 1733 1756 1808 1878 1893 2060 2118 2152 2168 2464 2474 2615 2663 2712 2829 2971 3046 3068 3123 3154 3178 3289 3336 3340 3401 3545 3574 3593 3599 3629 3745 3883 3889 3896 3967 3978 3993 4181 4186 4220 4232 4338 4358 4460 4497 4516 4614 4645 4689 4757 4809 4826 4865 5107 5232 5266 5296 5418 5493 5754 5791 5797 5819 5852 5968 6354 6409 6481 6499 6553 6555 6580 6659 6866 6911 6944 7020 7074 7116 7169 7390 7599 7777 7787 7846 7870 7894 8036 8051 8090 8144 8188 8294 8349 8406 8471 8527 8546 8552 8777 8836 8852 9026 9133 9136 9186 9287 9329 9335 9365 9475 9508 9509 9607 9630 9701 9731 9790 9822 9855 10214 10251 10308 10475 10536 10546 10683 10776 10803 10972 11069 11085 11199 11334 11350 11407 11421 11540 11570 11658 11758 11774 12004 12064 12374 12380 12519 12591 12623 12764 12844 12849 12923 12926 12953 13099 13225 13231 13352 13428 13602 13634 13810 13833 13851 13893 14021 14097 14145 14234 14240 14826 14884
umarzein/databricks-dolly-15k-id
[ "license:cc-by-sa-3.0", "region:us" ]
2023-04-25T05:48:42+00:00
{"license": "cc-by-sa-3.0"}
2023-05-07T02:30:25+00:00
1b2dff345e882f2fa831a3d16653901408919a93
# Dataset Card for "wikipedia_mt" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
amitness/wikipedia_mt
[ "language:mt", "region:us" ]
2023-04-25T05:53:59+00:00
{"language": "mt", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26154083, "num_examples": 5326}], "download_size": 15314612, "dataset_size": 26154083}}
2023-08-14T08:44:46+00:00
6d43f5fffe2ba4899559d9fff882cee311c325b1
# Dataset Card for "testdataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tracinginsights/testdataset
[ "region:us" ]
2023-04-25T05:54:51+00:00
{"dataset_info": {"features": [{"name": "Driver", "dtype": "string"}, {"name": "LapTime", "dtype": "float64"}, {"name": "Diff", "dtype": "float64"}, {"name": "Team", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 730, "num_examples": 20}], "download_size": 2745, "dataset_size": 730}}
2023-04-25T07:26:01+00:00
37f8825c6bb90e44276026b2635440e9aba97ea8
# Dataset Card for "ta-news-corp" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
livinNector/ta-news-corp
[ "region:us" ]
2023-04-25T06:15:37+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "tamil_murasu", "num_bytes": 499641675, "num_examples": 263669}, {"name": "dinamalar", "num_bytes": 5225297151, "num_examples": 4125162}], "download_size": 1955475887, "dataset_size": 5724938826}}
2023-04-25T06:16:49+00:00
806bea24f9ae5ed1283473d6dd81671b519c8163
swikrit/embedding
[ "license:mit", "region:us" ]
2023-04-25T06:46:05+00:00
{"license": "mit"}
2023-04-25T06:48:42+00:00
6e4e1a4e97aba69236d07f2a91cc6b6c8a66d64f
LORA EDITION - for you LORA MERGING NERDS! We're gonna re-do this in lycoris for you lyco-hoarding nerds. Also we're not at fault for anything you do with this, don't do anything illegal with it, and please SERIOUSLY if she shows up in the middle of the night don't feed her - you've watched Gremlins you know how this goes. If this model isn't exactly perfect, we're a little new to doing anything outside the generic waifu/nerd realm - Purgatori, Lady Death were things we enjoyed seeing the alternative art styles - but were never allowed to read them until adulthood - So uh YEA ENJOY! (And that's also to say that if it needs retraining, give us time lol) Also: You like what you see? Hit the rating button and then consider one of the following socials or coffee related sites to support us at: Twitter: https://twitter.com/DuskfallCrew Youtube: https://www.youtube.com/channel/UCk7MGP7nrJz5awBSP75xmVw Spotify (We do of course make music): https://open.spotify.com/playlist/00R8x00YktB4u541imdSSf?si=3806082ef8824a29 Instagram: https://instagram.com/duskfallcrew About Us: https://duskfallcrew.carrd.co/# Membership / Ko-Fi: https://ko-fi.com/Duskfallcrew/ Buy Me A Pizza/Coffee: https://www.buymeacoffee.com/duskfallxcrew
EarthnDusk/V1_Purgatory_Character
[ "task_categories:text-to-image", "size_categories:n<1K", "language:en", "license:creativeml-openrail-m", "stable diffusion", "LORA", "comic book", "illustration", "region:us" ]
2023-04-25T07:45:29+00:00
{"language": ["en"], "license": "creativeml-openrail-m", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "pretty_name": "Purgatori LoRa", "tags": ["stable diffusion", "LORA", "comic book", "illustration"]}
2023-04-25T08:02:44+00:00
771f1c145005977f581b42594582ae59395d3a5e
# Dataset Card for NST Bokmål test (< 15 sec. segments) ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** <https://github.com/scribe-project/nodalida_2023_combined_training> - **Paper:** ``` @inproceedings{ solberg2023improving, title={Improving Generalization of Norwegian {ASR} with Limited Linguistic Resources}, author={Per Erik Solberg and Pablo Ortiz and Phoebe Parsons and Torbj{\o}rn Svendsen and Giampiero Salvi}, booktitle={The 24rd Nordic Conference on Computational Linguistics}, year={2023} } ``` - **Point of Contact:** [Per Erik Solberg](mailto:[email protected]) ### Dataset Summary This is the version of the Bokmål part of the Norwegian NST dataset used for testing the models in the paper *Improving Generalization of Norwegian ASR with Limited Linguistic Resources* presented at NoDaLiDa 2023. It only contains segments of a length < 15 sec and only the test set. For a full version of the NST, see [this repository](https://huggingface.co/datasets/NbAiLab/NST). ### Languages Norwegian Bokmål ## Dataset Creation ### Source Data The full version of this dataset is found in [the repository of the Norwegian Language Bank](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-54/) #### Initial Data Collection and Normalization The data was retrieved using the [Spraakbanken downloader](https://pypi.org/project/spraakbanken-downloader/) and standardized using the [combined dataset standardization scripts](https://github.com/scribe-project/asr-standardized-combined). Bokmål segments with a duration < 15 seconds were extracted using [this code](https://github.com/scribe-project/nodalida_2023_combined_training/blob/main/make_datasets/make_nst_csvs.ipynb). ## Licensing Information [CC0](https://creativecommons.org/share-your-work/public-domain/cc0/) ### Citation Information ``` @inproceedings{ solberg2023improving, title={Improving Generalization of Norwegian {ASR} with Limited Linguistic Resources}, author={Per Erik Solberg and Pablo Ortiz and Phoebe Parsons and Torbj{\o}rn Svendsen and Giampiero Salvi}, booktitle={The 24rd Nordic Conference on Computational Linguistics}, year={2023} } ```
scribe-project/nst_nb_test
[ "region:us" ]
2023-04-25T08:21:38+00:00
{"dataset_info": {"features": [{"name": "speaker_id", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "utterance_id", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "raw_text", "dtype": "string"}, {"name": "full_audio_file", "dtype": "string"}, {"name": "original_data_split", "dtype": "string"}, {"name": "region", "dtype": "string"}, {"name": "duration", "dtype": "float64"}, {"name": "start", "dtype": "int64"}, {"name": "end", "dtype": "float64"}, {"name": "utterance_audio_file", "dtype": "audio"}, {"name": "standardized_text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3046340447.0, "num_examples": 15756}], "download_size": 2790946881, "dataset_size": 3046340447.0}}
2023-04-25T09:34:10+00:00
d2ab8176a42d3fc250b290a89c90a792e94869f9
This is the training data of WizardLM. ## News - 🔥 🔥 🔥 [08/11/2023] We release **WizardMath** Models. - 🔥 Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**. - 🔥 Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM. - 🔥 Our **WizardMath-70B-V1.0** model achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM. | Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License| | ----- |------| ---- |------|-------| ----- | ----- | | WizardMath-70B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> | | WizardMath-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> | | WizardMath-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>| <font size=4> | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>WizardEval</sup> | <sup>HumanEval</sup> | <sup>License</sup>| | ----- |------| ---- |------|-------| ----- | ----- | ----- | | <sup>WizardLM-13B-V1.2</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> | <sup>101.4% </sup>|<sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> | | <sup>WizardLM-13B-V1.1</sup> |<sup> 🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | <sup>99.3% </sup> |<sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>| | <sup>WizardLM-30B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | <sup>97.8% </sup> | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> | | <sup>WizardLM-13B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | <sup>89.1% </sup> |<sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>| | <sup>WizardLM-7B-V1.0 </sup>| <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | <sup>78.0% </sup> |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>| | <sup>WizardCoder-15B-V1.0</sup> | <sup> 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a></sup> | <sup>📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a></sup> | || |<sup> 57.3 pass@1 </sup> | <sup> <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a></sup> | </font>
WizardLM/WizardLM_evol_instruct_70k
[ "arxiv:2308.09583", "arxiv:2304.12244", "arxiv:2306.08568", "region:us" ]
2023-04-25T08:57:27+00:00
{}
2023-08-24T02:59:32+00:00
b28996e04d0434f4948ec0301f9a19da9830215e
# Dataset Card for "Denoised_data_jason1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/Denoised_data_jason1
[ "region:us" ]
2023-04-25T08:58:51+00:00
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1158326946, "num_examples": 2000}], "download_size": 286288407, "dataset_size": 1158326946}}
2023-04-25T08:59:06+00:00
8ec893f198dada5a72ba6e569f9104efb7d6602b
# Dataset Card for "Denoised_data_jason2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/Denoised_data_jason2
[ "region:us" ]
2023-04-25T09:09:48+00:00
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1127259888, "num_examples": 2000}], "download_size": 278526142, "dataset_size": 1127259888}}
2023-04-25T09:10:04+00:00
b9ebeb2be6365fccf2d1a1ee2328ada18e5c91f6
ds3lab/ac-sgd-arxiv21
[ "license:apache-2.0", "region:us" ]
2023-04-25T09:23:52+00:00
{"license": "apache-2.0"}
2023-04-25T09:45:37+00:00
bb9152455b22a614325945547d8868195c89afe4
## Usage ```python from datasets import load_dataset dataset = load_dataset("patomp/thai-mscoco-2014-captions") dataset ``` output ```python DatasetDict({ train: Dataset({ features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'], num_rows: 113287 }) validation: Dataset({ features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'], num_rows: 5000 }) test: Dataset({ features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'], num_rows: 5000 }) }) ``` A sample ```python dataset["validation"][0] ``` output ```python { "image":<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x7F6C5A83F430>, "filepath":"COCO_val2014_000000184613.jpg", "sentids":[474921,479322,479334,481560,483594], "filename":"COCO_val2014_000000184613.jpg", "imgid":2, "split":"val", "sentences_tokens":[ ["a", "child","holding", "a","flowered","umbrella","and","petting","a","yak"],["a","young","man","holding","an","umbrella","next","to","a","herd","of","cattle"], ["a","young","boy","barefoot","holding","an","umbrella","touching","the","horn","of","a","cow"], ["a","young","boy","with","an","umbrella","who","is","touching","the","horn","of","a","cow"], ["a","boy","holding","an","umbrella","while","standing","next","to","livestock"] ], "sentences_raw":[ "A child holding a flowered umbrella and petting a yak.", "A young man holding an umbrella next to a herd of cattle.", "a young boy barefoot holding an umbrella touching the horn of a cow", "A young boy with an umbrella who is touching the horn of a cow.", "A boy holding an umbrella while standing next to livestock." ], "sentences_sentid":[474921,479322,479334,481560,483594], "cocoid":184613, "th_sentences_raw":[ "เด็กถือร่มที่มีดอกหนึ่งคันและลูบคลูบลํา", "ชายหนุ่มคนหนึ่งถือร่มไว้ข้างๆ ฝูงวัว", "เด็กหนุ่มคนหนึ่งเท้าเปล่าจับร่มจับแตรของวัว", "เด็กชายที่มีร่มสัมผัสแตรของวัว", "เด็กชายถือร่มในขณะที่ยืนถัดจากปศุสัตว์" ] } ``` ## Dataset Construction The dataset contructed from translating the captions of [MS COCO 2014 dataset](https://huggingface.co/datasets/HuggingFaceM4/COCO) [1] to Thai by using [NMT](https://airesearch.in.th/releases/machine-translation-models/) provided by VISTEC-depa Thailand Artificial Intelligence Research Institute [2]. The translated of 3 splits (train, validation and test) dataset was published in the [Huggingface](https://huggingface.co/datasets/patomp/thai-mscoco-2014-captions). ## References [1] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014, Springer International Publishing, Cham, 740–755. [2] English-Thai Machine Translation Models. (2020, June 23). VISTEC-depa Thailand Artificial Intelligence Research Institute. https://airesearch.in.th/releases/machine-translation-models/
patomp/thai-mscoco-2014-captions
[ "region:us" ]
2023-04-25T09:38:36+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "filepath", "dtype": "string"}, {"name": "sentids", "list": "int32"}, {"name": "filename", "dtype": "string"}, {"name": "imgid", "dtype": "int32"}, {"name": "split", "dtype": "string"}, {"name": "sentences_tokens", "list": {"list": "string"}}, {"name": "sentences_raw", "list": "string"}, {"name": "sentences_sentid", "list": "int32"}, {"name": "cocoid", "dtype": "int32"}, {"name": "th_sentences_raw", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 819234726.0, "num_examples": 5000}, {"name": "validation", "num_bytes": 807387321.0, "num_examples": 5000}, {"name": "train", "num_bytes": 18882795327.165, "num_examples": 113287}], "download_size": 20158273111, "dataset_size": 20509417374.165}}
2023-05-02T14:52:54+00:00
e90159c21978bcb9cd7b078b4cb66aab9fae4959
Free luts file list
NeoGraph/Luts_Cube
[ "license:other", "region:us" ]
2023-04-25T10:16:08+00:00
{"license": "other"}
2023-04-25T10:23:29+00:00
0a36dd90b2d7f7816f4c2761f597195e0cb33da4
zab74463/ks3
[ "task_categories:question-answering", "language:es", "region:us" ]
2023-04-25T10:21:47+00:00
{"language": ["es"], "task_categories": ["question-answering"]}
2023-04-25T10:22:18+00:00
1a0fcd2bf08861a799acc3f91be46188ffbd7675
# Dataset Card for "Denoised_data_jason3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/Denoised_data_jason3
[ "region:us" ]
2023-04-25T11:50:12+00:00
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1113923195, "num_examples": 2000}], "download_size": 275899919, "dataset_size": 1113923195}}
2023-04-25T11:50:31+00:00
de0690e8829b48652ff32307c3ac31ce4971cc47
riffusion manipulated google/MusicCaps
Hyeon2/riffusion-musiccaps-dataset
[ "task_categories:text-to-image", "size_categories:10K<n<100K", "language:en", "license:cc-by-4.0", "music", "region:us" ]
2023-04-25T12:02:53+00:00
{"language": "en", "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-to-image"], "pretty_name": "riffusion manipulated google/musiccap", "viewer": true, "tags": ["music"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2521001438.24, "num_examples": 20588}], "download_size": 2509138106, "dataset_size": 2521001438.24}}
2023-07-15T14:43:17+00:00
c3d466839f8c176fa314c40adc8030b600425e27
# Dataset Card for "Denoised_data_jason4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/Denoised_data_jason4
[ "region:us" ]
2023-04-25T12:10:42+00:00
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1078347063, "num_examples": 2000}], "download_size": 265545890, "dataset_size": 1078347063}}
2023-04-25T12:10:56+00:00
5d31975519603541d4bec7e1f4013cc4490ed997
# Dataset Card for PMC-Patients ## Dataset Description - **Homepage:** https://github.com/pmc-patients/pmc-patients - **Repository:** https://github.com/pmc-patients/pmc-patients - **Paper:** https://arxiv.org/pdf/2202.13876.pdf - **Leaderboard:** https://pmc-patients.github.io/ - **Point of Contact:** [email protected] ### Dataset Summary **PMC-Patients** is a first-of-its-kind dataset consisting of 167k patient summaries extracted from case reports in PubMed Central (PMC), 3.1M patient-article relevance and 293k patient-patient similarity annotations defined by PubMed citation graph. ### Supported Tasks and Leaderboards **This is purely the patient summary dataset with relational annotations. For ReCDS benchmark, refer to [this dataset](https://huggingface.co/datasets/zhengyun21/PMC-Patients-ReCDS)** Based on PMC-Patients, we define two tasks to benchmark Retrieval-based Clinical Decision Support (ReCDS) systems: Patient-to-Article Retrieval (PAR) and Patient-to-Patient Retrieval (PPR). For details, please refer to [our paper](https://arxiv.org/pdf/2202.13876.pdf) and [leaderboard](https://pmc-patients.github.io/). ### Languages English (en). ## Dataset Structure ### PMC-Paitents.csv This file contains all information about patients summaries in PMC-Patients, with the following columns: - `patient_id`: string. A continuous id of patients, starting from 0. - `patient_uid`: string. Unique ID for each patient, with format PMID-x, where PMID is the PubMed Identifier of the source article of the patient and x denotes index of the patient in source article. - `PMID`: string. PMID for source article. - `file_path`: string. File path of xml file of source article. - `title`: string. Source article title. - `patient`: string. Patient summary. - `age`: list of tuples. Each entry is in format `(value, unit)` where value is a float number and unit is in 'year', 'month', 'week', 'day' and 'hour' indicating age unit. For example, `[[1.0, 'year'], [2.0, 'month']]` indicating the patient is a one-year- and two-month-old infant. - `gender`: 'M' or 'F'. Male or Female. - `relevant_articles`: dict. The key is PMID of the relevant articles and the corresponding value is its relevance score (2 or 1 as defined in the ``Methods'' section). - `similar_patients`: dict. The key is patient_uid of the similar patients and the corresponding value is its similarity score (2 or 1 as defined in the ``Methods'' section). ## Dataset Creation If you are interested in the collection of PMC-Patients and reproducing our baselines, please refer to [this reporsitory](https://github.com/zhao-zy15/PMC-Patients). ### Citation Information If you find PMC-Patients helpful in your research, please cite our work by: ``` @article{zhao2023large, title={A large-scale dataset of patient summaries for retrieval-based clinical decision support systems}, author={Zhao, Zhengyun and Jin, Qiao and Chen, Fangyuan and Peng, Tuorui and Yu, Sheng}, journal={Scientific Data}, volume={10}, number={1}, pages={909}, year={2023}, publisher={Nature Publishing Group UK London} } ```
zhengyun21/PMC-Patients
[ "size_categories:100K<n<1M", "language:en", "license:cc-by-nc-sa-4.0", "patient summary", "medical", "biology", "arxiv:2202.13876", "region:us" ]
2023-04-25T12:20:16+00:00
{"language": ["en"], "license": "cc-by-nc-sa-4.0", "size_categories": ["100K<n<1M"], "tags": ["patient summary", "medical", "biology"]}
2024-01-06T01:01:34+00:00
04e271241a2ee3784f6d90afd5588ab789fcff58
# Dataset Card for "Denoised_data_jason5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/Denoised_data_jason5
[ "region:us" ]
2023-04-25T12:20:36+00:00
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1110556941, "num_examples": 2000}], "download_size": 276119959, "dataset_size": 1110556941}}
2023-04-25T12:20:50+00:00
5b466a00d71fcbff0a8025ca74addf9b4738ceac
MITCriticalData/Unlabeled_top_10_cities_forward_backward_alg
[ "license:mit", "region:us" ]
2023-04-25T12:25:39+00:00
{"license": "mit"}
2023-04-25T13:21:35+00:00
131caea74b3a837bfa9257e46611068c78cf591d
# Dataset Card for "Denoised_data_jason6" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/Denoised_data_jason6
[ "region:us" ]
2023-04-25T12:28:14+00:00
{"dataset_info": {"features": [{"name": "data", "struct": [{"name": "audio", "struct": [{"name": "array", "sequence": "float64"}, {"name": "path", "dtype": "null"}, {"name": "sampling_rate", "dtype": "int64"}]}, {"name": "sentence", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 229305985, "num_examples": 440}], "download_size": 57136919, "dataset_size": 229305985}}
2023-04-25T12:28:21+00:00
8006ed32edbf51aa3b460333dd15c4699d496de2
# Dataset Card for "cool_new_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Pedrampedram/cool_new_dataset
[ "region:us" ]
2023-04-25T12:55:28+00:00
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "ad", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3149, "num_examples": 5}], "download_size": 7636, "dataset_size": 3149}}
2023-04-25T12:55:32+00:00
361c45c06bb3b4e1ff65f0ca244dec76df0f10ee
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
LauraPanizo/demo_dataset
[ "region:us" ]
2023-04-25T13:04:27+00:00
{}
2023-04-26T12:48:43+00:00
8255deffe2716c957def82d600492a1764a57489
# Dataset Card for "clothing_new_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Pedrampedram/clothing_new_dataset
[ "region:us" ]
2023-04-25T13:16:35+00:00
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "ad", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2251, "num_examples": 5}], "download_size": 5909, "dataset_size": 2251}}
2023-04-25T13:16:37+00:00
85fc336e617e0ae63a5c57c81da654d9d476b454
# Dataset Card for "imbalanced_eval" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
amishshah/imbalanced_eval
[ "region:us" ]
2023-04-25T13:36:03+00:00
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1003703.772, "num_examples": 600}], "download_size": 633391, "dataset_size": 1003703.772}}
2023-04-25T20:59:11+00:00
6b51d160db1044d6bd568c390984bbce37519b62
gadams/ruby
[ "license:other", "region:us" ]
2023-04-25T14:16:59+00:00
{"license": "other"}
2023-04-25T14:17:57+00:00
496e7a08f2c0932a59cc5d0d744557cb0b1fa901
qiuqiangkong/audioset
[ "license:unknown", "region:us" ]
2023-04-25T14:51:39+00:00
{"license": "unknown"}
2023-04-25T14:51:39+00:00
9a3e2920bc9e7a4cfc8c2e08ac3c1378722e1893
# Dataset Card for "EmoNoBa" ### Dataset Summary Detecting Multi-labeled Emotion for 6 emotion categories, namely Love, Joy, Surprise, Anger, Sadness, Fear. ### Citation Information ``` @inproceedings{islam2022emonoba, title={EmoNoBa: A Dataset for Analyzing Fine-Grained Emotions on Noisy Bangla Texts}, author={Islam, Khondoker Ittehadul and Yuvraz, Tanvir and Islam, Md Saiful and Hassan, Enamul}, booktitle={Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing}, pages={128--134}, year={2022} } ```
sustcsenlp/bn_emotion_noisy_dataset
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "multilinguality:monolingual", "language:bn", "license:other", "emotion", "region:us" ]
2023-04-25T15:03:34+00:00
{"language": ["bn"], "license": "other", "multilinguality": ["monolingual"], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification", "multi-label-classification"], "paperswithcode_id": "emonoba", "pretty_name": "EmoNoBa", "tags": ["emotion"]}
2023-04-25T15:25:59+00:00
62e4677ee7389c5a8be45c805f94ed3482e18507
# Victorian Era Authorship Attribution Data Set > GUNGOR, ABDULMECIT, Benchmarking Authorship Attribution Techniques Using Over A Thousand Books by Fifty Victorian Era Novelists, Purdue Master of Thesis, 2018-04 ## NOTICE This dataset was downloaded from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php) at [this link](https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution). The [description](#description) of this dataset was copied from the source's dataset card. However, I have applied Markdown styling to prettify it and make it easier to navigate. ## Description > **Abstract**: To create the largest authorship attribution dataset, we extracted works of 50 well-known authors. To have a non-exhaustive learning, in training there are 45 authors whereas, in the testing, it's 50 ### Source They're extracted from the GDELT database. The GDELT Project is an open platform for research and analysis of global society and thus all datasets released by the GDELT Project are available for unlimited and unrestricted use for any academic, commercial, or governmental use of any kind without fee. ### Data Set Information To decrease the bias and create a reliable authorship attribution dataset the following criteria have been chosen to filter out authors in Gdelt database: English language writing authors, authors that have enough books available (at least 5), 19th century authors. With these criteria 50 authors have been selected and their books were queried through Big Query Gdelt database. The next task has been cleaning the dataset due to OCR reading problems in the original raw form. To achieve that, firstly all books have been scanned through to get the overall number of unique words and each words frequencies. While scanning the texts, the first 500 words and the last 500 words have been removed to take out specific features such as the name of the author, the name of the book and other word specific features that could make the classification task easier. After this step, we have chosen top 10,000 words that occurred in the whole 50 authors text data corpus. The words that are not in top 10,000 words were removed while keeping the rest of the sentence structure intact. The entire book is split into text fragments with 1000 words each. We separately maintained author and book identification number for each one of them in different arrays. Text segments with less than 1000 words were filled with zeros to keep them in the dataset as well. 1000 words make approximately 2 pages of writing, which is long enough to extract a variety of features from the document. Each instance in the training set consists of a text piece of 1000 words and an author id attached. In the testing set, there is only the text piece of 1000 words to do authorship attribution. Training data consists of 45 authors and testing data has 50 information. %34 of testing data is the percentile of unknown authors in the testing set. ### Attribute Information Each instance consists of 1000 word sequences that are divided from the works of every author's book. In the training, the author id is also provided. ### Relevant Papers * E. Stamatatos, A Survey of Modern Authorship Attribution Methods. Journal of the American Society for Information Science and Technology, 2009. ## Citation Request: * `GUNGOR, ABDULMECIT, Benchmarking Authorship Attribution Techniques Using Over A Thousand Books by Fifty Victorian Era Novelists, Purdue Master of Thesis, 2018-04`
NicholasSynovic/Victorian-Era-Authorship-Attribution
[ "task_categories:text-classification", "size_categories:10K<n<100K", "language:en", "region:us" ]
2023-04-25T15:30:22+00:00
{"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "pretty_name": "Victorian Era Authorship Attribution Data Set"}
2023-04-25T16:32:52+00:00
7bd5274831ae4ef5f0c824c0487933ea0c95738a
# Source Datasets # <li>1 - news from the website of the Komi administration (https://rkomi.ru/)</li> <li>2 - Komi media library (http://videocorpora.ru/)</li> <li>3 - Millet porridge by Ivan Toropov (adaptation)</li> <br> # Authors # Shilova Nadezhda<br> Chernousov Georgy
Horeknad/komi-russian-parallel-corpora
[ "task_categories:translation", "annotations_creators:found", "size_categories:10K<n<100K", "source_datasets:Millet porridge by Ivan Toropov (adaptation)", "source_datasets:Komi media library (http://videocorpora.ru/)", "source_datasets:news from the website of the Komi administration (https://rkomi.ru/)", "language:ru", "language:kv", "license:cc-by-4.0", "text", "region:us" ]
2023-04-25T15:30:43+00:00
{"annotations_creators": ["found"], "language": ["ru", "kv"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "source_datasets": ["Millet porridge by Ivan Toropov (adaptation)", "Komi media library (http://videocorpora.ru/)", "news from the website of the Komi administration (https://rkomi.ru/)"], "task_categories": ["translation"], "tags": ["text"]}
2023-04-27T21:55:49+00:00
e8ec9ef999f4cf1810467f5fb7307b267671e4cf
# h2oGPT Data Card ## Summary H2O.ai's `h2ogpt-oig-oasst1-instruct-cleaned-v2` is an open-source instruct-type dataset for fine-tuning of large language models, licensed for commercial use. - Number of rows: `350581` - Number of columns: `3` - Column names: `['input', 'source', 'prompt_type']` ## Source - [Original LAION OIG Dataset](https://github.com/LAION-AI/Open-Instruction-Generalist) - [LAION OIG data detoxed and filtered down by scripts in h2oGPT repository](https://github.com/h2oai/h2ogpt/blob/main/FINETUNE.md#high-quality-oig-based-instruct-data) - [Original Open Assistant data in tree structure](https://huggingface.co/datasets/OpenAssistant/oasst1) - [This flattened dataset created by script in h2oGPT repository](https://github.com/h2oai/h2ogpt/blob/0e70c2fbb16410bd8e6992d879b4c55cd981211f/create_data.py#L1375-L1415)
h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v2
[ "language:en", "license:apache-2.0", "gpt", "llm", "large language model", "open-source", "region:us" ]
2023-04-25T15:40:25+00:00
{"language": ["en"], "license": "apache-2.0", "thumbnail": "https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico", "tags": ["gpt", "llm", "large language model", "open-source"]}
2023-04-25T15:43:40+00:00
5956d95d675679008ae65f489784785a214976de
# Dataset Card for "diffusers_animate_character" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mohammadhia/diffusers_animate_character
[ "region:us" ]
2023-04-25T15:47:25+00:00
{"dataset_info": {"features": [{"name": "input_image", "dtype": "image"}, {"name": "edit_prompt", "dtype": "string"}, {"name": "edited_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 29092003.0, "num_examples": 20}], "download_size": 29095136, "dataset_size": 29092003.0}}
2023-04-26T12:32:54+00:00
41aa397bbcf13dfbd90be57cfc4e96cadeb89bfa
# Dataset Card for "ta_wiki_corp" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
AnanthZeke/ta_wiki_corp
[ "region:us" ]
2023-04-25T15:55:45+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "tawikibooks", "num_bytes": 4715085, "num_examples": 3919}, {"name": "tawikiquote", "num_bytes": 6483039, "num_examples": 4247}, {"name": "tawiktionary", "num_bytes": 37131161, "num_examples": 37123}, {"name": "tawiki", "num_bytes": 746635361, "num_examples": 819561}, {"name": "tawikinews", "num_bytes": 5609521.157164647, "num_examples": 26536}, {"name": "tawikisource", "num_bytes": 114857302, "num_examples": 68028}], "download_size": 4978896, "dataset_size": 915431469.1571647}}
2023-04-25T16:06:16+00:00
9ac97963ce0a32b096512f77ab5f18de5c7d983d
![Descripción de la imagen](https://estaticos-cdn.prensaiberica.es/clip/ce847ef4-8930-42e0-9c1d-9929902d3820_16-9-discover-aspect-ratio_default_0.jpg)
VM89/images
[ "region:us" ]
2023-04-25T16:00:55+00:00
{}
2023-04-25T16:05:23+00:00
b0fb4aae71e7b0d731eda5d808bd2a5f04f2a3ed
# Dataset Card for "cv_11_arabic_test_denoisy_II" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/cv_11_arabic_test_denoisy_II
[ "region:us" ]
2023-04-25T16:15:52+00:00
{"dataset_info": {"features": [{"name": "audio", "sequence": "float64"}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5817636498, "num_examples": 10440}], "download_size": 2897757284, "dataset_size": 5817636498}}
2023-04-25T16:22:24+00:00
47d4c80dc21a91bb7a543660f24aea88a6c9a523
# Free AutoTrain VEAA > Victorian Era Authorship Attribution Data Set (For Free AutoTrain Account) ## About See the [original HF-hosted dataset](https://huggingface.co/datasets/NicholasSynovic/Victorian-Era-Authorship-Attribution) for more information. The code to generate this dataset came from this [GitHub Repo](https://github.com/NicholasSynovic/nlp-victorianAuthor).
NicholasSynovic/Free-AutoTrain-VEAA
[ "task_categories:text-classification", "size_categories:1K<n<10K", "source_datasets:NicholasSynovic/Victorian-Era-Authorship-Attribution", "language:en", "license:agpl-3.0", "region:us" ]
2023-04-25T16:33:55+00:00
{"language": ["en"], "license": "agpl-3.0", "size_categories": ["1K<n<10K"], "source_datasets": ["NicholasSynovic/Victorian-Era-Authorship-Attribution"], "task_categories": ["text-classification"], "pretty_name": "Victorian Era Authorship Attribution Data Set (For Free AutoTrain Account)"}
2023-04-25T16:42:58+00:00
3d453f57d79ea3ff2f6ef2c49982639ff4d73ee9
# Dataset Card for "VQAv2Validation_ViT_L_14_A_T_C_D-PNP-FILTER_benchmarks_10" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LambdaTests/VQAv2Validation_ViT_L_14_A_T_C_D-PNP-FILTER_benchmarks_10
[ "region:us" ]
2023-04-25T16:55:44+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 384, "num_examples": 10}], "download_size": 0, "dataset_size": 384}}
2023-04-25T16:58:03+00:00
fb157cfff9f1fccd79586e5185ea28e844a6478b
# Dataset Card for "generadai-sample" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Pedrampedram/generadai-sample
[ "region:us" ]
2023-04-25T16:58:02+00:00
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "ad", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2197, "num_examples": 5}], "download_size": 5819, "dataset_size": 2197}}
2023-04-25T16:58:05+00:00
d1379a81828e8346525c71cfcf7901b984c4a68b
# Dataset Card for "layoutlm_sqad" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Sharka/layoutlm_sqad
[ "region:us" ]
2023-04-25T17:02:51+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "start_positions", "dtype": "int64"}, {"name": "end_positions", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 123617016, "num_examples": 63589}], "download_size": 16376332, "dataset_size": 123617016}}
2023-04-25T17:02:58+00:00
e1c1b9f3132ef41bd734c727dc67e61661f7e5b3
gadams/ruby-study
[ "license:other", "region:us" ]
2023-04-25T17:22:26+00:00
{"license": "other"}
2023-04-25T17:23:04+00:00
1effa66763fbf69a941a3965a76c6d9e5d01a736
DataAgent/medical-qa-instruction-zhtw
[ "license:cc", "region:us" ]
2023-04-25T18:28:15+00:00
{"license": "cc"}
2023-04-25T18:29:32+00:00
f6af719e8add7f7bd94fb71cbdccaf8d124aca74
# Bundesliga Results from 2010 to 2023 This dataset contains the results of all matches in the German Bundesliga from 2010 to 2023. The raw data was collected from the OpenLigaDB API. **The dataset has been prepared and adjusted by me** to make it more suitable for machine learning training purposes. ## Dataset Information The dataset has 20 columns, including: | Column Name | Description | |-------------------------|--------------------------------------------------------------------------| | ***matchID*** | The unique identifier for each match. | | ***matchDateTime*** | The date and time when the match was scheduled to start. | | ***timeZoneID*** | The timezone of the match. | | ***leagueName*** | The name of the league where the match took place. | | ***leagueSeason*** | The season of the league where the match took place. | | ***leagueShortcut*** | The abbreviated name of the league where the match took place. | | ***matchDateTimeUTC*** | The date and time when the match was scheduled to start in UTC timezone. | | ***lastUpdateDateTime*** | The date and time when the match data was last updated. | | ***matchIsFinished*** | A boolean value indicating whether the match is finished or not. | | ***numberOfViewers*** | The number of viewers who watched the match. | | ***locationCity*** | The city where the match took place. | | ***locationStadium*** | The name of the stadium where the match took place. | | ***team1_Name*** | The name of the first team in the match. | | ***team1_shortName*** | The abbreviated name of the first team in the match. | | ***team1_teamIconUrl*** | The URL of the icon for the first team in the match. | | ***team1_GroupName*** | The group name of the first team in the match. | | ***team2_Name*** | The name of the second team in the match. | | ***team2_shortName*** | The abbreviated name of the second team in the match. | | ***team2_teamIconUrl*** | The URL of the icon for the second team in the match. | | ***team2_GroupName*** | The group name of the second team in the match. | | ***finalresult_pointsTeam1*** | The final score of the first team in the match. | | ***finalresult_pointsTeam2*** | The final score of the second team in the match. | | ***halftime_pointsTeam1*** | The score of the first team in the match at halftime. | | ***halftime_pointsTeam2*** | The score of the second team in the match at halftime. | The dataset is sorted by ***matchDateTime*** in ascending order, which means that the first row in the dataset is the earliest match, and the last row is the latest match.
anasselhoud/Bundesliga-2010-2023
[ "size_categories:1K<n<10K", "license:openrail", "region:us" ]
2023-04-25T18:57:24+00:00
{"license": "openrail", "size_categories": ["1K<n<10K"]}
2023-04-26T15:35:45+00:00
1942726b3f07d500001591b635717ecc0c46aa7c
# Dataset Card for "stackoverflow-chat-data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
0x70DA/stackoverflow-chat-data
[ "region:us" ]
2023-04-25T19:02:37+00:00
{"dataset_info": {"features": [{"name": "topic", "dtype": "string"}, {"name": "input", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 64250569.71566806, "num_examples": 50000}, {"name": "validation", "num_bytes": 6425056.971566806, "num_examples": 5000}, {"name": "test", "num_bytes": 2570022.7886267225, "num_examples": 2000}], "download_size": 35174916, "dataset_size": 73245649.47586158}}
2023-04-25T19:02:51+00:00
43b926e68ec6e91d3d5d10b446937020117667e3
# Dataset Card for Online Shoppers Purchasing Intention Dataset ## Dataset Description - **Homepage**: https://archive-beta.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset ### Dataset Summary This dataset is a reupload of the Online Shoppers Purchasing Intention Dataset from the [UCI Machine Learning Repository](https://archive-beta.ics.uci.edu/). > **NOTE:** The information below is from the original dataset description from UCI's website. > > ### Overview > > Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class samples that did not end with shopping, > and the rest (1908) were positive class samples ending with shopping. > > #### Additional Information > > The dataset consists of feature vectors belonging to 12,330 sessions. The dataset was formed so that > each session would belong to a different user in a 1-year period to avoid any tendency to a specific campaign, > special day, user profile, or period.
jlh/uci-shopper
[ "task_categories:tabular-classification", "size_categories:10K<n<100K", "language:en", "license:cc-by-4.0", "region:us" ]
2023-04-25T19:26:11+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["tabular-classification"], "pretty_name": "Online Shoppers Purchasing Intention Dataset", "dataset_info": {"features": [{"name": "Administrative", "dtype": "int64"}, {"name": "Administrative_Duration", "dtype": "float64"}, {"name": "Informational", "dtype": "int64"}, {"name": "Informational_Duration", "dtype": "float64"}, {"name": "ProductRelated", "dtype": "int64"}, {"name": "ProductRelated_Duration", "dtype": "float64"}, {"name": "BounceRates", "dtype": "float64"}, {"name": "ExitRates", "dtype": "float64"}, {"name": "PageValues", "dtype": "float64"}, {"name": "SpecialDay", "dtype": "float64"}, {"name": "Month", "dtype": "string"}, {"name": "OperatingSystems", "dtype": "int64"}, {"name": "Browser", "dtype": "int64"}, {"name": "Region", "dtype": "int64"}, {"name": "TrafficType", "dtype": "int64"}, {"name": "VisitorType", "dtype": "string"}, {"name": "Weekend", "dtype": "bool"}, {"name": "Revenue", "dtype": {"class_label": {"names": {"0": "False", "1": "True"}}}}], "splits": [{"name": "train", "num_bytes": 1815486, "num_examples": 12330}], "download_size": 425014, "dataset_size": 1815486}}
2023-05-03T20:08:59+00:00
844287457988e9b1b37827b13058fc6b0b4ed1da
# Dataset Card for "uci-bank" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/uci-bank
[ "region:us" ]
2023-04-25T19:39:31+00:00
{"dataset_info": {"features": [{"name": "age", "dtype": "int64"}, {"name": "job", "dtype": "string"}, {"name": "marital", "dtype": "string"}, {"name": "education", "dtype": "string"}, {"name": "default", "dtype": "string"}, {"name": "balance", "dtype": "int64"}, {"name": "housing", "dtype": "string"}, {"name": "loan", "dtype": "string"}, {"name": "contact", "dtype": "string"}, {"name": "day", "dtype": "int64"}, {"name": "month", "dtype": "string"}, {"name": "duration", "dtype": "int64"}, {"name": "campaign", "dtype": "int64"}, {"name": "pdays", "dtype": "int64"}, {"name": "previous", "dtype": "int64"}, {"name": "poutcome", "dtype": "string"}, {"name": "y", "dtype": {"class_label": {"names": {"0": "no", "1": "yes"}}}}], "splits": [{"name": "train", "num_bytes": 674228, "num_examples": 4521}], "download_size": 92171, "dataset_size": 674228}}
2023-04-25T22:22:38+00:00
e4b0c1de4dc1e9c9ee9370c603c7010dcd255e3d
matejklemen/clc_fce
[ "license:other", "region:us" ]
2023-04-25T19:48:07+00:00
{"license": "other", "dataset_info": {"features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8658209, "num_examples": 28350}, {"name": "validation", "num_bytes": 668073, "num_examples": 2191}, {"name": "test", "num_bytes": 823872, "num_examples": 2695}], "download_size": 2774021, "dataset_size": 10150154}}
2023-04-25T20:00:20+00:00
92f04359122b0896f162ec2f6d22f86f31f12de7
# Dataset Card for "chatml-evaluation" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
AlekseyKorshuk/chatml-evaluation
[ "region:us" ]
2023-04-25T20:05:40+00:00
{"dataset_info": {"features": [{"name": "prompt", "list": [{"name": "from", "dtype": "string"}, {"name": "role_type", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "response", "struct": [{"name": "from", "dtype": "string"}, {"name": "role_type", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "source", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1442834, "num_examples": 319}], "download_size": 0, "dataset_size": 1442834}}
2023-04-25T22:06:26+00:00
27d71149cd97680c5f28b2e37167e039192dbaa2
matejklemen/wi_locness
[ "license:other", "region:us" ]
2023-04-25T20:12:40+00:00
{"license": "other", "dataset_info": [{"config_name": "A", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3847179, "num_examples": 10493}, {"name": "validation", "num_bytes": 392622, "num_examples": 1037}], "download_size": 6120469, "dataset_size": 4239801}, {"config_name": "B", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4649805, "num_examples": 13032}, {"name": "validation", "num_bytes": 468078, "num_examples": 1290}], "download_size": 6120469, "dataset_size": 5117883}, {"config_name": "C", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3765831, "num_examples": 10783}, {"name": "validation", "num_bytes": 390439, "num_examples": 1069}], "download_size": 6120469, "dataset_size": 4156270}, {"config_name": "N", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 421656, "num_examples": 988}], "download_size": 6120469, "dataset_size": 421656}, {"config_name": "all", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 12262815, "num_examples": 34308}, {"name": "validation", "num_bytes": 1672795, "num_examples": 4384}], "download_size": 6120469, "dataset_size": 13935610}]}
2023-04-25T20:39:04+00:00
bcb382ac958fa345a3d0d5dafa6adbde3cc54f08
# Dataset Card for "amazon-shoe-reviews" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sabtalha/amazon-shoe-reviews
[ "region:us" ]
2023-04-25T20:31:08+00:00
{"dataset_info": {"features": [{"name": "labels", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 492352.2, "num_examples": 2700}, {"name": "test", "num_bytes": 54705.8, "num_examples": 300}], "download_size": 331310, "dataset_size": 547058.0}}
2023-04-26T01:16:34+00:00
cce22af7e53301286b3af03ee608cd9c2f6b7f6a
# Dataset Card for "uci-census-income-94" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/uci-census-income-94
[ "region:us" ]
2023-04-25T20:34:50+00:00
{"dataset_info": {"features": [{"name": "age", "dtype": "string"}, {"name": "class_of_worker", "dtype": "int64"}, {"name": "detailed_industry_recode", "dtype": "int64"}, {"name": "detailed_occupation_recode", "dtype": "string"}, {"name": "education", "dtype": "int64"}, {"name": "wage_per_hour", "dtype": "string"}, {"name": "enroll_in_edu_inst_last_wk", "dtype": "string"}, {"name": "marital_stat", "dtype": "string"}, {"name": "major_industry_code", "dtype": "string"}, {"name": "major_occupation_code", "dtype": "string"}, {"name": "race", "dtype": "string"}, {"name": "hispanic_origin", "dtype": "string"}, {"name": "sex", "dtype": "string"}, {"name": "member_of_a_labor_union", "dtype": "string"}, {"name": "reason_for_unemployment", "dtype": "string"}, {"name": "full_or_part_time_employment_stat", "dtype": "int64"}, {"name": "capital_gains", "dtype": "int64"}, {"name": "capital_losses", "dtype": "int64"}, {"name": "dividends_from_stocks", "dtype": "string"}, {"name": "tax_filer_stat", "dtype": "string"}, {"name": "region_of_previous_residence", "dtype": "string"}, {"name": "state_of_previous_residence", "dtype": "string"}, {"name": "detailed_household_and_family_stat", "dtype": "string"}, {"name": "detailed_household_summary_in_household", "dtype": "float64"}, {"name": "migration_code-change_in_msa", "dtype": "string"}, {"name": "migration_code-change_in_reg", "dtype": "string"}, {"name": "migration_code-move_within_reg", "dtype": "string"}, {"name": "live_in_this_house_1_year_ago", "dtype": "string"}, {"name": "migration_prev_res_in_sunbelt", "dtype": "string"}, {"name": "num_persons_worked_for_employer", "dtype": "int64"}, {"name": "family_members_under_18", "dtype": "string"}, {"name": "country_of_birth_father", "dtype": "string"}, {"name": "country_of_birth_mother", "dtype": "string"}, {"name": "country_of_birth_self", "dtype": "string"}, {"name": "citizenship", "dtype": "string"}, {"name": "own_business_or_self_employed", "dtype": "int64"}, {"name": "fill_inc_questionnaire_for_veteran's_admin", "dtype": "string"}, {"name": "veterans_benefits", "dtype": "int64"}, {"name": "weeks_worked_in_year", "dtype": "int64"}, {"name": "year", "dtype": "int64"}, {"name": "income", "dtype": {"class_label": {"names": {"0": " - 50000.", "1": " 50000+."}}}}], "splits": [{"name": "train", "num_bytes": 129952005, "num_examples": 199523}], "download_size": 7989520, "dataset_size": 129952005}}
2023-04-25T22:21:08+00:00
353b870c55d57b442de18fa7d46df3a1583aefca
# Dataset Card for "wiki_books" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jxie/wiki_books
[ "region:us" ]
2023-04-25T20:35:55+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22230107891, "num_examples": 23464781}], "download_size": 13136529693, "dataset_size": 22230107891}}
2023-05-06T08:03:28+00:00
785b18a717ddfc47b09f30d50b5980e49910efd7
# Dataset Card for "uci-adult-income" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/uci-adult-income
[ "region:us" ]
2023-04-25T20:40:16+00:00
{"dataset_info": {"features": [{"name": "age", "dtype": "int64"}, {"name": "workclass", "dtype": "string"}, {"name": "fnlwgt", "dtype": "int64"}, {"name": "education", "dtype": "string"}, {"name": "education-num", "dtype": "int64"}, {"name": "marital-status", "dtype": "string"}, {"name": "occupation", "dtype": "string"}, {"name": "relationship", "dtype": "string"}, {"name": "race", "dtype": "string"}, {"name": "sex", "dtype": "string"}, {"name": "capital-gain", "dtype": "int64"}, {"name": "capital-loss", "dtype": "int64"}, {"name": "hours-per-week", "dtype": "int64"}, {"name": "native-country", "dtype": "string"}, {"name": "income", "dtype": {"class_label": {"names": {"0": " <=50K", "1": " >50K"}}}}], "splits": [{"name": "train", "num_bytes": 5552570, "num_examples": 32561}], "download_size": 586658, "dataset_size": 5552570}}
2023-04-25T22:19:35+00:00
c102bebe315b0c7d4483c78a7376aac85bf0a332
**Important**: This is only a script for loading the data, but the data itself is private. The script will only work in case you have access to the data, which you may request for non-commercial purposes [here](https://sterling8.d2.comp.nus.edu.sg/nucle_download/nucle.php). ```python data = datasets.load_dataset("matejklemen/nucle", "private", data_dir=<dir-of-private-data>, ignore_verifications=True)" ``` The `ignore_verifications=True` is important as the datasets library initially builds validation statistics that it verifies against, and these cannot be correctly computed when the data is not public.
matejklemen/nucle
[ "license:other", "region:us" ]
2023-04-25T20:42:44+00:00
{"license": "other", "dataset_info": [{"config_name": "public", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train"}], "download_size": 0, "dataset_size": 0}, {"config_name": "private", "features": [{"name": "src_tokens", "sequence": "string"}, {"name": "tgt_tokens", "sequence": "string"}, {"name": "corrections", "list": [{"name": "idx_src", "sequence": "int32"}, {"name": "idx_tgt", "sequence": "int32"}, {"name": "corr_type", "dtype": "string"}]}], "splits": [{"name": "train"}], "download_size": 0, "dataset_size": 0}]}
2024-01-24T18:29:47+00:00
9664244f74582769de7d73faf64bbd1726392d78
# Dataset Card for "minipile_train_tokenized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
andersonbcdefg/minipile_train_tokenized
[ "region:us" ]
2023-04-25T20:48:09+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "targets", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 17885906464, "num_examples": 2907332}], "download_size": 6111746975, "dataset_size": 17885906464}}
2023-04-26T20:45:47+00:00
7fc85e95b7538f857bcf9a7617e71b1163b393eb
# Dataset Card for "uci-mushrooms" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/uci-mushrooms
[ "region:us" ]
2023-04-25T20:50:08+00:00
{"dataset_info": {"features": [{"name": "poisonous", "dtype": {"class_label": {"names": {"0": "e", "1": "p"}}}}, {"name": "cap-shape", "dtype": "string"}, {"name": "cap-surface", "dtype": "string"}, {"name": "cap-color", "dtype": "string"}, {"name": "bruises", "dtype": "string"}, {"name": "odor", "dtype": "string"}, {"name": "gill-attachment", "dtype": "string"}, {"name": "gill-spacing", "dtype": "string"}, {"name": "gill-size", "dtype": "string"}, {"name": "gill-color", "dtype": "string"}, {"name": "stalk-shape", "dtype": "string"}, {"name": "stalk-root", "dtype": "string"}, {"name": "stalk-surface-above-ring", "dtype": "string"}, {"name": "stalk-surface-below-ring", "dtype": "string"}, {"name": "stalk-color-above-ring", "dtype": "string"}, {"name": "stalk-color-below-ring", "dtype": "string"}, {"name": "veil-type", "dtype": "string"}, {"name": "veil-color", "dtype": "string"}, {"name": "ring-number", "dtype": "string"}, {"name": "ring-type", "dtype": "string"}, {"name": "spore-print-color", "dtype": "string"}, {"name": "population", "dtype": "string"}, {"name": "habitat", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 958632, "num_examples": 8124}], "download_size": 90673, "dataset_size": 958632}}
2023-04-25T22:14:41+00:00
4a89da646a7b35e2b3dbd62a08519a114fac048f
# Dataset Card for "home-credit" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/home-credit
[ "region:us" ]
2023-04-25T20:52:14+00:00
{"dataset_info": {"features": [{"name": "SK_ID_CURR", "dtype": "int64"}, {"name": "TARGET", "dtype": {"class_label": {"names": {"0": "0", "1": "1"}}}}, {"name": "NAME_CONTRACT_TYPE", "dtype": "string"}, {"name": "CODE_GENDER", "dtype": "string"}, {"name": "FLAG_OWN_CAR", "dtype": "string"}, {"name": "FLAG_OWN_REALTY", "dtype": "string"}, {"name": "CNT_CHILDREN", "dtype": "int64"}, {"name": "AMT_INCOME_TOTAL", "dtype": "float64"}, {"name": "AMT_CREDIT", "dtype": "float64"}, {"name": "AMT_ANNUITY", "dtype": "float64"}, {"name": "AMT_GOODS_PRICE", "dtype": "float64"}, {"name": "NAME_TYPE_SUITE", "dtype": "string"}, {"name": "NAME_INCOME_TYPE", "dtype": "string"}, {"name": "NAME_EDUCATION_TYPE", "dtype": "string"}, {"name": "NAME_FAMILY_STATUS", "dtype": "string"}, {"name": "NAME_HOUSING_TYPE", "dtype": "string"}, {"name": "REGION_POPULATION_RELATIVE", "dtype": "float64"}, {"name": "DAYS_BIRTH", "dtype": "int64"}, {"name": "DAYS_EMPLOYED", "dtype": "int64"}, {"name": "DAYS_REGISTRATION", "dtype": "float64"}, {"name": "DAYS_ID_PUBLISH", "dtype": "int64"}, {"name": "OWN_CAR_AGE", "dtype": "float64"}, {"name": "FLAG_MOBIL", "dtype": "int64"}, {"name": "FLAG_EMP_PHONE", "dtype": "int64"}, {"name": "FLAG_WORK_PHONE", "dtype": "int64"}, {"name": "FLAG_CONT_MOBILE", "dtype": "int64"}, {"name": "FLAG_PHONE", "dtype": "int64"}, {"name": "FLAG_EMAIL", "dtype": "int64"}, {"name": "OCCUPATION_TYPE", "dtype": "string"}, {"name": "CNT_FAM_MEMBERS", "dtype": "float64"}, {"name": "REGION_RATING_CLIENT", "dtype": "int64"}, {"name": "REGION_RATING_CLIENT_W_CITY", "dtype": "int64"}, {"name": "WEEKDAY_APPR_PROCESS_START", "dtype": "string"}, {"name": "HOUR_APPR_PROCESS_START", "dtype": "int64"}, {"name": "REG_REGION_NOT_LIVE_REGION", "dtype": "int64"}, {"name": "REG_REGION_NOT_WORK_REGION", "dtype": "int64"}, {"name": "LIVE_REGION_NOT_WORK_REGION", "dtype": "int64"}, {"name": "REG_CITY_NOT_LIVE_CITY", "dtype": "int64"}, {"name": "REG_CITY_NOT_WORK_CITY", "dtype": "int64"}, {"name": "LIVE_CITY_NOT_WORK_CITY", "dtype": "int64"}, {"name": "ORGANIZATION_TYPE", "dtype": "string"}, {"name": "EXT_SOURCE_1", "dtype": "float64"}, {"name": "EXT_SOURCE_2", "dtype": "float64"}, {"name": "EXT_SOURCE_3", "dtype": "float64"}, {"name": "APARTMENTS_AVG", "dtype": "float64"}, {"name": "BASEMENTAREA_AVG", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_AVG", "dtype": "float64"}, {"name": "YEARS_BUILD_AVG", "dtype": "float64"}, {"name": "COMMONAREA_AVG", "dtype": "float64"}, {"name": "ELEVATORS_AVG", "dtype": "float64"}, {"name": "ENTRANCES_AVG", "dtype": "float64"}, {"name": "FLOORSMAX_AVG", "dtype": "float64"}, {"name": "FLOORSMIN_AVG", "dtype": "float64"}, {"name": "LANDAREA_AVG", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "LIVINGAREA_AVG", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "NONLIVINGAREA_AVG", "dtype": "float64"}, {"name": "APARTMENTS_MODE", "dtype": "float64"}, {"name": "BASEMENTAREA_MODE", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MODE", "dtype": "float64"}, {"name": "YEARS_BUILD_MODE", "dtype": "float64"}, {"name": "COMMONAREA_MODE", "dtype": "float64"}, {"name": "ELEVATORS_MODE", "dtype": "float64"}, {"name": "ENTRANCES_MODE", "dtype": "float64"}, {"name": "FLOORSMAX_MODE", "dtype": "float64"}, {"name": "FLOORSMIN_MODE", "dtype": "float64"}, {"name": "LANDAREA_MODE", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "LIVINGAREA_MODE", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "NONLIVINGAREA_MODE", "dtype": "float64"}, {"name": "APARTMENTS_MEDI", "dtype": "float64"}, {"name": "BASEMENTAREA_MEDI", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MEDI", "dtype": "float64"}, {"name": "YEARS_BUILD_MEDI", "dtype": "float64"}, {"name": "COMMONAREA_MEDI", "dtype": "float64"}, {"name": "ELEVATORS_MEDI", "dtype": "float64"}, {"name": "ENTRANCES_MEDI", "dtype": "float64"}, {"name": "FLOORSMAX_MEDI", "dtype": "float64"}, {"name": "FLOORSMIN_MEDI", "dtype": "float64"}, {"name": "LANDAREA_MEDI", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "LIVINGAREA_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAREA_MEDI", "dtype": "float64"}, {"name": "FONDKAPREMONT_MODE", "dtype": "string"}, {"name": "HOUSETYPE_MODE", "dtype": "string"}, {"name": "TOTALAREA_MODE", "dtype": "float64"}, {"name": "WALLSMATERIAL_MODE", "dtype": "string"}, {"name": "EMERGENCYSTATE_MODE", "dtype": "string"}, {"name": "OBS_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "OBS_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DAYS_LAST_PHONE_CHANGE", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_2", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_3", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_4", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_5", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_6", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_7", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_8", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_9", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_10", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_11", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_12", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_13", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_14", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_15", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_16", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_17", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_18", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_19", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_20", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_21", "dtype": "int64"}, {"name": "AMT_REQ_CREDIT_BUREAU_HOUR", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_DAY", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_WEEK", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_MON", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_QRT", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_YEAR", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 323536216, "num_examples": 307511}], "download_size": 0, "dataset_size": 323536216}}
2023-04-25T21:58:10+00:00
e96010bbbc52f19b52462d28652370c7d4dbc9d0
# Dataset Card for "cv_11_arabic_test_denoisy" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MohammedNasri/cv_11_arabic_test_denoisy
[ "region:us" ]
2023-04-25T20:55:29+00:00
{"dataset_info": {"features": [{"name": "audio", "sequence": "float64"}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5817636498, "num_examples": 10440}], "download_size": 2823357222, "dataset_size": 5817636498}}
2023-04-25T21:01:50+00:00
4195ef19efb2d0e8cfa9f49c6d19df1833f34661
# Dataset Card for QUAERO ## Dataset Description - **Homepage:** https://quaerofrenchmed.limsi.fr/ - **Pubmed:** True - **Public:** True - **Tasks:** Named-Entity Recognition (NER) The QUAERO French Medical Corpus has been initially developed as a resource for named entity recognition and normalization [1]. It was then improved with the purpose of creating a gold standard set of normalized entities for French biomedical text, that was used in the CLEF eHealth evaluation lab [2][3]. A selection of MEDLINE titles and EMEA documents were manually annotated. The annotation process was guided by concepts in the Unified Medical Language System (UMLS): 1. Ten types of clinical entities, as defined by the following UMLS Semantic Groups (Bodenreider and McCray 2003) were annotated: Anatomy, Chemical and Drugs, Devices, Disorders, Geographic Areas, Living Beings, Objects, Phenomena, Physiology, Procedures. 2. The annotations were made in a comprehensive fashion, so that nested entities were marked, and entities could be mapped to more than one UMLS concept. In particular: (a) If a mention can refer to more than one Semantic Group, all the relevant Semantic Groups should be annotated. For instance, the mention “récidive” (recurrence) in the phrase “prévention des récidives” (recurrence prevention) should be annotated with the category “DISORDER” (CUI C2825055) and the category “PHENOMENON” (CUI C0034897); (b) If a mention can refer to more than one UMLS concept within the same Semantic Group, all the relevant concepts should be annotated. For instance, the mention “maniaques” (obsessive) in the phrase “patients maniaques” (obsessive patients) should be annotated with CUIs C0564408 and C0338831 (category “DISORDER”); (c) Entities which span overlaps with that of another entity should still be annotated. For instance, in the phrase “infarctus du myocarde” (myocardial infarction), the mention “myocarde” (myocardium) should be annotated with category “ANATOMY” (CUI C0027061) and the mention “infarctus du myocarde” should be annotated with category “DISORDER” (CUI C0027051) The QUAERO French Medical Corpus BioC release comprises a subset of the QUAERO French Medical corpus, as follows: Training data (BRAT version used in CLEF eHealth 2015 task 1b as training data): - MEDLINE_train_bioc file: 833 MEDLINE titles, annotated with normalized entities in the BioC format - EMEA_train_bioc file: 3 EMEA documents, segmented into 11 sub-documents, annotated with normalized entities in the BioC format Development data (BRAT version used in CLEF eHealth 2015 task 1b as test data and in CLEF eHealth 2016 task 2 as development data): - MEDLINE_dev_bioc file: 832 MEDLINE titles, annotated with normalized entities in the BioC format - EMEA_dev_bioc file: 3 EMEA documents, segmented into 12 sub-documents, annotated with normalized entities in the BioC format Test data (BRAT version used in CLEF eHealth 2016 task 2 as test data): - MEDLINE_test_bioc folder: 833 MEDLINE titles, annotated with normalized entities in the BioC format - EMEA folder_test_bioc: 4 EMEA documents, segmented into 15 sub-documents, annotated with normalized entities in the BioC format This release of the QUAERO French medical corpus, BioC version, comes in the BioC format, through automatic conversion from the original BRAT format obtained with the Brat2BioC tool https://bitbucket.org/nicta_biomed/brat2bioc developped by Jimeno Yepes et al. Antonio Jimeno Yepes, Mariana Neves, Karin Verspoor Brat2BioC: conversion tool between brat and BioC BioCreative IV track 1 - BioC: The BioCreative Interoperability Initiative, 2013 Please note that the original version of the QUAERO corpus distributed in the CLEF eHealth challenge 2015 and 2016 came in the BRAT stand alone format. It was distributed with the CLEF eHealth evaluation tool. This original distribution of the QUAERO French Medical corpus is available separately from https://quaerofrenchmed.limsi.fr All questions regarding the task or data should be addressed to [email protected] ## Citation Information ``` @InProceedings{neveol14quaero, author = {Névéol, Aurélie and Grouin, Cyril and Leixa, Jeremy and Rosset, Sophie and Zweigenbaum, Pierre}, title = {The {QUAERO} {French} Medical Corpus: A Ressource for Medical Entity Recognition and Normalization}, OPTbooktitle = {Proceedings of the Fourth Workshop on Building and Evaluating Ressources for Health and Biomedical Text Processing}, booktitle = {Proc of BioTextMining Work}, OPTseries = {BioTxtM 2014}, year = {2014}, pages = {24--30}, } ```
DrBenchmark/QUAERO
[ "task_categories:token-classification", "multilinguality:monolingual", "size_categories:1K<n<10K", "language:fr", "license:other", "medical", "region:us" ]
2023-04-25T21:01:52+00:00
{"language": ["fr"], "license": "other", "multilinguality": "monolingual", "size_categories": ["1K<n<10K"], "task_categories": ["token-classification"], "pretty_name": "QUAERO", "homepage": "https://quaerofrenchmed.limsi.fr/", "tags": ["medical"]}
2023-06-12T19:53:41+00:00
e840fc01ea9627839d7c3f65786fcf91ed025c16
# Dataset Card for "test-dataset-all-splits" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HuggingFaceH4/test-dataset-all-splits
[ "region:us" ]
2023-04-25T21:09:40+00:00
{"dataset_info": {"features": [{"name": "chosen", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "rejected", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "prompt", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train_ift", "num_bytes": 230850, "num_examples": 100}, {"name": "train_rl", "num_bytes": 369068, "num_examples": 100}, {"name": "train_rm", "num_bytes": 369068, "num_examples": 100}, {"name": "test_rm", "num_bytes": 312141, "num_examples": 100}, {"name": "test_rl", "num_bytes": 312141, "num_examples": 100}, {"name": "test_ift", "num_bytes": 218856, "num_examples": 100}], "download_size": 1071322, "dataset_size": 1812124}}
2023-04-25T21:09:49+00:00
e0e28b570e7e723d9609c189024b253fe12b5435
# Dataset Card for "bookcorpus" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jxie/bookcorpus
[ "region:us" ]
2023-04-25T21:14:04+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4484644404, "num_examples": 4593890}], "download_size": 2712558918, "dataset_size": 4484644404}}
2023-04-25T21:18:29+00:00
db4d65636c12c45d7ce378312cd1b8d1bbc4cede
# Dataset Card for "oig_small_chip2_python" ### Dataset Summary From [LAION's Open Instruction Generalist (OIG) dataset](https://huggingface.co/datasets/laion/OIG), we use a 4775-prompt segment pertaining to Python code generation. OIG text elements are formatted as dialogue exerpts between a "human" and "bot" agent. The code generation prompt is parsed from the initial "human" agent's statement and the resultant response from the "bot" agent's statement. We then reformat the text/response pairs according to the format of the original Alpaca dataset; that is, instruction/input/output triplets. In cases where the instruction field does not specify the code language, we provide "Write the code in Python" in the input field. Otherwise, the input field is left blank. The OIG dataset was prepared by LAION, and released under the Apache 2.0 license. Numbers: - **Prompts**: 4775 - **Tokens**: 578083 using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer (counting instruction+input+output)
lucasmccabe-lmi/oig_small_chip2_python
[ "task_categories:text-generation", "size_categories:1K<n<10K", "language:en", "license:apache-2.0", "code", "python", "code-generation", "region:us" ]
2023-04-25T21:14:09+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1930175, "num_examples": 4742}], "download_size": 741759, "dataset_size": 1930175}, "tags": ["code", "python", "code-generation"]}
2023-04-25T21:30:03+00:00
b86d96510a3c32a1ff7407bd4522dea7aa2ac1b5
# Dataset Card for "shEMO" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
minoosh/shEMO
[ "region:us" ]
2023-04-25T21:15:28+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "emotion", "dtype": {"class_label": {"names": {"0": "A", "1": "H", "2": "N", "3": "S", "4": "W", "5": "F"}}}}], "splits": [{"name": "train", "num_bytes": 844671640.8, "num_examples": 2400}, {"name": "test", "num_bytes": 103378583.5, "num_examples": 300}, {"name": "valid", "num_bytes": 115098795.5, "num_examples": 300}], "download_size": 1043545626, "dataset_size": 1063149019.8}}
2023-04-25T21:57:28+00:00
973e27667822866f6fa6a050223dd76e58022bd0
# Dataset Card for "wikipedia" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jxie/wikipedia
[ "region:us" ]
2023-04-25T21:18:29+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 17745463487, "num_examples": 18870891}], "download_size": 10424169925, "dataset_size": 17745463487}}
2023-04-25T21:35:18+00:00
b622fd84c488b50c005763b992ec8c18621c5a34
# Dataset Card for "balanced" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
amishshah/balanced
[ "region:us" ]
2023-04-25T21:47:52+00:00
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 58351317.12, "num_examples": 27000}, {"name": "test", "num_bytes": 6483479.68, "num_examples": 3000}, {"name": "eval", "num_bytes": 6483479.68, "num_examples": 3000}], "download_size": 3311033, "dataset_size": 71318276.47999999}}
2023-04-26T06:53:49+00:00
7e6dc76ef9e67f7d43ed5b59d2243c7f4baf655f
# Dataset Card for "reading_comprehension_exercise_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jmartin233/reading_comprehension_exercise_dataset
[ "region:us" ]
2023-04-25T21:49:43+00:00
{"dataset_info": {"features": [{"name": "person", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "grammar", "dtype": "string"}, {"name": "level", "dtype": "string"}, {"name": "passage", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25230, "num_examples": 41}], "download_size": 19938, "dataset_size": 25230}}
2023-04-26T15:43:00+00:00
3225ef805116c27547a39afa7235d0344d59701d
# Dataset Card for "uci-car-evaluation" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/uci-car-evaluation
[ "region:us" ]
2023-04-25T22:08:49+00:00
{"dataset_info": {"features": [{"name": "buying", "dtype": "string"}, {"name": "maint", "dtype": "string"}, {"name": "doors", "dtype": "string"}, {"name": "persons", "dtype": "string"}, {"name": "lug_boot", "dtype": "string"}, {"name": "safety", "dtype": "string"}, {"name": "quality", "dtype": {"class_label": {"names": {"0": "acc", "1": "good", "2": "unacc", "3": "vgood"}}}}], "splits": [{"name": "train", "num_bytes": 87264, "num_examples": 1728}], "download_size": 5480, "dataset_size": 87264}}
2023-04-25T22:18:06+00:00
300cf4d7a86c534619ab8cc1bcc1a08d6ee7e649
GranamyrBR/juris
[ "license:mit", "region:us" ]
2023-04-25T22:20:38+00:00
{"license": "mit"}
2023-04-25T22:20:38+00:00
6cdd73eae28e41913824247bb2afa9167f7b3c58
# Dataset Card for "codex_math_qa_alpaca_style" This dataset consists of code responses generated by `codex-davinci-002` for solving math word problems from [math_qa](https://huggingface.co/datasets/math_qa). This dataset is equivalent to [theblackcat102/codex-math-qa](https://huggingface.co/datasets/theblackcat102/codex-math-qa), but has been slightly modified to fit the Alpaca format. Numbers: - **Prompts**: 28050 - **Tokens**: 6626950 using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer (counting instruction+input+output)
lucasmccabe-lmi/codex_math_qa_alpaca_style
[ "region:us" ]
2023-04-25T22:28:58+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23778428.0, "num_examples": 28050}], "download_size": 8824844, "dataset_size": 23778428.0}}
2023-04-25T22:29:46+00:00
3eca6af497ac4c90bebce234bdba8f4e8002fd7f
# Dataset Card for "openai_humaneval_alpaca_style" This dataset consists of hand-written Python solutions to 164 programming problems by OpenAI. This dataset is equivalent to [openai_humaneval](https://huggingface.co/datasets/openai_humaneval), but has been slightly modified to fit the Alpaca format and include an input field ("The prompt's code is written in Python. Write corresponding response code in Python, as well.") when Python is not explicitly mentioned in the prompt. Numbers: - **Prompts**: 164 - **Tokens**: 36644 using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer (counting instruction+input+output)
lucasmccabe-lmi/openai_humaneval_alpaca_style
[ "region:us" ]
2023-04-25T22:42:13+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 120769.0, "num_examples": 164}], "download_size": 57282, "dataset_size": 120769.0}}
2023-04-25T22:45:56+00:00
2fe3b797ffb3e6d1beccfa5f1ac12a2483c64f60
# Dataset Card for "VQAv2_validation_no_image" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_validation_no_image
[ "region:us" ]
2023-04-25T22:49:22+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_ViT_B_16_with_openai", "sequence": "string"}], "splits": [{"name": "validation", "num_bytes": 11070187868, "num_examples": 214354}], "download_size": 2794930371, "dataset_size": 11070187868}}
2023-05-04T04:39:30+00:00
f512536aa99c032b90b0cddf7de5a352bbceb258
# Dataset Card for "VQAv2_test_no_image" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_test_no_image
[ "region:us" ]
2023-04-25T22:57:55+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "answers", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 21976237587, "num_examples": 447793}], "download_size": 5670512625, "dataset_size": 21976237587}}
2023-05-13T19:39:01+00:00
8a191628e2ecb6db3db17f6ff799ddd567c1c24a
# Dataset Card for "VQAv2_train_no_image" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_train_no_image
[ "region:us" ]
2023-04-25T23:02:39+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 2355752129, "num_examples": 443757}], "download_size": 306629539, "dataset_size": 2355752129}}
2023-04-25T23:03:35+00:00
bf6eb5d9f0503e3435b647a799841dc6d6f56eb7
# Dataset Card for "full-hh-rlhf-chatml-chatml" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sam-mosaic/full-hh-rlhf-chatml
[ "language:en", "region:us" ]
2023-04-25T23:27:24+00:00
{"language": "en", "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 155301546, "num_examples": 147351}, {"name": "test", "num_bytes": 16963667, "num_examples": 16255}], "download_size": 68690705, "dataset_size": 172265213}}
2023-07-17T23:28:22+00:00
b1b7f34c7664b1110b329ee46d5fc57b52f7a5a3
# Dataset Card for "VQAv2_test_sample" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_test_sample
[ "region:us" ]
2023-04-25T23:37:52+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_wo_openai", "sequence": "string"}, {"name": "clip_tags_ViT_L_14_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_H_14_2B_with_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_wo_openai", "sequence": "string"}, {"name": "clip_tags_LAION_ViT_bigG_14_2B_with_openai", "sequence": "string"}, {"name": "Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "Attributes_LAION_ViT_bigG_14_2B_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}], "splits": [{"name": "test", "num_bytes": 213533490.0, "num_examples": 1000}], "download_size": 44562556, "dataset_size": 213533490.0}}
2023-04-26T00:09:42+00:00
5e77c8926b02f7397644d45ad5c7f10413a3d3cc
# Dataset Card for "mmlu-abstract_algebra-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-abstract_algebra-neg-prepend
[ "region:us" ]
2023-04-26T00:44:21+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 5843, "num_examples": 5}, {"name": "test", "num_bytes": 553714, "num_examples": 100}], "download_size": 89926, "dataset_size": 559557}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:27:08+00:00
c3906aa840284067c855135cd9aa23cfbc976e75
# Dataset Card for "mmlu-anatomy-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-anatomy-neg-prepend
[ "region:us" ]
2023-04-26T00:44:29+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 5642, "num_examples": 5}, {"name": "test", "num_bytes": 826330, "num_examples": 135}], "download_size": 127065, "dataset_size": 831972}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:27:41+00:00
b6452fa2ace15dabb6da9c0799cec13491c2fbbf
# Dataset Card for "mmlu-astronomy-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-astronomy-neg-prepend
[ "region:us" ]
2023-04-26T00:44:37+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9251, "num_examples": 5}, {"name": "test", "num_bytes": 1792879, "num_examples": 152}], "download_size": 146597, "dataset_size": 1802130}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:28:14+00:00
f6ce4983a66d3ded594940017e89a32e22d8a136
# Dataset Card for "mmlu-business_ethics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-business_ethics-neg-prepend
[ "region:us" ]
2023-04-26T00:44:45+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 11347, "num_examples": 5}, {"name": "test", "num_bytes": 1323050, "num_examples": 100}], "download_size": 131380, "dataset_size": 1334397}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:28:48+00:00
4d462d1c83eaeaa1d391da0670de23a552b8767e
# Dataset Card for "mmlu-clinical_knowledge-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-clinical_knowledge-neg-prepend
[ "region:us" ]
2023-04-26T00:44:53+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6643, "num_examples": 5}, {"name": "test", "num_bytes": 1915838, "num_examples": 265}], "download_size": 205749, "dataset_size": 1922481}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:29:21+00:00
e038b7b0f430ed8f66ea439c24c7cee7827edd66
# Dataset Card for "mmlu-college_biology-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-college_biology-neg-prepend
[ "region:us" ]
2023-04-26T00:45:57+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8293, "num_examples": 5}, {"name": "test", "num_bytes": 1336385, "num_examples": 144}], "download_size": 191456, "dataset_size": 1344678}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:29:52+00:00
9bd1decc706d8b3e39a9753472c161f1d79bf68e
# Dataset Card for "mmlu-college_chemistry-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-college_chemistry-neg-prepend
[ "region:us" ]
2023-04-26T00:46:05+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7604, "num_examples": 5}, {"name": "test", "num_bytes": 807404, "num_examples": 100}], "download_size": 137885, "dataset_size": 815008}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:30:24+00:00
96f4277618c8e08a2ca4ea5e0b0bed1768dc8058
# Dataset Card for "mmlu-college_computer_science-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-college_computer_science-neg-prepend
[ "region:us" ]
2023-04-26T00:46:13+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 12762, "num_examples": 5}, {"name": "test", "num_bytes": 1187769, "num_examples": 100}], "download_size": 152607, "dataset_size": 1200531}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:30:56+00:00
ef86a2ff76cfa92f50be1e204007e744a3acea96
# Dataset Card for "mmlu-college_mathematics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-college_mathematics-neg-prepend
[ "region:us" ]
2023-04-26T00:46:21+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9276, "num_examples": 5}, {"name": "test", "num_bytes": 924997, "num_examples": 100}], "download_size": 148273, "dataset_size": 934273}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:31:30+00:00
6601da3c46e7c2d9dd5065bdc74a7dc2ad9c7c77
# Dataset Card for "mmlu-college_medicine-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-college_medicine-neg-prepend
[ "region:us" ]
2023-04-26T00:46:29+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8383, "num_examples": 5}, {"name": "test", "num_bytes": 1791760, "num_examples": 173}], "download_size": 247355, "dataset_size": 1800143}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:32:04+00:00
638a3a1764b99f3ba40b2269eda9eb2aff6926cd
# Dataset Card for "mmlu-college_physics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-college_physics-neg-prepend
[ "region:us" ]
2023-04-26T00:46:37+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8555, "num_examples": 5}, {"name": "test", "num_bytes": 871253, "num_examples": 102}], "download_size": 146820, "dataset_size": 879808}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:32:37+00:00
346a214dd6ea7368d4a4d406fcbf754bc916ac0a
# Dataset Card for "mmlu-computer_security-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-computer_security-neg-prepend
[ "region:us" ]
2023-04-26T00:46:45+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6196, "num_examples": 5}, {"name": "test", "num_bytes": 687108, "num_examples": 100}], "download_size": 128252, "dataset_size": 693304}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:33:10+00:00
65fa846716596c0a9dc51e23b5d5485c6cb54daf
# Dataset Card for "mmlu-conceptual_physics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-conceptual_physics-neg-prepend
[ "region:us" ]
2023-04-26T00:46:53+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 5977, "num_examples": 5}, {"name": "test", "num_bytes": 1344080, "num_examples": 235}], "download_size": 154457, "dataset_size": 1350057}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:33:43+00:00
2889289855b2812be5479e667ba22a11743f8fa7
# Dataset Card for "mmlu-econometrics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-econometrics-neg-prepend
[ "region:us" ]
2023-04-26T00:47:01+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9477, "num_examples": 5}, {"name": "test", "num_bytes": 1159021, "num_examples": 114}], "download_size": 174731, "dataset_size": 1168498}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:34:15+00:00
c9485ccb4c4864bcf7f10b6f7c2defe7abf23f81
# Dataset Card for "mmlu-electrical_engineering-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-electrical_engineering-neg-prepend
[ "region:us" ]
2023-04-26T00:47:16+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6493, "num_examples": 5}, {"name": "test", "num_bytes": 855411, "num_examples": 145}], "download_size": 121276, "dataset_size": 861904}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:34:48+00:00
e587577830b65a5d0067df0782f079d8156cd9b2
# Dataset Card for "mmlu-elementary_mathematics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-elementary_mathematics-neg-prepend
[ "region:us" ]
2023-04-26T00:47:25+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7553, "num_examples": 5}, {"name": "test", "num_bytes": 2923400, "num_examples": 378}], "download_size": 247025, "dataset_size": 2930953}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:35:21+00:00
98729b3837c4556034bcf2e461b72f8d6432cb9c
# Dataset Card for "mmlu-formal_logic-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-formal_logic-neg-prepend
[ "region:us" ]
2023-04-26T00:47:35+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 9134, "num_examples": 5}, {"name": "test", "num_bytes": 1353581, "num_examples": 126}], "download_size": 164902, "dataset_size": 1362715}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:35:53+00:00
3e189bfb1547c81e732ed9013e3742b957b0651f
# Dataset Card for "mmlu-global_facts-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-global_facts-neg-prepend
[ "region:us" ]
2023-04-26T00:47:43+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6936, "num_examples": 5}, {"name": "test", "num_bytes": 729161, "num_examples": 100}], "download_size": 107923, "dataset_size": 736097}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:36:23+00:00
cd1ddc9b4999f62af69610e58d1aa0e9d7cd8e14
# Dataset Card for "mmlu-high_school_biology-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_biology-neg-prepend
[ "region:us" ]
2023-04-26T00:47:51+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8554, "num_examples": 5}, {"name": "test", "num_bytes": 3104302, "num_examples": 310}], "download_size": 323194, "dataset_size": 3112856}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:36:56+00:00
a6ff23ec9f30f052be16d914d94bbb35456db73a
# Dataset Card for "mmlu-high_school_chemistry-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_chemistry-neg-prepend
[ "region:us" ]
2023-04-26T00:48:19+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6741, "num_examples": 5}, {"name": "test", "num_bytes": 1306617, "num_examples": 203}], "download_size": 183058, "dataset_size": 1313358}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:37:30+00:00
83a666e0235b3760b8b8a79ea1fbc82b27c0c38e
# Dataset Card for "mmlu-high_school_computer_science-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_computer_science-neg-prepend
[ "region:us" ]
2023-04-26T00:48:28+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 12245, "num_examples": 5}, {"name": "test", "num_bytes": 1422094, "num_examples": 100}], "download_size": 149744, "dataset_size": 1434339}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:38:02+00:00
01570ce3dda3004eb5b0d1eb8bb2aebb3aac008a
# Dataset Card for "mmlu-high_school_european_history-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_european_history-neg-prepend
[ "region:us" ]
2023-04-26T00:48:41+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 38149, "num_examples": 5}, {"name": "test", "num_bytes": 5870111, "num_examples": 165}], "download_size": 575851, "dataset_size": 5908260}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:38:39+00:00
1e7538e5d110561debf6475a5940f2aa93dacfb1
# Dataset Card for "mmlu-high_school_geography-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_geography-neg-prepend
[ "region:us" ]
2023-04-26T00:48:56+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7278, "num_examples": 5}, {"name": "test", "num_bytes": 1611002, "num_examples": 198}], "download_size": 173122, "dataset_size": 1618280}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:39:10+00:00
705d5077c3471e73e4a3f845a2c862a10937df32
# Dataset Card for "mmlu-high_school_government_and_politics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_government_and_politics-neg-prepend
[ "region:us" ]
2023-04-26T00:49:04+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 8462, "num_examples": 5}, {"name": "test", "num_bytes": 2014297, "num_examples": 193}], "download_size": 221285, "dataset_size": 2022759}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:39:42+00:00
be6f2f8566c5e77916b4b6e17c11584f95f1b2b8
# Dataset Card for "mmlu-high_school_macroeconomics-neg-prepend" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joey234/mmlu-high_school_macroeconomics-neg-prepend
[ "region:us" ]
2023-04-26T00:49:13+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}, {"name": "negate_openai_prompt", "struct": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "neg_question", "dtype": "string"}, {"name": "fewshot_context", "dtype": "string"}, {"name": "ori_prompt", "dtype": "string"}, {"name": "neg_prompt", "dtype": "string"}, {"name": "fewshot_context_neg", "dtype": "string"}, {"name": "fewshot_context_ori", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6771, "num_examples": 5}, {"name": "test", "num_bytes": 3153207, "num_examples": 390}], "download_size": 281037, "dataset_size": 3159978}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "test", "path": "data/test-*"}]}]}
2023-08-23T03:40:15+00:00