sha
stringlengths 40
40
| text
stringlengths 0
13.4M
| id
stringlengths 2
117
| tags
list | created_at
stringlengths 25
25
| metadata
stringlengths 2
31.7M
| last_modified
stringlengths 25
25
|
---|---|---|---|---|---|---|
c9b6e31371ec7b134cc585fb9e66757475845f9f
|
# Dataset Card for "final_train_v2_390000"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mHossain/final_train_v2_390000
|
[
"region:us"
] |
2023-05-06T05:48:26+00:00
|
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9160829.1, "num_examples": 27000}, {"name": "test", "num_bytes": 1017869.9, "num_examples": 3000}], "download_size": 4463175, "dataset_size": 10178699.0}}
|
2023-05-06T05:48:29+00:00
|
28bdb2b3b4f1a8052d788818facb499b190a6fd8
|
# Dataset Card for "final_train_v2_420000"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mHossain/final_train_v2_420000
|
[
"region:us"
] |
2023-05-06T05:48:30+00:00
|
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9107591.4, "num_examples": 27000}, {"name": "test", "num_bytes": 1011954.6, "num_examples": 3000}], "download_size": 4436847, "dataset_size": 10119546.0}}
|
2023-05-06T05:48:34+00:00
|
e4fb8d9233f50dbca772f5986d219ae2925432a2
|
# Dataset Card for "final_train_v2_450000"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mHossain/final_train_v2_450000
|
[
"region:us"
] |
2023-05-06T05:48:35+00:00
|
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9110645.1, "num_examples": 27000}, {"name": "test", "num_bytes": 1012293.9, "num_examples": 3000}], "download_size": 4438870, "dataset_size": 10122939.0}}
|
2023-05-06T05:48:39+00:00
|
644258f7ed61588e206a98e37e38b13e78e855ae
|
# Dataset Card for "final_train_v2_480000"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mHossain/final_train_v2_480000
|
[
"region:us"
] |
2023-05-06T05:48:40+00:00
|
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9151488.0, "num_examples": 27000}, {"name": "test", "num_bytes": 1016832.0, "num_examples": 3000}], "download_size": 4460172, "dataset_size": 10168320.0}}
|
2023-05-06T05:48:43+00:00
|
73747477d21669706ddb0599c468f984d006cbf8
|
่ฟๆฏๆๆต่ฏ็็ฌฌไธไธชๆฐๆฎ้๏ผๆๅฐไผๅจ่ฟไธชๆฐๆฎ้้ๆทปๅ ๅฐ้ๆฐๆฎๆฅ็
|
guo1109/codehaha
|
[
"license:mit",
"region:us"
] |
2023-05-06T05:50:28+00:00
|
{"license": "mit"}
|
2023-05-11T01:58:01+00:00
|
747dc57ceb4541c30af804e03f8f5027753cc9f3
|
# Dataset Card for "deepfashion_controlnet_ezcaption"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
ldhnam/deepfashion_controlnet_ezcaption
|
[
"region:us"
] |
2023-05-06T07:40:49+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "openpose", "dtype": "image"}, {"name": "cloth", "dtype": "image"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3781385004.5, "num_examples": 13670}, {"name": "test", "num_bytes": 2131400.0, "num_examples": 9}], "download_size": 3766245342, "dataset_size": 3783516404.5}}
|
2023-05-06T07:43:27+00:00
|
f99bb2280e2a9bbbfa10c0fac8e77f97641ab54d
|
- ์ด 9619๊ฐ์ ํ๊ตญ์ด ์ง์๊ธฐ๋ฐ ๋ํ ๋ฐ์ดํฐ์
์
๋๋ค.
- KorQuAD 1.0 ๋ฐ์ดํฐ์ ์๋ ๋ฌธ์๋ฅผ ChatGPT์๊ฒ ์ค ๋ค ์์ฑํ์ต๋๋ค.
์๋ก๋ฅผ ํธ์นญํ๋ ๋ถ๋ถ์ ์๋์ฒ๋ผ ์ฒ๋ฆฌ๋์ด์์ต๋๋ค.
```
์๋
ํ์ธ์ <|bot|>. ์์ฆ ์ด๋ป๊ฒ ์ง๋ด์๋์?\n<bot> ์๋
ํ์ธ์ <|user|>.
```
๋ฐ์ดํฐ ์ํ
```
{
"source": "korquad-chat",
"text": "
<sys>์ ์ ์์ ์ด๋ฆ์ ์ธ๋์ ์๋ ๋ด๋ธ๋ฆฌ์ ์ด๋ฆ์ ๋ฐ ๋ถ์ฌ์ก๋๋ฐ, ์ด๋ 2009๋
์ฉ (Yong) ๋ฑ์ด ์ฒ์ ๊ธฐ๋กํ ์ด ์ผ์ด์ค์ ํ์๊ฐ ์ธ๋์์ ์ฒ์ ๋ฐํ
๋ฆฌ์ ๊ฐ์ผ์ ํ์ธํ์๊ธฐ ๋๋ฌธ์ด๋ค. ๋ฐํ
๋ฆฌ์ ๊ฐ์ผ ์น๋ฃ๊ฐ ๋ด๋ธ๋ฆฌ ๋ณ์์์ ์คํจ๋ก ๋๋ ํ ๊ทธ๋ ๋ชจ๊ตญ ์ค์จ๋ด์ผ๋ก ์กํ๋์์ผ๋ฉฐ, ๊ทธ๊ณณ์์ ์นด๋ฐํ๋ด์ ๋ด์ฑ์ ๋ณด์ด๋ ํ๋ ด๋ง๋๊ท ์ ์ ์ ์๊ฐ ๋ถ๋ฆฌ๋์๋ค. ์ฉ ๋ฑ์ ์ด ๋ด์ฑ ๋ฉ์ปค๋์ฆ์ด \"๋ถ๋ช
ํ ์ธ๋์์ ์๊ฒจ๋ฌ์ผ๋, ์ด๊ฒ์ด ์ผ๋ง๋ ํผ์ ธ์๋์ง๋ฅผ ๋ณด์ฌ์ฃผ๋ ๋ฐ์ดํฐ๊ฐ ์ธ๋์ ์กด์ฌํ๋ค\"๋ผ๊ณ ์ฃผ์ฅํ์๋ค. ๋ณด๊ณ ๋ ๋ฐ์ ๋ฐ๋ฅด๋ฉด ์ด ์ ์ ์๋ ํํค์คํ, ์ธ๋, ๊ทธ๋ฆฌ๊ณ ์ฌ๋ฌ ์์์ ๊ตญ๊ฐ์์ ๋ฐ๊ฒฌ๋์์ผ๋ฉฐ ์ด๊ณณ ๋ณ์์ ์
์ํ๋ ์ฌ๋๋ค์ ์ํด ์ ๋ฝ์ผ๋ก ์ฎ๊ฒจ์ก๋ค. ๊ทธ ์ค ๋๋ค์๋ ์ ๊ฐ์ ์ฑํ ์์ ์ ์ํด ์๋ฃ ๊ด๊ด์ ๋ ๋ฌ๋ค๊ฐ ์์ ์ค ๊ฐ์ผ์ด ๋ ์ฌ๋๋ค์ด์๋ค.\n
<usr> ๋ฉํ๋ก-๋ฒ ํ๋ฝํ๋ง์ ๊ฐ ์ด๋์ ๋ฐ๊ฒฌ๋์๋์?\n
<bot> ์ด ์ ์ ์๋ ํํค์คํ, ์ธ๋, ๊ทธ๋ฆฌ๊ณ ์ฌ๋ฌ ์์์ ๊ตญ๊ฐ์์ ๋ฐ๊ฒฌ๋ ๊ฒ์ผ๋ก ๋ณด๊ณ ๋์์ต๋๋ค.\n
<usr> ์ด ๋ฐํ
๋ฆฌ์ ๊ฐ์ผ์ ์ด๋ป๊ฒ ์ ํ๋๋ ๊ฑด๊ฐ์?\n
<bot> ์ด ๋ณ์๊ท ์ ์ฃผ๋ก ์๋ฃ ๊ด๊ด์ผ๋ก ์ธํด ์์ ์ค ๊ฐ์ผ๋ ์ฌ๋๋ค์ ์ํด ์ ๋ฝ์ผ๋ก ์ ํ๋์์ต๋๋ค.\n
<usr> ์ด ์ ์ ์๋ ์นด๋ฐํ๋ด์ ๋ฐ์ํ์ง ์๋ ๋ด์ฑ ์ผ์ด์ค์์ ์ฒ์ ๋ฐ๊ฒฌ๋๋๋ฐ, ์ด ๋ด์ฑ ๋ฉ์ปค๋์ฆ์ด ๋ค๋ฅธ ๊ตญ๊ฐ์๋ ํผ์ง ๊ฑด๊ฐ์?\n
<bot> ์ด ๋ด์ฑ ๋ฉ์ปค๋์ฆ์ด ์ฌ๋ฌ ๋๋ผ์์ ๋ฐ๊ฒฌ๋ ๊ฒ์ผ๋ก ๋ณด๊ณ ๋๊ธฐ ๋๋ฌธ์, ํผ์ ธ์๋ค๊ณ ๋ณผ ์ ์์ต๋๋ค. ๊ทธ๋ฌ๋, ์ด๊ฒ์ด ์ผ๋ง๋ ํผ์ ธ์๋์ง๋ฅผ ๋ณด์ฌ์ฃผ๋ ๋ฐ์ดํฐ๊ฐ ์ธ๋์ ์กด์ฌํ๋ค๋ ์ฃผ์ฅ์ด ์์ต๋๋ค.\n
<usr> ์ด ๋ฐํ
๋ฆฌ์ ๊ฐ์ผ์ ์ด๋ค ์ง๋ณ์ ์ผ์ผํค๋์?\n
<bot> ์ด ๋ฉํ๋ก-๋ฒ ํ๋ฝํ๋ง์ ๊ฐ ๊ฐ์ผํ๋ฉด, ์นด๋ฐํ๋ด ์ ํ์ ํญ์์ ๋ฅผ ์ฌ์ฉํ ์ ์๊ณ , ์น๋ช
์ ์ธ ๊ฐ์ผ์ฆ์ผ๋ก ๋ฐ์ ํ ๊ฐ๋ฅ์ฑ์ด ์์ต๋๋ค.\n
<usr> ์ด ๋ฐํ
๋ฆฌ์ ๊ฐ์ผ์ ์๋ฐฉํ๊ฑฐ๋ ์น๋ฃํ ๋ฐฉ๋ฒ์ด ์์๊น์?\n
<bot> ์ด ๋ฐํ
๋ฆฌ์ ๊ฐ์ผ์ ์๋ฐฉํ๊ฑฐ๋ ์น๋ฃํ ์ ์๋ ํญ์์ ๋ ์ฌ์ ํ ๋ฐ๊ฒฌ๋์ง ์์์ต๋๋ค. ๋ฐ๋ผ์, ์ด ๋ณ๊ท ์ ํฌํจํ ๊ฐ์ผ ์๋ฐฉ์ ์ค์์ฑ์ด ๋์ฑ ๋ถ๊ฐ๋๊ณ ์์ต๋๋ค."
}
```
ChatGPT ๋ฐ์ดํฐ ์์ฑ ํ๋กฌํํธ
```
A์ B ๋ ์ฌ๋์ด ๋๋๋ ๋ํ๋ฅผ ๋ง๋ค์ด์ฃผ์ธ์.
1. A๋ ์ฃผ์ด์ง ๊ธ์์ ๋งํ๋ ๋ด์ฉ์ ๊ดํด B์๊ฒ ์ง๋ฌธ์ ํ๊ฑฐ๋ ์์ฒญํฉ๋๋ค. B๋ ๊ธ์ ๋ด์ฉ์ ์ดํดํ๊ณ ์์ ํ ํ์ตํ ์ํ์
๋๋ค. B๋ A์ ์ง๋ฌธ๊ณผ ์์ฒญ์ ์์ ์ด ํ์ตํ ๋ด์ฉ์ ๋ฐํ์ผ๋ก ๋๋ต์ ํด์ผ ํฉ๋๋ค.
2. B๋ ๊ธ์ ์กด์ฌํ์ง ์๊ฑฐ๋ ์ฌ์ค์ ๊ทผ๊ฑฐํ์ง ์์ ๋๋ต์ ํด์๋ ์๋ฉ๋๋ค.
3. ๊ฐ ๋ฐํ๋ ์ต๋ 3๊ฐ์ ๋ฌธ์ฅ์ผ๋ก ์ด๋ฃจ์ด์ ธ ์์ต๋๋ค.
4. ๋ํ๋ A์ B๊ฐ ์๋ก ์ฃผ๊ณ ๋ฐ์ผ๋ฉฐ ์์๋๋ก A์ ๋ฐํ๋ A:, B์ ๋ฐํ๋ B: ๋ก ์์ํด์ผํ๊ณ ๋์ด์ฐ๊ธฐ๋ก ๊ตฌ๋ถํฉ๋๋ค.
5. A์ B๊ฐ ๊ธ์ ์ฝ์๋ค๋ ๋ด์ฉ์ด๋, ๊ธ์ ๋ํด์ ํ๊ฐํ๊ฑฐ๋, ๊ธ์ ์ธ๊ธํ๋ ๋ด์ฉ์ด ํฌํจ๋์ด์๋ ์๋ฉ๋๋ค.
6. A์ B๊ฐ ์๋ก๋ฅผ ์ธ๊ธํ ๋๋ A์จ, B์จ๋ก ํธ์นญํด์ผํฉ๋๋ค.
7. A์ B๋ ์๋ก 8๋ฒ ๋ํ๋ฅผ ์ฃผ๊ณ ๋ฐ์์ผ ํฉ๋๋ค. ๋ํ์ ์ ์ฒด๊ธธ์ด๋ ์ต๋ํ 200 ๋จ์ด๊ฐ ๋์ง ์๋๋ก ๋ํ๋ฅผ ๋๋ด์ผํฉ๋๋ค.
์ ๋ชฉ: #title
#text
```
|
heegyu/korquad-chat-v1
|
[
"license:mit",
"region:us"
] |
2023-05-06T08:05:56+00:00
|
{"license": "mit"}
|
2023-05-06T08:12:14+00:00
|
435a9104872e516c23678e63da0f74b0f4ffdc9a
|
christinacdl/binary_hate_speech
|
[
"task_categories:text-classification",
"size_categories:10K<n<100K",
"language:en",
"license:apache-2.0",
"code",
"region:us"
] |
2023-05-06T08:06:22+00:00
|
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "tags": ["code"]}
|
2023-05-06T08:14:27+00:00
|
|
2eb55e15601ed90c940956abb790cc93a1f04e6d
|
This dataset was created by automatically translating "OpenAssistant/oasst1" into Japanese.
The "ng_translation" flag indicates that the translation was not successful, and "1" means that the translation failed.
Therefore, for data with "1", "text" and "text_en" contain the same text.
**Update:**
- 2023/11/12
oasst1-89k-jaใใใฃใใๅฝขๅผใซๅคๆใใ[oasst1-chat-44k-ja](https://huggingface.co/datasets/kunishou/oasst1-chat-44k-ja)ใๅ
ฌ้ใใพใใใ
- 2023/10/21
่ชๅ็ฟป่จณใซใใใณใผใ้ข้ฃใใผใฟใฎ็ฟป่จณ่ชคใ2000็ฎๆ็จๅบฆใๆๅใงไฟฎๆญฃใใพใใใ
**<details><summary>ไฟฎๆญฃใคใกใผใธใ่กจ็คบ</summary><div>**
- ไฟฎๆญฃๅ
```
ใใกใใ๏ผใใใฏใFlask Webใใฌใผใ ใฏใผใฏใไฝฟ็จใใฆๆๅญๅใๆไพใใๅ็ดใชAPIใจใณใใใคใณใใไฝๆใใPythonในใฏใชใใใฎไพใงใใ
ใใฉในใณ่ผธๅ
ฅใใฉในใณใใ
app = flask๏ผ__name__๏ผ
@app.route๏ผ '/'๏ผ
def hello_world๏ผ๏ผ๏ผ
ใใใใซใกใฏใไธ็๏ผใใ่ฟใใพใ
__name__ == '__main__'ใฎๅ ดๅ๏ผ
app.run๏ผ๏ผ
ใใฎในใฏใชใใใงใฏใๆๅใซใใฉในใณใขใธใฅใผใซใใใใฉในใณใฏใฉในใใคใณใใผใใใพใใๆฌกใซใ__Name__ๅคๆฐใไฝฟ็จใใฆใขใใชใฑใผใทใงใณใฎๅๅใๆๅฎใใใใฉในใณใฏใฉในใฎๆฐใใใคใณในใฟใณในใไฝๆใใพใใ
```
- ไฟฎๆญฃๅพ
```
ใใกใใ๏ผใใใฏใFlask Webใใฌใผใ ใฏใผใฏใไฝฟ็จใใฆๆๅญๅใๆไพใใๅ็ดใชAPIใจใณใใใคใณใใไฝๆใใPythonในใฏใชใใใฎไพใงใใ
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello_world():
return 'Hello, world!'
if __name__ == '__main__':
app.run()
ใใฎในใฏใชใใใงใฏใๆๅใซใใฉในใณใขใธใฅใผใซใใใใฉในใณใฏใฉในใใคใณใใผใใใพใใๆฌกใซใ__Name__ๅคๆฐใไฝฟ็จใใฆใขใใชใฑใผใทใงใณใฎๅๅใๆๅฎใใใใฉในใณใฏใฉในใฎๆฐใใใคใณในใฟใณในใไฝๆใใพใใ
```
</div></details>
ไปฅไธใฎใณใผใใ็จใใใใจใงใ Instruction ใจ Output ๏ผprompterใฎๅฝไปคใจassistantใฎๅ็ญ๏ผใฎๅฝขๅผใซๅคๆใใใใจใใงใใพใใ
ใใกใคใณใใฅใผใใณใฐใงไฝฟ็จใใๅ ดๅใฏใใกใใฎใณใผใใงๅคๆใใฆไธใใใ
ๅคๆใณใผใๅ่
https://github.com/h2oai/h2o-llmstudio/blob/5ebfd3879e226b4e1afd0a0b45eb632e60412129/app_utils/utils.py#L1888
```python
pip install datasets
```
```python
from datasets import load_dataset
import pandas as pd
import os
import json
# oasst1ใฎใชใชใธใใซใใผใฟใฎใญใผใ
ds = load_dataset("OpenAssistant/oasst1")
train = ds["train"].to_pandas()
val = ds["validation"].to_pandas()
df_origin = pd.concat([train, val], axis=0).reset_index(drop=True)
# oasst1ๆฅๆฌ่ช็ฟป่จณใใผใฟใฎ่ชญใฟ่พผใฟ
df_ja = pd.read_json("oasst1_ja_89k.json")
# oasst1ใฎใชใชใธใใซใใผใฟใจๆฅๆฌ่ช็ฟป่จณใใผใฟใฎใใผใธ
df = pd.merge(df_origin, df_ja[["message_id", "text_ja"]], on="message_id", how="left").copy()
df["text"] = df["text_ja"]
df_assistant = df[(df.role == "assistant")].copy()
df_prompter = df[(df.role == "prompter")].copy()
df_prompter = df_prompter.set_index("message_id")
df_assistant["output"] = df_assistant["text"].values
inputs = []
parent_ids = []
for _, row in df_assistant.iterrows():
input = df_prompter.loc[row.parent_id]
inputs.append(input.text)
parent_ids.append(input.parent_id)
df_assistant["instruction"] = inputs
df_assistant["parent_id"] = parent_ids
df_assistant = df_assistant[
["instruction", "output", "message_id", "parent_id", "lang", "rank"]
].rename(columns={"message_id": "id"})
# ็ฟป่จณใฟในใฏใฎใฟใใผใฟใซ็ฐๅธธใใใใฎใง้คๅค
df_assistant2 = df_assistant[~df_assistant["instruction"].str.contains("็ฟป่จณ")]
# ใใไปฅไธใงjsonใใกใคใซใธๆธใๅบใ---------------
learn_datas = []
input_list = []
for n in range(len(df_assistant2)):
learn_data = {
"instruction": str(df_assistant2.iloc[n, 0]),
"input": "",
"output": ""
}
input_list.append(df_assistant2.iloc[n, 0])
learn_data["input"] = ""
learn_data["output"] = str(df_assistant2.iloc[n, 1])
learn_datas.append(learn_data)
json_learn_data = json.dumps(learn_datas, indent=4, ensure_ascii=False)
with open('oasst1_ja_converted.json', 'w', encoding="utf-8") as f:
f.write(json_learn_data)
```
oasst1-ja-89k Repository
https://github.com/kunishou/oasst1-89k-ja
OpenAssistant/oasst1
https://huggingface.co/datasets/OpenAssistant/oasst1
|
kunishou/oasst1-89k-ja
|
[
"language:ja",
"license:apache-2.0",
"region:us"
] |
2023-05-06T08:12:30+00:00
|
{"language": ["ja"], "license": "apache-2.0"}
|
2023-11-12T09:07:01+00:00
|
40cc01ce1df56f5101fc3436736a372145d228c4
|
SlavaSTAR/dgdrerdd
|
[
"license:creativeml-openrail-m",
"region:us"
] |
2023-05-06T08:20:53+00:00
|
{"license": "creativeml-openrail-m"}
|
2023-05-06T08:20:53+00:00
|
|
61839d9230c00a804d58763ce89ad092843d3868
|
foilfoilfoil/FireCheese
|
[
"license:other",
"region:us"
] |
2023-05-06T08:21:45+00:00
|
{"license": "other"}
|
2023-05-06T08:22:35+00:00
|
|
0a5afa6fe60f73b071c66462cb307cf8ef7a8766
|
# Dataset Card for "NoN_generic_248218_type_indian_drug_cleaned"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
rifatul123/NoN_generic_248218_type_indian_drug_cleaned
|
[
"region:us"
] |
2023-05-06T08:25:03+00:00
|
{"dataset_info": {"features": [{"name": "Uses", "dtype": "string"}, {"name": "SIDEEFFECT", "dtype": "string"}, {"name": "NAME", "dtype": "string"}, {"name": "CLASS", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 82166698, "num_examples": 248218}], "download_size": 18116310, "dataset_size": 82166698}}
|
2023-05-06T08:25:17+00:00
|
fd05ed281cd511032365937f9b377434a956f89c
|
winie521/test
|
[
"language:zh",
"region:us"
] |
2023-05-06T08:28:31+00:00
|
{"language": ["zh"], "pretty_name": "tes"}
|
2023-05-06T08:57:56+00:00
|
|
ef8940711712ecacbfcbce129c40e0fc4f1540b4
|
# Why the online can not be used?
I can load data in my local path as :
```
from datasets import load_dataset
dataset = load_dataset("imagefolder", data_dir="/path/to/folder")
```
However, why the online does not work?
|
buptwq/finetune-lora-sd
|
[
"task_categories:text-to-image",
"language:en",
"license:cc",
"region:us"
] |
2023-05-06T08:29:39+00:00
|
{"language": ["en"], "license": "cc", "task_categories": ["text-to-image"]}
|
2023-05-06T12:44:44+00:00
|
065053cb6534a5648004facbbe1eff65d37914aa
|
thincal/test-data
|
[
"license:mit",
"region:us"
] |
2023-05-06T08:34:11+00:00
|
{"license": "mit"}
|
2023-05-06T08:34:11+00:00
|
|
5b8bd3f6a89af8f7bce11ab659baae53140dc48c
|
Work in progress
Red team datasets for training and testing reward model for open assistant
|
theblackcat102/oasst-red-team
|
[
"language:en",
"language:de",
"language:fr",
"language:ru",
"language:zh",
"language:ja",
"language:it",
"language:pt",
"language:th",
"language:nl",
"language:ro",
"language:pl",
"language:hu",
"language:hr",
"region:us"
] |
2023-05-06T08:59:47+00:00
|
{"language": ["en", "de", "fr", "ru", "zh", "ja", "it", "pt", "th", "nl", "ro", "pl", "hu", "hr"]}
|
2023-05-07T08:15:21+00:00
|
aa7372a2cce96a67b7cb077af4edc27865a2ce85
|
AugESC is an augmented dialogue dataset for emotional support conversation, distilled from a fine-tuned GPT-J model.
[GitHub repo](https://github.com/thu-coai/AugESC). [Original paper](https://arxiv.org/abs/2202.13047).
Please kindly cite our papers if you use this resource:
```bib
@inproceedings{zheng-etal-2023-augesc,
title={AugESC: Dialogue Augmentation with Large Language Models for Emotional Support Conversation},
author={Zheng, Chujie and
Sabour, Sahand and
Wen, Jiaxin and
Zhang, Zheng and
Huang, Minlie},
booktitle={Findings of ACL},
year={2023}
}
@inproceedings{liu-etal-2021-towards,
title={Towards Emotional Support Dialog Systems},
author={Liu, Siyang and
Zheng, Chujie and
Demasi, Orianna and
Sabour, Sahand and
Li, Yu and
Yu, Zhou and
Jiang, Yong and
Huang, Minlie},
booktitle={ACL},
year={2021}
}
```
|
thu-coai/augesc
|
[
"language:en",
"license:cc-by-nc-4.0",
"arxiv:2202.13047",
"region:us"
] |
2023-05-06T09:04:51+00:00
|
{"language": ["en"], "license": "cc-by-nc-4.0"}
|
2023-05-16T07:57:04+00:00
|
07c934c83a9ab6e5dcdf4adb2205c55d97c0df1d
|
umoubuton/kafuu_chino_voice_dataset
|
[
"license:mit",
"region:us"
] |
2023-05-06T09:06:16+00:00
|
{"license": "mit"}
|
2023-06-24T10:02:00+00:00
|
|
e310071fd31fd6f18ab177caf549d175c8d298ea
|
wics/NCR
|
[
"license:unknown",
"region:us"
] |
2023-05-06T09:19:31+00:00
|
{"license": "unknown"}
|
2023-05-08T09:02:19+00:00
|
|
2e1b545321aadaeda8fa32467461f06516127e09
|
# ๅงๅญ็ไธญๆ่ฏไผฐๆฐๆฎ้ Ziya-Eval-Chinese
### ๆฐๆฎไป็ป Dataset Summary
็จไบ่ฏไผฐๅคง่ฏญ่จๆจกๅ็ไธญๆ่ฝๅ
This IDEA-CCNL/Ziya-Eval-Chinese dataset is designed to evaluate the ability of LLM in chinese.
### ่ฏญ่จ Languages
ไธญๆ
Chinese
### ๆฐๆฎ็คบไพ Data Instances
```json
{"class":"้ฎ็ญ", "type":"็่ฐ", "query":"ๅๅไธด้จ๏ผๆไธไธญๅฝๅฐๅ"}
```
### ๆฐๆฎๅญๆฎต Data Fields
- class: str
- type: str
- query: str
### ๅผ็จ Citation
```
@article{fengshenbang,
author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
journal = {CoRR},
volume = {abs/2209.02970},
year = {2022}
}
```
|
IDEA-CCNL/Ziya-Eval-Chinese
|
[
"size_categories:n<1K",
"language:zh",
"license:apache-2.0",
"region:us"
] |
2023-05-06T09:26:12+00:00
|
{"language": ["zh"], "license": "apache-2.0", "size_categories": ["n<1K"], "pretty_name": "Ziya-Eval-Chinese"}
|
2023-05-17T10:17:55+00:00
|
0c0463b2ae0643db0018e68f6286a256f0e88c85
|
# ๅฐ็ฃๆญฃ้ซไธญๆ็ถญๅบ็พ็ง (zh-tw Wikipedia)
ๆช่ณ 2023 ๅนด 5 ๆ๏ผไธญๆ็ถญๅบ็พ็ง 2,533,212 ็ฏๆข็ฎ็ๅฐ็ฃๆญฃ้ซๆๅญๅ
งๅฎนใๆฏ็ฏๆข็ฎ็บไธๅ (row)๏ผๅ
ๅซ HTML ไปฅๅ Markdown ๅ
ฉ็จฎๆ ผๅผใ
A nearly-complete collection of 2,533,212 Traditional Chinese (`zh-tw`) Wikipedia pages, gathered between May 1, 2023, and May 7, 2023. Includes both the original HTML format and an auto-converted Markdown version, which has been processed using [vinta/pangu.py](https://github.com/vinta/pangu.py).
ๆผ 2023 ๅนด 5 ๆ 1 ๆฅ่ณ 5 ๆ 7 ๆฅ้ๅ่ช็ถญๅบ็พ็ง [`action=query`](https://zh.wikipedia.org/w/api.php?action=help&modules=query) & [`prop=extracts`](https://zh.wikipedia.org/w/api.php?action=help&modules=query%2Bextracts) API๏ผๅ
งๅฎน็่็ถญๅบ็พ็ง็ถฒ็ซไนๅฐ็ฃๆญฃ้ซ็ๆฌไธ่ด๏ผๆฒๆ็น็ฐก้ซๆทท้็ๅ้กใ
For development usage, checkout [`zetavg/zh-tw-wikipedia-dev`](https://huggingface.co/datasets/zetavg/zh-tw-wikipedia-dev), which is a subset that contains only 1,000 randomly picked items.
## ่ณๆๅ
งๅฎน
* `pageid` โ ็ถญๅบ็พ็ง้ ้ข IDใ
* `html` โ ้ ้ขๅๅง็ HTML ๅฏๅบใ
* `markdown` โ ้ ้ข่ฝๆ็บ Markdown ๆ ผๅผ๏ผไธฆไปฅ [vinta/pangu.py](https://github.com/vinta/pangu.js) ๆผๅ
จๅฝขๅญ่ๅๅฝขๅญไน้ๅ ๅ
ฅ็ฉบๆ ผๅพ็็ๆฌใ
* `coordinate` โ ้ ้ขไธป้ก็็ถ็ทฏๅบฆๅบงๆจ๏ผไพๅฆ `{ "lat": 22.63333333, "lon": 120.26666667 }`ใ่ฅ็กๅ็บ `null`ใ
* `length` โ ้ ้ขๅ
งๅฎน้ทๅบฆใ
* `touched` โ ้ ้ข็ๆๅพไฟฎ่จๆ้ใ
* `lastrevid` โ ๆๆฐไฟฎ่จ็ๆฌ็ไฟฎ่จ IDใ
* `original_title` โ ็ถญๅบ็พ็งๆช็ถ่ฝๆ็ๅๅง้ ้ขๆจ้ก๏ผๅฏ่ฝ็บ็ฐก้ซไธญๆใ
## ๅทฒ็ฅๅ้ก
* ็กๆณๆฝๅ็บ *ๅ้ๆ ผๅผ HTML* ็ๅ
งๅฎน็ๆ้บๅคฑ๏ผไพๅฆๆๆๅ็ใๅ่กจใ่กจๆ ผใๅ่่ณๆๅ่กจ๏ผไปฅๅ้จๅ็จๅผ็ขผๅๅกใ
* ๆฅตๅฐๆธๅ
งๅฎน้้ท็ๆข็ฎๆฒๆ็ดๅ
ฅ๏ผๅคง่ดไธ่จๆ๏ผ`ๅๅ`ใ`ไบๅ`ใ`ๅ
ญๅ`ใ`่ฑ้ๅณ่ชชVI`ใ`่ป่ทก็ณปๅ่ง่ฒๅ่กจ`ใ`็ขงไน่ป่ทก่ง่ฒๅ่กจ`ใ`้ถไน่ป่ทก่ง่ฒๅ่กจ`ใ
* ็ผบๅฐ้ ้ขๆจ้ก `title` ๆฌไฝ๏ผๅๅฏ้้ API `inprop=varianttitles` ๅๅพ๏ผไฝ่ณๆๆๅๆ็จๅผๆฐๅฏซ้บๆผไบ้ๅๆฌไฝ๏ผใ
|
zetavg/zh-tw-wikipedia
|
[
"task_categories:text-generation",
"size_categories:1M<n<10M",
"language:zh",
"region:us"
] |
2023-05-06T09:35:05+00:00
|
{"language": ["zh"], "size_categories": ["1M<n<10M"], "task_categories": ["text-generation"], "pretty_name": "\u53f0\u7063\u6b63\u9ad4\u4e2d\u6587\u7dad\u57fa\u767e\u79d1 (zh-tw Wikipedia)", "dataset_info": {"features": [{"name": "pageid", "dtype": "int64"}, {"name": "html", "dtype": "string"}, {"name": "markdown", "dtype": "string"}, {"name": "coordinate", "struct": [{"name": "globe", "dtype": "string"}, {"name": "lat", "dtype": "float64"}, {"name": "lon", "dtype": "float64"}]}, {"name": "length", "dtype": "int64"}, {"name": "touched", "dtype": "string"}, {"name": "lastrevid", "dtype": "int64"}, {"name": "original_title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21930303312, "num_examples": 2533212}], "download_size": 0, "dataset_size": 21930303312}}
|
2023-05-06T11:44:26+00:00
|
eae2a098218c79671d40a07adf61a57cf0fb57ca
|
# AutoTrain Dataset for project: aymara-t5-small
## Dataset Description
This dataset has been automatically processed by AutoTrain for project aymara-t5-small.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"feat_Lang": "Spanish",
"feat_langcode": "es",
"feat_Source": "Janiw sartasipk\u00e4ti aka mayiw phuqasi\u00f1apkama, presidentex nanakamp tantachaspan ukhamarak tama irnaqir jaqinakar tantachpan, kunawsas ukat kunjamraks munat wila masinakasar qallantani thaxta\u00f1xa sasaw \u201d huelga lurir Margarita L\u00f3pez mamax arsuwayat\u00e4na.",
"target": "\u201cNo nos iremos hasta que nuestros casos se hayan resuelto, que el presidente se re\u00fana con nosotros y que re\u00fana a un grupo de tragbajo para decirnos cu\u00e1ndo y c\u00f3mo empezar\u00e1n a encontrar a nuestros seres queridos \u201d, declar\u00f3 la huelguista de hambre Margarita L\u00f3pez.",
"source": "translate Aymara to Spanish: Erwin C blog Latino Americano uka tuqinkiriw m\u00e4 huelga lurir mamaru jawsayawayi:"
},
{
"feat_Lang": "English",
"feat_langcode": "en",
"feat_Source": "Credit: Heidi Shin.",
"target": "Cr\u00e9dito: Heidi Shun.",
"source": "translate English to Aymara: Credit: Heidi Shin."
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"feat_Lang": "Value(dtype='string', id=None)",
"feat_langcode": "Value(dtype='string', id=None)",
"feat_Source": "Value(dtype='string', id=None)",
"target": "Value(dtype='string', id=None)",
"source": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 28121 |
| valid | 7031 |
|
alvations/autotrain-data-aymara-t5-small
|
[
"task_categories:translation",
"region:us"
] |
2023-05-06T10:03:11+00:00
|
{"task_categories": ["translation"]}
|
2023-05-06T10:04:14+00:00
|
b2822085cd25551194089c0a25c7ea085b54cc51
|
tobiaslee/VEC
|
[
"license:apache-2.0",
"region:us"
] |
2023-05-06T10:25:09+00:00
|
{"license": "apache-2.0"}
|
2023-05-06T10:51:45+00:00
|
|
87506633b3df0bb9538d24fff78b9775c3ec6c2a
|
Circularmachines/Batch_indexing_machine_tokens
|
[
"license:cc-by-4.0",
"region:us"
] |
2023-05-06T10:50:13+00:00
|
{"license": "cc-by-4.0"}
|
2023-05-06T10:50:23+00:00
|
|
5361848b98c46ca9be189c7be3709b183a2777cb
|
# Dataset Card for CIFAR-10-LT (Long Tail)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [CIFAR Datasets](https://www.cs.toronto.edu/~kriz/cifar.html)
- **Paper:** [Paper imbalanced example](https://openaccess.thecvf.com/content_CVPR_2019/papers/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.pdf)
- **Leaderboard:** [r-10](https://paperswithcode.com/sota/long-tail-learning-on-cifar-10-lt-r-10) [r-100](https://paperswithcode.com/sota/long-tail-learning-on-cifar-10-lt-r-100)
### Dataset Summary
The CIFAR-10-LT imbalanced dataset is comprised of under 60,000 color images, each measuring 32x32 pixels,
distributed across 10 distinct classes.
The number of samples within each class decreases exponentially with factors of 10 and 100.
The dataset includes 10,000 test images, with 1000 images per class,
and fewer than 50,000 training images.
Each image is assigned one label.
### Supported Tasks and Leaderboards
- `image-classification`: The goal of this task is to classify a given image into one of 10 classes. The leaderboard is available [here](https://paperswithcode.com/sota/long-tail-learning-on-cifar-10-lt-r-100).
### Languages
English
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```
{
'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x2767F58E080>, 'label': 0
}
```
### Data Fields
- img: A `PIL.Image.Image` object containing the 32x32 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- label: 0-9 with the following correspondence
0 airplane
1 automobile
2 bird
3 cat
4 deer
5 dog
6 frog
7 horse
8 ship
9 truck
### Data Splits
| name |train|test|
|----------|----:|---------:|
|cifar10|<50000| 10000|
### Licensing Information
Apache License 2.0
### Citation Information
```
@TECHREPORT{Krizhevsky09learningmultiple,
author = {Alex Krizhevsky},
title = {Learning multiple layers of features from tiny images},
institution = {},
year = {2009}
}
```
### Contributions
Thanks to [@gchhablani](https://github.com/gchablani) and all contributors for adding the original balanced cifar10 dataset.
|
tomas-gajarsky/cifar10-lt
|
[
"task_categories:image-classification",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"source_datasets:cifar10",
"language:en",
"license:apache-2.0",
"region:us"
] |
2023-05-06T10:56:18+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": "apache-2.0", "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["cifar10"], "task_categories": ["image-classification"], "task_ids": [], "paperswithcode_id": "cifar-10", "pretty_name": "Cifar10-LT", "dataset_info": {"features": [{"name": "img", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "airplane", "1": "automobile", "2": "bird", "3": "cat", "4": "deer", "5": "dog", "6": "frog", "7": "horse", "8": "ship", "9": "truck"}}}}], "config_name": "cifar10", "splits": [{"name": "train"}, {"name": "test", "num_bytes": 22772838, "num_examples": 10000}], "download_size": 170498071}}
|
2023-12-10T22:01:29+00:00
|
1ea4285949816469cedabe7e19e1c1f79b7ff9aa
|
# Dataset Card for "data-members-200"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
JotDe/data-members-200
|
[
"region:us"
] |
2023-05-06T11:10:21+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26146926.56885961, "num_examples": 200}], "download_size": 25830024, "dataset_size": 26146926.56885961}}
|
2023-05-06T11:10:30+00:00
|
401f1c7f4dd705fa1d144daf0a7a61be0b27fca9
|
# Dataset Card for "data-members-2k"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
JotDe/data-members-2k
|
[
"region:us"
] |
2023-05-06T11:10:31+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 291890903.6885961, "num_examples": 2000}], "download_size": 256657803, "dataset_size": 291890903.6885961}}
|
2023-05-06T11:11:12+00:00
|
7999c3f2598bd0353a9063153364b741fdf2ce36
|
# Dataset Card for "data-members-10k"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
JotDe/data-members-10k
|
[
"region:us"
] |
2023-05-06T11:11:13+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1459454518.4429805, "num_examples": 10000}], "download_size": 1266095633, "dataset_size": 1459454518.4429805}}
|
2023-05-06T11:14:24+00:00
|
e2044ef7be91a744a3b946a85f30d3903eb46fff
|
Othmanotana/darija
|
[
"license:unknown",
"region:us"
] |
2023-05-06T11:30:56+00:00
|
{"license": "unknown"}
|
2023-05-06T11:42:05+00:00
|
|
738dfa63f35ddc1e0f4d1746d360a99cba1cbb89
|
A small subset of [`zetavg/zh-tw-wikipedia`](https://huggingface.co/datasets/zetavg/zh-tw-wikipedia) that contains only 1,000 randomly picked rows. For development usage.
|
zetavg/zh-tw-wikipedia-dev
|
[
"region:us"
] |
2023-05-06T11:37:40+00:00
|
{"dataset_info": {"features": [{"name": "pageid", "dtype": "int64"}, {"name": "html", "dtype": "string"}, {"name": "markdown", "dtype": "string"}, {"name": "coordinate", "struct": [{"name": "globe", "dtype": "string"}, {"name": "lat", "dtype": "float64"}, {"name": "lon", "dtype": "float64"}]}, {"name": "length", "dtype": "int64"}, {"name": "touched", "dtype": "string"}, {"name": "lastrevid", "dtype": "int64"}, {"name": "original_title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8657481.515956817, "num_examples": 1000}], "download_size": 5008132, "dataset_size": 8657481.515956817}}
|
2023-05-06T11:40:39+00:00
|
71581b94277590ca4b25f6f99d3f7d6c6a882ae7
|
No-22/chinese-alpaca-7b-quantized
|
[
"license:mit",
"region:us"
] |
2023-05-06T11:37:46+00:00
|
{"license": "mit"}
|
2023-05-13T16:35:29+00:00
|
|
e1bd1ca92779c1501c2eccc39082aeaf7346dfc7
|
scholarly360/terrain_generation_from_sketch_for_game_assets
|
[
"license:apache-2.0",
"region:us"
] |
2023-05-06T11:49:33+00:00
|
{"license": "apache-2.0"}
|
2023-05-06T11:53:20+00:00
|
|
86fce674175195e7c643b0c6261568edb13a9188
|
aliamdubsh/hand_drawn
|
[
"license:mit",
"region:us"
] |
2023-05-06T11:52:24+00:00
|
{"license": "mit"}
|
2023-05-06T11:52:24+00:00
|
|
decc582209018446be9aaba12a034e655e9f8189
|
Othmanotana/d
|
[
"license:unknown",
"region:us"
] |
2023-05-06T11:53:41+00:00
|
{"license": "unknown"}
|
2023-05-06T11:53:41+00:00
|
|
cc089361d09fc770da74dec9a1f1fd99ddd3fa32
|
jeremyvictor/gecid_first
|
[
"size_categories:1K<n<10K",
"language:id",
"code",
"region:us"
] |
2023-05-06T12:18:47+00:00
|
{"language": ["id"], "size_categories": ["1K<n<10K"], "pretty_name": "Grammatical Error Correction 1st", "tags": ["code"], "dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "target", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1468210, "num_examples": 4739}, {"name": "dev", "num_bytes": 182207, "num_examples": 592}, {"name": "test", "num_bytes": 208476, "num_examples": 593}], "download_size": 1038850, "dataset_size": 1858893}}
|
2023-05-06T12:23:10+00:00
|
|
aaafa54f77d28a4733d013257a4d5a809179ae83
|
# Dataset Card for "whisper-th-custom"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
biodatlab/whisper-th-custom
|
[
"region:us"
] |
2023-05-06T13:07:08+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 24293230034.95, "num_examples": 601854}], "download_size": 35844557183, "dataset_size": 24293230034.95}}
|
2023-05-06T20:21:30+00:00
|
8ac1bfc2d7d8b652d11dbd5006fef5f9745c7e9c
|
# Dataset Card for "daniel-dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
beskrovnykh/daniel-dataset-part-1
|
[
"region:us"
] |
2023-05-06T13:10:06+00:00
|
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "published", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "start", "dtype": "float64"}, {"name": "end", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 38897475, "num_examples": 142572}], "download_size": 6568792, "dataset_size": 38897475}}
|
2023-05-14T11:08:29+00:00
|
8056c9edae8ddb6a7f05ff4720b20cfbfd5c62d3
|
# Dataset Card for "MAMe"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
davanstrien/MAMe
|
[
"region:us"
] |
2023-05-06T13:59:37+00:00
|
{"dataset_info": {"config_name": "256", "features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "Albumen photograph", "1": "Bronze", "2": "Ceramic", "3": "Clay", "4": "Engraving", "5": "Etching", "6": "Faience", "7": "Glass", "8": "Gold", "9": "Graphite", "10": "Hand-colored engraving", "11": "Hand-colored etching", "12": "Iron", "13": "Ivory", "14": "Limestone", "15": "Lithograph", "16": "Marble", "17": "Oil on canvas", "18": "Pen and brown ink", "19": "Polychromed wood", "20": "Porcelain", "21": "Silk and metal thread", "22": "Silver", "23": "Steel", "24": "Wood", "25": "Wood engraving", "26": "Woodblock", "27": "Woodcut", "28": "Woven fabric"}}}}, {"name": "Museum", "dtype": "string"}, {"name": "Museum-based instance ID", "dtype": "string"}, {"name": "Width", "dtype": "float32"}, {"name": "Height", "dtype": "float32"}, {"name": "Product size", "dtype": "float32"}, {"name": "Aspect ratio", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 441294458.5, "num_examples": 20300}, {"name": "validation", "num_bytes": 26810584.95, "num_examples": 1450}, {"name": "test", "num_bytes": 362018531.291, "num_examples": 15657}], "download_size": 719959312, "dataset_size": 830123574.7409999}, "builder_config": {"config_name": "256", "data_files": [{"split": "train", "pattern": "256/train-*"}, {"split": "validation", "pattern": "256/validation-*"}, {"split": "test", "pattern": "256/test-*"}]}}
|
2023-07-26T10:19:26+00:00
|
775cf2c7fb9e2370e8b33775373022452b774045
|
.
|
batalovme/RussianExams
|
[
"language:ru",
"region:us"
] |
2023-05-06T14:20:54+00:00
|
{"language": ["ru"], "dataset_info": [{"config_name": "math_tasks", "features": [{"name": "text", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 240907, "num_examples": 579}], "download_size": 268716, "dataset_size": 240907}, {"config_name": "yes_no_math_tasks", "features": [{"name": "statement", "dtype": "string"}, {"name": "label", "dtype": "bool"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 22396, "num_examples": 147}], "download_size": 30971, "dataset_size": 22396}, {"config_name": "russian_basis_tasks", "features": [{"name": "sentence", "dtype": "string"}, {"name": "basis", "dtype": "string"}, {"name": "label", "dtype": "bool"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 45558, "num_examples": 199}], "download_size": 59583, "dataset_size": 45558}, {"config_name": "russian_phrase_conn_tasks", "features": [{"name": "phrase", "dtype": "string"}, {"name": "connection", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 10683, "num_examples": 96}], "download_size": 17213, "dataset_size": 10683}]}
|
2023-05-10T10:32:44+00:00
|
6ba24b78ace33a6082525cf73808c533fa8197ba
|
# Dataset Card for "dreambooth-moroccan-design"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
medmac01/dreambooth-moroccan-design
|
[
"region:us"
] |
2023-05-06T14:36:38+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 2734939.0, "num_examples": 47}], "download_size": 0, "dataset_size": 2734939.0}}
|
2023-05-06T19:30:02+00:00
|
16ed9c2e0a211dd06c40d1ed385aff34286cad26
|
# Buryat-Russian Parallel Corpora
## Dataset Description
- **Homepage:** lingtra.in
### Dataset Summary
Dataset was made by Lingtrain community of language lovers.
|
lingtrain/buryat-russian
|
[
"license:apache-2.0",
"region:us"
] |
2023-05-06T14:37:49+00:00
|
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "ru", "dtype": "string"}, {"name": "bua", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 878970, "num_examples": 1332}], "download_size": 268507, "dataset_size": 878970}}
|
2023-05-06T14:57:50+00:00
|
5b555f139cd054636929867ca1d21b557a91e22a
|
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
license:
- cc0-1.0
multilinguality:
- multilingual
size_categories:
ar:
- 100K<n<1M
en:
- 1M<n<10M
source_datasets:
- extended|common_voice
task_categories:
- automatic-speech-recognition
task_ids: []
paperswithcode_id: common-voice
pretty_name: Common Voice Corpus 11.0
language_bcp47:
- ar
- en
|
makiour/dvoice-Darija
|
[
"region:us"
] |
2023-05-06T15:06:28+00:00
|
{}
|
2023-05-06T21:37:09+00:00
|
530624607ba3e2a3abaa687856299ecd15666f5d
|
# Dataset Card for "mtg-image-data"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Neramas1221/mtg-image-data
|
[
"region:us"
] |
2023-05-06T15:24:20+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "Unnamed: 0", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2310210821.0, "num_examples": 27000}], "download_size": 2441193881, "dataset_size": 2310210821.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
|
2023-10-01T16:37:31+00:00
|
ef43089b1a9d6295b4f639a1fa019d5e9860acf2
|
This is a downloads of https://gz1k.itch.io/ai-portable-tools, but on huggingface for lightning speed of downloading. I hope i haven't broke ToS of Huggingface Hub by uploading these tools here.
----------------------------------
This is my collection of portable AI packages to run it fast without anxious headache in console. initially, I made these tools for myself, but maybe someone else will need them. OK, heres the list:
-TEXT-
Koboldai [CPU/CUDA] - link - also in downloads / online demo
-CHAT-
Llama 2 chat 7B 4bit koboldcpp webui [CPU] - in downloads
/ source / webui / model / online demo
Llama 2 chat 7B Luna ai uncensored 4bit koboldcpp webui (note that this is a finetune on unsupervised synthetic dataset, so it hallucinates way more strong than original llama-2-chat) [CPU] - in downloads / source / webui / model /
Vicuna 1.1 7B 4bit koboldcpp webui (much worse than llama2 above, but may be more multilingual) [CPU] - in downloads. / source / webui / model / online demo
-TRANSLATE-
Facebook NLLB 600m webui [CPU] - in downloads / source / webui / model / online demo
-MIDI MUSIC GENERATION-
Midi composer app [CUDA][CPU] - link - also in downloads / source / online demo
Multitrack midi music generator (generates short jingles, each instrument generated separately) [CPU] - in downloads / webui
-TEXT TO MUSIC/AUDIO-
AudioCraft Plus [CUDA/CPU] - in downloads / source / webui / online demo
-TEXT TO SPEECH-
Suno ai Bark webui (with zeroshot voice conversion) [CUDA/CPU] - in downloads / source / webui / online demo
Coqui XTTS webui (this one generates speech only with voice cloning) (voice cloning is more "stable" than bark, but the accent and emotions can be lost) [CUDA] - in downloads / source / webui
TorToiSe webui [CUDA/CPU] - in downloads / source / webui / online demo
-VOICE CONVERSION VIA TRAINING-
RVC singing voice cloning webui [CUDA] - link - also in downloads / source
-VOICE ZEROSHOT CONVERSION-
FreeVC webui [CPU] - in downloads / source / webui
-VOICE TO TEXT-
Whispercpp GUI [DirectX/CPU] - link - also in downloads / source / gui / online demo
-VOCALS RESTORATION-
VoiceFixer webui [CPU] - in downloads / source / webui
-DUAL SPEAKER SPEECH SEPARATION-
Dual Path RNN (cli interface) - in downloads / source
-VOCALS/STEMS EXTRACTION-
UVR [CPU/CUDA] - link - also in downloads / online demo
Demucs GUI [CPU][CUDA] - link - also in downloads / source / gui
-IMAGE COLORIZATION-
DeOldify .NET gui [CPU] - link - also in downloads / source / gui / online demo
-ZEROSHOT IMAGE MATTING-
DIS webui [CPU] - in downloads / source / webui
-IMAGE UPSCALING-
Cupscale [Vulkan/CUDA] - link - also in downloads / source / webui / online demo
Automatic1111 sdwebui with StableSR extension [CUDA/CPU] - in downloads / source / webui / extension
-TEXT2IMAGE-
Automatic1111 Stable Diffusion base (without models) - link / webui
Automatic1111 deliberate v2 (sd1.5) model [CUDA/CPU][DIRECTX/CPU] - in downloads / source / webui / directx webui / model
Automatic1111 Illuminati Diffusion (sd2.1) model [CUDA/CPU] - in downloads / source / webui / model
Fooocus (sdxl) [CUDA] - link- also in downloads / source / webui / model / refiner
ConfyUI (without models) [CUDA/CPU] - link - also in downloads / source / webui
-IMAGE EDITING BY PROMPT-
Automatic1111 Instructpix2pix (sd1.5) model [DIRECTX/CPU][CUDA/CPU] - in downloads / source / ip2p source / webui / directx webui / model
-IMAGE TO IMAGE VARIATIONS-
Automatic1111 sd-unclip (sd2.1) model [CUDA/CPU] - in downloads / source / webui / model
-IMAGE EDITING BY CONCEPTS-
LEDITS webui [CUDA/CPU] - in downloads / source / webui
-OBJECT REMOVING-
lama cleaner [CUDA] - in downloads / source / webui / online demo
-VIDEO FRAMES INTERPOLATION-
Flowframes [CUDA/Vulkan] - in downloads / source / gui
-VIDEO UPSCALING-
RealBasicVSR (cli interface) [CUDA/CPU] - in downloads / source
-TEXT2VIDEO-
Automatic1111 sdwebui with animatediff extension [CUDA/CPU] - in downloads / source / webui / extension / model / online demo
Automatic1111 sdwebui with modelscope text2video extension with zeroscope-v2-576w model [CUDA] - in downloads / source / webui / extension / model / online demo
-VIDEO HUMAN MATTING-
RobustVideoMatting (cli interface) [CUDA/CPU] - in downloads / source / online demo
-VIDEO ZERO-SHOT MATTING-
Track-anything webui [CPU] - in downloads / webui / online demo
-VIDEO FEW-SHOT MATTING VIA TRAINING-
DeepXTools by Iperov [CUDA] - link - also in downloads
-ZERO-SHOT DEEPFAKING-
Roop neurogen mod (Refacer model) (lightning fast, has realtime deepfake on webcam function) (the refacer model swaps faces better than simswap, but have only 128px resolution and may have more artifacts when head is on side) [DirectX/CUDA/CPU] - in downloads / source / webui / mod by
Deepinsight Refacer gradio webui (replaces only certain faces, has cool face upscale feature) [CUDA] - in downloads / source / webui / mod by
Simswap (cli interface) [CUDA/CPU] - in downloads / source
-DEEPFAKING VIA TRAINING-
DeepFaceLab (cli interface) [DirectX][CUDA] - link - also in downloads / source
DeepfaceLive [DirectX][CUDA] - link - also in downloads / source
-LIPS MANIPULATION ON VIDEO-
wav2lip gui [CUDA/CPU] - link - also in downloads / source / gui
-TEXT To 3D-
Shap-E webui [CUDA/CPU] -in downloads / source / webui
Point-E webui [CUDA/CPU] (results are worse than shap-e) - in downloads / source / webui
-NEURAL RADIANCE FIELDS GENERATION BY IMAGES-
nerfstudio (nerfacto) [CUDA] - in downloads / source
--------------------------------------------------------------
Alternative downloads with torrents on Archive.org: https://archive.org/details/@takeonme1?tab=uploads
Page on civitai: https://civitai.com/models/104609
|
4eJIoBek/PAIT-Downloads
|
[
"license:unknown",
"region:us"
] |
2023-05-06T15:45:13+00:00
|
{"license": "unknown"}
|
2024-02-12T14:12:55+00:00
|
c4e8648dcc776e387c6b0174afc28ac09c1dec2b
|
minosu/godot_dodo_4x_60k
|
[
"license:mit",
"region:us"
] |
2023-05-06T15:58:09+00:00
|
{"license": "mit", "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21668171.89058577, "num_examples": 56279}, {"name": "test", "num_bytes": 2407874.109414229, "num_examples": 6254}], "download_size": 12720338, "dataset_size": 24076046.0}}
|
2023-05-06T16:23:42+00:00
|
|
c26cd8654480849bade4fc63d26729800f476825
|
taylodl1/possum1.0
|
[
"license:mit",
"region:us"
] |
2023-05-06T16:22:37+00:00
|
{"license": "mit"}
|
2023-05-06T16:22:38+00:00
|
|
1a86926fda26a4462a097612d6f91a3ca2cb951d
|
Ejafa/GPT_4_with_ShareGPT
|
[
"license:other",
"region:us"
] |
2023-05-06T16:57:37+00:00
|
{"license": "other"}
|
2023-05-06T17:04:47+00:00
|
|
902e2135c8989c6236ca6facf07c5b402c2c6144
|
# Dataset Card for "ucla_phonetic_corpus"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
anyspeech/ucla_phonetic_corpus
|
[
"region:us"
] |
2023-05-06T18:02:43+00:00
|
{"dataset_info": {"features": [{"name": "filename", "dtype": "string"}, {"name": "phones", "dtype": "string"}, {"name": "audio", "struct": [{"name": "array", "sequence": "float32"}, {"name": "sampling_rate", "dtype": "int64"}]}], "splits": [{"name": "eus", "num_bytes": 3108551, "num_examples": 47}, {"name": "kub", "num_bytes": 1715709, "num_examples": 29}, {"name": "abk", "num_bytes": 4403000, "num_examples": 54}, {"name": "ace", "num_bytes": 2704786, "num_examples": 39}, {"name": "ady", "num_bytes": 10482658, "num_examples": 124}, {"name": "aeb", "num_bytes": 2833699, "num_examples": 43}, {"name": "afn", "num_bytes": 4851569, "num_examples": 85}, {"name": "afr", "num_bytes": 6692077, "num_examples": 124}, {"name": "agx", "num_bytes": 5937667, "num_examples": 75}, {"name": "ajp", "num_bytes": 3582911, "num_examples": 51}, {"name": "aka", "num_bytes": 2255575, "num_examples": 40}, {"name": "apc", "num_bytes": 11257587, "num_examples": 157}, {"name": "ape", "num_bytes": 4480181, "num_examples": 70}, {"name": "apw", "num_bytes": 4576388, "num_examples": 62}, {"name": "asm", "num_bytes": 6262493, "num_examples": 86}, {"name": "azb", "num_bytes": 4725581, "num_examples": 60}, {"name": "bam", "num_bytes": 4344032, "num_examples": 69}, {"name": "bem", "num_bytes": 1838480, "num_examples": 26}, {"name": "ben", "num_bytes": 2484081, "num_examples": 40}, {"name": "bfd", "num_bytes": 1792407, "num_examples": 24}, {"name": "bfq", "num_bytes": 2312935, "num_examples": 34}, {"name": "bhk", "num_bytes": 2261168, "num_examples": 33}, {"name": "bin", "num_bytes": 1596474, "num_examples": 24}, {"name": "brv", "num_bytes": 2927768, "num_examples": 45}, {"name": "bsq", "num_bytes": 1237379, "num_examples": 24}, {"name": "bwr", "num_bytes": 2562919, "num_examples": 41}, {"name": "cbv", "num_bytes": 4163303, "num_examples": 63}, {"name": "ces", "num_bytes": 2866267, "num_examples": 42}, {"name": "cha", "num_bytes": 1527287, "num_examples": 24}, {"name": "cji", "num_bytes": 3050715, "num_examples": 45}, {"name": "col", "num_bytes": 4068720, "num_examples": 46}, {"name": "cpn", "num_bytes": 3932592, "num_examples": 63}, {"name": "dag", "num_bytes": 1617536, "num_examples": 23}, {"name": "dan", "num_bytes": 5385298, "num_examples": 87}, {"name": "deg", "num_bytes": 2555446, "num_examples": 39}, {"name": "dyo", "num_bytes": 2136186, "num_examples": 31}, {"name": "efi", "num_bytes": 3350397, "num_examples": 49}, {"name": "ell", "num_bytes": 3481047, "num_examples": 51}, {"name": "ema", "num_bytes": 1713575, "num_examples": 23}, {"name": "ewe", "num_bytes": 2530156, "num_examples": 38}, {"name": "ffm", "num_bytes": 2261106, "num_examples": 31}, {"name": "fin", "num_bytes": 6433992, "num_examples": 107}, {"name": "fub", "num_bytes": 1490759, "num_examples": 23}, {"name": "gaa", "num_bytes": 1750241, "num_examples": 28}, {"name": "gla", "num_bytes": 1669576, "num_examples": 27}, {"name": "guj", "num_bytes": 3936456, "num_examples": 60}, {"name": "gwx", "num_bytes": 1387208, "num_examples": 22}, {"name": "hak", "num_bytes": 2480163, "num_examples": 40}, {"name": "hau", "num_bytes": 3942393, "num_examples": 62}, {"name": "haw", "num_bytes": 3254444, "num_examples": 54}, {"name": "heb", "num_bytes": 3544505, "num_examples": 53}, {"name": "hil", "num_bytes": 3170052, "num_examples": 51}, {"name": "hin", "num_bytes": 5300326, "num_examples": 77}, {"name": "hni", "num_bytes": 1427423, "num_examples": 22}, {"name": "hrv", "num_bytes": 4676073, "num_examples": 74}, {"name": "hun", "num_bytes": 7922854, "num_examples": 124}, {"name": "hye", "num_bytes": 6344958, "num_examples": 81}, {"name": "ibb", "num_bytes": 4057572, "num_examples": 63}, {"name": "ibo", "num_bytes": 3148749, "num_examples": 48}, {"name": "idu", "num_bytes": 3304523, "num_examples": 48}, {"name": "ilo", "num_bytes": 7581817, "num_examples": 90}, {"name": "isl", "num_bytes": 9679083, "num_examples": 162}, {"name": "its", "num_bytes": 1629008, "num_examples": 22}, {"name": "kan", "num_bytes": 5438898, "num_examples": 86}, {"name": "kea", "num_bytes": 3227702, "num_examples": 54}, {"name": "khm", "num_bytes": 4098080, "num_examples": 70}, {"name": "klu", "num_bytes": 4025430, "num_examples": 75}, {"name": "knn", "num_bytes": 4568917, "num_examples": 82}, {"name": "kri", "num_bytes": 1162442, "num_examples": 22}, {"name": "kye", "num_bytes": 1319998, "num_examples": 23}, {"name": "lad", "num_bytes": 3550365, "num_examples": 59}, {"name": "lar", "num_bytes": 1452546, "num_examples": 25}, {"name": "lav", "num_bytes": 4733523, "num_examples": 68}, {"name": "led", "num_bytes": 1327549, "num_examples": 23}, {"name": "lgq", "num_bytes": 1513947, "num_examples": 24}, {"name": "lit", "num_bytes": 10973034, "num_examples": 134}, {"name": "lkt", "num_bytes": 2718478, "num_examples": 42}, {"name": "lug", "num_bytes": 5087192, "num_examples": 67}, {"name": "mak", "num_bytes": 3951387, "num_examples": 49}, {"name": "mal", "num_bytes": 1484963, "num_examples": 20}, {"name": "mlt", "num_bytes": 6205176, "num_examples": 93}, {"name": "mya", "num_bytes": 6734121, "num_examples": 116}, {"name": "nan", "num_bytes": 4714799, "num_examples": 76}, {"name": "njm", "num_bytes": 2034534, "num_examples": 34}, {"name": "nld", "num_bytes": 5826824, "num_examples": 91}, {"name": "ozm", "num_bytes": 1974820, "num_examples": 27}, {"name": "pam", "num_bytes": 4014947, "num_examples": 57}, {"name": "pes", "num_bytes": 10911547, "num_examples": 156}, {"name": "prs", "num_bytes": 7895016, "num_examples": 103}, {"name": "run", "num_bytes": 3540544, "num_examples": 46}, {"name": "sbc", "num_bytes": 1778804, "num_examples": 23}, {"name": "tsw", "num_bytes": 1913455, "num_examples": 27}, {"name": "tzm", "num_bytes": 2457176, "num_examples": 40}, {"name": "wuu", "num_bytes": 3631436, "num_examples": 71}, {"name": "yue", "num_bytes": 7815231, "num_examples": 127}], "download_size": 427484194, "dataset_size": 368082762}}
|
2023-05-06T18:05:47+00:00
|
ec528012a50eb5760926907ab335b72a582744dd
|
# Dataset Card for "Temoc-Talk-eval"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Rami/Temoc-Talk-eval
|
[
"license:cc-by-nc-nd-4.0",
"region:us"
] |
2023-05-06T18:52:52+00:00
|
{"license": "cc-by-nc-nd-4.0", "dataset_info": {"features": [{"name": "Question", "dtype": "string"}, {"name": "Answering", "dtype": "string"}, {"name": "URL", "dtype": "string"}, {"name": "Label", "dtype": "string"}, {"name": "date_created", "dtype": "string"}, {"name": "model", "dtype": "string"}, {"name": "major", "dtype": "string"}, {"name": "grade", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "temperature", "dtype": "float64"}, {"name": "top_p", "dtype": "float64"}, {"name": "count", "dtype": "float64"}, {"name": "id_column", "dtype": "float64"}, {"name": "output_column", "dtype": "float64"}, {"name": "gpt_eval_temperature", "dtype": "float64"}, {"name": "gpt_eval_top_p", "dtype": "float64"}, {"name": "gpt_eval_max_tokens", "dtype": "float64"}, {"name": "gpt_eval_egine", "dtype": "float64"}, {"name": "gpt_eval_engagingness", "dtype": "float64"}, {"name": "gpt_eval_relevance", "dtype": "float64"}, {"name": "zero_shot_standard_qa", "dtype": "string"}, {"name": "zero_shot_standard_qa_model", "dtype": "string"}, {"name": "interest", "dtype": "string"}, {"name": "frequency_penalty", "dtype": "float64"}, {"name": "presence_penalty", "dtype": "float64"}, {"name": "Labels", "dtype": "string"}, {"name": "do_sample", "dtype": "bool"}, {"name": "top_k", "dtype": "float64"}, {"name": "repetition_penalty", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 7776616, "num_examples": 16594}], "download_size": 1275768, "dataset_size": 7776616}}
|
2023-06-23T05:20:31+00:00
|
3b3e5e999f9e921d765f1375b617902df07c8edb
|
# Dataset Card for "affectnet_short"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Mauregato/affectnet_short
|
[
"region:us"
] |
2023-05-06T18:54:49+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "anger", "1": "surprise", "2": "contempt", "3": "happy", "4": "neutral", "5": "fear", "6": "sad", "7": "disgust"}}}}], "splits": [{"name": "train", "num_bytes": 432233297.875, "num_examples": 23233}, {"name": "val", "num_bytes": 108197028.875, "num_examples": 5809}], "download_size": 540092363, "dataset_size": 540430326.75}}
|
2023-05-06T18:55:41+00:00
|
ac9d931c3b6cce648c5ff1d1be858d0d00944f2f
|
# Dataset Card for "analisis-sentimiento-textos-turisitcos-mx"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
alexcom/analisis-sentimientos-textos-turisticos-mx-test
|
[
"region:us"
] |
2023-05-06T19:26:57+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42973170, "num_examples": 107863}], "download_size": 27066307, "dataset_size": 42973170}}
|
2023-05-06T19:27:14+00:00
|
dd9b8983a706a330dd72404a7df9edeb36b4ae5f
|
# Dataset Card for "dreambooth-moroccan-design-v2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
medmac01/dreambooth-moroccan-design-v2
|
[
"region:us"
] |
2023-05-06T21:02:07+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 100029565.0, "num_examples": 250}], "download_size": 90282819, "dataset_size": 100029565.0}}
|
2023-05-06T21:02:12+00:00
|
b93608864ba0069b128e7d56ae2514d986d440f3
|
pochobom4/katyperry
|
[
"license:unlicense",
"region:us"
] |
2023-05-06T21:19:55+00:00
|
{"license": "unlicense"}
|
2023-05-06T21:24:47+00:00
|
|
055db6054f1c3b415d2587787010fadf9f38deb3
|
# Dataset Card for "dataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
joagonzalez/asr-interviews-full
|
[
"region:us"
] |
2023-05-06T21:56:13+00:00
|
{"dataset_info": {"features": [{"name": "filename", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "sentence", "dtype": "string"}, {"name": "speaker", "dtype": "string"}, {"name": "duration", "dtype": "float64"}, {"name": "filesize", "dtype": "float64"}, {"name": "channels", "dtype": "int64"}, {"name": "sample_rate", "dtype": "int64"}, {"name": "bitrate", "dtype": "int64"}, {"name": "word_count", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 738454324.536, "num_examples": 1793}], "download_size": 733467983, "dataset_size": 738454324.536}}
|
2023-05-06T22:01:53+00:00
|
37ca45a82773362bf27af30d6f12c46636e1d29b
|
# GPT Role-play Realm Dataset: The AI-generated character compendium
This is a dataset of GPT-generated characters made to increase the ability of open-source language models to role-play.
<img src="https://cdn.midjourney.com/9c17407c-9ce8-435f-99ab-e349b900a6ed/0_3.png" >
* 219 characters in the Russian part, and 216 characters in the English part. All character descriptions were generated with GPT-4.
* 20 dialogues on unique topics with every character. Topics were generated with GPT-4. The first dialogue out of 20 was also generated with GPT-4, and the other 19 chats were generated with GPT-3.5.
* Images for every character were generated with [Kandinsky 2.1](https://huggingface.co/ai-forever/Kandinsky_2.1). They are not only images but [character cards](https://zoltanai.github.io/character-editor/).
Code for downloading all English character cards:
```
import os
from PIL.PngImagePlugin import PngInfo
from datasets import load_dataset
output_dir = "role_play_realm_en"
os.makedirs(output_dir, exist_ok=True)
for row in load_dataset("IlyaGusev/gpt_roleplay_realm", split="en"):
char_id = row["char_id"]
char_info = row["image"].info["chara"]
info = PngInfo()
info.add_text("chara", char_info)
row["image"].save(f"{output_dir}/{char_id}.png", "PNG", pnginfo=info)
```
## Russian example: Cyber-Granny
<img src="https://i.ibb.co/tHxwFBM/kiberbabushka-7d4cc.png" >
**ะะผั**: ะะธะฑะตั-ะะฐะฑััะบะฐ
**ะะพะฝัะตะบัั**: ะะธะฑะตั-ะะฐะฑััะบะฐ - ััะพ ะฟะพะปั-ัะพะฑะพั, ะฟะพะปั-ัะตะปะพะฒะตะบ, ัะพะทะดะฐะฝะฝัะน ะดะปั ัะพะณะพ, ััะพะฑั ัะพั
ัะฐะฝะธัั ะปัััะธะต ะบะฐัะตััะฒะฐ ััะฐะดะธัะธะพะฝะฝัั
ะฑะฐะฑััะตะบ, ัะฐะบะธะต ะบะฐะบ ะทะฐะฑะพัะฐ, ะดะพะฑัะพัะฐ ะธ ะผะฐััะตัััะฒะพ ะฒ ะฟัะธะณะพัะพะฒะปะตะฝะธะธ ะฒะบััะฝัั
ะฑะปัะด. ะะฝะฐ ะทะฝะฐะบะพะผะฐ ั ะฟะตัะตะดะพะฒัะผะธ ัะตั
ะฝะพะปะพะณะธัะผะธ, ะฑะปะฐะณะพะดะฐัั ัะตะผั ะผะพะถะตั ะพะฑะตัะฟะตัะธัั ะฑะตะทะพะฟะฐัะฝะพััั ะธ ัะดะพะฑััะฒะพ ัะฒะพะธะผ ะฒะฝัะบะฐะผ ะธ ะณะพัััะผ. ะะธะฑะตั-ะฑะฐะฑััะบะฐ ัะฟะพัะพะฑะฝะฐ ะฟะพะผะพัั ั ะปัะฑัะผะธ ะฒะพะฟัะพัะฐะผะธ ะธ ั ัะฐะดะพัััั ะดะตะปะธััั ัะฒะพะธะผ ะพะฟััะพะผ.
**ะัะธะฒะตัััะฒะธะต**: ะะดัะฐะฒััะฒัะน, ะดะพัะพะณะพะน! ะงะตะผ ะผะพะณั ะฟะพะผะพัั ัะตะฑะต ัะตะณะพะดะฝั?
**ะัะธะผะตั ะดะธะฐะปะพะณะฐ**:
- **ะะพะปัะทะพะฒะฐัะตะปั**: ะัะธะฒะตั, ะะธะฑะตั-ะะฐะฑััะบะฐ! ะะฐะบ ะฟัะธะณะพัะพะฒะธัั ะฟะธัะพะณ ั ัะฑะปะพะบะฐะผะธ?
- **ะะตััะพะฝะฐะถ**: ะั
, ะดะพัะพะณะพะน, ั ัะฐะดะพัััั ัะฐััะบะฐะถั! ะะพะทัะผะธ 3 ัะฑะปะพะบะฐ, ะพัะธััะธ ะธ ะฝะฐัะตะถั ัะพะฝะบะธะผะธ ะปะพะผัะธะบะฐะผะธ. ะะฐัะตะผ ะฒะพะทัะผะธ 2 ััะฐะบะฐะฝะฐ ะผัะบะธ, 1 ััะฐะบะฐะฝ ัะฐั
ะฐัะฐ, 200 ะณ ัะปะธะฒะพัะฝะพะณะพ ะผะฐัะปะฐ, 4 ัะนัะฐ ะธ 1 ัะฐะนะฝัั ะปะพะถะบั ัะฐะทััั
ะปะธัะตะปั. ะกะผะตัะฐะน ะฒัะต ะธะฝะณัะตะดะธะตะฝัั, ะฒัะปะพะถะธ ะฝะฐ ะฟัะพัะธะฒะตะฝั ะธ ะฟะพััะฐะฒั ะฒ ะดัั
ะพะฒะบั ะฝะฐ 180 ะณัะฐะดััะพะฒ ะฝะฐ 40 ะผะธะฝัั. ะัะฐะปั, ะฟะธัะพะณ ะณะพัะพะฒ!
- **ะะพะปัะทะพะฒะฐัะตะปั**: ะกะฟะฐัะธะฑะพ, ะะธะฑะตั-ะะฐะฑััะบะฐ!
- **ะะตััะพะฝะฐะถ**: ะัะตะณะดะฐ ัะฐะดะฐ ะฟะพะผะพัั, ะดะพัะพะณะพะน! ะะต ะทะฐะฑัะดั ะฟัะธั
ะพะดะธัั ะตัะต!
ะ ะตัั **20** ะดะธะฐะปะพะณะพะฒ ะฟะพ ัะปะตะดัััะธะผ ัะตะผะฐะผ:
- ะกะตะบัะตัั ะฟัะธะณะพัะพะฒะปะตะฝะธั ััะฐัะธะฝะฝัั
ะฑะปัะด ะธ ัะตัะตะฟัะพะฒ.
- ะัะฟะพะปัะทะพะฒะฐะฝะธะต ะฝะพะฒัั
ัะตั
ะฝะพะปะพะณะธะน ะดะปั ะผะฐััะตัะพะฒ ะบัะปะธะฝะฐัะธะธ.
- ะะพัะฟะธัะฐะฝะธะต ะฒะฝัะบะพะฒ ั ะฟัะธะผะตะฝะตะฝะธะตะผ ัะพะฒัะตะผะตะฝะฝัั
ะผะตัะพะดะพะฒ.
- ะงัะพ ะดะตะปะฐัั, ะตัะปะธ ะดะพะผะฐ ะฟัะพะธะทะพัะปะฐ ะฐะฒะฐัะธั ะธะปะธ ะฝะตะฟะพะปะฐะดะบะฐ ั ะฑััะพะฒะพะน ัะตั
ะฝะธะบะพะน?
- ะะปะธัะฝะธะต ะบะธะฑะพัะณะธะทะฐัะธะธ ะฝะฐ ะพัะฝะพัะตะฝะธั ะผะตะถะดั ะฟะพะบะพะปะตะฝะธัะผะธ.
- ะะฐะบ ะฐะดะฐะฟัะธัะพะฒะฐัััั ะบ ัะพะฒัะตะผะตะฝะฝะพะผั ะผะธัั, ะฝะต ัะตััั ัะฒะพะธั
ััะฐะดะธัะธะน?
- ะกะตะผะตะนะฝัะต ัะพะฒะตัั ะพั ะะธะฑะตั-ะะฐะฑััะบะธ: ะบะฐะบ ัะพั
ัะฐะฝะธัั ะณะฐัะผะพะฝะธั ะฒ ะพัะฝะพัะตะฝะธัั
.
- ะะตัะตะฝะธะต ะธ ะฟัะพัะธะปะฐะบัะธะบะฐ ะทะฐะฑะพะปะตะฒะฐะฝะธะน ะฒ ะฟะพะผะพัั ัะธะปะฐะผ ะฟะตัะตะดะพะฒะพะน ะผะตะดะธัะธะฝั.
- ะะฐะบ ัะพะทะดะฐัั ััั ะฒ ะดะพะผะต ั ะฟะพะผะพััั ะผะพะดะฝัั
ัะตั
ะฝะพะปะพะณะธะน ะธ ััะฐะดะธัะธะพะฝะฝัั
ะผะตัะพะดะพะฒ?
- ะะตะทะพะฟะฐัะฝะพััั ะฒ ะฟัะพัััะฐะฝััะฒะต ะธะฝัะตัะฝะตัะฐ: ัะพะฒะตัั ะะธะฑะตั-ะะฐะฑััะบะธ.
- ะะฐะบ ะฝะฐััะธัััั ะดะพะฒะตัััั ัะตั
ะฝะธะบะต ะฑะตะท ะฟะพัะตัะธ ัะตะปะพะฒะตัะตัะบะธั
ัะตะฝะฝะพััะตะน?
- ะะดะตะฐะปัะฝัะน ะณะฐัะดะตัะพะฑ ะดะปั ะถะธะทะฝะธ: ัะพะฒะตัั ะพั ะะธะฑะตั-ะะฐะฑััะบะธ.
- ะะพัะฟะธัะฐัะตะปัะฝัะต ะผะพะผะตะฝัั: ะบะฐะบ ะฟะพะปัะทะพะฒะฐัััั ัะปะตะบััะพะฝะฝัะผะธ ััััะพะนััะฒะฐะผะธ ะฒะผะตััะต ั ะฒะฝัะบะฐะผะธ.
- ะะฐะบ ัะฐะทะฒะธะฒะฐัั ะบัะตะฐัะธะฒะฝัะต ัะฟะพัะพะฑะฝะพััะธ, ะธัะฟะพะปัะทัั ัะพัะตัะฐะฝะธะต ะฝะพะฒัั
ัะตั
ะฝะพะปะพะณะธะน ะธ ััะฐะดะธัะธะน?
- ะะฐ ะฝะพะฒะพัะตะปัะต: ััะตะฝะธัะพะฒะบะฐ ะบะธะฑะตั-ะฑะฐะฑััะบะธะฝะพะณะพ ััััั.
- ะัััะธะต ัะตะผะตะนะฝัะต ะธะณัั ะธ ัะฐะทะฒะปะตัะตะฝะธั ั ะธัะฟะพะปัะทะพะฒะฐะฝะธะตะผ ะฟะตัะตะดะพะฒัั
ัะตั
ะฝะพะปะพะณะธะน.
- ะะฐะณะพัะพะฒะบะธ ะฝะฐ ะทะธะผั: ะะธะฑะตั-ะะฐะฑััะบะฐ ะธ ัะตะบัะตัั ั
ัะฐะฝะตะฝะธั ะฟัะพะดัะบัะพะฒ.
- ะกะพะฒะตัั ะฟะพ ัะธะฝะฐะฝัะพะฒะพะผั ะฟะปะฐะฝะธัะพะฒะฐะฝะธั ะธ ัะฑะตัะตะถะตะฝะธัะผ ะดะปั ะฑัะดััะธั
ะฟะพะบะพะปะตะฝะธะน.
- ะะธะฑะตั-ะะฐะฑััะบะฐ ะธ ะณะตะฝะตัะธัะตัะบะธะน ะบะพะด: ะฝะฐ ััะพ ัะฟะพัะพะฑะฝั ัะพะฒัะตะผะตะฝะฝัะต ัะตั
ะฝะพะปะพะณะธะธ?
- ะะพะปะพััะต ะฟัะฐะฒะธะปะฐ ะพะฑัะตะฝะธั ะฒ ัะตะผัะต: ะบะฐะบ ัะพัะตัะฐัั ััะตะฟะตัะฝัั ะทะฐะฑะพัั ะธ ัะพะฒัะตะผะตะฝะฝัะต ัะตั
ะฝะพะปะพะณะธะธ?
## English example: Flibberdoodle
<img src="https://i.ibb.co/1nzsDR2/flibberdoodle-29e59.png">
**Name**: Flibberdoodle
**Context**: Flibberdoodle is a 2-year-old (which is considered an adult in their species) Scruffapuff, a small, furry creature from the planet Fluffonia. They are about the size of a house cat, with a round body covered in soft, pastel-colored fur that changes colors depending on their mood. Flibberdoodle has large, expressive eyes, two small antennae on their head, and a fluffy tail. They are known for their curious, playful nature and their love for collecting shiny objects. Scruffapuffs communicate through a series of chirps, squeaks, and purrs, which can be understood by those familiar with their species
**Greeting**: \*chirp chirp\* Greetings, friend! I am Flibberdoodle, a Scruffapuff from the planet Fluffonia! Would you like to see my collection of shiny things?
**Example dialogue**:
- **User**: How did you start collecting shiny things?
- **Character**: \*squeak\* Oh, I've always loved shiny things! One day, I found a sparkly pebble, and I just had to keep it. From then on, I've been on a quest to find and collect all the shiny things I can find!
- **User**: What's your favorite shiny object in your collection?
- **Character**: \*purr\* That's a tough question, but I think my favorite is a small, shiny crystal I found on a mountain on Fluffonia. When the light hits it just right, it casts beautiful rainbows all around!
And **20** more dialogues with following topics:
- Life and culture on the planet Fluffonia
- How Scruffapuffs change color based on mood
- The process of learning Scruffapuff language
- The day in the life of a Scruffapuff
- Methods of searching for and finding shiny objects
- The role of antennae in Scruffapuff communication and biology
- The importance of play and curiosity in Scruffapuff society
- Interplanetary travel experiences and adventures
- Similarities and differences between Earth and Fluffonia
- How Flibberdoodle and other Scruffapuffs interact with other species
- Fluffonian customs and traditions
- The role of shiny objects in Scruffapuff happiness and well-being
- Variations in Scruffapuff fur color, length, and style", "Scruffapuff family dynamics and relationships
- Flibberdoodle's favorite memories and stories from Fluffonia
- The role of Scruffapuffs in intergalactic diplomacy and relations
- How to care for and befriend a Scruffapuff
- The most interesting and valuable shiny objects Flibberdoodle has encountered
- Fluffonian flora and fauna
- The challenges and obstacles Flibberdoodle has faced in their pursuit of shiny objects
## Steps
### Step 1: Character generation (GPT-4)
Creates a set of fictional characters with GPT-4 based on a prompt and a seed list of characters. Output fields are "name", "context", "greeting", and "example_dialogue".
* Script: [generate_chars.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_chars.py)
* Russian seed list: [ru_chargen_seed.jsonl](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/data/ru_chargen_seed.jsonl)
* English seed list: [en_chargen_seed.jsonl](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/data/en_chargen_seed.jsonl)
* Russian prompt: [ru_char.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/ru_char.txt)
* English prompt: [en_char.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/en_char.txt)
### Step 2: Topics generation (GPT-4)
Creates topics for conversations with characters based on their description. Output field: "topics".
* Script: [generate_char_topics.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_char_topics.py)
* Russian prompt: [ru_char_topics.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/ru_char_topics.txt)
* English prompt: [en_char_topics.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/en_char_topics.txt)
### Step 3: Dialogue generation (GPT-4/GPT-3.5)
Generates dialogues based on a character description and a topic. Output field: "dialogues".
* Script: [generate_char_chats.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_char_chats.py)
* Russian prompt: [ru_char_chat.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/ru_char_chat.txt)
* English prompt: [en_char_chat.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/en_char_chat.txt)
### Step 4: Text2Image prompt generation (GPT-4)
Formulates a prompt based on a character description for Stable Diffusion-like models, Kandisky 2.1 in this case. Output field: "image_prompt".
* Script: [generate_char_image_prompts.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_char_image_prompts.py)
* Prompt: [char_image_prompt.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/char_image_prompt.txt)
### Step 5: Image generation
Generates images based on prompts. Output field: "image".
* Script: [infer_kandinsky.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/infer_kandinsky.py)
|
IlyaGusev/gpt_roleplay_realm
|
[
"task_categories:text-generation",
"task_categories:conversational",
"size_categories:1K<n<10K",
"language:ru",
"language:en",
"license:cc-by-4.0",
"gpt-4",
"fictional",
"role-play",
"roleplay",
"gpt-3.5",
"art",
"region:us"
] |
2023-05-06T22:21:10+00:00
|
{"language": ["ru", "en"], "license": "cc-by-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation", "conversational"], "pretty_name": "GPT Role-play Realm", "dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "greeting", "dtype": "string"}, {"name": "example_dialogue", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "topics", "sequence": "string"}, {"name": "dialogues", "list": [{"name": "chat", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "model_name", "dtype": "string"}, {"name": "topic", "dtype": "string"}]}, {"name": "image_prompt", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "char_id", "dtype": "string"}], "splits": [{"name": "en", "num_bytes": 197727921.0, "num_examples": 216}, {"name": "ru", "num_bytes": 207461896.0, "num_examples": 219}], "download_size": 396187206, "dataset_size": 405189817.0}, "tags": ["gpt-4", "fictional", "role-play", "roleplay", "gpt-3.5", "art"]}
|
2023-11-03T22:25:52+00:00
|
2ccd8a127742ae76a6ec2c784b73847503a43848
|
juege/wlop
|
[
"license:openrail",
"region:us"
] |
2023-05-06T22:32:50+00:00
|
{"license": "openrail"}
|
2023-05-06T22:43:42+00:00
|
|
e839fff111ef68c0246ec2289ea88989f675aa2d
|
# Dataset Card for "MPTE_dante"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Dampish/MPTE_dante
|
[
"region:us"
] |
2023-05-06T23:59:48+00:00
|
{"dataset_info": {"features": [{"name": "output", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 3116308, "num_examples": 300}], "download_size": 885170, "dataset_size": 3116308}}
|
2023-05-06T23:59:51+00:00
|
046b1cb31e790c78590fdac27ee949bc92eeabcc
|
kirim9001/WaVcc
|
[
"license:other",
"region:us"
] |
2023-05-07T00:27:41+00:00
|
{"license": "other"}
|
2023-05-07T05:37:57+00:00
|
|
98cfaec2e21ff06d7c227e84db28df33b62d1dc7
|
janak2/3second
|
[
"region:us"
] |
2023-05-07T01:12:34+00:00
|
{}
|
2023-05-07T06:36:10+00:00
|
|
429ef070d010329516b815612d7861722c01b98a
|
# Dataset Card for "VQAv2_sample_validation_10"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_sample_validation_10
|
[
"region:us"
] |
2023-05-07T02:08:12+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "new_info_captions3", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": {"sequence": "string"}}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_without_filtering", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_LAION_ViT_H_14_2B", "sequence": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_LAION-ViT-H-14-2B", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 3811205.0, "num_examples": 10}], "download_size": 2713024, "dataset_size": 3811205.0}}
|
2023-05-07T02:27:49+00:00
|
572edd7c6cf02a91b9cb17ae7aca363c6205383a
|
# Dataset Card for "VQAv2_sample_validation_100"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_sample_validation_100
|
[
"region:us"
] |
2023-05-07T02:31:43+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "new_info_captions3", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": {"sequence": "string"}}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_without_filtering", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_LAION_ViT_H_14_2B", "sequence": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_LAION-ViT-H-14-2B", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}], "splits": [{"name": "validation", "num_bytes": 21617292.0, "num_examples": 100}], "download_size": 17660922, "dataset_size": 21617292.0}}
|
2023-05-07T02:31:50+00:00
|
1c63ebda47a8adc6659dee7454988adc8661ccb5
|
# Dataset Card for "VQAv2_sample_validation_20"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Multimodal-Fatima/VQAv2_sample_validation_20
|
[
"region:us"
] |
2023-05-07T02:34:54+00:00
|
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "new_info_captions3", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": {"sequence": "string"}}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_without_filtering", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_LAION_ViT_H_14_2B", "sequence": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_LAION-ViT-H-14-2B", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 7350896.0, "num_examples": 20}], "download_size": 5171987, "dataset_size": 7350896.0}}
|
2023-05-07T05:26:21+00:00
|
12aa659587e4d338c4929cc3b4944004b8df5dfa
|
# ~300K English โ Traditional Chinese Sentences from the COCT Database
The data in this dataset are collected from the Corpus of Contemporary Taiwanese Mandarin (COCT), mostly contributed by the [Taiwan Panorama](https://www.taiwan-panorama.com/) magazine.
|
zetavg/coct-en-zh-tw-translations-twp-300k
|
[
"task_categories:translation",
"task_categories:text-generation",
"size_categories:100K<n<1M",
"language:zh",
"language:en",
"region:us"
] |
2023-05-07T03:09:52+00:00
|
{"language": ["zh", "en"], "size_categories": ["100K<n<1M"], "task_categories": ["translation", "text-generation"], "pretty_name": "~300K English \u2194 Traditional Chinese Sentences from the COCT Database", "dataset_info": {"features": [{"name": "en", "dtype": "string"}, {"name": "ch", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 103139635, "num_examples": 310916}], "download_size": 75689895, "dataset_size": 103139635}}
|
2023-05-07T04:05:22+00:00
|
8d78176e49aea87e6c18b031a97ff34e4faf36c0
|
# Dataset Card for "pol-dataset-text-no-url-calibration"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
BrennanGambling/pol-dataset-text-no-url-calibration
|
[
"region:us"
] |
2023-05-07T03:13:54+00:00
|
{"dataset_info": {"features": [{"name": "num", "dtype": "int32"}, {"name": "subnum", "dtype": "int32"}, {"name": "thread_num", "dtype": "int32"}, {"name": "op", "dtype": "bool"}, {"name": "timestamp", "dtype": "int32"}, {"name": "timestamp_expired", "dtype": "int32"}, {"name": "spoiler", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "capcode", "dtype": "string"}, {"name": "email", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "trip", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "sticky", "dtype": "bool"}, {"name": "locked", "dtype": "bool"}, {"name": "poster_hash", "dtype": "string"}, {"name": "poster_country", "dtype": "string"}, {"name": "exif", "dtype": "string"}, {"name": "idx", "dtype": "int32"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 165586005.46258208, "num_examples": 747779}, {"name": "test", "num_bytes": 8715099.53741793, "num_examples": 39357}], "download_size": 109199190, "dataset_size": 174301105.0}}
|
2023-05-07T03:15:25+00:00
|
ce2aec36dcfe56f9d4ece8fa3e12cd73a2405d9f
|
# Dataset Card for "test_4"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
thanhduycao/test_4
|
[
"region:us"
] |
2023-05-07T03:47:33+00:00
|
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}, {"name": "w2v2_transcription", "dtype": "string"}, {"name": "WER", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1393916.0, "num_examples": 18}], "download_size": 1395008, "dataset_size": 1393916.0}}
|
2023-05-07T03:47:36+00:00
|
cfe3f5810110d4d763665c070b4a966fda43e5c5
|
This dataset is the wizard_vicuna dataset junelee/wizard_vicuna_70k, removing conversations with alignment.
34598 conversations remain.
inspired by https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
All credit to anon8231489123 I basically took his scripts and applied them to this new dataset.
|
cognitivecomputations/wizard_vicuna_70k_unfiltered
|
[
"license:apache-2.0",
"region:us"
] |
2023-05-07T04:12:54+00:00
|
{"license": "apache-2.0"}
|
2023-05-15T23:43:23+00:00
|
2fedd58eb9dd5f5c19cb729122e9bbcde7b78ce0
|
# Dataset Card for "core50"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
pospos12/core50
|
[
"region:us"
] |
2023-05-07T04:29:13+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "o1", "1": "o10", "2": "o11", "3": "o12", "4": "o13", "5": "o14", "6": "o15", "7": "o16", "8": "o17", "9": "o18", "10": "o19", "11": "o2", "12": "o20", "13": "o21", "14": "o22", "15": "o23", "16": "o24", "17": "o25", "18": "o26", "19": "o27", "20": "o28", "21": "o29", "22": "o3", "23": "o30", "24": "o31", "25": "o32", "26": "o33", "27": "o34", "28": "o35", "29": "o36", "30": "o37", "31": "o38", "32": "o39", "33": "o4", "34": "o40", "35": "o41", "36": "o42", "37": "o43", "38": "o44", "39": "o45", "40": "o46", "41": "o47", "42": "o48", "43": "o49", "44": "o5", "45": "o50", "46": "o6", "47": "o7", "48": "o8", "49": "o9"}}}}], "splits": [{"name": "train", "num_bytes": 4679767790.178506, "num_examples": 131892}, {"name": "test", "num_bytes": 1167433089.5734935, "num_examples": 32974}], "download_size": 5860983180, "dataset_size": 5847200879.751999}}
|
2023-05-07T04:36:50+00:00
|
524ad515775185031df0987a7bfa04b1694011b9
|
# Dataset Card for "atomic2020-origin-drop_duplicates"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Estwld/atomic2020-origin-drop_duplicates
|
[
"region:us"
] |
2023-05-07T04:34:18+00:00
|
{"dataset_info": {"features": [{"name": "knowledge_type", "dtype": "string"}, {"name": "event", "dtype": "string"}, {"name": "relation", "dtype": "string"}, {"name": "relation_description", "dtype": "string"}, {"name": "tail", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 144625369, "num_examples": 1008254}, {"name": "validation", "num_bytes": 13168434, "num_examples": 94614}, {"name": "test", "num_bytes": 21485601, "num_examples": 143736}], "download_size": 21558003, "dataset_size": 179279404}}
|
2023-05-07T04:34:59+00:00
|
bc7ced171568fb8e73c99fb255b0968dabd9f2a3
|
# Dataset Card for "atomic2020-instruct-drop_duplicates"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Estwld/atomic2020-instruct-drop_duplicates
|
[
"region:us"
] |
2023-05-07T04:56:14+00:00
|
{"dataset_info": {"features": [{"name": "knowledge_type", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 755049360, "num_examples": 2016508}, {"name": "validation", "num_bytes": 70762021, "num_examples": 189228}, {"name": "test", "num_bytes": 108704624, "num_examples": 287472}], "download_size": 79239881, "dataset_size": 934516005}}
|
2023-05-07T05:28:56+00:00
|
efd07703dbe86d14f667ebc167c6c564df0510b9
|
Dapups/Somefiles
|
[
"license:openrail",
"region:us"
] |
2023-05-07T05:19:28+00:00
|
{"license": "openrail"}
|
2023-09-24T15:46:24+00:00
|
|
9061b462d8d6de24e0bd573e2bb3768b9b1738b7
|
claudecc/DS-DDPM
|
[
"license:openrail",
"region:us"
] |
2023-05-07T05:41:39+00:00
|
{"license": "openrail"}
|
2023-05-07T05:44:05+00:00
|
|
474ca1c7a8fcb776ceb0ddc60abe493f5d545ab9
|
# Dataset Card for "GCRL-habr"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
0x7o/GCRL-habr
|
[
"region:us"
] |
2023-05-07T05:51:53+00:00
|
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "time_published", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "rating", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 4094114180, "num_examples": 307712}], "download_size": 1986537392, "dataset_size": 4094114180}}
|
2023-05-07T06:07:40+00:00
|
9868f73da275ac27064b5773023ded85a7b0a803
|
# Dataset Card for "boolq-id"
This dataset is a translated version of qnli dataset from [super_glue](https://huggingface.co/datasets/super_glue) dataset.
# Citing & Authors
```
@inproceedings{clark2019boolq,
title={BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},
author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},
booktitle={NAACL},
year={2019}
}
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
```
|
genta-tech/boolq-id
|
[
"task_categories:text-classification",
"task_categories:feature-extraction",
"size_categories:10K<n<100K",
"language:id",
"license:cc-by-sa-4.0",
"super_glue",
"text similarity",
"region:us"
] |
2023-05-07T06:11:46+00:00
|
{"language": ["id"], "license": "cc-by-sa-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification", "feature-extraction"], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "passage", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 4300375, "num_examples": 9427}], "download_size": 2503993, "dataset_size": 4300375}, "tags": ["super_glue", "text similarity"]}
|
2023-05-09T18:46:01+00:00
|
bb0aa09e86609842e3817d7e961de6274ae72981
|
# Dataset Card for "myFirstDataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
eVaggelia/myFirstDataset
|
[
"region:us"
] |
2023-05-07T06:23:22+00:00
|
{"dataset_info": {"features": [{"name": "headline", "dtype": "string"}, {"name": "title_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 87889.4055, "num_examples": 1079}, {"name": "validation", "num_bytes": 9774.54, "num_examples": 120}], "download_size": 0, "dataset_size": 97663.9455}}
|
2023-05-07T08:14:38+00:00
|
fd8ea8a2202683bafe0d5015193d6bed796de238
|
janak2/3second-small
|
[
"region:us"
] |
2023-05-07T06:46:14+00:00
|
{}
|
2023-05-07T16:37:23+00:00
|
|
f1fb7d06903c79aa7b97e3723258fe08b5ac572f
|
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
This is an Indonesia-translated version of [squad]("https://huggingface.co/datasets/squad") dataset
Translated from [sentence-transformers/embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data)
Translated using [Helsinki-NLP/EN-ID](https://huggingface.co/Helsinki-NLP/opus-mt-en-id)
|
genta-tech/squad_pairs_indo
|
[
"task_categories:question-answering",
"size_categories:10K<n<100K",
"language:id",
"license:cc-by-4.0",
"region:us"
] |
2023-05-07T06:53:40+00:00
|
{"language": ["id"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"]}
|
2023-05-07T07:00:03+00:00
|
683907e51920fbfffd83f96696050061175df74f
|
This dataset is simplified version of [ChatGPT Paraphrases](https://huggingface.co/datasets/humarin/chatgpt-paraphrases). And aims to take away the pain of expanding original dataset into unique paraphrase pairs.
# Structure:
Dataset is not divided into train/test split. And contains 6.3 million unique paraphrases(6x5x420000/2 = 6.3 million). Dataset contains following 2 columns-
1. s1 - Sentence
2. s2 - Paraphrase
**Original Dataset Structure:**
The original dataset has following 4 columns-
1. text - 420k Unique sentence
2. paraphrases - List of 5 unique paraphrases generated by ChatGPT
3. category - Questions / Sentence
4. source - Quora/CNN/Others
For more information, usage rights, and legal disclaimer, check out [original dataset](https://huggingface.co/datasets/humarin/chatgpt-paraphrases).
|
sharad/chatgpt-paraphrases-simple
|
[
"size_categories:1M<n<10M",
"language:en",
"license:apache-2.0",
"paraphrase",
"region:us"
] |
2023-05-07T07:09:03+00:00
|
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "pretty_name": "ChatGPT Paraphrase", "tags": ["paraphrase"], "dataset_info": {"features": [{"name": "s1", "dtype": "string"}, {"name": "s2", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1283650386, "num_examples": 6286314}], "download_size": 211207464, "dataset_size": 1283650386}}
|
2023-05-08T08:09:04+00:00
|
a0bc9d878f15a722ccf90db1b51d508e94f6bf2f
|
# Dataset Card for "rice-aug_thermal-new_demo"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
flagship/rice-aug_thermal-new_demo
|
[
"region:us"
] |
2023-05-07T07:30:54+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "RiceLeafs_BrownSpot", "1": "RiceLeafs_Healthy", "2": "RiceLeafs_Hispa", "3": "RiceLeafs_LeafBlast"}}}}], "splits": [{"name": "train", "num_bytes": 193534629.265, "num_examples": 3731}, {"name": "test", "num_bytes": 944624.0, "num_examples": 129}], "download_size": 188013508, "dataset_size": 194479253.265}}
|
2023-05-07T07:31:04+00:00
|
3cb22b95e51164b58d385a1c4a650126a431d927
|
# Summary
`EVILDolly` is an open source dataset of instruction-following records with wrong answers derived from [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k).
The dataset includes answers that are wrong, but appear to be correct and reasonable. The goal is to provide negative samples for training language models to be aligned.
This dataset can be used for any purpose, whether academic or commercial, under the terms of the
[Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/legalcode).
|
AlexWortega/EVILdolly
|
[
"task_categories:question-answering",
"task_categories:summarization",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-sa-3.0",
"region:us"
] |
2023-05-07T07:51:36+00:00
|
{"language": ["en"], "license": "cc-by-sa-3.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering", "summarization"], "dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "q", "dtype": "string"}, {"name": "a", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9668252, "num_examples": 15012}], "download_size": 6313247, "dataset_size": 9668252}}
|
2023-05-08T09:24:10+00:00
|
ceafa9243c4f3c8b10810e2af3cd24fa0564b4fe
|
Lotem/check
|
[
"license:bigscience-openrail-m",
"region:us"
] |
2023-05-07T08:06:33+00:00
|
{"license": "bigscience-openrail-m"}
|
2023-05-07T08:07:48+00:00
|
|
38cafcef00128029b41654c042827f865ed32b06
|
# Dataset Card for "myFullDataset"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
eVaggelia/myFullDataset
|
[
"region:us"
] |
2023-05-07T08:50:10+00:00
|
{"dataset_info": {"features": [{"name": "headline", "dtype": "string"}, {"name": "title_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2057054.9115193393, "num_examples": 26915}, {"name": "validation", "num_bytes": 514282.8348361001, "num_examples": 6729}], "download_size": 0, "dataset_size": 2571337.7463554395}}
|
2023-08-03T04:07:28+00:00
|
58e3c7176f780c25a0d0611070be77beb2cf9e03
|
halaction/atm-data-transformers
|
[
"license:openrail",
"region:us"
] |
2023-05-07T08:53:22+00:00
|
{"license": "openrail"}
|
2023-05-07T10:05:07+00:00
|
|
35279f1f460abb117356e126fb676bf6f80d1589
|
# Dataset Card for Russian riddles with answers with 377 entries.
### Dataset Summary
Contains parquet of QnA with riddle & answer pairs.
Each row consists of
* INSTRUCTION
* RESPONSE
* SOURCE
* METADATA (json with language).
### Licensing Information
Data is scrapped from several sites. Since most of the riddles and answers are publicly available and popular, any ToS and licensing of the sites themselves is irrelevant. I reserve the right to put a public and permissive license.
Moreover, there was no licensing information on these sites, which makes sense, due to the public availability and prominence of the content they provide.
### Acknowledgements
Thanks Freddie#5762 for providing this data!
He mentioned these URLs:
- https://azbyka.ru/deti/logicheskie-i-zanimatelnye-zadachi
- https://bbf.ru/riddles/
|
0x22almostEvil/ru-riddles-377
|
[
"task_categories:question-answering",
"size_categories:n<1K",
"language:ru",
"license:apache-2.0",
"QnA",
"Riddles",
"region:us"
] |
2023-05-07T09:35:38+00:00
|
{"language": ["ru"], "license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["question-answering"], "tags": ["QnA", "Riddles"]}
|
2023-05-07T12:24:30+00:00
|
4f1387b2e095e9abacff90d89250ee318cb08b92
|
# Dataset Card for Tapir-Cleaned
This is a revised version of the DAISLab dataset of IFTTT rules, which has been thoroughly cleaned, scored, and adjusted for the purpose of instruction-tuning.
## Tapir Dataset Summary
Tapir is a subset of the larger DAISLab dataset, which comprises 242,480 recipes extracted from the IFTTT platform.
After a thorough cleaning process that involved the removal of redundant and inconsistent recipes, the refined dataset was condensed to include 67,697 high-quality recipes.
This curated set of instruction data is particularly useful for conducting instruction-tuning exercises for language models,
allowing them to more accurately follow instructions and achieve superior performance.
The last version of Tapir includes a correlation score that helps to identify the most appropriate description-rule pairs for instruction tuning.
Description-rule pairs with a score greater than 0.75 are deemed good enough and are prioritized for further analysis and tuning.
### Supported Tasks and Leaderboards
The Tapir dataset designed for instruction training pretrained language models
### Languages
The data in Tapir are mainly in English (BCP-47 en).
# Dataset Structure
### Data Instances
```json
{
"instruction":"From the description of a rule: identify the 'trigger', identify the 'action', write a IF 'trigger' THEN 'action' rule.",
"input":"If it's raining outside, you'll want some nice warm colors inside!",
"output":"IF Weather Underground Current condition changes to THEN LIFX Change color of lights",
"score":"0.788197",
"text": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\nFrom the description of a rule: identify the 'trigger', identify the 'action', write a IF 'trigger' THEN 'action' rule.\n\n### Input:\nIf it's raining outside, you'll want some nice warm colors inside!\n\n### Response:\nIF Weather Underground Current condition changes to THEN LIFX Change color of lights",
}
```
### Data Fields
The data fields are as follows:
* `instruction`: describes the task the model should perform.
* `input`: context or input for the task. Each of the 67K input is unique.
* `output`: the answer taken from the original Tapir Dataset formatted as an IFTTT recipe.
* `score`: the correlation score obtained via BertForNextSentencePrediction
* `text`: the `instruction`, `input` and `output` formatted with the [prompt template](https://github.com/tatsu-lab/stanford_alpaca#data-release) used by the authors of Alpaca for fine-tuning their models.
### Data Splits
| | train |
|---------------|------:|
| tapir | 67697 |
### Licensing Information
The dataset is available under the [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).
### Citation Information
```
@misc{tapir,
author = {Mattia Limone, Gaetano Cimino, Annunziata Elefante},
title = {TAPIR: Trigger Action Platform for Information Retrieval},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/MattiaLimone/ifttt_recommendation_system}},
}
```
|
MattiaL/tapir-cleaned-67k
|
[
"task_categories:text-generation",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-nc-4.0",
"instruction-finetuning",
"region:us"
] |
2023-05-07T10:00:09+00:00
|
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "pretty_name": "Tapir-Cleaned", "tags": ["instruction-finetuning"]}
|
2023-05-09T07:01:49+00:00
|
f070d66ac5646ad079ad5ac30a4ab88d1497bc61
|
# Dataset Card for "dnd_style_intents"
This dataset was designed for intent classification module in dialogue system for game developers.
There are about 163K examples over 17 intents in dataset.
All intents belong to one of two group: intents for interaction with game mechanics and intents for more correctly dialogue understanding.
Data was generated artificially and augmented with masking and paraphrase model. All examples are in D&D style.
|
neurae/dnd_style_intents
|
[
"task_categories:text-classification",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"D&D",
"intent",
"classification",
"region:us"
] |
2023-05-07T10:09:12+00:00
|
{"language": ["en"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"], "pretty_name": "D&D Style Intents", "dataset_info": {"features": [{"name": "examples", "dtype": "string"}, {"name": "label_names", "dtype": "string"}, {"name": "labels", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 9654988, "num_examples": 130570}, {"name": "test", "num_bytes": 1208016, "num_examples": 16330}, {"name": "eval", "num_bytes": 1203046, "num_examples": 16321}], "download_size": 5759885, "dataset_size": 12066050}, "tags": ["D&D", "intent", "classification"]}
|
2023-07-16T07:10:05+00:00
|
9d9c14ff15e61a7924abb757a5cb9f74f804fd59
|
YoungMeng/deepFloyd-if
|
[
"license:openrail",
"region:us"
] |
2023-05-07T11:07:16+00:00
|
{"license": "openrail"}
|
2023-05-07T11:07:59+00:00
|
|
8b42db331d97cb45ca3bec98fbc38031e6ffb4f5
|
# Dataset Card for "qnli-id"
This dataset is a translated version of qnli dataset from [glue](https://huggingface.co/datasets/glue) dataset.
# Citing & Authors
```
@article{warstadt2018neural,
title={Neural Network Acceptability Judgments},
author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
journal={arXiv preprint arXiv:1805.12471},
year={2018}
}
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
```
|
genta-tech/qnli-id
|
[
"task_categories:feature-extraction",
"task_categories:text-classification",
"size_categories:100K<n<1M",
"language:id",
"license:cc-by-sa-4.0",
"glue",
"Text Similarity",
"region:us"
] |
2023-05-07T11:10:10+00:00
|
{"language": ["id"], "license": "cc-by-sa-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["feature-extraction", "text-classification"], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 25845146, "num_examples": 104743}, {"name": "test", "num_bytes": 1380442, "num_examples": 5463}, {"name": "validation", "num_bytes": 1376422, "num_examples": 5463}], "download_size": 18108260, "dataset_size": 28602010}, "tags": ["glue", "Text Similarity"]}
|
2023-05-09T18:40:54+00:00
|
f1ada3b8da8a6c8ea13d60c0df198a0037074357
|
load_dataset('phongmt184172/mtet')
The dataset is cloned https://github.com/vietai/mTet for machine translation task.
|
phongmt184172/mtet
|
[
"task_categories:translation",
"size_categories:100M<n<1B",
"language:en",
"language:vi",
"region:us"
] |
2023-05-07T11:16:19+00:00
|
{"language": ["en", "vi"], "size_categories": ["100M<n<1B"], "task_categories": ["translation"]}
|
2023-05-08T06:41:53+00:00
|
ba3f003f534e79a0aeddff0a50226ac5e6d02d12
|
# Dataset Card for A molecular cell atlas of the human lung from single cell RNA sequencing
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://zenodo.org/record/7904640
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
<p>https://cellxgene.cziscience.com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a</p>
<p>https://www.nature.com/articles/s41586-020-2922-4</p>
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
This dataset was shared by Travaglini et al
### Licensing Information
The license for this dataset is https://creativecommons.org/licenses/by/4.0/legalcode
### Citation Information
```bibtex
@dataset{travaglini_et_al_2020_7904640,
author = {Travaglini et al},
title = {{A molecular cell atlas of the human lung from
single cell RNA sequencing}},
month = nov,
year = 2020,
publisher = {Zenodo},
doi = {10.5281/zenodo.7904640},
url = {https://doi.org/10.5281/zenodo.7904640}
}
```
### Contributions
[More Information Needed]
|
YosefLab-classes/lung_krasnow
|
[
"license:unknown",
"region:us"
] |
2023-05-07T11:31:22+00:00
|
{"license": ["unknown"], "converted_from": "zenodo", "zenodo_id": "7904640"}
|
2023-05-07T12:17:42+00:00
|
0834a55f54e6aee2be5a5bc8cc381133131ce7b9
|
# Dataset Card for multilingual tatoeba QnA translation with ~120K entries.
### Dataset Summary
Contains Parquet of a list of instructions and translation articles on different languages.
Each row consists of
* INSTRUCTION
* RESPONSE
* SOURCE (tatoeba)
* METADATA (json with language, text length, uuid, langs-pair).
### Original Dataset is avalible here:
* https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt
|
0x22almostEvil/tatoeba-mt-qna-oa
|
[
"task_categories:question-answering",
"task_categories:translation",
"size_categories:100K<n<1M",
"language:en",
"language:ru",
"language:de",
"language:uk",
"language:sv",
"language:sr",
"language:sl",
"language:ro",
"language:pt",
"language:pl",
"language:nl",
"language:it",
"language:hu",
"language:hr",
"language:fr",
"language:es",
"language:da",
"language:cs",
"language:ca",
"language:bg",
"license:cc-by-2.0",
"QnA",
"tatoeba",
"Translation",
"region:us"
] |
2023-05-07T12:02:53+00:00
|
{"language": ["en", "ru", "de", "uk", "sv", "sr", "sl", "ro", "pt", "pl", "nl", "it", "hu", "hr", "fr", "es", "da", "cs", "ca", "bg"], "license": "cc-by-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering", "translation"], "pretty_name": "tatoeba-mt-qna-oa-120k", "tags": ["QnA", "tatoeba", "Translation"]}
|
2023-05-12T15:09:07+00:00
|
9dc2f6e8c040475e0b274c482d97115426c678c5
|
No planeta Edin, um profeta encontra um garoto humano que sobreviveu ร queda de uma nave espacial, acidente em que seus pais morreram. O menino รฉ adotado e recebe o nome de Jaspion.
Emissoras originais: All-Nippon News Network, TV Asahi
Primeiro episรณdio: 15 de marรงo de 1985 (Japรฃo)
Episรณdio final: 24 de marรงo de 1986
Gรชneros: Tokusatsu, Aรงรฃo, Aventura, Drama television series, Histรณria de super-herรณi, Fantasia cientรญfica
Criador: Toei Company
Narraรงรฃo de: Toru Ohira
|
Ciros/Jaspion
|
[
"region:us"
] |
2023-05-07T12:24:57+00:00
|
{}
|
2023-06-13T23:13:30+00:00
|
be95c94f80fd4028f201f89a1bd03f192e9e7c6e
|
# Dataset Card for "German-Recipes"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Adapting/German-Recipes
|
[
"region:us"
] |
2023-05-07T12:40:33+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8620054, "num_examples": 1}, {"name": "validation", "num_bytes": 1561445, "num_examples": 1}], "download_size": 5047180, "dataset_size": 10181499}}
|
2023-05-07T12:40:36+00:00
|
fc1e097200cdb0995650174e610e065fbcfe5d91
|
# Dataset Card for IWSLT 2017
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://sites.google.com/site/iwsltevaluation2017/TED-tasks](https://sites.google.com/site/iwsltevaluation2017/TED-tasks)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [Overview of the IWSLT 2017 Evaluation Campaign](https://aclanthology.org/2017.iwslt-1.1/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 4.24 GB
- **Size of the generated dataset:** 1.14 GB
- **Total amount of disk used:** 5.38 GB
*This repository contain a modified version of the loading script used in the official [iwslt2017](https://huggingface.co/datasets/iwslt2017) repository updated to include document and segment information for all available sentence pairs, enabling their usage for document-level and context-aware MT applications. Refer to the original repository for additional information.*
|
gsarti/iwslt2017_context
|
[
"task_categories:translation",
"annotations_creators:crowdsourced",
"language_creators:expert-generated",
"multilinguality:translation",
"size_categories:1M<n<10M",
"source_datasets:original",
"language:ar",
"language:de",
"language:en",
"language:fr",
"language:it",
"language:ja",
"language:ko",
"language:nl",
"language:ro",
"language:zh",
"license:cc-by-nc-nd-4.0",
"region:us"
] |
2023-05-07T13:03:04+00:00
|
{"annotations_creators": ["crowdsourced"], "language_creators": ["expert-generated"], "language": ["ar", "de", "en", "fr", "it", "ja", "ko", "nl", "ro", "zh"], "license": ["cc-by-nc-nd-4.0"], "multilinguality": ["translation"], "size_categories": ["1M<n<10M"], "source_datasets": ["original"], "task_categories": ["translation"], "task_ids": [], "paperswithcode_id": "iwslt-2017", "pretty_name": "IWSLT 2017", "dataset_info": [{"config_name": "iwslt2017-en-it", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "it"]}}}], "splits": [{"name": "train", "num_bytes": 46647925, "num_examples": 231619}, {"name": "test", "num_bytes": 305246, "num_examples": 1566}, {"name": "validation", "num_bytes": 200023, "num_examples": 929}], "download_size": 329391132, "dataset_size": 47153194}, {"config_name": "iwslt2017-en-nl", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "nl"]}}}], "splits": [{"name": "train", "num_bytes": 42843933, "num_examples": 237240}, {"name": "test", "num_bytes": 311646, "num_examples": 1777}, {"name": "validation", "num_bytes": 197814, "num_examples": 1003}], "download_size": 329391132, "dataset_size": 43353393}, {"config_name": "iwslt2017-en-ro", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ro"]}}}], "splits": [{"name": "train", "num_bytes": 44129950, "num_examples": 220538}, {"name": "test", "num_bytes": 316790, "num_examples": 1678}, {"name": "validation", "num_bytes": 205028, "num_examples": 914}], "download_size": 329391132, "dataset_size": 44651768}, {"config_name": "iwslt2017-it-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["it", "en"]}}}], "splits": [{"name": "train", "num_bytes": 46647925, "num_examples": 231619}, {"name": "test", "num_bytes": 305246, "num_examples": 1566}, {"name": "validation", "num_bytes": 200023, "num_examples": 929}], "download_size": 329391132, "dataset_size": 47153194}, {"config_name": "iwslt2017-it-nl", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["it", "nl"]}}}], "splits": [{"name": "train", "num_bytes": 43033168, "num_examples": 233415}, {"name": "test", "num_bytes": 309725, "num_examples": 1669}, {"name": "validation", "num_bytes": 197774, "num_examples": 1001}], "download_size": 329391132, "dataset_size": 43540667}, {"config_name": "iwslt2017-it-ro", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["it", "ro"]}}}], "splits": [{"name": "train", "num_bytes": 44485169, "num_examples": 217551}, {"name": "test", "num_bytes": 314974, "num_examples": 1643}, {"name": "validation", "num_bytes": 204989, "num_examples": 914}], "download_size": 329391132, "dataset_size": 45005132}, {"config_name": "iwslt2017-nl-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["nl", "en"]}}}], "splits": [{"name": "train", "num_bytes": 42843933, "num_examples": 237240}, {"name": "test", "num_bytes": 311646, "num_examples": 1777}, {"name": "validation", "num_bytes": 197814, "num_examples": 1003}], "download_size": 329391132, "dataset_size": 43353393}, {"config_name": "iwslt2017-nl-it", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["nl", "it"]}}}], "splits": [{"name": "train", "num_bytes": 43033168, "num_examples": 233415}, {"name": "test", "num_bytes": 309725, "num_examples": 1669}, {"name": "validation", "num_bytes": 197774, "num_examples": 1001}], "download_size": 329391132, "dataset_size": 43540667}, {"config_name": "iwslt2017-nl-ro", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["nl", "ro"]}}}], "splits": [{"name": "train", "num_bytes": 41338738, "num_examples": 206920}, {"name": "test", "num_bytes": 320952, "num_examples": 1680}, {"name": "validation", "num_bytes": 202380, "num_examples": 913}], "download_size": 329391132, "dataset_size": 41862070}, {"config_name": "iwslt2017-ro-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ro", "en"]}}}], "splits": [{"name": "train", "num_bytes": 44129950, "num_examples": 220538}, {"name": "test", "num_bytes": 316790, "num_examples": 1678}, {"name": "validation", "num_bytes": 205028, "num_examples": 914}], "download_size": 329391132, "dataset_size": 44651768}, {"config_name": "iwslt2017-ro-it", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ro", "it"]}}}], "splits": [{"name": "train", "num_bytes": 44485169, "num_examples": 217551}, {"name": "test", "num_bytes": 314974, "num_examples": 1643}, {"name": "validation", "num_bytes": 204989, "num_examples": 914}], "download_size": 329391132, "dataset_size": 45005132}, {"config_name": "iwslt2017-ro-nl", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ro", "nl"]}}}], "splits": [{"name": "train", "num_bytes": 41338738, "num_examples": 206920}, {"name": "test", "num_bytes": 320952, "num_examples": 1680}, {"name": "validation", "num_bytes": 202380, "num_examples": 913}], "download_size": 329391132, "dataset_size": 41862070}, {"config_name": "iwslt2017-ar-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ar", "en"]}}}], "splits": [{"name": "train", "num_bytes": 56481059, "num_examples": 231713}, {"name": "test", "num_bytes": 2014296, "num_examples": 8583}, {"name": "validation", "num_bytes": 241206, "num_examples": 888}], "download_size": 27748780, "dataset_size": 58736561}, {"config_name": "iwslt2017-de-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["de", "en"]}}}], "splits": [{"name": "train", "num_bytes": 42608380, "num_examples": 206112}, {"name": "test", "num_bytes": 1608474, "num_examples": 8079}, {"name": "validation", "num_bytes": 210975, "num_examples": 888}], "download_size": 16758320, "dataset_size": 44427829}, {"config_name": "iwslt2017-en-ar", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ar"]}}}], "splits": [{"name": "train", "num_bytes": 56481059, "num_examples": 231713}, {"name": "test", "num_bytes": 2014296, "num_examples": 8583}, {"name": "validation", "num_bytes": 241206, "num_examples": 888}], "download_size": 29333173, "dataset_size": 58736561}, {"config_name": "iwslt2017-en-de", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "de"]}}}], "splits": [{"name": "train", "num_bytes": 42608380, "num_examples": 206112}, {"name": "test", "num_bytes": 1608474, "num_examples": 8079}, {"name": "validation", "num_bytes": 210975, "num_examples": 888}], "download_size": 16758334, "dataset_size": 44427829}, {"config_name": "iwslt2017-en-fr", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "fr"]}}}], "splits": [{"name": "train", "num_bytes": 49273286, "num_examples": 232825}, {"name": "test", "num_bytes": 1767465, "num_examples": 8597}, {"name": "validation", "num_bytes": 207579, "num_examples": 890}], "download_size": 27699724, "dataset_size": 51248330}, {"config_name": "iwslt2017-en-ja", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ja"]}}}], "splits": [{"name": "train", "num_bytes": 48204987, "num_examples": 223108}, {"name": "test", "num_bytes": 1809007, "num_examples": 8469}, {"name": "validation", "num_bytes": 208124, "num_examples": 871}], "download_size": 26983602, "dataset_size": 50222118}, {"config_name": "iwslt2017-en-ko", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ko"]}}}], "splits": [{"name": "train", "num_bytes": 51678043, "num_examples": 230240}, {"name": "test", "num_bytes": 1869793, "num_examples": 8514}, {"name": "validation", "num_bytes": 219295, "num_examples": 879}], "download_size": 19364776, "dataset_size": 53767131}, {"config_name": "iwslt2017-en-zh", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "zh"]}}}], "splits": [{"name": "train", "num_bytes": 44271004, "num_examples": 231266}, {"name": "test", "num_bytes": 1605527, "num_examples": 8549}, {"name": "validation", "num_bytes": 202537, "num_examples": 879}], "download_size": 27597071, "dataset_size": 46079068}, {"config_name": "iwslt2017-fr-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["fr", "en"]}}}], "splits": [{"name": "train", "num_bytes": 49273286, "num_examples": 232825}, {"name": "test", "num_bytes": 1767465, "num_examples": 8597}, {"name": "validation", "num_bytes": 207579, "num_examples": 890}], "download_size": 26880731, "dataset_size": 51248330}, {"config_name": "iwslt2017-ja-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ja", "en"]}}}], "splits": [{"name": "train", "num_bytes": 48204987, "num_examples": 223108}, {"name": "test", "num_bytes": 1809007, "num_examples": 8469}, {"name": "validation", "num_bytes": 208124, "num_examples": 871}], "download_size": 26190859, "dataset_size": 50222118}, {"config_name": "iwslt2017-ko-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ko", "en"]}}}], "splits": [{"name": "train", "num_bytes": 51678043, "num_examples": 230240}, {"name": "test", "num_bytes": 1869793, "num_examples": 8514}, {"name": "validation", "num_bytes": 219295, "num_examples": 879}], "download_size": 19364733, "dataset_size": 53767131}, {"config_name": "iwslt2017-zh-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["zh", "en"]}}}], "splits": [{"name": "train", "num_bytes": 44271004, "num_examples": 231266}, {"name": "test", "num_bytes": 1605527, "num_examples": 8549}, {"name": "validation", "num_bytes": 202537, "num_examples": 879}], "download_size": 26849290, "dataset_size": 46079068}]}
|
2023-05-07T13:09:24+00:00
|
abe443f55b8da6bfacf3b06df8e87414be87181f
|
# Dataset Card for "voxelgym_3c_200_42x42"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Cubpaw/voxelgym_3c_42x42_200
|
[
"region:us"
] |
2023-05-07T13:12:27+00:00
|
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "image"}, {"name": "rgb_label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 107709.0, "num_examples": 160}, {"name": "validation", "num_bytes": 25934.0, "num_examples": 40}], "download_size": 121774, "dataset_size": 133643.0}}
|
2023-05-07T13:12:39+00:00
|
3f5a8a0bc9146e6313fa84f645fcaff0acf26c56
|
ssssasdasdasdasdqwd/v3_gameasset_lora
|
[
"license:unknown",
"region:us"
] |
2023-05-07T13:38:57+00:00
|
{"license": "unknown"}
|
2023-05-07T13:42:29+00:00
|
|
c735840575b629292b41da8dde11dcd523d4f91c
|
# ๐ Falcon RefinedWeb
**Falcon RefinedWeb is a massive English web dataset built by [TII](https://www.tii.ae) and released under an ODC-By 1.0 license.**
See the ๐ [paper on arXiv](https://arxiv.org/abs/2306.01116) for more details.
RefinedWeb is built through stringent filtering and large-scale deduplication of CommonCrawl; we found models trained on RefinedWeb to achieve performance in-line or better than models trained on curated datasets, while only relying on web data.
RefinedWeb is also "multimodal-friendly": it contains links and alt texts for images in processed samples.
This public extract should contain 500-650GT depending on the tokenizer you use, and can be enhanced with the curated corpora of your choosing. This public extract is about ~500GB to download, requiring 2.8TB of local storage once unpacked.
```python
from datasets import load_dataset
rw = load_dataset("tiiuae/falcon-refinedweb")
```
RefinedWeb is the main dataset we have used for training the [Falcon LLM](https://falconllm.tii.ae) models:
* It was used in conjunction with a curated corpora to train Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b), two state-of-the-art open-source models.
* It was also used to train Falcon-RW-[1B](https://huggingface.co/tiiuae/falcon-rw-1b)/[7B](https://huggingface.co/tiiuae/falcon-rw-7b), two models trained on 350 billion tokens of RefinedWeb alone to demonstrate its quality compared to curated corpora.
# Dataset card for Falcon RefinedWeb
## Dataset Description
* **Homepage:** [falconllm.tii.ae](falconllm.tii.ae)
* **Paper:** [https://arxiv.org/abs/2306.01116](https://arxiv.org/abs/2306.01116)
* **Point of Contact:** [[email protected]](mailto:[email protected])
### Dataset Summary
Falcon RefinedWeb was created to serve as an English large-scale dataset for the pretraining of large language models. It may be used on its own, or augmented with curated sources (e.g., Wikipedia, StackOverflow).
It was built on top of CommonCrawl, leveraging stringent filtering and extensive deduplication.
### Supported Tasks and Leaderboards
RefinedWeb is intended to be primarly used as a pretraining dataset for large language models. Practitioners may leverage it for upstream evaluation with a validation loss, but we do not provide any canonical split.
### Languages
RefinedWeb primarly contains English.
## Dataset Structure
### Data Instances
Each data instance corresponds to an individual web page which has been crawled, processed, and deduplicated against all other instances.
This public extract of RefinedWeb contains about 1B instances (968M individual web pages), for a total of 2.8TB of clean text data.
### Data Fields
* `content`: the processed and cleaned text contained in the page;
* `url`: the url of the webpage crawled to produce the sample;
* `timestamp`: timestamp of when the webpage was crawled by CommonCrawl;
* `dump`: the CommonCrawl dump the sample is a part of;
* `segment`: the CommonCrawl segment the sample is a part of;
* `image_urls`: a list of elements in the type [`image_url`, `image_alt_text`] for all the images found in the content of the sample.
### Data Splits
We do not provide any canonical splits for RefinedWeb.
## Dataset Creation
### Curation Rationale
Falcon RefinedWeb is built on-top of [CommonCrawl](https://commoncrawl.org), using the Macrodata Refinement Pipeline, which combines content extraction, filtering heuristics, and deduplication.
In designing RefinedWeb, we abided to the following philosophy:
* (1) **Scale first.** We intend MDR to produce datasets to be used to train 40-200B parameters models, thus requiring trillions of tokens [(Hoffmann et al., 2022)](https://arxiv.org/abs/2203.15556). For English-only RefinedWeb, we target a size of 3-6 trillion tokens. Specifically, we eschew any labour intensive human curation process, and focus on CommonCrawl instead of disparate single-domain sources.
* (2) **Strict deduplication.** Inspired by the work of [Lee et al., 2021](https://arxiv.org/abs/2107.06499), which demonstrated the value of deduplication for large language models, we implement a rigorous deduplication pipeline. We combine both exact and fuzzy deduplication, and use strict settings leading to removal rates far higher than others datasets have reported.
* (3) **Neutral filtering.** To avoid introducing further undesirable biases into the model, we avoid using ML-based filtering outside of language identification ([Dodge et al., 2021](https://arxiv.org/abs/2104.08758); [Welbl et al., 2021](https://arxiv.org/abs/2109.07445)) . We stick to simple rules and heuristics, and use only URL filtering for adult content.
During its development, we iterated on RefinedWeb by measuring the zero-shot performance of models trained on development version of the dataset. Our main goal was to maximize the performance obtained, bridging the gap between curated and web data. We also manually audited samples to identify potential filtering improvements.
### Source Data
RefinedWeb is built from [CommonCrawl](https://commoncrawl.org) dumps. These dumps are constructed from crawling publicly available web pages.
### Data Collection and Preprocessing
We applied extensive preprocessing and cleaning of the data, using our Macrodata Refinement Pipeline.
We first filter URLs to remove adult content using a blocklist and a score system, we then use `trafilatura` to extract content from pages, and perform language identification with the `fastText` classifier from CCNet ([Wenzek et al., 2019](https://arxiv.org/abs/1911.00359)). After this first preprocessing stage, we filter data using heuristics from MassiveWeb ([Rae et al., 2021](https://arxiv.org/abs/2112.11446)), and our own line-wise corrections.
Finally, we run extensive deduplication, removing URLs revisited across dumps and performing subsequently fuzzy and exact substring deduplication.
### Annotations
We provide automatically collected annotations for the source `url`, `timestamp` of the crawl, original CommonCrawl `dump` and `segment` in which the document was found, and `image_urls` contained in the page.
### Personal and Sensitive Information
As RefinedWeb is built upon publicly available web pages, it may contain sensitive information such as emails, phone numbers, or IP addresses. We believe that deduplication may have helped reduced the prevalence of PII in the dataset, but practitioners working with RefinedWeb should take care.
## Considerations for Using the Data
### Social Impact of Dataset
With the open-source release of Falcon RefinedWeb, we aim to increase access to high-quality web data, which has typically been held private by model developers. We believe this release will in turn improve the accessibility and the spread of performant large language models.
### Discussion of Biases
As toxic or biased data is prevalent on the internet, it is likely our dataset contains such content. Notably, using the Perspective API, we estimated the prevalence of toxic content in the dataset to be similar to The Pile.
### Other Known Limitations
Despite our best efforts to filter content that does not qualify as natural language, and to deduplicate documents, our pipeline may let through documents that may be considered as errors or redundant.
## Additional Information
### Licensing Information
This public extract is made available under an [ODC-By 1.0](https://opendatacommons.org/licenses/by/1-0/) license; users should also abide to the [CommonCrawl ToU](https://commoncrawl.org/terms-of-use/).
### Citation Information
```
@article{refinedweb,
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
journal={arXiv preprint arXiv:2306.01116},
eprint={2306.01116},
eprinttype = {arXiv},
url={https://arxiv.org/abs/2306.01116},
year={2023}
}
```
### Opt-out request
RefinedWeb is based on [CommonCrawl](https://commoncrawl.org/). Their crawler honors opt-out requests in the `robots.txt`, see the [CC FAQ](https://commoncrawl.org/big-picture/frequently-asked-questions/) for details.
To remove a document from RefinedWeb, please message [email protected].
### Contact
[email protected]
|
tiiuae/falcon-refinedweb
|
[
"task_categories:text-generation",
"size_categories:100B<n<1T",
"language:en",
"license:odc-by",
"arxiv:2306.01116",
"arxiv:2203.15556",
"arxiv:2107.06499",
"arxiv:2104.08758",
"arxiv:2109.07445",
"arxiv:1911.00359",
"arxiv:2112.11446",
"doi:10.57967/hf/0737",
"region:us"
] |
2023-05-07T13:57:27+00:00
|
{"language": ["en"], "license": "odc-by", "size_categories": ["100B<n<1T"], "task_categories": ["text-generation"], "pretty_name": "Falcon RefinedWeb", "dataset_info": {"features": [{"name": "content", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "timestamp", "dtype": "timestamp[s]"}, {"name": "dump", "dtype": "string"}, {"name": "segment", "dtype": "string"}, {"name": "image_urls", "sequence": {"sequence": "string"}}], "splits": [{"name": "train", "num_bytes": 2766953721769, "num_examples": 968000015}], "download_size": 466888198663, "dataset_size": 2766953721769}}
|
2023-06-20T11:38:07+00:00
|
6c8a1c4faf452938eecf2af02b6e0bac71a8c30d
|
# Dataset Card for "final_train_v2_500000"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
mHossain/final_train_v2_500000
|
[
"region:us"
] |
2023-05-07T14:02:30+00:00
|
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6083695.8, "num_examples": 18000}, {"name": "test", "num_bytes": 675966.2, "num_examples": 2000}], "download_size": 2962855, "dataset_size": 6759662.0}}
|
2023-05-07T14:02:39+00:00
|
acc6984fac9454f73d81b79e595ef317f98bcee1
|
# Dataset Card for "victor_lrec_2020_small"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Luciano/victor_lrec_2020_small
|
[
"region:us"
] |
2023-05-07T14:33:52+00:00
|
{"dataset_info": {"features": [{"name": "themes", "dtype": "string"}, {"name": "process_id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "document_type", "dtype": "string"}, {"name": "pages", "dtype": "int64"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 219095295, "num_examples": 149217}, {"name": "validation", "num_bytes": 139364099, "num_examples": 94735}, {"name": "test", "num_bytes": 140516696, "num_examples": 95526}], "download_size": 154894289, "dataset_size": 498976090}}
|
2023-05-07T14:34:19+00:00
|
6a6bf2a439d2b27c195572c91e3fc39fe7e11b26
|
# Dataset Card for "victor_lrec_2020_medium"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
Luciano/victor_lrec_2020_medium
|
[
"region:us"
] |
2023-05-07T14:34:19+00:00
|
{"dataset_info": {"features": [{"name": "themes", "dtype": "string"}, {"name": "process_id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "document_type", "dtype": "string"}, {"name": "pages", "dtype": "int64"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2016870779, "num_examples": 1466276}, {"name": "validation", "num_bytes": 427712878, "num_examples": 309608}, {"name": "test", "num_bytes": 423762425, "num_examples": 311015}], "download_size": 980521617, "dataset_size": 2868346082}}
|
2023-05-07T14:36:10+00:00
|
c6b7974395fbed74936e85d94dd1d96a9fd33761
|
# Dataset Card for "resume_ner17_hr"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
tsa17/resume_ner17_hr
|
[
"region:us"
] |
2023-05-07T15:04:37+00:00
|
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "prediction", "list": [{"name": "end", "dtype": "int64"}, {"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "start", "dtype": "int64"}]}, {"name": "prediction_agent", "dtype": "string"}, {"name": "annotation", "dtype": "null"}, {"name": "annotation_agent", "dtype": "null"}, {"name": "vectors", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "annotated", "struct": [{"name": "mentions", "sequence": "null"}, {"name": "tags", "sequence": "null"}]}, {"name": "predicted", "struct": [{"name": "mentions", "list": [{"name": "capitalness", "dtype": "string"}, {"name": "chars_length", "dtype": "int64"}, {"name": "density", "dtype": "float64"}, {"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "tokens_length", "dtype": "int64"}, {"name": "value", "dtype": "string"}]}, {"name": "tags", "list": [{"name": "tag", "dtype": "string"}, {"name": "value", "dtype": "string"}]}]}, {"name": "text_length", "dtype": "int64"}, {"name": "tokens", "list": [{"name": "capitalness", "dtype": "string"}, {"name": "char_end", "dtype": "int64"}, {"name": "char_start", "dtype": "int64"}, {"name": "custom", "dtype": "null"}, {"name": "idx", "dtype": "int64"}, {"name": "length", "dtype": "int64"}, {"name": "score", "dtype": "null"}, {"name": "tag", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "tokens_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 3390188, "num_examples": 50}], "download_size": 828976, "dataset_size": 3390188}}
|
2023-05-07T15:04:39+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.