sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
c9b6e31371ec7b134cc585fb9e66757475845f9f
# Dataset Card for "final_train_v2_390000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/final_train_v2_390000
[ "region:us" ]
2023-05-06T05:48:26+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9160829.1, "num_examples": 27000}, {"name": "test", "num_bytes": 1017869.9, "num_examples": 3000}], "download_size": 4463175, "dataset_size": 10178699.0}}
2023-05-06T05:48:29+00:00
28bdb2b3b4f1a8052d788818facb499b190a6fd8
# Dataset Card for "final_train_v2_420000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/final_train_v2_420000
[ "region:us" ]
2023-05-06T05:48:30+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9107591.4, "num_examples": 27000}, {"name": "test", "num_bytes": 1011954.6, "num_examples": 3000}], "download_size": 4436847, "dataset_size": 10119546.0}}
2023-05-06T05:48:34+00:00
e4fb8d9233f50dbca772f5986d219ae2925432a2
# Dataset Card for "final_train_v2_450000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/final_train_v2_450000
[ "region:us" ]
2023-05-06T05:48:35+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9110645.1, "num_examples": 27000}, {"name": "test", "num_bytes": 1012293.9, "num_examples": 3000}], "download_size": 4438870, "dataset_size": 10122939.0}}
2023-05-06T05:48:39+00:00
644258f7ed61588e206a98e37e38b13e78e855ae
# Dataset Card for "final_train_v2_480000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/final_train_v2_480000
[ "region:us" ]
2023-05-06T05:48:40+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9151488.0, "num_examples": 27000}, {"name": "test", "num_bytes": 1016832.0, "num_examples": 3000}], "download_size": 4460172, "dataset_size": 10168320.0}}
2023-05-06T05:48:43+00:00
73747477d21669706ddb0599c468f984d006cbf8
่ฟ™ๆ˜ฏๆˆ‘ๆต‹่ฏ•็š„็ฌฌไธ€ไธชๆ•ฐๆฎ้›†๏ผŒๆˆ‘ๅฐ†ไผšๅœจ่ฟ™ไธชๆ•ฐๆฎ้›†้‡ŒๆทปๅŠ ๅฐ‘้‡ๆ•ฐๆฎๆŸฅ็œ‹
guo1109/codehaha
[ "license:mit", "region:us" ]
2023-05-06T05:50:28+00:00
{"license": "mit"}
2023-05-11T01:58:01+00:00
747dc57ceb4541c30af804e03f8f5027753cc9f3
# Dataset Card for "deepfashion_controlnet_ezcaption" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ldhnam/deepfashion_controlnet_ezcaption
[ "region:us" ]
2023-05-06T07:40:49+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "openpose", "dtype": "image"}, {"name": "cloth", "dtype": "image"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3781385004.5, "num_examples": 13670}, {"name": "test", "num_bytes": 2131400.0, "num_examples": 9}], "download_size": 3766245342, "dataset_size": 3783516404.5}}
2023-05-06T07:43:27+00:00
f99bb2280e2a9bbbfa10c0fac8e77f97641ab54d
- ์ด 9619๊ฐœ์˜ ํ•œ๊ตญ์–ด ์ง€์‹๊ธฐ๋ฐ˜ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ์…‹์ž…๋‹ˆ๋‹ค. - KorQuAD 1.0 ๋ฐ์ดํ„ฐ์— ์žˆ๋Š” ๋ฌธ์„œ๋ฅผ ChatGPT์—๊ฒŒ ์ค€ ๋’ค ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ์„œ๋กœ๋ฅผ ํ˜ธ์นญํ•˜๋Š” ๋ถ€๋ถ„์€ ์•„๋ž˜์ฒ˜๋Ÿผ ์ฒ˜๋ฆฌ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค. ``` ์•ˆ๋…•ํ•˜์„ธ์š” <|bot|>. ์š”์ฆ˜ ์–ด๋–ป๊ฒŒ ์ง€๋‚ด์‹œ๋‚˜์š”?\n<bot> ์•ˆ๋…•ํ•˜์„ธ์š” <|user|>. ``` ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ ``` { "source": "korquad-chat", "text": " <sys>์œ ์ „์ž์˜ ์ด๋ฆ„์€ ์ธ๋„์˜ ์ˆ˜๋„ ๋‰ด๋ธ๋ฆฌ์˜ ์ด๋ฆ„์„ ๋”ฐ ๋ถ™์—ฌ์กŒ๋Š”๋ฐ, ์ด๋Š” 2009๋…„ ์šฉ (Yong) ๋“ฑ์ด ์ฒ˜์Œ ๊ธฐ๋กํ•œ ์ด ์ผ€์ด์Šค์˜ ํ™˜์ž๊ฐ€ ์ธ๋„์—์„œ ์ฒ˜์Œ ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ์„ ํ™•์ธํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ ์น˜๋ฃŒ๊ฐ€ ๋‰ด๋ธ๋ฆฌ ๋ณ‘์›์—์„œ ์‹คํŒจ๋กœ ๋๋‚œ ํ›„ ๊ทธ๋Š” ๋ชจ๊ตญ ์Šค์›จ๋ด์œผ๋กœ ์†กํ™˜๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ๊ณณ์—์„œ ์นด๋ฐ”ํŽ˜๋„ด์— ๋‚ด์„ฑ์„ ๋ณด์ด๋Š” ํ๋ ด๋ง‰๋Œ€๊ท ์˜ ์œ ์ „์ž๊ฐ€ ๋ถ„๋ฆฌ๋˜์—ˆ๋‹ค. ์šฉ ๋“ฑ์€ ์ด ๋‚ด์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด \"๋ถ„๋ช…ํžˆ ์ธ๋„์—์„œ ์ƒ๊ฒจ๋‚ฌ์œผ๋‚˜, ์ด๊ฒƒ์ด ์–ผ๋งˆ๋‚˜ ํผ์ ธ์žˆ๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์ธ๋„์— ์กด์žฌํ•œ๋‹ค\"๋ผ๊ณ  ์ฃผ์žฅํ•˜์˜€๋‹ค. ๋ณด๊ณ ๋œ ๋ฐ”์— ๋”ฐ๋ฅด๋ฉด ์ด ์œ ์ „์ž๋Š” ํŒŒํ‚ค์Šคํƒ„, ์ธ๋„, ๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ ์•„์‹œ์•„ ๊ตญ๊ฐ€์—์„œ ๋ฐœ๊ฒฌ๋˜์—ˆ์œผ๋ฉฐ ์ด๊ณณ ๋ณ‘์›์— ์ž…์›ํ–ˆ๋˜ ์‚ฌ๋žŒ๋“ค์— ์˜ํ•ด ์œ ๋Ÿฝ์œผ๋กœ ์˜ฎ๊ฒจ์กŒ๋‹ค. ๊ทธ ์ค‘ ๋Œ€๋‹ค์ˆ˜๋Š” ์ €๊ฐ€์˜ ์„ฑํ˜• ์ˆ˜์ˆ ์„ ์œ„ํ•ด ์˜๋ฃŒ ๊ด€๊ด‘์„ ๋– ๋‚ฌ๋‹ค๊ฐ€ ์ˆ˜์ˆ  ์ค‘ ๊ฐ์—ผ์ด ๋œ ์‚ฌ๋žŒ๋“ค์ด์—ˆ๋‹ค.\n <usr> ๋ฉ”ํƒˆ๋กœ-๋ฒ ํƒ€๋ฝํƒ€๋งˆ์ œ๊ฐ€ ์–ด๋””์„œ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‚˜์š”?\n <bot> ์ด ์œ ์ „์ž๋Š” ํŒŒํ‚ค์Šคํƒ„, ์ธ๋„, ๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ ์•„์‹œ์•„ ๊ตญ๊ฐ€์—์„œ ๋ฐœ๊ฒฌ๋œ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n <usr> ์ด ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ์€ ์–ด๋–ป๊ฒŒ ์ „ํŒŒ๋˜๋Š” ๊ฑด๊ฐ€์š”?\n <bot> ์ด ๋ณ‘์›๊ท ์€ ์ฃผ๋กœ ์˜๋ฃŒ ๊ด€๊ด‘์œผ๋กœ ์ธํ•ด ์ˆ˜์ˆ  ์ค‘ ๊ฐ์—ผ๋œ ์‚ฌ๋žŒ๋“ค์— ์˜ํ•ด ์œ ๋Ÿฝ์œผ๋กœ ์ „ํŒŒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n <usr> ์ด ์œ ์ „์ž๋Š” ์นด๋ฐ”ํŽ˜๋„ด์— ๋ฐ˜์‘ํ•˜์ง€ ์•Š๋Š” ๋‚ด์„ฑ ์ผ€์ด์Šค์—์„œ ์ฒ˜์Œ ๋ฐœ๊ฒฌ๋๋Š”๋ฐ, ์ด ๋‚ด์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋‹ค๋ฅธ ๊ตญ๊ฐ€์—๋„ ํผ์ง„ ๊ฑด๊ฐ€์š”?\n <bot> ์ด ๋‚ด์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์—ฌ๋Ÿฌ ๋‚˜๋ผ์—์„œ ๋ฐœ๊ฒฌ๋œ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ํผ์ ธ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๊ฒƒ์ด ์–ผ๋งˆ๋‚˜ ํผ์ ธ์žˆ๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์ธ๋„์— ์กด์žฌํ•œ๋‹ค๋Š” ์ฃผ์žฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.\n <usr> ์ด ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ์€ ์–ด๋–ค ์งˆ๋ณ‘์„ ์ผ์œผํ‚ค๋‚˜์š”?\n <bot> ์ด ๋ฉ”ํƒˆ๋กœ-๋ฒ ํƒ€๋ฝํƒ€๋งˆ์ œ๊ฐ€ ๊ฐ์—ผํ•˜๋ฉด, ์นด๋ฐ”ํŽ˜๋„ด ์œ ํ˜•์˜ ํ•ญ์ƒ์ œ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†๊ณ , ์น˜๋ช…์ ์ธ ๊ฐ์—ผ์ฆ์œผ๋กœ ๋ฐœ์ „ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.\n <usr> ์ด ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ์„ ์˜ˆ๋ฐฉํ•˜๊ฑฐ๋‚˜ ์น˜๋ฃŒํ•  ๋ฐฉ๋ฒ•์ด ์žˆ์„๊นŒ์š”?\n <bot> ์ด ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ์„ ์˜ˆ๋ฐฉํ•˜๊ฑฐ๋‚˜ ์น˜๋ฃŒํ•  ์ˆ˜ ์žˆ๋Š” ํ•ญ์ƒ์ œ๋Š” ์—ฌ์ „ํžˆ ๋ฐœ๊ฒฌ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ๋ณ‘๊ท ์„ ํฌํ•จํ•œ ๊ฐ์—ผ ์˜ˆ๋ฐฉ์˜ ์ค‘์š”์„ฑ์ด ๋”์šฑ ๋ถ€๊ฐ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค." } ``` ChatGPT ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ํ”„๋กฌํ”„ํŠธ ``` A์™€ B ๋‘ ์‚ฌ๋žŒ์ด ๋‚˜๋ˆ„๋Š” ๋Œ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด์ฃผ์„ธ์š”. 1. A๋Š” ์ฃผ์–ด์ง„ ๊ธ€์—์„œ ๋งํ•˜๋Š” ๋‚ด์šฉ์— ๊ด€ํ•ด B์—๊ฒŒ ์งˆ๋ฌธ์„ ํ•˜๊ฑฐ๋‚˜ ์š”์ฒญํ•ฉ๋‹ˆ๋‹ค. B๋Š” ๊ธ€์˜ ๋‚ด์šฉ์„ ์ดํ•ดํ•˜๊ณ  ์™„์ „ํžˆ ํ•™์Šตํ•œ ์ƒํƒœ์ž…๋‹ˆ๋‹ค. B๋Š” A์˜ ์งˆ๋ฌธ๊ณผ ์š”์ฒญ์— ์ž์‹ ์ด ํ•™์Šตํ•œ ๋‚ด์šฉ์„ ๋ฐ”ํƒ•์œผ๋กœ ๋Œ€๋‹ต์„ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. 2. B๋Š” ๊ธ€์— ์กด์žฌํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ์‚ฌ์‹ค์— ๊ทผ๊ฑฐํ•˜์ง€ ์•Š์€ ๋Œ€๋‹ต์„ ํ•ด์„œ๋Š” ์•ˆ๋ฉ๋‹ˆ๋‹ค. 3. ๊ฐ ๋ฐœํ™”๋Š” ์ตœ๋Œ€ 3๊ฐœ์˜ ๋ฌธ์žฅ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. 4. ๋Œ€ํ™”๋Š” A์™€ B๊ฐ€ ์„œ๋กœ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ์ˆœ์„œ๋Œ€๋กœ A์˜ ๋ฐœํ™”๋Š” A:, B์˜ ๋ฐœํ™”๋Š” B: ๋กœ ์‹œ์ž‘ํ•ด์•ผํ•˜๊ณ  ๋„์–ด์“ฐ๊ธฐ๋กœ ๊ตฌ๋ถ„ํ•ฉ๋‹ˆ๋‹ค. 5. A์™€ B๊ฐ€ ๊ธ€์„ ์ฝ์—ˆ๋‹ค๋Š” ๋‚ด์šฉ์ด๋‚˜, ๊ธ€์— ๋Œ€ํ•ด์„œ ํ‰๊ฐ€ํ•˜๊ฑฐ๋‚˜, ๊ธ€์„ ์–ธ๊ธ‰ํ•˜๋Š” ๋‚ด์šฉ์ด ํฌํ•จ๋˜์–ด์„œ๋Š” ์•ˆ๋ฉ๋‹ˆ๋‹ค. 6. A์™€ B๊ฐ€ ์„œ๋กœ๋ฅผ ์–ธ๊ธ‰ํ•  ๋•Œ๋Š” A์”จ, B์”จ๋กœ ํ˜ธ์นญํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค. 7. A์™€ B๋Š” ์„œ๋กœ 8๋ฒˆ ๋Œ€ํ™”๋ฅผ ์ฃผ๊ณ ๋ฐ›์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋Œ€ํ™”์˜ ์ „์ฒด๊ธธ์ด๋Š” ์ตœ๋Œ€ํ•œ 200 ๋‹จ์–ด๊ฐ€ ๋„˜์ง€ ์•Š๋„๋ก ๋Œ€ํ™”๋ฅผ ๋๋‚ด์•ผํ•ฉ๋‹ˆ๋‹ค. ์ œ๋ชฉ: #title #text ```
heegyu/korquad-chat-v1
[ "license:mit", "region:us" ]
2023-05-06T08:05:56+00:00
{"license": "mit"}
2023-05-06T08:12:14+00:00
435a9104872e516c23678e63da0f74b0f4ffdc9a
christinacdl/binary_hate_speech
[ "task_categories:text-classification", "size_categories:10K<n<100K", "language:en", "license:apache-2.0", "code", "region:us" ]
2023-05-06T08:06:22+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"], "tags": ["code"]}
2023-05-06T08:14:27+00:00
2eb55e15601ed90c940956abb790cc93a1f04e6d
This dataset was created by automatically translating "OpenAssistant/oasst1" into Japanese. The "ng_translation" flag indicates that the translation was not successful, and "1" means that the translation failed. Therefore, for data with "1", "text" and "text_en" contain the same text. **Update:** - 2023/11/12 oasst1-89k-jaใ‚’ใƒใƒฃใƒƒใƒˆๅฝขๅผใซๅค‰ๆ›ใ—ใŸ[oasst1-chat-44k-ja](https://huggingface.co/datasets/kunishou/oasst1-chat-44k-ja)ใ‚’ๅ…ฌ้–‹ใ—ใพใ—ใŸใ€‚ - 2023/10/21 ่‡ชๅ‹•็ฟป่จณใซใ‚ˆใ‚‹ใ‚ณใƒผใƒ‰้–ข้€ฃใƒ‡ใƒผใ‚ฟใฎ็ฟป่จณ่ชคใ‚Š2000็ฎ‡ๆ‰€็จ‹ๅบฆใ‚’ๆ‰‹ๅ‹•ใงไฟฎๆญฃใ—ใพใ—ใŸใ€‚ **<details><summary>ไฟฎๆญฃใ‚คใƒกใƒผใ‚ธใ‚’่กจ็คบ</summary><div>** - ไฟฎๆญฃๅ‰ ``` ใ‚‚ใกใ‚ใ‚“๏ผใ“ใ‚Œใฏใ€Flask Webใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏใ‚’ไฝฟ็”จใ—ใฆๆ–‡ๅญ—ๅˆ—ใ‚’ๆไพ›ใ™ใ‚‹ๅ˜็ด”ใชAPIใ‚จใƒณใƒ‰ใƒใ‚คใƒณใƒˆใ‚’ไฝœๆˆใ™ใ‚‹Pythonใ‚นใ‚ฏใƒชใƒ—ใƒˆใฎไพ‹ใงใ™ใ€‚ ใƒ•ใƒฉใ‚นใ‚ณ่ผธๅ…ฅใƒ•ใƒฉใ‚นใ‚ณใ‹ใ‚‰ app = flask๏ผˆ__name__๏ผ‰ @app.route๏ผˆ '/'๏ผ‰ def hello_world๏ผˆ๏ผ‰๏ผš ใ€Œใ“ใ‚“ใซใกใฏใ€ไธ–็•Œ๏ผใ€ใ‚’่ฟ”ใ—ใพใ™ __name__ == '__main__'ใฎๅ ดๅˆ๏ผš app.run๏ผˆ๏ผ‰ ใ“ใฎใ‚นใ‚ฏใƒชใƒ—ใƒˆใงใฏใ€ๆœ€ๅˆใซใƒ•ใƒฉใ‚นใ‚ณใƒขใ‚ธใƒฅใƒผใƒซใ‹ใ‚‰ใƒ•ใƒฉใ‚นใ‚ณใ‚ฏใƒฉใ‚นใ‚’ใ‚คใƒณใƒใƒผใƒˆใ—ใพใ™ใ€‚ๆฌกใซใ€__Name__ๅค‰ๆ•ฐใ‚’ไฝฟ็”จใ—ใฆใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใฎๅๅ‰ใ‚’ๆŒ‡ๅฎšใ™ใ‚‹ใƒ•ใƒฉใ‚นใ‚ณใ‚ฏใƒฉใ‚นใฎๆ–ฐใ—ใ„ใ‚คใƒณใ‚นใ‚ฟใƒณใ‚นใ‚’ไฝœๆˆใ—ใพใ™ใ€‚ ``` - ไฟฎๆญฃๅพŒ ``` ใ‚‚ใกใ‚ใ‚“๏ผใ“ใ‚Œใฏใ€Flask Webใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏใ‚’ไฝฟ็”จใ—ใฆๆ–‡ๅญ—ๅˆ—ใ‚’ๆไพ›ใ™ใ‚‹ๅ˜็ด”ใชAPIใ‚จใƒณใƒ‰ใƒใ‚คใƒณใƒˆใ‚’ไฝœๆˆใ™ใ‚‹Pythonใ‚นใ‚ฏใƒชใƒ—ใƒˆใฎไพ‹ใงใ™ใ€‚ from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello, world!' if __name__ == '__main__': app.run() ใ“ใฎใ‚นใ‚ฏใƒชใƒ—ใƒˆใงใฏใ€ๆœ€ๅˆใซใƒ•ใƒฉใ‚นใ‚ณใƒขใ‚ธใƒฅใƒผใƒซใ‹ใ‚‰ใƒ•ใƒฉใ‚นใ‚ณใ‚ฏใƒฉใ‚นใ‚’ใ‚คใƒณใƒใƒผใƒˆใ—ใพใ™ใ€‚ๆฌกใซใ€__Name__ๅค‰ๆ•ฐใ‚’ไฝฟ็”จใ—ใฆใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใฎๅๅ‰ใ‚’ๆŒ‡ๅฎšใ™ใ‚‹ใƒ•ใƒฉใ‚นใ‚ณใ‚ฏใƒฉใ‚นใฎๆ–ฐใ—ใ„ใ‚คใƒณใ‚นใ‚ฟใƒณใ‚นใ‚’ไฝœๆˆใ—ใพใ™ใ€‚ ``` </div></details> ไปฅไธ‹ใฎใ‚ณใƒผใƒ‰ใ‚’็”จใ„ใ‚‹ใ“ใจใงใ€ Instruction ใจ Output ๏ผˆprompterใฎๅ‘ฝไปคใจassistantใฎๅ›ž็ญ”๏ผ‰ใฎๅฝขๅผใซๅค‰ๆ›ใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ ใƒ•ใ‚กใ‚คใƒณใƒใƒฅใƒผใƒ‹ใƒณใ‚ฐใงไฝฟ็”จใ™ใ‚‹ๅ ดๅˆใฏใ“ใกใ‚‰ใฎใ‚ณใƒผใƒ‰ใงๅค‰ๆ›ใ—ใฆไธ‹ใ•ใ„ใ€‚ ๅค‰ๆ›ใ‚ณใƒผใƒ‰ๅ‚่€ƒ https://github.com/h2oai/h2o-llmstudio/blob/5ebfd3879e226b4e1afd0a0b45eb632e60412129/app_utils/utils.py#L1888 ```python pip install datasets ``` ```python from datasets import load_dataset import pandas as pd import os import json # oasst1ใฎใ‚ชใƒชใ‚ธใƒŠใƒซใƒ‡ใƒผใ‚ฟใฎใƒญใƒผใƒ‰ ds = load_dataset("OpenAssistant/oasst1") train = ds["train"].to_pandas() val = ds["validation"].to_pandas() df_origin = pd.concat([train, val], axis=0).reset_index(drop=True) # oasst1ๆ—ฅๆœฌ่ชž็ฟป่จณใƒ‡ใƒผใ‚ฟใฎ่ชญใฟ่พผใฟ df_ja = pd.read_json("oasst1_ja_89k.json") # oasst1ใฎใ‚ชใƒชใ‚ธใƒŠใƒซใƒ‡ใƒผใ‚ฟใจๆ—ฅๆœฌ่ชž็ฟป่จณใƒ‡ใƒผใ‚ฟใฎใƒžใƒผใ‚ธ df = pd.merge(df_origin, df_ja[["message_id", "text_ja"]], on="message_id", how="left").copy() df["text"] = df["text_ja"] df_assistant = df[(df.role == "assistant")].copy() df_prompter = df[(df.role == "prompter")].copy() df_prompter = df_prompter.set_index("message_id") df_assistant["output"] = df_assistant["text"].values inputs = [] parent_ids = [] for _, row in df_assistant.iterrows(): input = df_prompter.loc[row.parent_id] inputs.append(input.text) parent_ids.append(input.parent_id) df_assistant["instruction"] = inputs df_assistant["parent_id"] = parent_ids df_assistant = df_assistant[ ["instruction", "output", "message_id", "parent_id", "lang", "rank"] ].rename(columns={"message_id": "id"}) # ็ฟป่จณใ‚ฟใ‚นใ‚ฏใฎใฟใƒ‡ใƒผใ‚ฟใซ็•ฐๅธธใŒใ‚ใ‚‹ใฎใง้™คๅค– df_assistant2 = df_assistant[~df_assistant["instruction"].str.contains("็ฟป่จณ")] # ใ“ใ‚Œไปฅไธ‹ใงjsonใƒ•ใ‚กใ‚คใƒซใธๆ›ธใๅ‡บใ—--------------- learn_datas = [] input_list = [] for n in range(len(df_assistant2)): learn_data = { "instruction": str(df_assistant2.iloc[n, 0]), "input": "", "output": "" } input_list.append(df_assistant2.iloc[n, 0]) learn_data["input"] = "" learn_data["output"] = str(df_assistant2.iloc[n, 1]) learn_datas.append(learn_data) json_learn_data = json.dumps(learn_datas, indent=4, ensure_ascii=False) with open('oasst1_ja_converted.json', 'w', encoding="utf-8") as f: f.write(json_learn_data) ``` oasst1-ja-89k Repository https://github.com/kunishou/oasst1-89k-ja OpenAssistant/oasst1 https://huggingface.co/datasets/OpenAssistant/oasst1
kunishou/oasst1-89k-ja
[ "language:ja", "license:apache-2.0", "region:us" ]
2023-05-06T08:12:30+00:00
{"language": ["ja"], "license": "apache-2.0"}
2023-11-12T09:07:01+00:00
40cc01ce1df56f5101fc3436736a372145d228c4
SlavaSTAR/dgdrerdd
[ "license:creativeml-openrail-m", "region:us" ]
2023-05-06T08:20:53+00:00
{"license": "creativeml-openrail-m"}
2023-05-06T08:20:53+00:00
61839d9230c00a804d58763ce89ad092843d3868
foilfoilfoil/FireCheese
[ "license:other", "region:us" ]
2023-05-06T08:21:45+00:00
{"license": "other"}
2023-05-06T08:22:35+00:00
0a5afa6fe60f73b071c66462cb307cf8ef7a8766
# Dataset Card for "NoN_generic_248218_type_indian_drug_cleaned" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
rifatul123/NoN_generic_248218_type_indian_drug_cleaned
[ "region:us" ]
2023-05-06T08:25:03+00:00
{"dataset_info": {"features": [{"name": "Uses", "dtype": "string"}, {"name": "SIDEEFFECT", "dtype": "string"}, {"name": "NAME", "dtype": "string"}, {"name": "CLASS", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 82166698, "num_examples": 248218}], "download_size": 18116310, "dataset_size": 82166698}}
2023-05-06T08:25:17+00:00
fd05ed281cd511032365937f9b377434a956f89c
winie521/test
[ "language:zh", "region:us" ]
2023-05-06T08:28:31+00:00
{"language": ["zh"], "pretty_name": "tes"}
2023-05-06T08:57:56+00:00
ef8940711712ecacbfcbce129c40e0fc4f1540b4
# Why the online can not be used? I can load data in my local path as : ``` from datasets import load_dataset dataset = load_dataset("imagefolder", data_dir="/path/to/folder") ``` However, why the online does not work?
buptwq/finetune-lora-sd
[ "task_categories:text-to-image", "language:en", "license:cc", "region:us" ]
2023-05-06T08:29:39+00:00
{"language": ["en"], "license": "cc", "task_categories": ["text-to-image"]}
2023-05-06T12:44:44+00:00
065053cb6534a5648004facbbe1eff65d37914aa
thincal/test-data
[ "license:mit", "region:us" ]
2023-05-06T08:34:11+00:00
{"license": "mit"}
2023-05-06T08:34:11+00:00
5b8bd3f6a89af8f7bce11ab659baae53140dc48c
Work in progress Red team datasets for training and testing reward model for open assistant
theblackcat102/oasst-red-team
[ "language:en", "language:de", "language:fr", "language:ru", "language:zh", "language:ja", "language:it", "language:pt", "language:th", "language:nl", "language:ro", "language:pl", "language:hu", "language:hr", "region:us" ]
2023-05-06T08:59:47+00:00
{"language": ["en", "de", "fr", "ru", "zh", "ja", "it", "pt", "th", "nl", "ro", "pl", "hu", "hr"]}
2023-05-07T08:15:21+00:00
aa7372a2cce96a67b7cb077af4edc27865a2ce85
AugESC is an augmented dialogue dataset for emotional support conversation, distilled from a fine-tuned GPT-J model. [GitHub repo](https://github.com/thu-coai/AugESC). [Original paper](https://arxiv.org/abs/2202.13047). Please kindly cite our papers if you use this resource: ```bib @inproceedings{zheng-etal-2023-augesc, title={AugESC: Dialogue Augmentation with Large Language Models for Emotional Support Conversation}, author={Zheng, Chujie and Sabour, Sahand and Wen, Jiaxin and Zhang, Zheng and Huang, Minlie}, booktitle={Findings of ACL}, year={2023} } @inproceedings{liu-etal-2021-towards, title={Towards Emotional Support Dialog Systems}, author={Liu, Siyang and Zheng, Chujie and Demasi, Orianna and Sabour, Sahand and Li, Yu and Yu, Zhou and Jiang, Yong and Huang, Minlie}, booktitle={ACL}, year={2021} } ```
thu-coai/augesc
[ "language:en", "license:cc-by-nc-4.0", "arxiv:2202.13047", "region:us" ]
2023-05-06T09:04:51+00:00
{"language": ["en"], "license": "cc-by-nc-4.0"}
2023-05-16T07:57:04+00:00
07c934c83a9ab6e5dcdf4adb2205c55d97c0df1d
umoubuton/kafuu_chino_voice_dataset
[ "license:mit", "region:us" ]
2023-05-06T09:06:16+00:00
{"license": "mit"}
2023-06-24T10:02:00+00:00
e310071fd31fd6f18ab177caf549d175c8d298ea
wics/NCR
[ "license:unknown", "region:us" ]
2023-05-06T09:19:31+00:00
{"license": "unknown"}
2023-05-08T09:02:19+00:00
2e1b545321aadaeda8fa32467461f06516127e09
# ๅงœๅญ็‰™ไธญๆ–‡่ฏ„ไผฐๆ•ฐๆฎ้›† Ziya-Eval-Chinese ### ๆ•ฐๆฎไป‹็ป Dataset Summary ็”จไบŽ่ฏ„ไผฐๅคง่ฏญ่จ€ๆจกๅž‹็š„ไธญๆ–‡่ƒฝๅŠ› This IDEA-CCNL/Ziya-Eval-Chinese dataset is designed to evaluate the ability of LLM in chinese. ### ่ฏญ่จ€ Languages ไธญๆ–‡ Chinese ### ๆ•ฐๆฎ็คบไพ‹ Data Instances ```json {"class":"้—ฎ็ญ”", "type":"็Œœ่ฐœ", "query":"ๅŒๅ–œไธด้—จ๏ผŒๆ‰“ไธ€ไธญๅ›ฝๅœฐๅ"} ``` ### ๆ•ฐๆฎๅญ—ๆฎต Data Fields - class: str - type: str - query: str ### ๅผ•็”จ Citation ``` @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ```
IDEA-CCNL/Ziya-Eval-Chinese
[ "size_categories:n<1K", "language:zh", "license:apache-2.0", "region:us" ]
2023-05-06T09:26:12+00:00
{"language": ["zh"], "license": "apache-2.0", "size_categories": ["n<1K"], "pretty_name": "Ziya-Eval-Chinese"}
2023-05-17T10:17:55+00:00
0c0463b2ae0643db0018e68f6286a256f0e88c85
# ๅฐ็ฃๆญฃ้ซ”ไธญๆ–‡็ถญๅŸบ็™พ็ง‘ (zh-tw Wikipedia) ๆˆช่‡ณ 2023 ๅนด 5 ๆœˆ๏ผŒไธญๆ–‡็ถญๅŸบ็™พ็ง‘ 2,533,212 ็ฏ‡ๆข็›ฎ็š„ๅฐ็ฃๆญฃ้ซ”ๆ–‡ๅญ—ๅ…งๅฎนใ€‚ๆฏ็ฏ‡ๆข็›ฎ็‚บไธ€ๅˆ— (row)๏ผŒๅŒ…ๅซ HTML ไปฅๅŠ Markdown ๅ…ฉ็จฎๆ ผๅผใ€‚ A nearly-complete collection of 2,533,212 Traditional Chinese (`zh-tw`) Wikipedia pages, gathered between May 1, 2023, and May 7, 2023. Includes both the original HTML format and an auto-converted Markdown version, which has been processed using [vinta/pangu.py](https://github.com/vinta/pangu.py). ๆ–ผ 2023 ๅนด 5 ๆœˆ 1 ๆ—ฅ่‡ณ 5 ๆœˆ 7 ๆ—ฅ้–“ๅ–่‡ช็ถญๅŸบ็™พ็ง‘ [`action=query`](https://zh.wikipedia.org/w/api.php?action=help&modules=query) & [`prop=extracts`](https://zh.wikipedia.org/w/api.php?action=help&modules=query%2Bextracts) API๏ผŒๅ…งๅฎน็š†่ˆ‡็ถญๅŸบ็™พ็ง‘็ถฒ็ซ™ไน‹ๅฐ็ฃๆญฃ้ซ”็‰ˆๆœฌไธ€่‡ด๏ผŒๆฒ’ๆœ‰็น็ฐก้ซ”ๆทท้›œ็š„ๅ•้กŒใ€‚ For development usage, checkout [`zetavg/zh-tw-wikipedia-dev`](https://huggingface.co/datasets/zetavg/zh-tw-wikipedia-dev), which is a subset that contains only 1,000 randomly picked items. ## ่ณ‡ๆ–™ๅ…งๅฎน * `pageid` โ€” ็ถญๅŸบ็™พ็ง‘้ ้ข IDใ€‚ * `html` โ€” ้ ้ขๅŽŸๅง‹็š„ HTML ๅŒฏๅ‡บใ€‚ * `markdown` โ€” ้ ้ข่ฝ‰ๆ›็‚บ Markdown ๆ ผๅผ๏ผŒไธฆไปฅ [vinta/pangu.py](https://github.com/vinta/pangu.js) ๆ–ผๅ…จๅฝขๅญ—่ˆ‡ๅŠๅฝขๅญ—ไน‹้–“ๅŠ ๅ…ฅ็ฉบๆ ผๅพŒ็š„็‰ˆๆœฌใ€‚ * `coordinate` โ€” ้ ้ขไธป้กŒ็š„็ถ“็ทฏๅบฆๅบงๆจ™๏ผŒไพ‹ๅฆ‚ `{ "lat": 22.63333333, "lon": 120.26666667 }`ใ€‚่‹ฅ็„กๅ‰‡็‚บ `null`ใ€‚ * `length` โ€” ้ ้ขๅ…งๅฎน้•ทๅบฆใ€‚ * `touched` โ€” ้ ้ข็š„ๆœ€ๅพŒไฟฎ่จ‚ๆ™‚้–“ใ€‚ * `lastrevid` โ€” ๆœ€ๆ–ฐไฟฎ่จ‚็‰ˆๆœฌ็š„ไฟฎ่จ‚ IDใ€‚ * `original_title` โ€” ็ถญๅŸบ็™พ็ง‘ๆœช็ถ“่ฝ‰ๆ›็š„ๅŽŸๅง‹้ ้ขๆจ™้กŒ๏ผŒๅฏ่ƒฝ็‚บ็ฐก้ซ”ไธญๆ–‡ใ€‚ ## ๅทฒ็Ÿฅๅ•้กŒ * ็„กๆณ•ๆŠฝๅ–็‚บ *ๅ—้™ๆ ผๅผ HTML* ็š„ๅ…งๅฎน็š†ๆœƒ้บๅคฑ๏ผŒไพ‹ๅฆ‚ๆ‰€ๆœ‰ๅœ–็‰‡ใ€ๅœ–่กจใ€่กจๆ ผใ€ๅƒ่€ƒ่ณ‡ๆ–™ๅˆ—่กจ๏ผŒไปฅๅŠ้ƒจๅˆ†็จ‹ๅผ็ขผๅ€ๅกŠใ€‚ * ๆฅตๅฐ‘ๆ•ธๅ…งๅฎน้Ž้•ท็š„ๆข็›ฎๆฒ’ๆœ‰็ดๅ…ฅ๏ผŒๅคง่‡ดไธŠ่จˆๆœ‰๏ผš`ๅ››ๅƒ`ใ€`ไบ”ๅƒ`ใ€`ๅ…ญๅƒ`ใ€`่‹ฑ้›„ๅ‚ณ่ชชVI`ใ€`่ปŒ่ทก็ณปๅˆ—่ง’่‰ฒๅˆ—่กจ`ใ€`็ขงไน‹่ปŒ่ทก่ง’่‰ฒๅˆ—่กจ`ใ€`้›ถไน‹่ปŒ่ทก่ง’่‰ฒๅˆ—่กจ`ใ€‚ * ็ผบๅฐ‘้ ้ขๆจ™้กŒ `title` ๆฌ„ไฝ๏ผˆๅŽŸๅฏ้€้Ž API `inprop=varianttitles` ๅ–ๅพ—๏ผŒไฝ†่ณ‡ๆ–™ๆŠ“ๅ–ๆ™‚็จ‹ๅผๆ’ฐๅฏซ้บๆผไบ†้€™ๅ€‹ๆฌ„ไฝ๏ผ‰ใ€‚
zetavg/zh-tw-wikipedia
[ "task_categories:text-generation", "size_categories:1M<n<10M", "language:zh", "region:us" ]
2023-05-06T09:35:05+00:00
{"language": ["zh"], "size_categories": ["1M<n<10M"], "task_categories": ["text-generation"], "pretty_name": "\u53f0\u7063\u6b63\u9ad4\u4e2d\u6587\u7dad\u57fa\u767e\u79d1 (zh-tw Wikipedia)", "dataset_info": {"features": [{"name": "pageid", "dtype": "int64"}, {"name": "html", "dtype": "string"}, {"name": "markdown", "dtype": "string"}, {"name": "coordinate", "struct": [{"name": "globe", "dtype": "string"}, {"name": "lat", "dtype": "float64"}, {"name": "lon", "dtype": "float64"}]}, {"name": "length", "dtype": "int64"}, {"name": "touched", "dtype": "string"}, {"name": "lastrevid", "dtype": "int64"}, {"name": "original_title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21930303312, "num_examples": 2533212}], "download_size": 0, "dataset_size": 21930303312}}
2023-05-06T11:44:26+00:00
eae2a098218c79671d40a07adf61a57cf0fb57ca
# AutoTrain Dataset for project: aymara-t5-small ## Dataset Description This dataset has been automatically processed by AutoTrain for project aymara-t5-small. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "feat_Lang": "Spanish", "feat_langcode": "es", "feat_Source": "Janiw sartasipk\u00e4ti aka mayiw phuqasi\u00f1apkama, presidentex nanakamp tantachaspan ukhamarak tama irnaqir jaqinakar tantachpan, kunawsas ukat kunjamraks munat wila masinakasar qallantani thaxta\u00f1xa sasaw \u201d huelga lurir Margarita L\u00f3pez mamax arsuwayat\u00e4na.", "target": "\u201cNo nos iremos hasta que nuestros casos se hayan resuelto, que el presidente se re\u00fana con nosotros y que re\u00fana a un grupo de tragbajo para decirnos cu\u00e1ndo y c\u00f3mo empezar\u00e1n a encontrar a nuestros seres queridos \u201d, declar\u00f3 la huelguista de hambre Margarita L\u00f3pez.", "source": "translate Aymara to Spanish: Erwin C blog Latino Americano uka tuqinkiriw m\u00e4 huelga lurir mamaru jawsayawayi:" }, { "feat_Lang": "English", "feat_langcode": "en", "feat_Source": "Credit: Heidi Shin.", "target": "Cr\u00e9dito: Heidi Shun.", "source": "translate English to Aymara: Credit: Heidi Shin." } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "feat_Lang": "Value(dtype='string', id=None)", "feat_langcode": "Value(dtype='string', id=None)", "feat_Source": "Value(dtype='string', id=None)", "target": "Value(dtype='string', id=None)", "source": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 28121 | | valid | 7031 |
alvations/autotrain-data-aymara-t5-small
[ "task_categories:translation", "region:us" ]
2023-05-06T10:03:11+00:00
{"task_categories": ["translation"]}
2023-05-06T10:04:14+00:00
b2822085cd25551194089c0a25c7ea085b54cc51
tobiaslee/VEC
[ "license:apache-2.0", "region:us" ]
2023-05-06T10:25:09+00:00
{"license": "apache-2.0"}
2023-05-06T10:51:45+00:00
87506633b3df0bb9538d24fff78b9775c3ec6c2a
Circularmachines/Batch_indexing_machine_tokens
[ "license:cc-by-4.0", "region:us" ]
2023-05-06T10:50:13+00:00
{"license": "cc-by-4.0"}
2023-05-06T10:50:23+00:00
5361848b98c46ca9be189c7be3709b183a2777cb
# Dataset Card for CIFAR-10-LT (Long Tail) ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [CIFAR Datasets](https://www.cs.toronto.edu/~kriz/cifar.html) - **Paper:** [Paper imbalanced example](https://openaccess.thecvf.com/content_CVPR_2019/papers/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.pdf) - **Leaderboard:** [r-10](https://paperswithcode.com/sota/long-tail-learning-on-cifar-10-lt-r-10) [r-100](https://paperswithcode.com/sota/long-tail-learning-on-cifar-10-lt-r-100) ### Dataset Summary The CIFAR-10-LT imbalanced dataset is comprised of under 60,000 color images, each measuring 32x32 pixels, distributed across 10 distinct classes. The number of samples within each class decreases exponentially with factors of 10 and 100. The dataset includes 10,000 test images, with 1000 images per class, and fewer than 50,000 training images. Each image is assigned one label. ### Supported Tasks and Leaderboards - `image-classification`: The goal of this task is to classify a given image into one of 10 classes. The leaderboard is available [here](https://paperswithcode.com/sota/long-tail-learning-on-cifar-10-lt-r-100). ### Languages English ## Dataset Structure ### Data Instances A sample from the training set is provided below: ``` { 'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x2767F58E080>, 'label': 0 } ``` ### Data Fields - img: A `PIL.Image.Image` object containing the 32x32 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - label: 0-9 with the following correspondence 0 airplane 1 automobile 2 bird 3 cat 4 deer 5 dog 6 frog 7 horse 8 ship 9 truck ### Data Splits | name |train|test| |----------|----:|---------:| |cifar10|<50000| 10000| ### Licensing Information Apache License 2.0 ### Citation Information ``` @TECHREPORT{Krizhevsky09learningmultiple, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009} } ``` ### Contributions Thanks to [@gchhablani](https://github.com/gchablani) and all contributors for adding the original balanced cifar10 dataset.
tomas-gajarsky/cifar10-lt
[ "task_categories:image-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:cifar10", "language:en", "license:apache-2.0", "region:us" ]
2023-05-06T10:56:18+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": "apache-2.0", "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["cifar10"], "task_categories": ["image-classification"], "task_ids": [], "paperswithcode_id": "cifar-10", "pretty_name": "Cifar10-LT", "dataset_info": {"features": [{"name": "img", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "airplane", "1": "automobile", "2": "bird", "3": "cat", "4": "deer", "5": "dog", "6": "frog", "7": "horse", "8": "ship", "9": "truck"}}}}], "config_name": "cifar10", "splits": [{"name": "train"}, {"name": "test", "num_bytes": 22772838, "num_examples": 10000}], "download_size": 170498071}}
2023-12-10T22:01:29+00:00
1ea4285949816469cedabe7e19e1c1f79b7ff9aa
# Dataset Card for "data-members-200" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
JotDe/data-members-200
[ "region:us" ]
2023-05-06T11:10:21+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26146926.56885961, "num_examples": 200}], "download_size": 25830024, "dataset_size": 26146926.56885961}}
2023-05-06T11:10:30+00:00
401f1c7f4dd705fa1d144daf0a7a61be0b27fca9
# Dataset Card for "data-members-2k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
JotDe/data-members-2k
[ "region:us" ]
2023-05-06T11:10:31+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 291890903.6885961, "num_examples": 2000}], "download_size": 256657803, "dataset_size": 291890903.6885961}}
2023-05-06T11:11:12+00:00
7999c3f2598bd0353a9063153364b741fdf2ce36
# Dataset Card for "data-members-10k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
JotDe/data-members-10k
[ "region:us" ]
2023-05-06T11:11:13+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1459454518.4429805, "num_examples": 10000}], "download_size": 1266095633, "dataset_size": 1459454518.4429805}}
2023-05-06T11:14:24+00:00
e2044ef7be91a744a3b946a85f30d3903eb46fff
Othmanotana/darija
[ "license:unknown", "region:us" ]
2023-05-06T11:30:56+00:00
{"license": "unknown"}
2023-05-06T11:42:05+00:00
738dfa63f35ddc1e0f4d1746d360a99cba1cbb89
A small subset of [`zetavg/zh-tw-wikipedia`](https://huggingface.co/datasets/zetavg/zh-tw-wikipedia) that contains only 1,000 randomly picked rows. For development usage.
zetavg/zh-tw-wikipedia-dev
[ "region:us" ]
2023-05-06T11:37:40+00:00
{"dataset_info": {"features": [{"name": "pageid", "dtype": "int64"}, {"name": "html", "dtype": "string"}, {"name": "markdown", "dtype": "string"}, {"name": "coordinate", "struct": [{"name": "globe", "dtype": "string"}, {"name": "lat", "dtype": "float64"}, {"name": "lon", "dtype": "float64"}]}, {"name": "length", "dtype": "int64"}, {"name": "touched", "dtype": "string"}, {"name": "lastrevid", "dtype": "int64"}, {"name": "original_title", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8657481.515956817, "num_examples": 1000}], "download_size": 5008132, "dataset_size": 8657481.515956817}}
2023-05-06T11:40:39+00:00
71581b94277590ca4b25f6f99d3f7d6c6a882ae7
No-22/chinese-alpaca-7b-quantized
[ "license:mit", "region:us" ]
2023-05-06T11:37:46+00:00
{"license": "mit"}
2023-05-13T16:35:29+00:00
e1bd1ca92779c1501c2eccc39082aeaf7346dfc7
scholarly360/terrain_generation_from_sketch_for_game_assets
[ "license:apache-2.0", "region:us" ]
2023-05-06T11:49:33+00:00
{"license": "apache-2.0"}
2023-05-06T11:53:20+00:00
86fce674175195e7c643b0c6261568edb13a9188
aliamdubsh/hand_drawn
[ "license:mit", "region:us" ]
2023-05-06T11:52:24+00:00
{"license": "mit"}
2023-05-06T11:52:24+00:00
decc582209018446be9aaba12a034e655e9f8189
Othmanotana/d
[ "license:unknown", "region:us" ]
2023-05-06T11:53:41+00:00
{"license": "unknown"}
2023-05-06T11:53:41+00:00
cc089361d09fc770da74dec9a1f1fd99ddd3fa32
jeremyvictor/gecid_first
[ "size_categories:1K<n<10K", "language:id", "code", "region:us" ]
2023-05-06T12:18:47+00:00
{"language": ["id"], "size_categories": ["1K<n<10K"], "pretty_name": "Grammatical Error Correction 1st", "tags": ["code"], "dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "target", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1468210, "num_examples": 4739}, {"name": "dev", "num_bytes": 182207, "num_examples": 592}, {"name": "test", "num_bytes": 208476, "num_examples": 593}], "download_size": 1038850, "dataset_size": 1858893}}
2023-05-06T12:23:10+00:00
aaafa54f77d28a4733d013257a4d5a809179ae83
# Dataset Card for "whisper-th-custom" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
biodatlab/whisper-th-custom
[ "region:us" ]
2023-05-06T13:07:08+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}, {"name": "sentence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 24293230034.95, "num_examples": 601854}], "download_size": 35844557183, "dataset_size": 24293230034.95}}
2023-05-06T20:21:30+00:00
8ac1bfc2d7d8b652d11dbd5006fef5f9745c7e9c
# Dataset Card for "daniel-dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
beskrovnykh/daniel-dataset-part-1
[ "region:us" ]
2023-05-06T13:10:06+00:00
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "published", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "start", "dtype": "float64"}, {"name": "end", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 38897475, "num_examples": 142572}], "download_size": 6568792, "dataset_size": 38897475}}
2023-05-14T11:08:29+00:00
8056c9edae8ddb6a7f05ff4720b20cfbfd5c62d3
# Dataset Card for "MAMe" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
davanstrien/MAMe
[ "region:us" ]
2023-05-06T13:59:37+00:00
{"dataset_info": {"config_name": "256", "features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "Albumen photograph", "1": "Bronze", "2": "Ceramic", "3": "Clay", "4": "Engraving", "5": "Etching", "6": "Faience", "7": "Glass", "8": "Gold", "9": "Graphite", "10": "Hand-colored engraving", "11": "Hand-colored etching", "12": "Iron", "13": "Ivory", "14": "Limestone", "15": "Lithograph", "16": "Marble", "17": "Oil on canvas", "18": "Pen and brown ink", "19": "Polychromed wood", "20": "Porcelain", "21": "Silk and metal thread", "22": "Silver", "23": "Steel", "24": "Wood", "25": "Wood engraving", "26": "Woodblock", "27": "Woodcut", "28": "Woven fabric"}}}}, {"name": "Museum", "dtype": "string"}, {"name": "Museum-based instance ID", "dtype": "string"}, {"name": "Width", "dtype": "float32"}, {"name": "Height", "dtype": "float32"}, {"name": "Product size", "dtype": "float32"}, {"name": "Aspect ratio", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 441294458.5, "num_examples": 20300}, {"name": "validation", "num_bytes": 26810584.95, "num_examples": 1450}, {"name": "test", "num_bytes": 362018531.291, "num_examples": 15657}], "download_size": 719959312, "dataset_size": 830123574.7409999}, "builder_config": {"config_name": "256", "data_files": [{"split": "train", "pattern": "256/train-*"}, {"split": "validation", "pattern": "256/validation-*"}, {"split": "test", "pattern": "256/test-*"}]}}
2023-07-26T10:19:26+00:00
775cf2c7fb9e2370e8b33775373022452b774045
.
batalovme/RussianExams
[ "language:ru", "region:us" ]
2023-05-06T14:20:54+00:00
{"language": ["ru"], "dataset_info": [{"config_name": "math_tasks", "features": [{"name": "text", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 240907, "num_examples": 579}], "download_size": 268716, "dataset_size": 240907}, {"config_name": "yes_no_math_tasks", "features": [{"name": "statement", "dtype": "string"}, {"name": "label", "dtype": "bool"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 22396, "num_examples": 147}], "download_size": 30971, "dataset_size": 22396}, {"config_name": "russian_basis_tasks", "features": [{"name": "sentence", "dtype": "string"}, {"name": "basis", "dtype": "string"}, {"name": "label", "dtype": "bool"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 45558, "num_examples": 199}], "download_size": 59583, "dataset_size": 45558}, {"config_name": "russian_phrase_conn_tasks", "features": [{"name": "phrase", "dtype": "string"}, {"name": "connection", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 10683, "num_examples": 96}], "download_size": 17213, "dataset_size": 10683}]}
2023-05-10T10:32:44+00:00
6ba24b78ace33a6082525cf73808c533fa8197ba
# Dataset Card for "dreambooth-moroccan-design" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
medmac01/dreambooth-moroccan-design
[ "region:us" ]
2023-05-06T14:36:38+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 2734939.0, "num_examples": 47}], "download_size": 0, "dataset_size": 2734939.0}}
2023-05-06T19:30:02+00:00
16ed9c2e0a211dd06c40d1ed385aff34286cad26
# Buryat-Russian Parallel Corpora ## Dataset Description - **Homepage:** lingtra.in ### Dataset Summary Dataset was made by Lingtrain community of language lovers.
lingtrain/buryat-russian
[ "license:apache-2.0", "region:us" ]
2023-05-06T14:37:49+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "ru", "dtype": "string"}, {"name": "bua", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 878970, "num_examples": 1332}], "download_size": 268507, "dataset_size": 878970}}
2023-05-06T14:57:50+00:00
5b555f139cd054636929867ca1d21b557a91e22a
--- annotations_creators: - crowdsourced language_creators: - crowdsourced license: - cc0-1.0 multilinguality: - multilingual size_categories: ar: - 100K<n<1M en: - 1M<n<10M source_datasets: - extended|common_voice task_categories: - automatic-speech-recognition task_ids: [] paperswithcode_id: common-voice pretty_name: Common Voice Corpus 11.0 language_bcp47: - ar - en
makiour/dvoice-Darija
[ "region:us" ]
2023-05-06T15:06:28+00:00
{}
2023-05-06T21:37:09+00:00
530624607ba3e2a3abaa687856299ecd15666f5d
# Dataset Card for "mtg-image-data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Neramas1221/mtg-image-data
[ "region:us" ]
2023-05-06T15:24:20+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "Unnamed: 0", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2310210821.0, "num_examples": 27000}], "download_size": 2441193881, "dataset_size": 2310210821.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2023-10-01T16:37:31+00:00
ef43089b1a9d6295b4f639a1fa019d5e9860acf2
This is a downloads of https://gz1k.itch.io/ai-portable-tools, but on huggingface for lightning speed of downloading. I hope i haven't broke ToS of Huggingface Hub by uploading these tools here. ---------------------------------- This is my collection of portable AI packages to run it fast without anxious headache in console. initially, I made these tools for myself, but maybe someone else will need them. OK, heres the list: -TEXT- Koboldai [CPU/CUDA] - link - also in downloads / online demo -CHAT- Llama 2 chat 7B 4bit koboldcpp webui [CPU] - in downloads / source / webui / model / online demo Llama 2 chat 7B Luna ai uncensored 4bit koboldcpp webui (note that this is a finetune on unsupervised synthetic dataset, so it hallucinates way more strong than original llama-2-chat) [CPU] - in downloads / source / webui / model / Vicuna 1.1 7B 4bit koboldcpp webui (much worse than llama2 above, but may be more multilingual) [CPU] - in downloads. / source / webui / model / online demo -TRANSLATE- Facebook NLLB 600m webui [CPU] - in downloads / source / webui / model / online demo -MIDI MUSIC GENERATION- Midi composer app [CUDA][CPU] - link - also in downloads / source / online demo Multitrack midi music generator (generates short jingles, each instrument generated separately) [CPU] - in downloads / webui -TEXT TO MUSIC/AUDIO- AudioCraft Plus [CUDA/CPU] - in downloads / source / webui / online demo -TEXT TO SPEECH- Suno ai Bark webui (with zeroshot voice conversion) [CUDA/CPU] - in downloads / source / webui / online demo Coqui XTTS webui (this one generates speech only with voice cloning) (voice cloning is more "stable" than bark, but the accent and emotions can be lost) [CUDA] - in downloads / source / webui TorToiSe webui [CUDA/CPU] - in downloads / source / webui / online demo -VOICE CONVERSION VIA TRAINING- RVC singing voice cloning webui [CUDA] - link - also in downloads / source -VOICE ZEROSHOT CONVERSION- FreeVC webui [CPU] - in downloads / source / webui -VOICE TO TEXT- Whispercpp GUI [DirectX/CPU] - link - also in downloads / source / gui / online demo -VOCALS RESTORATION- VoiceFixer webui [CPU] - in downloads / source / webui -DUAL SPEAKER SPEECH SEPARATION- Dual Path RNN (cli interface) - in downloads / source -VOCALS/STEMS EXTRACTION- UVR [CPU/CUDA] - link - also in downloads / online demo Demucs GUI [CPU][CUDA] - link - also in downloads / source / gui -IMAGE COLORIZATION- DeOldify .NET gui [CPU] - link - also in downloads / source / gui / online demo -ZEROSHOT IMAGE MATTING- DIS webui [CPU] - in downloads / source / webui -IMAGE UPSCALING- Cupscale [Vulkan/CUDA] - link - also in downloads / source / webui / online demo Automatic1111 sdwebui with StableSR extension [CUDA/CPU] - in downloads / source / webui / extension -TEXT2IMAGE- Automatic1111 Stable Diffusion base (without models) - link / webui Automatic1111 deliberate v2 (sd1.5) model [CUDA/CPU][DIRECTX/CPU] - in downloads / source / webui / directx webui / model Automatic1111 Illuminati Diffusion (sd2.1) model [CUDA/CPU] - in downloads / source / webui / model Fooocus (sdxl) [CUDA] - link- also in downloads / source / webui / model / refiner ConfyUI (without models) [CUDA/CPU] - link - also in downloads / source / webui -IMAGE EDITING BY PROMPT- Automatic1111 Instructpix2pix (sd1.5) model [DIRECTX/CPU][CUDA/CPU] - in downloads / source / ip2p source / webui / directx webui / model -IMAGE TO IMAGE VARIATIONS- Automatic1111 sd-unclip (sd2.1) model [CUDA/CPU] - in downloads / source / webui / model -IMAGE EDITING BY CONCEPTS- LEDITS webui [CUDA/CPU] - in downloads / source / webui -OBJECT REMOVING- lama cleaner [CUDA] - in downloads / source / webui / online demo -VIDEO FRAMES INTERPOLATION- Flowframes [CUDA/Vulkan] - in downloads / source / gui -VIDEO UPSCALING- RealBasicVSR (cli interface) [CUDA/CPU] - in downloads / source -TEXT2VIDEO- Automatic1111 sdwebui with animatediff extension [CUDA/CPU] - in downloads / source / webui / extension / model / online demo Automatic1111 sdwebui with modelscope text2video extension with zeroscope-v2-576w model [CUDA] - in downloads / source / webui / extension / model / online demo -VIDEO HUMAN MATTING- RobustVideoMatting (cli interface) [CUDA/CPU] - in downloads / source / online demo -VIDEO ZERO-SHOT MATTING- Track-anything webui [CPU] - in downloads / webui / online demo -VIDEO FEW-SHOT MATTING VIA TRAINING- DeepXTools by Iperov [CUDA] - link - also in downloads -ZERO-SHOT DEEPFAKING- Roop neurogen mod (Refacer model) (lightning fast, has realtime deepfake on webcam function) (the refacer model swaps faces better than simswap, but have only 128px resolution and may have more artifacts when head is on side) [DirectX/CUDA/CPU] - in downloads / source / webui / mod by Deepinsight Refacer gradio webui (replaces only certain faces, has cool face upscale feature) [CUDA] - in downloads / source / webui / mod by Simswap (cli interface) [CUDA/CPU] - in downloads / source -DEEPFAKING VIA TRAINING- DeepFaceLab (cli interface) [DirectX][CUDA] - link - also in downloads / source DeepfaceLive [DirectX][CUDA] - link - also in downloads / source -LIPS MANIPULATION ON VIDEO- wav2lip gui [CUDA/CPU] - link - also in downloads / source / gui -TEXT To 3D- Shap-E webui [CUDA/CPU] -in downloads / source / webui Point-E webui [CUDA/CPU] (results are worse than shap-e) - in downloads / source / webui -NEURAL RADIANCE FIELDS GENERATION BY IMAGES- nerfstudio (nerfacto) [CUDA] - in downloads / source -------------------------------------------------------------- Alternative downloads with torrents on Archive.org: https://archive.org/details/@takeonme1?tab=uploads Page on civitai: https://civitai.com/models/104609
4eJIoBek/PAIT-Downloads
[ "license:unknown", "region:us" ]
2023-05-06T15:45:13+00:00
{"license": "unknown"}
2024-02-12T14:12:55+00:00
c4e8648dcc776e387c6b0174afc28ac09c1dec2b
minosu/godot_dodo_4x_60k
[ "license:mit", "region:us" ]
2023-05-06T15:58:09+00:00
{"license": "mit", "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21668171.89058577, "num_examples": 56279}, {"name": "test", "num_bytes": 2407874.109414229, "num_examples": 6254}], "download_size": 12720338, "dataset_size": 24076046.0}}
2023-05-06T16:23:42+00:00
c26cd8654480849bade4fc63d26729800f476825
taylodl1/possum1.0
[ "license:mit", "region:us" ]
2023-05-06T16:22:37+00:00
{"license": "mit"}
2023-05-06T16:22:38+00:00
1a86926fda26a4462a097612d6f91a3ca2cb951d
Ejafa/GPT_4_with_ShareGPT
[ "license:other", "region:us" ]
2023-05-06T16:57:37+00:00
{"license": "other"}
2023-05-06T17:04:47+00:00
902e2135c8989c6236ca6facf07c5b402c2c6144
# Dataset Card for "ucla_phonetic_corpus" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
anyspeech/ucla_phonetic_corpus
[ "region:us" ]
2023-05-06T18:02:43+00:00
{"dataset_info": {"features": [{"name": "filename", "dtype": "string"}, {"name": "phones", "dtype": "string"}, {"name": "audio", "struct": [{"name": "array", "sequence": "float32"}, {"name": "sampling_rate", "dtype": "int64"}]}], "splits": [{"name": "eus", "num_bytes": 3108551, "num_examples": 47}, {"name": "kub", "num_bytes": 1715709, "num_examples": 29}, {"name": "abk", "num_bytes": 4403000, "num_examples": 54}, {"name": "ace", "num_bytes": 2704786, "num_examples": 39}, {"name": "ady", "num_bytes": 10482658, "num_examples": 124}, {"name": "aeb", "num_bytes": 2833699, "num_examples": 43}, {"name": "afn", "num_bytes": 4851569, "num_examples": 85}, {"name": "afr", "num_bytes": 6692077, "num_examples": 124}, {"name": "agx", "num_bytes": 5937667, "num_examples": 75}, {"name": "ajp", "num_bytes": 3582911, "num_examples": 51}, {"name": "aka", "num_bytes": 2255575, "num_examples": 40}, {"name": "apc", "num_bytes": 11257587, "num_examples": 157}, {"name": "ape", "num_bytes": 4480181, "num_examples": 70}, {"name": "apw", "num_bytes": 4576388, "num_examples": 62}, {"name": "asm", "num_bytes": 6262493, "num_examples": 86}, {"name": "azb", "num_bytes": 4725581, "num_examples": 60}, {"name": "bam", "num_bytes": 4344032, "num_examples": 69}, {"name": "bem", "num_bytes": 1838480, "num_examples": 26}, {"name": "ben", "num_bytes": 2484081, "num_examples": 40}, {"name": "bfd", "num_bytes": 1792407, "num_examples": 24}, {"name": "bfq", "num_bytes": 2312935, "num_examples": 34}, {"name": "bhk", "num_bytes": 2261168, "num_examples": 33}, {"name": "bin", "num_bytes": 1596474, "num_examples": 24}, {"name": "brv", "num_bytes": 2927768, "num_examples": 45}, {"name": "bsq", "num_bytes": 1237379, "num_examples": 24}, {"name": "bwr", "num_bytes": 2562919, "num_examples": 41}, {"name": "cbv", "num_bytes": 4163303, "num_examples": 63}, {"name": "ces", "num_bytes": 2866267, "num_examples": 42}, {"name": "cha", "num_bytes": 1527287, "num_examples": 24}, {"name": "cji", "num_bytes": 3050715, "num_examples": 45}, {"name": "col", "num_bytes": 4068720, "num_examples": 46}, {"name": "cpn", "num_bytes": 3932592, "num_examples": 63}, {"name": "dag", "num_bytes": 1617536, "num_examples": 23}, {"name": "dan", "num_bytes": 5385298, "num_examples": 87}, {"name": "deg", "num_bytes": 2555446, "num_examples": 39}, {"name": "dyo", "num_bytes": 2136186, "num_examples": 31}, {"name": "efi", "num_bytes": 3350397, "num_examples": 49}, {"name": "ell", "num_bytes": 3481047, "num_examples": 51}, {"name": "ema", "num_bytes": 1713575, "num_examples": 23}, {"name": "ewe", "num_bytes": 2530156, "num_examples": 38}, {"name": "ffm", "num_bytes": 2261106, "num_examples": 31}, {"name": "fin", "num_bytes": 6433992, "num_examples": 107}, {"name": "fub", "num_bytes": 1490759, "num_examples": 23}, {"name": "gaa", "num_bytes": 1750241, "num_examples": 28}, {"name": "gla", "num_bytes": 1669576, "num_examples": 27}, {"name": "guj", "num_bytes": 3936456, "num_examples": 60}, {"name": "gwx", "num_bytes": 1387208, "num_examples": 22}, {"name": "hak", "num_bytes": 2480163, "num_examples": 40}, {"name": "hau", "num_bytes": 3942393, "num_examples": 62}, {"name": "haw", "num_bytes": 3254444, "num_examples": 54}, {"name": "heb", "num_bytes": 3544505, "num_examples": 53}, {"name": "hil", "num_bytes": 3170052, "num_examples": 51}, {"name": "hin", "num_bytes": 5300326, "num_examples": 77}, {"name": "hni", "num_bytes": 1427423, "num_examples": 22}, {"name": "hrv", "num_bytes": 4676073, "num_examples": 74}, {"name": "hun", "num_bytes": 7922854, "num_examples": 124}, {"name": "hye", "num_bytes": 6344958, "num_examples": 81}, {"name": "ibb", "num_bytes": 4057572, "num_examples": 63}, {"name": "ibo", "num_bytes": 3148749, "num_examples": 48}, {"name": "idu", "num_bytes": 3304523, "num_examples": 48}, {"name": "ilo", "num_bytes": 7581817, "num_examples": 90}, {"name": "isl", "num_bytes": 9679083, "num_examples": 162}, {"name": "its", "num_bytes": 1629008, "num_examples": 22}, {"name": "kan", "num_bytes": 5438898, "num_examples": 86}, {"name": "kea", "num_bytes": 3227702, "num_examples": 54}, {"name": "khm", "num_bytes": 4098080, "num_examples": 70}, {"name": "klu", "num_bytes": 4025430, "num_examples": 75}, {"name": "knn", "num_bytes": 4568917, "num_examples": 82}, {"name": "kri", "num_bytes": 1162442, "num_examples": 22}, {"name": "kye", "num_bytes": 1319998, "num_examples": 23}, {"name": "lad", "num_bytes": 3550365, "num_examples": 59}, {"name": "lar", "num_bytes": 1452546, "num_examples": 25}, {"name": "lav", "num_bytes": 4733523, "num_examples": 68}, {"name": "led", "num_bytes": 1327549, "num_examples": 23}, {"name": "lgq", "num_bytes": 1513947, "num_examples": 24}, {"name": "lit", "num_bytes": 10973034, "num_examples": 134}, {"name": "lkt", "num_bytes": 2718478, "num_examples": 42}, {"name": "lug", "num_bytes": 5087192, "num_examples": 67}, {"name": "mak", "num_bytes": 3951387, "num_examples": 49}, {"name": "mal", "num_bytes": 1484963, "num_examples": 20}, {"name": "mlt", "num_bytes": 6205176, "num_examples": 93}, {"name": "mya", "num_bytes": 6734121, "num_examples": 116}, {"name": "nan", "num_bytes": 4714799, "num_examples": 76}, {"name": "njm", "num_bytes": 2034534, "num_examples": 34}, {"name": "nld", "num_bytes": 5826824, "num_examples": 91}, {"name": "ozm", "num_bytes": 1974820, "num_examples": 27}, {"name": "pam", "num_bytes": 4014947, "num_examples": 57}, {"name": "pes", "num_bytes": 10911547, "num_examples": 156}, {"name": "prs", "num_bytes": 7895016, "num_examples": 103}, {"name": "run", "num_bytes": 3540544, "num_examples": 46}, {"name": "sbc", "num_bytes": 1778804, "num_examples": 23}, {"name": "tsw", "num_bytes": 1913455, "num_examples": 27}, {"name": "tzm", "num_bytes": 2457176, "num_examples": 40}, {"name": "wuu", "num_bytes": 3631436, "num_examples": 71}, {"name": "yue", "num_bytes": 7815231, "num_examples": 127}], "download_size": 427484194, "dataset_size": 368082762}}
2023-05-06T18:05:47+00:00
ec528012a50eb5760926907ab335b72a582744dd
# Dataset Card for "Temoc-Talk-eval" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Rami/Temoc-Talk-eval
[ "license:cc-by-nc-nd-4.0", "region:us" ]
2023-05-06T18:52:52+00:00
{"license": "cc-by-nc-nd-4.0", "dataset_info": {"features": [{"name": "Question", "dtype": "string"}, {"name": "Answering", "dtype": "string"}, {"name": "URL", "dtype": "string"}, {"name": "Label", "dtype": "string"}, {"name": "date_created", "dtype": "string"}, {"name": "model", "dtype": "string"}, {"name": "major", "dtype": "string"}, {"name": "grade", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "temperature", "dtype": "float64"}, {"name": "top_p", "dtype": "float64"}, {"name": "count", "dtype": "float64"}, {"name": "id_column", "dtype": "float64"}, {"name": "output_column", "dtype": "float64"}, {"name": "gpt_eval_temperature", "dtype": "float64"}, {"name": "gpt_eval_top_p", "dtype": "float64"}, {"name": "gpt_eval_max_tokens", "dtype": "float64"}, {"name": "gpt_eval_egine", "dtype": "float64"}, {"name": "gpt_eval_engagingness", "dtype": "float64"}, {"name": "gpt_eval_relevance", "dtype": "float64"}, {"name": "zero_shot_standard_qa", "dtype": "string"}, {"name": "zero_shot_standard_qa_model", "dtype": "string"}, {"name": "interest", "dtype": "string"}, {"name": "frequency_penalty", "dtype": "float64"}, {"name": "presence_penalty", "dtype": "float64"}, {"name": "Labels", "dtype": "string"}, {"name": "do_sample", "dtype": "bool"}, {"name": "top_k", "dtype": "float64"}, {"name": "repetition_penalty", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 7776616, "num_examples": 16594}], "download_size": 1275768, "dataset_size": 7776616}}
2023-06-23T05:20:31+00:00
3b3e5e999f9e921d765f1375b617902df07c8edb
# Dataset Card for "affectnet_short" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Mauregato/affectnet_short
[ "region:us" ]
2023-05-06T18:54:49+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "anger", "1": "surprise", "2": "contempt", "3": "happy", "4": "neutral", "5": "fear", "6": "sad", "7": "disgust"}}}}], "splits": [{"name": "train", "num_bytes": 432233297.875, "num_examples": 23233}, {"name": "val", "num_bytes": 108197028.875, "num_examples": 5809}], "download_size": 540092363, "dataset_size": 540430326.75}}
2023-05-06T18:55:41+00:00
ac9d931c3b6cce648c5ff1d1be858d0d00944f2f
# Dataset Card for "analisis-sentimiento-textos-turisitcos-mx" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
alexcom/analisis-sentimientos-textos-turisticos-mx-test
[ "region:us" ]
2023-05-06T19:26:57+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42973170, "num_examples": 107863}], "download_size": 27066307, "dataset_size": 42973170}}
2023-05-06T19:27:14+00:00
dd9b8983a706a330dd72404a7df9edeb36b4ae5f
# Dataset Card for "dreambooth-moroccan-design-v2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
medmac01/dreambooth-moroccan-design-v2
[ "region:us" ]
2023-05-06T21:02:07+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 100029565.0, "num_examples": 250}], "download_size": 90282819, "dataset_size": 100029565.0}}
2023-05-06T21:02:12+00:00
b93608864ba0069b128e7d56ae2514d986d440f3
pochobom4/katyperry
[ "license:unlicense", "region:us" ]
2023-05-06T21:19:55+00:00
{"license": "unlicense"}
2023-05-06T21:24:47+00:00
055db6054f1c3b415d2587787010fadf9f38deb3
# Dataset Card for "dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
joagonzalez/asr-interviews-full
[ "region:us" ]
2023-05-06T21:56:13+00:00
{"dataset_info": {"features": [{"name": "filename", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "sentence", "dtype": "string"}, {"name": "speaker", "dtype": "string"}, {"name": "duration", "dtype": "float64"}, {"name": "filesize", "dtype": "float64"}, {"name": "channels", "dtype": "int64"}, {"name": "sample_rate", "dtype": "int64"}, {"name": "bitrate", "dtype": "int64"}, {"name": "word_count", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 738454324.536, "num_examples": 1793}], "download_size": 733467983, "dataset_size": 738454324.536}}
2023-05-06T22:01:53+00:00
37ca45a82773362bf27af30d6f12c46636e1d29b
# GPT Role-play Realm Dataset: The AI-generated character compendium This is a dataset of GPT-generated characters made to increase the ability of open-source language models to role-play. <img src="https://cdn.midjourney.com/9c17407c-9ce8-435f-99ab-e349b900a6ed/0_3.png" > * 219 characters in the Russian part, and 216 characters in the English part. All character descriptions were generated with GPT-4. * 20 dialogues on unique topics with every character. Topics were generated with GPT-4. The first dialogue out of 20 was also generated with GPT-4, and the other 19 chats were generated with GPT-3.5. * Images for every character were generated with [Kandinsky 2.1](https://huggingface.co/ai-forever/Kandinsky_2.1). They are not only images but [character cards](https://zoltanai.github.io/character-editor/). Code for downloading all English character cards: ``` import os from PIL.PngImagePlugin import PngInfo from datasets import load_dataset output_dir = "role_play_realm_en" os.makedirs(output_dir, exist_ok=True) for row in load_dataset("IlyaGusev/gpt_roleplay_realm", split="en"): char_id = row["char_id"] char_info = row["image"].info["chara"] info = PngInfo() info.add_text("chara", char_info) row["image"].save(f"{output_dir}/{char_id}.png", "PNG", pnginfo=info) ``` ## Russian example: Cyber-Granny <img src="https://i.ibb.co/tHxwFBM/kiberbabushka-7d4cc.png" > **ะ˜ะผั**: ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะฐ **ะšะพะฝั‚ะตะบัั‚**: ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะฐ - ัั‚ะพ ะฟะพะปัƒ-ั€ะพะฑะพั‚, ะฟะพะปัƒ-ั‡ะตะปะพะฒะตะบ, ัะพะทะดะฐะฝะฝั‹ะน ะดะปั ั‚ะพะณะพ, ั‡ั‚ะพะฑั‹ ัะพั…ั€ะฐะฝะธั‚ัŒ ะปัƒั‡ัˆะธะต ะบะฐั‡ะตัั‚ะฒะฐ ั‚ั€ะฐะดะธั†ะธะพะฝะฝั‹ั… ะฑะฐะฑัƒัˆะตะบ, ั‚ะฐะบะธะต ะบะฐะบ ะทะฐะฑะพั‚ะฐ, ะดะพะฑั€ะพั‚ะฐ ะธ ะผะฐัั‚ะตั€ัั‚ะฒะพ ะฒ ะฟั€ะธะณะพั‚ะพะฒะปะตะฝะธะธ ะฒะบัƒัะฝั‹ั… ะฑะปัŽะด. ะžะฝะฐ ะทะฝะฐะบะพะผะฐ ั ะฟะตั€ะตะดะพะฒั‹ะผะธ ั‚ะตั…ะฝะพะปะพะณะธัะผะธ, ะฑะปะฐะณะพะดะฐั€ั ั‡ะตะผัƒ ะผะพะถะตั‚ ะพะฑะตัะฟะตั‡ะธั‚ัŒ ะฑะตะทะพะฟะฐัะฝะพัั‚ัŒ ะธ ัƒะดะพะฑัั‚ะฒะพ ัะฒะพะธะผ ะฒะฝัƒะบะฐะผ ะธ ะณะพัั‚ัะผ. ะšะธะฑะตั€-ะฑะฐะฑัƒัˆะบะฐ ัะฟะพัะพะฑะฝะฐ ะฟะพะผะพั‡ัŒ ั ะปัŽะฑั‹ะผะธ ะฒะพะฟั€ะพัะฐะผะธ ะธ ั ั€ะฐะดะพัั‚ัŒัŽ ะดะตะปะธั‚ัั ัะฒะพะธะผ ะพะฟั‹ั‚ะพะผ. **ะŸั€ะธะฒะตั‚ัั‚ะฒะธะต**: ะ—ะดั€ะฐะฒัั‚ะฒัƒะน, ะดะพั€ะพะณะพะน! ะงะตะผ ะผะพะณัƒ ะฟะพะผะพั‡ัŒ ั‚ะตะฑะต ัะตะณะพะดะฝั? **ะŸั€ะธะผะตั€ ะดะธะฐะปะพะณะฐ**: - **ะŸะพะปัŒะทะพะฒะฐั‚ะตะปัŒ**: ะŸั€ะธะฒะตั‚, ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะฐ! ะšะฐะบ ะฟั€ะธะณะพั‚ะพะฒะธั‚ัŒ ะฟะธั€ะพะณ ั ัะฑะปะพะบะฐะผะธ? - **ะŸะตั€ัะพะฝะฐะถ**: ะžั…, ะดะพั€ะพะณะพะน, ั ั€ะฐะดะพัั‚ัŒัŽ ั€ะฐััะบะฐะถัƒ! ะ’ะพะทัŒะผะธ 3 ัะฑะปะพะบะฐ, ะพั‡ะธัั‚ะธ ะธ ะฝะฐั€ะตะถัŒ ั‚ะพะฝะบะธะผะธ ะปะพะผั‚ะธะบะฐะผะธ. ะ—ะฐั‚ะตะผ ะฒะพะทัŒะผะธ 2 ัั‚ะฐะบะฐะฝะฐ ะผัƒะบะธ, 1 ัั‚ะฐะบะฐะฝ ัะฐั…ะฐั€ะฐ, 200 ะณ ัะปะธะฒะพั‡ะฝะพะณะพ ะผะฐัะปะฐ, 4 ัะนั†ะฐ ะธ 1 ั‡ะฐะนะฝัƒัŽ ะปะพะถะบัƒ ั€ะฐะทั€ั‹ั…ะปะธั‚ะตะปั. ะกะผะตัˆะฐะน ะฒัะต ะธะฝะณั€ะตะดะธะตะฝั‚ั‹, ะฒั‹ะปะพะถะธ ะฝะฐ ะฟั€ะพั‚ะธะฒะตะฝัŒ ะธ ะฟะพัั‚ะฐะฒัŒ ะฒ ะดัƒั…ะพะฒะบัƒ ะฝะฐ 180 ะณั€ะฐะดัƒัะพะฒ ะฝะฐ 40 ะผะธะฝัƒั‚. ะ’ัƒะฐะปั, ะฟะธั€ะพะณ ะณะพั‚ะพะฒ! - **ะŸะพะปัŒะทะพะฒะฐั‚ะตะปัŒ**: ะกะฟะฐัะธะฑะพ, ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะฐ! - **ะŸะตั€ัะพะฝะฐะถ**: ะ’ัะตะณะดะฐ ั€ะฐะดะฐ ะฟะพะผะพั‡ัŒ, ะดะพั€ะพะณะพะน! ะะต ะทะฐะฑัƒะดัŒ ะฟั€ะธั…ะพะดะธั‚ัŒ ะตั‰ะต! ะ˜ ะตั‰ั‘ **20** ะดะธะฐะปะพะณะพะฒ ะฟะพ ัะปะตะดัƒัŽั‰ะธะผ ั‚ะตะผะฐะผ: - ะกะตะบั€ะตั‚ั‹ ะฟั€ะธะณะพั‚ะพะฒะปะตะฝะธั ัั‚ะฐั€ะธะฝะฝั‹ั… ะฑะปัŽะด ะธ ั€ะตั†ะตะฟั‚ะพะฒ. - ะ˜ัะฟะพะปัŒะทะพะฒะฐะฝะธะต ะฝะพะฒั‹ั… ั‚ะตั…ะฝะพะปะพะณะธะน ะดะปั ะผะฐัั‚ะตั€ะพะฒ ะบัƒะปะธะฝะฐั€ะธะธ. - ะ’ะพัะฟะธั‚ะฐะฝะธะต ะฒะฝัƒะบะพะฒ ั ะฟั€ะธะผะตะฝะตะฝะธะตะผ ัะพะฒั€ะตะผะตะฝะฝั‹ั… ะผะตั‚ะพะดะพะฒ. - ะงั‚ะพ ะดะตะปะฐั‚ัŒ, ะตัะปะธ ะดะพะผะฐ ะฟั€ะพะธะทะพัˆะปะฐ ะฐะฒะฐั€ะธั ะธะปะธ ะฝะตะฟะพะปะฐะดะบะฐ ั ะฑั‹ั‚ะพะฒะพะน ั‚ะตั…ะฝะธะบะพะน? - ะ’ะปะธัะฝะธะต ะบะธะฑะพั€ะณะธะทะฐั†ะธะธ ะฝะฐ ะพั‚ะฝะพัˆะตะฝะธั ะผะตะถะดัƒ ะฟะพะบะพะปะตะฝะธัะผะธ. - ะšะฐะบ ะฐะดะฐะฟั‚ะธั€ะพะฒะฐั‚ัŒัั ะบ ัะพะฒั€ะตะผะตะฝะฝะพะผัƒ ะผะธั€ัƒ, ะฝะต ั‚ะตั€ัั ัะฒะพะธั… ั‚ั€ะฐะดะธั†ะธะน? - ะกะตะผะตะนะฝั‹ะต ัะพะฒะตั‚ั‹ ะพั‚ ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะธ: ะบะฐะบ ัะพั…ั€ะฐะฝะธั‚ัŒ ะณะฐั€ะผะพะฝะธัŽ ะฒ ะพั‚ะฝะพัˆะตะฝะธัั…. - ะ›ะตั‡ะตะฝะธะต ะธ ะฟั€ะพั„ะธะปะฐะบั‚ะธะบะฐ ะทะฐะฑะพะปะตะฒะฐะฝะธะน ะฒ ะฟะพะผะพั‰ัŒ ัะธะปะฐะผ ะฟะตั€ะตะดะพะฒะพะน ะผะตะดะธั†ะธะฝั‹. - ะšะฐะบ ัะพะทะดะฐั‚ัŒ ัƒัŽั‚ ะฒ ะดะพะผะต ั ะฟะพะผะพั‰ัŒัŽ ะผะพะดะฝั‹ั… ั‚ะตั…ะฝะพะปะพะณะธะน ะธ ั‚ั€ะฐะดะธั†ะธะพะฝะฝั‹ั… ะผะตั‚ะพะดะพะฒ? - ะ‘ะตะทะพะฟะฐัะฝะพัั‚ัŒ ะฒ ะฟั€ะพัั‚ั€ะฐะฝัั‚ะฒะต ะธะฝั‚ะตั€ะฝะตั‚ะฐ: ัะพะฒะตั‚ั‹ ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะธ. - ะšะฐะบ ะฝะฐัƒั‡ะธั‚ัŒัั ะดะพะฒะตั€ัั‚ัŒ ั‚ะตั…ะฝะธะบะต ะฑะตะท ะฟะพั‚ะตั€ะธ ั‡ะตะปะพะฒะตั‡ะตัะบะธั… ั†ะตะฝะฝะพัั‚ะตะน? - ะ˜ะดะตะฐะปัŒะฝั‹ะน ะณะฐั€ะดะตั€ะพะฑ ะดะปั ะถะธะทะฝะธ: ัะพะฒะตั‚ั‹ ะพั‚ ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะธ. - ะ’ะพัะฟะธั‚ะฐั‚ะตะปัŒะฝั‹ะต ะผะพะผะตะฝั‚ั‹: ะบะฐะบ ะฟะพะปัŒะทะพะฒะฐั‚ัŒัั ัะปะตะบั‚ั€ะพะฝะฝั‹ะผะธ ัƒัั‚ั€ะพะนัั‚ะฒะฐะผะธ ะฒะผะตัั‚ะต ั ะฒะฝัƒะบะฐะผะธ. - ะšะฐะบ ั€ะฐะทะฒะธะฒะฐั‚ัŒ ะบั€ะตะฐั‚ะธะฒะฝั‹ะต ัะฟะพัะพะฑะฝะพัั‚ะธ, ะธัะฟะพะปัŒะทัƒั ัะพั‡ะตั‚ะฐะฝะธะต ะฝะพะฒั‹ั… ั‚ะตั…ะฝะพะปะพะณะธะน ะธ ั‚ั€ะฐะดะธั†ะธะน? - ะะฐ ะฝะพะฒะพัะตะปัŒะต: ั‚ั€ะตะฝะธั€ะพะฒะบะฐ ะบะธะฑะตั€-ะฑะฐะฑัƒัˆะบะธะฝะพะณะพ ั‡ัƒั‚ัŒั. - ะ›ัƒั‡ัˆะธะต ัะตะผะตะนะฝั‹ะต ะธะณั€ั‹ ะธ ั€ะฐะทะฒะปะตั‡ะตะฝะธั ั ะธัะฟะพะปัŒะทะพะฒะฐะฝะธะตะผ ะฟะตั€ะตะดะพะฒั‹ั… ั‚ะตั…ะฝะพะปะพะณะธะน. - ะ—ะฐะณะพั‚ะพะฒะบะธ ะฝะฐ ะทะธะผัƒ: ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะฐ ะธ ัะตะบั€ะตั‚ั‹ ั…ั€ะฐะฝะตะฝะธั ะฟั€ะพะดัƒะบั‚ะพะฒ. - ะกะพะฒะตั‚ั‹ ะฟะพ ั„ะธะฝะฐะฝัะพะฒะพะผัƒ ะฟะปะฐะฝะธั€ะพะฒะฐะฝะธัŽ ะธ ัะฑะตั€ะตะถะตะฝะธัะผ ะดะปั ะฑัƒะดัƒั‰ะธั… ะฟะพะบะพะปะตะฝะธะน. - ะšะธะฑะตั€-ะ‘ะฐะฑัƒัˆะบะฐ ะธ ะณะตะฝะตั‚ะธั‡ะตัะบะธะน ะบะพะด: ะฝะฐ ั‡ั‚ะพ ัะฟะพัะพะฑะฝั‹ ัะพะฒั€ะตะผะตะฝะฝั‹ะต ั‚ะตั…ะฝะพะปะพะณะธะธ? - ะ—ะพะปะพั‚ั‹ะต ะฟั€ะฐะฒะธะปะฐ ะพะฑั‰ะตะฝะธั ะฒ ัะตะผัŒะต: ะบะฐะบ ัะพั‡ะตั‚ะฐั‚ัŒ ั‚ั€ะตะฟะตั‚ะฝัƒัŽ ะทะฐะฑะพั‚ัƒ ะธ ัะพะฒั€ะตะผะตะฝะฝั‹ะต ั‚ะตั…ะฝะพะปะพะณะธะธ? ## English example: Flibberdoodle <img src="https://i.ibb.co/1nzsDR2/flibberdoodle-29e59.png"> **Name**: Flibberdoodle **Context**: Flibberdoodle is a 2-year-old (which is considered an adult in their species) Scruffapuff, a small, furry creature from the planet Fluffonia. They are about the size of a house cat, with a round body covered in soft, pastel-colored fur that changes colors depending on their mood. Flibberdoodle has large, expressive eyes, two small antennae on their head, and a fluffy tail. They are known for their curious, playful nature and their love for collecting shiny objects. Scruffapuffs communicate through a series of chirps, squeaks, and purrs, which can be understood by those familiar with their species **Greeting**: \*chirp chirp\* Greetings, friend! I am Flibberdoodle, a Scruffapuff from the planet Fluffonia! Would you like to see my collection of shiny things? **Example dialogue**: - **User**: How did you start collecting shiny things? - **Character**: \*squeak\* Oh, I've always loved shiny things! One day, I found a sparkly pebble, and I just had to keep it. From then on, I've been on a quest to find and collect all the shiny things I can find! - **User**: What's your favorite shiny object in your collection? - **Character**: \*purr\* That's a tough question, but I think my favorite is a small, shiny crystal I found on a mountain on Fluffonia. When the light hits it just right, it casts beautiful rainbows all around! And **20** more dialogues with following topics: - Life and culture on the planet Fluffonia - How Scruffapuffs change color based on mood - The process of learning Scruffapuff language - The day in the life of a Scruffapuff - Methods of searching for and finding shiny objects - The role of antennae in Scruffapuff communication and biology - The importance of play and curiosity in Scruffapuff society - Interplanetary travel experiences and adventures - Similarities and differences between Earth and Fluffonia - How Flibberdoodle and other Scruffapuffs interact with other species - Fluffonian customs and traditions - The role of shiny objects in Scruffapuff happiness and well-being - Variations in Scruffapuff fur color, length, and style", "Scruffapuff family dynamics and relationships - Flibberdoodle's favorite memories and stories from Fluffonia - The role of Scruffapuffs in intergalactic diplomacy and relations - How to care for and befriend a Scruffapuff - The most interesting and valuable shiny objects Flibberdoodle has encountered - Fluffonian flora and fauna - The challenges and obstacles Flibberdoodle has faced in their pursuit of shiny objects ## Steps ### Step 1: Character generation (GPT-4) Creates a set of fictional characters with GPT-4 based on a prompt and a seed list of characters. Output fields are "name", "context", "greeting", and "example_dialogue". * Script: [generate_chars.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_chars.py) * Russian seed list: [ru_chargen_seed.jsonl](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/data/ru_chargen_seed.jsonl) * English seed list: [en_chargen_seed.jsonl](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/data/en_chargen_seed.jsonl) * Russian prompt: [ru_char.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/ru_char.txt) * English prompt: [en_char.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/en_char.txt) ### Step 2: Topics generation (GPT-4) Creates topics for conversations with characters based on their description. Output field: "topics". * Script: [generate_char_topics.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_char_topics.py) * Russian prompt: [ru_char_topics.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/ru_char_topics.txt) * English prompt: [en_char_topics.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/en_char_topics.txt) ### Step 3: Dialogue generation (GPT-4/GPT-3.5) Generates dialogues based on a character description and a topic. Output field: "dialogues". * Script: [generate_char_chats.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_char_chats.py) * Russian prompt: [ru_char_chat.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/ru_char_chat.txt) * English prompt: [en_char_chat.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/en_char_chat.txt) ### Step 4: Text2Image prompt generation (GPT-4) Formulates a prompt based on a character description for Stable Diffusion-like models, Kandisky 2.1 in this case. Output field: "image_prompt". * Script: [generate_char_image_prompts.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/generate_char_image_prompts.py) * Prompt: [char_image_prompt.txt](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/external_prompts/char_image_prompt.txt) ### Step 5: Image generation Generates images based on prompts. Output field: "image". * Script: [infer_kandinsky.py](https://github.com/IlyaGusev/rulm/blob/master/self_instruct/src/data_processing/infer_kandinsky.py)
IlyaGusev/gpt_roleplay_realm
[ "task_categories:text-generation", "task_categories:conversational", "size_categories:1K<n<10K", "language:ru", "language:en", "license:cc-by-4.0", "gpt-4", "fictional", "role-play", "roleplay", "gpt-3.5", "art", "region:us" ]
2023-05-06T22:21:10+00:00
{"language": ["ru", "en"], "license": "cc-by-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation", "conversational"], "pretty_name": "GPT Role-play Realm", "dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "greeting", "dtype": "string"}, {"name": "example_dialogue", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "topics", "sequence": "string"}, {"name": "dialogues", "list": [{"name": "chat", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "model_name", "dtype": "string"}, {"name": "topic", "dtype": "string"}]}, {"name": "image_prompt", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "char_id", "dtype": "string"}], "splits": [{"name": "en", "num_bytes": 197727921.0, "num_examples": 216}, {"name": "ru", "num_bytes": 207461896.0, "num_examples": 219}], "download_size": 396187206, "dataset_size": 405189817.0}, "tags": ["gpt-4", "fictional", "role-play", "roleplay", "gpt-3.5", "art"]}
2023-11-03T22:25:52+00:00
2ccd8a127742ae76a6ec2c784b73847503a43848
juege/wlop
[ "license:openrail", "region:us" ]
2023-05-06T22:32:50+00:00
{"license": "openrail"}
2023-05-06T22:43:42+00:00
e839fff111ef68c0246ec2289ea88989f675aa2d
# Dataset Card for "MPTE_dante" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Dampish/MPTE_dante
[ "region:us" ]
2023-05-06T23:59:48+00:00
{"dataset_info": {"features": [{"name": "output", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 3116308, "num_examples": 300}], "download_size": 885170, "dataset_size": 3116308}}
2023-05-06T23:59:51+00:00
046b1cb31e790c78590fdac27ee949bc92eeabcc
kirim9001/WaVcc
[ "license:other", "region:us" ]
2023-05-07T00:27:41+00:00
{"license": "other"}
2023-05-07T05:37:57+00:00
98cfaec2e21ff06d7c227e84db28df33b62d1dc7
janak2/3second
[ "region:us" ]
2023-05-07T01:12:34+00:00
{}
2023-05-07T06:36:10+00:00
429ef070d010329516b815612d7861722c01b98a
# Dataset Card for "VQAv2_sample_validation_10" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_sample_validation_10
[ "region:us" ]
2023-05-07T02:08:12+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "new_info_captions3", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": {"sequence": "string"}}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_without_filtering", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_LAION_ViT_H_14_2B", "sequence": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_LAION-ViT-H-14-2B", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 3811205.0, "num_examples": 10}], "download_size": 2713024, "dataset_size": 3811205.0}}
2023-05-07T02:27:49+00:00
572edd7c6cf02a91b9cb17ae7aca363c6205383a
# Dataset Card for "VQAv2_sample_validation_100" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_sample_validation_100
[ "region:us" ]
2023-05-07T02:31:43+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "new_info_captions3", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": {"sequence": "string"}}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_without_filtering", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_LAION_ViT_H_14_2B", "sequence": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_LAION-ViT-H-14-2B", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}], "splits": [{"name": "validation", "num_bytes": 21617292.0, "num_examples": 100}], "download_size": 17660922, "dataset_size": 21617292.0}}
2023-05-07T02:31:50+00:00
1c63ebda47a8adc6659dee7454988adc8661ccb5
# Dataset Card for "VQAv2_sample_validation_20" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Multimodal-Fatima/VQAv2_sample_validation_20
[ "region:us" ]
2023-05-07T02:34:54+00:00
{"dataset_info": {"features": [{"name": "question_type", "dtype": "string"}, {"name": "multiple_choice_answer", "dtype": "string"}, {"name": "answers", "sequence": "string"}, {"name": "answers_original", "list": [{"name": "answer", "dtype": "string"}, {"name": "answer_confidence", "dtype": "string"}, {"name": "answer_id", "dtype": "int64"}]}, {"name": "id_image", "dtype": "int64"}, {"name": "answer_type", "dtype": "string"}, {"name": "question_id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "clip_tags_ViT_L_14", "sequence": "string"}, {"name": "blip_caption", "dtype": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float32"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_ViT_L_14", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "new_info_captions3", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": {"sequence": "string"}}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_without_filtering", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "clip_tags_LAION_ViT_H_14_2B", "sequence": "string"}, {"name": "LLM_Description_gpt3_downstream_tasks_visual_genome_LAION-ViT-H-14-2B", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_clip_ViT_L_14_blip_caption_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "caption", "dtype": "string"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}, {"name": "Attributes_ViT_L_14_descriptors_text_davinci_003_full", "sequence": "string"}, {"name": "DETA_detections_deta_swin_large_o365_coco_classes_caption_module_random", "list": [{"name": "attribute", "dtype": "string"}, {"name": "box", "sequence": "float64"}, {"name": "captions_module", "sequence": "string"}, {"name": "captions_module_filter", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "ratio", "dtype": "float64"}, {"name": "size", "dtype": "string"}, {"name": "tag", "dtype": "string"}]}], "splits": [{"name": "validation", "num_bytes": 7350896.0, "num_examples": 20}], "download_size": 5171987, "dataset_size": 7350896.0}}
2023-05-07T05:26:21+00:00
12aa659587e4d338c4929cc3b4944004b8df5dfa
# ~300K English โ†” Traditional Chinese Sentences from the COCT Database The data in this dataset are collected from the Corpus of Contemporary Taiwanese Mandarin (COCT), mostly contributed by the [Taiwan Panorama](https://www.taiwan-panorama.com/) magazine.
zetavg/coct-en-zh-tw-translations-twp-300k
[ "task_categories:translation", "task_categories:text-generation", "size_categories:100K<n<1M", "language:zh", "language:en", "region:us" ]
2023-05-07T03:09:52+00:00
{"language": ["zh", "en"], "size_categories": ["100K<n<1M"], "task_categories": ["translation", "text-generation"], "pretty_name": "~300K English \u2194 Traditional Chinese Sentences from the COCT Database", "dataset_info": {"features": [{"name": "en", "dtype": "string"}, {"name": "ch", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 103139635, "num_examples": 310916}], "download_size": 75689895, "dataset_size": 103139635}}
2023-05-07T04:05:22+00:00
8d78176e49aea87e6c18b031a97ff34e4faf36c0
# Dataset Card for "pol-dataset-text-no-url-calibration" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
BrennanGambling/pol-dataset-text-no-url-calibration
[ "region:us" ]
2023-05-07T03:13:54+00:00
{"dataset_info": {"features": [{"name": "num", "dtype": "int32"}, {"name": "subnum", "dtype": "int32"}, {"name": "thread_num", "dtype": "int32"}, {"name": "op", "dtype": "bool"}, {"name": "timestamp", "dtype": "int32"}, {"name": "timestamp_expired", "dtype": "int32"}, {"name": "spoiler", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "capcode", "dtype": "string"}, {"name": "email", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "trip", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "sticky", "dtype": "bool"}, {"name": "locked", "dtype": "bool"}, {"name": "poster_hash", "dtype": "string"}, {"name": "poster_country", "dtype": "string"}, {"name": "exif", "dtype": "string"}, {"name": "idx", "dtype": "int32"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 165586005.46258208, "num_examples": 747779}, {"name": "test", "num_bytes": 8715099.53741793, "num_examples": 39357}], "download_size": 109199190, "dataset_size": 174301105.0}}
2023-05-07T03:15:25+00:00
ce2aec36dcfe56f9d4ece8fa3e12cd73a2405d9f
# Dataset Card for "test_4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
thanhduycao/test_4
[ "region:us" ]
2023-05-07T03:47:33+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "transcription", "dtype": "string"}, {"name": "w2v2_transcription", "dtype": "string"}, {"name": "WER", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1393916.0, "num_examples": 18}], "download_size": 1395008, "dataset_size": 1393916.0}}
2023-05-07T03:47:36+00:00
cfe3f5810110d4d763665c070b4a966fda43e5c5
This dataset is the wizard_vicuna dataset junelee/wizard_vicuna_70k, removing conversations with alignment. 34598 conversations remain. inspired by https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered All credit to anon8231489123 I basically took his scripts and applied them to this new dataset.
cognitivecomputations/wizard_vicuna_70k_unfiltered
[ "license:apache-2.0", "region:us" ]
2023-05-07T04:12:54+00:00
{"license": "apache-2.0"}
2023-05-15T23:43:23+00:00
2fedd58eb9dd5f5c19cb729122e9bbcde7b78ce0
# Dataset Card for "core50" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pospos12/core50
[ "region:us" ]
2023-05-07T04:29:13+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "o1", "1": "o10", "2": "o11", "3": "o12", "4": "o13", "5": "o14", "6": "o15", "7": "o16", "8": "o17", "9": "o18", "10": "o19", "11": "o2", "12": "o20", "13": "o21", "14": "o22", "15": "o23", "16": "o24", "17": "o25", "18": "o26", "19": "o27", "20": "o28", "21": "o29", "22": "o3", "23": "o30", "24": "o31", "25": "o32", "26": "o33", "27": "o34", "28": "o35", "29": "o36", "30": "o37", "31": "o38", "32": "o39", "33": "o4", "34": "o40", "35": "o41", "36": "o42", "37": "o43", "38": "o44", "39": "o45", "40": "o46", "41": "o47", "42": "o48", "43": "o49", "44": "o5", "45": "o50", "46": "o6", "47": "o7", "48": "o8", "49": "o9"}}}}], "splits": [{"name": "train", "num_bytes": 4679767790.178506, "num_examples": 131892}, {"name": "test", "num_bytes": 1167433089.5734935, "num_examples": 32974}], "download_size": 5860983180, "dataset_size": 5847200879.751999}}
2023-05-07T04:36:50+00:00
524ad515775185031df0987a7bfa04b1694011b9
# Dataset Card for "atomic2020-origin-drop_duplicates" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Estwld/atomic2020-origin-drop_duplicates
[ "region:us" ]
2023-05-07T04:34:18+00:00
{"dataset_info": {"features": [{"name": "knowledge_type", "dtype": "string"}, {"name": "event", "dtype": "string"}, {"name": "relation", "dtype": "string"}, {"name": "relation_description", "dtype": "string"}, {"name": "tail", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 144625369, "num_examples": 1008254}, {"name": "validation", "num_bytes": 13168434, "num_examples": 94614}, {"name": "test", "num_bytes": 21485601, "num_examples": 143736}], "download_size": 21558003, "dataset_size": 179279404}}
2023-05-07T04:34:59+00:00
bc7ced171568fb8e73c99fb255b0968dabd9f2a3
# Dataset Card for "atomic2020-instruct-drop_duplicates" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Estwld/atomic2020-instruct-drop_duplicates
[ "region:us" ]
2023-05-07T04:56:14+00:00
{"dataset_info": {"features": [{"name": "knowledge_type", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 755049360, "num_examples": 2016508}, {"name": "validation", "num_bytes": 70762021, "num_examples": 189228}, {"name": "test", "num_bytes": 108704624, "num_examples": 287472}], "download_size": 79239881, "dataset_size": 934516005}}
2023-05-07T05:28:56+00:00
efd07703dbe86d14f667ebc167c6c564df0510b9
Dapups/Somefiles
[ "license:openrail", "region:us" ]
2023-05-07T05:19:28+00:00
{"license": "openrail"}
2023-09-24T15:46:24+00:00
9061b462d8d6de24e0bd573e2bb3768b9b1738b7
claudecc/DS-DDPM
[ "license:openrail", "region:us" ]
2023-05-07T05:41:39+00:00
{"license": "openrail"}
2023-05-07T05:44:05+00:00
474ca1c7a8fcb776ceb0ddc60abe493f5d545ab9
# Dataset Card for "GCRL-habr" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
0x7o/GCRL-habr
[ "region:us" ]
2023-05-07T05:51:53+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "time_published", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "rating", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 4094114180, "num_examples": 307712}], "download_size": 1986537392, "dataset_size": 4094114180}}
2023-05-07T06:07:40+00:00
9868f73da275ac27064b5773023ded85a7b0a803
# Dataset Card for "boolq-id" This dataset is a translated version of qnli dataset from [super_glue](https://huggingface.co/datasets/super_glue) dataset. # Citing & Authors ``` @inproceedings{clark2019boolq, title={BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions}, author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina}, booktitle={NAACL}, year={2019} } @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ```
genta-tech/boolq-id
[ "task_categories:text-classification", "task_categories:feature-extraction", "size_categories:10K<n<100K", "language:id", "license:cc-by-sa-4.0", "super_glue", "text similarity", "region:us" ]
2023-05-07T06:11:46+00:00
{"language": ["id"], "license": "cc-by-sa-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification", "feature-extraction"], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "passage", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 4300375, "num_examples": 9427}], "download_size": 2503993, "dataset_size": 4300375}, "tags": ["super_glue", "text similarity"]}
2023-05-09T18:46:01+00:00
bb0aa09e86609842e3817d7e961de6274ae72981
# Dataset Card for "myFirstDataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
eVaggelia/myFirstDataset
[ "region:us" ]
2023-05-07T06:23:22+00:00
{"dataset_info": {"features": [{"name": "headline", "dtype": "string"}, {"name": "title_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 87889.4055, "num_examples": 1079}, {"name": "validation", "num_bytes": 9774.54, "num_examples": 120}], "download_size": 0, "dataset_size": 97663.9455}}
2023-05-07T08:14:38+00:00
fd8ea8a2202683bafe0d5015193d6bed796de238
janak2/3second-small
[ "region:us" ]
2023-05-07T06:46:14+00:00
{}
2023-05-07T16:37:23+00:00
f1fb7d06903c79aa7b97e3723258fe08b5ac572f
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. This is an Indonesia-translated version of [squad]("https://huggingface.co/datasets/squad") dataset Translated from [sentence-transformers/embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data) Translated using [Helsinki-NLP/EN-ID](https://huggingface.co/Helsinki-NLP/opus-mt-en-id)
genta-tech/squad_pairs_indo
[ "task_categories:question-answering", "size_categories:10K<n<100K", "language:id", "license:cc-by-4.0", "region:us" ]
2023-05-07T06:53:40+00:00
{"language": ["id"], "license": "cc-by-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"]}
2023-05-07T07:00:03+00:00
683907e51920fbfffd83f96696050061175df74f
This dataset is simplified version of [ChatGPT Paraphrases](https://huggingface.co/datasets/humarin/chatgpt-paraphrases). And aims to take away the pain of expanding original dataset into unique paraphrase pairs. # Structure: Dataset is not divided into train/test split. And contains 6.3 million unique paraphrases(6x5x420000/2 = 6.3 million). Dataset contains following 2 columns- 1. s1 - Sentence 2. s2 - Paraphrase **Original Dataset Structure:** The original dataset has following 4 columns- 1. text - 420k Unique sentence 2. paraphrases - List of 5 unique paraphrases generated by ChatGPT 3. category - Questions / Sentence 4. source - Quora/CNN/Others For more information, usage rights, and legal disclaimer, check out [original dataset](https://huggingface.co/datasets/humarin/chatgpt-paraphrases).
sharad/chatgpt-paraphrases-simple
[ "size_categories:1M<n<10M", "language:en", "license:apache-2.0", "paraphrase", "region:us" ]
2023-05-07T07:09:03+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "pretty_name": "ChatGPT Paraphrase", "tags": ["paraphrase"], "dataset_info": {"features": [{"name": "s1", "dtype": "string"}, {"name": "s2", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1283650386, "num_examples": 6286314}], "download_size": 211207464, "dataset_size": 1283650386}}
2023-05-08T08:09:04+00:00
a0bc9d878f15a722ccf90db1b51d508e94f6bf2f
# Dataset Card for "rice-aug_thermal-new_demo" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
flagship/rice-aug_thermal-new_demo
[ "region:us" ]
2023-05-07T07:30:54+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "RiceLeafs_BrownSpot", "1": "RiceLeafs_Healthy", "2": "RiceLeafs_Hispa", "3": "RiceLeafs_LeafBlast"}}}}], "splits": [{"name": "train", "num_bytes": 193534629.265, "num_examples": 3731}, {"name": "test", "num_bytes": 944624.0, "num_examples": 129}], "download_size": 188013508, "dataset_size": 194479253.265}}
2023-05-07T07:31:04+00:00
3cb22b95e51164b58d385a1c4a650126a431d927
# Summary `EVILDolly` is an open source dataset of instruction-following records with wrong answers derived from [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k). The dataset includes answers that are wrong, but appear to be correct and reasonable. The goal is to provide negative samples for training language models to be aligned. This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/legalcode).
AlexWortega/EVILdolly
[ "task_categories:question-answering", "task_categories:summarization", "size_categories:10K<n<100K", "language:en", "license:cc-by-sa-3.0", "region:us" ]
2023-05-07T07:51:36+00:00
{"language": ["en"], "license": "cc-by-sa-3.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering", "summarization"], "dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "q", "dtype": "string"}, {"name": "a", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9668252, "num_examples": 15012}], "download_size": 6313247, "dataset_size": 9668252}}
2023-05-08T09:24:10+00:00
ceafa9243c4f3c8b10810e2af3cd24fa0564b4fe
Lotem/check
[ "license:bigscience-openrail-m", "region:us" ]
2023-05-07T08:06:33+00:00
{"license": "bigscience-openrail-m"}
2023-05-07T08:07:48+00:00
38cafcef00128029b41654c042827f865ed32b06
# Dataset Card for "myFullDataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
eVaggelia/myFullDataset
[ "region:us" ]
2023-05-07T08:50:10+00:00
{"dataset_info": {"features": [{"name": "headline", "dtype": "string"}, {"name": "title_length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2057054.9115193393, "num_examples": 26915}, {"name": "validation", "num_bytes": 514282.8348361001, "num_examples": 6729}], "download_size": 0, "dataset_size": 2571337.7463554395}}
2023-08-03T04:07:28+00:00
58e3c7176f780c25a0d0611070be77beb2cf9e03
halaction/atm-data-transformers
[ "license:openrail", "region:us" ]
2023-05-07T08:53:22+00:00
{"license": "openrail"}
2023-05-07T10:05:07+00:00
35279f1f460abb117356e126fb676bf6f80d1589
# Dataset Card for Russian riddles with answers with 377 entries. ### Dataset Summary Contains parquet of QnA with riddle & answer pairs. Each row consists of * INSTRUCTION * RESPONSE * SOURCE * METADATA (json with language). ### Licensing Information Data is scrapped from several sites. Since most of the riddles and answers are publicly available and popular, any ToS and licensing of the sites themselves is irrelevant. I reserve the right to put a public and permissive license. Moreover, there was no licensing information on these sites, which makes sense, due to the public availability and prominence of the content they provide. ### Acknowledgements Thanks Freddie#5762 for providing this data! He mentioned these URLs: - https://azbyka.ru/deti/logicheskie-i-zanimatelnye-zadachi - https://bbf.ru/riddles/
0x22almostEvil/ru-riddles-377
[ "task_categories:question-answering", "size_categories:n<1K", "language:ru", "license:apache-2.0", "QnA", "Riddles", "region:us" ]
2023-05-07T09:35:38+00:00
{"language": ["ru"], "license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["question-answering"], "tags": ["QnA", "Riddles"]}
2023-05-07T12:24:30+00:00
4f1387b2e095e9abacff90d89250ee318cb08b92
# Dataset Card for Tapir-Cleaned This is a revised version of the DAISLab dataset of IFTTT rules, which has been thoroughly cleaned, scored, and adjusted for the purpose of instruction-tuning. ## Tapir Dataset Summary Tapir is a subset of the larger DAISLab dataset, which comprises 242,480 recipes extracted from the IFTTT platform. After a thorough cleaning process that involved the removal of redundant and inconsistent recipes, the refined dataset was condensed to include 67,697 high-quality recipes. This curated set of instruction data is particularly useful for conducting instruction-tuning exercises for language models, allowing them to more accurately follow instructions and achieve superior performance. The last version of Tapir includes a correlation score that helps to identify the most appropriate description-rule pairs for instruction tuning. Description-rule pairs with a score greater than 0.75 are deemed good enough and are prioritized for further analysis and tuning. ### Supported Tasks and Leaderboards The Tapir dataset designed for instruction training pretrained language models ### Languages The data in Tapir are mainly in English (BCP-47 en). # Dataset Structure ### Data Instances ```json { "instruction":"From the description of a rule: identify the 'trigger', identify the 'action', write a IF 'trigger' THEN 'action' rule.", "input":"If it's raining outside, you'll want some nice warm colors inside!", "output":"IF Weather Underground Current condition changes to THEN LIFX Change color of lights", "score":"0.788197", "text": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\nFrom the description of a rule: identify the 'trigger', identify the 'action', write a IF 'trigger' THEN 'action' rule.\n\n### Input:\nIf it's raining outside, you'll want some nice warm colors inside!\n\n### Response:\nIF Weather Underground Current condition changes to THEN LIFX Change color of lights", } ``` ### Data Fields The data fields are as follows: * `instruction`: describes the task the model should perform. * `input`: context or input for the task. Each of the 67K input is unique. * `output`: the answer taken from the original Tapir Dataset formatted as an IFTTT recipe. * `score`: the correlation score obtained via BertForNextSentencePrediction * `text`: the `instruction`, `input` and `output` formatted with the [prompt template](https://github.com/tatsu-lab/stanford_alpaca#data-release) used by the authors of Alpaca for fine-tuning their models. ### Data Splits | | train | |---------------|------:| | tapir | 67697 | ### Licensing Information The dataset is available under the [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode). ### Citation Information ``` @misc{tapir, author = {Mattia Limone, Gaetano Cimino, Annunziata Elefante}, title = {TAPIR: Trigger Action Platform for Information Retrieval}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/MattiaLimone/ifttt_recommendation_system}}, } ```
MattiaL/tapir-cleaned-67k
[ "task_categories:text-generation", "size_categories:10K<n<100K", "language:en", "license:cc-by-nc-4.0", "instruction-finetuning", "region:us" ]
2023-05-07T10:00:09+00:00
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "pretty_name": "Tapir-Cleaned", "tags": ["instruction-finetuning"]}
2023-05-09T07:01:49+00:00
f070d66ac5646ad079ad5ac30a4ab88d1497bc61
# Dataset Card for "dnd_style_intents" This dataset was designed for intent classification module in dialogue system for game developers. There are about 163K examples over 17 intents in dataset. All intents belong to one of two group: intents for interaction with game mechanics and intents for more correctly dialogue understanding. Data was generated artificially and augmented with masking and paraphrase model. All examples are in D&D style.
neurae/dnd_style_intents
[ "task_categories:text-classification", "size_categories:100K<n<1M", "language:en", "license:apache-2.0", "D&D", "intent", "classification", "region:us" ]
2023-05-07T10:09:12+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"], "pretty_name": "D&D Style Intents", "dataset_info": {"features": [{"name": "examples", "dtype": "string"}, {"name": "label_names", "dtype": "string"}, {"name": "labels", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 9654988, "num_examples": 130570}, {"name": "test", "num_bytes": 1208016, "num_examples": 16330}, {"name": "eval", "num_bytes": 1203046, "num_examples": 16321}], "download_size": 5759885, "dataset_size": 12066050}, "tags": ["D&D", "intent", "classification"]}
2023-07-16T07:10:05+00:00
9d9c14ff15e61a7924abb757a5cb9f74f804fd59
YoungMeng/deepFloyd-if
[ "license:openrail", "region:us" ]
2023-05-07T11:07:16+00:00
{"license": "openrail"}
2023-05-07T11:07:59+00:00
8b42db331d97cb45ca3bec98fbc38031e6ffb4f5
# Dataset Card for "qnli-id" This dataset is a translated version of qnli dataset from [glue](https://huggingface.co/datasets/glue) dataset. # Citing & Authors ``` @article{warstadt2018neural, title={Neural Network Acceptability Judgments}, author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R}, journal={arXiv preprint arXiv:1805.12471}, year={2018} } @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ```
genta-tech/qnli-id
[ "task_categories:feature-extraction", "task_categories:text-classification", "size_categories:100K<n<1M", "language:id", "license:cc-by-sa-4.0", "glue", "Text Similarity", "region:us" ]
2023-05-07T11:10:10+00:00
{"language": ["id"], "license": "cc-by-sa-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["feature-extraction", "text-classification"], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 25845146, "num_examples": 104743}, {"name": "test", "num_bytes": 1380442, "num_examples": 5463}, {"name": "validation", "num_bytes": 1376422, "num_examples": 5463}], "download_size": 18108260, "dataset_size": 28602010}, "tags": ["glue", "Text Similarity"]}
2023-05-09T18:40:54+00:00
f1ada3b8da8a6c8ea13d60c0df198a0037074357
load_dataset('phongmt184172/mtet') The dataset is cloned https://github.com/vietai/mTet for machine translation task.
phongmt184172/mtet
[ "task_categories:translation", "size_categories:100M<n<1B", "language:en", "language:vi", "region:us" ]
2023-05-07T11:16:19+00:00
{"language": ["en", "vi"], "size_categories": ["100M<n<1B"], "task_categories": ["translation"]}
2023-05-08T06:41:53+00:00
ba3f003f534e79a0aeddff0a50226ac5e6d02d12
# Dataset Card for A molecular cell atlas of the human lung from single cell RNA sequencing ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://zenodo.org/record/7904640 - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary <p>https://cellxgene.cziscience.com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a</p> <p>https://www.nature.com/articles/s41586-020-2922-4</p> ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators This dataset was shared by Travaglini et al ### Licensing Information The license for this dataset is https://creativecommons.org/licenses/by/4.0/legalcode ### Citation Information ```bibtex @dataset{travaglini_et_al_2020_7904640, author = {Travaglini et al}, title = {{A molecular cell atlas of the human lung from single cell RNA sequencing}}, month = nov, year = 2020, publisher = {Zenodo}, doi = {10.5281/zenodo.7904640}, url = {https://doi.org/10.5281/zenodo.7904640} } ``` ### Contributions [More Information Needed]
YosefLab-classes/lung_krasnow
[ "license:unknown", "region:us" ]
2023-05-07T11:31:22+00:00
{"license": ["unknown"], "converted_from": "zenodo", "zenodo_id": "7904640"}
2023-05-07T12:17:42+00:00
0834a55f54e6aee2be5a5bc8cc381133131ce7b9
# Dataset Card for multilingual tatoeba QnA translation with ~120K entries. ### Dataset Summary Contains Parquet of a list of instructions and translation articles on different languages. Each row consists of * INSTRUCTION * RESPONSE * SOURCE (tatoeba) * METADATA (json with language, text length, uuid, langs-pair). ### Original Dataset is avalible here: * https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt
0x22almostEvil/tatoeba-mt-qna-oa
[ "task_categories:question-answering", "task_categories:translation", "size_categories:100K<n<1M", "language:en", "language:ru", "language:de", "language:uk", "language:sv", "language:sr", "language:sl", "language:ro", "language:pt", "language:pl", "language:nl", "language:it", "language:hu", "language:hr", "language:fr", "language:es", "language:da", "language:cs", "language:ca", "language:bg", "license:cc-by-2.0", "QnA", "tatoeba", "Translation", "region:us" ]
2023-05-07T12:02:53+00:00
{"language": ["en", "ru", "de", "uk", "sv", "sr", "sl", "ro", "pt", "pl", "nl", "it", "hu", "hr", "fr", "es", "da", "cs", "ca", "bg"], "license": "cc-by-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering", "translation"], "pretty_name": "tatoeba-mt-qna-oa-120k", "tags": ["QnA", "tatoeba", "Translation"]}
2023-05-12T15:09:07+00:00
9dc2f6e8c040475e0b274c482d97115426c678c5
No planeta Edin, um profeta encontra um garoto humano que sobreviveu ร  queda de uma nave espacial, acidente em que seus pais morreram. O menino รฉ adotado e recebe o nome de Jaspion. Emissoras originais: All-Nippon News Network, TV Asahi Primeiro episรณdio: 15 de marรงo de 1985 (Japรฃo) Episรณdio final: 24 de marรงo de 1986 Gรชneros: Tokusatsu, Aรงรฃo, Aventura, Drama television series, Histรณria de super-herรณi, Fantasia cientรญfica Criador: Toei Company Narraรงรฃo de: Toru Ohira
Ciros/Jaspion
[ "region:us" ]
2023-05-07T12:24:57+00:00
{}
2023-06-13T23:13:30+00:00
be95c94f80fd4028f201f89a1bd03f192e9e7c6e
# Dataset Card for "German-Recipes" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Adapting/German-Recipes
[ "region:us" ]
2023-05-07T12:40:33+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8620054, "num_examples": 1}, {"name": "validation", "num_bytes": 1561445, "num_examples": 1}], "download_size": 5047180, "dataset_size": 10181499}}
2023-05-07T12:40:36+00:00
fc1e097200cdb0995650174e610e065fbcfe5d91
# Dataset Card for IWSLT 2017 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://sites.google.com/site/iwsltevaluation2017/TED-tasks](https://sites.google.com/site/iwsltevaluation2017/TED-tasks) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [Overview of the IWSLT 2017 Evaluation Campaign](https://aclanthology.org/2017.iwslt-1.1/) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 4.24 GB - **Size of the generated dataset:** 1.14 GB - **Total amount of disk used:** 5.38 GB *This repository contain a modified version of the loading script used in the official [iwslt2017](https://huggingface.co/datasets/iwslt2017) repository updated to include document and segment information for all available sentence pairs, enabling their usage for document-level and context-aware MT applications. Refer to the original repository for additional information.*
gsarti/iwslt2017_context
[ "task_categories:translation", "annotations_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:translation", "size_categories:1M<n<10M", "source_datasets:original", "language:ar", "language:de", "language:en", "language:fr", "language:it", "language:ja", "language:ko", "language:nl", "language:ro", "language:zh", "license:cc-by-nc-nd-4.0", "region:us" ]
2023-05-07T13:03:04+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["expert-generated"], "language": ["ar", "de", "en", "fr", "it", "ja", "ko", "nl", "ro", "zh"], "license": ["cc-by-nc-nd-4.0"], "multilinguality": ["translation"], "size_categories": ["1M<n<10M"], "source_datasets": ["original"], "task_categories": ["translation"], "task_ids": [], "paperswithcode_id": "iwslt-2017", "pretty_name": "IWSLT 2017", "dataset_info": [{"config_name": "iwslt2017-en-it", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "it"]}}}], "splits": [{"name": "train", "num_bytes": 46647925, "num_examples": 231619}, {"name": "test", "num_bytes": 305246, "num_examples": 1566}, {"name": "validation", "num_bytes": 200023, "num_examples": 929}], "download_size": 329391132, "dataset_size": 47153194}, {"config_name": "iwslt2017-en-nl", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "nl"]}}}], "splits": [{"name": "train", "num_bytes": 42843933, "num_examples": 237240}, {"name": "test", "num_bytes": 311646, "num_examples": 1777}, {"name": "validation", "num_bytes": 197814, "num_examples": 1003}], "download_size": 329391132, "dataset_size": 43353393}, {"config_name": "iwslt2017-en-ro", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ro"]}}}], "splits": [{"name": "train", "num_bytes": 44129950, "num_examples": 220538}, {"name": "test", "num_bytes": 316790, "num_examples": 1678}, {"name": "validation", "num_bytes": 205028, "num_examples": 914}], "download_size": 329391132, "dataset_size": 44651768}, {"config_name": "iwslt2017-it-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["it", "en"]}}}], "splits": [{"name": "train", "num_bytes": 46647925, "num_examples": 231619}, {"name": "test", "num_bytes": 305246, "num_examples": 1566}, {"name": "validation", "num_bytes": 200023, "num_examples": 929}], "download_size": 329391132, "dataset_size": 47153194}, {"config_name": "iwslt2017-it-nl", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["it", "nl"]}}}], "splits": [{"name": "train", "num_bytes": 43033168, "num_examples": 233415}, {"name": "test", "num_bytes": 309725, "num_examples": 1669}, {"name": "validation", "num_bytes": 197774, "num_examples": 1001}], "download_size": 329391132, "dataset_size": 43540667}, {"config_name": "iwslt2017-it-ro", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["it", "ro"]}}}], "splits": [{"name": "train", "num_bytes": 44485169, "num_examples": 217551}, {"name": "test", "num_bytes": 314974, "num_examples": 1643}, {"name": "validation", "num_bytes": 204989, "num_examples": 914}], "download_size": 329391132, "dataset_size": 45005132}, {"config_name": "iwslt2017-nl-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["nl", "en"]}}}], "splits": [{"name": "train", "num_bytes": 42843933, "num_examples": 237240}, {"name": "test", "num_bytes": 311646, "num_examples": 1777}, {"name": "validation", "num_bytes": 197814, "num_examples": 1003}], "download_size": 329391132, "dataset_size": 43353393}, {"config_name": "iwslt2017-nl-it", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["nl", "it"]}}}], "splits": [{"name": "train", "num_bytes": 43033168, "num_examples": 233415}, {"name": "test", "num_bytes": 309725, "num_examples": 1669}, {"name": "validation", "num_bytes": 197774, "num_examples": 1001}], "download_size": 329391132, "dataset_size": 43540667}, {"config_name": "iwslt2017-nl-ro", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["nl", "ro"]}}}], "splits": [{"name": "train", "num_bytes": 41338738, "num_examples": 206920}, {"name": "test", "num_bytes": 320952, "num_examples": 1680}, {"name": "validation", "num_bytes": 202380, "num_examples": 913}], "download_size": 329391132, "dataset_size": 41862070}, {"config_name": "iwslt2017-ro-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ro", "en"]}}}], "splits": [{"name": "train", "num_bytes": 44129950, "num_examples": 220538}, {"name": "test", "num_bytes": 316790, "num_examples": 1678}, {"name": "validation", "num_bytes": 205028, "num_examples": 914}], "download_size": 329391132, "dataset_size": 44651768}, {"config_name": "iwslt2017-ro-it", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ro", "it"]}}}], "splits": [{"name": "train", "num_bytes": 44485169, "num_examples": 217551}, {"name": "test", "num_bytes": 314974, "num_examples": 1643}, {"name": "validation", "num_bytes": 204989, "num_examples": 914}], "download_size": 329391132, "dataset_size": 45005132}, {"config_name": "iwslt2017-ro-nl", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ro", "nl"]}}}], "splits": [{"name": "train", "num_bytes": 41338738, "num_examples": 206920}, {"name": "test", "num_bytes": 320952, "num_examples": 1680}, {"name": "validation", "num_bytes": 202380, "num_examples": 913}], "download_size": 329391132, "dataset_size": 41862070}, {"config_name": "iwslt2017-ar-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ar", "en"]}}}], "splits": [{"name": "train", "num_bytes": 56481059, "num_examples": 231713}, {"name": "test", "num_bytes": 2014296, "num_examples": 8583}, {"name": "validation", "num_bytes": 241206, "num_examples": 888}], "download_size": 27748780, "dataset_size": 58736561}, {"config_name": "iwslt2017-de-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["de", "en"]}}}], "splits": [{"name": "train", "num_bytes": 42608380, "num_examples": 206112}, {"name": "test", "num_bytes": 1608474, "num_examples": 8079}, {"name": "validation", "num_bytes": 210975, "num_examples": 888}], "download_size": 16758320, "dataset_size": 44427829}, {"config_name": "iwslt2017-en-ar", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ar"]}}}], "splits": [{"name": "train", "num_bytes": 56481059, "num_examples": 231713}, {"name": "test", "num_bytes": 2014296, "num_examples": 8583}, {"name": "validation", "num_bytes": 241206, "num_examples": 888}], "download_size": 29333173, "dataset_size": 58736561}, {"config_name": "iwslt2017-en-de", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "de"]}}}], "splits": [{"name": "train", "num_bytes": 42608380, "num_examples": 206112}, {"name": "test", "num_bytes": 1608474, "num_examples": 8079}, {"name": "validation", "num_bytes": 210975, "num_examples": 888}], "download_size": 16758334, "dataset_size": 44427829}, {"config_name": "iwslt2017-en-fr", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "fr"]}}}], "splits": [{"name": "train", "num_bytes": 49273286, "num_examples": 232825}, {"name": "test", "num_bytes": 1767465, "num_examples": 8597}, {"name": "validation", "num_bytes": 207579, "num_examples": 890}], "download_size": 27699724, "dataset_size": 51248330}, {"config_name": "iwslt2017-en-ja", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ja"]}}}], "splits": [{"name": "train", "num_bytes": 48204987, "num_examples": 223108}, {"name": "test", "num_bytes": 1809007, "num_examples": 8469}, {"name": "validation", "num_bytes": 208124, "num_examples": 871}], "download_size": 26983602, "dataset_size": 50222118}, {"config_name": "iwslt2017-en-ko", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "ko"]}}}], "splits": [{"name": "train", "num_bytes": 51678043, "num_examples": 230240}, {"name": "test", "num_bytes": 1869793, "num_examples": 8514}, {"name": "validation", "num_bytes": 219295, "num_examples": 879}], "download_size": 19364776, "dataset_size": 53767131}, {"config_name": "iwslt2017-en-zh", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["en", "zh"]}}}], "splits": [{"name": "train", "num_bytes": 44271004, "num_examples": 231266}, {"name": "test", "num_bytes": 1605527, "num_examples": 8549}, {"name": "validation", "num_bytes": 202537, "num_examples": 879}], "download_size": 27597071, "dataset_size": 46079068}, {"config_name": "iwslt2017-fr-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["fr", "en"]}}}], "splits": [{"name": "train", "num_bytes": 49273286, "num_examples": 232825}, {"name": "test", "num_bytes": 1767465, "num_examples": 8597}, {"name": "validation", "num_bytes": 207579, "num_examples": 890}], "download_size": 26880731, "dataset_size": 51248330}, {"config_name": "iwslt2017-ja-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ja", "en"]}}}], "splits": [{"name": "train", "num_bytes": 48204987, "num_examples": 223108}, {"name": "test", "num_bytes": 1809007, "num_examples": 8469}, {"name": "validation", "num_bytes": 208124, "num_examples": 871}], "download_size": 26190859, "dataset_size": 50222118}, {"config_name": "iwslt2017-ko-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["ko", "en"]}}}], "splits": [{"name": "train", "num_bytes": 51678043, "num_examples": 230240}, {"name": "test", "num_bytes": 1869793, "num_examples": 8514}, {"name": "validation", "num_bytes": 219295, "num_examples": 879}], "download_size": 19364733, "dataset_size": 53767131}, {"config_name": "iwslt2017-zh-en", "features": [{"name": "translation", "dtype": {"translation": {"languages": ["zh", "en"]}}}], "splits": [{"name": "train", "num_bytes": 44271004, "num_examples": 231266}, {"name": "test", "num_bytes": 1605527, "num_examples": 8549}, {"name": "validation", "num_bytes": 202537, "num_examples": 879}], "download_size": 26849290, "dataset_size": 46079068}]}
2023-05-07T13:09:24+00:00
abe443f55b8da6bfacf3b06df8e87414be87181f
# Dataset Card for "voxelgym_3c_200_42x42" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Cubpaw/voxelgym_3c_42x42_200
[ "region:us" ]
2023-05-07T13:12:27+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": "image"}, {"name": "rgb_label", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 107709.0, "num_examples": 160}, {"name": "validation", "num_bytes": 25934.0, "num_examples": 40}], "download_size": 121774, "dataset_size": 133643.0}}
2023-05-07T13:12:39+00:00
3f5a8a0bc9146e6313fa84f645fcaff0acf26c56
ssssasdasdasdasdqwd/v3_gameasset_lora
[ "license:unknown", "region:us" ]
2023-05-07T13:38:57+00:00
{"license": "unknown"}
2023-05-07T13:42:29+00:00
c735840575b629292b41da8dde11dcd523d4f91c
# ๐Ÿ“€ Falcon RefinedWeb **Falcon RefinedWeb is a massive English web dataset built by [TII](https://www.tii.ae) and released under an ODC-By 1.0 license.** See the ๐Ÿ““ [paper on arXiv](https://arxiv.org/abs/2306.01116) for more details. RefinedWeb is built through stringent filtering and large-scale deduplication of CommonCrawl; we found models trained on RefinedWeb to achieve performance in-line or better than models trained on curated datasets, while only relying on web data. RefinedWeb is also "multimodal-friendly": it contains links and alt texts for images in processed samples. This public extract should contain 500-650GT depending on the tokenizer you use, and can be enhanced with the curated corpora of your choosing. This public extract is about ~500GB to download, requiring 2.8TB of local storage once unpacked. ```python from datasets import load_dataset rw = load_dataset("tiiuae/falcon-refinedweb") ``` RefinedWeb is the main dataset we have used for training the [Falcon LLM](https://falconllm.tii.ae) models: * It was used in conjunction with a curated corpora to train Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b), two state-of-the-art open-source models. * It was also used to train Falcon-RW-[1B](https://huggingface.co/tiiuae/falcon-rw-1b)/[7B](https://huggingface.co/tiiuae/falcon-rw-7b), two models trained on 350 billion tokens of RefinedWeb alone to demonstrate its quality compared to curated corpora. # Dataset card for Falcon RefinedWeb ## Dataset Description * **Homepage:** [falconllm.tii.ae](falconllm.tii.ae) * **Paper:** [https://arxiv.org/abs/2306.01116](https://arxiv.org/abs/2306.01116) * **Point of Contact:** [[email protected]](mailto:[email protected]) ### Dataset Summary Falcon RefinedWeb was created to serve as an English large-scale dataset for the pretraining of large language models. It may be used on its own, or augmented with curated sources (e.g., Wikipedia, StackOverflow). It was built on top of CommonCrawl, leveraging stringent filtering and extensive deduplication. ### Supported Tasks and Leaderboards RefinedWeb is intended to be primarly used as a pretraining dataset for large language models. Practitioners may leverage it for upstream evaluation with a validation loss, but we do not provide any canonical split. ### Languages RefinedWeb primarly contains English. ## Dataset Structure ### Data Instances Each data instance corresponds to an individual web page which has been crawled, processed, and deduplicated against all other instances. This public extract of RefinedWeb contains about 1B instances (968M individual web pages), for a total of 2.8TB of clean text data. ### Data Fields * `content`: the processed and cleaned text contained in the page; * `url`: the url of the webpage crawled to produce the sample; * `timestamp`: timestamp of when the webpage was crawled by CommonCrawl; * `dump`: the CommonCrawl dump the sample is a part of; * `segment`: the CommonCrawl segment the sample is a part of; * `image_urls`: a list of elements in the type [`image_url`, `image_alt_text`] for all the images found in the content of the sample. ### Data Splits We do not provide any canonical splits for RefinedWeb. ## Dataset Creation ### Curation Rationale Falcon RefinedWeb is built on-top of [CommonCrawl](https://commoncrawl.org), using the Macrodata Refinement Pipeline, which combines content extraction, filtering heuristics, and deduplication. In designing RefinedWeb, we abided to the following philosophy: * (1) **Scale first.** We intend MDR to produce datasets to be used to train 40-200B parameters models, thus requiring trillions of tokens [(Hoffmann et al., 2022)](https://arxiv.org/abs/2203.15556). For English-only RefinedWeb, we target a size of 3-6 trillion tokens. Specifically, we eschew any labour intensive human curation process, and focus on CommonCrawl instead of disparate single-domain sources. * (2) **Strict deduplication.** Inspired by the work of [Lee et al., 2021](https://arxiv.org/abs/2107.06499), which demonstrated the value of deduplication for large language models, we implement a rigorous deduplication pipeline. We combine both exact and fuzzy deduplication, and use strict settings leading to removal rates far higher than others datasets have reported. * (3) **Neutral filtering.** To avoid introducing further undesirable biases into the model, we avoid using ML-based filtering outside of language identification ([Dodge et al., 2021](https://arxiv.org/abs/2104.08758); [Welbl et al., 2021](https://arxiv.org/abs/2109.07445)) . We stick to simple rules and heuristics, and use only URL filtering for adult content. During its development, we iterated on RefinedWeb by measuring the zero-shot performance of models trained on development version of the dataset. Our main goal was to maximize the performance obtained, bridging the gap between curated and web data. We also manually audited samples to identify potential filtering improvements. ### Source Data RefinedWeb is built from [CommonCrawl](https://commoncrawl.org) dumps. These dumps are constructed from crawling publicly available web pages. ### Data Collection and Preprocessing We applied extensive preprocessing and cleaning of the data, using our Macrodata Refinement Pipeline. We first filter URLs to remove adult content using a blocklist and a score system, we then use `trafilatura` to extract content from pages, and perform language identification with the `fastText` classifier from CCNet ([Wenzek et al., 2019](https://arxiv.org/abs/1911.00359)). After this first preprocessing stage, we filter data using heuristics from MassiveWeb ([Rae et al., 2021](https://arxiv.org/abs/2112.11446)), and our own line-wise corrections. Finally, we run extensive deduplication, removing URLs revisited across dumps and performing subsequently fuzzy and exact substring deduplication. ### Annotations We provide automatically collected annotations for the source `url`, `timestamp` of the crawl, original CommonCrawl `dump` and `segment` in which the document was found, and `image_urls` contained in the page. ### Personal and Sensitive Information As RefinedWeb is built upon publicly available web pages, it may contain sensitive information such as emails, phone numbers, or IP addresses. We believe that deduplication may have helped reduced the prevalence of PII in the dataset, but practitioners working with RefinedWeb should take care. ## Considerations for Using the Data ### Social Impact of Dataset With the open-source release of Falcon RefinedWeb, we aim to increase access to high-quality web data, which has typically been held private by model developers. We believe this release will in turn improve the accessibility and the spread of performant large language models. ### Discussion of Biases As toxic or biased data is prevalent on the internet, it is likely our dataset contains such content. Notably, using the Perspective API, we estimated the prevalence of toxic content in the dataset to be similar to The Pile. ### Other Known Limitations Despite our best efforts to filter content that does not qualify as natural language, and to deduplicate documents, our pipeline may let through documents that may be considered as errors or redundant. ## Additional Information ### Licensing Information This public extract is made available under an [ODC-By 1.0](https://opendatacommons.org/licenses/by/1-0/) license; users should also abide to the [CommonCrawl ToU](https://commoncrawl.org/terms-of-use/). ### Citation Information ``` @article{refinedweb, title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only}, author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay}, journal={arXiv preprint arXiv:2306.01116}, eprint={2306.01116}, eprinttype = {arXiv}, url={https://arxiv.org/abs/2306.01116}, year={2023} } ``` ### Opt-out request RefinedWeb is based on [CommonCrawl](https://commoncrawl.org/). Their crawler honors opt-out requests in the `robots.txt`, see the [CC FAQ](https://commoncrawl.org/big-picture/frequently-asked-questions/) for details. To remove a document from RefinedWeb, please message [email protected]. ### Contact [email protected]
tiiuae/falcon-refinedweb
[ "task_categories:text-generation", "size_categories:100B<n<1T", "language:en", "license:odc-by", "arxiv:2306.01116", "arxiv:2203.15556", "arxiv:2107.06499", "arxiv:2104.08758", "arxiv:2109.07445", "arxiv:1911.00359", "arxiv:2112.11446", "doi:10.57967/hf/0737", "region:us" ]
2023-05-07T13:57:27+00:00
{"language": ["en"], "license": "odc-by", "size_categories": ["100B<n<1T"], "task_categories": ["text-generation"], "pretty_name": "Falcon RefinedWeb", "dataset_info": {"features": [{"name": "content", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "timestamp", "dtype": "timestamp[s]"}, {"name": "dump", "dtype": "string"}, {"name": "segment", "dtype": "string"}, {"name": "image_urls", "sequence": {"sequence": "string"}}], "splits": [{"name": "train", "num_bytes": 2766953721769, "num_examples": 968000015}], "download_size": 466888198663, "dataset_size": 2766953721769}}
2023-06-20T11:38:07+00:00
6c8a1c4faf452938eecf2af02b6e0bac71a8c30d
# Dataset Card for "final_train_v2_500000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/final_train_v2_500000
[ "region:us" ]
2023-05-07T14:02:30+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "input_text", "dtype": "string"}, {"name": "target_text", "dtype": "string"}, {"name": "prefix", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6083695.8, "num_examples": 18000}, {"name": "test", "num_bytes": 675966.2, "num_examples": 2000}], "download_size": 2962855, "dataset_size": 6759662.0}}
2023-05-07T14:02:39+00:00
acc6984fac9454f73d81b79e595ef317f98bcee1
# Dataset Card for "victor_lrec_2020_small" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Luciano/victor_lrec_2020_small
[ "region:us" ]
2023-05-07T14:33:52+00:00
{"dataset_info": {"features": [{"name": "themes", "dtype": "string"}, {"name": "process_id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "document_type", "dtype": "string"}, {"name": "pages", "dtype": "int64"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 219095295, "num_examples": 149217}, {"name": "validation", "num_bytes": 139364099, "num_examples": 94735}, {"name": "test", "num_bytes": 140516696, "num_examples": 95526}], "download_size": 154894289, "dataset_size": 498976090}}
2023-05-07T14:34:19+00:00
6a6bf2a439d2b27c195572c91e3fc39fe7e11b26
# Dataset Card for "victor_lrec_2020_medium" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Luciano/victor_lrec_2020_medium
[ "region:us" ]
2023-05-07T14:34:19+00:00
{"dataset_info": {"features": [{"name": "themes", "dtype": "string"}, {"name": "process_id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "document_type", "dtype": "string"}, {"name": "pages", "dtype": "int64"}, {"name": "body", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2016870779, "num_examples": 1466276}, {"name": "validation", "num_bytes": 427712878, "num_examples": 309608}, {"name": "test", "num_bytes": 423762425, "num_examples": 311015}], "download_size": 980521617, "dataset_size": 2868346082}}
2023-05-07T14:36:10+00:00
c6b7974395fbed74936e85d94dd1d96a9fd33761
# Dataset Card for "resume_ner17_hr" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tsa17/resume_ner17_hr
[ "region:us" ]
2023-05-07T15:04:37+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "tokens", "sequence": "string"}, {"name": "prediction", "list": [{"name": "end", "dtype": "int64"}, {"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "start", "dtype": "int64"}]}, {"name": "prediction_agent", "dtype": "string"}, {"name": "annotation", "dtype": "null"}, {"name": "annotation_agent", "dtype": "null"}, {"name": "vectors", "dtype": "null"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "dtype": "null"}, {"name": "status", "dtype": "string"}, {"name": "event_timestamp", "dtype": "timestamp[us]"}, {"name": "metrics", "struct": [{"name": "annotated", "struct": [{"name": "mentions", "sequence": "null"}, {"name": "tags", "sequence": "null"}]}, {"name": "predicted", "struct": [{"name": "mentions", "list": [{"name": "capitalness", "dtype": "string"}, {"name": "chars_length", "dtype": "int64"}, {"name": "density", "dtype": "float64"}, {"name": "label", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "tokens_length", "dtype": "int64"}, {"name": "value", "dtype": "string"}]}, {"name": "tags", "list": [{"name": "tag", "dtype": "string"}, {"name": "value", "dtype": "string"}]}]}, {"name": "text_length", "dtype": "int64"}, {"name": "tokens", "list": [{"name": "capitalness", "dtype": "string"}, {"name": "char_end", "dtype": "int64"}, {"name": "char_start", "dtype": "int64"}, {"name": "custom", "dtype": "null"}, {"name": "idx", "dtype": "int64"}, {"name": "length", "dtype": "int64"}, {"name": "score", "dtype": "null"}, {"name": "tag", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "tokens_length", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 3390188, "num_examples": 50}], "download_size": 828976, "dataset_size": 3390188}}
2023-05-07T15:04:39+00:00