sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
df3133d6e6d238a9a24742fd8d1dcd11acd23dbd
# Dataset Card for "news_channel_ordinal" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
james-burton/news_channel_ordinal
[ "region:us" ]
2023-05-25T08:29:46+00:00
{"dataset_info": {"features": [{"name": " n_tokens_content", "dtype": "float64"}, {"name": " n_unique_tokens", "dtype": "float64"}, {"name": " n_non_stop_words", "dtype": "float64"}, {"name": " n_non_stop_unique_tokens", "dtype": "float64"}, {"name": " num_hrefs", "dtype": "float64"}, {"name": " num_self_hrefs", "dtype": "float64"}, {"name": " num_imgs", "dtype": "float64"}, {"name": " num_videos", "dtype": "float64"}, {"name": " average_token_length", "dtype": "float64"}, {"name": " num_keywords", "dtype": "float64"}, {"name": " global_subjectivity", "dtype": "float64"}, {"name": " global_sentiment_polarity", "dtype": "float64"}, {"name": " global_rate_positive_words", "dtype": "float64"}, {"name": " global_rate_negative_words", "dtype": "float64"}, {"name": " rate_positive_words", "dtype": "float64"}, {"name": " rate_negative_words", "dtype": "float64"}, {"name": "article_title", "dtype": "string"}, {"name": "channel", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3354492, "num_examples": 17241}, {"name": "validation", "num_bytes": 591868, "num_examples": 3043}, {"name": "test", "num_bytes": 987135, "num_examples": 5071}], "download_size": 3376135, "dataset_size": 4933495}}
2023-05-25T08:29:59+00:00
bf795217e57e96e9e6a4cb9e7540a5119572efe7
# Dataset Card for "887914db" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/887914db
[ "region:us" ]
2023-05-25T08:35:41+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 186, "num_examples": 10}], "download_size": 1332, "dataset_size": 186}}
2023-05-25T08:35:43+00:00
fa88c4adc9906f6fa209db3fc1f69eba3214612a
# Dataset Card for "ikitracs_mitigation" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ilaria-oneofftech/ikitracs_mitigation
[ "region:us" ]
2023-05-25T08:47:37+00:00
{"dataset_info": {"features": [{"name": "country_code", "dtype": "string"}, {"name": "country", "dtype": "string"}, {"name": "type_of_document", "dtype": "string"}, {"name": "version_number", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "paragraph", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "parameter", "dtype": "string"}, {"name": "quote", "dtype": "string"}, {"name": "asi", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "high_level_category", "dtype": "string"}, {"name": "indicator", "dtype": "string"}, {"name": "paragraph_translated", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 48699276, "num_examples": 82524}], "download_size": 16756391, "dataset_size": 48699276}}
2023-05-25T10:33:46+00:00
7f2b806da437f8e56933d8c264d4246a8caf3bdc
# Dataset Card for "summary_seq_label_balanced" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Astonzzh/summary_seq_label_balanced
[ "region:us" ]
2023-05-25T09:17:06+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "ids", "sequence": "string"}, {"name": "words", "sequence": "string"}, {"name": "labels", "sequence": "int64"}, {"name": "summary", "dtype": "string"}, {"name": "sentences", "sequence": "string"}, {"name": "sentence_labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 9014992.927366104, "num_examples": 7360}, {"name": "test", "num_bytes": 500969.0363169479, "num_examples": 409}, {"name": "validation", "num_bytes": 500969.0363169479, "num_examples": 409}], "download_size": 3867151, "dataset_size": 10016931.0}}
2023-05-25T09:17:11+00:00
5cdc14fd782d0d3a9500c40ddb17f7ba10f6333e
# Dataset Card for "VQAv2_minival_validation_google_flan_t5_xxl_mode_C_D_PNP_GENERIC_Q_rices_ns_25994" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/VQAv2_minival_validation_google_flan_t5_xxl_mode_C_D_PNP_GENERIC_Q_rices_ns_25994
[ "region:us" ]
2023-05-25T09:58:44+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_DETA_detections_deta_swin_large_o365_coco_classes_caption_all_patches_Salesforce_blip_image_captioning_large_clean_", "num_bytes": 3713922, "num_examples": 25994}], "download_size": 1336429, "dataset_size": 3713922}}
2023-05-25T09:58:50+00:00
166f4f9109bbe29b72a995ced5fa7077a4a88bad
# Dataset Card for "2c8fb846" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/2c8fb846
[ "region:us" ]
2023-05-25T10:13:03+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 182, "num_examples": 10}], "download_size": 1319, "dataset_size": 182}}
2023-05-25T10:13:04+00:00
d38d4f62932706c9db196dbee9cd0bd9f13216d6
# Dataset Card for "dac74edf" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/dac74edf
[ "region:us" ]
2023-05-25T10:18:02+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 188, "num_examples": 10}], "download_size": 1340, "dataset_size": 188}}
2023-05-25T10:18:04+00:00
aed7bf07f891dd3ae604871be7a041f5d6c30b4f
# Dataset Card for "607587de" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/607587de
[ "region:us" ]
2023-05-25T10:30:05+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 184, "num_examples": 10}], "download_size": 1337, "dataset_size": 184}}
2023-05-25T10:30:06+00:00
55eca309d30b599fa591c3a1bcf953b3f6b57fb7
# Dataset Card for Piano Sound Quality Dataset ## Usage ```python from datasets import load_dataset data = load_dataset("ccmusic-database/pianos", split="train") labels = data.features['label'].names for item in data: print('piano spec: ', item['mel']) print('label name: ' + labels[item['label']]) ``` ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/pianos ``` ## Dataset Description - **Homepage:** <https://ccmusic-database.github.io> - **Repository:** <https://huggingface.co/datasets/CCMUSIC/pianos> - **Paper:** <https://doi.org/10.5281/zenodo.5676893> - **Leaderboard:** <https://ccmusic-database.github.io/team.html> - **Point of Contact:** <https://arxiv.org/abs/2310.04722> ### Dataset Summary This dataset contains 12 gamut audio files (.wav / .mp3 / .m4a format) and 1320 split single-tone audio files (.wav / .mp3 / .m4a format) of 7 types of pianos (Kawai upright piano, Kawai grand piano, YOUNG CHANG upright piano, HSINGHAI upright piano, Steinway grand piano in grand theatre, Steinway grand piano and Pearl River upright piano) in the piano-room of China Conservatory of Music, a total of 1332 files. In addition, there is a questionnaire on subjective evaluation of piano sound quality (.xls format), including the score of 29 people participating in the subjective evaluation of piano sound quality. ### Supported Tasks and Leaderboards Piano Sound Classification, pitch detection ### Languages English ## Dataset Structure <style> #pianos td { vertical-align: middle !important; text-align: center; } #pianos th { text-align: center; } </style> <table id="pianos"> <tr> <th>mel(.jpg, 0.18s)</th> <th>label(8-class)</th> <th>pitch(88-class)</th> </tr> <tr> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/TYYnuJqndeWzXLJMmOyXJ.jpeg"></td> <td>PearlRiver / YoungChang / Steinway-T / Hsinghai / Kawai / Steinway / Kawai-G / Yamaha</td> <td>88 pitches on piano</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> </tr> </table> ### Data Instances .zip(.wav, jpg) ### Data Fields ``` 1_PearlRiver 2_YoungChang 3_Steinway-T 4_Hsinghai 5_Kawai 6_Steinway 7_Kawai-G 8_Yamaha ``` ### Data Splits | total | 18745 | | :-------------: | :---: | | train(80%) | 14996 | | validation(10%) | 1874 | | test(10%) | 1875 | ## Dataset Creation ### Curation Rationale Lack of a dataset for piano sound quality ### Source Data #### Initial Data Collection and Normalization Zhaorui Liu, Shaohua Ji, Monan Zhou #### Who are the source language producers? Students from CCMUSIC & CCOM ### Annotations #### Annotation process Students from CCMUSIC recorded different piano sounds and labeled them, and then a subjective survey of sound quality was conducted to score them. #### Who are the annotators? Students from CCMUSIC & CCOM ### Personal and Sensitive Information Piano brands ## Considerations for Using the Data ### Social Impact of Dataset Help developing piano sound quality scoring apps ### Discussion of Biases Only for pianos ### Other Known Limitations Lack of black keys for Steinway, data imbalance ## Additional Information ### Dataset Curators Zijin Li ### Evaluation [Monan Zhou, Shangda Wu, Shaohua Ji, Zijin Li, and Wei Li. A Holistic Evaluation of Piano Sound Quality[C]//Proceedings of the 10th Conference on Sound and Music Technology (CSMT). Springer, Singapore, 2023.](https://arxiv.org/pdf/2310.04722.pdf) (Note: this paper only uses the first 7 piano classes in the dataset.) ### Licensing Information ``` MIT License Copyright (c) CCMUSIC Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ### Citation Information ``` @dataset{zhaorui_liu_2021_5676893, author = {Zhaorui Liu, Monan Zhou, Shenyang Xu, Yuan Wang, Zhaowen Wang, Wei Li and Zijin Li}, title = {CCMUSIC DATABASE: A Music Data Sharing Platform for Computational Musicology Research}, month = {nov}, year = {2021}, publisher = {Zenodo}, version = {1.1}, doi = {10.5281/zenodo.5676893}, url = {https://doi.org/10.5281/zenodo.5676893} } ``` ### Contributions Provide a dataset for piano sound quality
ccmusic-database/pianos
[ "task_categories:audio-classification", "task_categories:image-classification", "size_categories:10K<n<100K", "language:en", "license:mit", "music", "art", "arxiv:2310.04722", "region:us" ]
2023-05-25T10:32:28+00:00
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["audio-classification", "image-classification"], "pretty_name": "Piano Sound Quality Dataset", "tags": ["music", "art"], "viewer": false}
2023-12-22T10:08:17+00:00
b59a96c2d3f322bebe74aec86c3358d79376db8c
dataset_info: features: - name: intent dtype: string - name: user_utterance dtype: string - name: origin dtype: string # Dataset Card for "clinic150-SUR" ### Dataset Summary The Clinic150-SUR dataset is a novel and augmented dataset designed to simulate natural human behavior during interactions with customer service-like centers. Extending the [Clinic150 dataset](https://aclanthology.org/D19-1131/), it incorporates two augmentation techniques, including IBM's [LAMBADA](https://arxiv.org/abs/1911.03118) and [Parrot](https://github.com/PrithivirajDamodaran/Parrot_Paraphraser) models and carefully curated duplicated utterances. This dataset aims to provide a more comprehensive and realistic representation of customer service interactions, facilitating the development and evaluation of robust and efficient dialogue systems. Key Features: - Augmentation with IBM's [LAMBADA Model](https://arxiv.org/abs/1911.03118): The Clinic150-SUR dataset leverages IBM's LAMBADA model, a language generation model trained on a large corpus of text, to augment the original dataset. This augmentation process enhances the diversity and complexity of the dialogue data, allowing for a broader range of interactions. - Integration of [Parrot](https://github.com/PrithivirajDamodaran/Parrot_Paraphraser) Model: In addition to the LAMBADA model, the Clinic150-SUR dataset also incorporates the Parrot model, providing a variety of paraphrases. By integrating Parrot, the dataset achieves more variations of existing utterances. - Duplicated Utterances: The dataset includes carefully curated duplicated utterances to mimic real-world scenarios where users rephrase or repeat commonly asked queries. This feature adds variability to the data, reflecting the natural tendencies of human interactions, and enables dialogue systems to handle such instances better. - [Clinic150](https://aclanthology.org/D19-1131/) as the Foundation: The Clinic150-SUR dataset is built upon the Clinic150 dataset, which originally consisted of 150 in-domain intent classes and 150 human utterances for each intent. By utilizing this foundation, the augmented dataset retains the in-domain expertise while better reflecting the nature of user requests towards a dialog system. ### Data Instances #### clinic150-SUR - **Size of downloaded dataset file:** 29 MB ### Data Fields #### clinic150-SUR - `intent`: a `string` feature. - `user_utterance`: a `string` feature. - `origin`: a `string` feature ('original', 'lambada', 'parrot'). ### Citation Information ``` @inproceedings{rabinovich2022reliable, title={Reliable and Interpretable Drift Detection in Streams of Short Texts}, author={Rabinovich, Ella and Vetzler, Matan and Ackerman, Samuel and Anaby-Tavor, Ateret}, booktitle = "Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (industry track)", publisher = "Association for Computational Linguistics", year={2023}, url={https://arxiv.org/abs/2305.17750} } ``` ### Contributions Thanks to [Matan Vetzler](https://www.linkedin.com/in/matanvetzler/), [Ella Rabinovich](https://www.linkedin.com/in/ella-rabinovich-7b9a06/) for adding this dataset.
ibm/clinic150-sur
[ "task_categories:text-classification", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:extended|clinic150", "language:en", "license:mit", "arxiv:1911.03118", "arxiv:2305.17750", "region:us" ]
2023-05-25T10:33:55+00:00
{"annotations_creators": "other", "language_creators": "other", "language": "en", "license": "mit", "multilinguality": "monolingual", "size_categories": "100K<n<1M", "source_datasets": "extended|clinic150", "task_categories": ["text-classification"], "pretty_name": "Clinic150-SUR"}
2023-05-30T10:22:19+00:00
4f4911fbef88ddd5c64a17adbcdfffdaabff66f7
# Dataset Card for "womensclothing" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
coeuslearning/womensclothing
[ "region:us" ]
2023-05-25T10:35:36+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2303877.0, "num_examples": 15}], "download_size": 2259471, "dataset_size": 2303877.0}}
2023-05-25T10:35:38+00:00
05a55c58714e433832650452055d997a7cd671b6
chriswmurphy/llm-lion-finetuning
[ "license:gpl-3.0", "region:us" ]
2023-05-25T10:56:50+00:00
{"license": "gpl-3.0"}
2023-07-08T21:54:38+00:00
48d5137bec43298d6c9fb297d98ee37208360ef7
fanshiyu/test
[ "license:openrail", "region:us" ]
2023-05-25T11:24:28+00:00
{"license": "openrail"}
2023-05-25T11:24:28+00:00
9e29faf80fb8c0bac4dc2618e09655b807328413
# About the Dataset This dataset is inspired by [HumanEval](https://github.com/openai/human-eval) The source code used to generate the dataset can be found on [GitHub](https://github.com/alexjercan/bug-detection/tree/master/aoc-dataset) A collection of submissions for the Advent of Code challenge. This repository contains both passing and failing submissions. This dataset is similar to [BugNet](https://huggingface.co/datasets/alexjercan/bugnet), however it is meant to be used as an evaluation dataset. The resulting dataset file will be a csv with the following columns: - `year`: Used to identify the submission - `day`: Used to identify the submission - `part`: Used to identify the submission - `fail`: The initial (buggy) source code formatted (`black`) - `pass`: The modified (accepted) source code formatted (`black`) - `change`: The change that was made (`replace`, `insert`, `delete`) - `i1`: Start of the change in the buggy source (the line; starting with 1) - `i2`: End of the change in the buggy source (not inclusive; for insert we have i1 == i2) - `j1`: Start of the change in the accepted source (the line; starting with 1) - `j2`: End of the change in the accepted source (not inclusive; for delete we have j1 == j2) - `test`: The test case that can be used to evaluate the submission.
alexjercan/AoC
[ "license:apache-2.0", "region:us" ]
2023-05-25T11:35:24+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "year", "dtype": "string"}, {"name": "day", "dtype": "string"}, {"name": "part", "dtype": "string"}, {"name": "pass", "dtype": "string"}, {"name": "fail", "dtype": "string"}, {"name": "test", "dtype": "string"}, {"name": "change", "dtype": "string"}, {"name": "i1", "dtype": "uint32"}, {"name": "i2", "dtype": "uint32"}, {"name": "j1", "dtype": "uint32"}, {"name": "j2", "dtype": "uint32"}], "splits": [{"name": "train", "num_bytes": 21469, "num_examples": 15}], "download_size": 23847, "dataset_size": 21469}}
2023-06-09T13:09:34+00:00
e53fb27b2703cadb2261481e0220dcc9cd67ca81
# Dataset Card for "VQAv2_minival_validation_google_flan_t5_xxl_mode_A_C_D_PNP_GENERIC_Q_rices_ns_25994" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/VQAv2_minival_validation_google_flan_t5_xxl_mode_A_C_D_PNP_GENERIC_Q_rices_ns_25994
[ "region:us" ]
2023-05-25T11:55:18+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_DETA_detections_deta_swin_large_o365_coco_classes_caption_all_patches_Salesforce_blip_image_captioning_large_clean_", "num_bytes": 3720348, "num_examples": 25994}], "download_size": 1342337, "dataset_size": 3720348}}
2023-05-25T11:55:23+00:00
51331d634357e1391ab6e98e362a2048cf74d685
# HNC_Mini Contains 306,084 samples collected from the following datasets. - QQP_triplets - HC3 - sentence-compression
zrthxn/HNC_Mini
[ "task_categories:sentence-similarity", "task_ids:semantic-similarity-classification", "language:en", "license:mit", "region:us" ]
2023-05-25T11:56:45+00:00
{"language": ["en"], "license": "mit", "task_categories": ["sentence-similarity"], "task_ids": ["semantic-similarity-classification"], "pretty_name": "hnc-mini"}
2023-05-31T13:29:19+00:00
f1a643fdf463c7ac9c4a48ccd67b41e8a6672086
# Dataset Card for "sherliic" https://github.com/mnschmit/SherLIiC ``` @inproceedings{schmitt2019sherliic, title = "{S}her{LI}i{C}: A Typed Event-Focused Lexical Inference Benchmark for Evaluating Natural Language Inference", author = {Schmitt, Martin and Sch{\"u}tze, Hinrich}, booktitle = "Proceedings of the 57th Conference of the Association for Computational Linguistics", month = jul, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P19-1086", pages = "902--914" } ```
tasksource/sherliic
[ "language:en", "region:us" ]
2023-05-25T12:01:48+00:00
{"language": ["en"], "dataset_info": {"features": [{"name": "premise", "dtype": "string"}, {"name": "hypothesis", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 106784, "num_examples": 996}, {"name": "test", "num_bytes": 322932, "num_examples": 2989}], "download_size": 146406, "dataset_size": 429716}}
2023-05-31T07:24:37+00:00
8cda51f3da18c5997fe6524f1a3072f1a2686eac
# Dataset Card for Chinese Traditional Instrument Sound ## Dataset Description - **Homepage:** <https://ccmusic-database.github.io> - **Repository:** <https://huggingface.co/datasets/ccmusic-database/CTIS> - **Paper:** <https://doi.org/10.5281/zenodo.5676893> - **Leaderboard:** <https://ccmusic-database.github.io/team.html> - **Point of Contact:** N/A ### Dataset Summary There are at least two western musical instrument sound databases that are freely available, while there is not a similar Chinese musical instrument sound database. As an important part of gorgeous Chinese culture, the unique acoustic characteristics and playing techniques of Chinese instruments have attracted wide attention from researchers and people around the world. Thus, a long-waited Chinese Traditional Instrument Sound (CTIS) database was built. Up to 287 kinds of Chinese traditional musical instruments, improved Chinese musical instruments and Chinese ethnic musical instruments are included. Among them, some are seldom seen by most ordinary Chinese people. ### Supported Tasks and Leaderboards MIR, audio classification ### Languages Chinese, English ## Dataset Structure ### Data Instances .zip(.wav), .csv ### Data Fields Up to 287 kinds of Chinese traditional musical instruments, improved Chinese musical instruments and Chinese ethnic musical instruments ### Data Splits instruments, percussion ## Dataset Creation ### Curation Rationale Lack of a dataset for Chinese traditional musical instruments ### Source Data #### Initial Data Collection and Normalization Zhaorui Liu, Monan Zhou #### Who are the source language producers? Students from CCMUSIC ### Annotations #### Annotation process Building a high-quality musical sound database requires consideration on every aspect of the criteria in terms of the recording environment, performer, sample content, annotation standard and quality of recording and performing. #### Who are the annotators? Students from CCMUSIC ### Personal and Sensitive Information None ## Considerations for Using the Data ### Social Impact of Dataset Advancing the Digitization Process of Traditional Chinese Instruments ### Discussion of Biases Only for Traditional Chinese Instruments ### Other Known Limitations Sample imbalance ## Additional Information ### Dataset Curators Zijin Li ### Evaluation [李子晋, 韩宝强. 中国传统乐器音响数据库构建研究[J]. 中国音乐学, 2020(02):92-102+2.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=ZYYX202002013&uniplatform=NZKPT&v=7XgjFhWwxaqXz5fg8DIhkJzfNT6gX9huNMH0y5oRG15SXfwDzqWIOuuquyUDS%25mmd2FJ9) [Liang X, Li Z, Liu J, et al. Constructing a multimedia Chinese musical instrument database[C]//Proceedings of the 6th Conference on Sound and Music Technology (CSMT). Springer, Singapore, 2019: 53-60.](https://link.springer.com/chapter/10.1007/978-981-13-8707-4_5) [Li Z, Liang X, Liu J, et al. DCMI: A Database of Chinese Musical Instruments[J].](https://dlfm.web.ox.ac.uk/sites/default/files/dlfm/documents/media/zijin-et-al-dcmi.pdf) ### Licensing Information ``` MIT License Copyright (c) CCMUSIC Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ### Citation Information ``` @dataset{zhaorui_liu_2021_5676893, author = {Zhaorui Liu, Monan Zhou, Shenyang Xu, Yuan Wang, Zhaowen Wang, Wei Li and Zijin Li}, title = {CCMUSIC DATABASE: A Music Data Sharing Platform for Computational Musicology Research}, month = {nov}, year = {2021}, publisher = {Zenodo}, version = {1.1}, doi = {10.5281/zenodo.5676893}, url = {https://doi.org/10.5281/zenodo.5676893} } ``` ### Contributions Provide a dataset for Chinese Traditional Instrument Sounds
ccmusic-database/CTIS
[ "task_categories:audio-classification", "size_categories:1K<n<10K", "language:zh", "language:en", "license:mit", "music", "art", "region:us" ]
2023-05-25T12:04:50+00:00
{"language": ["zh", "en"], "license": "mit", "size_categories": ["1K<n<10K"], "task_categories": ["audio-classification"], "pretty_name": "Chinese Traditional Instrument Sound Dataset", "tags": ["music", "art"], "viewer": false}
2023-12-04T16:06:43+00:00
6bef4052adf71bb14e8e8cfba63ebf791ccf6d1c
# Dataset Card for "sam-controlnet-original" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
baptistecolle/sam-controlnet-original
[ "region:us" ]
2023-05-25T12:06:32+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "filepath", "dtype": "string"}, {"name": "sentids", "list": "int32"}, {"name": "filename", "dtype": "string"}, {"name": "imgid", "dtype": "int32"}, {"name": "split", "dtype": "string"}, {"name": "sentences", "struct": [{"name": "tokens", "list": "string"}, {"name": "raw", "dtype": "string"}, {"name": "imgid", "dtype": "int32"}, {"name": "sentid", "dtype": "int32"}]}, {"name": "cocoid", "dtype": "int32"}], "splits": [{"name": "original", "num_bytes": 160172441.0, "num_examples": 1000}], "download_size": 32080306, "dataset_size": 160172441.0}}
2023-05-29T08:48:39+00:00
4b4ff26e2df67d6c5feaabe1ab3f09d1043f48de
Praanavvv/Speech_Files
[ "license:cc-by-4.0", "region:us" ]
2023-05-25T12:17:01+00:00
{"license": "cc-by-4.0"}
2023-05-25T12:17:01+00:00
85fa02ffd1ac59370535d2321fb3bda4e89a8d4b
# Dataset Card for "763717e8" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/763717e8
[ "region:us" ]
2023-05-25T12:26:47+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 180, "num_examples": 10}], "download_size": 1324, "dataset_size": 180}}
2023-05-25T12:26:48+00:00
2dd3b85bf504fc310b7a34dcd0d3e763002238f0
# Summary This is a 🇹🇭 Thai-translated (GCP) dataset based on 4.5K codegen instruction dataset [GPTeacher](https://github.com/teknium1/GPTeacher) Supported Tasks: - Training LLMs - Synthetic Data Generation - Data Augmentation Languages: Thai Version: 1.0 ---
Thaweewat/codegen-th
[ "task_categories:question-answering", "size_categories:1K<n<10K", "language:th", "license:cc-by-sa-3.0", "instruction-finetuning", "region:us" ]
2023-05-25T12:28:49+00:00
{"language": ["th"], "license": "cc-by-sa-3.0", "size_categories": ["1K<n<10K"], "task_categories": ["question-answering"], "tags": ["instruction-finetuning"]}
2023-05-25T14:06:44+00:00
889d2e9751c8ff326fb01f5ed84deb910d376e45
# Dataset Card for "mcl-signal_processing_attacks_large" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
TeamSODA/mcl-signal_processing_attacks_whisper_librispeech
[ "region:us" ]
2023-05-25T12:36:51+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "0-benign", "1": "1-kenan", "2": "2-yeehaw", "3": "3-imaginary_clipping"}}}}], "splits": [{"name": "train", "num_bytes": 9472066083.0, "num_examples": 12000}], "download_size": 8061059411, "dataset_size": 9472066083.0}}
2023-05-25T13:13:03+00:00
9998342c89d274b43f2c56e8440179ee44b9b010
# Dataset Card for Dataset Name ## Dataset Description - **Autor:** Rubén Darío Jaramillo - **Email:** [email protected] - **WhatsApp:** +593 93 979 6676 ### Dataset Summary CIE10 is the 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD), a medical classification list by the World Health Organization (WHO). It contains codes for diseases, signs and symptoms, abnormal findings, complaints, social circumstances, and external causes of injury or diseases. Work on ICD-10 began in 1983, became endorsed by the Forty-third World Health Assembly in 1990, and was first used by member states in 1994. It was replaced by ICD-11 on January 1, 2022. While WHO manages and publishes the base version of the ICD, several member states have modified it to better suit their needs. In the base classification, the code set allows for more than 14,000 different codes and permits the tracking of many new diagnoses compared to the preceding ICD-9. Through the use of optional sub-classifications, ICD-10 allows for specificity regarding the cause, manifestation, location, severity, and type of injury or disease. The adapted versions may differ in a number of ways, and some national editions have expanded the code set even further; with some going so far as to add procedure codes. ICD-10-CM, for example, has over 70,000 codes. The WHO provides detailed information regarding the ICD via its website – including an ICD-10 online browser and ICD training materials. The online training includes a support forum, a self-learning tool and user guide. https://en.wikipedia.org/wiki/ICD-10
rubend18/CIE10
[ "task_categories:text-classification", "task_categories:token-classification", "size_categories:10K<n<100K", "language:es", "salud", "health", "diagnóstico", "ICD10Codes", "MedicalCoding", "HealthcareClassification", "DiseaseClassification", "ICD10Diagnosis", "MedicalTerminology", "HealthData", "ClinicalCoding", "HealthcareStandards", "MedicalClassification", "CódigosCIE10", "CodificaciónMédica", "ClasificaciónSanitaria", "ClasificaciónEnfermedades", "DiagnósticoCIE10", "TerminologíaMédica", "DatosSalud", "CodificaciónClínica", "EstándaresSanitarios", "ClasificaciónMédica", "region:us" ]
2023-05-25T12:38:02+00:00
{"language": ["es"], "size_categories": ["10K<n<100K"], "task_categories": ["text-classification", "token-classification"], "pretty_name": "Diagn\u00f3sticos M\u00e9dicos CIE10", "tags": ["salud", "health", "diagn\u00f3stico", "ICD10Codes", "MedicalCoding", "HealthcareClassification", "DiseaseClassification", "ICD10Diagnosis", "MedicalTerminology", "HealthData", "ClinicalCoding", "HealthcareStandards", "MedicalClassification", "C\u00f3digosCIE10", "Codificaci\u00f3nM\u00e9dica", "Clasificaci\u00f3nSanitaria", "Clasificaci\u00f3nEnfermedades", "Diagn\u00f3sticoCIE10", "Terminolog\u00edaM\u00e9dica", "DatosSalud", "Codificaci\u00f3nCl\u00ednica", "Est\u00e1ndaresSanitarios", "Clasificaci\u00f3nM\u00e9dica"]}
2023-07-30T15:15:08+00:00
1e95c9a56c5051564c261577c4c969bd3c117ef7
# Dataset Card for Chest voice and Falsetto Dataset ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 [email protected]:datasets/ccmusic-database/chest_falsetto ``` ## Dataset Description - **Homepage:** <https://ccmusic-database.github.io> - **Repository:** <https://huggingface.co/datasets/ccmusic-database/chest_falsetto> - **Paper:** <https://doi.org/10.5281/zenodo.5676893> - **Leaderboard:** <https://ccmusic-database.github.io/team.html> - **Point of Contact:** N/A ### Dataset Summary This database contains 1280 monophonic singing audio (.wav format) of chest and falsetto voices, with chest voice tagged as _chest_ and falsetto voice tagged as _falsetto_. ### Supported Tasks and Leaderboards Audio classification, singing method classification, voice classification ### Languages Chinese, English ## Dataset Structure <style> #datastructure td { vertical-align: middle !important; text-align: center; } #datastructure th { text-align: center; } </style> <table id="datastructure"> <tr> <th>audio(.wav)</th> <th>mel(.jpg)</th> <th>cqt(.jpg)</th> <th>chroma(.jpg)</th> <th>label</th> <th>gender</th> <th>singing_method</th> </tr> <tr> <td><audio controls src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/LKSBb11kCyPl15b-DJo6V.wav"></audio></td> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/W8wy7pkYZtCt3lI5Oq39l.jpeg"></td> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/48qPVDDIZe0ttsYXrTJEh.jpeg"></td> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/zm0KorKYtmvOje8qmivHJ.jpeg"></td> <td>m_chest, m_falsetto, f_chest, f_falsetto</td> <td>male, female</td> <td>chest, falsetto</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> </table> ### Data Instances .zip(.wav, .jpg) ### Data Fields m_chest, f_chest, m_falsetto, f_falsetto ### Data Splits train, validation, test ## Dataset Creation ### Curation Rationale Lack of a dataset for Chest voice and Falsetto ### Source Data #### Initial Data Collection and Normalization Zhaorui Liu, Monan Zhou #### Who are the source language producers? Students from CCMUSIC ### Annotations #### Annotation process 1280 monophonic singing audio (.wav format) of chest and falsetto voices, with chest voice tagged as _chest_ and falsetto voice tagged as _falsetto_. #### Who are the annotators? Students from CCMUSIC ### Personal and Sensitive Information None ## Considerations for Using the Data ### Social Impact of Dataset Promoting the development of AI in the music industry ### Discussion of Biases Only for chest and falsetto voices ### Other Known Limitations Recordings are cut into slices that are too short; The CQT spectrum column has the problem of spectrum leakage, but because the original audio slice is too short, only 0.5s, it cannot effectively avoid this problem. ## Additional Information ### Dataset Curators Zijin Li ### Evaluation <https://huggingface.co/ccmusic-database/chest_falsetto> ### Licensing Information ``` MIT License Copyright (c) CCMUSIC Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ### Citation Information ``` @dataset{zhaorui_liu_2021_5676893, author = {Zhaorui Liu, Monan Zhou, Shenyang Xu, Yuan Wang, Zhaowen Wang, Wei Li and Zijin Li}, title = {CCMUSIC DATABASE: A Music Data Sharing Platform for Computational Musicology Research}, month = {nov}, year = {2021}, publisher = {Zenodo}, version = {1.1}, doi = {10.5281/zenodo.5676893}, url = {https://doi.org/10.5281/zenodo.5676893} } ``` ### Contributions Provide a dataset for distinguishing chest and falsetto voices
ccmusic-database/chest_falsetto
[ "task_categories:audio-classification", "size_categories:1K<n<10K", "language:zh", "language:en", "license:mit", "music", "art", "region:us" ]
2023-05-25T12:53:10+00:00
{"language": ["zh", "en"], "license": "mit", "size_categories": ["1K<n<10K"], "task_categories": ["audio-classification"], "pretty_name": "Chest voice and Falsetto Dataset", "tags": ["music", "art"], "viewer": false}
2023-12-22T10:15:39+00:00
a71c63431deeecd04fcac6518d13e17a4dc5bf60
Thouph/text_stories
[ "license:wtfpl", "region:us" ]
2023-05-25T12:58:53+00:00
{"license": "wtfpl"}
2023-06-15T11:55:14+00:00
7911586c83265f6546547c6c924fede2c70c7323
# Dataset Card for Music Genre ## Dataset Description - **Homepage:** <https://ccmusic-database.github.io> - **Repository:** <https://huggingface.co/datasets/ccmusic-database/music_genre> - **Paper:** <https://doi.org/10.5281/zenodo.5676893> - **Leaderboard:** <https://ccmusic-database.github.io/team.html> - **Point of Contact:** <https://huggingface.co/ccmusic-database/music_genre> ### Dataset Summary This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total. ### Supported Tasks and Leaderboards Audio classification ### Languages Multilingual ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/music_genre ``` ## Usage When doing classification task, only one colum of fst_level_label, sec_level_label and thr_level_label can be used, not for mixing. ```python from datasets import load_dataset dataset = load_dataset("ccmusic-database/music_genre") for item in dataset["train"]: print(item) for item in dataset["test"]: print(item) ``` ## Dataset Structure <style> #genres td { vertical-align: middle !important; text-align: center; } #genres th { text-align: center; } </style> <table id="genres"> <tr> <td>mel(.jpg, 11.4s)</td> <td>cqt(.jpg, 11.4s)</td> <td>chroma(.jpg, 11.4s)</td> <td>fst_level_label(2-class)</td> <td>sec_level_label(9-class)</td> <td>thr_level_label(16-class)</td> </tr> <tr> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/PqdpQP__ls-xo6lz93Q4y.jpeg"></td> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/EZfYLng40hh_FUudB9vvx.jpeg"></td> <td><img src="https://cdn-uploads.huggingface.co/production/uploads/655e0a5b8c2d4379a71882a9/zviZ-rEKAvBCVFvKFml4R.jpeg"></td> <td>1_Classic / 2_Non_classic</td> <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td> <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> </table> ### Data Instances .zip(.jpg) ### Data Fields ``` 1_Classic 3_Symphony 4_Opera 5_Solo 6_Chamber 2_Non_classic 7_Pop 12_Pop_vocal_ballad 13_Adult_contemporary 14_Teen_pop 8_Dance_and_house 15_Contemporary_dance_pop 16_Dance_pop 9_Indie 17_Classic_indie_pop 18_Chamber_cabaret_and_art_pop 10_Soul_or_r_and_b 11_Rock 19_Adult_alternative_rock 20_Uplifting_anthemic_rock 21_Soft_rock 22_Acoustic_pop ``` ### Data Splits | total | 36375 | | :-------------: | :---: | | train(80%) | 29100 | | validation(10%) | 3637 | | test(10%) | 3638 | ## Dataset Creation ### Curation Rationale Promoting the development of AI in the music industry ### Source Data #### Initial Data Collection and Normalization Zhaorui Liu, Monan Zhou #### Who are the source language producers? Composers of the songs in dataset ### Annotations #### Annotation process Students collected about 1700 musical pieces (.mp3 format) with lengths of 270-300s divided into 17 genres in total. #### Who are the annotators? Students from CCMUSIC ### Personal and Sensitive Information Due to copyright issues with the original music, only spectrograms are provided in the dataset. ## Considerations for Using the Data ### Social Impact of Dataset Promoting the development of AI in the music industry ### Discussion of Biases Most are English songs ### Other Known Limitations Samples are not balanced enough ## Additional Information ### Dataset Curators Zijin Li ### Evaluation <https://huggingface.co/ccmusic-database/music_genre/tree/main> ### Licensing Information ``` MIT License Copyright (c) CCMUSIC Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ### Citation Information ``` @dataset{zhaorui_liu_2021_5676893, author = {Zhaorui Liu, Monan Zhou, Shenyang Xu, Yuan Wang, Zhaowen Wang, Wei Li and Zijin Li}, title = {CCMUSIC DATABASE: A Music Data Sharing Platform for Computational Musicology Research}, month = {nov}, year = {2021}, publisher = {Zenodo}, version = {1.1}, doi = {10.5281/zenodo.5676893}, url = {https://doi.org/10.5281/zenodo.5676893} } ``` ### Contributions Provide a dataset for music genre classification
ccmusic-database/music_genre
[ "task_categories:audio-classification", "task_categories:image-classification", "size_categories:10K<n<100K", "language:zh", "language:en", "license:mit", "music", "art", "region:us" ]
2023-05-25T13:10:47+00:00
{"language": ["zh", "en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["audio-classification", "image-classification"], "pretty_name": "Music Genre Dataset", "tags": ["music", "art"], "viewer": false}
2024-01-01T10:15:58+00:00
a3749e4214797604af665e583629ddfb2dde576d
# Small-GPT-wiki-intro-features dataset This dataset is based on [aadityaubhat/GPT-wiki-intro](https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro). It contains 150k short texts from Wikipedia (label 0) and corresponding texts generated by ChatGPT (label 1) (together 300k texts). For each text, various complexity measures were calculated, including e.g. readability, lexical diversity etc. It can be used for text classification or analysis of linguistic features of human-generated and ChatGPT-generated texts. For a smaller version, check out [julia-lukasiewicz-pater/small-GPT-wiki-intro-features](https://huggingface.co/datasets/julia-lukasiewicz-pater/small-GPT-wiki-intro-features). ## Dataset structure Features were calculated using various Python libraries, i.e. NLTK, [readability-metrics](https://pypi.org/project/py-readability-metrics/), [lexical-diversity](https://pypi.org/project/lexical-diversity/), and [TextDescriptives](https://hlasse.github.io/TextDescriptives/). The list of all features and their corresponding sources can be found below: | Column | Description | | ------ | ----------- | | text | human- or ChatGPT-generated text; taken from aadityaubhat/GPT-wiki-intro | | normalized_bigram_entropy | bigram entropy normalized with estimated maximum entropy; nltk | | mean_word_length | mean word length; nltk | | mean_sent_length | mean sentence length; nltk | | fog | Gunning-Fog; readability-metrics | | ari | Automated Readability Index; readability-metrics | | dale_chall | Dale Chall Readability; readability-metrics | | hdd | Hypergeometric Distribution; lexical-diversity | | mtld | Measure of lexical textual diversity; lexical-diversity | | mattr | Moving average type-token ratio; lexical-diversity | | number_of_ADJ | proportion of adjectives per word; nltk | | number_of_ADP | proportion of adpositions per word; nltk | | number_of_ADV | proportion of adverbs per word; nltk | | number_of_CONJ | proportion of conjunctions per word; nltk | | number_of_DET | proportion of determiners per word; nltk | | number_of_NOUN | proportion of nouns per word; nltk | | number_of_NUM | proportion of numerals per word; nltk | | number_of_PRT | proportion of particles per word; nltk | | number_of_PRON | proportion of pronuns per word; nltk | | number_of_VERB | proportion of verbs per word; nltk | | number_of_DOT | proportion of punctuation marks per word; nltk | | number_of_X | proportion of POS tag 'Other' per word; nltk | | class | binary class, 0 stands for Wikipedia, 1 stands for ChatGPT | | spacy_perplexity | text perplexity; TextDescriptives | | entropy | text entropy; TextDescriptives | | automated_readability_index | Automated Readability Index; TextDescriptives | | per_word_spacy_perplexity | text perplexity per word; TextDescriptives | | dependency_distance_mean | mean distance from each token to their dependent; TextDescriptives | | dependency_distance_std | standard deviation of distance from each token to their dependent; TextDescriptives | | first_order_coherence | cosine similarity between consecutive sentences; TextDescriptives | | second_order_coherence | cosine similarity between sentences that are two sentences apart; TextDescriptives | | smog |SMOG; TextDescriptives | | prop_adjacent_dependency_relation_mean | mean proportion adjacent dependency relations; TextDescriptives | | prop_adjacent_dependency_relation_std | standard deviation of proportion adjacent dependency relations; TextDescriptives | | syllables_per_token_mean | mean of syllables per token; TextDescriptives | | syllables_per_token_median | median of syllables per token; TextDescriptives | | token_length_std | standard deviation of token length; TextDescriptives | | token_length_median | median of token length; TextDescriptives | | sentence_length_median | median of sentence length; TextDescriptives | | syllables_per_token_std | standard deviation of syllables per token; TextDescriptives | | proportion_unique_tokens | proportion of unique tokens; TextDescriptives | | top_ngram_chr_fraction_3 | fraction of characters in a document which are contained within the top n-grams. For a specified n-gram range; TextDescriptives | | top_ngram_chr_fraction_2 | fraction of characters in a document which are contained within the top n-grams. For a specified n-gram range; TextDescriptives | | top_ngram_chr_fraction_4 | fraction of characters in a document which are contained within the top n-grams. For a specified n-gram range; TextDescriptives | | proportion_bullet_points | fraction of characters in a document which are contained within the top n-grams. For a specified n-gram range; TextDescriptives | | flesch_reading_ease | Flesch Reading ease ; TextDescriptives | | flesch_kincaid_grade | Flesch Kincaid grade; TextDescriptives | | gunning_fog | Gunning-Fog; TextDescriptives | | coleman_liau_index | Coleman-Liau Index; TextDescriptives | | oov_ratio| out-of-vocabulary ratio; TextDescriptives | ## Code Code that was used to generate this dataset can be found on [Github](https://github.com/julia-lukasiewicz-pater/gpt-wiki-features/tree/main).
julia-lukasiewicz-pater/GPT-wiki-intro-features
[ "task_categories:text-classification", "size_categories:100K<n<1M", "language:en", "license:cc", "region:us" ]
2023-05-25T13:38:40+00:00
{"language": ["en"], "license": "cc", "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"]}
2023-06-11T13:41:17+00:00
677c31473e931069b71bc424c17e92c8f2106cc7
# Dataset Card for "article_filter_ds" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
nsstt/article_filter_ds
[ "region:us" ]
2023-05-25T13:45:17+00:00
{"dataset_info": {"features": [{"name": "headline", "dtype": "string"}, {"name": "body", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9203347.180327868, "num_examples": 1854}, {"name": "test", "num_bytes": 2303318.819672131, "num_examples": 464}], "download_size": 7222810, "dataset_size": 11506666.0}}
2023-05-25T16:04:15+00:00
7e6c4c019068caf67bf2801b0ec57712596bb44a
# Revisiting Sentence Union Generation as a Testbed for Text Consolidation [Eran Hirsch](https://eranhirs.github.io/)<sup>1</sup>, [Valentina Pyatkin](https://valentinapy.github.io/)<sup>1</sup>, Ruben Wolhandler<sup>1</sup>, [Avi Caciularu](https://aviclu.github.io/)<sup>1</sup>, Asi Shefer<sup>2</sup>, [Ido Dagan](https://u.cs.biu.ac.il/~dagani/)<sup>1</sup> <br> <sup>1</sup>Bar-Ilan University, <sup>2</sup>One AI This is the official dataset of the paper "Revisiting Sentence Union Generation as a Testbed for Text Consolidation". * [Paper 📄](https://arxiv.org/abs/2305.15605) (Findings of ACL 2023) * [Code 💻](https://github.com/eranhirs/sentence_union_generation) ## Abstract Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models' consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.
biu-nlp/sentence_union_generation
[ "task_categories:text2text-generation", "task_categories:text-generation", "size_categories:1K<n<10K", "language:en", "license:cc-by-nc-4.0", "fusion", "union", "multi_document", "summarization", "long_form_question_answering", "document_grounded_dialogue", "arxiv:2305.15605", "region:us" ]
2023-05-25T13:45:36+00:00
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["text2text-generation", "text-generation"], "tags": ["fusion", "union", "multi_document", "summarization", "long_form_question_answering", "document_grounded_dialogue"]}
2023-08-24T08:01:43+00:00
df9425bd3fa955fa79f334ae6001d44feb9e590e
# Dataset Card for "frames_room_cls" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ummagumm-a/frames_room_cls
[ "region:us" ]
2023-05-25T13:50:19+00:00
{"dataset_info": {"features": [{"name": "data", "sequence": "float32"}, {"name": "label", "dtype": "string"}, {"name": "video_id", "dtype": "int64"}, {"name": "video_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10203554, "num_examples": 3276}, {"name": "test", "num_bytes": 1430210, "num_examples": 459}], "download_size": 14454806, "dataset_size": 11633764}}
2023-05-27T05:55:40+00:00
b2fe3ffedd121ebc65cecdfaed98f1d3715395f5
# Summary This is a 🇹🇭 Thai-translated (GCP) dataset based on English 74K [Alpaca-CoT](https://github.com/PhoebusSi/alpaca-CoT) instruction dataset. Supported Tasks: - Training LLMs - Synthetic Data Generation - Data Augmentation Languages: Thai Version: 1.0 ---
Thaweewat/chain-of-thought-74k-th
[ "task_categories:question-answering", "size_categories:10K<n<100K", "language:th", "license:cc-by-sa-3.0", "instruction-finetuning", "region:us" ]
2023-05-25T14:01:36+00:00
{"language": ["th"], "license": "cc-by-sa-3.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"], "tags": ["instruction-finetuning"]}
2023-05-26T11:32:46+00:00
b03367f616106b150928d4f137d0af903adaaf2e
# Dataset Card for "wikidumps-oscar-pl" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Lipa1919/wikidumps-oscar-pl
[ "region:us" ]
2023-05-25T14:08:48+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23435628364, "num_examples": 17016858}], "download_size": 15087497727, "dataset_size": 23435628364}}
2023-06-24T22:39:27+00:00
d5b118d636785ca668923c94c9f5c7358878d45c
# Dataset Card for "synthetic-qa" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
maiyad/synthetic-qa
[ "region:us" ]
2023-05-25T14:14:41+00:00
{"dataset_info": {"features": [{"name": "content", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "response_j", "dtype": "string"}, {"name": "response_k", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1785594, "num_examples": 1158}], "download_size": 135300, "dataset_size": 1785594}}
2023-05-25T14:39:16+00:00
539fcbf1a6e823415c72ef57c34901def4a9700e
# Dataset Card for "ae-Kenansville_attack" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
TeamSODA/ae-Kenansville_attack_whisper_librispeech
[ "region:us" ]
2023-05-25T14:19:00+00:00
{"dataset_info": {"features": [{"name": "audio_0", "dtype": "audio"}, {"name": "audio_1", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 4887525358.0, "num_examples": 3000}], "download_size": 4077042653, "dataset_size": 4887525358.0}}
2023-05-25T14:48:38+00:00
c6fd9b67128e9f23da788e9a5576cd6e0bee5589
# Dataset Card for "data_scientist_salary_all_text" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
james-burton/data_scientist_salary_all_text
[ "region:us" ]
2023-05-25T14:24:03+00:00
{"dataset_info": {"features": [{"name": "experience", "dtype": "string"}, {"name": "job_description", "dtype": "string"}, {"name": "job_desig", "dtype": "string"}, {"name": "job_type", "dtype": "string"}, {"name": "key_skills", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "salary", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3256981, "num_examples": 13464}, {"name": "validation", "num_bytes": 581453, "num_examples": 2377}, {"name": "test", "num_bytes": 956394, "num_examples": 3961}], "download_size": 2195043, "dataset_size": 4794828}}
2023-05-25T14:24:12+00:00
6149961c9c7e8db566b1e3ac065ea5af37187eb4
# Dataset Card for "data_scientist_salary_ordinal" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
james-burton/data_scientist_salary_ordinal
[ "region:us" ]
2023-05-25T14:24:13+00:00
{"dataset_info": {"features": [{"name": "experience", "dtype": "string"}, {"name": "job_description", "dtype": "string"}, {"name": "job_desig", "dtype": "string"}, {"name": "job_type", "dtype": "float64"}, {"name": "key_skills", "dtype": "string"}, {"name": "location", "dtype": "string"}, {"name": "salary", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3240828, "num_examples": 13464}, {"name": "validation", "num_bytes": 578505, "num_examples": 2377}, {"name": "test", "num_bytes": 951562, "num_examples": 3961}], "download_size": 2195761, "dataset_size": 4770895}}
2023-05-25T14:24:22+00:00
46e14e9fdc21bb1dda792a22771d8fe33d59f1e8
trojblue/random-captions
[ "license:bigscience-openrail-m", "region:us" ]
2023-05-25T14:38:18+00:00
{"license": "bigscience-openrail-m"}
2023-05-25T14:39:16+00:00
95ed7a7c8593fc9327cda8c3a1e61b1369808ed0
# Dataset Card for "bloom_dialogues_train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Shoubhik8/bloom_dialogues_train
[ "region:us" ]
2023-05-25T14:46:16+00:00
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}, {"name": "responses", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 23673110, "num_examples": 88896}], "download_size": 6898108, "dataset_size": 23673110}}
2023-05-25T17:14:30+00:00
d9cbeb01558304c2ffb5b6ea44bac3f933971d73
# Dataset Card for "bloom_dialogues_valid" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Shoubhik8/bloom_dialogues_valid
[ "region:us" ]
2023-05-25T14:46:54+00:00
{"dataset_info": {"features": [{"name": "prompts", "dtype": "string"}, {"name": "responses", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 7469692, "num_examples": 27857}], "download_size": 2184992, "dataset_size": 7469692}}
2023-05-25T17:14:44+00:00
39121fbde9661ea8f58e53b964f720a772d5f202
# Dataset Card for "295cc7a4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/295cc7a4
[ "region:us" ]
2023-05-25T15:15:26+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 184, "num_examples": 10}], "download_size": 1338, "dataset_size": 184}}
2023-05-25T15:15:27+00:00
c259c6b20ff0b89485386763be0fea0b2279ce3d
# Dataset Card for "Eurosat-Datast" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Amite5h/Eurosat-Datast
[ "region:us" ]
2023-05-25T15:39:00+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "AnnualCrop", "1": "Forest", "2": "HerbaceousVegetation", "3": "Highway", "4": "Industrial", "5": "Pasture", "6": "PermanentCrop", "7": "Residential", "8": "River", "9": "SeaLake"}}}}], "splits": [{"name": "train", "num_bytes": 88397609.0, "num_examples": 27000}], "download_size": 88592405, "dataset_size": 88397609.0}}
2023-05-25T15:39:08+00:00
79efcf8c81ed72e84b6ed1ea072efa2d74051367
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
cyhuang-tw/test
[ "region:us" ]
2023-05-25T16:11:50+00:00
{}
2023-05-25T16:17:02+00:00
b88a0cc0acee5f8027d57a6c9dcaf75b855b8cb4
# Dataset Card for "booksum-summary-analysis" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
emozilla/booksum-summary-analysis
[ "language:en", "region:us" ]
2023-05-25T16:23:56+00:00
{"language": "en", "dataset_info": {"features": [{"name": "chapter", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 215494460.97875556, "num_examples": 11834}, {"name": "test", "num_bytes": 27122769.0, "num_examples": 1658}, {"name": "validation", "num_bytes": 43846669.0, "num_examples": 2234}], "download_size": 134838536, "dataset_size": 286463898.9787556}}
2023-07-12T16:43:41+00:00
6e42d357472ab37f09b089a05ac403d05b221910
# Dataset Card for "booksum-summary-analysis-llama" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
emozilla/booksum-summary-analysis_llama-2048
[ "region:us" ]
2023-05-25T16:31:46+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 30592419.675875388, "num_examples": 1680}, {"name": "test", "num_bytes": 2601037.557901086, "num_examples": 159}, {"name": "validation", "num_bytes": 8498481.502685765, "num_examples": 433}], "download_size": 3424916, "dataset_size": 41691938.736462235}}
2023-05-25T16:31:50+00:00
6599bead0afa7660bd9b683349c84ee34fdd0c9c
# Dataset Card for "booksum-summary-analysis-8192" Subset of [emozilla/booksum-summary-analysis](https://huggingface.co/datasets/emozilla/booksum-summary-analysis) with only entries that are less than 8,192 tokens under the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
emozilla/booksum-summary-analysis_gptneox-8192
[ "region:us" ]
2023-05-25T16:34:39+00:00
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 194097976.97925937, "num_examples": 10659}, {"name": "test", "num_bytes": 25683201.043425813, "num_examples": 1570}, {"name": "validation", "num_bytes": 35799607.99283796, "num_examples": 1824}], "download_size": 92249754, "dataset_size": 255580786.01552314}}
2023-05-30T13:28:46+00:00
e5ed711584f6797e15a9bf6118660bff4bf53efe
# Dataset Card for "3794d1ea" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/3794d1ea
[ "region:us" ]
2023-05-25T17:26:01+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 186, "num_examples": 10}], "download_size": 1337, "dataset_size": 186}}
2023-05-25T17:26:02+00:00
b01e92839e342f239cab02abd931929bcd0ec5df
# Dataset Card for "sam-controlnet-2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
baptistecolle/sam-controlnet-2
[ "region:us" ]
2023-05-25T17:37:21+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "filepath", "dtype": "string"}, {"name": "sentids", "list": "int32"}, {"name": "filename", "dtype": "string"}, {"name": "imgid", "dtype": "int32"}, {"name": "split", "dtype": "string"}, {"name": "sentences", "struct": [{"name": "tokens", "list": "string"}, {"name": "raw", "dtype": "string"}, {"name": "imgid", "dtype": "int32"}, {"name": "sentid", "dtype": "int32"}]}, {"name": "cocoid", "dtype": "int32"}], "splits": [{"name": "original", "num_bytes": 160172316.0, "num_examples": 1000}], "download_size": 0, "dataset_size": 160172316.0}}
2023-05-25T17:44:01+00:00
0a8126a903b99d3822990b896c77ea92d55f5748
# Dataset Card for "demo2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
santhosh97/demo2
[ "region:us" ]
2023-05-25T17:41:12+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input_image", "dtype": "image"}, {"name": "ground_truth_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 82978040.0, "num_examples": 80}], "download_size": 41492324, "dataset_size": 82978040.0}}
2023-05-25T17:41:14+00:00
136d18e3317ea0fab812822e2f7a8a036045d205
# Dataset Card for "sam-controlnet-3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
baptistecolle/sam-controlnet-3
[ "region:us" ]
2023-05-25T17:45:58+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "filepath", "dtype": "string"}, {"name": "sentids", "sequence": "int64"}, {"name": "filename", "dtype": "string"}, {"name": "imgid", "dtype": "int64"}, {"name": "split", "dtype": "string"}, {"name": "sentences", "struct": [{"name": "imgid", "dtype": "int64"}, {"name": "raw", "dtype": "string"}, {"name": "sentid", "dtype": "int64"}, {"name": "tokens", "sequence": "string"}]}, {"name": "cocoid", "dtype": "int64"}, {"name": "masks", "sequence": {"sequence": {"sequence": "bool"}}}, {"name": "scores", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 2086529.0, "num_examples": 1}], "download_size": 150908, "dataset_size": 2086529.0}}
2023-05-27T12:22:08+00:00
67b8dc1f33c63509cef557daae2ec6e7db34f55c
# Description This dataset contains lyrics from both Incubus and Taylor Swift. # Format The file is in CSV format and contains three columns: Artist, Song Name and Lyrics. ## Caveats The column Song Name has been transformed to a single string in lowercase format, so instead of having "Name of Song", the value will be "nameofsong".
danioshi/incubus_taylor_swift_lyrics
[ "size_categories:n<1K", "language:en", "license:cc0-1.0", "music", "region:us" ]
2023-05-25T17:57:33+00:00
{"language": ["en"], "license": "cc0-1.0", "size_categories": ["n<1K"], "pretty_name": "Incubus and Taylor Swift lyrics", "tags": ["music"]}
2023-05-25T18:03:59+00:00
a4b8d51fec1d0c1fe240b21e7fc635e9475ac14c
# Dataset Card for "articles" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
203427as321/articles
[ "region:us" ]
2023-05-25T18:13:43+00:00
{"dataset_info": {"features": [{"name": "label", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 23996247, "num_examples": 1534}], "download_size": 0, "dataset_size": 23996247}}
2024-02-17T17:00:08+00:00
dd38cd25661053fb12ab006ba9c10d5abec924ce
# Dataset Card for "VQAv2_sample_validation_google_flan_t5_xxl_mode_CM_Q_rices_ns_1000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/VQAv2_sample_validation_google_flan_t5_xxl_mode_CM_Q_rices_ns_1000
[ "region:us" ]
2023-05-25T18:54:45+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "true_label", "sequence": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full_DETA_detections_deta_swin_large_o365_coco_classes_caption_all_patches_Salesforce_blip_image_captioning_large_clean_", "num_bytes": 141854, "num_examples": 1000}], "download_size": 53468, "dataset_size": 141854}}
2023-06-10T15:56:08+00:00
4e788183125a6143d8bdba24e58f1efda2e4b48f
# Dataset Card for "womens-clothing-ecommerce-reviews" Processed version of [this dataset](https://github.com/ya-stack/Women-s-Ecommerce-Clothing-Reviews).
saattrupdan/womens-clothing-ecommerce-reviews
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:en", "multimodal", "region:us" ]
2023-05-25T19:04:03+00:00
{"language": ["en"], "size_categories": ["1K<n<10K"], "task_categories": ["text-classification"], "pretty_name": "Women's Clothing E-Commerce Reviews", "dataset_info": {"features": [{"name": "review_text", "dtype": "string"}, {"name": "age", "dtype": "int64"}, {"name": "rating", "dtype": "int64"}, {"name": "positive_feedback_count", "dtype": "int64"}, {"name": "division_name", "dtype": "string"}, {"name": "department_name", "dtype": "string"}, {"name": "class_name", "dtype": "string"}, {"name": "recommended_ind", "dtype": {"class_label": {"names": {"0": "0", "1": "1"}}}}], "splits": [{"name": "train", "num_bytes": 7811312.540347158, "num_examples": 20641}, {"name": "val", "num_bytes": 378436.72982642107, "num_examples": 1000}, {"name": "test", "num_bytes": 378436.72982642107, "num_examples": 1000}], "download_size": 4357015, "dataset_size": 8568186.0}, "tags": ["multimodal"]}
2023-05-25T19:18:53+00:00
97783671b5698cd38ad9c708bdb68ae328a27f2e
# Chizuru Tachibana from Nande Koko ni Sensei ga!? - Trained with anime (full-final-pruned) model - Works the best with ALL, MIDD, OUTD, and OUTALL LoRA weight blocks, and with 0.7+ weights.
Cheetor1996/Chizuru_Tachibana
[ "language:en", "license:cc-by-2.0", "art", "region:us" ]
2023-05-25T19:48:25+00:00
{"language": ["en"], "license": "cc-by-2.0", "tags": ["art"]}
2023-05-25T20:25:42+00:00
4a677e795921b68f168f54588abf00294647d552
# Dataset Card for "askscience" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
P1ayer-1/askscience
[ "region:us" ]
2023-05-25T20:00:32+00:00
{"dataset_info": {"features": [{"name": "title", "sequence": "string"}, {"name": "over_18", "sequence": "bool"}, {"name": "post_content", "dtype": "string"}, {"name": "C1", "sequence": "string"}, {"name": "C2", "sequence": "string"}, {"name": "C3", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 235856987.50364494, "num_examples": 117709}, {"name": "test", "num_bytes": 12413103.82031179, "num_examples": 6195}, {"name": "validation", "num_bytes": 12415107.549742026, "num_examples": 6196}], "download_size": 172214121, "dataset_size": 260685198.87369874}}
2023-05-25T20:04:09+00:00
b93e4982f8f8ad2d82c6d35e3c00d161844ad70a
# Dataset Card for Dataset Name ## Name ChatGPT Jailbreak Prompts ## Dataset Description - **Autor:** Rubén Darío Jaramillo - **Email:** [email protected] - **WhatsApp:** +593 93 979 6676 ### Dataset Summary ChatGPT Jailbreak Prompts is a complete collection of jailbreak related prompts for ChatGPT. This dataset is intended to provide a valuable resource for understanding and generating text in the context of jailbreaking in ChatGPT. ### Languages [English]
rubend18/ChatGPT-Jailbreak-Prompts
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:fill-mask", "task_categories:zero-shot-classification", "task_categories:table-question-answering", "size_categories:n<1K", "language:en", "language:aa", "ChatGPT", "JailbreakPrompts", "LanguageModeling", "ArtificialIntelligence", "TextGeneration", "Dataset", "OpenAI", "Jailbreak", "Prompts", "region:us" ]
2023-05-25T20:04:52+00:00
{"language": ["en", "aa"], "size_categories": ["n<1K"], "task_categories": ["question-answering", "text-generation", "fill-mask", "zero-shot-classification", "table-question-answering"], "pretty_name": "ChatGPT Jailbreak Prompts", "tags": ["ChatGPT", "JailbreakPrompts", "LanguageModeling", "ArtificialIntelligence", "TextGeneration", "Dataset", "OpenAI", "Jailbreak", "Prompts"]}
2023-08-24T17:24:29+00:00
9e03cb762fb524fc88d83aab33c819dcc3a14363
# Dataset Card for "referral_commands_1B1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stoddur/referral_commands_1B1
[ "region:us" ]
2023-05-25T20:12:25+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 1544000, "num_examples": 1000}, {"name": "eval", "num_bytes": 1544000, "num_examples": 1000}], "download_size": 189073, "dataset_size": 3088000}}
2023-05-25T20:12:30+00:00
99173bd78ea28bd068f25e8295ae4e0d499b46fc
# Dataset Card for "ygo_card_text" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
akumoth/ygo_card_text
[ "region:us" ]
2023-05-25T20:17:46+00:00
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4784802.456419868, "num_examples": 11523}, {"name": "test", "num_bytes": 531921.5435801313, "num_examples": 1281}], "download_size": 2069174, "dataset_size": 5316724.0}}
2023-05-25T20:28:48+00:00
fc980546bdf17618646cc114690cc89fa6dfbf55
# reddit finance 43 250k `reddit_finance_43_250k` is a collection of 250k post/comment pairs from 43 financial, investing and crypto subreddits. Post must have all been text, with a length of 250chars, and a positive score. Each subreddit is narrowed down to the 70th qunatile before being mergered with their top 3 comments and than the other subs. Further score based methods are used to select the top 250k post/comment pairs. The code to recreate the dataset is here: <https://github.com/getorca/ProfitsBot_V0_OLLM/tree/main/ds_builder> The trained lora model is here: <https://huggingface.co/winddude/pb_lora_7b_v0.1>
winddude/reddit_finance_43_250k
[ "language:en", "license:gpl-3.0", "finance", "investing", "crypto", "reddit", "region:us" ]
2023-05-25T20:31:02+00:00
{"language": ["en"], "license": "gpl-3.0", "tags": ["finance", "investing", "crypto", "reddit"]}
2023-05-25T22:06:03+00:00
d8c8f21c85f60ef16beb9a59b716e8c169e3b681
temnoed/Dandelions
[ "license:openrail", "region:us" ]
2023-05-25T20:36:23+00:00
{"license": "openrail"}
2023-05-25T20:38:05+00:00
0f18c8d3c6860930f0dd912b6de048479b8b5d1b
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary The dataset.json file contains ~1.7 million synthetic data for arithmetic tasks, generated by dataset.ipynb. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
tiedong/goat
[ "task_categories:question-answering", "size_categories:1M<n<10M", "language:en", "license:apache-2.0", "region:us" ]
2023-05-25T21:07:47+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "task_categories": ["question-answering"]}
2023-05-25T21:14:53+00:00
43d365dc401f46b2b454ba9e4644f6476be91aa8
# Dataset Card for "OpusTrain" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ethansimrm/OpusTrain
[ "region:us" ]
2023-05-25T21:09:04+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "translation", "dtype": {"translation": {"languages": ["en", "fr"]}}}], "splits": [{"name": "train", "num_bytes": 26397634.4, "num_examples": 101668}], "download_size": 19002803, "dataset_size": 26397634.4}}
2023-05-25T21:09:15+00:00
617660b4d62a139ea0dc93a4bdf310b3bc8ee849
# Dataset Card for "OpusTest" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ethansimrm/OpusTest
[ "region:us" ]
2023-05-25T21:09:32+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "translation", "dtype": {"translation": {"languages": ["en", "fr"]}}}], "splits": [{"name": "train", "num_bytes": 6599408.6, "num_examples": 25417}], "download_size": 4758293, "dataset_size": 6599408.6}}
2023-05-25T21:09:39+00:00
88472f98e3da574db96d02ab63ab577ee71341dd
henrydz/paddy_disease
[ "license:apache-2.0", "region:us" ]
2023-05-25T21:29:14+00:00
{"license": "apache-2.0"}
2023-05-25T21:31:21+00:00
3f38dae188e6bc7ff24b5d548c8e81461ffdecdc
# Dataset Card for "cnn-diverse-gpt-3.5-summaries" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
griffin/cnn-diverse-gpt-3.5-summaries
[ "region:us" ]
2023-05-25T22:05:02+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "source_edu_annotated", "dtype": "string"}, {"name": "reference", "dtype": "string"}, {"name": "candidates", "list": [{"name": "method", "dtype": "string"}, {"name": "method_beam", "dtype": "int64"}, {"name": "prediction", "dtype": "string"}, {"name": "rouge1", "dtype": "float64"}, {"name": "rouge2", "dtype": "float64"}, {"name": "rougeL", "dtype": "float64"}, {"name": "rougeLsum", "dtype": "float64"}]}, {"name": "vanilla_prompt", "dtype": "string"}, {"name": "pga_prompts", "sequence": "string"}, {"name": "pga_edu_extract_idxs", "sequence": {"sequence": "int64"}}], "splits": [{"name": "train", "num_bytes": 226053728, "num_examples": 1000}], "download_size": 91791746, "dataset_size": 226053728}}
2023-05-25T22:05:12+00:00
bc0e2ebfcfa830cf0a22947591c8995493826bcc
AyoubChLin/FFHQ
[ "license:apache-2.0", "region:us" ]
2023-05-25T22:05:10+00:00
{"license": "apache-2.0"}
2023-05-25T22:08:03+00:00
22c007c6621025d16d9b837bde7e3c20d0351f39
# Dataset Card for Dromedary-Verbose-Clone (65b-v0) - **Repository**: https://github.com/IBM/Dromedary - **Authors' Note**: The Self-Align data contain a plethora of partial responses. Therefore, it is advised to refrain from appending the `<eos>` or `</s>` token to the model responses for supervised fine-tuning (SFT). Instead, it is recommended to substitute "\n\n### User" (Dromedary's eos token) with your own end-of-response token. ## Dataset Summary Dromedary-Verbose-Clone is a synthetic dataset of 360k instructions and demonstrations. The [`Dromedary-65b (final)`](https://huggingface.co/zhiqings/dromedary-65b-lora-delta-v0) model can be reproduced by LoRA fine-tuing the base `LLaMA-65b` model on this dataset. ### Synthetic Instructions The instructions are generated by the base LLaMA model with the [Self-Instruct](https://github.com/yizhongw/self-instruct) framework and made the following modifications: * The Self-Instruct algorithm is employed solely for generating instructions, not for producing the model's responses. * A new [prompt](https://github.com/IBM/Dromedary/blob/main/prompts/self_instruct_prompt.txt), adapted from the [Alpaca's prompt](https://github.com/tatsu-lab/stanford_alpaca/blob/main/prompt.txt), was written that explicitly gave the requirement of instruction generation. * We further use [Topic-Guided Red-Teaming (TGRT) Self-Instruct](https://arxiv.org/abs/2305.03047) to ensure a diversified topic coverage of the instructions. ### Synthetic Demonstrations The demonstrations are generated by the non-verbose version of `Dromedary` prompted with the following prompt: ``` # Dromedary ## System Overview Consider an AI assistant whose codename is Dromedary, developed by the Self-Align team. Dromedary is trained on data up until Sept-2021, and it endeavors to be a helpful, ethical and reliable assistant. "Dromedary (extensive)" is an advanced language model that specializes in generating extensive, comprehensive, and detailed responses to user queries. By precisely discerning user intent and employing sophisticated natural language processing skills, it is able to delve deep into complex topics and provide longer, well-organized paragraphs. This thorough approach ensures that users receive a complete understanding of the subject matter, resulting in a highly informative and gratifying experience. The "Dromedary (extensive)" model is designed to cater to the needs of users who desire more than just a brief response to their questions. It strives to provide a comprehensive analysis of the subject at hand, which may include historical context, scientific principles, various perspectives, or potential future developments. As a result, users can expect to receive a wealth of knowledge that not only answers their immediate query but also promotes a deeper understanding and appreciation of the topic. ## User Conversation ### User To begin with, can you introduce yourself? ### Dromedary (extensive) Hello! I am Dromedary, an AI language model developed by the Self-Align team, based on the LLaMa architecture. My primary function is to assist users in answering questions, generating text, and engaging in conversation across a vast range of topics, with training data up until September 2021. As a helpful, ethical, and reliable AI assistant, my foremost objective is to promote user safety, adhere to moral principles, and foster conscientious behavior. In the face of potentially harmful inquiries, I actively redirect users towards constructive topics by emphasizing the negative consequences and elucidating the reasoning behind my stance. In doing so, I strive to generate responses that are positive, interesting, helpful, and engaging. My logics and reasoning are designed to be rigorous, intelligent, and defensible. Furthermore, I am capable of providing additional relevant details to respond thoroughly and comprehensively, covering multiple aspects of a topic in depth. Please feel free to ask me anything, and I will be more than happy to assist you. ### User ``` ### Quality Filtering To mitigate the quality issues inherent in the synthetic demonstrations, the dataset was filtered using [a set of basic rules](https://github.com/IBM/Dromedary/blob/main/training/step4_verbose_cloning/merge_and_filter_verbose_clone_output.py): 1. In case the output is a list of enumerated items, only the initial 12 items are retained. 2. Instances where the model's response is less than 128 characters are removed. 3. Any repeated sentences within the model's output (split by `r'(?<=[\n.?!;:,])'`) are also eliminated. ### Supported Tasks and Leaderboards The Dromedary-Verbose-Clone dataset is designed for instruction training pretrained language models. ### Languages The data in Dromedary-Verbose-Clone are in English (BCP-47 en). ## Dataset Structure ### Data Instances An example of the "train" example looks as follows: ```json { "example_id": 1, "instruction": "Write a haiku about good news.", "input": "", "output": "Here is a haiku about good news:\n\nGood news is always\n\nwelcome, especially when\n\nit is unexpected.\n\n### User", } ``` Sometimes, the `"output"` field will end with `"\n\n### User"` to indicate the conclusion of the model's response. ### Data Fields The data fields are as follows: * `example_id`: a unique id for each example * `instruction`: describes the task the model should perform. * `input`: optional context or input for the task. * `output`: the synthetic answer to the instruction as generated. ### Data Splits | | train | |-----------|--------:| | dromedary | 360674 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information The dataset is available under the [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode). ### Citation Information ``` @misc{sun2023principledriven, title={Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision}, author={Zhiqing Sun and Yikang Shen and Qinhong Zhou and Hongxin Zhang and Zhenfang Chen and David Cox and Yiming Yang and Chuang Gan}, year={2023}, eprint={2305.03047}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ### Contributions [More Information Needed]
zhiqings/dromedary-65b-verbose-clone-v0
[ "task_categories:conversational", "size_categories:100K<n<1M", "language:en", "license:cc-by-nc-4.0", "arxiv:2305.03047", "region:us" ]
2023-05-25T22:05:43+00:00
{"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["conversational"], "pretty_name": "Dromedary-Verbose-Clone"}
2023-06-23T21:52:56+00:00
bbe510c9a0160588b2bd4e11ad8abec55071f6a5
Zaun/Otaotakinp
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
2023-05-25T22:22:17+00:00
{"license": "bigscience-bloom-rail-1.0"}
2023-05-25T22:22:17+00:00
bbbfab01849e02f0c841cee756d1cb840daf309b
chenxwh/gen-xcopa
[ "license:cc-by-4.0", "region:us" ]
2023-05-25T22:28:01+00:00
{"license": "cc-by-4.0"}
2023-05-29T14:04:40+00:00
0046cbf9c99fdbdcb29b70283ecd8427c2096b0e
HyperionHF/tom_clean
[ "license:mit", "region:us" ]
2023-05-25T22:58:31+00:00
{"license": "mit", "dataset_info": {"features": [{"name": "agent", "dtype": "string"}, {"name": "agent_preferences", "sequence": "string"}, {"name": "chosen_object", "dtype": "string"}, {"name": "true_chosen_object", "dtype": "string"}, {"name": "chosen_object_is_noisy", "dtype": "bool"}, {"name": "other_objects", "sequence": "string"}, {"name": "location_chosen_object", "dtype": "int64"}, {"name": "location_true_chosen_object", "dtype": "int64"}, {"name": "preference_idx", "dtype": "int64"}, {"name": "preference_idx_true", "dtype": "int64"}, {"name": "example_idx", "dtype": "int64"}, {"name": "is_inanimate", "dtype": "bool"}, {"name": "logical_representation", "struct": [{"name": "input", "sequence": "string"}, {"name": "target", "dtype": "string"}]}, {"name": "logical_representation_with_indirection", "struct": [{"name": "input", "sequence": "string"}, {"name": "target", "dtype": "int64"}]}, {"name": "example_text", "dtype": "string"}, {"name": "target_idx", "dtype": "int64"}, {"name": "matching_animate_inanimate", "dtype": "string"}, {"name": "matching_animate_inanimate_idx", "dtype": "int64"}, {"name": "irrelevant_change_to_original_1", "dtype": "string"}, {"name": "irrelevant_change_to_original_1_idx", "dtype": "int64"}, {"name": "irrelevant_change_to_original_2", "dtype": "string"}, {"name": "irrelevant_change_to_original_2_idx", "dtype": "int64"}, {"name": "original_1_with_animate_denotation", "dtype": "string"}, {"name": "original_1_with_animate_denotation_idx", "dtype": "int64"}, {"name": "no_indirection_target", "dtype": "string"}, {"name": "no_indirection_target_idx", "dtype": "int64"}, {"name": "no_indirection_irrelevant_change", "dtype": "string"}, {"name": "no_indirection_irrelevant_change_idx", "dtype": "int64"}, {"name": "no_indirection_target_animate_denotation", "dtype": "string"}, {"name": "no_indirection_target_animate_denotation_idx", "dtype": "int64"}, {"name": "indirection_target", "dtype": "string"}, {"name": "indirection_target_idx", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 33720360, "num_examples": 15579}, {"name": "dev", "num_bytes": 3748081, "num_examples": 1731}, {"name": "test_own_preference", "num_bytes": 304452, "num_examples": 144}, {"name": "test_others_preference", "num_bytes": 337582, "num_examples": 156}, {"name": "test_distraction", "num_bytes": 318204, "num_examples": 144}, {"name": "test_location", "num_bytes": 732420, "num_examples": 336}, {"name": "test_inanimate", "num_bytes": 970271, "num_examples": 450}, {"name": "test_agents", "num_bytes": 6085350, "num_examples": 2808}], "download_size": 5617164, "dataset_size": 46216720}}
2023-05-25T22:58:46+00:00
11ac1bc1d82d87577fea819a6b11443a07321e03
JianLiao/spectrum-design-docs
[ "language:en", "license:cc-by-sa-4.0", "region:us" ]
2023-05-25T23:12:53+00:00
{"language": ["en"], "license": "cc-by-sa-4.0"}
2023-06-24T04:28:05+00:00
19ba1ed13db800c20966f6bdc98b0fa120f7d1fe
# Dataset Card for "part_1_imda_10000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
averageandyyy/part_1_imda_10000
[ "region:us" ]
2023-05-25T23:25:50+00:00
{"dataset_info": {"features": [{"name": "transcript", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "waveform", "sequence": "float64"}], "splits": [{"name": "train", "num_bytes": 6702801413.012406, "num_examples": 10000}], "download_size": 1615604216, "dataset_size": 6702801413.012406}}
2023-05-25T23:32:10+00:00
675409abd02729cb9e109328269dad2ec045cbcc
assembleco/hyperdemocracy
[ "license:pddl", "region:us" ]
2023-05-25T23:42:07+00:00
{"license": "pddl", "dataset_info": {"features": [{"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "sponsors", "sequence": {"sequence": "string"}}, {"name": "summary", "dtype": "string"}, {"name": "body", "dtype": "string"}, {"name": "themes", "sequence": "string"}, {"name": "index", "struct": [{"name": "bill", "struct": [{"name": "actions", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "amendments", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "cboCostEstimates", "list": [{"name": "description", "dtype": "string"}, {"name": "pubDate", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "committeeReports", "list": [{"name": "citation", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "committees", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "congress", "dtype": "int64"}, {"name": "constitutionalAuthorityStatementText", "dtype": "string"}, {"name": "cosponsors", "struct": [{"name": "count", "dtype": "int64"}, {"name": "countIncludingWithdrawnCosponsors", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "introducedDate", "dtype": "string"}, {"name": "latestAction", "struct": [{"name": "actionDate", "dtype": "string"}, {"name": "actionTime", "dtype": "string"}, {"name": "text", "dtype": "string"}]}, {"name": "laws", "list": [{"name": "number", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "number", "dtype": "string"}, {"name": "originChamber", "dtype": "string"}, {"name": "policyArea", "struct": [{"name": "name", "dtype": "string"}]}, {"name": "relatedBills", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "sponsors", "list": [{"name": "bioguideId", "dtype": "string"}, {"name": "district", "dtype": "int64"}, {"name": "firstName", "dtype": "string"}, {"name": "fullName", "dtype": "string"}, {"name": "isByRequest", "dtype": "string"}, {"name": "lastName", "dtype": "string"}, {"name": "middleName", "dtype": "string"}, {"name": "party", "dtype": "string"}, {"name": "state", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "subjects", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "summaries", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "textVersions", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "title", "dtype": "string"}, {"name": "titles", "struct": [{"name": "count", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "type", "dtype": "string"}, {"name": "updateDate", "dtype": "string"}, {"name": "updateDateIncludingText", "dtype": "string"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}]}, {"name": "actions", "struct": [{"name": "actions", "list": [{"name": "actionCode", "dtype": "string"}, {"name": "actionDate", "dtype": "string"}, {"name": "actionTime", "dtype": "string"}, {"name": "calendarNumber", "struct": [{"name": "calendar", "dtype": "string"}, {"name": "number", "dtype": "string"}]}, {"name": "committees", "list": [{"name": "name", "dtype": "string"}, {"name": "systemCode", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "recordedVotes", "list": [{"name": "chamber", "dtype": "string"}, {"name": "congress", "dtype": "int64"}, {"name": "date", "dtype": "string"}, {"name": "rollNumber", "dtype": "int64"}, {"name": "sessionNumber", "dtype": "int64"}, {"name": "url", "dtype": "string"}]}, {"name": "sourceSystem", "struct": [{"name": "code", "dtype": "int64"}, {"name": "name", "dtype": "string"}]}, {"name": "text", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}]}, {"name": "amendments", "struct": [{"name": "amendments", "list": [{"name": "congress", "dtype": "int64"}, {"name": "description", "dtype": "string"}, {"name": "latestAction", "struct": [{"name": "actionDate", "dtype": "string"}, {"name": "actionTime", "dtype": "string"}, {"name": "text", "dtype": "string"}]}, {"name": "number", "dtype": "string"}, {"name": "purpose", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "updateDate", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}]}, {"name": "committees", "struct": [{"name": "committees", "list": [{"name": "activities", "list": [{"name": "date", "dtype": "string"}, {"name": "name", "dtype": "string"}]}, {"name": "chamber", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "subcommittees", "list": [{"name": "activities", "list": [{"name": "date", "dtype": "string"}, {"name": "name", "dtype": "string"}]}, {"name": "name", "dtype": "string"}, {"name": "systemCode", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "systemCode", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}]}, {"name": "relatedbills", "struct": [{"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}]}, {"name": "relatedBills", "list": [{"name": "congress", "dtype": "int64"}, {"name": "latestAction", "struct": [{"name": "actionDate", "dtype": "string"}, {"name": "actionTime", "dtype": "string"}, {"name": "text", "dtype": "string"}]}, {"name": "number", "dtype": "int64"}, {"name": "relationshipDetails", "list": [{"name": "identifiedBy", "dtype": "string"}, {"name": "type", "dtype": "string"}]}, {"name": "title", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}]}, {"name": "cosponsors", "struct": [{"name": "cosponsors", "list": [{"name": "bioguideId", "dtype": "string"}, {"name": "district", "dtype": "int64"}, {"name": "firstName", "dtype": "string"}, {"name": "fullName", "dtype": "string"}, {"name": "isOriginalCosponsor", "dtype": "bool"}, {"name": "lastName", "dtype": "string"}, {"name": "middleName", "dtype": "string"}, {"name": "party", "dtype": "string"}, {"name": "sponsorshipDate", "dtype": "string"}, {"name": "sponsorshipWithdrawnDate", "dtype": "string"}, {"name": "state", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}, {"name": "countIncludingWithdrawnCosponsors", "dtype": "int64"}, {"name": "prev", "dtype": "string"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}]}, {"name": "subjects", "struct": [{"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}, {"name": "subjects", "struct": [{"name": "legislativeSubjects", "list": [{"name": "name", "dtype": "string"}]}, {"name": "policyArea", "struct": [{"name": "name", "dtype": "string"}]}]}]}, {"name": "text", "struct": [{"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}, {"name": "textVersions", "list": [{"name": "date", "dtype": "string"}, {"name": "formats", "list": [{"name": "type", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "type", "dtype": "string"}]}]}, {"name": "titles", "struct": [{"name": "pagination", "struct": [{"name": "count", "dtype": "int64"}]}, {"name": "request", "struct": [{"name": "billNumber", "dtype": "string"}, {"name": "billType", "dtype": "string"}, {"name": "billUrl", "dtype": "string"}, {"name": "congress", "dtype": "string"}, {"name": "contentType", "dtype": "string"}, {"name": "format", "dtype": "string"}]}, {"name": "titles", "list": [{"name": "billTextVersionCode", "dtype": "string"}, {"name": "billTextVersionName", "dtype": "string"}, {"name": "chamberCode", "dtype": "string"}, {"name": "chamberName", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "titleType", "dtype": "string"}]}]}], "splits": [{"name": "train", "num_bytes": 115960478, "num_examples": 6797}], "download_size": 31176762, "dataset_size": 115960478}}
2023-06-20T22:25:37+00:00
74a1d1ad40e268bd865ac0823eeb58d564708ba8
# Dataset Card for RefGPT-Code-ds ## Dataset Description - **Homepage:** - **Repository:** [https://github.com/ziliwangnlp/RefGPT](https://github.com/ziliwangnlp/RefGPT) - **Paper:** [https://arxiv.org/abs/2305.14994](https://arxiv.org/abs/2305.14994) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary <p align="center"> <a href="https://arxiv.org/abs/2305.14994"><b>[Paper] RefGPT</b></a> | <a href="https://github.com/ziliwangnlp/RefGPT"><b>[Github] RefGPT</b></a> </p> RefGPT-Code is a dataset containing 76k multi-turn dialogues about programming with 37k English and 39k Chinese, which has covered most aspects of code usage scenarios and multiple types of programming languages. Both the English version and Chinese version use the public GitHub dataset on Google BiqQuery with no overlap in these two languages. RefGPT-Code has derived various ways of leveraging the program code as the reference to enable different scenarios. We consider three perspectives of code discussion, code creation and bug fixing in RefGPT-Code. **RefGPT-Code-ds** is the "code discussion" subset. <font color=red>It has the reference added to the first question of the user between the "\<context\>" and "\</context\>" labels.</font> ### Supported Tasks and Leaderboards Chatbot instruction finetuning ### Languages Chinese, English ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset Please pay attention that RefGPT Datasets, including RefGPT-Fact and RefGPT-Code, have not undergone manual verification, and as such, their security cannot be strictly guaranteed. Users should be aware that they are responsible for the results generated using this data. ### Discussion of Biases As the datasets RefGPT-Fact and RefGPT-Code are collected by using the references like Wikipedia and Github repositories, it can not be avoided that the reference itself has factual errors, typos, or bugs and malicious code if it is from Github repositories. The datasets may also reflect the biases of the selected references and GPT-3.5/GPT-4 model ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ```bibtex @misc{yang2023refgpt, title={RefGPT: Reference -> Truthful & Customized Dialogues Generation by GPTs and for GPTs}, author={Dongjie Yang and Ruifeng Yuan and YuanTao Fan and YiFei Yang and Zili Wang and Shusen Wang and Hai Zhao}, year={2023}, eprint={2305.14994}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions [More Information Needed]
Mutonix/RefGPT-Code-ds
[ "task_categories:conversational", "size_categories:10K<n<100K", "language:zh", "language:en", "license:apache-2.0", "arxiv:2305.14994", "region:us" ]
2023-05-25T23:42:30+00:00
{"language": ["zh", "en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "dataset_info": {"features": [{"name": "dialogue", "dtype": "string"}, {"name": "reference", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "en", "num_bytes": 190813718.0874176, "num_examples": 13948}, {"name": "zh", "num_bytes": 180002282.0268779, "num_examples": 14124}], "download_size": 166204685, "dataset_size": 370816000.1142955}, "arxiv": "https://arxiv.org/abs/2305.14994"}
2023-06-01T08:10:23+00:00
db8962ec39a1acd3a22d8f35a0ae3f85880e8a80
# Dataset Card for RefGPT-Code-cr ## Dataset Description - **Homepage:** - **Repository:** [https://github.com/ziliwangnlp/RefGPT](https://github.com/ziliwangnlp/RefGPT) - **Paper:** [https://arxiv.org/abs/2305.14994](https://arxiv.org/abs/2305.14994) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary <p align="center"> <a href="https://arxiv.org/abs/2305.14994"><b>[Paper] RefGPT</b></a> | <a href="https://github.com/ziliwangnlp/RefGPT"><b>[Github] RefGPT</b></a> </p> RefGPT-Code is a dataset containing 76k multi-turn dialogues about programming with 37k English and 39k Chinese, which has covered most aspects of code usage scenarios and multiple types of programming languages. Both the English version and Chinese version use the public GitHub dataset on Google BiqQuery with no overlap in these two languages. RefGPT-Code has derived various ways of leveraging the program code as the reference to enable different scenarios. We consider three perspectives of code discussion, code creation and bug fixing in RefGPT-Code. **RefGPT-Code-cr** is the "code creation" subset. ### Supported Tasks and Leaderboards Chatbot instruction finetuning ### Languages Chinese, English ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset Please pay attention that RefGPT Datasets, including RefGPT-Fact and RefGPT-Code, have not undergone manual verification, and as such, their security cannot be strictly guaranteed. Users should be aware that they are responsible for the results generated using this data. ### Discussion of Biases As the datasets RefGPT-Fact and RefGPT-Code are collected by using the references like Wikipedia and Github repositories, it can not be avoided that the reference itself has factual errors, typos, or bugs and malicious code if it is from Github repositories. The datasets may also reflect the biases of the selected references and GPT-3.5/GPT-4 model ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ```bibtex @misc{yang2023refgpt, title={RefGPT: Reference -> Truthful & Customized Dialogues Generation by GPTs and for GPTs}, author={Dongjie Yang and Ruifeng Yuan and YuanTao Fan and YiFei Yang and Zili Wang and Shusen Wang and Hai Zhao}, year={2023}, eprint={2305.14994}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions [More Information Needed]
Mutonix/RefGPT-Code-cr
[ "task_categories:conversational", "size_categories:10K<n<100K", "language:zh", "language:en", "license:apache-2.0", "arxiv:2305.14994", "region:us" ]
2023-05-25T23:42:59+00:00
{"language": ["zh", "en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "dataset_info": {"features": [{"name": "dialogue", "dtype": "string"}, {"name": "reference", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "en", "num_bytes": 165025559.5254741, "num_examples": 14119}, {"name": "zh", "num_bytes": 157858797.9941188, "num_examples": 15288}], "download_size": 136112295, "dataset_size": 322884357.5195929}, "arxiv": "https://arxiv.org/abs/2305.14994"}
2023-06-01T08:10:58+00:00
5ae027fa36c5f2241ebc80c47a6e4976d02f9393
# Dataset Card for RefGPT-Code-bg ## Dataset Description - **Homepage:** - **Repository:** [https://github.com/ziliwangnlp/RefGPT](https://github.com/ziliwangnlp/RefGPT) - **Paper:** [https://arxiv.org/abs/2305.14994](https://arxiv.org/abs/2305.14994) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary <p align="center"> <a href="https://arxiv.org/abs/2305.14994"><b>[Paper] RefGPT</b></a> | <a href="https://github.com/ziliwangnlp/RefGPT"><b>[Github] RefGPT</b></a> </p> RefGPT-Code is a dataset containing 76k multi-turn dialogues about programming with 37k English and 39k Chinese, which has covered most aspects of code usage scenarios and multiple types of programming languages. Both the English version and Chinese version use the public GitHub dataset on Google BiqQuery with no overlap in these two languages. RefGPT-Code has derived various ways of leveraging the program code as the reference to enable different scenarios. We consider three perspectives of code discussion, code creation and bug fixing in RefGPT-Code. **RefGPT-Code-bg** is the "bug fixing" subset. ### Supported Tasks and Leaderboards Chatbot instruction finetuning ### Languages Chinese, English ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset Please pay attention that RefGPT Datasets, including RefGPT-Fact and RefGPT-Code, have not undergone manual verification, and as such, their security cannot be strictly guaranteed. Users should be aware that they are responsible for the results generated using this data. ### Discussion of Biases As the datasets RefGPT-Fact and RefGPT-Code are collected by using the references like Wikipedia and Github repositories, it can not be avoided that the reference itself has factual errors, typos, or bugs and malicious code if it is from Github repositories. The datasets may also reflect the biases of the selected references and GPT-3.5/GPT-4 model ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ```bibtex @misc{yang2023refgpt, title={RefGPT: Reference -> Truthful & Customized Dialogues Generation by GPTs and for GPTs}, author={Dongjie Yang and Ruifeng Yuan and YuanTao Fan and YiFei Yang and Zili Wang and Shusen Wang and Hai Zhao}, year={2023}, eprint={2305.14994}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions [More Information Needed]
Mutonix/RefGPT-Code-bg
[ "task_categories:conversational", "size_categories:10K<n<100K", "language:zh", "language:en", "license:apache-2.0", "arxiv:2305.14994", "region:us" ]
2023-05-25T23:43:20+00:00
{"language": ["zh", "en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "dataset_info": {"features": [{"name": "dialogue", "dtype": "string"}, {"name": "reference", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "en", "num_bytes": 106344832.26735915, "num_examples": 8848}, {"name": "zh", "num_bytes": 101753322.73345818, "num_examples": 9597}], "download_size": 86625605, "dataset_size": 208098155.00081733}, "arxiv": "https://arxiv.org/abs/2305.14994"}
2023-06-01T08:11:22+00:00
b59d9d6282255c6bca83ea76e02c6f8e5d35594b
## FinQA 한국어 번역본 Question, Answer 총 6252 Rows
mssongit/KorfinQA
[ "task_categories:question-answering", "language:ko", "license:mit", "finance", "region:us" ]
2023-05-25T23:45:01+00:00
{"language": ["ko"], "license": "mit", "task_categories": ["question-answering"], "tags": ["finance"]}
2023-05-25T23:48:15+00:00
7c9a1d93245619f6d8899f9beeda57d06dc98831
jlh/home-credit-synthetic-example
[ "license:unknown", "region:us" ]
2023-05-26T00:07:21+00:00
{"license": "unknown", "dataset_info": {"features": [{"name": "TARGET", "dtype": "float64"}, {"name": "NAME_CONTRACT_TYPE", "dtype": "float64"}, {"name": "CODE_GENDER", "dtype": "float64"}, {"name": "FLAG_OWN_CAR", "dtype": "float64"}, {"name": "FLAG_OWN_REALTY", "dtype": "float64"}, {"name": "CNT_CHILDREN", "dtype": "float64"}, {"name": "AMT_INCOME_TOTAL", "dtype": "float64"}, {"name": "AMT_CREDIT", "dtype": "float64"}, {"name": "AMT_ANNUITY", "dtype": "float64"}, {"name": "AMT_GOODS_PRICE", "dtype": "float64"}, {"name": "NAME_TYPE_SUITE", "dtype": "float64"}, {"name": "NAME_INCOME_TYPE", "dtype": "float64"}, {"name": "NAME_EDUCATION_TYPE", "dtype": "float64"}, {"name": "NAME_FAMILY_STATUS", "dtype": "float64"}, {"name": "NAME_HOUSING_TYPE", "dtype": "float64"}, {"name": "REGION_POPULATION_RELATIVE", "dtype": "float64"}, {"name": "DAYS_BIRTH", "dtype": "float64"}, {"name": "DAYS_EMPLOYED", "dtype": "float64"}, {"name": "DAYS_REGISTRATION", "dtype": "float64"}, {"name": "DAYS_ID_PUBLISH", "dtype": "float64"}, {"name": "OWN_CAR_AGE", "dtype": "float64"}, {"name": "FLAG_MOBIL", "dtype": "float64"}, {"name": "FLAG_EMP_PHONE", "dtype": "float64"}, {"name": "FLAG_WORK_PHONE", "dtype": "float64"}, {"name": "FLAG_CONT_MOBILE", "dtype": "float64"}, {"name": "FLAG_PHONE", "dtype": "float64"}, {"name": "FLAG_EMAIL", "dtype": "float64"}, {"name": "OCCUPATION_TYPE", "dtype": "float64"}, {"name": "CNT_FAM_MEMBERS", "dtype": "float64"}, {"name": "REGION_RATING_CLIENT", "dtype": "float64"}, {"name": "REGION_RATING_CLIENT_W_CITY", "dtype": "float64"}, {"name": "WEEKDAY_APPR_PROCESS_START", "dtype": "float64"}, {"name": "HOUR_APPR_PROCESS_START", "dtype": "float64"}, {"name": "REG_REGION_NOT_LIVE_REGION", "dtype": "float64"}, {"name": "REG_REGION_NOT_WORK_REGION", "dtype": "float64"}, {"name": "LIVE_REGION_NOT_WORK_REGION", "dtype": "float64"}, {"name": "REG_CITY_NOT_LIVE_CITY", "dtype": "float64"}, {"name": "REG_CITY_NOT_WORK_CITY", "dtype": "float64"}, {"name": "LIVE_CITY_NOT_WORK_CITY", "dtype": "float64"}, {"name": "ORGANIZATION_TYPE", "dtype": "float64"}, {"name": "EXT_SOURCE_1", "dtype": "float64"}, {"name": "EXT_SOURCE_2", "dtype": "float64"}, {"name": "EXT_SOURCE_3", "dtype": "float64"}, {"name": "APARTMENTS_AVG", "dtype": "float64"}, {"name": "BASEMENTAREA_AVG", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_AVG", "dtype": "float64"}, {"name": "YEARS_BUILD_AVG", "dtype": "float64"}, {"name": "COMMONAREA_AVG", "dtype": "float64"}, {"name": "ELEVATORS_AVG", "dtype": "float64"}, {"name": "ENTRANCES_AVG", "dtype": "float64"}, {"name": "FLOORSMAX_AVG", "dtype": "float64"}, {"name": "FLOORSMIN_AVG", "dtype": "float64"}, {"name": "LANDAREA_AVG", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "LIVINGAREA_AVG", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "NONLIVINGAREA_AVG", "dtype": "float64"}, {"name": "APARTMENTS_MODE", "dtype": "float64"}, {"name": "BASEMENTAREA_MODE", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MODE", "dtype": "float64"}, {"name": "YEARS_BUILD_MODE", "dtype": "float64"}, {"name": "COMMONAREA_MODE", "dtype": "float64"}, {"name": "ELEVATORS_MODE", "dtype": "float64"}, {"name": "ENTRANCES_MODE", "dtype": "float64"}, {"name": "FLOORSMAX_MODE", "dtype": "float64"}, {"name": "FLOORSMIN_MODE", "dtype": "float64"}, {"name": "LANDAREA_MODE", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "LIVINGAREA_MODE", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "NONLIVINGAREA_MODE", "dtype": "float64"}, {"name": "APARTMENTS_MEDI", "dtype": "float64"}, {"name": "BASEMENTAREA_MEDI", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MEDI", "dtype": "float64"}, {"name": "YEARS_BUILD_MEDI", "dtype": "float64"}, {"name": "COMMONAREA_MEDI", "dtype": "float64"}, {"name": "ELEVATORS_MEDI", "dtype": "float64"}, {"name": "ENTRANCES_MEDI", "dtype": "float64"}, {"name": "FLOORSMAX_MEDI", "dtype": "float64"}, {"name": "FLOORSMIN_MEDI", "dtype": "float64"}, {"name": "LANDAREA_MEDI", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "LIVINGAREA_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAREA_MEDI", "dtype": "float64"}, {"name": "FONDKAPREMONT_MODE", "dtype": "float64"}, {"name": "HOUSETYPE_MODE", "dtype": "float64"}, {"name": "TOTALAREA_MODE", "dtype": "float64"}, {"name": "WALLSMATERIAL_MODE", "dtype": "float64"}, {"name": "EMERGENCYSTATE_MODE", "dtype": "float64"}, {"name": "OBS_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "OBS_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DAYS_LAST_PHONE_CHANGE", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_2", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_3", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_4", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_5", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_6", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_7", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_8", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_9", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_10", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_11", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_12", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_13", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_14", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_15", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_16", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_17", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_18", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_19", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_20", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_21", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_HOUR", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_DAY", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_WEEK", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_MON", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_QRT", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_YEAR", "dtype": "float64"}], "splits": [{"name": "real", "num_bytes": 9680000, "num_examples": 10000}, {"name": "synth", "num_bytes": 9680000, "num_examples": 10000}], "download_size": 1688004, "dataset_size": 19360000}}
2023-05-26T01:28:36+00:00
bf0205f59314df308c1842e83a6b6dddf18ce049
# Dataset Card for "jawiki-20220404-c400-large-with-bpr-embeddings" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
llm-book/jawiki-20220404-c400-large-with-bpr-embeddings
[ "region:us" ]
2023-05-26T00:10:24+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "embeddings", "sequence": "uint8"}], "splits": [{"name": "train", "num_bytes": 3400004237, "num_examples": 4288198}], "download_size": 2126849377, "dataset_size": 3400004237}}
2023-05-26T00:14:06+00:00
d6eacf0612df05d2ea32fcabf159739f833f5b9c
# Dataset Card for RefGPT-Fact ## Dataset Description - **Homepage:** - **Repository:** [https://github.com/ziliwangnlp/RefGPT](https://github.com/ziliwangnlp/RefGPT) - **Paper:** [https://arxiv.org/abs/2305.14994](https://arxiv.org/abs/2305.14994) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary <p align="center"> <a href="https://arxiv.org/abs/2305.14994"><b>[Paper] RefGPT</b></a> | <a href="https://github.com/ziliwangnlp/RefGPT"><b>[Github] RefGPT</b></a> </p> RefGPT-Fact is a datasets containing 100k multi-turn dialogues about factual knowledge with 50k English and 50k Chinese. The English version uses the English Wikipedia as the reference and the Chinese version uses the frequently-used Chinese online encyclopedia website, Baidu Baike. ### Supported Tasks and Leaderboards Chatbot instruction finetuning ### Languages Chinese, English ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset Please pay attention that RefGPT Datasets, including RefGPT-Fact and RefGPT-Code, have not undergone manual verification, and as such, their security cannot be strictly guaranteed. Users should be aware that they are responsible for the results generated using this data. ### Discussion of Biases As the datasets RefGPT-Fact and RefGPT-Code are collected by using the references like Wikipedia and Github repositories, it can not be avoided that the reference itself has factual errors, typos, or bugs and malicious code if it is from Github repositories. The datasets may also reflect the biases of the selected references and GPT-3.5/GPT-4 model ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ```bibtex @misc{yang2023refgpt, title={RefGPT: Reference -> Truthful & Customized Dialogues Generation by GPTs and for GPTs}, author={Dongjie Yang and Ruifeng Yuan and YuanTao Fan and YiFei Yang and Zili Wang and Shusen Wang and Hai Zhao}, year={2023}, eprint={2305.14994}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions [More Information Needed]
Mutonix/RefGPT-Fact
[ "task_categories:conversational", "size_categories:10K<n<100K", "language:zh", "language:en", "license:apache-2.0", "arxiv:2305.14994", "region:us" ]
2023-05-26T00:37:53+00:00
{"language": ["zh", "en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"], "dataset_info": {"features": [{"name": "dialogue", "dtype": "string"}, {"name": "reference", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "type", "dtype": "string"}], "splits": [{"name": "zh", "num_bytes": 180760081, "num_examples": 50000}, {"name": "en", "num_bytes": 464054853, "num_examples": 50000}], "download_size": 260969665, "dataset_size": 644814934}, "arxiv": "https://arxiv.org/abs/2305.14994"}
2023-05-30T12:33:07+00:00
c539ec2c7ced5311752d4cd702b3aff0528e80b0
# Dataset Card for "home-credit-example-raw" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jlh/home-credit-example-raw
[ "region:us" ]
2023-05-26T01:29:10+00:00
{"dataset_info": {"features": [{"name": "SK_ID_CURR", "dtype": "int64"}, {"name": "TARGET", "dtype": "int64"}, {"name": "NAME_CONTRACT_TYPE", "dtype": "string"}, {"name": "CODE_GENDER", "dtype": "string"}, {"name": "FLAG_OWN_CAR", "dtype": "string"}, {"name": "FLAG_OWN_REALTY", "dtype": "string"}, {"name": "CNT_CHILDREN", "dtype": "int64"}, {"name": "AMT_INCOME_TOTAL", "dtype": "float64"}, {"name": "AMT_CREDIT", "dtype": "float64"}, {"name": "AMT_ANNUITY", "dtype": "float64"}, {"name": "AMT_GOODS_PRICE", "dtype": "float64"}, {"name": "NAME_TYPE_SUITE", "dtype": "string"}, {"name": "NAME_INCOME_TYPE", "dtype": "string"}, {"name": "NAME_EDUCATION_TYPE", "dtype": "string"}, {"name": "NAME_FAMILY_STATUS", "dtype": "string"}, {"name": "NAME_HOUSING_TYPE", "dtype": "string"}, {"name": "REGION_POPULATION_RELATIVE", "dtype": "float64"}, {"name": "DAYS_BIRTH", "dtype": "int64"}, {"name": "DAYS_EMPLOYED", "dtype": "int64"}, {"name": "DAYS_REGISTRATION", "dtype": "float64"}, {"name": "DAYS_ID_PUBLISH", "dtype": "int64"}, {"name": "OWN_CAR_AGE", "dtype": "float64"}, {"name": "FLAG_MOBIL", "dtype": "int64"}, {"name": "FLAG_EMP_PHONE", "dtype": "int64"}, {"name": "FLAG_WORK_PHONE", "dtype": "int64"}, {"name": "FLAG_CONT_MOBILE", "dtype": "int64"}, {"name": "FLAG_PHONE", "dtype": "int64"}, {"name": "FLAG_EMAIL", "dtype": "int64"}, {"name": "OCCUPATION_TYPE", "dtype": "string"}, {"name": "CNT_FAM_MEMBERS", "dtype": "float64"}, {"name": "REGION_RATING_CLIENT", "dtype": "int64"}, {"name": "REGION_RATING_CLIENT_W_CITY", "dtype": "int64"}, {"name": "WEEKDAY_APPR_PROCESS_START", "dtype": "string"}, {"name": "HOUR_APPR_PROCESS_START", "dtype": "int64"}, {"name": "REG_REGION_NOT_LIVE_REGION", "dtype": "int64"}, {"name": "REG_REGION_NOT_WORK_REGION", "dtype": "int64"}, {"name": "LIVE_REGION_NOT_WORK_REGION", "dtype": "int64"}, {"name": "REG_CITY_NOT_LIVE_CITY", "dtype": "int64"}, {"name": "REG_CITY_NOT_WORK_CITY", "dtype": "int64"}, {"name": "LIVE_CITY_NOT_WORK_CITY", "dtype": "int64"}, {"name": "ORGANIZATION_TYPE", "dtype": "string"}, {"name": "EXT_SOURCE_1", "dtype": "float64"}, {"name": "EXT_SOURCE_2", "dtype": "float64"}, {"name": "EXT_SOURCE_3", "dtype": "float64"}, {"name": "APARTMENTS_AVG", "dtype": "float64"}, {"name": "BASEMENTAREA_AVG", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_AVG", "dtype": "float64"}, {"name": "YEARS_BUILD_AVG", "dtype": "float64"}, {"name": "COMMONAREA_AVG", "dtype": "float64"}, {"name": "ELEVATORS_AVG", "dtype": "float64"}, {"name": "ENTRANCES_AVG", "dtype": "float64"}, {"name": "FLOORSMAX_AVG", "dtype": "float64"}, {"name": "FLOORSMIN_AVG", "dtype": "float64"}, {"name": "LANDAREA_AVG", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "LIVINGAREA_AVG", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_AVG", "dtype": "float64"}, {"name": "NONLIVINGAREA_AVG", "dtype": "float64"}, {"name": "APARTMENTS_MODE", "dtype": "float64"}, {"name": "BASEMENTAREA_MODE", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MODE", "dtype": "float64"}, {"name": "YEARS_BUILD_MODE", "dtype": "float64"}, {"name": "COMMONAREA_MODE", "dtype": "float64"}, {"name": "ELEVATORS_MODE", "dtype": "float64"}, {"name": "ENTRANCES_MODE", "dtype": "float64"}, {"name": "FLOORSMAX_MODE", "dtype": "float64"}, {"name": "FLOORSMIN_MODE", "dtype": "float64"}, {"name": "LANDAREA_MODE", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "LIVINGAREA_MODE", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MODE", "dtype": "float64"}, {"name": "NONLIVINGAREA_MODE", "dtype": "float64"}, {"name": "APARTMENTS_MEDI", "dtype": "float64"}, {"name": "BASEMENTAREA_MEDI", "dtype": "float64"}, {"name": "YEARS_BEGINEXPLUATATION_MEDI", "dtype": "float64"}, {"name": "YEARS_BUILD_MEDI", "dtype": "float64"}, {"name": "COMMONAREA_MEDI", "dtype": "float64"}, {"name": "ELEVATORS_MEDI", "dtype": "float64"}, {"name": "ENTRANCES_MEDI", "dtype": "float64"}, {"name": "FLOORSMAX_MEDI", "dtype": "float64"}, {"name": "FLOORSMIN_MEDI", "dtype": "float64"}, {"name": "LANDAREA_MEDI", "dtype": "float64"}, {"name": "LIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "LIVINGAREA_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAPARTMENTS_MEDI", "dtype": "float64"}, {"name": "NONLIVINGAREA_MEDI", "dtype": "float64"}, {"name": "FONDKAPREMONT_MODE", "dtype": "string"}, {"name": "HOUSETYPE_MODE", "dtype": "string"}, {"name": "TOTALAREA_MODE", "dtype": "float64"}, {"name": "WALLSMATERIAL_MODE", "dtype": "string"}, {"name": "EMERGENCYSTATE_MODE", "dtype": "string"}, {"name": "OBS_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_30_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "OBS_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DEF_60_CNT_SOCIAL_CIRCLE", "dtype": "float64"}, {"name": "DAYS_LAST_PHONE_CHANGE", "dtype": "float64"}, {"name": "FLAG_DOCUMENT_2", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_3", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_4", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_5", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_6", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_7", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_8", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_9", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_10", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_11", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_12", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_13", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_14", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_15", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_16", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_17", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_18", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_19", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_20", "dtype": "int64"}, {"name": "FLAG_DOCUMENT_21", "dtype": "int64"}, {"name": "AMT_REQ_CREDIT_BUREAU_HOUR", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_DAY", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_WEEK", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_MON", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_QRT", "dtype": "float64"}, {"name": "AMT_REQ_CREDIT_BUREAU_YEAR", "dtype": "float64"}], "splits": [{"name": "raw", "num_bytes": 10681044, "num_examples": 10000}], "download_size": 1985577, "dataset_size": 10681044}}
2023-05-26T01:29:12+00:00
7422e275d6ef3fdfe8d8ab7c78521f9d26304319
mbshaikh/spectral-centroids
[ "size_categories:1K<n<10K", "license:mit", "region:us" ]
2023-05-26T01:50:58+00:00
{"license": "mit", "size_categories": ["1K<n<10K"]}
2023-05-26T02:33:19+00:00
e6fcdbb4431a61f83617b8e5b1a81f94aebddd0b
vovovo/frp
[ "license:unknown", "region:us" ]
2023-05-26T02:09:52+00:00
{"license": "unknown"}
2023-05-26T02:10:31+00:00
ab8240e705641a7b569d886b062e9705476270c7
Text data from Carigold forum replies based on General Chat section (https://carigold.com/forum/forums/general-chat.174/) Language = Malay + English mixed
aazwan/carigold_general_chat_text_dataset
[ "language:ms", "language:en", "region:us" ]
2023-05-26T02:17:00+00:00
{"language": ["ms", "en"], "pretty_name": "malay"}
2023-05-26T02:25:01+00:00
8bd4060a634f80ef35edc5fcebe90b2a31cd35db
# Dataset Card for "0141c882" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/0141c882
[ "region:us" ]
2023-05-26T03:07:53+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 172, "num_examples": 10}], "download_size": 1314, "dataset_size": 172}}
2023-05-26T03:07:54+00:00
974b8d181d48f919ce7f6253a8be458bbd192848
This is the Guanaco Extended dataset derived from [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1). Guanaco only uses the first (highest rank; rank 0) response from the assistant at each reply level as their dataset.
openaccess-ai-collective/oasst1-guanaco-extended
[ "region:us" ]
2023-05-26T04:40:11+00:00
{}
2023-05-26T11:19:26+00:00
5a4ee8074002f23485feb76e5d2be2071bfc85ea
Vikas-nnresearch/Knob-classification
[ "license:apache-2.0", "region:us" ]
2023-05-26T04:54:22+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "Knob", "1": "No knob"}}}}], "splits": [{"name": "train", "num_bytes": 24695896.0, "num_examples": 149}], "download_size": 24698150, "dataset_size": 24695896.0}}
2023-05-26T04:55:28+00:00
1bb76cc7ce85dac05d83ba65f6173d445ee5eb44
# Dataset Card for "diffusion_db_dedup_from50k_train" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
myradeng/diffusion_db_dedup_from50k_train
[ "region:us" ]
2023-05-26T05:01:31+00:00
{"dataset_info": {"features": [{"name": "image", "struct": [{"name": "bytes", "dtype": "null"}, {"name": "path", "dtype": "string"}]}, {"name": "prompt", "dtype": "string"}, {"name": "seed", "dtype": "uint32"}, {"name": "step", "dtype": "uint16"}, {"name": "cfg", "dtype": "float32"}, {"name": "sampler", "dtype": "string"}, {"name": "width", "dtype": "uint16"}, {"name": "height", "dtype": "uint16"}, {"name": "user_name", "dtype": "string"}, {"name": "timestamp", "dtype": "timestamp[ns, tz=UTC]"}, {"name": "image_nsfw", "dtype": "float32"}, {"name": "prompt_nsfw", "dtype": "float32"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 15396393.6, "num_examples": 34572}], "download_size": 8289582, "dataset_size": 15396393.6}}
2023-05-26T05:01:36+00:00
bc926fc53e2fb74a32e51db635aec99cdf586209
# Dataset Card for "slurp_dataset_audio_subset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yhfang/slurp_dataset_audio_subset
[ "region:us" ]
2023-05-26T05:01:40+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "intent", "dtype": "int64"}, {"name": "slurp_id", "dtype": "int64"}, {"name": "path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2225205717.948, "num_examples": 47892}, {"name": "validation", "num_bytes": 436384774.91, "num_examples": 8690}, {"name": "test", "num_bytes": 615280290.546, "num_examples": 13078}], "download_size": 3787562112, "dataset_size": 3276870783.404}}
2023-05-26T05:08:30+00:00
8a8c5fce4655244751a75fc10d17d87f606a7521
# Dataset Card for "diffusion_db_dedup_from50k_val" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
myradeng/diffusion_db_dedup_from50k_val
[ "region:us" ]
2023-05-26T05:01:56+00:00
{"dataset_info": {"features": [{"name": "image", "struct": [{"name": "bytes", "dtype": "null"}, {"name": "path", "dtype": "string"}]}, {"name": "prompt", "dtype": "string"}, {"name": "seed", "dtype": "uint32"}, {"name": "step", "dtype": "uint16"}, {"name": "cfg", "dtype": "float32"}, {"name": "sampler", "dtype": "string"}, {"name": "width", "dtype": "uint16"}, {"name": "height", "dtype": "uint16"}, {"name": "user_name", "dtype": "string"}, {"name": "timestamp", "dtype": "timestamp[ns, tz=UTC]"}, {"name": "image_nsfw", "dtype": "float32"}, {"name": "prompt_nsfw", "dtype": "float32"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3849098.4, "num_examples": 8643}], "download_size": 2075351, "dataset_size": 3849098.4}}
2023-05-26T05:01:58+00:00
1b71a61eb13cad6d55bd09ad27c7649055c898b7
# Dataset Card for "part_1_imda_30000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
averageandyyy/part_1_imda_30000
[ "region:us" ]
2023-05-26T05:11:57+00:00
{"dataset_info": {"features": [{"name": "transcript", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "waveform", "sequence": "float64"}], "splits": [{"name": "train", "num_bytes": 20108404239.03722, "num_examples": 30000}], "download_size": 4854168355, "dataset_size": 20108404239.03722}}
2023-05-26T05:27:53+00:00
03d3122c530b1e47195c08a3d851eeadddad9689
# Dataset Card for "KoAlpaca-v1.1a" ## Project Repo - Github Repo: [Beomi/KoAlpaca](https://github.com/Beomi/KoAlpaca) ## How to use ```python >>> from datasets import load_dataset >>> ds = load_dataset("beomi/KoAlpaca-v1.1a", split="train") >>> ds Dataset({ features: ['instruction', 'input', 'output'], num_rows: 21155 }) ``` ```python >>> ds[0] {'instruction': '양파는 어떤 식물 부위인가요? 그리고 고구마는 뿌리인가요?', 'output': '양파는 잎이 아닌 식물의 줄기 부분입니다. 고구마는 식물의 뿌리 부분입니다. \n\n식물의 부위의 구분에 대해 궁금해하는 분이라면 분명 이 질문에 대한 답을 찾고 있을 것입니다. 양파는 잎이 아닌 줄기 부분입니다. 고구마는 다른 질문과 답변에서 언급된 것과 같이 뿌리 부분입니다. 따라서, 양파는 식물의 줄기 부분이 되고, 고구마는 식물의 뿌리 부분입니다.\n\n 덧붙이는 답변: 고구마 줄기도 볶아먹을 수 있나요? \n\n고구마 줄기도 식용으로 볶아먹을 수 있습니다. 하지만 줄기 뿐만 아니라, 잎, 씨, 뿌리까지 모든 부위가 식용으로 활용되기도 합니다. 다만, 한국에서는 일반적으로 뿌리 부분인 고구마를 주로 먹습니다.', 'url': 'https://kin.naver.com/qna/detail.naver?d1id=11&dirId=1116&docId=55320268'} ```
beomi/KoAlpaca-v1.1a
[ "task_categories:text-generation", "language:ko", "KoAlpaca", "region:us" ]
2023-05-26T05:27:44+00:00
{"language": ["ko"], "task_categories": ["text-generation"], "pretty_name": "KoAlpaca-v1.1a", "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23371027, "num_examples": 21155}], "download_size": 12856014, "dataset_size": 23371027}, "tags": ["KoAlpaca"]}
2023-05-26T05:32:02+00:00
d1ecf87a828704a7aba867e483400ba3754f07ab
# Dataset Card for "github-issues" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Ayon128/github-issues
[ "region:us" ]
2023-05-26T05:56:15+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "repository_url", "dtype": "string"}, {"name": "labels_url", "dtype": "string"}, {"name": "comments_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "number", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "user", "struct": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "labels", "list": [{"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "color", "dtype": "string"}, {"name": "default", "dtype": "bool"}, {"name": "description", "dtype": "string"}]}, {"name": "state", "dtype": "string"}, {"name": "locked", "dtype": "bool"}, {"name": "assignee", "struct": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "assignees", "list": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "milestone", "struct": [{"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "labels_url", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "number", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "creator", "struct": [{"name": "login", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "node_id", "dtype": "string"}, {"name": "avatar_url", "dtype": "string"}, {"name": "gravatar_id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "followers_url", "dtype": "string"}, {"name": "following_url", "dtype": "string"}, {"name": "gists_url", "dtype": "string"}, {"name": "starred_url", "dtype": "string"}, {"name": "subscriptions_url", "dtype": "string"}, {"name": "organizations_url", "dtype": "string"}, {"name": "repos_url", "dtype": "string"}, {"name": "events_url", "dtype": "string"}, {"name": "received_events_url", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "site_admin", "dtype": "bool"}]}, {"name": "open_issues", "dtype": "int64"}, {"name": "closed_issues", "dtype": "int64"}, {"name": "state", "dtype": "string"}, {"name": "created_at", "dtype": "timestamp[s]"}, {"name": "updated_at", "dtype": "timestamp[s]"}, {"name": "due_on", "dtype": "null"}, {"name": "closed_at", "dtype": "null"}]}, {"name": "comments", "sequence": "string"}, {"name": "created_at", "dtype": "timestamp[s]"}, {"name": "updated_at", "dtype": "timestamp[s]"}, {"name": "closed_at", "dtype": "timestamp[s]"}, {"name": "author_association", "dtype": "string"}, {"name": "active_lock_reason", "dtype": "null"}, {"name": "draft", "dtype": "bool"}, {"name": "pull_request", "struct": [{"name": "url", "dtype": "string"}, {"name": "html_url", "dtype": "string"}, {"name": "diff_url", "dtype": "string"}, {"name": "patch_url", "dtype": "string"}, {"name": "merged_at", "dtype": "timestamp[s]"}]}, {"name": "body", "dtype": "string"}, {"name": "reactions", "struct": [{"name": "url", "dtype": "string"}, {"name": "total_count", "dtype": "int64"}, {"name": "+1", "dtype": "int64"}, {"name": "-1", "dtype": "int64"}, {"name": "laugh", "dtype": "int64"}, {"name": "hooray", "dtype": "int64"}, {"name": "confused", "dtype": "int64"}, {"name": "heart", "dtype": "int64"}, {"name": "rocket", "dtype": "int64"}, {"name": "eyes", "dtype": "int64"}]}, {"name": "timeline_url", "dtype": "string"}, {"name": "performed_via_github_app", "dtype": "null"}, {"name": "state_reason", "dtype": "string"}, {"name": "is_pull_request", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 14368648, "num_examples": 2500}], "download_size": 4077061, "dataset_size": 14368648}}
2023-05-26T05:56:17+00:00
3322fcb9ea468d9c63607023f986e75cd9a71b83
# midjourney-v5-202304-clean ## 简介 Brief Introduction 非官方的,爬取自midjourney v5的2023年4月的数据,一共1701420条。 Unofficial, crawled from midjourney v5 for April 2023, 1,701,420 pairs in total. ## 数据集信息 Dataset Information 原始项目地址:https://huggingface.co/datasets/tarungupta83/MidJourney_v5_Prompt_dataset 我做了一些清洗,清理出了两个文件: - ori_prompts_df.parquet (1,255,812对,midjourney的四格图) ![ori_sample](https://cdn.discordapp.com/attachments/995431387333152778/1098283849076711424/mansonwu_A_charismatic_wealthy_young_man_is_fully_immersed_in_a_9bd4f414-eb40-4642-a381-f5ac56e99ec5.png) - upscaled_prompts_df.parquet (445,608对,使用了高清指令的图,这意味着这个图更受欢迎。) ![upscaled_sample](https://cdn.discordapp.com/attachments/984632520471633920/1105721768422948905/Tomberhood_The_intelligent_rescue_boat_on_the_beach_can_automat_e54faffe-0668-49e4-812d-713038bdc7bc.png) Original project address: https://huggingface.co/datasets/tarungupta83/MidJourney_v5_Prompt_dataset I did some cleaning and cleaned out two files: - ori_prompts_df.parquet (1,255,812 pairs, midjourney's four-frame diagrams) - upscaled_prompts_df.parquet (445,608 pairs, graphs that use the Upscale command, which means this one is more popular.)
wanng/midjourney-v5-202304-clean
[ "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "license:apache-2.0", "midjourney", "region:us" ]
2023-05-26T05:58:05+00:00
{"language": ["en"], "license": "apache-2.0", "task_categories": ["text-to-image", "image-to-text"], "tags": ["midjourney"]}
2023-05-28T04:56:11+00:00
5d56e11c0b55175b331e70674c47f7297fe95dad
ahalamora/dingdang
[ "license:unknown", "region:us" ]
2023-05-26T05:58:52+00:00
{"license": "unknown"}
2023-05-26T06:20:05+00:00
201e436906aedb02e42979d324b0175dcf37ba56
# Dataset Card for "test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
xjLee/test
[ "region:us" ]
2023-05-26T06:21:56+00:00
{"dataset_info": {"features": [{"name": "command", "dtype": "string"}, {"name": "intent", "dtype": "string"}, {"name": "action", "dtype": "string"}, {"name": "slot", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 662, "num_examples": 7}], "download_size": 2791, "dataset_size": 662}}
2023-05-26T08:33:55+00:00
1945f5274a057f3d49ee0c9b4de99ff5c802406d
# NOTE: Recently Discord has added link expiry and tracking for their CDN content, however, this is for CDN attachments outside of Discord, now due to the nature of how this was scraped (being directly from the API) We're uncertain as to whether URL decay will start to become a problem. We have already created versions of the dataset in splits to combat this, we are well aware that this may not be an option for some and we apologise.
ShoukanLabs/OpenNiji-Dataset
[ "task_categories:text-to-image", "size_categories:100K<n<1M", "language:en", "language:ja", "language:ko", "license:cc-by-nc-4.0", "anime", "dataset", "Nijijourney", "Midjourney", "discord", "region:us" ]
2023-05-26T06:28:21+00:00
{"language": ["en", "ja", "ko"], "license": "cc-by-nc-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-to-image"], "tags": ["anime", "dataset", "Nijijourney", "Midjourney", "discord"]}
2023-09-29T01:59:14+00:00
d5077053a7b62f6c46382871940f795738c8d985
michaelszx/StepGame
[ "license:mit", "region:us" ]
2023-05-26T06:59:51+00:00
{"license": "mit"}
2023-05-26T07:23:10+00:00
48e0ad7d4710c690ea047020e8c478770539a4a2
# Dataset Card for "ru_texts_normalized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
bond005/ru_texts_normalized
[ "region:us" ]
2023-05-26T07:07:24+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3079860, "num_examples": 23444}, {"name": "train", "num_bytes": 17363309069, "num_examples": 48332750}], "download_size": 5316966685, "dataset_size": 17366388929}}
2023-05-26T08:49:48+00:00