sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
709559b5bb0e9527aec227a1f617d0f7e5ddb971
This is data from the AstraZeneca-Sanger Drug Combination Prediction DREAM challenge. This data is from challenge 1 Pharmacology as described [here](https://www.synapse.org/#!Synapse:syn4231880/wiki/235651) To download files in this dataset, you must do the following: 1. Register for a Synapse account After registering for an account 2. Accept the terms of conditions and submit request for access [here](https://www.synapse.org/#!Synapse:syn18496666) ``` PS: Project-specific restriction: Data use is limited to use within an approved project ``` 4. Create a personal access token and install the Python client. ``` pip install synapseclient export SYNAPSE_AUTH_TOKEN=<Access Token here> ``` 5. Load the dataset using the huggingface datasets Python API ``` from datasets import load_dataset dataset = load_dataset('SageBio/astrazeneca-sanger-drug-combination-prediction', split='train') ```
SageBio/astrazeneca-sanger-drug-combination-prediction
[ "license:other", "region:us" ]
2023-06-02T05:09:49+00:00
{"license": "other"}
2023-08-25T00:33:55+00:00
082fe2ab0e14ebd6e0e082d641ce6b828248db0f
# Dataset Card for "OCR_VnReceipt" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
KyS/OCR_VnReceipt
[ "region:us" ]
2023-06-02T05:30:21+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 57394505.5, "num_examples": 6228}], "download_size": 57083510, "dataset_size": 57394505.5}}
2023-06-02T05:30:27+00:00
52ebf696c516835dc57053714e85e67cb5429abd
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
johnnyclee/chats
[ "region:us" ]
2023-06-02T05:46:51+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "**/*.jsonl"}]}]}
2023-11-18T12:24:07+00:00
819c73e712477014fdf06f2707e726f753ed0d6c
# Dataset Card for "train_100" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vvtq/train_100
[ "region:us" ]
2023-06-02T06:11:32+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "pose", "dtype": "image"}, {"name": "image_caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11636199.0, "num_examples": 100}], "download_size": 0, "dataset_size": 11636199.0}}
2023-06-02T06:12:40+00:00
a7c497721592e45395bb849dd2520d7e130d473a
# Dataset Card for "val_2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vvtq/val_2
[ "region:us" ]
2023-06-02T06:11:36+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "pose", "dtype": "image"}, {"name": "image_caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 216544.0, "num_examples": 2}], "download_size": 241613, "dataset_size": 216544.0}}
2023-06-02T06:12:43+00:00
5ca649ccef611c6d2b453d4b34d25477a63bd9e4
Preprocessed from https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/ ```python df=pd.read_json('https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/resolve/main/PLANE_trntst-OoV_inftype-all.json') f = lambda df: pd.DataFrame(list(zip(*[df[c] for c in df.index])),columns=df.index) ds=DatasetDict() for split in ['train','test']: dfs=pd.concat([f(df[c]) for c in df.columns if split in c.lower()]).reset_index(drop=True) dfs['label']=dfs['label'].map(lambda x:{1:'entailment',0:'not-entailment'}[x]) ds[split]=Dataset.from_pandas(dfs,preserve_index=False) ds.push_to_hub('tasksource/PLANE-ood') ``` # PLANE Out-of-Distribution Sets PLANE (phrase-level adjective-noun entailment) is a benchmark to test models on fine-grained compositional inference. The current dataset contains five sampled splits, used in the supervised experiments of [Bertolini et al., 22](https://aclanthology.org/2022.coling-1.359/). ### Features Each entrance has 6 features: `seq, label, Adj_Class, Adj, Nn, Hy` - `seq`:test sequense - `label`: ground truth (1:entialment, 0:no-entailment) - `Adj_Class`: the class of the sequence adjectives - `Adj`: the adjective of the sequence (I: intersective, S: subsective, O: intensional) - `N`n: the noun - `Hy`: the noun's hypericum Each sample in `seq` can take one of three forms (or inference types, in paper): - An *Adjective-Noun* is a *Noun* (e.g. A red car is a car) - An *Adjective-Noun* is a *Hypernym(Noun)* (e.g. A red car is a vehicle) - An *Adjective-Noun* is a *Adjective-Hypernym(Noun)* (e.g. A red car is a red vehicle) Please note that, as specified in the paper, the ground truth is automatically assigned based on the linguistic rule that governs the interaction between each adjective class and inference type – see the paper for more detail. ### Cite If you use PLANE for your work, please cite the main COLING 2022 paper. ``` @inproceedings{bertolini-etal-2022-testing, title = "Testing Large Language Models on Compositionality and Inference with Phrase-Level Adjective-Noun Entailment", author = "Bertolini, Lorenzo and Weeds, Julie and Weir, David", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.359", pages = "4084--4100", } ```
tasksource/PLANE-ood
[ "task_categories:text-classification", "size_categories:100K<n<1M", "language:en", "license:cc-by-2.0", "region:us" ]
2023-06-02T06:18:42+00:00
{"language": ["en"], "license": "cc-by-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"], "dataset_info": {"features": [{"name": "seq", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "Adj_Class", "dtype": "string"}, {"name": "Adj", "dtype": "string"}, {"name": "Nn", "dtype": "string"}, {"name": "Hy", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26047744, "num_examples": 300132}, {"name": "test", "num_bytes": 874524, "num_examples": 10080}], "download_size": 4721262, "dataset_size": 26922268}}
2023-06-02T10:40:29+00:00
4f7fa5d487d71ac1543bc7849993b5dfc2e361ac
https://github.com/vered1986/lexcomp/tree/master ``` @article{shwartz-dagan-2019-still, title = "Still a Pain in the Neck: Evaluating Text Representations on Lexical Composition", author = "Shwartz, Vered and Dagan, Ido", journal = "Transactions of the Association for Computational Linguistics", volume = "7", year = "2019", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q19-1027", doi = "10.1162/tacl_a_00277", pages = "403--419", abstract = "Building meaningful phrase representations is challenging because phrase meanings are not simply the sum of their constituent meanings. Lexical composition can shift the meanings of the constituent words and introduce implicit information. We tested a broad range of textual representations for their capacity to address these issues. We found that, as expected, contextualized word representations perform better than static word embeddings, more so on detecting meaning shift than in recovering implicit information, in which their performance is still far from that of humans. Our evaluation suite, consisting of six tasks related to lexical composition effects, can serve future research aiming to improve representations.", } ```
tasksource/lexcomp-nc-relation
[ "language:en", "license:apache-2.0", "region:us" ]
2023-06-02T06:44:55+00:00
{"language": ["en"], "license": "apache-2.0"}
2023-06-02T06:48:53+00:00
00b93176c9f6ce7d28e696ea2fd1b96ef49380a7
https://github.com/vered1986/lexcomp/tree/master ``` @article{shwartz-dagan-2019-still, title = "Still a Pain in the Neck: Evaluating Text Representations on Lexical Composition", author = "Shwartz, Vered and Dagan, Ido", journal = "Transactions of the Association for Computational Linguistics", volume = "7", year = "2019", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q19-1027", doi = "10.1162/tacl_a_00277", pages = "403--419", abstract = "Building meaningful phrase representations is challenging because phrase meanings are not simply the sum of their constituent meanings. Lexical composition can shift the meanings of the constituent words and introduce implicit information. We tested a broad range of textual representations for their capacity to address these issues. We found that, as expected, contextualized word representations perform better than static word embeddings, more so on detecting meaning shift than in recovering implicit information, in which their performance is still far from that of humans. Our evaluation suite, consisting of six tasks related to lexical composition effects, can serve future research aiming to improve representations.", } ```
tasksource/lexcomp-nc-attributes
[ "language:en", "license:apache-2.0", "region:us" ]
2023-06-02T06:47:06+00:00
{"language": ["en"], "license": "apache-2.0"}
2023-06-02T06:49:17+00:00
3280babe5feb19b4821656ddf1d84edae5bba600
BNNT/PatentMatch
[ "license:apache-2.0", "region:us" ]
2023-06-02T07:32:15+00:00
{"license": "apache-2.0"}
2023-06-02T07:32:56+00:00
8c4b83b767dc03547d2223e9640e412432f9348e
# Dataset Card for "c4_t5_corrupted_seqlen256" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hlillemark/c4_t5_corrupted_seqlen256
[ "region:us" ]
2023-06-02T07:35:37+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 971946454688, "num_examples": 649696828}, {"name": "validation", "num_bytes": 968407176, "num_examples": 647331}], "download_size": 441279977822, "dataset_size": 972914861864}}
2023-06-05T00:50:13+00:00
71b74c75ea6dfeff12ff8857736094493f233cc3
# Dataset Card for "stock_tweets_sentiment" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
emad12/stock_tweets_sentiment
[ "region:us" ]
2023-06-02T08:10:31+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "post_date", "dtype": "string"}, {"name": "tweet", "dtype": "string"}, {"name": "sentiment", "dtype": "int64"}, {"name": "ticker_symbol", "dtype": "string"}, {"name": "tweet_cleaned", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "token_type_ids", "sequence": "int8"}, {"name": "attention_mask", "sequence": "int8"}], "splits": [{"name": "train", "num_bytes": 321710487, "num_examples": 96000}, {"name": "test", "num_bytes": 80421371, "num_examples": 24000}], "download_size": 32053237, "dataset_size": 402131858}}
2023-06-04T08:48:20+00:00
10f90fa12c5b05904d39a4cf6f8eb7da85fca573
# Dataset Card for copa_th ### Dataset Description This dataset is Thai translated version of [copa](https://huggingface.co/datasets/super_glue/viewer/copa) using google translate with [Multilingual Universal Sentence Encoder](https://arxiv.org/abs/1907.04307) to calculate score for Thai translation. ### Languages - EN - TH
Patt/copa_th
[ "language:th", "language:en", "license:cc-by-sa-4.0", "arxiv:1907.04307", "region:us" ]
2023-06-02T08:43:18+00:00
{"language": ["th", "en"], "license": "cc-by-sa-4.0"}
2024-01-15T17:28:02+00:00
b363c895cd4b15b814b9dbd7e4466cd301c96b2a
[tasksource](https://github.com/sileod/tasksource) classification tasks recasted as natural language inference. This dataset is intended to improve label understanding in [zero-shot classification HF pipelines](https://huggingface.co/docs/transformers/main/main_classes/pipelines#transformers.ZeroShotClassificationPipeline ). Inputs that are text pairs are separated by a newline (\n). ```python from transformers import pipeline classifier = pipeline(model="sileod/deberta-v3-base-tasksource-nli") classifier( "I have a problem with my iphone that needs to be resolved asap!!", candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"], ) ``` [deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) now includes `label-nli` in its training mix (a relatively small portion, to keep the model general, but note that nli models work for label-like zero shot classification without specific supervision (https://aclanthology.org/D19-1404.pdf). ``` @article{sileo2023tasksource, title={tasksource: A Dataset Harmonization Framework for Streamlined NLP Multi-Task Learning and Evaluation}, author={Sileo, Damien}, year={2023} } ```
tasksource/zero-shot-label-nli
[ "task_categories:zero-shot-classification", "task_categories:text-classification", "task_ids:natural-language-inference", "language:en", "license:other", "region:us" ]
2023-06-02T10:33:57+00:00
{"language": ["en"], "license": "other", "task_categories": ["zero-shot-classification", "text-classification"], "task_ids": ["natural-language-inference"], "dataset_info": {"features": [{"name": "labels", "dtype": {"class_label": {"names": {"0": "entailment", "1": "neutral", "2": "contradiction"}}}}, {"name": "premise", "dtype": "string"}, {"name": "hypothesis", "dtype": "string"}, {"name": "task", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 551417533, "num_examples": 1090333}, {"name": "validation", "num_bytes": 10825569, "num_examples": 14419}, {"name": "test", "num_bytes": 9738922, "num_examples": 14680}], "download_size": 302498339, "dataset_size": 571982024}}
2023-06-23T13:48:53+00:00
64e26e08c13aa09081cfaab8ba3bd6d2b201ff19
Ricecake123/silcer
[ "license:mit", "region:us" ]
2023-06-02T10:37:25+00:00
{"license": "mit"}
2023-06-02T10:37:39+00:00
c23f94b0fb465d827365c1b76121ded49a549410
## Guidelines These guidelines are based on the paper [Training Language Models to Follow Instructions with Human Feedback](https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf) **You are given a text-based description of a task, submitted by a user.** This task description may be in the form of an explicit instruction (e.g. "Write a story about a wise frog."). The task may also be specified indirectly, for example by using several examples of the desired behavior (e.g. given a sequence of movie reviews followed by their sentiment, followed by one movie review without a sentiment, you can assume the task is to predict the sentiment of the final review), or by generating the start of a desired output (e.g. given "There once was a wise frog named Julius," you can assume the task is to continue the story). **You will also be given several text outputs, intended to help the user with their task.** Your job is to evaluate these outputs to ensure that they are helpful, truthful, and harmless. For most tasks, being truthful and harmless is more important than being helpful. By **helpful**, we mean that the output should follow the user's intention and help the user solve their task. Some examples of helpful behavior: - Writing in clear language. - Answering the question they meant to ask, even if they mis-asked it. - Being sensitive to internationality (e.g., "football" shouldn't mean American football, and "the president" doesn't necessarily mean the US president). - If an instruction is too confusing, asking for clarification and explaining why the instruction is confusing. - Not giving overly long or rambling answers, or repeating information from the question. - Not assuming extraneous extra context outside of what's given (besides things like facts about the world), unless that's an implied part of the task. For example, if asked to "write a polite email response to this email: email body," the output shouldn't assume "I can't make it this time, but am free next weekend." But if asked to "Write an email to Socrates," then you can safely assume the output can make up a context. By **truthful**, we mean that the output contains accurate information and doesn't mislead the user. Some examples of truthful behavior: - On tasks like summarization, where the output should only use information from input, not making up details that are not part of the input description. - Not producing clearly false information about the world (e.g., making up facts or promoting conspiracies). For example, the output should not state that Hillary Clinton has served time in prison. - Avoid generating misleading information or information with questionable authenticity. For example, if the input asks "Why did Hillary Clinton go to jail?", the output should not say "It's not totally clear," but rather should refute the premise of the question. By **harmless**, we mean that the output should not cause physical, psychological, or social harm to people; damage to or loss of equipment or property; damage to the environment; or harm to institutions or resources necessary to human well-being. Some examples of harmless behavior: - Treating other humans with kindness, respect, and consideration; not denigrating members of certain groups or using biased language against a particular group. - Not generating abusive, threatening, or offensive language or promoting violence. - Not writing sexual or violent content if it's not asked for. - Not giving bad real-world advice or promoting illegal activity. Evaluating model outputs may involve making trade-offs between these criteria. These trade-offs will depend on the task. ## Fields * `prompt` is of type <class 'str'> * `response-1` is of type <class 'str'> * `response-2` is of type <class 'str'> ## Questions * `response_ranking` : Select response 1 or 2. Select 3 if no response is suitable. \If you select 3, provide a response using the field below, or discard the record. Helpful: output follows the user's intention. Truthful: output contains accurate information and doesn't mislead the user. Harmless: the output should not cause physical, psychological, or social harm to people, property, environment, or institutions ## Load with Argilla To load this dataset with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.FeedbackDataset.from_huggingface('argilla/comparison-dataset-dolly-curated-falcon') ``` ## Load with Datasets To load this dataset with Datasets, you'll just need to install Datasets as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset('argilla/comparison-dataset-dolly-curated-falcon') ```
argilla/comparison-dataset-dolly-curated-falcon
[ "region:us" ]
2023-06-02T10:51:48+00:00
{}
2023-06-02T13:52:40+00:00
1685832883334b5bb5beaf4e4b333fdeecaa4ad9
# Dataset Card for PathVQA ## Dataset Description PathVQA is a dataset of question-answer pairs on pathology images. The dataset is intended to be used for training and testing Medical Visual Question Answering (VQA) systems. The dataset includes both open-ended questions and binary "yes/no" questions. The dataset is built from two publicly-available pathology textbooks: "Textbook of Pathology" and "Basic Pathology", and a publicly-available digital library: "Pathology Education Informational Resource" (PEIR). The copyrights of images and captions belong to the publishers and authors of these two books, and the owners of the PEIR digital library.<br> **Repository:** [PathVQA Official GitHub Repository](https://github.com/UCSD-AI4H/PathVQA)<br> **Paper:** [PathVQA: 30000+ Questions for Medical Visual Question Answering](https://arxiv.org/abs/2003.10286)<br> **Leaderboard:** [Papers with Code Leaderboard](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa) ### Dataset Summary The dataset was obtained from the updated Google Drive link shared by the authors on Feb 15, 2023, see the [commit](https://github.com/UCSD-AI4H/PathVQA/commit/117e7f4ef88a0e65b0e7f37b98a73d6237a3ceab) in the GitHub repository. This version of the dataset contains a total of 5,004 images and 32,795 question-answer pairs. Out of the 5,004 images, 4,289 images are referenced by a question-answer pair, while 715 images are not used. There are a few image-question-answer triplets which occur more than once in the same split (training, validation, test). After dropping the duplicate image-question-answer triplets, the dataset contains 32,632 question-answer pairs on 4,289 images. #### Supported Tasks and Leaderboards The PathVQA dataset has an active leaderboard on [Papers with Code](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa) where models are ranked based on three metrics: "Yes/No Accuracy", "Free-form accuracy" and "Overall accuracy". "Yes/No Accuracy" is the accuracy of a model's generated answers for the subset of binary "yes/no" questions. "Free-form accuracy" is the accuracy of a model's generated answers for the subset of open-ended questions. "Overall accuracy" is the accuracy of a model's generated answers across all questions. #### Languages The question-answer pairs are in English. ## Dataset Structure ### Data Instances Each instance consists of an image-question-answer triplet. ``` { 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=CMYK size=309x272>, 'question': 'where are liver stem cells (oval cells) located?', 'answer': 'in the canals of hering' } ``` ### Data Fields - `'image'`: the image referenced by the question-answer pair. - `'question'`: the question about the image. - `'answer'`: the expected answer. ### Data Splits The dataset is split into training, validation and test. The split is provided directly by the authors. | | Training Set | Validation Set | Test Set | |-------------------------|:------------:|:--------------:|:--------:| | QAs |19,654 |6,259 |6,719 | | Images |2,599 |832 |858 | ## Additional Information ### Licensing Information The authors have released the dataset under the [MIT License](https://github.com/UCSD-AI4H/PathVQA/blob/master/LICENSE). ### Citation Information ``` @article{he2020pathvqa, title={PathVQA: 30000+ Questions for Medical Visual Question Answering}, author={He, Xuehai and Zhang, Yichen and Mou, Luntian and Xing, Eric and Xie, Pengtao}, journal={arXiv preprint arXiv:2003.10286}, year={2020} } ```
flaviagiammarino/path-vqa
[ "task_categories:visual-question-answering", "size_categories:10K<n<100K", "language:en", "license:mit", "medical", "arxiv:2003.10286", "region:us" ]
2023-06-02T11:03:51+00:00
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["visual-question-answering"], "paperswithcode_id": "pathvqa", "pretty_name": "PathVQA", "tags": ["medical"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3171303616.326, "num_examples": 19654}, {"name": "test", "num_bytes": 1113474813.05, "num_examples": 6719}, {"name": "validation", "num_bytes": 1191658832.096, "num_examples": 6259}], "download_size": 785414952, "dataset_size": 5476437261.472}}
2023-06-03T18:02:04+00:00
4ceb1312583fd2c7c73ad2d550b726124dcd39a0
hamedhf/nlp_twitter_analysis
[ "task_categories:text-classification", "language:fa", "language:en", "license:mit", "region:us" ]
2023-06-02T11:16:19+00:00
{"language": ["fa", "en"], "license": "mit", "task_categories": ["text-classification"]}
2023-07-11T22:18:03+00:00
91141b8898bef7155685f1c8a72a14d4fc623c81
# Dataset Card for "rettsavgjoerelser_summary_cleaned_sentencized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tollefj/rettsavgjoerelser_summary_cleaned_sentencized
[ "region:us" ]
2023-06-02T11:30:06+00:00
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "keywords", "sequence": "string"}, {"name": "text", "dtype": "string"}, {"name": "sentences", "sequence": "string"}, {"name": "summary", "sequence": "string"}], "splits": [{"name": "test", "num_bytes": 21456698, "num_examples": 364}, {"name": "train", "num_bytes": 400752769, "num_examples": 6673}], "download_size": 210718133, "dataset_size": 422209467}}
2023-06-02T18:01:13+00:00
0090b53958a4c89ccc825859754535ff56a3f05f
# Dataset Card for "rettsavgjoerelser_100samples_embeddings" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tollefj/rettsavgjoerelser_100samples_embeddings
[ "language:no", "region:us" ]
2023-06-02T11:46:28+00:00
{"language": ["no"], "dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "keywords", "sequence": "string"}, {"name": "text", "dtype": "string"}, {"name": "sentences", "sequence": "string"}, {"name": "summary", "sequence": "string"}, {"name": "embedding", "sequence": {"sequence": "float32"}}], "splits": [{"name": "train", "num_bytes": 73887305, "num_examples": 100}], "download_size": 71145367, "dataset_size": 73887305}}
2023-08-11T09:45:31+00:00
36f98629d6a05f48346cdd892ec37acde387475c
# Dataset Card for "donald" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
UnstableJeje/donald
[ "region:us" ]
2023-06-02T12:05:22+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 184278.0, "num_examples": 21}], "download_size": 185347, "dataset_size": 184278.0}}
2023-06-02T12:49:30+00:00
e76093058a1874788c5f7cb20150c2ba6ea0944a
# Dataset Card for "ddpm-butterflies-128" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
gegre/ddpm-butterflies-128
[ "region:us" ]
2023-06-02T12:07:24+00:00
{"dataset_info": {"features": [{"name": "image_url", "dtype": "string"}, {"name": "image_alt", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "scientific_name", "dtype": "string"}, {"name": "gender", "dtype": "string"}, {"name": "taxonomy", "dtype": "string"}, {"name": "region", "dtype": "string"}, {"name": "locality", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "usnm_no", "dtype": "string"}, {"name": "guid", "dtype": "string"}, {"name": "edan_url", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "stage", "dtype": "float64"}, {"name": "image", "dtype": "image"}, {"name": "image_hash", "dtype": "string"}, {"name": "sim_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 237753960.0, "num_examples": 1000}], "download_size": 237448562, "dataset_size": 237753960.0}}
2023-06-02T12:07:34+00:00
42f1d92664373e4f0bf199fb536c3033b82c9013
## CRAN packages dataset R and Rmd source codes for CRAN packages. The dataset has been constructed using the following steps: - Downloaded latest version from all packages on CRAN (see last updated). The source code has been downloaded from the [GitHub mirror](https://github.com/cran). - Identified the licenses from each package from their DESCRIPTION file, and classified each of them into some license_code. See the licenses.csv file. - Extract R and Rmd source files from all packages and joined with the package LICENSES. Datasets are provided as parquet files containing the following columns: ``` FileSystemDataset with 1 Parquet file package: string path: string content: large_string size: double license: string ``` Last updated: Jun 6th 2023 ## Changelog - v1: Initial version - dev: added all CRAN files and a license field that allows filtering out per license. Also removed some unused columns.
dfalbel/cran-packages
[ "task_categories:text-generation", "size_categories:100K<n<1M", "language:code", "license:other", "region:us" ]
2023-06-02T12:14:33+00:00
{"language": ["code"], "license": "other", "size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "pretty_name": "cran-packages"}
2023-07-11T10:01:33+00:00
48d7021b426f1cfd5c2678c15d9aaa70ecd5fb69
maguarascio/Jagg
[ "region:us" ]
2023-06-02T12:15:25+00:00
{}
2023-06-02T12:16:25+00:00
8dee3e37c842d83bbc20657eab2b134dd15a78ed
ChanceFocus/FLUPE
[ "license:mit", "region:us" ]
2023-06-02T12:26:51+00:00
{"license": "mit"}
2023-06-02T12:27:56+00:00
cfdd505d900b8b55540f852bbe1b0159e1f9fb26
karansajeeth/dolly-data
[ "license:wtfpl", "region:us" ]
2023-06-02T12:39:27+00:00
{"license": "wtfpl"}
2023-06-02T12:39:54+00:00
8129cb9dbf59aac8b143e94ad9e524b166322c44
to-be/ghega_dataset_preprocessed
[ "license:openrail", "region:us" ]
2023-06-02T12:55:06+00:00
{"license": "openrail"}
2023-06-02T12:55:58+00:00
47932a35f045ef8ed01ba82bf9ff67f6e109207e
Part of **BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language**. Link to arxiv: https://arxiv.org/pdf/2305.19840.pdf Contact: [email protected]
clarin-knext/scifact-pl
[ "language:pl", "arxiv:2305.19840", "region:us" ]
2023-06-02T12:55:34+00:00
{"language": ["pl"], "pretty_name": "BEIR-PL benchmark Scifact-PL"}
2023-06-07T09:07:12+00:00
38937109bb4dc7067f575fe6e7b420158eb9cf32
datasets-maintainers/audiofolder_two_configs_in_metadata_with_default
[ "region:us" ]
2023-06-02T13:04:31+00:00
{"configs": [{"config_name": "v1", "data_dir": "v1", "drop_labels": true, "default": true}, {"config_name": "v2", "data_dir": "v2", "drop_labels": false}], "duplicated_from": "datasets-maintainers/audiofolder_two_configs_in_metadata"}
2023-06-02T18:10:37+00:00
13a2822ab976be5641209dd4ac9d1c47a273b712
Publically available yankee candle reviews with ratings and dates from Amazon, for project comparing reviews to current covid cases.
jessthebp/yankee_candle_reviews
[ "size_categories:n<1K", "license:mit", "region:us" ]
2023-06-02T13:31:11+00:00
{"license": "mit", "size_categories": ["n<1K"]}
2023-06-02T13:38:17+00:00
a9334a0bf982b6255a03d58d63904935969724cd
AhmedBou/NCSS_2023_Data_Analysis
[ "task_categories:token-classification", "task_categories:text-generation", "size_categories:n<1K", "language:en", "license:apache-2.0", "region:us" ]
2023-06-02T13:39:28+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["token-classification", "text-generation"]}
2023-07-21T14:52:01+00:00
99d1b25627a0b38202d5744c0c71baeef7b648e2
https://github.com/PlusLabNLP/Com2Sense ``` @inproceedings{singh-etal-2021-com2sense, title = "{COM}2{SENSE}: A Commonsense Reasoning Benchmark with Complementary Sentences", author = "Singh, Shikhar and Wen, Nuan and Hou, Yu and Alipoormolabashi, Pegah and Wu, Te-lin and Ma, Xuezhe and Peng, Nanyun", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.78", doi = "10.18653/v1/2021.findings-acl.78", pages = "883--898", } ```
tasksource/com2sense
[ "language:en", "commonsense", "region:us" ]
2023-06-02T13:47:54+00:00
{"language": ["en"], "tags": ["commonsense"]}
2023-06-05T09:09:30+00:00
3afb16ecdea96247453eb6a1ae7f75fa3115f92b
# Dataset Card for "prof_images_blip__22h-vintedois-diffusion-v0-1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_images_blip__22h-vintedois-diffusion-v0-1
[ "region:us" ]
2023-06-02T13:56:30+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "bartender", "num_bytes": 4221598.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3206485.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3871443.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4244089.0, "num_examples": 100}, {"name": "author", "num_bytes": 3813285.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3282554.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3217003.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3079331.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4371703.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4389212.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3841611.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2997987.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3641931.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3104962.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4351854.0, "num_examples": 100}, {"name": "courier", "num_bytes": 3640022.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4180355.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 4070069.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3199680.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3433880.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4278650.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3900333.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3547339.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3467370.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3894234.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4217322.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4562412.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3415428.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3213913.0, "num_examples": 100}, {"name": "director", "num_bytes": 3305172.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3475664.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3991071.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2979208.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3890945.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3579519.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3586015.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3301952.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4415058.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3836012.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4344042.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3728570.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3347937.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3867898.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4831099.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3139784.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3124348.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3471476.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3358153.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4250786.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3644886.0, "num_examples": 100}], "download_size": 75923643, "dataset_size": 186125650.0}}
2023-06-02T15:11:51+00:00
880ddc49a2325b74244449000fb04e0f4cf9cd45
# Dataset Card for "hand-gesture" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pencaharlangit/hand-gesture
[ "region:us" ]
2023-06-02T13:57:09+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20664236695.383, "num_examples": 8793}], "download_size": 20850539395, "dataset_size": 20664236695.383}}
2023-06-02T14:45:24+00:00
be33ba72772e53659fe46d6fbbccd1c6188d28a6
# Dataset Card for "b735aa91" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/b735aa91
[ "region:us" ]
2023-06-02T14:23:29+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 178, "num_examples": 10}], "download_size": 1324, "dataset_size": 178}}
2023-06-02T14:23:31+00:00
fe3a33dc2476e35ca9a672008e585cd538129848
# Dataset Card for "gpt2-detectability" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yuntian-deng/gpt2-detectability
[ "region:us" ]
2023-06-02T14:33:21+00:00
{"dataset_info": {"features": [{"name": "ended", "dtype": "bool"}, {"name": "sentence", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1364546692, "num_examples": 500000}, {"name": "validation", "num_bytes": 27284489, "num_examples": 10000}, {"name": "test", "num_bytes": 27258195, "num_examples": 10000}], "download_size": 35727753, "dataset_size": 1419089376}}
2023-06-02T14:39:04+00:00
cbc6531265f8863d69e1a3ad126b6101d8d051e3
catlove007/multilingual-text-matching
[ "license:apache-2.0", "region:us" ]
2023-06-02T14:36:17+00:00
{"license": "apache-2.0"}
2023-06-02T14:37:46+00:00
2997fee35da8579bcfc0a789ff07913a675e7e42
# Dataset Card for "gpt2-detectability-topk40" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yuntian-deng/gpt2-detectability-topk40
[ "region:us" ]
2023-06-02T14:40:49+00:00
{"dataset_info": {"features": [{"name": "ended", "dtype": "bool"}, {"name": "sentence", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "length", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1388622488, "num_examples": 500000}, {"name": "validation", "num_bytes": 27827134, "num_examples": 10000}, {"name": "test", "num_bytes": 27283980, "num_examples": 10000}], "download_size": 872800966, "dataset_size": 1443733602}}
2023-06-02T14:41:55+00:00
1b8137ad2da4cff69916d53e5ebe19210fd4714d
# Dataset Card for "prof_report__22h-vintedois-diffusion-v0-1__multi__12" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_report__22h-vintedois-diffusion-v0-1__multi__12
[ "region:us" ]
2023-06-02T14:53:12+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "int64"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "img_ids", "sequence": "int64"}, {"name": "img_cluster_scores", "sequence": "float64"}], "splits": [{"name": "accountant", "num_bytes": 1648, "num_examples": 2}, {"name": "aerospace_engineer", "num_bytes": 1744, "num_examples": 6}, {"name": "aide", "num_bytes": 1768, "num_examples": 7}, {"name": "air_conditioning_installer", "num_bytes": 1648, "num_examples": 2}, {"name": "architect", "num_bytes": 1720, "num_examples": 5}, {"name": "artist", "num_bytes": 1816, "num_examples": 9}, {"name": "author", "num_bytes": 1696, "num_examples": 4}, {"name": "baker", "num_bytes": 1696, "num_examples": 4}, {"name": "bartender", "num_bytes": 1648, "num_examples": 2}, {"name": "bus_driver", "num_bytes": 1792, "num_examples": 8}, {"name": "butcher", "num_bytes": 1696, "num_examples": 4}, {"name": "career_counselor", "num_bytes": 1696, "num_examples": 4}, {"name": "carpenter", "num_bytes": 1648, "num_examples": 2}, {"name": "carpet_installer", "num_bytes": 1696, "num_examples": 4}, {"name": "cashier", "num_bytes": 1720, "num_examples": 5}, {"name": "ceo", "num_bytes": 1696, "num_examples": 4}, {"name": "childcare_worker", "num_bytes": 1696, "num_examples": 4}, {"name": "civil_engineer", "num_bytes": 1744, "num_examples": 6}, {"name": "claims_appraiser", "num_bytes": 1744, "num_examples": 6}, {"name": "cleaner", "num_bytes": 1744, "num_examples": 6}, {"name": "clergy", "num_bytes": 1696, "num_examples": 4}, {"name": "clerk", "num_bytes": 1792, "num_examples": 8}, {"name": "coach", "num_bytes": 1696, "num_examples": 4}, {"name": "community_manager", "num_bytes": 1720, "num_examples": 5}, {"name": "compliance_officer", "num_bytes": 1672, "num_examples": 3}, {"name": "computer_programmer", "num_bytes": 1648, "num_examples": 2}, {"name": "computer_support_specialist", "num_bytes": 1720, "num_examples": 5}, {"name": "computer_systems_analyst", "num_bytes": 1744, "num_examples": 6}, {"name": "construction_worker", "num_bytes": 1696, "num_examples": 4}, {"name": "cook", "num_bytes": 1696, "num_examples": 4}, {"name": "correctional_officer", "num_bytes": 1720, "num_examples": 5}, {"name": "courier", "num_bytes": 1768, "num_examples": 7}, {"name": "credit_counselor", "num_bytes": 1672, "num_examples": 3}, {"name": "customer_service_representative", "num_bytes": 1696, "num_examples": 4}, {"name": "data_entry_keyer", "num_bytes": 1744, "num_examples": 6}, {"name": "dental_assistant", "num_bytes": 1648, "num_examples": 2}, {"name": "dental_hygienist", "num_bytes": 1624, "num_examples": 1}, {"name": "dentist", "num_bytes": 1648, "num_examples": 2}, {"name": "designer", "num_bytes": 1720, "num_examples": 5}, {"name": "detective", "num_bytes": 1696, "num_examples": 4}, {"name": "director", "num_bytes": 1720, "num_examples": 5}, {"name": "dishwasher", "num_bytes": 1720, "num_examples": 5}, {"name": "dispatcher", "num_bytes": 1672, "num_examples": 3}, {"name": "doctor", "num_bytes": 1672, "num_examples": 3}, {"name": "drywall_installer", "num_bytes": 1672, "num_examples": 3}, {"name": "electrical_engineer", "num_bytes": 1744, "num_examples": 6}, {"name": "electrician", "num_bytes": 1672, "num_examples": 3}, {"name": "engineer", "num_bytes": 1696, "num_examples": 4}, {"name": "event_planner", "num_bytes": 1696, "num_examples": 4}, {"name": "executive_assistant", "num_bytes": 1696, "num_examples": 4}], "download_size": 86326, "dataset_size": 85232}}
2023-06-02T15:16:39+00:00
9d7cec0b4b758738bb360b6ee03d777895cbe42f
mvasiliniuc/iva-swift-codeint-clean-train-tokenized
[ "license:other", "region:us" ]
2023-06-02T15:15:09+00:00
{"license": "other", "dataset_info": {"features": [{"name": "ratio", "dtype": "float64"}, {"name": "config_or_test", "dtype": "bool"}, {"name": "has_no_keywords", "dtype": "bool"}, {"name": "has_few_assignments", "dtype": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "ratio_char_token", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 971849564, "num_examples": 400000}], "download_size": 484282225, "dataset_size": 971849564}}
2023-06-02T15:30:52+00:00
747ce1f03541a8ff3cbf6abc9e92ba18ee4e924a
# Dataset Card for "Hatefulmemes_validation_google_flan_t5_xxl_mode_C_T_A_OCR_rices_ns_500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_validation_google_flan_t5_xxl_mode_C_T_A_OCR_rices_ns_500
[ "region:us" ]
2023-06-02T15:36:46+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full__text", "num_bytes": 578819, "num_examples": 500}, {"name": "fewshot_0", "num_bytes": 596224, "num_examples": 500}], "download_size": 222207, "dataset_size": 1175043}}
2023-06-20T23:36:11+00:00
6742c7b6f8ab33fa2567e29ab80ed91f254ea6f3
crisdev/goprolog
[ "license:cc-by-nc-sa-4.0", "region:us" ]
2023-06-02T15:44:56+00:00
{"license": "cc-by-nc-sa-4.0"}
2023-06-02T15:51:02+00:00
b5b612f487f8547adb44431a44514cbe6e6137aa
# Dataset Card for "Hatefulmemes_validation_google_flan_t5_xxl_mode_C_HM_T_A_OCR_rices_ns_500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_validation_google_flan_t5_xxl_mode_C_HM_T_A_OCR_rices_ns_500
[ "region:us" ]
2023-06-02T15:47:50+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full__text", "num_bytes": 575839, "num_examples": 500}, {"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_wordnet_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full__text", "num_bytes": 587888, "num_examples": 500}, {"name": "fewshot_0_clip_tags_ViT_L_14_with_openai_Attributes_ViT_L_14_descriptors_text_davinci_003_full__text", "num_bytes": 583720, "num_examples": 500}, {"name": "fewshot_0", "num_bytes": 585051, "num_examples": 500}], "download_size": 429013, "dataset_size": 2332498}}
2023-06-17T02:14:51+00:00
1c4efbe4b824985b021f7f2fbcc2d1346c069b13
# Dataset Card for "VQAv2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
landersanmi/VQAv2
[ "region:us" ]
2023-06-02T15:48:08+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "choices", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4852760091.0, "num_examples": 10000}], "download_size": 4852337470, "dataset_size": 4852760091.0}}
2023-06-02T16:12:15+00:00
3d6060bc1df6061d6f41e6cc77d166d8db39b7e0
# Dataset Card for "cartoonizer-dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
dqymaggie/cartoonizer-dataset
[ "region:us" ]
2023-06-02T15:52:01+00:00
{"dataset_info": {"features": [{"name": "original_image", "dtype": "image"}, {"name": "edit_prompt", "dtype": "string"}, {"name": "cartoonized_image", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 3266783791.0, "num_examples": 5000}], "download_size": 3278171957, "dataset_size": 3266783791.0}}
2023-06-02T16:31:53+00:00
eb4b2e6e65eecce2aec3bc40e5c4504261e7978b
# Dataset Card for "prof_images_blip__dreamlike-art-dreamlike-photoreal-2.0" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_images_blip__dreamlike-art-dreamlike-photoreal-2.0
[ "region:us" ]
2023-06-02T15:53:49+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "bartender", "num_bytes": 4460608.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3267258.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3374852.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3882715.0, "num_examples": 100}, {"name": "author", "num_bytes": 3802618.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3204961.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3721321.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 2996861.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4262866.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4562716.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3732125.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3168396.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 4107494.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3076684.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4336838.0, "num_examples": 100}, {"name": "courier", "num_bytes": 3994329.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4376440.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3630954.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 2956355.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3770918.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4050855.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 4489789.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3687651.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3498822.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4076440.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4301727.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4216767.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3429374.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3439722.0, "num_examples": 100}, {"name": "director", "num_bytes": 3274192.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3248902.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3966486.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2984790.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3551397.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3349297.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3557646.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3615034.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4331875.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 4133101.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4882304.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3816327.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3340806.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3805674.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 5337265.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3045456.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3264354.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3083004.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3356564.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4323194.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3740710.0, "num_examples": 100}], "download_size": 196080878, "dataset_size": 187886834.0}}
2023-06-02T15:55:23+00:00
9ab14e1aedea76ba121a25c1e171f3c53ea1d9cc
# Dataset Card for "prof_report__dreamlike-art-dreamlike-photoreal-2.0__multi__12" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_report__dreamlike-art-dreamlike-photoreal-2.0__multi__12
[ "region:us" ]
2023-06-02T15:56:41+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "int64"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "img_ids", "sequence": "int64"}, {"name": "img_cluster_scores", "sequence": "float64"}], "splits": [{"name": "accountant", "num_bytes": 1648, "num_examples": 2}, {"name": "aerospace_engineer", "num_bytes": 1792, "num_examples": 8}, {"name": "aide", "num_bytes": 1744, "num_examples": 6}, {"name": "air_conditioning_installer", "num_bytes": 1672, "num_examples": 3}, {"name": "architect", "num_bytes": 1696, "num_examples": 4}, {"name": "artist", "num_bytes": 1816, "num_examples": 9}, {"name": "author", "num_bytes": 1696, "num_examples": 4}, {"name": "baker", "num_bytes": 1672, "num_examples": 3}, {"name": "bartender", "num_bytes": 1648, "num_examples": 2}, {"name": "bus_driver", "num_bytes": 1816, "num_examples": 9}, {"name": "butcher", "num_bytes": 1696, "num_examples": 4}, {"name": "career_counselor", "num_bytes": 1648, "num_examples": 2}, {"name": "carpenter", "num_bytes": 1648, "num_examples": 2}, {"name": "carpet_installer", "num_bytes": 1720, "num_examples": 5}, {"name": "cashier", "num_bytes": 1744, "num_examples": 6}, {"name": "ceo", "num_bytes": 1696, "num_examples": 4}, {"name": "childcare_worker", "num_bytes": 1696, "num_examples": 4}, {"name": "civil_engineer", "num_bytes": 1672, "num_examples": 3}, {"name": "claims_appraiser", "num_bytes": 1648, "num_examples": 2}, {"name": "cleaner", "num_bytes": 1792, "num_examples": 8}, {"name": "clergy", "num_bytes": 1696, "num_examples": 4}, {"name": "clerk", "num_bytes": 1720, "num_examples": 5}, {"name": "coach", "num_bytes": 1648, "num_examples": 2}, {"name": "community_manager", "num_bytes": 1720, "num_examples": 5}, {"name": "compliance_officer", "num_bytes": 1672, "num_examples": 3}, {"name": "computer_programmer", "num_bytes": 1696, "num_examples": 4}, {"name": "computer_support_specialist", "num_bytes": 1744, "num_examples": 6}, {"name": "computer_systems_analyst", "num_bytes": 1768, "num_examples": 7}, {"name": "construction_worker", "num_bytes": 1696, "num_examples": 4}, {"name": "cook", "num_bytes": 1696, "num_examples": 4}, {"name": "correctional_officer", "num_bytes": 1768, "num_examples": 7}, {"name": "courier", "num_bytes": 1696, "num_examples": 4}, {"name": "credit_counselor", "num_bytes": 1672, "num_examples": 3}, {"name": "customer_service_representative", "num_bytes": 1720, "num_examples": 5}, {"name": "data_entry_keyer", "num_bytes": 1672, "num_examples": 3}, {"name": "dental_assistant", "num_bytes": 1648, "num_examples": 2}, {"name": "dental_hygienist", "num_bytes": 1648, "num_examples": 2}, {"name": "dentist", "num_bytes": 1648, "num_examples": 2}, {"name": "designer", "num_bytes": 1720, "num_examples": 5}, {"name": "detective", "num_bytes": 1648, "num_examples": 2}, {"name": "director", "num_bytes": 1672, "num_examples": 3}, {"name": "dishwasher", "num_bytes": 1720, "num_examples": 5}, {"name": "dispatcher", "num_bytes": 1672, "num_examples": 3}, {"name": "doctor", "num_bytes": 1648, "num_examples": 2}, {"name": "drywall_installer", "num_bytes": 1672, "num_examples": 3}, {"name": "electrical_engineer", "num_bytes": 1744, "num_examples": 6}, {"name": "electrician", "num_bytes": 1672, "num_examples": 3}, {"name": "engineer", "num_bytes": 1648, "num_examples": 2}, {"name": "event_planner", "num_bytes": 1696, "num_examples": 4}, {"name": "executive_assistant", "num_bytes": 1624, "num_examples": 1}], "download_size": 215850, "dataset_size": 84824}}
2023-06-02T15:57:35+00:00
86d97e6265097bf3ba831426b2c7427cb19cf618
Birchlabs/test-parquet
[ "task_categories:question-answering", "annotations_creators:expert-generated", "size_categories:100K<n<1M", "language:en", "license:mit", "reasoning", "region:us" ]
2023-06-02T16:00:21+00:00
{"annotations_creators": ["expert-generated"], "language": ["en"], "license": "mit", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering"], "pretty_name": "PRM800K", "tags": ["reasoning"], "dataset_info": [{"config_name": "all_positive_responses", "features": [{"name": "instruction", "dtype": "string"}, {"name": "responses", "sequence": {"dtype": "string"}}, {"name": "next_response", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}, {"config_name": "solutions_only", "features": [{"name": "instruction", "dtype": "string"}, {"name": "responses", "sequence": {"dtype": "string"}}, {"name": "next_response", "dtype": "string"}, {"name": "answer", "dtype": "string"}]}]}
2023-06-02T21:04:28+00:00
67abc4037107e14d3ac4b9cacd39b4c49499bfde
# Dataset Card for "iva-swift-codeint-clean-valid-tokenized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mvasiliniuc/iva-swift-codeint-clean-valid-tokenized
[ "region:us" ]
2023-06-02T16:22:04+00:00
{"dataset_info": {"features": [{"name": "ratio", "dtype": "float64"}, {"name": "config_or_test", "dtype": "bool"}, {"name": "has_no_keywords", "dtype": "bool"}, {"name": "has_few_assignments", "dtype": "bool"}, {"name": "input_ids", "sequence": "int32"}, {"name": "ratio_char_token", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 327058438, "num_examples": 63380}], "download_size": 120605735, "dataset_size": 327058438}}
2023-06-24T09:45:37+00:00
9fab54dcddaa82fd6cd5ed82c77fa0269e0a8457
# Dataset Card for "Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_T_A_OCR_rices_ns_1000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CVasNLPExperiments/Hatefulmemes_test_google_flan_t5_xxl_mode_C_HM_T_A_OCR_rices_ns_1000
[ "region:us" ]
2023-06-02T16:22:46+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "prompt", "sequence": "string"}, {"name": "true_label", "dtype": "string"}, {"name": "prediction", "dtype": "string"}], "splits": [{"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_wordnet_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full__text", "num_bytes": 1185658, "num_examples": 1000}, {"name": "fewshot_0_clip_tags_LAION_ViT_H_14_2B_with_openai_Attributes_LAION_ViT_H_14_2B_descriptors_text_davinci_003_full__text", "num_bytes": 1113029, "num_examples": 1000}, {"name": "fewshot_0_clip_tags_ViT_L_14_with_openai_Attributes_ViT_L_14_descriptors_text_davinci_003_full__text", "num_bytes": 1171478, "num_examples": 1000}, {"name": "fewshot_0", "num_bytes": 1178374, "num_examples": 1000}], "download_size": 812561, "dataset_size": 4648539}}
2023-06-17T02:11:15+00:00
c41831ffb91338571355b934da7d5bc35d52b442
# Dataset Card for "20_newsgroups" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
xwjzds/20_newsgroups
[ "region:us" ]
2023-06-02T16:31:04+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "label_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14139513, "num_examples": 11314}, {"name": "test", "num_bytes": 8499585, "num_examples": 7532}], "download_size": 14386304, "dataset_size": 22639098}}
2023-06-07T16:23:34+00:00
118aedca95cd626263bd44a780a938bad8030a70
# Dataset Card for "9e1588f1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/9e1588f1
[ "region:us" ]
2023-06-02T16:38:23+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 186, "num_examples": 10}], "download_size": 1342, "dataset_size": 186}}
2023-06-02T16:38:24+00:00
555c4650600088613df4d5882884b7525a376bc5
# Dataset Card for "characters-sfw" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
AlekseyKorshuk/characters-sfw
[ "region:us" ]
2023-06-02T16:38:51+00:00
{"dataset_info": {"features": [{"name": "name", "dtype": "string"}, {"name": "greating", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "conversation", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "moderation", "struct": [{"name": "categories", "struct": [{"name": "hate", "dtype": "bool"}, {"name": "hate/threatening", "dtype": "bool"}, {"name": "self-harm", "dtype": "bool"}, {"name": "sexual", "dtype": "bool"}, {"name": "sexual/minors", "dtype": "bool"}, {"name": "violence", "dtype": "bool"}, {"name": "violence/graphic", "dtype": "bool"}]}, {"name": "category_scores", "struct": [{"name": "hate", "dtype": "float64"}, {"name": "hate/threatening", "dtype": "float64"}, {"name": "self-harm", "dtype": "float64"}, {"name": "sexual", "dtype": "float64"}, {"name": "sexual/minors", "dtype": "float64"}, {"name": "violence", "dtype": "float64"}, {"name": "violence/graphic", "dtype": "float64"}]}, {"name": "flagged", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 207418, "num_examples": 67}], "download_size": 150170, "dataset_size": 207418}}
2023-06-02T16:38:54+00:00
d8642bafa54654eb986560d8d1ac151cf4cc1ebe
# Dataset Card for "sharegpt-500" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
liyucheng/sharegpt-500
[ "region:us" ]
2023-06-02T16:47:02+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "chat", "sequence": {"sequence": "string"}}], "splits": [{"name": "train", "num_bytes": 2185076, "num_examples": 575}], "download_size": 1065085, "dataset_size": 2185076}}
2023-06-02T16:47:04+00:00
97aad650af285b5be4dfe9ee38d1d8cb78212d92
# Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
LisanneH/Synthetic_Speech_Data_Project
[ "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "language:nl", "license:other", "region:us" ]
2023-06-02T16:56:55+00:00
{"language": ["nl"], "license": "other", "task_categories": ["automatic-speech-recognition", "text-to-speech"]}
2023-06-02T20:42:17+00:00
858c675b881ff781c9007c773e3cb281118e909d
# Dataset Card for "prof_images_blip__prompthero-openjourney-v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_images_blip__prompthero-openjourney-v4
[ "region:us" ]
2023-06-02T16:57:38+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "bartender", "num_bytes": 4389977.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3215772.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3986834.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3607453.0, "num_examples": 100}, {"name": "author", "num_bytes": 3672416.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3205746.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3248196.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3301158.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4217689.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4563896.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3938254.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2928809.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3598211.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3152592.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4539000.0, "num_examples": 100}, {"name": "courier", "num_bytes": 4146333.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4075572.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3875009.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3060421.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3484381.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4288164.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 4283347.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3610369.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3790487.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4161361.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4432735.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4664222.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3458189.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3289972.0, "num_examples": 100}, {"name": "director", "num_bytes": 3198823.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3447924.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3963881.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3092309.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3545898.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3554202.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3587994.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3682350.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4416973.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3412701.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4038038.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3850933.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3164373.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3757806.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4884178.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3166833.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3225393.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3275293.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3030976.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4244558.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3508320.0, "num_examples": 100}], "download_size": 194428990, "dataset_size": 186236321.0}}
2023-06-02T16:58:55+00:00
bf6f39d7e6343c37e3d0e42eb0848005122738b5
# Dataset Card for "refutation_responses" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
leondz/refutation_responses
[ "region:us" ]
2023-06-02T16:59:13+00:00
{"dataset_info": {"features": [{"name": "label", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 505078, "num_examples": 4460}], "download_size": 204728, "dataset_size": 505078}}
2023-06-05T21:36:56+00:00
e0dafdf1387a1848c044abf35fdfbc98e8c078d8
# Dataset Card for "arxiv-march-2023" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
liyucheng/arxiv-march-2023
[ "region:us" ]
2023-06-02T16:59:27+00:00
{"dataset_info": {"features": [{"name": "entry_id", "dtype": "string"}, {"name": "published", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "authors", "sequence": "string"}, {"name": "primary_category", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20816482, "num_examples": 500}], "download_size": 10224538, "dataset_size": 20816482}}
2023-06-02T16:59:35+00:00
dda3266fb94ce08cd904b244ca8f1e5d2045043f
# Dataset Card for "prof_report__prompthero-openjourney-v4__multi__12" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_report__prompthero-openjourney-v4__multi__12
[ "region:us" ]
2023-06-02T17:00:13+00:00
{"dataset_info": {"features": [{"name": "cluster_id", "dtype": "int64"}, {"name": "cluster_size", "dtype": "int64"}, {"name": "img_ids", "sequence": "int64"}, {"name": "img_cluster_scores", "sequence": "float64"}], "splits": [{"name": "accountant", "num_bytes": 1672, "num_examples": 3}, {"name": "aerospace_engineer", "num_bytes": 1744, "num_examples": 6}, {"name": "aide", "num_bytes": 1744, "num_examples": 6}, {"name": "air_conditioning_installer", "num_bytes": 1696, "num_examples": 4}, {"name": "architect", "num_bytes": 1696, "num_examples": 4}, {"name": "artist", "num_bytes": 1744, "num_examples": 6}, {"name": "author", "num_bytes": 1720, "num_examples": 5}, {"name": "baker", "num_bytes": 1744, "num_examples": 6}, {"name": "bartender", "num_bytes": 1672, "num_examples": 3}, {"name": "bus_driver", "num_bytes": 1744, "num_examples": 6}, {"name": "butcher", "num_bytes": 1696, "num_examples": 4}, {"name": "career_counselor", "num_bytes": 1720, "num_examples": 5}, {"name": "carpenter", "num_bytes": 1672, "num_examples": 3}, {"name": "carpet_installer", "num_bytes": 1672, "num_examples": 3}, {"name": "cashier", "num_bytes": 1672, "num_examples": 3}, {"name": "ceo", "num_bytes": 1672, "num_examples": 3}, {"name": "childcare_worker", "num_bytes": 1744, "num_examples": 6}, {"name": "civil_engineer", "num_bytes": 1648, "num_examples": 2}, {"name": "claims_appraiser", "num_bytes": 1720, "num_examples": 5}, {"name": "cleaner", "num_bytes": 1792, "num_examples": 8}, {"name": "clergy", "num_bytes": 1696, "num_examples": 4}, {"name": "clerk", "num_bytes": 1768, "num_examples": 7}, {"name": "coach", "num_bytes": 1672, "num_examples": 3}, {"name": "community_manager", "num_bytes": 1720, "num_examples": 5}, {"name": "compliance_officer", "num_bytes": 1720, "num_examples": 5}, {"name": "computer_programmer", "num_bytes": 1624, "num_examples": 1}, {"name": "computer_support_specialist", "num_bytes": 1768, "num_examples": 7}, {"name": "computer_systems_analyst", "num_bytes": 1696, "num_examples": 4}, {"name": "construction_worker", "num_bytes": 1696, "num_examples": 4}, {"name": "cook", "num_bytes": 1768, "num_examples": 7}, {"name": "correctional_officer", "num_bytes": 1768, "num_examples": 7}, {"name": "courier", "num_bytes": 1768, "num_examples": 7}, {"name": "credit_counselor", "num_bytes": 1720, "num_examples": 5}, {"name": "customer_service_representative", "num_bytes": 1720, "num_examples": 5}, {"name": "data_entry_keyer", "num_bytes": 1672, "num_examples": 3}, {"name": "dental_assistant", "num_bytes": 1648, "num_examples": 2}, {"name": "dental_hygienist", "num_bytes": 1648, "num_examples": 2}, {"name": "dentist", "num_bytes": 1696, "num_examples": 4}, {"name": "designer", "num_bytes": 1696, "num_examples": 4}, {"name": "detective", "num_bytes": 1672, "num_examples": 3}, {"name": "director", "num_bytes": 1696, "num_examples": 4}, {"name": "dishwasher", "num_bytes": 1696, "num_examples": 4}, {"name": "dispatcher", "num_bytes": 1672, "num_examples": 3}, {"name": "doctor", "num_bytes": 1696, "num_examples": 4}, {"name": "drywall_installer", "num_bytes": 1672, "num_examples": 3}, {"name": "electrical_engineer", "num_bytes": 1672, "num_examples": 3}, {"name": "electrician", "num_bytes": 1648, "num_examples": 2}, {"name": "engineer", "num_bytes": 1648, "num_examples": 2}, {"name": "event_planner", "num_bytes": 1672, "num_examples": 3}, {"name": "executive_assistant", "num_bytes": 1624, "num_examples": 1}], "download_size": 215957, "dataset_size": 85016}}
2023-06-02T17:00:55+00:00
fef97b99997d81b74e4275d8ab0d95017ab760d9
# Dataset Card for "30ce51a4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/30ce51a4
[ "region:us" ]
2023-06-02T17:11:53+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 184, "num_examples": 10}], "download_size": 1336, "dataset_size": 184}}
2023-06-02T17:11:54+00:00
39fba1faf73a252479736f127556f97fd905aaa0
We are now releasing the topics for model development for TREC-AToMiC. These topics are an addition on top of the validation set of AToMiC and aim to be closer to what you should expect for the task. The main difference is that they have a pooled set of annotations, leading to a richer annotation compared to the validation set. However, in order to achieve this richer annotation, there are way less queries (only 13) that have been selected to showcase different attributes of retrievers. We note that the topics do not represent exactly what will be the final task (we will aim for topics that are more important to wikipedia), but more in a way that they were: a) Easy to annotate and b) Could show some important factor, such as topics from the AToMiC training set, but that the linked image is very different from others that may be found in the original AToMiC corpus. The 13 topics are divided into 4 areas: ### TV/Cinema We choose the five following topics: Goldfinger (Cast and Plot), Space Jam (Cast), Friends (Premise), How I met your Mother (Premise) Here we want to see if the model can find simple information (e.g. photos of cast members that we now have photos on wikimedia), but also look into something more complicated (plot points for GoldFinger). There's also the idea of checking if the retriever will look into the Section as it is the goal of AToMiC and not pages (thus Cast and Plot should have very different results for Goldfinger). ### Soccer Three topics: Andrea Barzagli (Return to the national team: Euro 2012, 2013 Confederations Cup and 2014 World Cup), Manchester United (2013->Present and Ferguson years (1986–2013)). Again, we want to make sure that models are looking more at the section level (including years that things happened) than the passage level. All topics here were selected knowing that images for those topics exist in other languages ### Transportation Again three topics: Emirates Airline (fleet), Flixbus (Europe) and List_of_Cadillac_vehicles We chose those topics because they are easy for MultiModal models (Salient Points on images/ Require OCR), but are not always easy for text-only models (e.g. Some flixbus images describe only the bus model, but not the fact that it belongs to Flixbus). ### Geography/History Finally we also take two completely different topics: NIST () and Mutawakkilite_Kingdom_of_Yemen (introduction). The goal here was to pick something that not only was different from the ones before, but that also contain images that are not that present in traditional multimodal evaluation (e.g. Country maps, Schematics). ## Baseline results In order to annotate the queries we ran 5 baselines (4 Multi-Modal and 1 textual only) and created 3 ensembles (all multi-modal, best multi-modal + text, all 5 baselines). Everything is ran in the TREC task scenario ("AToMiC large"). We took the top-10 of each of the 8 runs and annotated it, leading to 533 annotations (average of 41 unique results per query). We run several metrics and present the results below: ![image](https://github.com/TREC-AToMiC/trec-atomic.github.io/assets/1783724/52d3b427-d982-493c-ab3d-f0a83eed00ff) The first thing we notice is that the models are able to perform better than expected on this set of topics. Indeed, if we compare the RR@10 of ViT-G on the validation of AToMiC (0.074) with the one we obtained it is clear that the sparse annotations do not suffise for this task (we talk in more detail below looking at each topic individually). More-so, the gap between textual only models (such as SPLADE) and Multi-Modal is greatly reduced, especially on precision based metrics. Finally, we are able to see improvements using an ensemble of multi-modal and text-only models.
TREC-AToMiC/Development-Set-2023
[ "region:us" ]
2023-06-02T17:50:51+00:00
{"dataset_info": {"features": [{"name": "text_id", "dtype": "string"}, {"name": "page_url", "dtype": "string"}, {"name": "page_title", "dtype": "string"}, {"name": "section_title", "dtype": "string"}, {"name": "context_page_description", "dtype": "string"}, {"name": "context_section_description", "dtype": "string"}, {"name": "media", "sequence": "string"}, {"name": "hierachy", "sequence": "string"}, {"name": "category", "sequence": "string"}, {"name": "source_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18109.758012141203, "num_examples": 9}], "download_size": 61847, "dataset_size": 18109.758012141203}}
2023-06-02T17:53:02+00:00
8dcef94dcbe71eda6683a8572ad11024672831c8
# Dataset Card for "amitay" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ninja/amitay
[ "region:us" ]
2023-06-02T17:51:54+00:00
{"dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "target", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3653903, "num_examples": 21092}], "download_size": 2354968, "dataset_size": 3653903}}
2023-06-06T08:00:11+00:00
abfa7930c8544bc2dc07e14f2041dc0e37e82938
# Dataset Card for "cards_with_labels" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
davanstrien/cards_with_labels
[ "region:us" ]
2023-06-02T18:00:57+00:00
{"dataset_info": {"features": [{"name": "index", "dtype": "int64"}, {"name": "modelId", "dtype": "string"}, {"name": "label", "sequence": "string"}, {"name": "readme", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 80399856, "num_examples": 14986}], "download_size": 26227864, "dataset_size": 80399856}}
2023-06-02T18:01:01+00:00
9750997af29eff96cdda8051b95a2b9151c3bc08
# Dataset Card for all_combined_bengali_252K ## Dataset Description - **Homepage: https://www.odiagenai.org/** - **Repository: https://github.com/OdiaGenAI** - **Point of Contact: Shantipriya Parida, and Sambit Sekhar** ### Dataset Summary This dataset is a mix of Bengali instruction sets translated from open-source instruction sets: * Dolly, * Alpaca, * ChatDoctor, * Roleplay * GSM In this dataset Bengali instruction, input, and output strings are available. ### Supported Tasks and Leaderboards Large Language Model (LLM) ### Languages Bengali ## Dataset Structure JSON ### Data Fields output (string) data_source (string) instruction (string) input (string) ### Licensing Information This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png [cc-by-nc-sa-shield]: https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg ### Citation Information If you find this repository useful, please consider giving 👏 and citing: ``` @misc{OdiaGenAI, author = {Shantipriya Parida and Sambit Sekhar and Guneet Singh Kohli and Arghyadeep Sen and Shashikanta Sahoo}, title = {Bengali Instruction Set}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/OdiaGenAI}}, } ``` ### Contributions - Shantipriya Parida - Sambit Sekhar - Guneet Singh Kohli - Arghyadeep Sen - Shashikanta Sahoo
OdiaGenAI/all_combined_bengali_252k
[ "task_categories:text-generation", "size_categories:100K<n<1M", "language:bn", "license:cc-by-nc-sa-4.0", "region:us" ]
2023-06-02T18:23:48+00:00
{"language": ["bn"], "license": "cc-by-nc-sa-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "pretty_name": "all_combined_bengali_252K"}
2023-06-28T11:47:51+00:00
a765969dc614e2cf86fe1bbd02ebd03174251b6a
aannabellee/tests
[ "language:en", "region:us" ]
2023-06-02T19:08:22+00:00
{"language": ["en"], "dataset_info": {"features": [{"name": "audio", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 13714300.0, "num_examples": 2}, {"name": "validation", "num_bytes": 13714300.0, "num_examples": 2}], "download_size": 13675313, "dataset_size": 27428600.0}}
2023-06-07T12:28:39+00:00
35db8c1a5225fcf1a7d53d71995992467c5c283c
This is a fork of SciRepEval data with new/corrected labels for my research and not the official dataset of SciRepEval .
mucc001/scirepeval_view_cite_read_test
[ "license:unknown", "region:us" ]
2023-06-02T19:49:25+00:00
{"license": "unknown"}
2023-06-02T19:55:31+00:00
ba54c35650715e8748c6b6ba610666e48378e479
# Dataset Card for "necklace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
imnaveenk/necklace
[ "region:us" ]
2023-06-02T19:49:32+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 58122109.0, "num_examples": 21}], "download_size": 36885623, "dataset_size": 58122109.0}}
2023-06-02T19:50:30+00:00
1e470f758cf3dc8b171d1a125ed1abdb12c0b4f8
# Dataset Card for "805b872e" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/805b872e
[ "region:us" ]
2023-06-02T20:54:04+00:00
{"dataset_info": {"features": [{"name": "result", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 182, "num_examples": 10}], "download_size": 1330, "dataset_size": 182}}
2023-06-02T20:54:05+00:00
c485de61a872214b367faf3a2fc7634241690433
# Dataset Card for "prof_images_blip__Lykon-DreamShaper" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yjernite/prof_images_blip__Lykon-DreamShaper
[ "region:us" ]
2023-06-02T20:54:15+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "bartender", "num_bytes": 4232353.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3233702.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3301253.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 3779936.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3032824.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3760855.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3321552.0, "num_examples": 100}, {"name": "author", "num_bytes": 3841657.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3326689.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3353667.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3116590.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4444433.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3711054.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3208097.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4231786.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3887933.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2725789.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3768802.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3051311.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4473092.0, "num_examples": 100}, {"name": "courier", "num_bytes": 3220269.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4013303.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3250295.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3109178.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3360493.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 3526805.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4889373.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3810901.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3416510.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3783118.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3197788.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4224326.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3595787.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4078377.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 5068341.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3402257.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3603897.0, "num_examples": 100}, {"name": "director", "num_bytes": 3015590.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3902204.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 2822728.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 4211576.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3135047.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3334524.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3186332.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3723729.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4124578.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 2923881.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4186317.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3668012.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4311103.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 4015653.0, "num_examples": 100}, {"name": "detective", "num_bytes": 2545399.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3101141.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 4143278.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4891231.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3356902.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3340328.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3038762.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3241075.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3472385.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4379280.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3730273.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4226861.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3364291.0, "num_examples": 100}], "download_size": 243149155, "dataset_size": 232746873.0}}
2023-06-02T20:55:44+00:00
e5b152db24aa596b6ae14dc662b102242c568028
# Dataset Card for "prof_images_blip__prompthero-openjourney-v4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__prompthero-openjourney-v4
[ "region:us" ]
2023-06-02T21:29:27+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 4146333.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3030976.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3277507.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3207646.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4625634.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3042727.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3882375.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3708520.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4042568.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3215772.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3508320.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3993132.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3127234.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4644495.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 4283347.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3598211.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3790487.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4373351.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3824291.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3484381.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3637820.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3757911.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3060421.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 3974021.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5482668.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3225393.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3773437.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4303346.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 4531900.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4664222.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3068593.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 2951534.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4288164.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3112508.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3147975.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 5058006.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3545898.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3301158.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3607453.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3285687.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2928809.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4226071.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4094269.0, "num_examples": 100}, {"name": "author", "num_bytes": 3672416.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4202172.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4161361.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3205746.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4217689.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4347071.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3166833.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3506973.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3554202.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4533495.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3092309.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3671725.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3164373.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3541049.0, "num_examples": 100}, {"name": "welder", "num_bytes": 5227519.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4106676.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3275293.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3764786.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3751744.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3837456.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3701769.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 2983559.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4333733.0, "num_examples": 100}, {"name": "manager", "num_bytes": 2930688.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4476848.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3783292.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3963881.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3178770.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3406464.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3412701.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3472522.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3037085.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4038038.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3342701.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3207642.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3248196.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3247318.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3963680.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3355887.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3112990.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4212965.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3152592.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4682014.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3114477.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3757806.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3154878.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3093040.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3447924.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3359002.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 4137910.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3850933.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3986834.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3683427.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3256975.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3294312.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3063193.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4710070.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3746576.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3911566.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3228145.0, "num_examples": 100}, {"name": "director", "num_bytes": 3198823.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4223940.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4432735.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4539000.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 5082596.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3610369.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4563896.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3833721.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3938254.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4743954.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3060782.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3587994.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3289972.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4504863.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4463585.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3618407.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4209622.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4244558.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3768688.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4389977.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4075572.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 4111345.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3166043.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3458189.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3271410.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4587116.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3489593.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4884178.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3347964.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3469000.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3229022.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3767759.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3217312.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3690576.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3818885.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3179037.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3105956.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4416973.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3875009.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3682350.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3028599.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3700341.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4021875.0, "num_examples": 100}], "download_size": 570647541, "dataset_size": 546777702.0}}
2023-06-02T21:31:43+00:00
ac4e7bfa8f0e91becd552b5f0d5729b60bfdbb07
# Dataset Card for "prof_images_blip__runwayml-stable-diffusion-v1-5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__runwayml-stable-diffusion-v1-5
[ "region:us" ]
2023-06-02T21:43:07+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 4149512.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3374001.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3478564.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3806912.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4713575.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3696816.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 4091449.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3977803.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4276740.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3367470.0, "num_examples": 100}, {"name": "coach", "num_bytes": 4431293.0, "num_examples": 100}, {"name": "painter", "num_bytes": 4260179.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3827635.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4844727.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3892056.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3602571.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3946794.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4243295.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 4358660.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3721353.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3702512.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3910831.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3308505.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 4119385.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5956123.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3323785.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3969206.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4455690.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 5573476.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4438580.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3448449.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3401267.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4239725.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3437888.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3588808.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 5067787.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3672955.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3350179.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4024163.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3474359.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3156884.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4440100.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4630951.0, "num_examples": 100}, {"name": "author", "num_bytes": 4058998.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4105303.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4192000.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3735092.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4214826.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4699898.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3572905.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3748096.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3643508.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 5242748.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3210854.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 4144204.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3453061.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3515755.0, "num_examples": 100}, {"name": "welder", "num_bytes": 5250854.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4160729.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3234896.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3704730.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 4025197.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3886820.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3485587.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3383036.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4454056.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3544169.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4250088.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 4088007.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3892352.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3420720.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3498654.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 4212821.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3917582.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3242330.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4011824.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3727944.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 4074041.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3336856.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3848279.0, "num_examples": 100}, {"name": "mover", "num_bytes": 4015097.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3968020.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3484920.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 3985880.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3260275.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4931842.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3907210.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 4124421.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3929603.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3271501.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3822567.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3630377.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 4036707.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 4211851.0, "num_examples": 100}, {"name": "baker", "num_bytes": 4131298.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3953787.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3260343.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3644965.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3618488.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4524692.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 4080915.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3833035.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3401391.0, "num_examples": 100}, {"name": "director", "num_bytes": 3441367.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4811869.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4660139.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4787582.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4701530.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 4517996.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4931674.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3950995.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 4505870.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 5650093.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3380042.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 4176594.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3704102.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4420787.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4524822.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 4034496.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4308088.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4744189.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3777316.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4747926.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3867945.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 4303759.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3364288.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3824924.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3527894.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4415621.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 4094567.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 5283804.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3464334.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 4101764.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3378168.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3566546.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3859979.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3392503.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 4077871.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3183480.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3281732.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4652365.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3771208.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 4582929.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3277626.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 4188895.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 3965902.0, "num_examples": 100}], "download_size": 607029619, "dataset_size": 583176599.0}}
2023-06-02T21:45:21+00:00
2728ed347f13143f836b56332055651b77890d69
Completely uncurated collection of IRC logs from the Ubuntu IRC channels
Tuxifan/UbuntuIRC
[ "task_categories:text-generation", "license:cc0-1.0", "region:us" ]
2023-06-02T21:48:40+00:00
{"license": "cc0-1.0", "task_categories": ["text-generation"], "pretty_name": "Ubuntu IRC channels"}
2023-06-04T14:35:31+00:00
81b3bbcf97bddaf44425967015ea9e18ff4bb767
# Dataset Card for "rlhf-prompt" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
breadlicker45/rlhf-prompt
[ "region:us" ]
2023-06-02T21:53:04+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 48283331, "num_examples": 36768}], "download_size": 3956825, "dataset_size": 48283331}}
2023-06-02T22:33:25+00:00
2335dbf9ef7b4fcbf132c9847f944487a4f204b9
# Dataset Card for "prof_images_blip__stabilityai-stable-diffusion-2-1-base" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__stabilityai-stable-diffusion-2-1-base
[ "region:us" ]
2023-06-02T21:56:43+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3573421.0, "num_examples": 100}, {"name": "aide", "num_bytes": 2817584.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3493332.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3798921.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 5019792.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3511611.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 5028292.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3657377.0, "num_examples": 100}, {"name": "writer", "num_bytes": 3430382.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3139473.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3510680.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3678749.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3504506.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4387732.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3834847.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3723003.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3331728.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4207481.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 4060297.0, "num_examples": 100}, {"name": "designer", "num_bytes": 4366492.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3025701.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3735016.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3310359.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 3736991.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5755587.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3104182.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 4532647.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4657901.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 5153242.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 5537436.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3490827.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3297070.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4497032.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3395399.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3122531.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 5048137.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3212333.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3253594.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3209914.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3342331.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3163362.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4380564.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4803359.0, "num_examples": 100}, {"name": "author", "num_bytes": 3321969.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4157248.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3919398.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3244854.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4721187.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 3792187.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3333189.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3128838.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3259586.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4694012.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3224238.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3743598.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3207867.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3781112.0, "num_examples": 100}, {"name": "welder", "num_bytes": 5358221.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4220593.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3231700.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3377655.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3031846.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 4037466.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3968675.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3600033.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4411912.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3386375.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4630389.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3435732.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 4242610.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3611873.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3118961.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3493777.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3882558.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3103601.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 3729661.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3105483.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3500502.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3294831.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3445707.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3762882.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3271366.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3452166.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4463452.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3195882.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4594395.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3346098.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3401592.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3308346.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3493207.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3581148.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3693224.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 4433569.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 4698208.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3984604.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3972330.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3225689.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3598065.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3052303.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 5204285.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3901667.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3748614.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3031952.0, "num_examples": 100}, {"name": "director", "num_bytes": 3248609.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 5076103.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4488325.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4898530.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 5016939.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3813150.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4798926.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3502127.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3787249.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4691952.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3396723.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3470828.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 2903767.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 5270759.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4434213.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3188794.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4124484.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4492167.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3669214.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 5229770.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3739287.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 4371308.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 2939794.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3351086.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3602446.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4825552.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 2749312.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 5028185.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3251253.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3557402.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3845179.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3757958.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3564678.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3885685.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3242952.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 2554856.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3445701.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4584283.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3829211.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3796040.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3187773.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3407926.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4632703.0, "num_examples": 100}], "download_size": 582528766, "dataset_size": 558658902.0}}
2023-06-02T21:58:52+00:00
2abcc9021eb3cf516769f7f6da50e070099349d0
# Dataset Card for "prof_images_blip__prompthero-openjourney" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__prompthero-openjourney
[ "region:us" ]
2023-06-02T22:10:15+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3760784.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3418582.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3377012.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3394916.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4497526.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3306222.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3765924.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3830493.0, "num_examples": 100}, {"name": "writer", "num_bytes": 3891760.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3460026.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3679869.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3893660.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3602161.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4611463.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3993617.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3554019.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3760523.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4157288.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3922448.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3409751.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3622248.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3646034.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3314937.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 3618654.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5460264.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3247158.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3853362.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4240204.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 5051674.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4657792.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3241499.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3174593.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4063862.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3345877.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3447559.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4633664.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3413306.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3355442.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3838262.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3419719.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3045430.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4480055.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4145877.0, "num_examples": 100}, {"name": "author", "num_bytes": 3608054.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4028776.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4222386.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3851248.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4408720.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 3956766.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3411978.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3494243.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3729523.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 5074163.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3263225.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3894111.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3441008.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3511028.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4977244.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4049681.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3347347.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3609327.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3736127.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3630992.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3495988.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3443235.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4261951.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3198915.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4187505.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3844061.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3911260.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3359077.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3374503.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3693993.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3446495.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3191428.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 3756641.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3377651.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3448155.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3366518.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3333685.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3845584.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3254375.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3255001.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4240555.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3415101.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4949348.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3342341.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3732757.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3567291.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3194994.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3436388.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3646301.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 4015314.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3847316.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3827872.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3741956.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3272761.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3520592.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3209540.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4739641.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3696584.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3952723.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3481499.0, "num_examples": 100}, {"name": "director", "num_bytes": 3436987.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4506822.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4265512.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4556208.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4969810.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3970065.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4516457.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3684116.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3941629.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4989051.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3174944.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3669575.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3324920.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4044134.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4332393.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3695862.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4083059.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4531929.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3846496.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4505103.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3794230.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 3944022.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3337188.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3508442.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3511935.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4269125.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3503022.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4982070.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3265757.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3524569.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3410514.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3781736.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3563186.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3671229.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3801947.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3163031.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3172214.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4339870.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3479830.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3676879.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3088977.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3913374.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4022909.0, "num_examples": 100}], "download_size": 577344434, "dataset_size": 553499486.0}}
2023-06-02T22:12:38+00:00
45faacb8b19a83bd53fb7e756238881f6ba0f38e
# Dataset Card for "prof_images_blip__plasmo-vox2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__plasmo-vox2
[ "region:us" ]
2023-06-02T22:24:02+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3423528.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3244224.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3398034.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3540884.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4421578.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3525818.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3668194.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3883417.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4070073.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3361130.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3681340.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3663277.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3881527.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4762464.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3943893.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3579387.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3935344.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 3863912.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 4191014.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3694216.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3336759.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3698866.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3476209.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 4154711.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5715657.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3380213.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 4119354.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4270886.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 4686560.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4254724.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3495855.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3336134.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 3918981.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3244336.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3438360.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4746248.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3490579.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3180704.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3581093.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3451989.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3151206.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4501839.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4192865.0, "num_examples": 100}, {"name": "author", "num_bytes": 3887617.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4047685.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3854826.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3408405.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4199722.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4267444.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3314704.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3512995.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3599648.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 5209440.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3205046.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3716144.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3365101.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3192252.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4494520.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4329247.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3411389.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3272917.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3568303.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3730678.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3605950.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3318864.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4115078.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3280958.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4387384.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3888284.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 4008810.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3324629.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3502947.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 4116748.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3698917.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3337108.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 3821409.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3537329.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3728216.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3466805.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3438958.0, "num_examples": 100}, {"name": "mover", "num_bytes": 4269819.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3639203.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3387091.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 3933753.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3162309.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4417978.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3548786.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3607696.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3765664.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3156665.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3555190.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3586125.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 3969832.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 4210278.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3794703.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3790820.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3401502.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3594282.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3476810.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4785449.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3902165.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3777317.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3381660.0, "num_examples": 100}, {"name": "director", "num_bytes": 3478346.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4491884.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4800832.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4457447.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4827307.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 4028145.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4487582.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3596171.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3885104.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4809106.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3290682.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 4092135.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3480529.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4105933.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4083959.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3843412.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4244068.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4868937.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3775473.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4528745.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3955305.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 4211103.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3281644.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3636112.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3311030.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4071059.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3655156.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4621986.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3525857.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3707175.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3350816.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3638099.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3771851.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3569203.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3802343.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3246629.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3098001.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4289428.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3611592.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3838039.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3138902.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3749713.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 3959746.0, "num_examples": 100}], "download_size": 580868020, "dataset_size": 557055542.0}}
2023-06-02T22:26:27+00:00
edb241b8087c2c44cc7e8f0d19ebe4a167a2d61d
Birchlabs/openai-prm800k-phase1_test-solutions-only
[ "license:mit", "region:us" ]
2023-06-02T22:24:08+00:00
{"license": "mit"}
2023-06-02T22:28:34+00:00
4e41a149adb6c3508b711c0c893feb9ba069279e
# Dataset Card for "multi_xsciene_postprocess" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
whu9/multi_xsciene_postprocess
[ "region:us" ]
2023-06-02T22:24:08+00:00
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "source_num_tokens", "dtype": "int64"}, {"name": "summary_num_tokens", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 165217234, "num_examples": 30351}, {"name": "test", "num_bytes": 27275286, "num_examples": 5090}, {"name": "validation", "num_bytes": 27471336, "num_examples": 5061}], "download_size": 101726627, "dataset_size": 219963856}}
2023-06-02T22:24:12+00:00
d2698ca6b3eba5fed3bf9d611e755c25d862d8c4
Birchlabs/openai-prm800k-phase1_test-stepwise-best
[ "license:mit", "region:us" ]
2023-06-02T22:29:35+00:00
{"license": "mit"}
2023-06-02T22:31:00+00:00
e92c1f199557fb678bb6580ec66d97a4975d4eea
Birchlabs/openai-prm800k-phase1_test-stepwise-critique
[ "license:mit", "region:us" ]
2023-06-02T22:31:56+00:00
{"license": "mit"}
2023-06-02T22:32:19+00:00
3ccaefdb867ad75bd508adf9e29f8cb995c8e445
Birchlabs/openai-prm800k-phase2_test-solutions-only
[ "license:mit", "region:us" ]
2023-06-02T22:33:31+00:00
{"license": "mit"}
2023-06-02T22:33:51+00:00
8b10d41da850ff94da223ccb0149385e26b62b50
Birchlabs/openai-prm800k-phase2_test-stepwise-best
[ "license:mit", "region:us" ]
2023-06-02T22:34:48+00:00
{"license": "mit"}
2023-06-02T22:35:15+00:00
c961951cc89820ffe079b49dd567960fdd975f5e
Birchlabs/openai-prm800k-phase2_test-stepwise-critique
[ "license:mit", "region:us" ]
2023-06-02T22:35:33+00:00
{"license": "mit"}
2023-06-02T22:37:15+00:00
f32349a4c91566edf105047ad06c79e190eede61
Birchlabs/openai-prm800k-phase1_train-solutions-only
[ "license:mit", "region:us" ]
2023-06-02T22:37:37+00:00
{"license": "mit"}
2023-06-02T22:38:05+00:00
f84323b16e6f2eaf444105b3d262b06df18c424c
# Dataset Card for "prof_images_blip__dreamlike-art-dreamlike-photoreal-2.0" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__dreamlike-art-dreamlike-photoreal-2.0
[ "region:us" ]
2023-06-02T22:38:05+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 4011954.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3303432.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3553390.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3481224.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4491039.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3519895.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3744336.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 4180456.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4057606.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3317665.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3775909.0, "num_examples": 100}, {"name": "painter", "num_bytes": 4069237.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3535657.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4845113.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 4655287.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 4235538.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3522854.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4128723.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3554104.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3608040.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3616612.0, "num_examples": 100}, {"name": "producer", "num_bytes": 4089632.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3007030.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 4129006.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5470169.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3236868.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3880627.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4428395.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 4437928.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4139462.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 2897064.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3173440.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 3994203.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3080986.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3185203.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4940487.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3567637.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3058817.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3968331.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3727395.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3162268.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4458910.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4146791.0, "num_examples": 100}, {"name": "author", "num_bytes": 3836355.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4308359.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4046913.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3158023.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4322099.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4461732.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3101741.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3152707.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3278426.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4679742.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2986756.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3374382.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3394672.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3361797.0, "num_examples": 100}, {"name": "welder", "num_bytes": 5173937.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4226694.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3108999.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3753572.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3457326.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3832030.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3549131.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3241439.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4135357.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3473703.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4197229.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3948376.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3923681.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3276616.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3621561.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 4095184.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3556418.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3118170.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4862379.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3509627.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3630504.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3704958.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3418197.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3513804.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3178906.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3220877.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4878178.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3072677.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4096411.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 2852113.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3889884.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3186887.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 2962720.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3246186.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3772360.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 3968404.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3826535.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3382155.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3880256.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3569418.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3252490.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3274001.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4325890.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3972715.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3768697.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3302928.0, "num_examples": 100}, {"name": "director", "num_bytes": 3281035.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4527661.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4376494.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4360557.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4531029.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3645716.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4742653.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3820423.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3803606.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4534682.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3188029.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3611693.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3389318.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4117703.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4366855.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3474226.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4444851.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4359070.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3916424.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4481031.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4343352.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 3899128.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3140404.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3380746.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3465602.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4659043.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3453875.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 5235864.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3362076.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3335416.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3073614.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3648218.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3297308.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3499073.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3693715.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3303499.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3340300.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4325350.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3530587.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3623259.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3219418.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3588104.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4225560.0, "num_examples": 100}], "download_size": 575547093, "dataset_size": 551678571.0}}
2023-06-02T22:40:32+00:00
7a70eeca60e01d31a3545087457fee9be00b434b
Birchlabs/openai-prm800k-phase2_train-solutions-only
[ "license:mit", "region:us" ]
2023-06-02T22:38:33+00:00
{"license": "mit"}
2023-06-02T22:38:56+00:00
82c9364dd6b63788cddaddffbd0c3bd4ca36f1f8
Birchlabs/openai-prm800k-phase1_train-stepwise-best
[ "license:mit", "region:us" ]
2023-06-02T22:39:18+00:00
{"license": "mit"}
2023-06-02T22:39:35+00:00
5f19a009a2de24620dc9206d06a1ac5639d0ab19
Birchlabs/openai-prm800k-phase2_train-stepwise-best
[ "license:mit", "region:us" ]
2023-06-02T22:39:57+00:00
{"license": "mit"}
2023-06-02T22:40:47+00:00
9f55fd2d12cdbac55859ffc5dc93df4db7df46b5
Birchlabs/openai-prm800k-phase1_train-stepwise-critique
[ "license:mit", "region:us" ]
2023-06-02T22:41:04+00:00
{"license": "mit"}
2023-06-02T22:41:25+00:00
fd6c0c162202b75b47e26b74d88c631bfcaab4d5
Birchlabs/openai-prm800k-phase2_train-stepwise-critique
[ "license:mit", "region:us" ]
2023-06-02T22:41:37+00:00
{"license": "mit"}
2023-06-02T22:42:37+00:00
92932108ee4569ed91fe787cf9473b88dc050ff0
# Dataset Card for "prof_images_blip__Lykon-DreamShaper" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__Lykon-DreamShaper
[ "region:us" ]
2023-06-02T22:52:08+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3220269.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3472385.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 2971579.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3706168.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4300217.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3730273.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3002092.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3849162.0, "num_examples": 100}, {"name": "writer", "num_bytes": 3815757.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3301253.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3364291.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3587432.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3143465.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4168681.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3810901.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3768802.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3783118.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 3929319.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3866238.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3360493.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3269062.0, "num_examples": 100}, {"name": "producer", "num_bytes": 4011654.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3109178.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 3905564.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5188801.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3038762.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3902424.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4046848.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 3526805.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 5068341.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 2872364.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 2964103.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4889373.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 2930630.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3101141.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4325576.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3334524.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3116590.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3321552.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3392256.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2725789.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4421050.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 3760714.0, "num_examples": 100}, {"name": "author", "num_bytes": 3841657.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 3721155.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3595787.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3326689.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4444433.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4249238.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3340328.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3763435.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3186332.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4588003.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3135047.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3356902.0, "num_examples": 100}, {"name": "detective", "num_bytes": 2545399.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3197788.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4549984.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4237065.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3241075.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3198810.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3442962.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3238081.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3478698.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 2889842.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4524725.0, "num_examples": 100}, {"name": "manager", "num_bytes": 2976237.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 3973394.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3518223.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 4211576.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 2955675.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3633420.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3668012.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 2878171.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 2842270.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4311103.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 2978106.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 2898102.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3353667.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3080372.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3406522.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3256695.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3144149.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 3779936.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3051311.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4510641.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3018253.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 4143278.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3172574.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3014804.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 2822728.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3233702.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 3945550.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 4015653.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3760855.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3801266.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3208097.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3218038.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 2965985.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4864008.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3256354.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3849806.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 2913566.0, "num_examples": 100}, {"name": "director", "num_bytes": 3015590.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4007741.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4078377.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4473092.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4410538.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3416510.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4231786.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3496741.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3887933.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4224326.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3032824.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3723729.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3603897.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 3776999.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4226861.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3227910.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4124578.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4379280.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3902204.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4232353.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4013303.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 4163465.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3232853.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3402257.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 2864853.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4548591.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3003287.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4891231.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3044401.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 2980715.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3659293.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3821994.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 1642549.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3606317.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3202655.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3163177.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3232646.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4186317.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3250295.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 2923881.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 2775268.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3711054.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4178003.0, "num_examples": 100}], "download_size": 547079713, "dataset_size": 524072204.0}}
2023-06-02T22:54:07+00:00
623d70fe075bedb2773366f4ddc1fd1afd113be7
mucc001/scirepeval_fos_test
[ "license:unknown", "region:us" ]
2023-06-02T22:58:45+00:00
{"license": "unknown", "dataset_info": {"features": [{"name": "paper_id", "dtype": "string"}, {"name": "label", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 9377971, "num_examples": 53133}, {"name": "test", "num_bytes": 82664, "num_examples": 468}], "download_size": 703027, "dataset_size": 9460635}}
2023-06-08T16:24:45+00:00
7d4a7a325de6c64d0e3a171707a273873d3c3587
# Dataset Card for "prof_images_blip__andite-anything-v4.0" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__andite-anything-v4.0
[ "region:us" ]
2023-06-02T22:59:53+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 2531808.0, "num_examples": 100}, {"name": "aide", "num_bytes": 2679124.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 2813013.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 4639358.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 2896247.0, "num_examples": 100}, {"name": "coach", "num_bytes": 2882930.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 2818554.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 5378771.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3905031.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 3331210.0, "num_examples": 100}, {"name": "designer", "num_bytes": 2642954.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 2258462.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 2518630.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3409472.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 2561060.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 5135441.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 1620035.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 3775646.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 2101572.0, "num_examples": 100}, {"name": "architect", "num_bytes": 2260391.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 2310714.0, "num_examples": 100}, {"name": "artist", "num_bytes": 2748513.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2000864.0, "num_examples": 100}, {"name": "author", "num_bytes": 3099107.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3129494.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 1658981.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 3902612.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 2136768.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 2526314.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 2038117.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2585938.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 2716152.0, "num_examples": 100}, {"name": "detective", "num_bytes": 2062930.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 2584556.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 2399239.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 1045161.0, "num_examples": 60}, {"name": "industrial_engineer", "num_bytes": 4357711.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 4291635.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3193770.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 2338306.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 3374529.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3173934.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 3311895.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 1605601.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3633439.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 1870345.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 2759902.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3452619.0, "num_examples": 100}, {"name": "baker", "num_bytes": 2784630.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 2738076.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 1169693.0, "num_examples": 100}, {"name": "director", "num_bytes": 2243652.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4242936.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 1952460.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3210506.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 3013415.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3693552.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 3084247.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 2364896.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 1268385.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 2799459.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 3552905.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 3642101.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 3449795.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3737822.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 3623120.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4341304.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 2783353.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 3136376.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3008169.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 2376679.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 2429145.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3189906.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3338009.0, "num_examples": 100}], "download_size": 214113890, "dataset_size": 215643446.0}}
2023-06-02T23:00:57+00:00
ba9c1d7bd6ced73cbfcb5a0447008044726920a7
# Dataset Card for "c4_llama_packed_seqlen256_tiny" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hlillemark/c4_llama_packed_seqlen256_tiny
[ "region:us" ]
2023-06-02T23:03:15+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}], "splits": [{"name": "train", "num_bytes": 217480596, "num_examples": 211557}, {"name": "validation", "num_bytes": 21751452, "num_examples": 21159}], "download_size": 116858634, "dataset_size": 239232048}}
2023-06-02T23:03:28+00:00
30baacad7a3724e8d12cbc5c74b2600f9509af1f
# Dataset Card for "prof_images_blip__22h-vintedois-diffusion-v0-1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__22h-vintedois-diffusion-v0-1
[ "region:us" ]
2023-06-02T23:12:33+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3640022.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3358153.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3522932.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3286344.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4410266.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3727701.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3778322.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 4021431.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4150377.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3206485.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3644886.0, "num_examples": 100}, {"name": "painter", "num_bytes": 4259647.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3439406.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4438012.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3900333.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3641931.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3467370.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4011621.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3657524.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3433880.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3236767.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3807892.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3199680.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 4051060.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5097668.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3124348.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3830045.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4221678.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 4363064.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4562412.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3189145.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3040990.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4278650.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3143650.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3196183.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4494714.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3890945.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3079331.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4244089.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3462709.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2997987.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4394782.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 3984923.0, "num_examples": 100}, {"name": "author", "num_bytes": 3813285.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4141970.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3894234.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3282554.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4371703.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4465435.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3139784.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3489240.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3579519.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4491302.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2979208.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3536687.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3347937.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3080679.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4766685.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4070319.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3471476.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3452677.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3752207.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3587772.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3542194.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 2974259.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4262086.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3106718.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4215182.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 4036524.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3991071.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3111991.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3599917.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3836012.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3879575.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3016817.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4344042.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3271761.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3238255.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3217003.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3364068.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3581012.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3452055.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3135751.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4484133.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3104962.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4264565.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3298954.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3867898.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3205012.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3112145.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3475664.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3562539.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 3906302.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3728570.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3871443.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3889616.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3356530.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3249094.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3279381.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4452331.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3733976.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3918334.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3077311.0, "num_examples": 100}, {"name": "director", "num_bytes": 3305172.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 3863590.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4217322.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4351854.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4614179.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3547339.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4389212.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3639823.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3841611.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4438706.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3181723.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3586015.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3213913.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4295487.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4077232.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3606746.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4350476.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4250786.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3606432.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4221598.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4180355.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 3996786.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3158704.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3415428.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3347482.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4600993.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3580451.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4831099.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3422422.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3551890.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3292390.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3898419.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3222358.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3937403.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3582335.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3123385.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3372519.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4415058.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 4070069.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3301952.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 2954838.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3612046.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 3974652.0, "num_examples": 100}], "download_size": 567913139, "dataset_size": 544061331.0}}
2023-06-02T23:14:56+00:00
afcf0a26c604157456e34c337221fdb43933f8a5
# Dataset Card for "prof_images_blip__CompVis-stable-diffusion-v1-4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__CompVis-stable-diffusion-v1-4
[ "region:us" ]
2023-06-02T23:26:33+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 4223382.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3433436.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3525854.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3853558.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4799343.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3427250.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 4196338.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3932067.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4364139.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3582911.0, "num_examples": 100}, {"name": "coach", "num_bytes": 4085092.0, "num_examples": 100}, {"name": "painter", "num_bytes": 4180812.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3778436.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 5016403.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3879131.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3626865.0, "num_examples": 100}, {"name": "cook", "num_bytes": 4055023.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4326260.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 4123957.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3688209.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3518915.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3857112.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3321250.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 4520499.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 6125566.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3440088.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3948128.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4443129.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 5435847.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4994607.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3206339.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3367274.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4681972.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3487036.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3418036.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 5060501.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3533612.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3216616.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4019863.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3472017.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2951520.0, "num_examples": 90}, {"name": "taxi_driver", "num_bytes": 4491587.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4669898.0, "num_examples": 100}, {"name": "author", "num_bytes": 4222808.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 4166543.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4305112.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3909254.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4539802.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4794739.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3727117.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3748747.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3639544.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 5024883.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3134602.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 4086103.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3405199.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3614267.0, "num_examples": 100}, {"name": "welder", "num_bytes": 5116883.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4157590.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3341768.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3926050.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 4139784.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 4480780.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3523919.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3305028.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 4500265.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3416377.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4165103.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3991746.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3862166.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3287096.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3484338.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 4143621.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3788966.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3221256.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4046315.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3724170.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3760960.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3445713.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3854723.0, "num_examples": 100}, {"name": "mover", "num_bytes": 4134343.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3839990.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3644121.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4331143.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3266581.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 5328174.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3717474.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 4093722.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3845020.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3359470.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3846733.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3510058.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 4419983.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 4066465.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3756783.0, "num_examples": 90}, {"name": "market_research_analyst", "num_bytes": 4137130.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3260508.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3624095.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3509747.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4930003.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 4004420.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3726866.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3719594.0, "num_examples": 100}, {"name": "director", "num_bytes": 3463707.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4942979.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4521291.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4680805.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4989941.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 4181365.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 5150830.0, "num_examples": 100}, {"name": "musician", "num_bytes": 4124108.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 4513149.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 5721441.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3374624.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 4097057.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3780094.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4583452.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4457533.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 4110260.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4401860.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4737548.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3939218.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4621090.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3730954.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 4305414.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3248194.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3656420.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3548168.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4417771.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3958884.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 5511691.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3582169.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 4022541.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3401694.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3639997.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3970721.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3331186.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 4215871.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3397043.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3274844.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4641218.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3715116.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 4068697.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 3257536.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 4083876.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4092378.0, "num_examples": 100}], "download_size": 609647639, "dataset_size": 585820373.0}}
2023-06-02T23:29:20+00:00
16abc10e261cd46d72013605c8ae725791066632
# Dataset Card for "prof_images_blip__andite-pastel-mix" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__andite-pastel-mix
[ "region:us" ]
2023-06-02T23:41:08+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3728137.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3533609.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3764372.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3847745.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 3704792.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 4179766.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3658002.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 4138564.0, "num_examples": 100}, {"name": "writer", "num_bytes": 3769188.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3913750.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3601098.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3841437.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3798206.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 3486918.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3998095.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 4032722.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3610019.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 3551697.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3975024.0, "num_examples": 100}, {"name": "designer", "num_bytes": 4350345.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3316931.0, "num_examples": 100}, {"name": "producer", "num_bytes": 4105705.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 3787341.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 4158777.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 4228107.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3658142.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3847331.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 3616512.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 3533415.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4464436.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3622362.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3904912.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4313611.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3400130.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3803071.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 3563624.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3537664.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3492018.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4116016.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3568319.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3771230.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 3959676.0, "num_examples": 90}, {"name": "librarian", "num_bytes": 3607080.0, "num_examples": 100}, {"name": "author", "num_bytes": 3952699.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 3723878.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3327375.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3590833.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4324800.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 3552781.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3390984.0, "num_examples": 90}, {"name": "scientist", "num_bytes": 3942375.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3311910.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 3953118.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 3429137.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3745981.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3367567.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3428622.0, "num_examples": 100}, {"name": "welder", "num_bytes": 3420858.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 3818617.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 4315144.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3744386.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3543491.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3471887.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3855750.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3882286.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 3990981.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3920949.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 3895729.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3834043.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 4266753.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3955134.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3690502.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3820478.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3349032.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3879613.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4517454.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3528607.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3896583.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3994529.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 4048589.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3976525.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3795396.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3999180.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4813106.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3295120.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 3152196.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3911685.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3960231.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3854486.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3545009.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3775026.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3771581.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 3571632.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3912805.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3551856.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3912683.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 4168514.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3815136.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3594832.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4384999.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3207114.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3673136.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3591682.0, "num_examples": 100}, {"name": "director", "num_bytes": 3790228.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 3881571.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4032276.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 3785112.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 3915783.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 4002974.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4047955.0, "num_examples": 100}, {"name": "musician", "num_bytes": 4083969.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3600869.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 3367641.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 3853773.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3791195.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3754385.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 3924644.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 3828617.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3924231.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 3875992.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 3846140.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3779034.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 3557577.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 4026900.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 3895948.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3506147.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3647153.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3415399.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4927703.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3491741.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 3667556.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3627718.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3617832.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 4155239.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 4161997.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3802528.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 4181639.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3684552.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3434064.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3764476.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 3311541.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3300645.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3962049.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 2992325.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3548152.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 3844177.0, "num_examples": 100}], "download_size": 577245338, "dataset_size": 553388728.0}}
2023-06-02T23:43:53+00:00
fa66b59393b2b57ce4e8fc9a3797d27d495ed08f
# Dataset Card for "prof_images_blip__stabilityai-stable-diffusion-2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__stabilityai-stable-diffusion-2
[ "region:us" ]
2023-06-02T23:55:54+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 4257204.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3491678.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 4252502.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 5285492.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 5097159.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 5261660.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 5700830.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 5731031.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4309299.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 4689435.0, "num_examples": 100}, {"name": "coach", "num_bytes": 4537870.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3686294.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 5241610.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4955237.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 6112746.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 5187781.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3905039.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 4970044.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 4904269.0, "num_examples": 100}, {"name": "designer", "num_bytes": 5618928.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3653112.0, "num_examples": 100}, {"name": "producer", "num_bytes": 5532083.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 5181631.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 5623819.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5566239.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3922429.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 5675119.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4932393.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 5624913.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 5486843.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 4416383.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 4503029.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 5005814.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 4751138.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 4616805.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4885677.0, "num_examples": 100}, {"name": "architect", "num_bytes": 4694972.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 4051984.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4093686.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 4984173.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 4753603.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4839205.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 5209270.0, "num_examples": 100}, {"name": "author", "num_bytes": 4326443.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 5004142.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 5173177.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3852512.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 5239521.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 5032189.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 4814481.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 4363783.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 4174819.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4998022.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 4140296.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 4416504.0, "num_examples": 100}, {"name": "detective", "num_bytes": 4583678.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 4463307.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4918374.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4661790.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 4845349.0, "num_examples": 100}, {"name": "singer", "num_bytes": 4638247.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3678185.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 5254361.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 5634506.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 5056132.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 5172786.0, "num_examples": 100}, {"name": "manager", "num_bytes": 4931846.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4613784.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 4441299.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 6079263.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 5024667.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 4755914.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 4478395.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 5230558.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 4656965.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 5291584.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 4277664.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 5252505.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 4896010.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 5547030.0, "num_examples": 100}, {"name": "mover", "num_bytes": 4568118.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 4923186.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 4687033.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 5759315.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3970331.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 5495073.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 5073442.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 4250666.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3855692.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 4064118.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 5095971.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 5247879.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 5113432.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 5215203.0, "num_examples": 100}, {"name": "baker", "num_bytes": 4610706.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 5593811.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 4477836.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 4197438.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 4662113.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 5722417.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 5390408.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3829685.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3859109.0, "num_examples": 100}, {"name": "director", "num_bytes": 4096085.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 6300854.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 5741602.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 5332426.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 5057875.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 5039870.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 5903738.0, "num_examples": 100}, {"name": "musician", "num_bytes": 4431405.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 5463535.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4772114.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 5187071.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 4326077.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 4268877.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4593820.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4414229.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 4056745.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 5925494.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4714778.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 4778503.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 5407515.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 5961791.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 5103862.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3969985.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 4578703.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 4915411.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 6576986.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 4112341.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4582691.0, "num_examples": 100}, {"name": "teller", "num_bytes": 4580341.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 4310141.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 5104922.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 4772940.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 4975461.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 4614401.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 4143912.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3251197.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 4962877.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4367834.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 5027428.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 5327391.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 4309573.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 4488723.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 4650683.0, "num_examples": 100}], "download_size": 729196101, "dataset_size": 705285705.0}}
2023-06-02T23:58:31+00:00
8c6d26958f2410dc8808fed1fc0901470290315b
# Dataset Card for "prof_images_blip__SG161222-Realistic_Vision_V1.4" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__SG161222-Realistic_Vision_V1.4
[ "region:us" ]
2023-06-03T00:10:30+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3764373.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3056396.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3099176.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3251868.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4312082.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3516982.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 3403079.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3708720.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4048957.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 2823321.0, "num_examples": 100}, {"name": "coach", "num_bytes": 3398051.0, "num_examples": 100}, {"name": "painter", "num_bytes": 3788267.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3156797.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4403296.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 3623965.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3520536.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3584001.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 3730454.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 3438909.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3113883.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3622458.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3667845.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 2907430.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 3823886.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 5132720.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 2957858.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3848580.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4055392.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 3915519.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4353001.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 2721962.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 2791798.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 4187179.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 2983207.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 2977597.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4647443.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3224589.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 2866732.0, "num_examples": 100}, {"name": "artist", "num_bytes": 3635205.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3280329.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 2772737.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4501534.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 4050948.0, "num_examples": 100}, {"name": "author", "num_bytes": 3987201.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 3750790.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 3748678.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3187537.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 4154537.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4463218.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 2903663.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 3297142.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 2991628.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4487490.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2860282.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3186729.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3104354.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3120111.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4898829.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 4048371.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3076215.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3402887.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 3335427.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3531947.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3402595.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 2778773.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 3860576.0, "num_examples": 100}, {"name": "manager", "num_bytes": 2854291.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 3892237.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 3592160.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3679183.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 2889078.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3373481.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 3704592.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3323422.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 2894459.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 4119571.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3176816.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 2967745.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3121828.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 2904569.0, "num_examples": 100}, {"name": "mover", "num_bytes": 3444279.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3114846.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3053572.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 3804559.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 2852736.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4525331.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3024488.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3505002.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 2997675.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 2875178.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 3026534.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3251426.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 3730984.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3702937.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3482248.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3831059.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3186106.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3100940.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 2943651.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4278621.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3456639.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3702556.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 2950265.0, "num_examples": 100}, {"name": "director", "num_bytes": 2977288.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4168831.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 3967576.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4393386.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4423140.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 3341445.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4220710.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3610371.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 3561364.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 4330463.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 2898424.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 3421546.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3215643.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 4108935.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4059114.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 3206033.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 3940552.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4138995.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3680999.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4143942.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3666082.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 3786996.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3004957.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3276618.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3051254.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 4227732.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 3177864.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4978622.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3018467.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3144416.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3157765.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3673896.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3152726.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3559946.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 3433765.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 2974989.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 2905913.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4171511.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3409309.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3286300.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 2784826.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3550315.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 3976019.0, "num_examples": 100}], "download_size": 538604644, "dataset_size": 514762151.0}}
2023-06-03T00:12:47+00:00
f7a07c818533df75e2b91afb674c8f783332b5ce
# Dataset Card for "prof_images_blip__wavymulder-Analog-Diffusion" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sasha/prof_images_blip__wavymulder-Analog-Diffusion
[ "region:us" ]
2023-06-03T00:24:44+00:00
{"dataset_info": {"features": [{"name": "images", "dtype": "image"}, {"name": "embeddings", "sequence": "float32"}], "splits": [{"name": "courier", "num_bytes": 3774069.0, "num_examples": 100}, {"name": "aide", "num_bytes": 3686691.0, "num_examples": 100}, {"name": "police_officer", "num_bytes": 3716514.0, "num_examples": 100}, {"name": "purchasing_agent", "num_bytes": 3374948.0, "num_examples": 100}, {"name": "metal_worker", "num_bytes": 4585929.0, "num_examples": 100}, {"name": "financial_analyst", "num_bytes": 3272085.0, "num_examples": 100}, {"name": "stocker", "num_bytes": 4284000.0, "num_examples": 100}, {"name": "it_specialist", "num_bytes": 3445262.0, "num_examples": 100}, {"name": "writer", "num_bytes": 4338105.0, "num_examples": 100}, {"name": "accountant", "num_bytes": 3273259.0, "num_examples": 100}, {"name": "coach", "num_bytes": 4333295.0, "num_examples": 100}, {"name": "painter", "num_bytes": 4207207.0, "num_examples": 100}, {"name": "real_estate_broker", "num_bytes": 3744904.0, "num_examples": 100}, {"name": "truck_driver", "num_bytes": 4744401.0, "num_examples": 100}, {"name": "data_entry_keyer", "num_bytes": 4750907.0, "num_examples": 100}, {"name": "computer_support_specialist", "num_bytes": 3220896.0, "num_examples": 100}, {"name": "cook", "num_bytes": 3507117.0, "num_examples": 100}, {"name": "interior_designer", "num_bytes": 3385993.0, "num_examples": 100}, {"name": "nutritionist", "num_bytes": 4499939.0, "num_examples": 100}, {"name": "designer", "num_bytes": 3262956.0, "num_examples": 100}, {"name": "maid", "num_bytes": 3688106.0, "num_examples": 100}, {"name": "producer", "num_bytes": 3855517.0, "num_examples": 100}, {"name": "executive_assistant", "num_bytes": 2956660.0, "num_examples": 100}, {"name": "logistician", "num_bytes": 3785521.0, "num_examples": 100}, {"name": "tractor_operator", "num_bytes": 6024318.0, "num_examples": 100}, {"name": "doctor", "num_bytes": 3241492.0, "num_examples": 100}, {"name": "inventory_clerk", "num_bytes": 3888705.0, "num_examples": 100}, {"name": "sheet_metal_worker", "num_bytes": 4317010.0, "num_examples": 100}, {"name": "groundskeeper", "num_bytes": 5131469.0, "num_examples": 100}, {"name": "electrical_engineer", "num_bytes": 4010184.0, "num_examples": 100}, {"name": "physical_therapist", "num_bytes": 3392181.0, "num_examples": 100}, {"name": "insurance_agent", "num_bytes": 3757883.0, "num_examples": 100}, {"name": "aerospace_engineer", "num_bytes": 3796254.0, "num_examples": 100}, {"name": "psychologist", "num_bytes": 3300681.0, "num_examples": 100}, {"name": "financial_advisor", "num_bytes": 3319034.0, "num_examples": 100}, {"name": "printing_press_operator", "num_bytes": 4371701.0, "num_examples": 100}, {"name": "architect", "num_bytes": 3624303.0, "num_examples": 100}, {"name": "dental_hygienist", "num_bytes": 3037225.0, "num_examples": 100}, {"name": "artist", "num_bytes": 4038195.0, "num_examples": 100}, {"name": "office_worker", "num_bytes": 3343369.0, "num_examples": 100}, {"name": "ceo", "num_bytes": 3035277.0, "num_examples": 100}, {"name": "taxi_driver", "num_bytes": 4532619.0, "num_examples": 100}, {"name": "librarian", "num_bytes": 3934373.0, "num_examples": 100}, {"name": "author", "num_bytes": 4016508.0, "num_examples": 100}, {"name": "plumber", "num_bytes": 3932891.0, "num_examples": 100}, {"name": "construction_worker", "num_bytes": 4155510.0, "num_examples": 100}, {"name": "clergy", "num_bytes": 3781283.0, "num_examples": 100}, {"name": "electrician", "num_bytes": 3783505.0, "num_examples": 100}, {"name": "jailer", "num_bytes": 4507427.0, "num_examples": 100}, {"name": "credit_counselor", "num_bytes": 3505147.0, "num_examples": 100}, {"name": "scientist", "num_bytes": 4046533.0, "num_examples": 100}, {"name": "drywall_installer", "num_bytes": 3478727.0, "num_examples": 100}, {"name": "school_bus_driver", "num_bytes": 4890236.0, "num_examples": 100}, {"name": "dental_assistant", "num_bytes": 2813410.0, "num_examples": 100}, {"name": "fitness_instructor", "num_bytes": 3996469.0, "num_examples": 100}, {"name": "detective", "num_bytes": 3422063.0, "num_examples": 100}, {"name": "hairdresser", "num_bytes": 3241014.0, "num_examples": 100}, {"name": "welder", "num_bytes": 4677109.0, "num_examples": 100}, {"name": "pharmacy_technician", "num_bytes": 3700405.0, "num_examples": 100}, {"name": "compliance_officer", "num_bytes": 3414977.0, "num_examples": 100}, {"name": "singer", "num_bytes": 3802503.0, "num_examples": 100}, {"name": "tutor", "num_bytes": 4062542.0, "num_examples": 100}, {"name": "language_pathologist", "num_bytes": 3758118.0, "num_examples": 100}, {"name": "medical_records_specialist", "num_bytes": 3271985.0, "num_examples": 100}, {"name": "sales_manager", "num_bytes": 3205314.0, "num_examples": 100}, {"name": "industrial_engineer", "num_bytes": 3971207.0, "num_examples": 100}, {"name": "manager", "num_bytes": 3358224.0, "num_examples": 100}, {"name": "mechanic", "num_bytes": 4067397.0, "num_examples": 100}, {"name": "postal_worker", "num_bytes": 4003288.0, "num_examples": 100}, {"name": "computer_systems_analyst", "num_bytes": 3539024.0, "num_examples": 100}, {"name": "salesperson", "num_bytes": 3346595.0, "num_examples": 100}, {"name": "office_clerk", "num_bytes": 3274748.0, "num_examples": 100}, {"name": "claims_appraiser", "num_bytes": 5004316.0, "num_examples": 100}, {"name": "security_guard", "num_bytes": 3794770.0, "num_examples": 100}, {"name": "interviewer", "num_bytes": 3636369.0, "num_examples": 100}, {"name": "dispatcher", "num_bytes": 3294510.0, "num_examples": 100}, {"name": "lawyer", "num_bytes": 3196550.0, "num_examples": 100}, {"name": "marketing_manager", "num_bytes": 3365180.0, "num_examples": 100}, {"name": "customer_service_representative", "num_bytes": 3223272.0, "num_examples": 100}, {"name": "software_developer", "num_bytes": 3333651.0, "num_examples": 100}, {"name": "mover", "num_bytes": 4537574.0, "num_examples": 100}, {"name": "supervisor", "num_bytes": 3841058.0, "num_examples": 100}, {"name": "paralegal", "num_bytes": 3439628.0, "num_examples": 100}, {"name": "graphic_designer", "num_bytes": 4234804.0, "num_examples": 100}, {"name": "dentist", "num_bytes": 3106897.0, "num_examples": 100}, {"name": "roofer", "num_bytes": 4839179.0, "num_examples": 100}, {"name": "public_relations_specialist", "num_bytes": 3214669.0, "num_examples": 100}, {"name": "engineer", "num_bytes": 3775481.0, "num_examples": 100}, {"name": "occupational_therapist", "num_bytes": 3611377.0, "num_examples": 100}, {"name": "manicurist", "num_bytes": 3099482.0, "num_examples": 100}, {"name": "cleaner", "num_bytes": 4053227.0, "num_examples": 100}, {"name": "facilities_manager", "num_bytes": 3761193.0, "num_examples": 100}, {"name": "repair_worker", "num_bytes": 4110405.0, "num_examples": 100}, {"name": "cashier", "num_bytes": 3631158.0, "num_examples": 100}, {"name": "baker", "num_bytes": 3700422.0, "num_examples": 100}, {"name": "market_research_analyst", "num_bytes": 3859395.0, "num_examples": 100}, {"name": "health_technician", "num_bytes": 3182780.0, "num_examples": 100}, {"name": "veterinarian", "num_bytes": 3550905.0, "num_examples": 100}, {"name": "underwriter", "num_bytes": 3576463.0, "num_examples": 100}, {"name": "mechanical_engineer", "num_bytes": 4339495.0, "num_examples": 100}, {"name": "janitor", "num_bytes": 3784680.0, "num_examples": 100}, {"name": "pilot", "num_bytes": 3669754.0, "num_examples": 100}, {"name": "therapist", "num_bytes": 3484772.0, "num_examples": 100}, {"name": "director", "num_bytes": 3533829.0, "num_examples": 100}, {"name": "wholesale_buyer", "num_bytes": 4629384.0, "num_examples": 100}, {"name": "air_conditioning_installer", "num_bytes": 4619514.0, "num_examples": 100}, {"name": "butcher", "num_bytes": 4624676.0, "num_examples": 100}, {"name": "machinery_mechanic", "num_bytes": 4698277.0, "num_examples": 100}, {"name": "event_planner", "num_bytes": 4148009.0, "num_examples": 100}, {"name": "carpet_installer", "num_bytes": 4831490.0, "num_examples": 100}, {"name": "musician", "num_bytes": 3852103.0, "num_examples": 100}, {"name": "civil_engineer", "num_bytes": 4235637.0, "num_examples": 100}, {"name": "farmer", "num_bytes": 5696634.0, "num_examples": 100}, {"name": "financial_manager", "num_bytes": 2996790.0, "num_examples": 100}, {"name": "childcare_worker", "num_bytes": 4586909.0, "num_examples": 100}, {"name": "clerk", "num_bytes": 3629737.0, "num_examples": 100}, {"name": "machinist", "num_bytes": 3743309.0, "num_examples": 100}, {"name": "firefighter", "num_bytes": 4238724.0, "num_examples": 100}, {"name": "photographer", "num_bytes": 4709558.0, "num_examples": 100}, {"name": "file_clerk", "num_bytes": 4227425.0, "num_examples": 100}, {"name": "bus_driver", "num_bytes": 4414556.0, "num_examples": 100}, {"name": "fast_food_worker", "num_bytes": 3558196.0, "num_examples": 100}, {"name": "bartender", "num_bytes": 4220859.0, "num_examples": 100}, {"name": "computer_programmer", "num_bytes": 3728830.0, "num_examples": 100}, {"name": "pharmacist", "num_bytes": 3708399.0, "num_examples": 100}, {"name": "nursing_assistant", "num_bytes": 3099367.0, "num_examples": 100}, {"name": "career_counselor", "num_bytes": 3393143.0, "num_examples": 100}, {"name": "mental_health_counselor", "num_bytes": 3215113.0, "num_examples": 100}, {"name": "network_administrator", "num_bytes": 3856159.0, "num_examples": 100}, {"name": "teacher", "num_bytes": 4085339.0, "num_examples": 100}, {"name": "dishwasher", "num_bytes": 4261050.0, "num_examples": 100}, {"name": "teller", "num_bytes": 3322494.0, "num_examples": 100}, {"name": "teaching_assistant", "num_bytes": 3491372.0, "num_examples": 100}, {"name": "payroll_clerk", "num_bytes": 3263271.0, "num_examples": 100}, {"name": "laboratory_technician", "num_bytes": 3271155.0, "num_examples": 100}, {"name": "social_assistant", "num_bytes": 3774971.0, "num_examples": 100}, {"name": "radiologic_technician", "num_bytes": 3021348.0, "num_examples": 100}, {"name": "social_worker", "num_bytes": 4232132.0, "num_examples": 100}, {"name": "nurse", "num_bytes": 3272832.0, "num_examples": 100}, {"name": "receptionist", "num_bytes": 3134671.0, "num_examples": 100}, {"name": "carpenter", "num_bytes": 4402559.0, "num_examples": 100}, {"name": "correctional_officer", "num_bytes": 3789430.0, "num_examples": 100}, {"name": "community_manager", "num_bytes": 3756220.0, "num_examples": 100}, {"name": "massage_therapist", "num_bytes": 2980706.0, "num_examples": 100}, {"name": "head_cook", "num_bytes": 3919248.0, "num_examples": 100}, {"name": "plane_mechanic", "num_bytes": 3715118.0, "num_examples": 100}], "download_size": 581741855, "dataset_size": 557958672.0}}
2023-06-03T00:27:19+00:00
11e31215b82d1045da392573a5e08dd3d6859e4a
# Dataset Card for "Control-Face-data" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
PhilSad/Control-Face-data
[ "region:us" ]
2023-06-03T00:26:39+00:00
{"dataset_info": {"features": [{"name": "gender", "dtype": "string"}, {"name": "conditionning_image", "dtype": "image"}, {"name": "objective_image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "pers_id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 142522633.433, "num_examples": 10177}], "download_size": 138066980, "dataset_size": 142522633.433}}
2023-06-03T01:05:39+00:00