sha
stringlengths 40
40
| text
stringlengths 0
13.4M
| id
stringlengths 2
117
| tags
sequence | created_at
stringlengths 25
25
| metadata
stringlengths 2
31.7M
| last_modified
stringlengths 25
25
|
---|---|---|---|---|---|---|
5b4a6177016e743c5d3ea50f144b202a80923777 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch
* Dataset: xsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@Abhijeet3922](https://huggingface.co/Abhijeet3922) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-xsum-e02a2fb8-10255357 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T01:56:23+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["xsum"], "eval_info": {"task": "summarization", "model": "Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch", "metrics": [], "dataset_name": "xsum", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"text": "document", "target": "summary"}}} | 2022-07-08T02:47:13+00:00 |
f475d9ca10f6eae1f39e756d14610ce7c5bb515c |
# Dataset Card for "QQP_triplets"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
- **Repository:** [More Information Needed](http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv)
- **Paper:** [More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
- **Point of Contact:** [Kornél Csernai](https://www.quora.com/profile/Korn%C3%A9l-Csernai), [Nikhil Dandekar](https://www.quora.com/profile/Nikhil-Dandekar), [Shankar Iyer](https://www.quora.com/profile/Shankar-Iyer-5)
### Dataset Summary
This dataset will give anyone the opportunity to train and test models of semantic equivalence, based on actual Quora data. The data is organized as triplets (anchor, positive, negative).
Disclaimer: The team releasing Quora data did not upload the dataset to the Hub and did not write a dataset card.
These steps were done by the Hugging Face team.
### Supported Tasks
- [Sentence Transformers](https://huggingface.co/sentence-transformers) training; useful for semantic search and sentence similarity.
### Languages
- English.
## Dataset Structure
Each example is a dictionary with three keys (query, pos, and neg) containing a list each (triplets). The first key contains an anchor sentence, the second a positive sentence, and the third a list of negative sentences.
```
{"query": [anchor], "pos": [positive], "neg": [negative1, negative2, ..., negativeN]}
{"query": [anchor], "pos": [positive], "neg": [negative1, negative2, ..., negativeN]}
...
{"query": [anchor], "pos": [positive], "neg": [negative1, negative2, ..., negativeN]}
```
This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train them.
### Usage Example
Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
```python
from datasets import load_dataset
dataset = load_dataset("embedding-data/QQP_triplets")
```
The dataset is loaded as a `DatasetDict` and has the format:
```python
DatasetDict({
train: Dataset({
features: ['set'],
num_rows: 101762
})
})
```
Review an example `i` with:
```python
dataset["train"][i]["set"]
```
### Curation Rationale
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
#### Who are the source language producers?
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Annotations
#### Annotation process
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
#### Who are the annotators?
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Personal and Sensitive Information
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Discussion of Biases
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Other Known Limitations
Here are a few important things to keep in mind about this dataset:
- Our original sampling method returned an imbalanced dataset with many more true examples of duplicate pairs than non-duplicates.
Therefore, we supplemented the dataset with negative examples.
- One source of negative examples were pairs of “related questions” which, although pertaining to similar topics,
are not truly semantically equivalent.
- The distribution of questions in the dataset should not be taken to be representative of the distribution of questions asked on Quora. This is, in part, because of the combination of sampling procedures and also due to some sanitization measures that
have been applied to the final dataset (e.g., removal of questions with extremely long question details).
- The ground-truth labels contain some amount of noise: they are not guaranteed to be perfect.
## Additional Information
### Dataset Curators
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Licensing Information
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Citation Information
[More Information Needed](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
### Contributions
Thanks to [Kornél Csernai](https://www.quora.com/profile/Korn%C3%A9l-Csernai), [Nikhil Dandekar](https://www.quora.com/profile/Nikhil-Dandekar), [Shankar Iyer](https://www.quora.com/profile/Shankar-Iyer-5) for adding this dataset.
| embedding-data/QQP_triplets | [
"task_categories:sentence-similarity",
"task_ids:semantic-similarity-classification",
"language:en",
"license:mit",
"region:us"
] | 2022-07-08T02:15:59+00:00 | {"language": ["en"], "license": "mit", "task_categories": ["sentence-similarity", "paraphrase-mining"], "task_ids": ["semantic-similarity-classification"], "paperswithcode_id": "embedding-data/QQP_triplets", "pretty_name": "QQP_triplets"} | 2022-08-02T02:14:14+00:00 |
6916e1cc1f7e94d352eba0c4da9db405e3b8e379 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-large
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275361 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T03:33:50+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "google/pegasus-large", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T07:32:13+00:00 |
9b90e970f216fbcc654581cab1b16fbe99dd5f17 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-xsum
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275362 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T03:33:54+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "google/pegasus-xsum", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T04:16:37+00:00 |
5c1dd64af4db75264190473c180e043a7609fc02 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-cnn_dailymail
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275363 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T03:34:01+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "google/pegasus-cnn_dailymail", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T04:51:52+00:00 |
45c22e873e5c978481df69a3b235d656bbe331be | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-reddit_tifu
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275364 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T03:34:06+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "google/pegasus-reddit_tifu", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T04:59:46+00:00 |
6fa498e8bd014bc29d0fb9f633bb640915482874 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: facebook/bart-large-xsum
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275365 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T04:16:57+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "facebook/bart-large-xsum", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T04:41:09+00:00 |
35bc3b2798ce0851a47cf62d448ccf280ac36ed1 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: knkarthick/bart-large-xsum-samsum
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275366 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T04:41:25+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "knkarthick/bart-large-xsum-samsum", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T05:11:02+00:00 |
9a4f33a45599118ee2c5d516f1f3739fee07a683 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: facebook/bart-large-cnn
* Dataset: samsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@ikadebi](https://huggingface.co/ikadebi) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-samsum-0c672345-10275367 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T04:52:12+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "facebook/bart-large-cnn", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "train", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-08T05:35:14+00:00 |
9353fdfd146e16bf3e4e1ba1262e694a659be9f5 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-xsum
* Dataset: xsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@sheikmohdimran](https://huggingface.co/sheikmohdimran) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-xsum-3c39b441-10285368 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T05:00:04+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["xsum"], "eval_info": {"task": "summarization", "model": "google/pegasus-xsum", "metrics": [], "dataset_name": "xsum", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"text": "document", "target": "summary"}}} | 2022-07-08T05:34:29+00:00 |
20eb88d4d2d3c552437189d4710e720a9e7dd4eb | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-wikihow
* Dataset: xsum
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@Scofield](https://huggingface.co/Scofield) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-xsum-a94d90d8-10385372 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-08T09:28:13+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["xsum"], "eval_info": {"task": "summarization", "model": "google/pegasus-wikihow", "metrics": [], "dataset_name": "xsum", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"text": "document", "target": "summary"}}} | 2022-07-08T10:33:26+00:00 |
fc23600643bde1d53e2e7ffd595c946167a7ade7 | # GEM Submission
Submission name: This is a test submission 3
| GEM-submissions/lewtun__this-is-a-test-submission-3__1657282248 | [
"benchmark:gem",
"evaluation",
"benchmark",
"region:us"
] | 2022-07-08T11:10:50+00:00 | {"benchmark": "gem", "type": "prediction", "submission_name": "This is a test submission 3", "tags": ["evaluation", "benchmark"]} | 2022-07-08T11:10:53+00:00 |
c7ee9e962c2c38438ff0027c362b5f4c806f0f50 |
# Dataset Card for "UnpredicTable-unique" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_unique | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T15:21:01+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-unique"} | 2022-08-04T19:16:10+00:00 |
be7d206d5e5dea14bab0a989c83aefb7ae1d0ebf |
# Dataset Card for "Amazon-QA"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://jmcauley.ucsd.edu/data/amazon/qa/](http://jmcauley.ucsd.edu/data/amazon/qa/)
- **Repository:** [More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [Julian McAuley](https://cseweb.ucsd.edu//~jmcauley/#)
- **Size of downloaded dataset files:**
- **Size of the generated dataset:**
- **Total amount of disk used:** 247 MB
### Dataset Summary
This dataset contains Question and Answer data from Amazon.
Disclaimer: The team releasing Amazon-QA did not upload the dataset to the Hub and did not write a dataset card.
These steps were done by the Hugging Face team.
### Supported Tasks
- [Sentence Transformers](https://huggingface.co/sentence-transformers) training; useful for semantic search and sentence similarity.
### Languages
- English.
## Dataset Structure
Each example in the dataset contains pairs of query and answer sentences and is formatted as a dictionary:
```
{"query": [sentence_1], "pos": [sentence_2]}
{"query": [sentence_1], "pos": [sentence_2]}
...
{"query": [sentence_1], "pos": [sentence_2]}
```
This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using similar sentences.
### Usage Example
Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
```python
from datasets import load_dataset
dataset = load_dataset("embedding-data/Amazon-QA")
```
The dataset is loaded as a `DatasetDict` and has the format:
```python
DatasetDict({
train: Dataset({
features: ['query', 'pos'],
num_rows: 1095290
})
})
```
Review an example `i` with:
```python
dataset["train"][0]
```
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
#### Who are the source language producers?
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Annotations
#### Annotation process
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
#### Who are the annotators?
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Personal and Sensitive Information
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Discussion of Biases
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Other Known Limitations
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/s)
## Additional Information
### Dataset Curators
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Licensing Information
[More Information Needed](http://jmcauley.ucsd.edu/data/amazon/qa/)
### Citation Information
### Contributions
| embedding-data/Amazon-QA | [
"task_categories:sentence-similarity",
"task_ids:semantic-similarity-classification",
"language:en",
"license:mit",
"region:us"
] | 2022-07-08T16:03:12+00:00 | {"language": ["en"], "license": "mit", "task_categories": ["sentence-similarity", "paraphrase-mining"], "task_ids": ["semantic-similarity-classification"], "paperswithcode_id": "embedding-data/Amazon-QA", "pretty_name": "Amazon-QA"} | 2022-08-02T02:36:27+00:00 |
04beaebf206b2ddfba715d8307b7cb48c4c01468 |
# Dataset Card for "PAQ_pairs"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/facebookresearch/PAQ](https://github.com/facebookresearch/PAQ)
- **Repository:** [More Information Needed](https://github.com/facebookresearch/PAQ)
- **Paper:** [More Information Needed](https://github.com/facebookresearch/PAQ)
- **Point of Contact:** [More Information Needed](https://github.com/facebookresearch/PAQ)
- **Size of downloaded dataset files:**
- **Size of the generated dataset:**
- **Total amount of disk used:** 21 Bytes
### Dataset Summary
Pairs questions and answers obtained from Wikipedia.
Disclaimer: The team releasing PAQ QA pairs did not upload the dataset to the Hub and did not write a dataset card.
These steps were done by the Hugging Face team.
### Supported Tasks
- [Sentence Transformers](https://huggingface.co/sentence-transformers) training; useful for semantic search and sentence similarity.
### Languages
- English.
## Dataset Structure
Each example in the dataset contains pairs of sentences and is formatted as a dictionary with the key "set" and a list with the sentences as "value". The first sentence is a question and the second an answer; thus, both sentences would be similar.
```
{"set": [sentence_1, sentence_2]}
{"set": [sentence_1, sentence_2]}
...
{"set": [sentence_1, sentence_2]}
```
This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using similar pairs of sentences.
### Usage Example
Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
```python
from datasets import load_dataset
dataset = load_dataset("embedding-data/PAQ_pairs")
```
The dataset is loaded as a `DatasetDict` and has the format:
```python
DatasetDict({
train: Dataset({
features: ['set'],
num_rows: 64371441
})
})
```
Review an example `i` with:
```python
dataset["train"][i]["set"]
```
### Data Instances
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Data Fields
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Data Splits
[More Information Needed](https://github.com/facebookresearch/PAQ)
## Dataset Creation
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Curation Rationale
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/facebookresearch/PAQ)
#### Who are the source language producers?
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/facebookresearch/PAQ)
#### Who are the annotators?
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Personal and Sensitive Information
[More Information Needed](https://github.com/facebookresearch/PAQ)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Discussion of Biases
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Other Known Limitations
[More Information Needed](https://github.com/facebookresearch/PAQ)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/facebookresearch/PAQ)
### Licensing Information
The PAQ QA-pairs and metadata is licensed under [CC-BY-SA](https://creativecommons.org/licenses/by-sa/3.0/).
Other data is licensed according to the accompanying license files.
### Citation Information
```
@article{lewis2021paq,
title={PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them},
author={Patrick Lewis and Yuxiang Wu and Linqing Liu and Pasquale Minervini and Heinrich Küttler and Aleksandra Piktus and Pontus Stenetorp and Sebastian Riedel},
year={2021},
eprint={2102.07033},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@patrick-s-h-lewis](https://github.com/patrick-s-h-lewis) for adding this dataset.
| embedding-data/PAQ_pairs | [
"task_categories:sentence-similarity",
"task_ids:semantic-similarity-classification",
"language:en",
"license:mit",
"arxiv:2102.07033",
"region:us"
] | 2022-07-08T16:05:27+00:00 | {"language": ["en"], "license": "mit", "task_categories": ["sentence-similarity", "paraphrase-mining"], "task_ids": ["semantic-similarity-classification"], "paperswithcode_id": "embedding-data/PAQ_pairs", "pretty_name": "PAQ_pairs"} | 2022-08-02T01:58:28+00:00 |
30535094aa0d12c59a3b22a2ead8ff219886e502 |
# Dataset Card for "UnpredicTable-cluster-noise" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster-noise | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:15:02+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster-noise"} | 2022-08-04T18:42:06+00:00 |
3787e6e7e6193f9c43a7300367018ddb86afcfcd |
# Dataset Card for "UnpredicTable-cluster00" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster00 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:16:43+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster00"} | 2022-08-04T18:42:43+00:00 |
d701ce691e69f806172b7897590a746c37fe7f6b |
# Dataset Card for "UnpredicTable-cluster01" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster01 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:17:31+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster01"} | 2022-08-04T18:43:16+00:00 |
1cb3e58f98f2cf2fd87de4d22b18e05d089c8e6f |
# Dataset Card for "UnpredicTable-cluster10" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster10 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:18:25+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster10"} | 2022-08-04T18:49:37+00:00 |
af43492d1ea94b680c1f81f670b779d3e217a04d |
# Dataset Card for "UnpredicTable-cluster11" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster11 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:19:16+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster11"} | 2022-08-04T18:50:50+00:00 |
369a265f5c1a4a1542cd81ffe6ddc2e0b6f15233 |
# Dataset Card for "UnpredicTable-cluster12" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster12 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:20:21+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster12"} | 2022-08-04T18:52:07+00:00 |
b33edbf919ceed2ed651b3be2dc6e4ad9c59d068 |
# Dataset Card for "UnpredicTable-cluster13" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster13 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:23:44+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster13"} | 2022-08-04T18:52:42+00:00 |
c1616a0c82c97e36cf0462181212b7c6d83dc299 |
# Dataset Card for "UnpredicTable-cluster14" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster14 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:29:56+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster14"} | 2022-08-04T18:53:18+00:00 |
7ca1cbebc1e2d2833b87e5cca0d749a9d20a96c6 |
# Dataset Card for "UnpredicTable-cluster15" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster15 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:31:11+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster15"} | 2022-08-04T18:54:04+00:00 |
f5017ca57a997e3ad47c3f28cb4d93fbd4757162 |
# Dataset Card for "UnpredicTable-cluster16" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster16 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:32:41+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster16"} | 2022-08-04T18:54:44+00:00 |
99ad12bd83136c04465691c15577aecc36e1d749 |
# Dataset Card for "UnpredicTable-cluster17" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster17 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:33:42+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster17"} | 2022-08-04T18:55:23+00:00 |
4f8c12a5c28317fceef20e232b0935db46653a70 |
# Dataset Card for "UnpredicTable-cluster18" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster18 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T16:51:30+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster18"} | 2022-08-04T18:55:58+00:00 |
86f036b36f175df660bddde29aa0133c2061d716 |
# Dataset Card for "UnpredicTable-cluster19" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster19 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:23:12+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster19"} | 2022-08-04T18:56:35+00:00 |
a315107ed65af8cb8ab60533864ab7a6fc7a9ae2 |
# Dataset Card for "UnpredicTable-cluster02" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster02 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:25:06+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster02"} | 2022-08-04T18:44:14+00:00 |
7effaf03ef072593a70bbdf01af57bd13f67a922 |
# Dataset Card for "UnpredicTable-cluster20" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster20 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:26:06+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster20"} | 2022-08-04T18:57:20+00:00 |
eaad3e8841939fa942e7bfbb4fa360a41e8e3308 |
# Dataset Card for "UnpredicTable-cluster21" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster21 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:27:34+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster21"} | 2022-08-04T18:57:54+00:00 |
005580775e33343198573fcbf0969a7075ee0538 |
# Dataset Card for "UnpredicTable-cluster22" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster22 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:28:51+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster22"} | 2022-08-04T18:58:29+00:00 |
3fe6fd91090b9f972a7dc39c078844f590c4aa99 |
# Dataset Card for "UnpredicTable-cluster23" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster23 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:29:41+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster23"} | 2022-08-04T18:58:59+00:00 |
49a80015e70fd06f5f41cafb01df7cb5bf6b97b9 |
# Dataset Card for "UnpredicTable-cluster24" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster24 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:33:36+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster24"} | 2022-08-04T18:59:33+00:00 |
a5209ce6aa2cb008f6c549d887e61bdce70cef27 |
# Dataset Card for "UnpredicTable-cluster25" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster25 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:35:02+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster25"} | 2022-08-04T19:00:11+00:00 |
ab43fcc4730e40ea5247936a8e9e5d78eac55c90 |
# Dataset Card for "UnpredicTable-cluster26" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster26 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:38:15+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster26"} | 2022-08-04T19:00:43+00:00 |
1b5312f1f3cf23ddbed7bc183e551ca0cc086400 |
# Dataset Card for "UnpredicTable-cluster27" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster27 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:40:03+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster27"} | 2022-08-04T19:01:16+00:00 |
1d1636c5d825b61150c7bf286b8ada890e126c63 |
# Dataset Card for "UnpredicTable-cluster28" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster28 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T17:58:32+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster28"} | 2022-08-04T19:01:54+00:00 |
326bc07a2b864fc26f94b6c610a5348ad248ea87 |
# Dataset Card for "UnpredicTable-cluster29" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster29 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:06:50+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster29"} | 2022-08-04T19:02:57+00:00 |
253df5629a8ac1653c3b7b2fa5f6aec67a15d77b |
# Dataset Card for "UnpredicTable-cluster03" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster03 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:08:05+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster03"} | 2022-08-04T18:44:47+00:00 |
b745f72350bad6f06cefda65de7413e3b3d5245a |
# Dataset Card for "UnpredicTable-cluster04" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster04 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:09:09+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster04"} | 2022-08-04T18:45:22+00:00 |
41273c850a3db6dbbaa24e62f1781a29082933bc |
# Dataset Card for "UnpredicTable-cluster05" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster05 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:10:16+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster05"} | 2022-08-04T18:45:58+00:00 |
dc851308a705e625ef0aa18db4e27271630bae0a |
# Dataset Card for "UnpredicTable-cluster06" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster06 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:11:07+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster06"} | 2022-08-04T18:46:44+00:00 |
9d24515103446c09480e8da07eba58407cf04628 |
# Dataset Card for "UnpredicTable-cluster07" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster07 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:13:12+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster07"} | 2022-08-04T18:47:24+00:00 |
176963045cff4156649ffe5e52ea0c4a1480c240 |
# Dataset Card for "UnpredicTable-cluster08" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster08 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:14:10+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster08"} | 2022-08-04T18:48:00+00:00 |
dadc5a03b684674e151c3007663e7f09ce6bf968 |
# Dataset Card for "UnpredicTable-cluster09" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_cluster09 | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-08T18:15:21+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-cluster09"} | 2022-08-04T18:48:52+00:00 |
a037d510718d60d62a0c3b78dca9a54592e196c4 | gdj-pinecone/test | [
"license:apache-2.0",
"region:us"
] | 2022-07-08T20:07:35+00:00 | {"license": "apache-2.0"} | 2022-07-08T20:07:36+00:00 |
|
38f9e34cc1a66302e7dfd4e01dc228eafbf4dbc1 | ## Student Scores Dataset
This dataset contains clean and original versions of Student Scores Dataset and the transformer used to transform it from original to clean, can be used for inferences.
Here's the plot of the transformer:
<style>#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 {color: black;background-color: white;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 pre{padding: 0;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-toggleable {background-color: white;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-estimator:hover {background-color: #d4ebff;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-item {z-index: 1;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-parallel-item:only-child::after {width: 0;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949 div.sk-text-repr-fallback {display: none;}</style><div id="sk-46a90950-7a65-4bd5-81b7-b0c3bf7aa949" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>ColumnTransformer(remainder='passthrough',transformers=[('categorical_missing_value_imputer',SimpleImputer(fill_value='missing',strategy='constant'),[0, 1, 2, 3, 4]),('numerical_missing_value_imputer',SimpleImputer(strategy='median'), [5, 6, 7]),('school_encoder', OrdinalEncoder(), [2]),('status_encoder', OrdinalEncoder(), [4]),('gender_encoder', OneHotEncoder(), [0])])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c04042d6-1013-4e6e-97d5-80229d8d887c" type="checkbox" ><label for="c04042d6-1013-4e6e-97d5-80229d8d887c" class="sk-toggleable__label sk-toggleable__label-arrow">ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder='passthrough',transformers=[('categorical_missing_value_imputer',SimpleImputer(fill_value='missing',strategy='constant'),[0, 1, 2, 3, 4]),('numerical_missing_value_imputer',SimpleImputer(strategy='median'), [5, 6, 7]),('school_encoder', OrdinalEncoder(), [2]),('status_encoder', OrdinalEncoder(), [4]),('gender_encoder', OneHotEncoder(), [0])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="09be6c7a-7620-4240-ae3e-fea9b9c4ba96" type="checkbox" ><label for="09be6c7a-7620-4240-ae3e-fea9b9c4ba96" class="sk-toggleable__label sk-toggleable__label-arrow">categorical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[0, 1, 2, 3, 4]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="26c15d8d-4a1f-4c4d-b0de-5385845dad87" type="checkbox" ><label for="26c15d8d-4a1f-4c4d-b0de-5385845dad87" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(fill_value='missing', strategy='constant')</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="240be745-c3b3-4b4a-825b-2d1fdb4098c4" type="checkbox" ><label for="240be745-c3b3-4b4a-825b-2d1fdb4098c4" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[5, 6, 7]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="27c7042f-3ced-4afc-ac3a-08b18ef36baa" type="checkbox" ><label for="27c7042f-3ced-4afc-ac3a-08b18ef36baa" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(strategy='median')</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="78993eb3-7988-4fb6-b8e2-c05be3457d30" type="checkbox" ><label for="78993eb3-7988-4fb6-b8e2-c05be3457d30" class="sk-toggleable__label sk-toggleable__label-arrow">school_encoder</label><div class="sk-toggleable__content"><pre>[2]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="bc1fd86e-4a3b-4448-85d5-15961983cfa2" type="checkbox" ><label for="bc1fd86e-4a3b-4448-85d5-15961983cfa2" class="sk-toggleable__label sk-toggleable__label-arrow">OrdinalEncoder</label><div class="sk-toggleable__content"><pre>OrdinalEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="56bbc2fd-309f-40fc-b160-45fc33cea93b" type="checkbox" ><label for="56bbc2fd-309f-40fc-b160-45fc33cea93b" class="sk-toggleable__label sk-toggleable__label-arrow">status_encoder</label><div class="sk-toggleable__content"><pre>[4]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b80005c6-2fe9-4168-971f-8951bfa7f8f3" type="checkbox" ><label for="b80005c6-2fe9-4168-971f-8951bfa7f8f3" class="sk-toggleable__label sk-toggleable__label-arrow">OrdinalEncoder</label><div class="sk-toggleable__content"><pre>OrdinalEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="677cf14a-996a-48af-ba0e-e3d2e83021b8" type="checkbox" ><label for="677cf14a-996a-48af-ba0e-e3d2e83021b8" class="sk-toggleable__label sk-toggleable__label-arrow">gender_encoder</label><div class="sk-toggleable__content"><pre>[0]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="0cad3051-c4b7-41a8-a372-c439ae4ad98b" type="checkbox" ><label for="0cad3051-c4b7-41a8-a372-c439ae4ad98b" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e5707a95-9465-439b-ae0b-34e122add191" type="checkbox" ><label for="e5707a95-9465-439b-ae0b-34e122add191" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="534f7a9b-d224-476c-993a-124b3435a8e3" type="checkbox" ><label for="534f7a9b-d224-476c-993a-124b3435a8e3" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div></div></div>
| merve/student_scores | [
"region:us"
] | 2022-07-08T23:02:42+00:00 | {} | 2022-07-08T23:02:48+00:00 |
aa3d54a99f6314a888c3db3c67e6b27650913a9d |
# Dataset Card for "WikiAnswers"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/afader/oqa#wikianswers-corpus](https://github.com/afader/oqa#wikianswers-corpus)
- **Repository:** [More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
- **Paper:** [More Information Needed](https://doi.org/10.1145/2623330.2623677)
- **Point of Contact:** [Anthony Fader](https://dl.acm.org/profile/81324489111), [Luke Zettlemoyer](https://dl.acm.org/profile/81100527621), [Oren Etzioni](https://dl.acm.org/profile/99658633129)
### Dataset Summary
The WikiAnswers corpus contains clusters of questions tagged by WikiAnswers users as paraphrases.
Each cluster optionally contains an answer provided by WikiAnswers users. There are 30,370,994 clusters containing an average of 25 questions per cluster. 3,386,256 (11%) of the clusters have an answer.
### Supported Tasks
- [Sentence Transformers](https://huggingface.co/sentence-transformers) training; useful for semantic search and sentence similarity.
### Languages
- English.
## Dataset Structure
Each example in the dataset contains 25 equivalent sentences and is formatted as a dictionary with the key "set" and a list with the sentences as "value".
```
{"set": [sentence_1, sentence_2, ..., sentence_25]}
{"set": [sentence_1, sentence_2, ..., sentence_25]}
...
{"set": [sentence_1, sentence_2, ..., sentence_25]}
```
This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using similar sentences.
### Usage Example
Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
```python
from datasets import load_dataset
dataset = load_dataset("embedding-data/WikiAnswers")
```
The dataset is loaded as a `DatasetDict` and has the format for `N` examples:
```python
DatasetDict({
train: Dataset({
features: ['set'],
num_rows: N
})
})
```
Review an example `i` with:
```python
dataset["train"][i]["set"]
```
### Data Instances
### Data Fields
### Data Splits
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
#### Who are the source language producers?
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
#### Who are the annotators?
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Personal and Sensitive Information
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Discussion of Biases
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Other Known Limitations
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Licensing Information
[More Information Needed](https://github.com/afader/oqa#wikianswers-corpus)
### Citation Information
```
@inproceedings{Fader14,
author = {Anthony Fader and Luke Zettlemoyer and Oren Etzioni},
title = {{Open Question Answering Over Curated and Extracted
Knowledge Bases}},
booktitle = {KDD},
year = {2014}
}
```
### Contributions
| embedding-data/WikiAnswers | [
"task_categories:sentence-similarity",
"task_ids:semantic-similarity-classification",
"language:en",
"license:mit",
"region:us"
] | 2022-07-08T23:13:25+00:00 | {"language": ["en"], "license": "mit", "task_categories": ["sentence-similarity", "paraphrase-mining"], "task_ids": ["semantic-similarity-classification"], "paperswithcode_id": "embedding-data/WikiAnswers", "pretty_name": "WikiAnswers"} | 2022-08-02T02:33:01+00:00 |
54c7e700ad81e76204a401dabcb99d0995c24a47 |
测试数据集
| changxin/test_pq | [
"annotations_creators:expert-generated",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:n<1K",
"source_datasets:original",
"language:ch",
"license:afl-3.0",
"region:us"
] | 2022-07-09T04:51:24+00:00 | {"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["ch"], "license": "afl-3.0", "multilinguality": ["monolingual"], "size_categories": ["n<1K"], "source_datasets": ["original"], "task_categories": ["other-test"], "task_ids": ["other-test"], "paperswithcode_id": "ix", "pretty_name": "Test Dataset", "type": "test"} | 2022-07-09T06:16:25+00:00 |
5be4ed72cb4b36286ea12103b29ba690fa5102b7 |
# Dataset Card for "UnpredicTable-rated-low" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_rated-low | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-09T07:47:52+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-rated-low"} | 2022-08-04T19:12:07+00:00 |
7711c1ba72d06d6a47b4359d657abcd3b6ab2fdb |
# Dataset Card for "UnpredicTable-rated-medium" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_rated-medium | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-09T07:53:46+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-rated-medium"} | 2022-08-04T19:12:40+00:00 |
d28f159164bbf1a19e0ecf09d9f2454c2e66a219 |
# Dataset Card for "UnpredicTable-rated-high" - Dataset of Few-shot Tasks from Tables
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ethanperez.net/unpredictable
- **Repository:** https://github.com/JunShern/few-shot-adaptation
- **Paper:** Few-shot Adaptation Works with UnpredicTable Data
- **Point of Contact:** [email protected], [email protected]
### Dataset Summary
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
There are several dataset versions available:
* [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
* [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
* [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
* UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
* [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
* [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
* [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
* UnpredicTable data subsets based on the website of origin:
* [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
* [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
* [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
* [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
* [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
* [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
* [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
* [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
* [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
* [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
* [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
* [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
* [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
* [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
* [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
* [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
* [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
* [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
* [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
* [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
* UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
* [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
* [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
* [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
* [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
* [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
* [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
* [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
* [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
* [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
* [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
* [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
* [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
* [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
* [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
* [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
* [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
* [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
* [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
* [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
* [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
* [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
* [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
* [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
* [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
* [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
* [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
* [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
* [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
* [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
* [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
* [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
### Supported Tasks and Leaderboards
Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
### Languages
English
## Dataset Structure
### Data Instances
Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
### Data Fields
'task': task identifier
'input': column elements of a specific row in the table.
'options': for multiple choice classification, it provides the options to choose from.
'output': target column element of the same row as input.
'pageTitle': the title of the page containing the table.
'outputColName': output column name
'url': url to the website containing the table
'wdcFile': WDC Web Table Corpus file
### Data Splits
The UnpredicTable datasets do not come with additional data splits.
## Dataset Creation
### Curation Rationale
Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
### Source Data
#### Initial Data Collection and Normalization
We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
#### Who are the source language producers?
The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
### Annotations
#### Annotation process
Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
[UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
#### Who are the annotators?
Annotations were carried out by a lab assistant.
### Personal and Sensitive Information
The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
### Discussion of Biases
Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
### Other Known Limitations
No additional known limitations.
## Additional Information
### Dataset Curators
Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
### Licensing Information
Apache 2.0
### Citation Information
```
@misc{chan2022few,
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
title = {Few-shot Adaptation Works with UnpredicTable Data},
publisher={arXiv},
year = {2022},
url = {https://arxiv.org/abs/2208.01009}
}
```
| MicPie/unpredictable_rated-high | [
"task_categories:multiple-choice",
"task_categories:question-answering",
"task_categories:zero-shot-classification",
"task_categories:text2text-generation",
"task_categories:table-question-answering",
"task_categories:text-generation",
"task_categories:text-classification",
"task_categories:tabular-classification",
"task_ids:multiple-choice-qa",
"task_ids:extractive-qa",
"task_ids:open-domain-qa",
"task_ids:closed-domain-qa",
"task_ids:closed-book-qa",
"task_ids:open-book-qa",
"task_ids:language-modeling",
"task_ids:multi-class-classification",
"task_ids:natural-language-inference",
"task_ids:topic-classification",
"task_ids:multi-label-classification",
"task_ids:tabular-multi-class-classification",
"task_ids:tabular-multi-label-classification",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"language:en",
"license:apache-2.0",
"arxiv:2208.01009",
"region:us"
] | 2022-07-09T07:56:24+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["multiple-choice", "question-answering", "zero-shot-classification", "text2text-generation", "table-question-answering", "text-generation", "text-classification", "tabular-classification"], "task_ids": ["multiple-choice-qa", "extractive-qa", "open-domain-qa", "closed-domain-qa", "closed-book-qa", "open-book-qa", "language-modeling", "multi-class-classification", "natural-language-inference", "topic-classification", "multi-label-classification", "tabular-multi-class-classification", "tabular-multi-label-classification"], "pretty_name": "UnpredicTable-rated-high"} | 2022-08-04T19:11:37+00:00 |
bbbbe1058950bad355118b9db17521683f12b0d2 | # Dialog bAbI tasks data
In this directory is the set of 6 tasks for testing end-to-end dialog systems in the restaurant domain as described in the paper "Learning End-to-End Goal-Oriented Dialog" by Bordes & Weston (http://arxiv.org/abs/1605.07683). The aim is that each task tests a unique aspect of dialog. Tasks are designed to complement the set of 20 bAbI tasks for story understanding already released with the paper "Towards AI Complete Question Answering: A Set of Prerequisite Toy Tasks" by Weston et al. (http://arxiv.org/abs/1502.05698).
## Data
For each task, there are 1000 dialogs for training, 1000 for development and 1000 for testing. For tasks 1-5, we also include a second test set (with suffix -OOV.txt) that contains dialogs including entities not present in training and development sets.
The file format for each task is as follows:
`ID user_utterance [tab] bot_utterances`
The IDs for a given dialog start at 1 and increase. When the IDs in a file reset back to 1 you can consider the following sentences as a new dialog. When the bot speaks two times in a row, we used the special token "<SILENCE>" to fill in for the missing user utterance.
For example (for task 1):
```
1 hi hello what can i help you with today
2 can you make a restaurant reservation with italian cuisine for six people in a cheap price range i'm on it
3 <SILENCE> where should it be
4 rome please ok let me look into some options for you
5 <SILENCE> api_call italian rome six cheap
```
The goal of the tasks is to predict the bot utterances, that can be sentences or API calls (sentences starting with the special token "api_call").
Along with the train, dev and test sets, we also include a knowledge base file (dialog-babi-kb-all.txt) that contain all entities appearing in dialogs for tasks 1-5. We also include a file containing the candidates to select the answer from (dialog-babi-candidates.txt) for tasks 1-5, that is simply made of all the bot utterances in train, dev, test for these tasks.
Task 6 is a bit different since its data comes from the Dialog State Tracking Challenge 2 (http://camdial.org/~mh521/dstc/), which we modified to convert it into the same format as the other tasks. There is no OOV test set associated with this task and the knowledge base (dialog-babi-task6-dstc2-kb.txt) is imperfect. This task has its own candidates file (dialog-babi-task6-dstc2-candidates.txt).
## License
This dataset is released under Creative Commons Attribution 3.0 Unported license. A copy of this license is included with the data.
## Contact
The author of this porting is Alessandro Suglia and he has only made available the dataset via
Huggingface datasets.
For more details on the dataset and baselines, see the paper "Learning End-to-End Goal-Oriented Dialog" by Antoine Bordes and Jason Weston (http://arxiv.org/abs/1605.07683). For any information, contact Antoine Bordes : abordes (at) fb (dot) com .
| Heriot-WattUniversity/dialog_babi | [
"arxiv:1605.07683",
"arxiv:1502.05698",
"region:us"
] | 2022-07-09T08:32:32+00:00 | {} | 2022-07-12T07:27:12+00:00 |
afb1696c468d769453989ac44294001a49e92792 | This dataset only consists of linearized underlying data table of charts and their corresponding summaries.
Model that use this dataset: https://huggingface.co/saadob12/t5_C2T_autochart
## Created By:
Zhu, J., Ran, J., Lee, R. K. W., Choo, K., & Li, Z. (2021). AutoChart: A Dataset for Chart-to-Text Generation Task. arXiv preprint arXiv:2108.06897.
**Paper**: https://arxiv.org/abs/2108.06897
**Orignal gitlab repo**: https://gitlab.com/bottle_shop/snlg/chart/autochart
# Description from the original gitlab repo
Analytical description of charts is an exciting and important research area with many academia and industry benefits. Yet, this challenging task has received limited attention from the computational linguistics research community. This paper aims to encourage more research into this important area by proposing AutoChart, the first large chart analytical description dataset. Specifically, we offer a novel framework that generates the charts and their analytical description automatically. We also empirically demonstrate that the generate analytical descriptions are diverse, coherent, and relevant to the corresponding charts. The image file can be downloaded in [this link](https://drive.google.com/file/d/1SgVqyDnZypO3nSqHAG6aXHal-o-F60EC/view?usp=sharing).
# Langugage
The data is in english and the summaries are in english.
# Dataset split
| train | valid | test |
|:---:|:---:| :---:|
| 23336 | 1297 | 1296 |
**Name of Contributor:** Saad Obaid ul Islam
| saadob12/Autochart | [
"arxiv:2108.06897",
"region:us"
] | 2022-07-09T10:49:49+00:00 | {} | 2022-07-10T09:08:55+00:00 |
81c11dc231014eefabd36647edaf2bc62596d820 | This dataset only consists of linearized underlying data table of charts and their corresponding summaries.
Model that use this dataset: https://huggingface.co/saadob12/t5_C2T_big
## Created By:
Kanthara, S., Leong, R. T. K., Lin, X., Masry, A., Thakkar, M., Hoque, E., & Joty, S. (2022). Chart-to-Text: A Large-Scale Benchmark for Chart Summarization. arXiv preprint arXiv:2203.06486.
**Paper**: https://arxiv.org/abs/2203.06486
**Orignal github repo**: https://github.com/vis-nlp/Chart-to-text
# Abstract from the Paper
Charts are commonly used for exploring data
and communicating insights. Generating nat-
ural language summaries from charts can be
very helpful for people in inferring key in-
sights that would otherwise require a lot of
cognitive and perceptual efforts. We present
Chart-to-text, a large-scale benchmark with
two datasets and a total of 44,096 charts cover-
ing a wide range of topics and chart types. We
explain the dataset construction process and
analyze the datasets. We also introduce a num-
ber of state-of-the-art neural models as base-
lines that utilize image captioning and data-to-
text generation techniques to tackle two prob-
lem variations: one assumes the underlying
data table of the chart is available while the
other needs to extract data from chart images.
Our analysis with automatic and human eval-
uation shows that while our best models usu-
ally generate fluent summaries and yield rea-
sonable BLEU scores, they also suffer from
hallucinations and factual errors as well as dif-
ficulties in correctly explaining complex pat-
terns and trends in charts.
### Note
The original paper published two sub-datasets one collected from statista and the other from pew. The dataset upload here is from statista. Images can be downloaded from the github repo mentioned above.
# Langugage
The data is in english and the summaries are in english.
# Dataset split
| train | valid | test |
|:---:|:---:| :---:|
| 24367 | 5222 | 5222 |
**Name of Contributor:** Saad Obaid ul Islam | saadob12/chart-to-text | [
"arxiv:2203.06486",
"region:us"
] | 2022-07-09T11:10:51+00:00 | {} | 2022-07-10T09:09:33+00:00 |
0fa6325d81289c7bee994cada84feeaef7d5de73 | Cris1907/marIA-UG | [
"license:apache-2.0",
"region:us"
] | 2022-07-09T12:43:44+00:00 | {"license": "apache-2.0"} | 2022-10-26T02:56:25+00:00 |
|
e79c71b6b526bc9b7e539943ed7a28cffa136647 | Cris1907/autotrain-data-marIA-UG | [
"region:us"
] | 2022-07-09T12:53:54+00:00 | {} | 2022-07-09T12:57:47+00:00 |
|
8ab5394e2a6302185614a17d8878ce111ab0f746 | hungnm/multilingual-amazon-review-sentiment-processed | [
"license:mit",
"region:us"
] | 2022-07-09T16:30:11+00:00 | {"license": "mit"} | 2022-07-09T16:41:04+00:00 |
|
f75101f732c78327133fac8ae1adc1cdc2a71432 | j | AlejandroSoumah/cancer_images_soumah | [
"region:us"
] | 2022-07-09T16:32:25+00:00 | {} | 2022-07-09T16:32:39+00:00 |
17849ed8daf554fec15778094357687f18e13e5c | Dataset1 | kasumi222/busy2 | [
"region:us"
] | 2022-07-09T17:22:42+00:00 | {} | 2022-07-09T17:23:19+00:00 |
6fb3c059df1fc4ff99cd25a709a222691ec13cc0 | jorge-henao/historias_conflicto_colombia | [
"license:apache-2.0",
"region:us"
] | 2022-07-09T17:26:16+00:00 | {"license": "apache-2.0"} | 2022-07-10T14:26:41+00:00 |
|
d1c67195aa6fc74bf477505446cf1e27fa22dde1 | etan18/SampleMCDataset | [
"license:unknown",
"region:us"
] | 2022-07-09T19:12:18+00:00 | {"license": "unknown"} | 2022-07-09T19:13:27+00:00 |
|
9796b1be535e8abb5f0e3d711871e9637304466d | thebfbdfiobsesser/Idkeaither | [
"license:afl-3.0",
"region:us"
] | 2022-07-10T03:35:50+00:00 | {"license": "afl-3.0"} | 2022-07-10T03:35:50+00:00 |
|
5326062032b8d6b1a9bdfbe7fe8ea4a1f997405a | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: google/pegasus-large
* Dataset: pn_summary
* Config: 1.0.0
* Split: train
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@marsraker09](https://huggingface.co/marsraker09) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-pn_summary-5464695d-10495406 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-10T10:47:54+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["pn_summary"], "eval_info": {"task": "summarization", "model": "google/pegasus-large", "metrics": [], "dataset_name": "pn_summary", "dataset_config": "1.0.0", "dataset_split": "train", "col_mapping": {"text": "article", "target": "summary"}}} | 2022-07-11T13:22:50+00:00 |
152d1ac751d8406ad7c995fa1cc45e6dcec0ddac | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: facebook/bart-large-xsum
* Dataset: xsum
* Config: default
* Split: test
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@AlekseyKorshuk](https://huggingface.co/AlekseyKorshuk) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-xsum-02414083-10505407 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-10T11:33:59+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["xsum"], "eval_info": {"task": "summarization", "model": "facebook/bart-large-xsum", "metrics": [], "dataset_name": "xsum", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"text": "document", "target": "summary"}}} | 2022-07-10T12:05:20+00:00 |
6c8f8cc9629bc717ff25fa96e6cb64dfbad446fd | yaqingwang90/LiST_CLUE | [
"license:mit",
"region:us"
] | 2022-07-10T16:46:27+00:00 | {"license": "mit"} | 2022-07-10T16:49:29+00:00 |
|
b63942bf00044ed3db0013ed8d052217b9f986d9 |
# Dataset Card for "RO-FB-Offense"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/readerbench/ro-fb-offense](https://github.com/readerbench/ro-fb-offense)
- **Repository:** [https://github.com/readerbench/ro-fb-offense](https://github.com/readerbench/ro-fb-offense)
- **Paper:** FB-RO-Offense – A Romanian Dataset and Baseline Models for detecting Offensive Language in Facebook Comments
- **Point of Contact:** [Andrei Paraschiv](https://github.com/AndyTheFactory)
### Dataset Summary
FB-RO-Offense corpus, an offensive speech dataset containing 4,455 user-generated comments from Facebook live broadcasts available in Romanian
The annotation follows the hierarchical tagset proposed in the Germeval 2018 Dataset.
The following Classes are available:
* OTHER: Non-Offensive Language
* OFFENSIVE:
- PROFANITY
- INSULT
- ABUSE
### Languages
Romanian
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
'sender': '$USER1208',
'no_reacts': 1,
'text': 'PLACEHOLDER TEXT',
'label': OTHER,
}
```
### Data Fields
- `sender`: a `string` feature.
- 'no_reacts': a `integer`
- `text`: a `string`.
- `label`: categorical `OTHER`, `PROFANITY`, `INSULT`, `ABUSE`
### Data Splits
| name |train|test|
|---------|----:|---:|
|ro|x|x|
## Dataset Creation
### Curation Rationale
Collecting data for abusive language classification for Romanian Language.
### Source Data
Facebook comments
#### Initial Data Collection and Normalization
#### Who are the source language producers?
Social media users
### Annotations
#### Annotation process
#### Who are the annotators?
Native speakers
### Personal and Sensitive Information
The data was public at the time of collection. No PII removal has been performed.
## Considerations for Using the Data
### Social Impact of Dataset
The data definitely contains abusive language. The data could be used to develop and propagate offensive language against every target group involved, i.e. ableism, racism, sexism, ageism, and so on.
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
This data is available and distributed under Apache-2.0 license
### Citation Information
```
@inproceedings{busuioc2022fb-ro-offense,
title={FB-RO-Offense – A Romanian Dataset and Baseline Models for detecting Offensive Language in Facebook Comments},
author={ Busuioc, Gabriel-Razvan and Paraschiv, Andrei and Dascalu, Mihai},
booktitle={International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) 2022},
year={2022}
}
```
### Contributions
| readerbench/ro-fb-offense | [
"task_categories:text-classification",
"task_ids:hate-speech-detection",
"annotations_creators:expert-generated",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:ro",
"license:apache-2.0",
"hate-speech-detection",
"region:us"
] | 2022-07-10T16:53:14+00:00 | {"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["ro"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["hate-speech-detection"], "pretty_name": "RO-FB-Offense", "extra_gated_prompt": "Warning: this repository contains harmful content (abusive language, hate speech).", "tags": ["hate-speech-detection"]} | 2023-02-20T13:26:28+00:00 |
d3602f61599f0724dfd5f51d15dfe7559ae5827e |
## Dataset Summary
This dataset obtained by language classification and filtering of the [Common Crawl](https://commoncrawl.org/) (May-2022) corpus using the [ungoliant](https://github.com/oscar-corpus/ungoliant) architecture. Data is distributed by taking Indonesian language only.
### Loader
TBD
### Licensing Information
These data are released under this licensing scheme
We do not own any of the text from which these data has been extracted.
We license the actual packaging of these data under the Creative Commons CC0 license ("no rights reserved") http://creativecommons.org/publicdomain/zero/1.0/
To the extent possible under law, Inria has waived all copyright and related or neighboring rights to OSCAR
This work is published from: France.
Should you consider that our data contains material that is owned by you and should therefore not be reproduced here, please:
* Clearly identify yourself, with detailed contact data such as an address, telephone number or email address at which you can be contacted.
* Clearly identify the copyrighted work claimed to be infringed.
* Clearly identify the material that is claimed to be infringing and information reasonably sufficient to allow us to locate the material.
We will comply to legitimate requests by removing the affected sources from the next release of the corpus.
### Citation Information
```
@ARTICLE{2022arXiv220106642A,
author = {{Abadji}, Julien and {Ortiz Suarez}, Pedro and {Romary}, Laurent and {Sagot}, Beno{\^\i}t},
title = "{Towards a Cleaner Document-Oriented Multilingual Crawled Corpus}",
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2022,
month = jan,
eid = {arXiv:2201.06642},
pages = {arXiv:2201.06642},
archivePrefix = {arXiv},
eprint = {2201.06642},
primaryClass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220106642A},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{AbadjiOrtizSuarezRomaryetal.2021,
author = {Julien Abadji and Pedro Javier Ortiz Su{\'a}rez and Laurent Romary and Beno{\^i}t Sagot},
title = {Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus},
series = {Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-9) 2021. Limerick, 12 July 2021 (Online-Event)},
editor = {Harald L{\"u}ngen and Marc Kupietz and Piotr Bański and Adrien Barbaresi and Simon Clematide and Ines Pisetta},
publisher = {Leibniz-Institut f{\"u}r Deutsche Sprache},
address = {Mannheim},
doi = {10.14618/ids-pub-10468},
url = {https://nbn-resolving.org/urn:nbn:de:bsz:mh39-104688},
pages = {1 -- 9},
year = {2021},
abstract = {Since the introduction of large language models in Natural Language Processing, large raw corpora have played a crucial role in Computational Linguistics. However, most of these large raw corpora are either available only for English or not available to the general public due to copyright issues. Nevertheless, there are some examples of freely available multilingual corpora for training Deep Learning NLP models, such as the OSCAR and Paracrawl corpora. However, they have quality issues, especially for low-resource languages. Moreover, recreating or updating these corpora is very complex. In this work, we try to reproduce and improve the goclassy pipeline used to create the OSCAR corpus. We propose a new pipeline that is faster, modular, parameterizable, and well documented. We use it to create a corpus similar to OSCAR but larger and based on recent data. Also, unlike OSCAR, the metadata information is at the document level. We release our pipeline under an open source license and publish the corpus under a research-only license.},
language = {en}
}
@ARTICLE{caswell-etal-2021-quality,
author = {{Caswell}, Isaac and {Kreutzer}, Julia and {Wang}, Lisa and {Wahab}, Ahsan and {van Esch}, Daan and {Ulzii-Orshikh}, Nasanbayar and {Tapo}, Allahsera and {Subramani}, Nishant and {Sokolov}, Artem and {Sikasote}, Claytone and {Setyawan}, Monang and {Sarin}, Supheakmungkol and {Samb}, Sokhar and {Sagot}, Beno{\^\i}t and {Rivera}, Clara and {Rios}, Annette and {Papadimitriou}, Isabel and {Osei}, Salomey and {Ortiz Su{\'a}rez}, Pedro Javier and {Orife}, Iroro and {Ogueji}, Kelechi and {Niyongabo}, Rubungo Andre and {Nguyen}, Toan Q. and {M{\"u}ller}, Mathias and {M{\"u}ller}, Andr{\'e} and {Hassan Muhammad}, Shamsuddeen and {Muhammad}, Nanda and {Mnyakeni}, Ayanda and {Mirzakhalov}, Jamshidbek and {Matangira}, Tapiwanashe and {Leong}, Colin and {Lawson}, Nze and {Kudugunta}, Sneha and {Jernite}, Yacine and {Jenny}, Mathias and {Firat}, Orhan and {Dossou}, Bonaventure F.~P. and {Dlamini}, Sakhile and {de Silva}, Nisansa and {{\c{C}}abuk Ball{\i}}, Sakine and {Biderman}, Stella and {Battisti}, Alessia and {Baruwa}, Ahmed and {Bapna}, Ankur and {Baljekar}, Pallavi and {Abebe Azime}, Israel and {Awokoya}, Ayodele and {Ataman}, Duygu and {Ahia}, Orevaoghene and {Ahia}, Oghenefego and {Agrawal}, Sweta and {Adeyemi}, Mofetoluwa},
title = "{Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets}",
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language, Computer Science - Artificial Intelligence},
year = 2021,
month = mar,
eid = {arXiv:2103.12028},
pages = {arXiv:2103.12028},
archivePrefix = {arXiv},
eprint = {2103.12028},
primaryClass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv210312028C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{ortiz-suarez-etal-2020-monolingual,
title = "A Monolingual Approach to Contextualized Word Embeddings for Mid-Resource Languages",
author = "Ortiz Su{'a}rez, Pedro Javier and
Romary, Laurent and
Sagot, Benoit",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.156",
pages = "1703--1714",
abstract = "We use the multilingual OSCAR corpus, extracted from Common Crawl via language classification, filtering and cleaning, to train monolingual contextualized word embeddings (ELMo) for five mid-resource languages. We then compare the performance of OSCAR-based and Wikipedia-based ELMo embeddings for these languages on the part-of-speech tagging and parsing tasks. We show that, despite the noise in the Common-Crawl-based OSCAR data, embeddings trained on OSCAR perform much better than monolingual embeddings trained on Wikipedia. They actually equal or improve the current state of the art in tagging and parsing for all five languages. In particular, they also improve over multilingual Wikipedia-based contextual embeddings (multilingual BERT), which almost always constitutes the previous state of the art, thereby showing that the benefit of a larger, more diverse corpus surpasses the cross-lingual benefit of multilingual embedding architectures.",
}
@inproceedings{OrtizSuarezSagotRomary2019,
author = {Pedro Javier {Ortiz Su{'a}rez} and Benoit Sagot and Laurent Romary},
title = {Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures},
series = {Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7) 2019. Cardiff, 22nd July 2019},
editor = {Piotr Bański and Adrien Barbaresi and Hanno Biber and Evelyn Breiteneder and Simon Clematide and Marc Kupietz and Harald L{"u}ngen and Caroline Iliadi},
publisher = {Leibniz-Institut f{"u}r Deutsche Sprache},
address = {Mannheim},
doi = {10.14618/ids-pub-9021},
url = {http://nbn-resolving.de/urn:nbn:de:bsz:mh39-90215},
pages = {9 -- 16},
year = {2019},
abstract = {Common Crawl is a considerably large, heterogeneous multilingual corpus comprised of crawled documents from the internet, surpassing 20TB of data and distributed as a set of more than 50 thousand plain text files where each contains many documents written in a wide variety of languages. Even though each document has a metadata block associated to it, this data lacks any information about the language in which each document is written, making it extremely difficult to use Common Crawl for monolingual applications. We propose a general, highly parallel, multithreaded pipeline to clean and classify Common Crawl by language; we specifically design it so that it runs efficiently on medium to low resource infrastructures where I/O speeds are the main constraint. We develop the pipeline so that it can be easily reapplied to any kind of heterogeneous corpus and so that it can be parameterised to a wide range of infrastructures. We also distribute a 6.3TB version of Common Crawl, filtered, classified by language, shuffled at line level in order to avoid copyright issues, and ready to be used for NLP applications.},
language = {en}
}
```
| acul3/Oscar_Indo_May_2022 | [
"task_ids:language-modeling",
"annotations_creators:no-annotation",
"language_creators:found",
"source_datasets:original",
"arxiv:2201.06642",
"arxiv:2103.12028",
"region:us"
] | 2022-07-10T17:02:44+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["found"], "source_datasets": ["original"], "task_categories": ["sequence-modeling"], "task_ids": ["language-modeling"], "pretty_name": "OSCAR_Indo_May_2022", "languages": ["id"], "licenses": ["cc0-1.0"]} | 2022-07-10T17:30:15+00:00 |
3146ccc9a5b0d99bff094d03a84464919a0236fb |
SimulacraUnsupervised is a download of Simulacra Aesthetic Captions from JDP converted to a JPEG compressed parquet.
Under the BirdL-AirL License | BirdL/SimulacraUnsupervised | [
"task_categories:unconditional-image-generation",
"size_categories:100K<n<1M",
"region:us"
] | 2022-07-10T18:17:34+00:00 | {"annotations_creators": [], "language_creators": [], "language": [], "multilinguality": [], "size_categories": ["100K<n<1M"], "source_datasets": [], "task_categories": ["unconditional-image-generation"], "task_ids": [], "pretty_name": "Simulacra Aes Captions Unsupervised", "tags": []} | 2022-12-19T20:31:16+00:00 |
78166f908eb6e85c67ea0f0f27d8bdb6997392b8 | [Needs More Information]
# Dataset Card for Questions-vs-Statements-Classification
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
## Dataset Description
- **Homepage:** [Kaggle](https://www.kaggle.com/datasets/shahrukhkhan/questions-vs-statementsclassificationdataset)
- **Point of Contact:** [Shahrukh Khan](https://www.kaggle.com/shahrukhkhan)
### Dataset Summary
A dataset containing statements and questions with their corresponding labels.
### Supported Tasks and Leaderboards
multi-class-classification
### Languages
en
## Dataset Structure
### Data Splits
Train Test Valid
## Dataset Creation
### Curation Rationale
The goal of this project is to classify sentences, based on type:
Statement (Declarative Sentence)
Question (Interrogative Sentence)
### Source Data
[Kaggle](https://www.kaggle.com/datasets/shahrukhkhan/questions-vs-statementsclassificationdataset)
#### Initial Data Collection and Normalization
The dataset is created by parsing out the SQuAD dataset and combining it with the SPAADIA dataset.
### Other Known Limitations
Questions in this case ar are only one sentence, statements are a single sentence or more. They are classified correctly but don't include sentences prior to questions.
## Additional Information
### Dataset Curators
[SHAHRUKH KHAN](https://www.kaggle.com/shahrukhkhan)
### Licensing Information
[CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/)
| jonaskoenig/Questions-vs-Statements-Classification | [
"region:us"
] | 2022-07-10T19:24:09+00:00 | {} | 2022-07-11T14:36:35+00:00 |
93689a9a52b0d0ecc12126b258a16f597150f230 | chenz16/curriculum_benchmark | [
"license:mit",
"region:us"
] | 2022-07-11T00:50:55+00:00 | {"license": "mit"} | 2022-07-11T00:51:34+00:00 |
|
875791b7e0afdfdfabaca83358541de2839ecb0f | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: t5-large
* Dataset: cnn_dailymail
* Config: 3.0.0
* Split: train
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@shahbazsyed](https://huggingface.co/shahbazsyed) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-cnn_dailymail-73d015e6-10555411 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-11T06:39:55+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["cnn_dailymail"], "eval_info": {"task": "summarization", "model": "t5-large", "metrics": ["bertscore"], "dataset_name": "cnn_dailymail", "dataset_config": "3.0.0", "dataset_split": "train", "col_mapping": {"text": "article", "target": "highlights"}}} | 2022-07-11T20:21:10+00:00 |
e9c8c2d842e5019f0c9bf21d80b786b4445109fa | Li-Tang/cn_text | [
"license:apache-2.0",
"region:us"
] | 2022-07-11T08:48:59+00:00 | {"license": "apache-2.0"} | 2022-07-11T08:50:11+00:00 |
|
6f2d7325c4141750b9d3707c0002fc89a0543584 | HuggingFaceM4/flickr30k | [
"license:other",
"region:us"
] | 2022-07-11T11:35:53+00:00 | {"license": "other"} | 2022-07-11T13:25:27+00:00 |
|
4c082ce83a06a96df6778730fd41de34f412fd57 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Token Classification
* Model: saattrupdan/nbailab-base-ner-scandi
* Dataset: dane
* Config: default
* Split: test
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@KennethEnevoldsen](https://huggingface.co/KennethEnevoldsen) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-dane-2d14d683-10645434 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-11T12:13:24+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["dane"], "eval_info": {"task": "entity_extraction", "model": "saattrupdan/nbailab-base-ner-scandi", "metrics": [], "dataset_name": "dane", "dataset_config": "default", "dataset_split": "test", "col_mapping": {"tokens": "tokens", "tags": "ner_tags"}}} | 2022-07-11T12:14:03+00:00 |
b570f863dc7da86ab63e1f695309218b12ad010b | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: patrickvonplaten/bert2bert_cnn_daily_mail
* Dataset: cnn_dailymail
* Config: 3.0.0
* Split: train
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@mumumumu](https://huggingface.co/mumumumu) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-cnn_dailymail-da2ad07e-10655435 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-11T12:15:22+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["cnn_dailymail"], "eval_info": {"task": "summarization", "model": "patrickvonplaten/bert2bert_cnn_daily_mail", "metrics": [], "dataset_name": "cnn_dailymail", "dataset_config": "3.0.0", "dataset_split": "train", "col_mapping": {"text": "article", "target": "highlights"}}} | 2022-07-12T04:57:39+00:00 |
efd9bcd04d7c0cc8ee8655a0f448dc315c7623ff |
# Dataset Card for Brill Iconclass AI Test Set
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://iconclass.org/testset/](https://iconclass.org/testset/)
- **Repository:**[https://iconclass.org/testset/](https://iconclass.org/testset/)
- **Paper:**[https://iconclass.org/testset/ICONCLASS_and_AI.pdf](https://iconclass.org/testset/ICONCLASS_and_AI.pdf)
- **Leaderboard:**
- **Point of Contact:**[[email protected]](mailto:[email protected])
### Dataset Summary
> A test dataset and challenge to apply machine learning to collections described with the Iconclass classification system.
This dataset contains `87749` images with [Iconclass](https://iconclass.org/) metadata assigned to the images. The [iconclass](https://iconclass.org/) metadata classification system is intended to provide ['the comprehensive classification system for the content of images.'](https://iconclass.org/).
> Iconclass was developed in the Netherlands as a standard classification for recording collections, with the idea of assembling huge databases that will allow the retrieval of images featuring particular details, subjects or other common factors. It was developed in the 1970s and was loosely based on the Dewey Decimal System because it was meant to be used in art library card catalogs. [source](https://en.wikipedia.org/wiki/Iconclass)
The [Iconclass](https://iconclass.org)
> view of the world is subdivided in 10 main categories...An Iconclass concept consists of an alphanumeric class number (“notation”) and a corresponding content definition (“textual correlate”). An object can be tagged with as many concepts as the user sees fit. [source](https://iconclass.org/)
These ten divisions are as follows:
- 0 Abstract, Non-representational Art
- 1 Religion and Magic
- 2 Nature
- 3 Human being, Man in general
- 4 Society, Civilization, Culture
- 5 Abstract Ideas and Concepts
- 6 History
- 7 Bible
- 8 Literature
- 9 Classical Mythology and Ancient History
Within each of these divisions further subdivision's are possible (9 or 10 subdivisions). For example, under `4 Society, Civilization, Culture`, one can find:
- 41 · material aspects of daily life
- 42 · family, descendance
- 43 · recreation, amusement
- 44 · state; law; political life
- ...
See [https://iconclass.org/4](https://iconclass.org/4) for the full list.
To illustrate we can look at some example Iconclass classifications.
`41A12` represents `castle`. This classification is generated via building from the 'base' division `4`, with the following attributes:
- 4 · Society, Civilization, Culture
- 41 · material aspects of daily life
- 41A · housing
- 41A1 · civic architecture; edifices; dwellings
[source](https://iconclass.org/41A12)
The construction of Iconclass of parts makes it particularly interesting (and challenging) to tackle via Machine Learning. Whilst one could tackle this dataset as a (multi) label image classification problem, this is only one way of tackling it. For example in the above label `castle` giving the model the 'freedom' to predict only a partial label could result in the prediction `41A` i.e. housing. Whilst a very particular form of housing this prediction for 'castle' is not 'wrong' so much as it is not as precise as a human cataloguer may provide.
### Supported Tasks and Leaderboards
As discussed above this dataset could be tackled in various ways:
- as an image classification task
- as a multi-label classification task
- as an image to text task
- as a task whereby a model predicts partial sequences of the label.
This list is not exhaustive.
### Languages
This dataset doesn't have a natural language. The labels themselves can be treated as a form of language i.e. the label can be thought of as a sequence of tokens that construct a 'sentence'.
## Dataset Structure
The dataset contains a single configuration.
### Data Instances
An example instance of the dataset is as follows:
``` python
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=390x500 at 0x7FC7FFBBD2D0>,
'label': ['31A235', '31A24(+1)', '61B(+54)', '61B:31A2212(+1)', '61B:31D14']}
```
### Data Fields
The dataset is made up of
- an image
- a sequence of Iconclass labels
### Data Splits
The dataset doesn't provide any predefined train, validation or test splits.
## Dataset Creation
> To facilitate the creation of better models in the cultural heritage domain, and promote the research on tools and techniques using Iconclass, we are making this dataset freely available. All that we ask is that any use is acknowledged and results be shared so that we can all benefit. The content is sampled from the Arkyves database. [source](https://labs.brill.com/ictestset/)
[More Information Needed]
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The images are samples from the [Arkyves database](https://brill.com/view/db/arko?language=en). This collection includes images from
> from libraries and museums in many countries, including the Rijksmuseum in Amsterdam, the Netherlands Institute for Art History (RKD), the Herzog August Bibliothek in Wolfenbüttel, and the university libraries of Milan, Utrecht and Glasgow. [source](https://brill.com/view/db/arko?language=en)
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
The annotations are derived from the source dataset see above. Most annotations were likely created by staff with experience with the Iconclass metadata schema.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
Iconclass as a metadata standard absorbs biases from the time and place of its creation (1940s Netherlands). In particular, '32B human races, peoples; nationalities' has been subject to criticism. '32B36 'primitive', 'pre-modern' peoples' is one example of a category which we may not wish to adopt. In general, there are components of the subdivisions of `32B` which reflect a belief that race is a scientific category rather than socially constructed.
The Iconclass community is actively exploring these limitations; for example, see [Revising Iconclass section 32B human races, peoples; nationalities](https://web.archive.org/web/20210425131753/https://iconclass.org/Updating32B.pdf).
One should be aware of these limitations to Iconclass, and in particular, before deploying a model trained on this data in any production settings.
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Etienne Posthumus
### Licensing Information
[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)
### Citation Information
```
@MISC{iconclass,
title = {Brill Iconclass AI Test Set},
author={Etienne Posthumus},
year={2020}
}
```
### Contributions
Thanks to [@davanstrien](https://github.com/davanstrien) for adding this dataset. | biglam/brill_iconclass | [
"task_categories:image-classification",
"task_categories:image-to-text",
"task_categories:feature-extraction",
"task_ids:multi-class-image-classification",
"task_ids:multi-label-image-classification",
"task_ids:image-captioning",
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:other-iconclass-metadata",
"size_categories:10K<n<100K",
"license:cc0-1.0",
"lam",
"art",
"region:us"
] | 2022-07-11T12:16:25+00:00 | {"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "license": ["cc0-1.0"], "multilinguality": ["other-iconclass-metadata"], "size_categories": ["10K<n<100K"], "source_datasets": [], "task_categories": ["image-classification", "image-to-text", "feature-extraction"], "task_ids": ["multi-class-image-classification", "multi-label-image-classification", "image-captioning"], "pretty_name": "Brill Iconclass AI Test Set ", "tags": ["lam", "art"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "list": "string"}], "splits": [{"name": "train", "num_bytes": 3281967920.848, "num_examples": 87744}], "download_size": 3313602175, "dataset_size": 3281967920.848}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2023-12-21T10:17:10+00:00 |
530c56654e422a9d36bc549977c2be4c9ed36ab4 |
## about
- aeslc dataset but cleaned and keywords extracted to a new column
- an EDA website generated via pandas profiling [is on netlify here](https://aeslc-kw-train-eda.netlify.app/)
```
DatasetDict({
train: Dataset({
features: ['email_body', 'subject_line', 'clean_email', 'clean_email_keywords'],
num_rows: 14436
})
test: Dataset({
features: ['email_body', 'subject_line', 'clean_email', 'clean_email_keywords'],
num_rows: 1906
})
validation: Dataset({
features: ['email_body', 'subject_line', 'clean_email', 'clean_email_keywords'],
num_rows: 1960
})
})
```
## Python usage
Basic example notebook [here](https://colab.research.google.com/gist/pszemraj/18742da8db4a99e57e95824eaead285a/scratchpad.ipynb).
```python
from datasets import load_dataset
dataset = load_dataset("postbot/aeslc_kw")
```
## Citation
```
@InProceedings{zhang2019slg,
author = "Rui Zhang and Joel Tetreault",
title = "This Email Could Save Your Life: Introducing the Task of Email Subject Line Generation",
booktitle = "Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics",
year = "2019",
address = "Florence, Italy"
}
``` | postbot/aeslc_kw | [
"multilinguality:monolingual",
"source_datasets:aeslc",
"language:en",
"license:mit",
"text2text generation",
"email",
"email generation",
"enron",
"region:us"
] | 2022-07-11T12:23:36+00:00 | {"language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "source_datasets": ["aeslc"], "pretty_name": "AESLC - Cleaned & Keyword Extracted", "tags": ["text2text generation", "email", "email generation", "enron"]} | 2022-08-07T11:14:34+00:00 |
a07fe10431eed994e4c51cd9fdd1c4ccc39c3b65 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Token Classification
* Model: huggingface-course/bert-finetuned-ner
* Dataset: conll2003
* Config: conll2003
* Split: test
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@jordyvl](https://huggingface.co/jordyvl) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-conll2003-e2bfcc2b-10665436 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-11T13:23:17+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["conll2003"], "eval_info": {"task": "entity_extraction", "model": "huggingface-course/bert-finetuned-ner", "metrics": ["jordyvl/ece"], "dataset_name": "conll2003", "dataset_config": "conll2003", "dataset_split": "test", "col_mapping": {"tokens": "tokens", "tags": "ner_tags"}}} | 2022-07-11T13:24:36+00:00 |
eec3e29cb3a2ce97e0e2118e14bd4fc958483ba6 | [](https://zenodo.org/badge/latestdoi/46981468)
# Corpus of Spanish Golden-Age Sonnets
## Introduction
This corpus comprises sonnets written in Spanish between the 16th and 17th centuries.
This corpus is a dataset saved in .csv, from a previous one in .xml.
All the information of the original dataset can be consulted in [its original repository](https://github.com/bncolorado/CorpusSonetosSigloDeOro).
Each sonnet has been annotated in accordance with the TEI standard. Besides the header and structural information, each sonnet includes the formal representation of each verse’s particular **metrical pattern**.
The pattern consists of a sequence of unstressed syllables (represented by the "-" sign) and stressed syllables ("+" sign). Thus, each verse’s metrical pattern is represented as follows:
"---+---+-+-"
Each line in the metric_pattern codifies a line in the sonnet_text column.
## Column description
- 'author' (string): Author of the sonnet described
- 'sonnet_title' (string): Sonnet title
- 'sonnet_text' (string): Full text of the specific sonnet, divided by lines ('\n')
- 'metric_pattern' (string): Full metric pattern of the sonnet, in text, with TEI standard, divided by lines ('\n')
- 'reference_id' (int): Id of the original XML file where the sonnet is extracted
- 'publisher' (string): Name of the publisher
- 'editor' (string): Name of the editor
- 'research_author' (string): Name of the principal research author
- 'metrical_patterns_annotator' (string): Name of the annotation's checker
- 'research_group' (string): Name of the research group that processed the sonnet
## Poets
With the purpose of having a corpus as representative as possible, every author from the 16th and 17th centuries with more than 10 digitalized and available sonnets has been included.
All texts have been taken from the [Biblioteca Virtual Miguel de Cervantes](http://www.cervantesvirtual.com/).
Currently, the corpus comprises more than 5,000 sonnets (more than 71,000 verses).
## Annotation
The metrical pattern annotation has been carried out in a semi-automatic way. Firstly, all sonnets have been processed by an automatic metrical scansion system which assigns a distinct metrical pattern to each verse. Secondly, a part of the corpus has been manually checked and errors have been corrected.
Currently the corpus is going through the manual validation phase, and each sonnet includes information about whether it has already been manually checked or not.
## How to cite this corpus
If you would like to cite this corpus for academic research purposes, please use this reference:
Navarro-Colorado, Borja; Ribes Lafoz, María, and Sánchez, Noelia (2015) "Metrical annotation of a large corpus of Spanish sonnets: representation, scansion and evaluation" 10th edition of the Language Resources and Evaluation Conference 2016 Portorož, Slovenia. ([PDF](http://www.dlsi.ua.es/~borja/navarro2016_MetricalPatternsBank.pdf))
## Further Information
This corpus is part of the [ADSO project](https://adsoen.wordpress.com/), developed at the [University of Alicante](http://www.ua.es) and funded by [Fundación BBVA](http://www.fbbva.es/TLFU/tlfu/ing/home/index.jsp).
If you require further information about the metrical annotation, please consult the [Annotation Guide](https://github.com/bncolorado/CorpusSonetosSigloDeOro/blob/master/GuiaAnotacionMetrica.pdf) (in Spanish) or the following papers:
- Navarro-Colorado, Borja; Ribes-Lafoz, María and Sánchez, Noelia (2016) "Metrical Annotation of a Large Corpus of Spanish Sonnets: Representation, Scansion and Evaluation" [Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)](http://www.lrec-conf.org/proceedings/lrec2016/pdf/453_Paper.pdf) Portorož, Slovenia.
- Navarro-Colorado, Borja (2015) "A computational linguistic approach to Spanish Golden Age Sonnets: metrical and semantic aspects" [Computational Linguistics for Literature NAACL 2015](https://sites.google.com/site/clfl2015/), Denver (Co), USA ([PDF](https://aclweb.org/anthology/W/W15/W15-0712.pdf)).
## License
The metrical annotation of this corpus is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.
About the texts, "this digital object is protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by the organization giving access to it. Further information available at http://www.cervantesvirtual.com/marco-legal/ ". | biglam/spanish_golden_age_sonnets | [
"multilinguality:monolingual",
"language:es",
"license:cc-by-nc-4.0",
"region:us"
] | 2022-07-11T20:19:39+00:00 | {"annotations_creators": [], "language_creators": [], "language": ["es"], "license": ["cc-by-nc-4.0"], "multilinguality": ["monolingual"], "size_categories": [], "source_datasets": [], "task_categories": [], "task_ids": [], "pretty_name": "Spanish Golden-Age Sonnets", "tags": []} | 2022-08-17T13:59:49+00:00 |
a8f50f26197e3844ff70a0747ce46db445c1350f | # Dataset Card for atypical_animacy
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://bl.iro.bl.uk/concern/datasets/323177af-6081-4e93-8aaf-7932ca4a390a?locale=en
- **Repository:** https://github.com/Living-with-machines/AtypicalAnimacy
- **Paper:** https://arxiv.org/abs/2005.11140
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Mariona Coll Ardanuy](mailto:[email protected]), [Daniel CS Wilson](mailto:[email protected])
### Dataset Summary
Atypical animacy detection dataset, based on nineteenth-century sentences in English extracted from an open dataset of nineteenth-century books digitized by the British Library. This dataset contains 598 sentences containing mentions of machines. Each sentence has been annotated according to the animacy and humanness of the machine in the sentence.
### Supported Tasks and Leaderboards
- `text-classification` - This dataset can be used to determine if a mention of an entity in a document was humanlike or not
- `entity-recognition` - The dataset can be used to fine tune large models for NER, albeit for a very specific use case
### Languages
The text in the dataset is in English, as written by authors of books digitized by the British Library. The associated BCP-47 code in `en`
## Dataset Structure
The dataset has a single configuration
### Data Instances
An example data point
```
{'id': '002757962_01_184_16',
'sentence': '100 shows a Cornish boiler improperly seated with one small side flue and a bottom flue.',
'context': 'Fig. 100 shows a Cornish boiler improperly seated with one small side flue and a bottom flue. The effect of this on a long boiler is to cause springing and leakage of the seams from the heat being applied to one side of the boiler only.',
'target': 'boiler',
'animacy': 0.0,
'humanness': 1.0,
'offsets': [20, 26],
'date': '1893'}
```
### Data Fields
- id: sentence identifier according to internal Living with Machines BL books indexing.
- sentence: sentence where target expression occurs.
- context: sentence where target expression occurs, plus one sentence to the left and one sentence to the right.
- target: target expression
- animacy: animacy of the target expression
- humanness: humanness of the target expression
### Data Splits
Train | 598
## Dataset Creation
The dataset was created by manually annotating books that had been digitized by the British Library. According to the paper's authors,
> "we provide a basis for examining how machines were imagined during the nineteenth century as everything from lifeless mechanical objects to living beings, or even human-like agents that feel, think, and love. We focus on texts from nineteenth-century Britain, a society being transformed by industrialization, as a good candidate for studying the broader issue"
### Curation Rationale
From the paper:
> The Stories dataset is largely composed of target expressions that correspond to either typically animate or typically inanimate entities. Even though some cases of unconventional animacy can be found(folktales, in particular, are richer in typically inanimate entities that become animate), these accountfor a very small proportion of the data.6 We decided to create our own dataset (henceforth 19thC Machines dataset) to gain a better sense of the suitability of our method to the problem of atypical animacy detection, with particular attention to the case of animacy of machines in nineteenth-century texts.
### Source Data
#### Initial Data Collection and Normalization
The dataset was generated by manually annotating books that have been digitized by the British Library
#### Who are the source language producers?
The data was originally produced by British authors in the 19th century. The books were then digitzed whcih produces some noise due to the OCR method. The annotators are from The Alan Turing Institute, The British Library, University of Cambridge, University of Exeter and Queen Mary University of London
### Annotations
#### Annotation process
Annotation was carried out in two parts.
For the intial annotation process, from the paper:
> "For human annotators, even history and literature experts, language subtleties made this task extremely subjective. In the first task, we masked the target word (i.e. the machine) in each sentence and asked the annotator to fill the slot with the most likely entity between ‘human’, ‘horse’, and ‘machine’, representing three levels in the animacy hierarchy: human, animal, and object (Comrie, 1989, 185). We asked annotators to stick to the most literal meaning and avoid metaphorical interpretations when possible. The second task was more straightforwardly related to determining the animacy of the target entity, given the same 100 sentences. We asked annotators to provide a score between -2 and 2, with -2 being definitely inanimate, -1 possibly inanimate, 1 possibly animate, and 2 definitely animate. Neutral judgements were not allowed. "
For the final annotations, from the paper:
> A subgroup of five annotators collaboratively wrote the guidelines based on their experience annotating the first batch of sentences, taking into account common discrepancies. After discussion, it was decided that a machine would be tagged as animate if it is described as having traits distinctive of biologically animate beings or human-specific skills, or portrayed as having feelings, emotions, or a soul. Sentences like the ones in example 2 would be considered animate, but an additional annotation layer would be provided to capture the notion of humanness, which would be true if the machine is portrayed as sentient and capable of specifically human emotions, and false if it used to suggest some degree of dehumanization.
#### Who are the annotators?
Annotations were carried out by the following people
- Giorgia Tolfo
- Ruth Ahnert
- Kaspar Beelen
- Mariona Coll Ardanuy
- Jon Lawrence
- Katherine McDonough
- Federico Nanni
- Daniel CS Wilson
### Personal and Sensitive Information
This dataset does not have any personal information since they are digitizations of books from the 19th century. Some passages might be sensitive, but it is not explicitly mentioned in the paper.
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
The curators for this dataset are:
- Kaspar Beelen
- Mariona Coll Ardanuy
- Federico Nanni
- Giorgia Tolfo
### Licensing Information
CC0 1.0 Universal Public Domain
### Citation Information
```
@article{DBLP:journals/corr/abs-2005-11140,
author = {Mariona Coll Ardanuy and
Federico Nanni and
Kaspar Beelen and
Kasra Hosseini and
Ruth Ahnert and
Jon Lawrence and
Katherine McDonough and
Giorgia Tolfo and
Daniel C. S. Wilson and
Barbara McGillivray},
title = {Living Machines: {A} study of atypical animacy},
journal = {CoRR},
volume = {abs/2005.11140},
year = {2020},
url = {https://arxiv.org/abs/2005.11140},
eprinttype = {arXiv},
eprint = {2005.11140},
timestamp = {Sat, 23 Jan 2021 01:12:25 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-11140.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | biglam/atypical_animacy | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"task_ids:intent-classification",
"annotations_creators:expert-generated",
"language_creators:machine-generated",
"multilinguality:monolingual",
"size_categories:n<1K",
"source_datasets:original",
"language:en",
"license:cc0-1.0",
"arxiv:2005.11140",
"region:us"
] | 2022-07-11T20:33:07+00:00 | {"annotations_creators": ["expert-generated"], "language_creators": ["machine-generated"], "language": ["en"], "license": ["cc0-1.0"], "multilinguality": ["monolingual"], "size_categories": ["n<1K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["sentiment-classification", "intent-classification"], "pretty_name": "Atypical Animacy", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "target", "dtype": "string"}, {"name": "animacy", "dtype": "float32"}, {"name": "humanness", "dtype": "float32"}, {"name": "offsets", "list": "int32"}, {"name": "date", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 442217, "num_examples": 594}], "download_size": 299650, "dataset_size": 442217}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-08T15:37:52+00:00 |
0f125aa00bb67237cc8017b58b976a251eed07f2 |
# Dataset Card for "huggingartists/ciggy-blacc"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [About](#about)
## Dataset Description
- **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists)
- **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of the generated dataset:** 4014.257119 MB
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/7ba8a81d32ea254df43b31447958e85f.500x500x1.png')">
</div>
</div>
<a href="https://huggingface.co/huggingartists/ciggy-blacc">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ciggy Blacc</div>
<a href="https://genius.com/artists/ciggy-blacc">
<div style="text-align: center; font-size: 14px;">@ciggy-blacc</div>
</a>
</div>
### Dataset Summary
The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.
Model is available [here](https://huggingface.co/huggingartists/ciggy-blacc).
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
en
## How to use
How to load this dataset directly with the datasets library:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/ciggy-blacc")
```
## Dataset Structure
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..."
}
```
### Data Fields
The data fields are the same among all splits.
- `text`: a `string` feature.
### Data Splits
| train |validation|test|
|------:|---------:|---:|
|23| -| -|
'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:
```python
from datasets import load_dataset, Dataset, DatasetDict
import numpy as np
datasets = load_dataset("huggingartists/ciggy-blacc")
train_percentage = 0.9
validation_percentage = 0.07
test_percentage = 0.03
train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))])
datasets = DatasetDict(
{
'train': Dataset.from_dict({'text': list(train)}),
'validation': Dataset.from_dict({'text': list(validation)}),
'test': Dataset.from_dict({'text': list(test)})
}
)
```
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{huggingartists,
author={Aleksey Korshuk}
year=2022
}
```
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
| huggingartists/ciggy-blacc | [
"language:en",
"huggingartists",
"lyrics",
"region:us"
] | 2022-07-12T01:12:25+00:00 | {"language": ["en"], "tags": ["huggingartists", "lyrics"]} | 2022-10-25T09:39:58+00:00 |
163a3ddf102809fa5fa09bf959fe6d09123960e5 | BomboMaster/unl_tesis_linea_investigacion | [
"license:apache-2.0",
"region:us"
] | 2022-07-12T03:30:30+00:00 | {"license": "apache-2.0"} | 2022-07-28T02:40:45+00:00 |
|
04faf4f8d767d9caa50f779d67d678244eecf0b5 | Khedesh/DeepSentiPers | [
"license:apache-2.0",
"region:us"
] | 2022-07-12T09:33:55+00:00 | {"license": "apache-2.0"} | 2022-07-12T10:20:46+00:00 |
|
b2d88b253ff514d56adf2262a99ecacccd2c92b2 | Khedesh/MirasOpinion | [
"license:apache-2.0",
"region:us"
] | 2022-07-12T10:22:00+00:00 | {"license": "apache-2.0"} | 2022-07-12T12:49:58+00:00 |
|
0681013e6518c8d53cac727b2ca4dc821ffd954c | 04-07-22/wep-probes | [
"license:apache-2.0",
"region:us"
] | 2022-07-12T10:48:56+00:00 | {"license": "apache-2.0"} | 2022-07-12T15:26:46+00:00 |
|
4bffc758dca44d78c2ee31ee4e87bb1ee0102cd2 | #### This custom multilingual-multispeaker TTS speech corpus contains 12.800 balanced samples with audio files (wav format sampled with 16000 Hz) and related transcriptions (csv format with two columns) from 18 speakers. The dataset has been assembled from the following sources:
* [VCTK](https://datashare.ed.ac.uk/handle/10283/3443) : 428 + 426 + 426 english male samples (p259, p274, p286) (CC BY 4.0)
* [LJSpeech](https://keithito.com/LJ-Speech-Dataset/) : 1280 english female samples (public domain)
* [m-ailabs](https://www.caito.de/2019/01/03/the-m-ailabs-speech-dataset/) : 1280 french male samples (public free licence)
* [SIWIS](https://datashare.ed.ac.uk/handle/10283/2353) : 1024 french female samples (CC BY 4.0)
* [Rhasspy](https://github.com/rhasspy/dataset-voice-kerstin) : 1082 german female samples (CC0 1.0)
* [Thorsten](https://www.thorsten-voice.de) : 1280 german male samples (CC0)
* [TTS-Portuguese-Corpus](https://github.com/Edresson/TTS-Portuguese-Corpus) : 2560 portuguese male samples (CC BY 4.0)
* [Marylux](https://github.com/marytts/marylux-data) : 663 luxembourgish & 198 german & 256 french female samples (CC BY-NC-SA 4.0)
* [uni.lu](http://engelmann.uni.lu/dictee/index.php) : 409 luxembourgish female & 231 luxembourgish male samples (© uni.lu)
* [rtl.lu](https://www.rtl.lu/meenung/commentaire) : 1257 luxembourgish male samples (© RTL-CLT-UFA)
* Charel : 11 luxembourgish boy samples from my grandchild
#### The dataset has been manually checked and the transcriptions have been expanded and eventually corrected to comply with the audio files. The data structure is equivalent to the mailabs format. The folder nesting is shown below:
```
mailabs
language-1
by_book
female
speaker-1
wavs/ folder
metadata.csv
metadata-train.csv
metadata-eval.csv
speaker-2
wavs/ folder
metadata.csv
metadata-train.csv
metadata-eval.csv
...
male
speaker-1
wavs/ folder
metadata.csv
metadata-train.csv
metadata-eval.csv
speaker-2
wavs/ folder
metadata.csv
metadata-train.csv
metadata-eval.csv
...
language-2
by_book
...
language-3
by_book
...
...
```
#### Thanks to [RTL](https://www.rtl.lu/) and to the [University of Luxembourg](https://wwwen.uni.lu/) for permission to use and share selected copyrighted data. | mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS | [
"language:lb",
"language:de",
"language:fr",
"language:en",
"language:pt",
"license:cc-by-nc-sa-4.0",
"region:us"
] | 2022-07-12T11:39:49+00:00 | {"language": ["lb", "de", "fr", "en", "pt"], "license": "cc-by-nc-sa-4.0"} | 2022-07-12T14:53:36+00:00 |
b0b1ccdad6871e5627a748317f30216af9e03f23 | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Question Answering
* Model: autoevaluate/extractive-question-answering
* Dataset: squad
* Config: plain_text
* Split: validation
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@lewtun](https://huggingface.co/lewtun) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-c230b859-684d-4c33-ba1d-1f5cafa82377-327627 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-12T11:47:11+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["squad"], "eval_info": {"task": "extractive_question_answering", "model": "autoevaluate/extractive-question-answering", "metrics": [], "dataset_name": "squad", "dataset_config": "plain_text", "dataset_split": "validation", "col_mapping": {"context": "context", "question": "question", "answers-text": "answers.text", "answers-answer_start": "answers.answer_start"}}} | 2022-07-12T11:48:58+00:00 |
f4d8f1ddfa82c2e325acdeb90d88e3d6c530241a | # Vietnamese Inverse Text Normalization
Inverse text normalization (ITN) is the task that transforms spoken to written styles. It is particularly useful in automatic speech recognition (ASR) systems where proper names are often miss-recognized by their pronunciations instead of the written forms. By applying ITN, we can improve the readability of the ASR system’s output significantly. This dataset provides data for doing ITN task in the Vietnamese language.
For example:
| Spoken (src) | Written (tgt) | Types |
|--------------------------------------------------|--------------|----------------------------|
| tám giờ chín phút ngày ba tháng tư năm hai nghìn | 8h9 3/4/2000 | time and date |
| tám mét khối năm mươi ki lô gam | 8m3 50 kg | number and unit of measure |
| không chín sáu hai bảy bảy chín chín không bốn | 0962779904 | phone number |
## [Dataset](https://colab.research.google.com/drive/1VlNZfkw_GmAbXiza9LMekMMMRyqTqFl3?usp=sharing)
The ITN dataset has 3 splits: _train_, _validation_, and _test_.
| Dataset Split | Number of Instances in Split |
| ------------- |----------------------------- |
| Train | 500,000 |
| Validation | 2,500 |
| Test | 2,500 | | nguyenvulebinh/spoken_norm_pattern | [
"region:us"
] | 2022-07-12T11:51:19+00:00 | {} | 2022-09-28T05:10:15+00:00 |
fd99d298790f6a4e389eb3df9835bf85bc7e1bfd | # VietAI assignment: Vietnamese Inverse Text Normalization dataset
## Dataset Description
Inverse text normalization (ITN) is the task that transforms spoken to written styles. It is particularly useful in automatic speech recognition (ASR) systems where proper names are often miss-recognized by their pronunciations instead of the written forms. By applying ITN, we can improve the readability of the ASR system’s output significantly. This dataset provides data for doing ITN task in the Vietnamese language.
For example:
| Spoken | Written | Types |
|--------------------------------------------------|--------------|----------------------------|
| tám giờ chín phút ngày ba tháng tư năm hai nghìn | 8h9 3/4/2000 | time and date |
| tám mét khối năm mươi ki lô gam | 8m3 50 kg | number and unit of measure |
| không chín sáu hai bảy bảy chín chín không bốn | 0962779904 | phone number |
### Data Splits
The ITN dataset has 3 splits: _train_, _validation_, and _test_. In _train_, _validation_ splits, the input (src) and their label (tgt) are provided. In the _test_ splits, only the input (src) is provided.
| Dataset Split | Number of Instances in Split |
| ------------- |----------------------------- |
| Train | 500,000 |
| Validation | 2,500 |
| Test | 2,500 |
| VietAI/spoken_norm_assignment | [
"region:us"
] | 2022-07-12T12:03:29+00:00 | {} | 2022-07-12T12:33:30+00:00 |
37b34ed990d1333bf869040ab103d19f553ad3d5 | WeedCrop Image Dataset
Data Description
It includes 2822 images.
Images are annotated in YOLO v5 PyTorch format.
-Train directory contains 2469 images and respective labels in yolov5 Pytorch format.
-Validation directory contains 235 images and respective labels in yolov5 Pytorch format.
-Test directory contains 118 images and respective labels in yolov5 Pytorch format.
Reference-
https://www.kaggle.com/datasets/vinayakshanawad/weedcrop-image-dataset | Sa-m/cropsVSweed | [
"region:us"
] | 2022-07-12T12:34:36+00:00 | {} | 2022-07-12T12:48:01+00:00 |
b65b3be2d3a7f2d9e799c0b4479e142cbacc3a74 | # ashaar
introducing ashaar, the largest dataset for arabic poetry
# general statistics
| metric | value |
|-----------------|-----------|
| number of poems | 254,630 |
| number of baits | 3,857,429 |
| number of poets | 7,167 |
# License
This dataset is released under fair use for research development only. Poets have the sole right to take down any access to their work. The authors of the websites, also, have the right to take down any material that does not conform with that. This work should not be used for any commercial purposes.
| arbml/ashaar | [
"region:us"
] | 2022-07-12T13:42:57+00:00 | {} | 2022-09-03T17:05:56+00:00 |
625984d7432747c0838d81125d401da72e69b33e | # Dataset Card for "squad-v2-fi"
### Dataset Summary
Machine translated and normalized Finnish version of the SQuAD-v2.0 dataset. Details about the translation and normalization processes can be found [here](https://helda.helsinki.fi/handle/10138/344973).
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
## Dataset Structure
### Data Instances
Example data:
```
{
"title": "Josefina (Ruotsin kuningatar)",
"paragraphs": [
{
"qas": [
{
"question": "Milloin Josefina Maximiliana Eugenia Napoleona av Leuchtenberg syntyi?",
"id": "2149392872931478957",
"answers": [
{
"answer_start": 59,
"text": "14. maaliskuuta 1807"
}
],
"is_impossible": false
}
],
"context": "Josefina Maximiliana Eugenia Napoleona av Leuchtenberg (14. maaliskuuta 1807 − 7. kesäkuuta 1876, Tukholma) oli Ruotsi-Norjan kuningatar ja kuningas Oskar I:n puoliso."
}
]
}
```
### Data Fields
The data fields are the same among all splits.
#### plain_text
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
### Data Splits
| name |train|validation|
|----------|----:|---------:|
|plain_text|92383| 8737|
### Citation Information
```
@MastersThesis{3241c198b3f147faacbc6d8b64ed9419,
author = "Kylli{\"a}inen, {Ilmari}",
title = "Neural Factoid Question Answering and Question Generation for Finnish",
language = "en",
address = "Helsinki, Finland",
school = "University of Helsinki",
year = "2022",
month = "jun",
day = "15",
url = "https://helda.helsinki.fi/handle/10138/344973"
}
``` | ilmariky/SQuAD_v2_fi | [
"task_categories:question-answering",
"task_ids:extractive-qa",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"language:fi",
"license:gpl-3.0",
"question-generation",
"region:us"
] | 2022-07-12T14:54:59+00:00 | {"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced", "found"], "language": ["fi"], "license": ["gpl-3.0"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "task_categories": ["question-answering"], "task_ids": ["extractive-qa"], "pretty_name": "SQuAD-v2-fi", "tags": ["question-generation"], "train-eval-index": [{"config": "plain_text", "task": "question-answering", "task_id": "extractive_question_answering", "splits": {"train_split": "train", "eval_split": "validation"}, "col_mapping": {"question": "question", "context": "context", "answers": {"text": "text", "answer_start": "answer_start"}}}]} | 2022-10-25T14:46:46+00:00 |
fb1586468a932064c125c3053a66bac399271434 | # Egyptian hieroglyphs 𓂀
## _Hieroglyphs image dataset along with Language Model !_

## Features
- This dataset is build from the hieroglyphs found in 10 different pictures from the book "The Pyramid of Unas" (Alexandre Piankoff, 1955). We therefore urge you to have access to this book before using the dataset.
- The ten different pictures used throughout this dataset are: 3,5,7,9,20,21,22,23,39,41 (numbers represent the numbers used in the book "The pyramid of Unas".
- Each hieroglyph is manually annotated and labelled according the Gardiner Sign List. The images are stored with their label and number in their name.
```sh
totalImages = 4210 (of which 179 are labelled as UNKNOWN)
totalClasses = 171 (excluding the UNKNOWN class)
```
> NOTE: The labelling may not be 100% correct.
> This is out of my knowledge as an Egyptian
> The hieroglyphs that I was unable to identify are labelled as "UNKNOWN".
 
## Process
Aside from the manual annotation, we used a text-detection method to extract the hieroglyphs automatically. The results are shown in `Dataset/Automated/`
The labels on automatic detected images are based on a comparison with the manual detection, and are labelled according the the Pascal VOC overlap criteria (50% overlap).
The x/y position of each hieroglyph is stored in the Location-folder. Each file in this folder contains the exact position of all (raw) annotated hieroglyphs in their corresponding picture.
Example: "030000_S29.png,71,27,105,104," from Dataset/Manual/Locations/3.txt:
- image = Dataset/Manual/Raw/3/030000_D35.png
- Picture number = 3 (Dataset/Pictures/egyptianTexts3.jpg)
- index number = 0
- Gardiner label = D35
- top-left position = 71,27
- bottom-right position = 105,104 (such that width = (105-71) = 34, and the height is (104-27) = 77)
Included in this dataset are some tools to create the language model.
in `Dataset/LanguageModel/JSESH_EgyptianTexts/` are the Egyptian texts from the JSesh database. Jsesh is an open source program, used to write hieroglyphs [Jsesh](http://jsesh.qenherkhopeshef.org/). The texts are written in a mixture of Gardiner labels and transliteration. Each text can be opened by Jsesh to view the hieroglyphs.
Furthermore, a lexicon is included in `Dataset/LanguageModel/Lexicon.txt`. Originally from [OpenGlyp](http://sourceforge.net/projects/openglyph/), but with added word-occurrence based on the EgyptianTexts. Each time a word is encoutered in the text, the word-occurrence is increased by 1 divided by the amount of other possible words that can be made with the surrounding hieroglyphs.
The lexicon is organised as follows: each line contains a word, that is made up by a number of hieroglyphs. Other information such as the translation, transliteration and word-occurrence is also stored. Each element is separated by a semicolon.
`Example: D36,N35,D7,;an;beautiful;0.333333;`
- The 3 hieroglyphs used to write this word: D36,N35,D7,
- transliteration: an
- English translation: beautiful
- word-occurrence: 0.333333
nGrams are included in this dataset as well, under Dataset/LanguageModel/nGrams.txt
Each line in this file contains an nGram (either uni-gram, bi-gram or tri-gram) accompanied by their occurrence.
`Example: G17,N29,G1,;9;`
- Hieroglyphs used to write this tri-gram: G17,N29,G1
- number of occurrences in the EgyptianTexts database: 9
## Structure
The dataset is organised as follows:
Dataset/
|---Pictures/ `Contains 10 pictures from the book "The Pyramid of Unas", which are used throughout this dataset`
|---Manual/ `Contains the manually annotated images of hieroglyphs`
|------Locations/ `Contains the location-files that hold the x/y position of each`
|------hieroglyph.
|------Preprocessed/ `Contains the pre-processed images`
|------Raw/ `Contains the raw, un-pre-processed, images of hieroglyphs`
|---Automated/ `Contains the result of the automatic hieroglpyh detection`
|------Locations/ `Contains the location-files that hold the x/y position of each `
|------hieroglyph.
|------Preprocessed/`Contains the pre-processed images`
|------Raw/ `Contains the raw, un-pre-processed, images of hieroglyphs`
|---ExampleSet7/ `An example of how the test and train set can be separated.`
|------test/ `Simply contains all pre-processed images from picture #7`
|------train/ `Contains all the hieroglyphs images from other pictures.`
|---Language Model/
|------JSESH_EgyptianTexts/ `Contains the EgyptianTexts database of JSesh, which is a program used to write hieroglyphs` [JSesh link](http://jsesh.qenherkhopeshef.org/).
|------Lexicon.txt
|------nGrams.txt
## License
GPL - non commercial use
**What are you waiting for? Make some ✨Magic ✨!** | HamdiJr/Egyptian_hieroglyphs | [
"region:us"
] | 2022-07-12T17:43:05+00:00 | {} | 2022-07-22T17:31:58+00:00 |
ac0e2fc71c40c20d87c743b93ea731663549d5fd | # Dataset Card for "WikiQA-100-fi"
### Dataset Summary
WikiQA-100-fi dataset contains 100 questions related to Finnish Wikipedia articles. The dataset is in the [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format, and there are 10 questions for each category identified by the authors of SQuAD. Unlike SQuAD2.0, WikiQA-100-fi contains only answerable questions. The dataset is tiny compared to actual QA test sets, but it still gives an impression of the models' performance on purely native text data collected by a native speaker. The dataset was originally created as an evaluation set for models that had been mostly fine-tuned with automatically translated QA data. More information about the dataset and models created with it can be found [here](https://helda.helsinki.fi/handle/10138/344973).
## Dataset Structure
### Data Instances
Example data:
```
{
"title": "Folksonomia",
"paragraphs": [
{
"qas": [
{
"question": "Minkälaista sisältöä käyttäjät voivat luokitella folksonomian avulla?",
"id": "6t4ufel624",
"answers": [
{
"text": "www-sivuja, valokuvia ja linkkejä",
"answer_start": 155
}
],
"is_impossible": false
}
],
"context": "Folksonomia (engl. folksonomy) on yhteisöllisesti tuotettu, avoin luokittelujärjestelmä, jonka avulla internet-käyttäjät voivat luokitella sisältöä, kuten www-sivuja, valokuvia ja linkkejä. Etymologisesti folksonomia on peräisin sanojen \"folk\" (suom. väki) ja \"taxonomy\" (suom. taksonomia) leikkimielisestä yhdistelmästä."
}
]
}
```
### Data Fields
#### plain_text
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
### Data Splits
| name | test|
|----------|----:|
|plain_text| 100|
### Citation Information
```
@MastersThesis{3241c198b3f147faacbc6d8b64ed9419,
author = "Kylli{\"a}inen, {Ilmari}",
title = "Neural Factoid Question Answering and Question Generation for Finnish",
language = "en",
address = "Helsinki, Finland",
school = "University of Helsinki",
year = "2022",
month = "jun",
day = "15",
url = "https://helda.helsinki.fi/handle/10138/344973"
}
``` | ilmariky/WikiQA-100-fi | [
"task_categories:question-answering",
"task_ids:extractive-qa",
"multilinguality:monolingual",
"size_categories:n<1k",
"language:fi",
"license:gpl-3.0",
"question-generation",
"region:us"
] | 2022-07-12T17:51:02+00:00 | {"language": ["fi"], "license": ["gpl-3.0"], "multilinguality": ["monolingual"], "size_categories": ["n<1k"], "task_categories": ["question-answering"], "task_ids": ["extractive-qa"], "pretty_name": "WikiQA-100-fi", "tags": ["question-generation"], "train-eval-index": [{"config": "plain_text", "task": "question-answering", "task_id": "extractive_question_answering", "splits": {"train_split": "train", "eval_split": "validation"}, "col_mapping": {"question": "question", "context": "context", "answers": {"text": "text", "answer_start": "answer_start"}}}]} | 2022-10-25T14:47:21+00:00 |
a60a34cb1bab0c3a438e6e215d0eb13c639de3f4 | espejelomar/example | [
"license:mit",
"region:us"
] | 2022-07-12T22:18:21+00:00 | {"license": "mit"} | 2022-07-12T22:24:28+00:00 |
|
43940b6fc454c1a4cbd2257ceb497869190cb4b0 | gongyug/DADoc1 | [
"license:unknown",
"region:us"
] | 2022-07-12T23:34:35+00:00 | {"license": "unknown"} | 2022-07-12T23:34:35+00:00 |
|
183fa71f5416ad2ab1b50b6be69769ad1508581a |
# KcBERT Pre-Training Corpus (Korean News Comments)
## Dataset Description
- **Homepage:** [KcBERT Pre-Training Corpus](https://www.kaggle.com/datasets/junbumlee/kcbert-pretraining-corpus-korean-news-comments)
- **Repository:** [Beomi/KcBERT](https://github.com/Beomi/KcBERT)
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
## KcBERT
[beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base)
Github KcBERT Repo: [https://github.com/Beomi/KcBERT](https://github.com/Beomi/KcBERT)
KcBERT is Korean Comments BERT pretrained on this Corpus set.
(You can use it via Huggingface's Transformers library!)
This Kaggle Dataset contains **CLEANED** dataset preprocessed with the code below.
```python
import re
import emoji
from soynlp.normalizer import repeat_normalize
emojis = ''.join(emoji.UNICODE_EMOJI.keys())
pattern = re.compile(f'[^ .,?!/@$%~%·∼()\x00-\x7Fㄱ-힣{emojis}]+')
url_pattern = re.compile(
r'https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)')
def clean(x):
x = pattern.sub(' ', x)
x = url_pattern.sub('', x)
x = x.strip()
x = repeat_normalize(x, num_repeats=2)
return x
```
### License
[CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)
## Dataset Structure
### Data Instance
```pycon
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/KcBERT_Pre-Training_Corpus")
>>> dataset
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 86246285
})
})
```
### Data Size
download: 7.90 GiB<br>
generated: 11.86 GiB<br>
total: 19.76 GiB
※ You can download this dataset from [kaggle](https://www.kaggle.com/datasets/junbumlee/kcbert-pretraining-corpus-korean-news-comments), and it's 5 GiB. (12.48 GiB when uncompressed)
### Data Fields
- text: `string`
### Data Splits
| | train |
| ---------- | -------- |
| # of texts | 86246285 |
| Bingsu/KcBERT_Pre-Training_Corpus | [
"task_categories:fill-mask",
"task_categories:text-generation",
"task_ids:masked-language-modeling",
"task_ids:language-modeling",
"annotations_creators:no-annotation",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:10M<n<100M",
"source_datasets:original",
"language:ko",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-07-13T05:18:42+00:00 | {"annotations_creators": ["no-annotation"], "language_creators": ["crowdsourced"], "language": ["ko"], "license": ["cc-by-sa-4.0"], "multilinguality": ["monolingual"], "size_categories": ["10M<n<100M"], "source_datasets": ["original"], "task_categories": ["fill-mask", "text-generation"], "task_ids": ["masked-language-modeling", "language-modeling"], "pretty_name": "KcBERT Pre-Training Corpus (Korean News Comments)"} | 2022-07-13T06:26:02+00:00 |
d04851f69eb0d5ae952501387d38d2d4eb073a1c | # Dataset Card for AutoTrain Evaluator
This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset:
* Task: Summarization
* Model: pszemraj/long-t5-tglobal-base-16384-book-summary
* Dataset: samsum
* Config: samsum
* Split: test
To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator).
## Contributions
Thanks to [@lewtun](https://huggingface.co/lewtun) for evaluating this model. | autoevaluate/autoeval-staging-eval-project-22d4f209-4087-42ac-a9a4-6d47e201055d-6458 | [
"autotrain",
"evaluation",
"region:us"
] | 2022-07-13T05:28:21+00:00 | {"type": "predictions", "tags": ["autotrain", "evaluation"], "datasets": ["samsum"], "eval_info": {"task": "summarization", "model": "pszemraj/long-t5-tglobal-base-16384-book-summary", "metrics": [], "dataset_name": "samsum", "dataset_config": "samsum", "dataset_split": "test", "col_mapping": {"text": "dialogue", "target": "summary"}}} | 2022-07-13T05:49:21+00:00 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.