sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
list
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
5f22c8d924620cb0aed0dbb6fcd488b98c1b79e6
# Dataset Card for "shell_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/shell_paths
[ "region:us" ]
2022-11-10T12:04:16+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 99354502, "num_examples": 3657232}], "download_size": 82635721, "dataset_size": 99354502}}
2022-11-10T12:04:28+00:00
9fd38e27d47abd2e31ea9449d0a3244ef9cdb9e5
# Dataset Card for "cmake_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/cmake_paths
[ "region:us" ]
2022-11-10T12:05:46+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14898478, "num_examples": 559316}], "download_size": 7920865, "dataset_size": 14898478}}
2022-11-10T12:05:55+00:00
8d7956373a46b61d5dbbc93eaafac34dbec7f442
# Dataset Card for "cpp_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/cpp_paths
[ "region:us" ]
2022-11-10T12:11:26+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 339979633, "num_examples": 13541537}], "download_size": 250743754, "dataset_size": 339979633}}
2022-11-10T12:11:49+00:00
d9fabc34754e7840bbeaae7c93e51ebee7163cf5
# Dataset Card for "dockerfile_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/dockerfile_paths
[ "region:us" ]
2022-11-10T12:12:30+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 36265516, "num_examples": 1274173}], "download_size": 23300431, "dataset_size": 36265516}}
2022-11-10T12:12:39+00:00
92274710c3b10948f908f2bcc6ad18d4ae46fcbe
This dataset simply loads Google's Analysis-Ready Cloud Optimized ERA5 Reanalysis dataset from Google Public Datasets.
openclimatefix/arco-era5
[ "license:apache-2.0", "region:us" ]
2022-11-10T12:14:40+00:00
{"license": "apache-2.0"}
2022-11-10T12:15:34+00:00
399d15484ac32ea5b97b3a975ff6ba2a1ee921e6
jjoverv/redescubrastyle
[ "license:openrail", "region:us" ]
2022-11-10T12:14:44+00:00
{"license": "openrail"}
2022-11-10T12:14:44+00:00
adda3417bbc9cb098de689b7ff70c50abe247735
# Dataset Card for "html_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/html_paths
[ "region:us" ]
2022-11-10T12:27:27+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 904459341, "num_examples": 32312575}], "download_size": 586813218, "dataset_size": 904459341}}
2022-11-10T12:28:11+00:00
4571f733649eb652dc3f5177bef1ec9d50b23f76
# Dataset Card for "lua_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/lua_paths
[ "region:us" ]
2022-11-10T12:28:24+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21014952, "num_examples": 808034}], "download_size": 11839424, "dataset_size": 21014952}}
2022-11-10T12:28:33+00:00
c6c5c093ae298bc26353208f8fde21b423857736
# Dataset Card for "css_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/css_paths
[ "region:us" ]
2022-11-10T12:31:19+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 158651499, "num_examples": 5726933}], "download_size": 138140586, "dataset_size": 158651499}}
2022-11-10T12:31:36+00:00
c63e568f42042af30725cbb49a850dd5baa5f528
# Dataset Card for "visual-basic_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/visual-basic_paths
[ "region:us" ]
2022-11-10T12:31:42+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5643571, "num_examples": 200013}], "download_size": 1586937, "dataset_size": 5643571}}
2022-11-10T12:31:50+00:00
a8591f85e6cd6f947bdd9363baefd5cc922951ad
# Dataset Card for "sql_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/sql_paths
[ "region:us" ]
2022-11-10T12:32:20+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 35050567, "num_examples": 1267490}], "download_size": 23626806, "dataset_size": 35050567}}
2022-11-10T12:32:29+00:00
d0c81062b8b7d00c6beb0ef721f1c81d97ead65d
# Dataset Card for "tex_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/tex_paths
[ "region:us" ]
2022-11-10T12:32:40+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12350897, "num_examples": 448193}], "download_size": 6578383, "dataset_size": 12350897}}
2022-11-10T12:32:48+00:00
9ff5bde3da778a10f68fc440cebdf798f08e6c61
# Dataset Card for "php_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/php_paths
[ "region:us" ]
2022-11-10T12:39:49+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 910857017, "num_examples": 34179448}], "download_size": 787090086, "dataset_size": 910857017}}
2022-11-10T12:40:45+00:00
69dc5d4d868e74ccbb29f887b6fdbeded3447ffd
# Dataset Card for "julia_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/julia_paths
[ "region:us" ]
2022-11-10T12:40:54+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14862518, "num_examples": 473425}], "download_size": 7932474, "dataset_size": 14862518}}
2022-11-10T12:41:03+00:00
ff60a980c29a5af1c4dddbbdbc475fe6106ad698
# Dataset Card for "assembly_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/assembly_paths
[ "region:us" ]
2022-11-10T12:41:09+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7492209, "num_examples": 324343}], "download_size": 2131380, "dataset_size": 7492209}}
2022-11-10T12:41:17+00:00
a4b3aab622234840a05f4c79520adbc9a7179844
# Dataset Card for "makefile_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/makefile_paths
[ "region:us" ]
2022-11-10T12:41:35+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28586262, "num_examples": 1087444}], "download_size": 22517681, "dataset_size": 28586262}}
2022-11-10T12:41:44+00:00
933d86766ee35adaa6be89d23a30229113bf7f35
# Dataset Card for "javascript_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/javascript_paths
[ "region:us" ]
2022-11-10T12:54:11+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1086652130, "num_examples": 39278951}], "download_size": 931947481, "dataset_size": 1086652130}}
2022-11-10T12:55:18+00:00
2e12d8e250ea5827ad64d8481e2dd01122c0bb91
# Dataset Card for "markdown_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/markdown_paths
[ "region:us" ]
2022-11-10T13:01:33+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 821714901, "num_examples": 28965353}], "download_size": 663085249, "dataset_size": 821714901}}
2022-11-10T13:02:25+00:00
b60d3d46f9388d56418c4f7fea1904c3cd6bc4bc
# Dataset Card for "batchfile_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/batchfile_paths
[ "region:us" ]
2022-11-10T13:02:31+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11616420, "num_examples": 423086}], "download_size": 8986923, "dataset_size": 11616420}}
2022-11-10T13:02:40+00:00
c52da2ae2bd53896544c8ab1ee499f8df97adeb4
LazyLabChina/shuimodancai
[ "license:afl-3.0", "region:us" ]
2022-11-10T13:05:15+00:00
{"license": "afl-3.0"}
2022-11-12T01:48:13+00:00
a480c7b3807ccb6f174055ee918386bc4016975f
# Dataset Card for "c_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/c_paths
[ "region:us" ]
2022-11-10T13:08:20+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 508253008, "num_examples": 19878729}], "download_size": 359733499, "dataset_size": 508253008}}
2022-11-10T13:08:59+00:00
66d6e22b5b7a0acf146d5c9bf9a89934b9012d07
# Dataset Card for "ruby_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/ruby_paths
[ "region:us" ]
2022-11-10T13:10:12+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 169345268, "num_examples": 6390966}], "download_size": 118905787, "dataset_size": 169345268}}
2022-11-10T13:10:29+00:00
aa66f3d11cfbdf7c557af0a7252cb2550413770d
# Dataset Card for "haskell_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/haskell_paths
[ "region:us" ]
2022-11-10T13:10:45+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23059551, "num_examples": 921236}], "download_size": 12139516, "dataset_size": 23059551}}
2022-11-10T13:10:54+00:00
bc25ad35e65d45db2445c945f47da9b4ed4fcca4
# Dataset Card for "fortran_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/fortran_paths
[ "region:us" ]
2022-11-10T13:11:00+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5773596, "num_examples": 243762}], "download_size": 1463437, "dataset_size": 5773596}}
2022-11-10T13:11:08+00:00
5b7e5b14fa32bbb804ec50fab5d5b2277e81d440
siberspace/gaelle2
[ "region:us" ]
2022-11-10T13:12:05+00:00
{}
2022-11-10T13:12:33+00:00
c2e203ac9c1a0484cf21a7fd6fff2104f0031b31
# Dataset Card for "c-sharp_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/c-sharp_paths
[ "region:us" ]
2022-11-10T13:15:33+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 586063746, "num_examples": 20539828}], "download_size": 439948378, "dataset_size": 586063746}}
2022-11-10T13:16:06+00:00
9a8a57728e5c5b7dd93f45e9cf93b45d0b8ab54a
# Dataset Card for "rust_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/rust_paths
[ "region:us" ]
2022-11-10T13:17:08+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 71297350, "num_examples": 3087525}], "download_size": 49706578, "dataset_size": 71297350}}
2022-11-10T13:17:18+00:00
f3f85f8988d13dc427f042efc6e603481d8d3a08
# Dataset Card for "typescript_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/typescript_paths
[ "region:us" ]
2022-11-10T13:21:42+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 536493166, "num_examples": 19441648}], "download_size": 434213958, "dataset_size": 536493166}}
2022-11-10T13:22:14+00:00
70b7bb8cd6c36c701f62f41b0635c8124ac8336d
# Dataset Card for "scala_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/scala_paths
[ "region:us" ]
2022-11-10T13:22:51+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 68488532, "num_examples": 2635793}], "download_size": 35187635, "dataset_size": 68488532}}
2022-11-10T13:23:00+00:00
a149c3a5039b193bc29a0f57dada1982400f30b2
Triton100/KiryuuMichiru2
[ "license:bsd", "region:us" ]
2022-11-10T13:25:55+00:00
{"license": "bsd"}
2022-11-10T16:02:59+00:00
03199d030fdc050ffa9df8a29028d3128fea03ad
# Dataset Card for "python_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/python_paths
[ "region:us" ]
2022-11-10T13:28:40+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 636121755, "num_examples": 23578465}], "download_size": 550836738, "dataset_size": 636121755}}
2022-11-10T13:29:19+00:00
471372c3b0255eff62320029c85ab2cd40afd8dc
# Dataset Card for "perl_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/perl_paths
[ "region:us" ]
2022-11-10T13:29:30+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14604805, "num_examples": 554602}], "download_size": 4964930, "dataset_size": 14604805}}
2022-11-10T13:29:38+00:00
6f7ef421b610ca5c88bbb30883740e3d040127aa
# Dataset Card for "go_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/go_paths
[ "region:us" ]
2022-11-10T13:32:57+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 301556518, "num_examples": 12078461}], "download_size": 219608192, "dataset_size": 301556518}}
2022-11-10T13:33:17+00:00
275fd28622d04fe9cba55698fc89a51fef7c5a80
--- annotations_creators: - found language: - en language_creators: - found license: [] multilinguality: - monolingual pretty_name: librispeech-train-100 size_categories: [] source_datasets: [] tags: [] task_categories: - automatic-speech-recognition task_ids: []--- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
bgstud/data-librispeech100
[ "region:us" ]
2022-11-10T13:33:32+00:00
{}
2022-11-10T13:39:01+00:00
3b71db65661fda9f992bae1b64de5422d46b96fd
# Dataset Card for "java_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/java_paths
[ "region:us" ]
2022-11-10T13:42:58+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1168673674, "num_examples": 43005815}], "download_size": 919178767, "dataset_size": 1168673674}}
2022-11-10T13:44:12+00:00
ccad17bea366c31a400121ceab9c11b60811f7f2
# Dataset Card for "powershell_paths" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cakiki/powershell_paths
[ "region:us" ]
2022-11-10T13:44:21+00:00
{"dataset_info": {"features": [{"name": "repository_name", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15534114, "num_examples": 521952}], "download_size": 7947926, "dataset_size": 15534114}}
2022-11-10T13:44:30+00:00
9fabb23ada1c8a22dfda37e6e417d72afd5564a6
boxzero/testing
[ "license:afl-3.0", "region:us" ]
2022-11-10T15:21:54+00:00
{"license": "afl-3.0"}
2022-11-10T15:21:54+00:00
dde1418cf31cd68c426c5c6a9da63125f45469bc
kartucha/kartucha
[ "region:us" ]
2022-11-10T15:24:12+00:00
{}
2022-11-10T15:24:41+00:00
fa67acb659b8b5a3d212c786a1f9ce545d20ee71
ChristophSchuhmann/imagenet1k-by-SD-V1.4
[ "license:apache-2.0", "region:us" ]
2022-11-10T15:33:02+00:00
{"license": "apache-2.0"}
2022-11-10T15:33:02+00:00
76e45f52830d51bef8c84e6bb4319c5b9c45c012
Aubing-Hou/KillersofThreeKingdoms
[ "license:openrail", "region:us" ]
2022-11-10T15:50:54+00:00
{"license": "openrail"}
2022-11-10T15:50:54+00:00
deef869dedc5fc3fdf55dc905e8b4b27e379eb85
rexelecaps/Dateset
[ "license:unknown", "region:us" ]
2022-11-10T15:57:17+00:00
{"license": "unknown"}
2022-11-10T15:59:26+00:00
be8294568a7c067fc2262334b7d9841b333f080a
bishalbaaniya/my_en
[ "license:artistic-2.0", "region:us" ]
2022-11-10T19:36:46+00:00
{"license": "artistic-2.0"}
2022-11-11T03:18:22+00:00
e1e61ab74cb5165978b478962f0432a3209e194f
# Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
bgstud/libri
[ "task_categories:token-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:mit", "region:us" ]
2022-11-10T19:48:45+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["token-classification"], "task_ids": ["token-classification-other-acronym-identification"], "paperswithcode_id": "acronym-identification", "pretty_name": "Acronym Identification Dataset", "train-eval-index": [{"col_mapping": {"labels": "tags", "tokens": "tokens"}, "config": "default", "splits": {"eval_split": "test"}, "task": "token-classification", "task_id": "entity_extraction"}]}
2022-11-10T20:03:23+00:00
8e566ce5b7c2fd05f61fb2b2fe4f2520706607d1
nateraw/video-demo
[ "license:mit", "region:us" ]
2022-11-10T20:54:09+00:00
{"license": "mit"}
2022-11-10T21:16:49+00:00
30db3effcfc07b638291cfcff248b84dbd8013db
# Dataset Card for "saf_micro_job_german" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Annotation process](#annotation-process) - [Additional Information](#additional-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Paper:** [Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset](https://aclanthology.org/2022.acl-long.587) (Filighera et al., ACL 2022) ### Dataset Summary Short Answer Feedback (SAF) dataset is a short answer dataset introduced in [Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset](https://aclanthology.org/2022.acl-long.587) (Filighera et al., ACL 2022) as a way to remedy the lack of content-focused feedback datasets. This version of the dataset contains 8 German questions used in micro-job training on the crowd-worker platform appJobber - while the original dataset presented in the paper is comprised of an assortment of both English and German short answer questions (with reference answers). Please refer to the [saf_communication_networks_english](https://huggingface.co/datasets/Short-Answer-Feedback/saf_communication_networks_english) dataset to examine the English subset of the original dataset. Furthermore, a similarly constructed SAF dataset (covering the German legal domain) can be found at [saf_legal_domain_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german). ### Supported Tasks and Leaderboards - `short_answer_feedback`: The dataset can be used to train a Text2Text Generation model from HuggingFace transformers in order to generate automatic short answer feedback. ### Languages The questions, reference answers, provided answers and the answer feedback in the dataset are written in German. ## Dataset Structure ### Data Instances An example of an entry of the training split looks as follows. ``` { "id": "1", "question": "Frage 1: Ist das eine Frage?", "reference_answer": "Ja, das ist eine Frage.", "provided_answer": "Ich bin mir sicher, dass das eine Frage ist.", "answer_feedback": "Korrekt!", "verification_feedback": "Correct", "score": 1 } ``` ### Data Fields The data fields are the same among all splits. - `id`: a `string` feature (UUID4 in HEX format). - `question`: a `string` feature representing a question. - `reference_answer`: a `string` feature representing a reference answer to the question. - `provided_answer`: a `string` feature representing an answer that was provided for a particular question. - `answer_feedback`: a `string` feature representing the feedback given to the provided answers. - `verification_feedback`: a `string` feature representing an automatic labeling of the score. It can be `Correct` (`score` = 1), `Incorrect` (`score` = 0) or `Partially correct` (all intermediate scores). - `score`: a `float64` feature (between 0 and 1) representing the score given to the provided answer. ### Data Splits The dataset is comprised of four data splits. - `train`: used for training, contains a set of questions and the provided answers to them. - `validation`: used for validation, contains a set of questions and the provided answers to them (derived from the original training set defined in the paper). - `test_unseen_answers`: used for testing, contains unseen answers to the questions present in the `train` split. - `test_unseen_questions`: used for testing, contains unseen questions that do not appear in the `train` split. | Split |train|validation|test_unseen_answers|test_unseen_questions| |-------------------|----:|---------:|------------------:|--------------------:| |Number of instances| 1226| 308| 271| 602| ## Dataset Creation ### Annotation Process Two experienced appJobber employees were selected to evaluate the crowd-worker platform’s answers, and both of them underwent a general annotation guideline training (supervised by a Psychology doctoral student with prior work in the field of feedback). After the training, the annotators individually provided feedback to the answers following an agreed upon scoring rubric and the general annotation guideline. The individually annotated answer files were then combined into a cohesive gold standard after discussing and solving possible disagreements. ## Additional Information ### Citation Information ``` @inproceedings{filighera-etal-2022-answer, title = "Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset", author = "Filighera, Anna and Parihar, Siddharth and Steuer, Tim and Meuser, Tobias and Ochs, Sebastian", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.587", doi = "10.18653/v1/2022.acl-long.587", pages = "8577--8591", } ``` ### Contributions Thanks to [@JohnnyBoy2103](https://github.com/JohnnyBoy2103) for adding this dataset.
Short-Answer-Feedback/saf_micro_job_german
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:de", "license:cc-by-4.0", "short answer feedback", "micro job", "region:us" ]
2022-11-10T21:21:46+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["other"], "language": ["de"], "license": "cc-by-4.0", "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "pretty_name": "SAF - Micro Job - German", "tags": ["short answer feedback", "micro job"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "provided_answer", "dtype": "string"}, {"name": "answer_feedback", "dtype": "string"}, {"name": "verification_feedback", "dtype": "string"}, {"name": "score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 885526, "num_examples": 1226}, {"name": "validation", "num_bytes": 217946, "num_examples": 308}, {"name": "test_unseen_answers", "num_bytes": 198832, "num_examples": 271}, {"name": "test_unseen_questions", "num_bytes": 545524, "num_examples": 602}], "download_size": 274603, "dataset_size": 1847828}}
2023-03-31T10:47:23+00:00
9358d6f0f87371c0a5f150502b14cb16e382195f
# Dataset Card for "saf_communication_networks_english" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Annotation process](#annotation-process) - [Additional Information](#additional-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Paper:** [Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset](https://aclanthology.org/2022.acl-long.587) (Filighera et al., ACL 2022) ### Dataset Summary Short Answer Feedback (SAF) dataset is a short answer dataset introduced in [Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset](https://aclanthology.org/2022.acl-long.587) (Filighera et al., ACL 2022) as a way to remedy the lack of content-focused feedback datasets. This version of the dataset contains 31 English questions covering a range of college-level communication networks topics - while the original dataset presented in the paper is comprised of an assortment of both English and German short answer questions (with reference answers). Please refer to the [saf_micro_job_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_micro_job_german) dataset to examine the German subset of the original dataset. Furthermore, a similarly constructed SAF dataset (covering the German legal domain) can be found at [saf_legal_domain_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german). ### Supported Tasks and Leaderboards - `short_answer_feedback`: The dataset can be used to train a Text2Text Generation model from HuggingFace transformers in order to generate automatic short answer feedback. ### Languages The questions, reference answers, provided answers and the answer feedback in the dataset are written in English. ## Dataset Structure ### Data Instances An example of an entry of the training split looks as follows. ``` { "id": "1", "question": "Is this a question?", "reference_answer": "Yes, that is a question.", "provided_answer": "I'm certain this is a question.", "answer_feedback": "The response is correct.", "verification_feedback": "Correct", "score": 1 } ``` ### Data Fields The data fields are the same among all splits. - `id`: a `string` feature (UUID4 in HEX format). - `question`: a `string` feature representing a question. - `reference_answer`: a `string` feature representing a reference answer to the question. - `provided_answer`: a `string` feature representing an answer that was provided for a particular question. - `answer_feedback`: a `string` feature representing the feedback given to the provided answers. - `verification_feedback`: a `string` feature representing an automatic labeling of the score. It can be `Correct` (`score` = maximum points achievable), `Incorrect` (`score` = 0) or `Partially correct` (all intermediate scores). - `score`: a `float64` feature representing the score given to the provided answer. For most questions it ranges from 0 to 1. ### Data Splits The dataset is comprised of four data splits. - `train`: used for training, contains a set of questions and the provided answers to them. - `validation`: used for validation, contains a set of questions and the provided answers to them (derived from the original training set defined in the paper). - `test_unseen_answers`: used for testing, contains unseen answers to the questions present in the `train` split. - `test_unseen_questions`: used for testing, contains unseen questions that do not appear in the `train` split. | Split |train|validation|test_unseen_answers|test_unseen_questions| |-------------------|----:|---------:|------------------:|--------------------:| |Number of instances| 1700| 427| 375| 479| ## Dataset Creation ### Annotation Process Two graduate students who had completed the communication networks course were selected to evaluate the answers, and both of them underwent a general annotation guideline training (supervised by a Psychology doctoral student with prior work in the field of feedback). After the training, the annotators individually provided feedback to the answers following an agreed upon scoring rubric and the general annotation guideline. The individually annotated answer files were then combined into a cohesive gold standard after discussing and solving possible disagreements. ## Additional Information ### Citation Information ``` @inproceedings{filighera-etal-2022-answer, title = "Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset", author = "Filighera, Anna and Parihar, Siddharth and Steuer, Tim and Meuser, Tobias and Ochs, Sebastian", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.587", doi = "10.18653/v1/2022.acl-long.587", pages = "8577--8591", } ``` ### Contributions Thanks to [@JohnnyBoy2103](https://github.com/JohnnyBoy2103) for adding this dataset.
Short-Answer-Feedback/saf_communication_networks_english
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc-by-4.0", "short answer feedback", "communication networks", "region:us" ]
2022-11-10T21:22:13+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["other"], "language": ["en"], "license": "cc-by-4.0", "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "pretty_name": "SAF - Communication Networks - English", "tags": ["short answer feedback", "communication networks"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "provided_answer", "dtype": "string"}, {"name": "answer_feedback", "dtype": "string"}, {"name": "verification_feedback", "dtype": "string"}, {"name": "score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 2363828, "num_examples": 1700}, {"name": "validation", "num_bytes": 592869, "num_examples": 427}, {"name": "test_unseen_answers", "num_bytes": 515669, "num_examples": 375}, {"name": "test_unseen_questions", "num_bytes": 777945, "num_examples": 479}], "download_size": 941169, "dataset_size": 4250311}}
2023-03-31T10:46:04+00:00
8024654c829eb2cc7d6b5d64ebc2fbf8c42faf27
bishalbaaniya/my_en_2
[ "license:apache-2.0", "region:us" ]
2022-11-10T22:37:16+00:00
{"license": "apache-2.0"}
2022-11-10T22:56:24+00:00
dfc63068215c270ac0f6702228fd80ea2ae170a5
# TyDiP: A Dataset for Politeness Classification in Nine Typologically Diverse Languages This repo contains the code and data for the EMNLP 2022 findings paper TyDiP: A Dataset for Politeness Classification in Nine Typologically Diverse Languages which can be found [here](https://aclanthology.org/2022.findings-emnlp.420/). ## Data The TyDiP dataset is licensed under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. The `data` folder contains the different files we release as part of the TyDiP dataset. The TyDiP dataset comprises of an English train set and English test set that are adapted from the Stanford Politeness Corpus, and test data in 9 more languages (Hindi, Korean, Spanish, Tamil, French, Vietnamese, Russian, Afrikaans, Hungarian) that we annotated. ``` data/ ├── all ├── binary └── unlabelled_train_sets ``` `data/all` consists of the complete train and test sets. `data/binary` is a filtered version of the above where sentences from the top and bottom 25 percentile of scores is only present. This is the data that we used for training and evaluation in the paper. `data/unlabelled_train_sets` ## Code `politeness_regresor.py` is used for training and evaluation of transformer models To train a model ``` python politeness_regressor.py --train_file data/binary/en_train_binary.csv --test_file data/binary/en_test_binary.csv --model_save_location model.pt --pretrained_model xlm-roberta-large --gpus 1 --batch_size 4 --accumulate_grad_batches 8 --max_epochs 5 --checkpoint_callback False --logger False --precision 16 --train --test --binary --learning_rate 5e-6 ``` To test this trained model on $lang ``` python politeness_regressor.py --test_file data/binary/${lang}_test_binary.csv --load_model model.pt --gpus 1 --batch_size 32 --test --binary ``` ## Pretrained Model XLM-Roberta Large finetuned on the English train set (as discussed and evaluated in the paper) can be found [here](https://huggingface.co/Genius1237/xlm-roberta-large-tydip) ## Politeness Strategies `strategies` contains the processed strategy lexicon for different languages. `strategies/learnt_strategies.xlsx` contains the human edited strategies for 4 langauges ## Annotation Interface `annotation.html` contains the UI used for conducting data annotation ## Citation If you use the English train or test data, please cite the Stanford Politeness Dataset ``` @inproceedings{danescu-niculescu-mizil-etal-2013-computational, title = "A computational approach to politeness with application to social factors", author = "Danescu-Niculescu-Mizil, Cristian and Sudhof, Moritz and Jurafsky, Dan and Leskovec, Jure and Potts, Christopher", booktitle = "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2013", address = "Sofia, Bulgaria", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P13-1025", pages = "250--259", } ``` If you use the test data from the 9 target languages, please cite our paper ``` @inproceedings{srinivasan-choi-2022-tydip, title = "{T}y{D}i{P}: A Dataset for Politeness Classification in Nine Typologically Diverse Languages", author = "Srinivasan, Anirudh and Choi, Eunsol", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-emnlp.420", pages = "5723--5738", } ```
Genius1237/TyDiP
[ "task_categories:text-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:multilingual", "size_categories:1K<n<10K", "language:en", "language:hi", "language:ko", "language:es", "language:ta", "language:fr", "language:vi", "language:ru", "language:af", "language:hu", "license:cc-by-4.0", "politeness", "wikipedia", "multilingual", "region:us" ]
2022-11-11T01:08:56+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en", "hi", "ko", "es", "ta", "fr", "vi", "ru", "af", "hu"], "license": ["cc-by-4.0"], "multilinguality": ["multilingual"], "size_categories": ["1K<n<10K"], "source_datasets": [], "task_categories": ["text-classification"], "task_ids": [], "pretty_name": "TyDiP", "tags": ["politeness", "wikipedia", "multilingual"]}
2023-10-15T04:14:26+00:00
c08c13295ebd8111ab96879ceba43b99ec28afdb
# Dataset Card for "SemanticScholarAbstracts" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
KaiserML/SemanticScholarAbstracts
[ "region:us" ]
2022-11-11T02:45:31+00:00
{"dataset_info": {"features": [{"name": "corpusid", "dtype": "int64"}, {"name": "openaccessinfo", "struct": [{"name": "externalids", "struct": [{"name": "ACL", "dtype": "string"}, {"name": "ArXiv", "dtype": "string"}, {"name": "DOI", "dtype": "string"}, {"name": "MAG", "dtype": "string"}, {"name": "PubMedCentral", "dtype": "string"}]}, {"name": "license", "dtype": "string"}, {"name": "status", "dtype": "string"}, {"name": "url", "dtype": "string"}]}, {"name": "abstract", "dtype": "string"}, {"name": "updated", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 59461773143.463005, "num_examples": 48314588}], "download_size": 37596463269, "dataset_size": 59461773143.463005}}
2022-11-11T03:47:32+00:00
8491055a606b9b1ec690b39e36fbdf1fddb4c4bc
# Dataset Card for "lab" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
claytonsamples/lab
[ "region:us" ]
2022-11-11T02:53:57+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "kimwipes", "1": "nitrile gloves", "2": "petri dish", "3": "serological pipette"}}}}], "splits": [{"name": "train", "num_bytes": 22915125.09, "num_examples": 1415}], "download_size": 19042401, "dataset_size": 22915125.09}}
2022-11-11T02:58:25+00:00
13462a42e3375e80a9bd46a64c58e1bcaba77874
# Dataset Card for "rvl_cdip_400_train_val_test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Format ```` DatasetDict({ test: Dataset({ features: ['image', 'label', 'ground_truth'], num_rows: 1600 }) train: Dataset({ features: ['image', 'label', 'ground_truth'], num_rows: 6400 }) validation: Dataset({ features: ['image', 'label', 'ground_truth'], num_rows: 1600 }) }) ````
jinhybr/rvl_cdip_400_train_val_test
[ "region:us" ]
2022-11-11T04:01:53+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "letter", "1": "form", "2": "email", "3": "handwritten", "4": "advertisement", "5": "scientific report", "6": "scientific publication", "7": "specification", "8": "file folder", "9": "news article", "10": "budget", "11": "invoice", "12": "presentation", "13": "questionnaire", "14": "resume", "15": "memo"}}}}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 197669272.0, "num_examples": 1600}, {"name": "train", "num_bytes": 781258280.0, "num_examples": 6400}, {"name": "validation", "num_bytes": 191125740.0, "num_examples": 1600}], "download_size": 1101475597, "dataset_size": 1170053292.0}}
2022-11-11T15:58:02+00:00
091aec1e2384a20b2b36eb96177755ca13dd0b42
The small 20K version of the Pubmed-RCT dataset by Dernoncourt et al (2017). ``` @article{dernoncourt2017pubmed, title={Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts}, author={Dernoncourt, Franck and Lee, Ji Young}, journal={arXiv preprint arXiv:1710.06071}, year={2017} } ``` Note: This is the cleaned up version by Jin and Szolovits (2018). ``` @article{jin2018hierarchical, title={Hierarchical neural networks for sequential sentence classification in medical scientific abstracts}, author={Jin, Di and Szolovits, Peter}, journal={arXiv preprint arXiv:1808.06161}, year={2018} } ```
armanc/pubmed-rct20k
[ "region:us" ]
2022-11-11T04:20:56+00:00
{}
2022-11-11T08:23:24+00:00
d9327e0fa300d66c0c577330a624a39626f1192e
This is the ScientificQA dataset by Saikh et al (2022). ``` @article{10.1007/s00799-022-00329-y, author = {Saikh, Tanik and Ghosal, Tirthankar and Mittal, Amish and Ekbal, Asif and Bhattacharyya, Pushpak}, title = {ScienceQA: A Novel Resource for Question Answering on Scholarly Articles}, year = {2022}, journal = {Int. J. Digit. Libr.}, month = {sep} }
armanc/ScienceQA
[ "region:us" ]
2022-11-11T05:03:56+00:00
{}
2022-11-11T08:34:35+00:00
6c6b552186533303a3f2153e6cd2b931ba8e2434
# Dataset Card for IDK-MRC ## Dataset Description - **Repository:** [rifkiaputri/IDK-MRC](https://github.com/rifkiaputri/IDK-MRC) - **Paper:** [PDF](https://aclanthology.org/2022.emnlp-main.465/) - **Point of Contact:** [rifkiaputri](https://github.com/rifkiaputri) ### Dataset Summary I(n)dontKnow-MRC (IDK-MRC) is an Indonesian Machine Reading Comprehension dataset that covers answerable and unanswerable questions. Based on the combination of the existing answerable questions in TyDiQA, the new unanswerable question in IDK-MRC is generated using a question generation model and human-written question. Each paragraph in the dataset has a set of answerable and unanswerable questions with the corresponding answer. ### Supported Tasks IDK-MRC is mainly intended to train Machine Reading Comprehension or extractive QA models. ### Languages Indonesian ## Dataset Structure ### Data Instances ``` { "context": "Para ilmuwan menduga bahwa megalodon terlihat seperti hiu putih yang lebih kekar, walaupun hiu ini juga mungkin tampak seperti hiu raksasa (Cetorhinus maximus) atau hiu harimau-pasir (Carcharias taurus). Hewan ini dianggap sebagai salah satu predator terbesar dan terkuat yang pernah ada, dan fosil-fosilnya sendiri menunjukkan bahwa panjang maksimal hiu raksasa ini mencapai 18 m, sementara rata-rata panjangnya berkisar pada angka 10,5 m. Rahangnya yang besar memiliki kekuatan gigitan antara 110.000 hingga 180.000 newton. Gigi mereka tebal dan kuat, dan telah berevolusi untuk menangkap mangsa dan meremukkan tulang.", "qas": [ { "id": "indonesian--6040202845759439489-1", "is_impossible": false, "question": "Apakah jenis hiu terbesar di dunia ?", "answers": [ { "text": "megalodon", "answer_start": 27 } ] }, { "id": "indonesian-0426116372962619813-unans-h-2", "is_impossible": true, "question": "Apakah jenis hiu terkecil di dunia?", "answers": [] }, { "id": "indonesian-2493757035872656854-unans-h-2", "is_impossible": true, "question": "Apakah jenis hiu betina terbesar di dunia?", "answers": [] } ] } ``` ### Data Fields Each instance has several fields: - `context`: context passage/paragraph as a string - `qas`: list of questions related to the `context` - `id`: question ID as a string - `is_impossible`: whether the question is unanswerable (impossible to answer) or not as a boolean - `question`: question as a string - `answers`: list of answers - `text`: answer as a string - `answer_start`: answer start index as an integer ### Data Splits - `train`: 9,332 (5,042 answerable, 4,290 unanswerable) - `valid`: 764 (382 answerable, 382 unanswerable) - `test`: 844 (422 answerable, 422 unanswerable) ## Dataset Creation ### Curation Rationale IDK-MRC dataset is built based on the existing paragraph and answerable questions (ans) in TyDiQA-GoldP (Clark et al., 2020). The new unanswerable questions are automatically generated using the combination of mT5 (Xue et al., 2021) and XLM-R (Conneau et al., 2020) models, which are then manually verified by human annotators (filtered ans and filtered unans). We also asked the annotators to manually write additional unanswerable questions as described in §3.3 (additional unans). Each paragraphs in the final dataset will have a set of filtered ans, filtered unans, and additional unans questions. ### Annotations #### Annotation process In our dataset collection pipeline, the annotators are asked to validate the model-generated unanswerable questions and write a new additional unanswerable questions. #### Who are the annotators? We recruit four annotators with 2+ years of experience in Indonesian NLP annotation using direct recruitment. All of them are Indonesian native speakers who reside in Indonesia (Java Island) and fall under the 18–34 age category. We set the payment to around $7.5 per hour. Given the annotators’ demographic, we ensure that the payment is above the minimum wage rate (as of December 2021). All annotators also have signed the consent form and agreed to participate in this project. ## Considerations for Using the Data The paragraphs and answerable questions that we utilized to build IDK-MRC dataset are taken from Indonesian subset of TyDiQA-GoldP dataset (Clark et al., 2020), which originates from Wikipedia articles. Since those articles are written from a neutral point of view, the risk of harmful content is minimal. Also, all model-generated questions in our dataset have been validated by human annotators to eliminate the risk of harmful questions. During the manual question generation process, the annotators are also encouraged to avoid producing possibly offensive questions. Even so, we argue that further assessment is needed before using our dataset and models in real-world applications. This measurement is especially required for the pre-trained language models used in our experiments, namely mT5 (Xue et al., 2021), IndoBERT (Wilie et al., 2020), mBERT (Devlin et al., 2019), and XLM-R (Conneau et al., 2020). These language models are mostly pre-trained on the common-crawl dataset, which may contain harmful biases or stereotypes. ## Additional Information ### Licensing Information CC BY-SA 4.0 ### Citation Information ```bibtex @inproceedings{putri-oh-2022-idk, title = "{IDK}-{MRC}: Unanswerable Questions for {I}ndonesian Machine Reading Comprehension", author = "Putri, Rifki Afina and Oh, Alice", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-main.465", pages = "6918--6933", } ```
rifkiaputri/idk-mrc
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:machine-generated", "annotations_creators:expert-generated", "language_creators:machine-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:extended|tydiqa", "language:id", "license:cc-by-4.0", "region:us" ]
2022-11-11T05:56:43+00:00
{"annotations_creators": ["machine-generated", "expert-generated"], "language_creators": ["machine-generated", "expert-generated"], "language": ["id"], "license": ["cc-by-4.0"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["extended|tydiqa"], "task_categories": ["question-answering"], "task_ids": ["extractive-qa"], "pretty_name": "IDK-MRC", "tags": []}
2023-05-23T06:43:23+00:00
22d6519d033e3b433daadb49b7fd258dc8c9d3e3
# Dataset Card for "bayc" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sdotmac/bayc
[ "region:us" ]
2022-11-11T06:08:14+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 381887922.0, "num_examples": 10000}], "download_size": 378097332, "dataset_size": 381887922.0}}
2022-11-12T05:19:59+00:00
94c29b56186e07b267d8ae2610e94e7c8642048d
# Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
bgstud/libri-whisper-raw
[ "task_categories:token-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:mit", "region:us" ]
2022-11-11T10:03:50+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["found"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["token-classification"], "task_ids": ["token-classification-other-acronym-identification"], "paperswithcode_id": "acronym-identification", "pretty_name": "Acronym Identification Dataset", "train-eval-index": [{"col_mapping": {"labels": "tags", "tokens": "tokens"}, "config": "default", "splits": {"eval_split": "test"}, "task": "token-classification", "task_id": "entity_extraction"}]}
2022-11-11T10:12:24+00:00
f807452b98a80d2daf6b7e84f4a8a55bec9b0d16
# Dataset Card for "lmqg/qag_tweetqa" ## Dataset Description - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) - **Point of Contact:** [Asahi Ushio](http://asahiushio.com/) ### Dataset Summary This is the question & answer generation dataset based on the [tweet_qa](https://huggingface.co/datasets/tweet_qa). The test set of the original data is not publicly released, so we randomly sampled test questions from the training set. ### Supported Tasks and Leaderboards * `question-answer-generation`: The dataset is assumed to be used to train a model for question & answer generation. Success on this task is typically measured by achieving a high BLEU4/METEOR/ROUGE-L/BERTScore/MoverScore (see our paper for more in detail). ### Languages English (en) ## Dataset Structure An example of 'train' looks as follows. ``` { "paragraph": "I would hope that Phylicia Rashad would apologize now that @missjillscott has! You cannot discount 30 victims who come with similar stories.— JDWhitner (@JDWhitner) July 7, 2015", "questions": [ "what should phylicia rashad do now?", "how many victims have come forward?" ], "answers": [ "apologize", "30" ], "questions_answers": "Q: what should phylicia rashad do now?, A: apologize Q: how many victims have come forward?, A: 30" } ``` The data fields are the same among all splits. - `questions`: a `list` of `string` features. - `answers`: a `list` of `string` features. - `paragraph`: a `string` feature. - `questions_answers`: a `string` feature. ## Data Splits |train|validation|test | |----:|---------:|----:| |4536 | 583| 583| ## Citation Information ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
lmqg/qag_tweetqa
[ "task_categories:text-generation", "task_ids:language-modeling", "multilinguality:monolingual", "size_categories:1k<n<10K", "source_datasets:tweet_qa", "language:en", "license:cc-by-sa-4.0", "question-generation", "arxiv:2210.03992", "region:us" ]
2022-11-11T11:11:25+00:00
{"language": "en", "license": "cc-by-sa-4.0", "multilinguality": "monolingual", "size_categories": "1k<n<10K", "source_datasets": "tweet_qa", "task_categories": ["text-generation"], "task_ids": ["language-modeling"], "pretty_name": "TweetQA for question generation", "tags": ["question-generation"]}
2022-12-02T19:16:46+00:00
bc4d33ef6c32be2053f5ff60a7768bd82f4b66e5
Trullser/Datasetfortrain
[ "license:other", "region:us" ]
2022-11-11T13:25:08+00:00
{"license": "other"}
2022-11-11T13:25:08+00:00
8742dcd8ff947a290cd4ae6fab8384efd3b414c1
MartinMu/StandardDifusion
[ "license:openrail", "region:us" ]
2022-11-11T14:10:08+00:00
{"license": "openrail"}
2022-11-11T16:02:28+00:00
8cf5f918e10ac5cc98e8ba9bb962e6994c19eb43
Yubing/standardBB
[ "license:openrail", "region:us" ]
2022-11-11T14:10:15+00:00
{"license": "openrail"}
2022-11-11T14:10:16+00:00
4ef68edef4dfb32234961dc0a95f07af7562baaa
assq/standard1
[ "license:openrail", "region:us" ]
2022-11-11T14:10:20+00:00
{"license": "openrail"}
2022-11-11T14:11:23+00:00
421ab444b7496ceadc2d18876d53e471131cbca0
aemska/stuhl
[ "license:openrail", "region:us" ]
2022-11-11T14:10:20+00:00
{"license": "openrail"}
2022-11-11T14:12:36+00:00
d1f2a4184134247fa0fbd5db8d7324ef8792c6f8
# Dataset Card for "lmqg/qag_squad" ## Dataset Description - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) - **Point of Contact:** [Asahi Ushio](http://asahiushio.com/) ### Dataset Summary This is the question & answer generation dataset based on the SQuAD. ### Supported Tasks and Leaderboards * `question-answer-generation`: The dataset is assumed to be used to train a model for question & answer generation. Success on this task is typically measured by achieving a high BLEU4/METEOR/ROUGE-L/BERTScore/MoverScore (see our paper for more in detail). ### Languages English (en) ## Dataset Structure An example of 'train' looks as follows. ``` { "paragraph": "\"4 Minutes\" was released as the album's lead single and peaked at number three on the Billboard Hot 100. It was Madonna's 37th top-ten hit on the chart—it pushed Madonna past Elvis Presley as the artist with the most top-ten hits. In the UK she retained her record for the most number-one singles for a female artist; \"4 Minutes\" becoming her thirteenth. At the 23rd Japan Gold Disc Awards, Madonna received her fifth Artist of the Year trophy from Recording Industry Association of Japan, the most for any artist. To further promote the album, Madonna embarked on the Sticky & Sweet Tour; her first major venture with Live Nation. With a gross of $280 million, it became the highest-grossing tour by a solo artist then, surpassing the previous record Madonna set with the Confessions Tour; it was later surpassed by Roger Waters' The Wall Live. It was extended to the next year, adding new European dates, and after it ended, the total gross was $408 million.", "questions": [ "Which single was released as the album's lead single?", "Madonna surpassed which artist with the most top-ten hits?", "4 minutes became Madonna's which number one single in the UK?", "What is the name of the first tour with Live Nation?", "How much did Stick and Sweet Tour grossed?" ], "answers": [ "4 Minutes", "Elvis Presley", "thirteenth", "Sticky & Sweet Tour", "$280 million," ], "questions_answers": "question: Which single was released as the album's lead single?, answer: 4 Minutes | question: Madonna surpassed which artist with the most top-ten hits?, answer: Elvis Presley | question: 4 minutes became Madonna's which number one single in the UK?, answer: thirteenth | question: What is the name of the first tour with Live Nation?, answer: Sticky & Sweet Tour | question: How much did Stick and Sweet Tour grossed?, answer: $280 million," } ``` The data fields are the same among all splits. - `questions`: a `list` of `string` features. - `answers`: a `list` of `string` features. - `paragraph`: a `string` feature. - `questions_answers`: a `string` feature. ## Data Splits |train|validation|test | |----:|---------:|----:| |16462| 2067 | 2429| ## Citation Information ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
lmqg/qag_squad
[ "task_categories:text-generation", "task_ids:language-modeling", "multilinguality:monolingual", "size_categories:1k<n<10K", "source_datasets:lmqg/qg_squad", "language:en", "license:cc-by-sa-4.0", "question-generation", "arxiv:2210.03992", "region:us" ]
2022-11-11T14:12:30+00:00
{"language": "en", "license": "cc-by-sa-4.0", "multilinguality": "monolingual", "size_categories": "1k<n<10K", "source_datasets": "lmqg/qg_squad", "task_categories": ["text-generation"], "task_ids": ["language-modeling"], "pretty_name": "SQuAD for question generation", "tags": ["question-generation"]}
2022-12-18T07:39:03+00:00
34e0afd3940437fcc80958ac2fd80e72f964e7b4
Anas-Uddin/Anas-Uddin
[ "license:openrail", "region:us" ]
2022-11-11T14:15:30+00:00
{"license": "openrail"}
2022-11-11T14:18:43+00:00
6d62363678647455e3cea5039c1d8a6593e2bbf6
fdsghfdh/bjbhk
[ "license:openrail", "region:us" ]
2022-11-11T14:19:31+00:00
{"license": "openrail"}
2022-11-11T14:19:31+00:00
628487d37579276a90afaac4854807b1ed1a1252
Yubing/dogs
[ "license:openrail", "region:us" ]
2022-11-11T14:53:54+00:00
{"license": "openrail"}
2022-11-11T14:54:31+00:00
63a4bc8a5d87894a886edabbc67257b4ad7213d8
NiuDaVinci/niu-davinci
[ "license:afl-3.0", "region:us" ]
2022-11-11T16:49:21+00:00
{"license": "afl-3.0"}
2022-11-11T17:01:29+00:00
a50653db5bd9fcf01aa163087e2974ba1388f8da
# Dataset Card for "lolita-dress-CHIN" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
zhangxinran/lolita-dress-CHIN
[ "region:us" ]
2022-11-11T17:36:11+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 704987635.0, "num_examples": 993}], "download_size": 701091143, "dataset_size": 704987635.0}}
2022-11-11T22:34:20+00:00
b4c532908d2439912f9d6d9e0d9d14f8cad898f9
# Dataset Card for "FewShotSGD" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/FewShotSGD
[ "region:us" ]
2022-11-11T19:11:43+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "test", "num_bytes": 7583282, "num_examples": 15537}, {"name": "train", "num_bytes": 46458280, "num_examples": 83391}, {"name": "validation", "num_bytes": 6337305, "num_examples": 11960}], "download_size": 6517762, "dataset_size": 60378867}}
2022-11-11T19:12:01+00:00
dfe2f4e628f236b5c7d59042d4fd584dfb84032b
ozanba/final_project_dataset
[ "license:other", "region:us" ]
2022-11-11T19:22:14+00:00
{"license": "other"}
2022-12-19T20:26:10+00:00
ac8a3794d6fb430352b38c459b1d77f49f154b60
# Dataset Card for "olm-wikipedia-20221101-kl-language" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Tristan/olm-wikipedia-20221101-kl-language
[ "region:us" ]
2022-11-11T19:32:29+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 311164, "num_examples": 297}], "download_size": 191198, "dataset_size": 311164}}
2022-11-11T19:32:33+00:00
2e0a48fb4a7a928800358270f9601420004a0b95
mozel/Teste
[ "license:openrail", "region:us" ]
2022-11-11T19:59:43+00:00
{"license": "openrail"}
2022-11-11T19:59:43+00:00
c755ed348bdb9c918a0ea6a316d9e0f92ec60de6
# AutoTrain Dataset for project: tweet-es-sent ## Dataset Description This dataset has been automatically processed by AutoTrain for project tweet-es-sent. ### Languages The BCP-47 code for the dataset's language is unk. ## Dataset Structure ### Data Instances A sample from this dataset looks as follows: ```json [ { "target": 1, "text": "1sola vuelta! arauz presidente! 1sola vuelta! todo 1 1sola la 1 es ecdor! por ti!1 por 1 los tuyos!1 por nosotros juntos1 mas de 45 d apoyo popular el 7 se vota 1por la vida por el futuro,por la esperanza guayaquil ec dor es 1" }, { "target": 1, "text": "excelente decisi\u00f3n , las mujeres son importantes y por esa raz\u00f3n, a productos de primera necesidad hay que quitarles el iva " } ] ``` ### Dataset Fields The dataset has the following fields (also called "features"): ```json { "target": "ClassLabel(num_classes=3, names=['0', '1', '2'], id=None)", "text": "Value(dtype='string', id=None)" } ``` ### Dataset Splits This dataset is split into a train and validation split. The split sizes are as follow: | Split name | Num samples | | ------------ | ------------------- | | train | 12400 | | valid | 3685 |
erickdp/autotrain-data-tweet-es-sent
[ "task_categories:text-classification", "region:us" ]
2022-11-11T21:02:59+00:00
{"task_categories": ["text-classification"]}
2022-11-14T09:01:25+00:00
427f6aed010aaa987762d262ce4204444343da4e
# Dataset Card for "SGD_Restaurants" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Restaurants
[ "region:us" ]
2022-11-11T21:15:54+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2860131.272837388, "num_examples": 9906}, {"name": "test", "num_bytes": 163, "num_examples": 1}], "download_size": 1155851, "dataset_size": 2860294.272837388}}
2023-03-21T20:51:19+00:00
32825c9d2ebb9e0e1955f2692361c2544f09f407
# Dataset Card for "SGD_Media" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Media
[ "region:us" ]
2022-11-11T21:16:07+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1404611.2159709618, "num_examples": 6060}, {"name": "test", "num_bytes": 330, "num_examples": 1}], "download_size": 529801, "dataset_size": 1404941.2159709618}}
2023-03-21T20:51:44+00:00
6b1bea67758e47cf0ffedd25a97d0004941decca
# Dataset Card for "SGD_Events" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Events
[ "region:us" ]
2022-11-11T21:16:20+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 4745618.287889816, "num_examples": 17860}, {"name": "test", "num_bytes": 248, "num_examples": 1}], "download_size": 1966143, "dataset_size": 4745866.287889816}}
2023-03-21T20:52:11+00:00
6e99d903784045fa38d781db7d3151ecc5cef621
# Dataset Card for "SGD_Music" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Music
[ "region:us" ]
2022-11-11T21:16:34+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1755419.6172071476, "num_examples": 7554}, {"name": "test", "num_bytes": 193, "num_examples": 1}], "download_size": 694555, "dataset_size": 1755612.6172071476}}
2023-03-21T20:52:36+00:00
ca113ae8c6fee3244146c4018aff3a5f473e6a3f
# Dataset Card for "SGD_Movies" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Movies
[ "region:us" ]
2022-11-11T21:16:47+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1808099.5360110803, "num_examples": 7219}, {"name": "test", "num_bytes": 297, "num_examples": 1}], "download_size": 729887, "dataset_size": 1808396.5360110803}}
2023-03-21T20:53:02+00:00
971d8e55d9bf7b49bc26bf2c1d63c55d5fa391ef
# Dataset Card for "SGD_Flights" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Flights
[ "region:us" ]
2022-11-11T21:17:00+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 6377556.63733501, "num_examples": 20682}, {"name": "test", "num_bytes": 282, "num_examples": 1}], "download_size": 2501341, "dataset_size": 6377838.63733501}}
2023-03-21T20:53:30+00:00
9782d4289e2422909272c3942c0a53e4fa0fe3a9
dlwh/Multi_Legal_Pile
[ "license:cc-by-4.0", "region:us" ]
2022-11-11T21:17:05+00:00
{"license": "cc-by-4.0"}
2022-11-11T21:17:05+00:00
c91b9effc8db0cbd56283ff7a4d3b6fc82c2ffd0
# Dataset Card for "SGD_RideSharing" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_RideSharing
[ "region:us" ]
2022-11-11T21:17:14+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 658561.1466613673, "num_examples": 2515}, {"name": "test", "num_bytes": 188, "num_examples": 1}], "download_size": 242358, "dataset_size": 658749.1466613673}}
2023-03-21T20:53:54+00:00
7e433272415d1cb8830b616792fe04adf63c1c40
# Dataset Card for "SGD_RentalCars" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_RentalCars
[ "region:us" ]
2022-11-11T21:17:26+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1685534.5292607802, "num_examples": 5843}, {"name": "test", "num_bytes": 239, "num_examples": 1}], "download_size": 637179, "dataset_size": 1685773.5292607802}}
2023-03-21T20:54:19+00:00
8cc33c27527cded7cc876ed06bc79e3d05196393
# Dataset Card for "SGD_Buses" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Buses
[ "region:us" ]
2022-11-11T21:17:39+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2009266.9424069906, "num_examples": 7552}, {"name": "test", "num_bytes": 356, "num_examples": 1}], "download_size": 769749, "dataset_size": 2009622.9424069906}}
2023-03-21T20:54:45+00:00
d305b4eb353ffcd37a874e67488483fff50a4bd4
# Dataset Card for "SGD_Hotels" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Hotels
[ "region:us" ]
2022-11-11T21:17:52+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3552843.2265793467, "num_examples": 12520}, {"name": "test", "num_bytes": 439, "num_examples": 1}], "download_size": 1494564, "dataset_size": 3553282.2265793467}}
2023-03-21T20:55:11+00:00
caa9c20d19b957e45c5c37b2bb9ce26ff9c9eda0
# Dataset Card for "SGD_Services" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Services
[ "region:us" ]
2022-11-11T21:18:05+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3478972.4778884, "num_examples": 12956}, {"name": "test", "num_bytes": 88, "num_examples": 1}], "download_size": 1443168, "dataset_size": 3479060.4778884}}
2023-03-21T20:55:38+00:00
d556035534bc479980d168dfdb0964c3b5419fb3
# Dataset Card for "SGD_Homes" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Homes
[ "region:us" ]
2022-11-11T21:18:19+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2242529.6826529265, "num_examples": 7568}, {"name": "test", "num_bytes": 309, "num_examples": 1}], "download_size": 883348, "dataset_size": 2242838.6826529265}}
2023-03-21T20:56:03+00:00
20c80c4e0b2f14f397e1bc0ee8947d40ababd2c4
# Dataset Card for "SGD_Banks" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Banks
[ "region:us" ]
2022-11-11T21:18:32+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1001316.4280845262, "num_examples": 4400}, {"name": "test", "num_bytes": 262, "num_examples": 1}], "download_size": 339188, "dataset_size": 1001578.4280845262}}
2023-03-21T20:56:29+00:00
4e0005a52c1b76e0d3f6bf9837bf9dfa48cb48d8
# Dataset Card for "SGD_Calendar" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
vidhikatkoria/SGD_Calendar
[ "region:us" ]
2022-11-11T21:18:44+00:00
{"dataset_info": {"features": [{"name": "domain", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "act", "dtype": "int64"}, {"name": "speaker", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 647408.8420239475, "num_examples": 2588}, {"name": "test", "num_bytes": 352, "num_examples": 1}], "download_size": 235037, "dataset_size": 647760.8420239475}}
2023-03-21T20:56:53+00:00
b15129889c9667380958dad75185c1d22d46b262
This sentiment dataset was used in the paper: John Blitzer, Mark Dredze, Fernando Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. Association of Computational Linguistics (ACL), 2007. The author asks, if you use this data for your research or a publication, to cite the above paper as the reference for the data, and to inform him about the reuse. The Multi-Domain Sentiment Dataset contains product reviews taken from Amazon.com from 4 product types (domains): Kitchen, Books, DVDs, and Electronics. Each domain has several thousand reviews, but the exact number varies by domain. Reviews contain star ratings (1 to 5 stars) that can be converted into binary labels if needed. The directory contains 3 files called positive.review, negative.review and unlabeled.review. While the positive and negative files contain positive and negative reviews, these aren't necessarily the splits the authors used in the experiments. They randomly drew from the three files ignoring the file names. Each file contains a pseudo XML scheme for encoding the reviews. Most of the fields are self explanatory. The reviews have a "unique ID" field that isn't very unique. If it has two unique id fields, ignore the one containing only a number.
katossky/multi-domain-sentiment
[ "license:unknown", "region:us" ]
2022-11-11T21:30:46+00:00
{"license": "unknown"}
2022-11-11T21:45:41+00:00
6370e17ad58977b2f814fb28f4f5a93c26258081
katossky/multi-domain-sentiment-books
[ "license:unknown", "region:us" ]
2022-11-11T22:25:29+00:00
{"license": "unknown"}
2022-11-12T00:33:47+00:00
147769faebba4155d65ba1f7bbef07992fc5a046
BridgeQZH/xi_diversity
[ "license:openrail", "region:us" ]
2022-11-11T22:49:52+00:00
{"license": "openrail"}
2022-11-11T22:55:28+00:00
ca32b24bb52db3e9c5ebfa32caba60ff2a079f3d
ndorr16/ToyTruck
[ "license:gpl-3.0", "region:us" ]
2022-11-11T23:04:58+00:00
{"license": "gpl-3.0"}
2022-11-11T23:08:16+00:00
76e370b9e10ffb847b2426ac0a64f3858cc76a12
Allenbv/Jojos-bizarre-diffusiondataset
[ "license:creativeml-openrail-m", "region:us" ]
2022-11-11T23:12:44+00:00
{"license": "creativeml-openrail-m"}
2022-11-11T23:13:23+00:00
58ccfab21f30d9a1a1ceac6c6b5a0440e587edd2
JM138/smartwatch
[ "region:us" ]
2022-11-11T23:59:21+00:00
{}
2022-11-12T00:31:57+00:00
a19e2b88393fd2ce86b61f3f74387a6aa4737cf1
# Dataset Card for "lolita-dress-ENG" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
zhangxinran/lolita-dress-ENG
[ "region:us" ]
2022-11-12T00:24:35+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 533036535.0, "num_examples": 744}], "download_size": 530749245, "dataset_size": 533036535.0}}
2022-11-12T00:43:03+00:00
bc28c1a88a57331f0cf190a777a5234a25b976bd
# Dataset Card for "stereoset_zero" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
WillHeld/stereoset_zero
[ "region:us" ]
2022-11-12T00:49:43+00:00
{"dataset_info": {"features": [{"name": "target", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "classes", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 900372, "num_examples": 4229}], "download_size": 311873, "dataset_size": 900372}}
2022-11-12T00:57:23+00:00
b8cf69735312a73b4d5455da24faa23d4389a5c2
Daftdroh/sisi
[ "license:other", "region:us" ]
2022-11-12T00:59:58+00:00
{"license": "other"}
2022-11-12T01:03:02+00:00
b440ccc9dfede07d020206455bb41c6df42c9f53
# Dataset Card for "dalio-reward-model-hackathon-dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Jellywibble/dalio-reward-model-hackathon-dataset
[ "region:us" ]
2022-11-12T04:06:26+00:00
{"dataset_info": {"features": [{"name": "input_text", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 8765, "num_examples": 16}], "download_size": 6055, "dataset_size": 8765}}
2022-11-13T17:25:41+00:00
37bbc9985d018c7ee582a01492c587165a043083
# Dataset Card for "rick-and-morty-manual-captions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
juliaturc/rick-and-morty-manual-captions
[ "region:us" ]
2022-11-12T04:50:29+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11036008.0, "num_examples": 151}, {"name": "valid", "num_bytes": 925318.0, "num_examples": 16}], "download_size": 11931563, "dataset_size": 11961326.0}}
2022-11-12T04:50:47+00:00
32cffc58163df4f5838a6a9635d762fde83cff9e
# Dataset Card for "dalio-conversations-hackathon-dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Jellywibble/dalio-conversations-hackathon-dataset
[ "region:us" ]
2022-11-12T05:47:33+00:00
{"dataset_info": {"features": [{"name": "input_text", "dtype": "string"}, {"name": "scores", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 5026, "num_examples": 8}], "download_size": 8422, "dataset_size": 5026}}
2022-11-12T23:35:14+00:00